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ABSTRACT 
 
Stuck, Rachael M.S., Department of Chemistry, Wright State University, 2017. 
The Synthesis of 3,5-Difluorobenzophenone Derivatives and their Corresponding PEEK 
Copolymers. 
 

Poly(aryl ether ketone)s (PAEK ) are high performance thermoplastics, which are 

chemically robust, semi-crystalline, and stable at high temperatures. Of the family of 

PAEKs, poly(ether ether ketone) (PEEK) is a well-known semi-crystalline thermoplastic 

widely used for electronics, energy, industrial, and medical applications due to its 

resistance to solvents, radiation, heat, and other environmental factors. The traditional 

PEEK is prepared from 4,4’-difluorobenzophenone (2) and disodium hydroquinone. 

However, a challenge is processability, since due to its highly crystalline nature, PEEK 

possesses very limited solubility. An approach to solve these issues is to pre-functionalize 

PEEK polymers synthesized by nucleophilic aromatic substitution from 3,5-

difluorobenzophenone (1) and hydroquinone, which results in a pendant benzoyl group. 

By using varying ratios of 3,5-difluorobenzophenone (1) and 4,4’-difluorobenzophenone 

(2) the degree of crystallinity in the polymer can be tailored. Herein, a series of semi-

crystalline PEEK analogues bearing functional groups on the pendant benzoyl moiety, 

were synthesized and characterized in order to investigate the effects of structural 

variances on the thermal and solubility behavior. 
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INTRODUCTION 

Polymers make up many aspects of our daily life from the protein we eat to the 

gas station coffee in a styrofoam cup.  Polymers can have many advantages to natural 

materials.  Thermoplastics are lightweight compared to steel or fire retardant compared to 

wood.  Engineered thermoplastics are designed to have specific properties for 

applications in our daily life.  These materials are a valuable resource, and can be 

produced cheaply.  The various applications and possibilities for these materials are the 

reason for the increased research and growth in this field. 

Aromatic Polyethers 

Thermoplastics are polymers, which soften at a given temperature to form a 

homogenous liquid.  After molding and cooling a thermoplastic returns to solid form.    

Thermoplastics are employed in a variety of markets for various applications such as 

aerospace, automotive, and medical components.  Poly(arylene ether)s, PAEs, are a class 

of high performance thermoplastics with excellent physical properties.  PAEs are 

identifiable by aryl ether linkages in the “backbone” of the polymer chain.  

Poly(phenylene oxide), or PPO, is one of the first commercially used PAEs.  Other 

common PAEs are poly(aryl ether ketone), PAEK, and poly(arylene ether sulfone), 

PAES (Figure 1).1 
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Figure 1. Commercial Poly(arylene ether)s 

Poly(phenylene oxide), PPO 

 One of the most widely used engineering plastics is PPO, also known as 

poly(phenylene ether).  Hay et al. synthesized PPO in 1959 by oxidative polymerization 

(Scheme 1).  The linear, amorphous, thermoplastic is formed from 2,6-dimethylphenol 

using a copper amine catalyst system.2   

 

Scheme 1. Oxidative Polymerization to PPO by Hay et al.2 

 The mechanical and physical properties allow for it to be utilized in numerous 

applications.  PPO has a high glass transition temperature (Tg) of 212°C, low moisture 

absorption, excellent electrical insulation, dimension stability, flame resistance, and is 

utilized in applications for food packaging, construction materials, automotive panels, 
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and electronic components.1  Another PAE that has excellent mechanical properties and 

chemical resistance is PAEK . 

Poly(aryl ether ketone), PAEK 

 Poly(ether ketone), PEK, Poly(ether ether ketone), PEEK, and Poly(ether ketone 

ketone), PEKK , are PAEKs, which contain 1,4-phenylene ether and 1,4-phenylene 

ketone linkages. (Figure 2) All of them are high performance thermoplastics with good 

thermal stability, chemical resistance, and excellent mechanical properties.1,3  The 

changes in the ratio of ether/ketone linkages give rises to differences in Tg, and alter the 

polymer chain conformation, which, in turn, influences the level of crystallinity.   

 

Figure 2. Common PAEKs 
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Unlike amorphous polymers, the crystalline nature of PAEKs gives rise to 

melting points (Tm), which are relatively high.  The Tg and Tm values, as well as the 

commercial suppliers, of common PAEKs are listed in Table 1.   Due to the level of 

crystallinity present in many PAEK systems, the formation of high molecular weight 

materials requires high temperatures or specialty solvents.   

Table 1. Commercially Available PAEKs and Their Thermal Properties 

Polymer Supplier Tg (°C) Tm (°C) 

PEEK “Victrex” ICI 143 343 

PEK 
“Stilan” 

Raychem Corp. 
163 361 

PEKK Dupont 165 391 

 

PAEK Synthesis Routes 

 Polycondensation reactions, by electrophilic or nucleophilic substitution, are the 

two main routes for the synthesis of PAEKs.  Polymerization by Friedel-Crafts acylation 

was proposed in 1962 by Bonner at DuPont.4  An aromatic diacid chloride was reacted 

with diphenyl ether, in the presence of a Lewis Acid (Scheme 2).  Based on the relatively 

low inherent viscosity of 0.13dL/g, the polymer was presumed to have a low molecular 

weight.4 
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Scheme 2. Polymerization to PEKK by Friedel-Crafts Acylation4  

Direct polycondensation to form PEEK, by Ueda et al., utilized phosphorus 

pentoxide (P2O5), methanesulfonic acid, and aromatic acid to afford PEEK with an 

inherent viscosity of ~1.1dL/g.5  The molecular weight could be controlled by the 

quantity of P2O5, and gave increased molecular weights when compared to some other 

synthetic routes.  Several others have also reported electrophilic routes to PEEK with 

inherent viscosity values ranging from 0.04-1.5dL/g.3  

 

Scheme 3. Synthesis of PEK by Direct Condensation6  
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 The synthesis of PEK homopolymer was carried out by Iwakura et al., who 

utilized p-phenoxybenzoic acid, with polyphosphonic acid (PPA) as the solvent and 

catalyst (Scheme 3).6  The PPA assisted the polymerization by preventing the polymer 

system from crystallizing out of solution as the molecular weight increased.  In general, 

the PAEKs are soluble in strong acids, and some acids (methanesulfonic acid, 

polyphosphoric acid, and hydrogen fluoride) have been employed to aid 

polycondensation.1  Other polycondensation routes utilize polar solvents, such as 

dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and diphenylsulfone (DPS), 

and nucleophilic conditions.       

 Scheme 4 illustrates a nucleophilic aromatic substitution, NAS, polycondensation 

reaction of a difluoro-aromatic ketone with disodium bisphenolate as reported in 1967 by 

Johnson et al.7  A high polarity organic solvent, DMSO, and no catalyst were reported for 

the process, but the use of DMSO caused premature crystallization resulting in lower 

molecular weight.  The use of diphenyl sulfone (DPS) permitted higher reaction 

temperatures during the synthesis and was utilized by Rose and Staniland.8   

Commercialized by ICI, PEEK, with the trade name Victrex, has a high molecular 

weight and is robust with chemical resistance and thermal stability.     
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Scheme 4. Nucleophilic Aromatic Substitution Polymerization by Rose et al. 8  

Polymer Functionalization 

 Monomers are microscopic components of polymers.  Alteration of these 

components will affect the macroscopic properties.  Modifications to monomers or 

functional groups allow for slight changes to the polymer system and customization of 

thermal, mechanical, and chemical properties for specific applications.  Introduction of 

functional groups is achieved through two routes; before polymerization or “pre” and 

after polymerization or “post” as shown in Scheme 5. 
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Scheme 5. Two Routes for Polymer Functionalization 

 Both routes for functionalization have advantages and disadvantages.  In both 

systems, the location of functional group attachment can be on the electron rich positions, 

with electrophilic substitution, or electron poor positions with anionic synthesis routes.  

Modifications of the monomer allow for the polymer to contain a select amount of 

functional groups with a specific motif.  However, monomer functionalization is limited 

to groups that are inert to the polymerization process.  Polymer modification often 

requires harsh reaction conditions, lacks functional group attachment selectivity and 

control, but the range of functional groups is quite expansive given that they do not need 

to survive the reaction conditions.  
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 Another approach to modification combines the best characteristics of each route, 

functionalized monomers and further modification after the polymerization.  The 

approach provides specific sites for further functionalization, and affords better synthetic 

utility.  The sites would be present in specific quantities at specific locations, and would 

allow for a wider variety of functional groups to be utilized.  Initial monomer 

functionalization would contain a potentially inert substituent, such as a nitro, methoxy, 

or halide group.  After polymerization, the substituent could be altered to a more 

beneficial functional group, such as an amine, alcohol, carboxylic acid, etc.      

Nucleophilic Aromatic Substitution (NAS) 

The most common pathway to polymers like PAEs is by way of NAS 

polycondensation reactions.  The general process for NAS is the displacement of a 

leaving group, such as an aryl halide by a nucleophile (Scheme 6).  An electron-

withdrawing group, normally located ortho or para to the halide, assists the reaction.  

Initially, the nucleophile attacks the electropositive ipso carbon in the rate-determining 

step, at which point an intermediate known as a Meisenheimer complex is formed.  The 

ortho or para electron withdrawing substituent stabilizes the intermediate by resonance 

and inductive effect and also activates the electrophilic site. Loss of the halide, and 

rearomatization of the benzene ring, completes the reaction.  

Kaiti et al. demonstrated that, with a strong enough electron-withdrawing group, 

meta-activated NAS polycondensation reactions also occur.9  Meta substitution was 

demonstrated with phenolate ions and activated aryl halides meta to a sulfone, ketone, or 

phosphine.10,11 
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Scheme 6. General NAS Reaction with Electron Withdrawing Group (EWG) 

Electrophilic Aromatic Substitution (EAS) 

 As previously shown, EAS is utilized for PAE polymerization and is also a route 

to functionalized monomers and polymers.  The general mechanism for EAS is shown in 

Scheme 7.  In the rate-determining step, the π electrons attack the electrophile, which 

results in the destabilization of the benzene ring and the formation of a carbocation, 

known as a Wheland intermediate. A Lewis base then abstracts the proton on the carbon 

atom to which the electrophile is attached, reforming the aromatic structure.  

 

Scheme 7. General EAS Reaction  

 Common EAS reactions include nitration, halogenation, sulfonation and Friedel 

Crafts acylation.  Nitration requires sulfuric acid to form the nitronium ion, and the Lewis 
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base for this reaction is water.  Bromination with NBS and sulfuric acid allows for EAS 

to occur on a deactivated system.  Bromination is directed to the meta position with 

respect to an EWG, as shown in Scheme 8.  

 

Scheme 8. General EAS Reaction with meta Directing EWG 

Halogen groups will direct acylation primarily to the para position.  The 

mechanism for acylation is similar to Scheme 8, but slightly more complex, as depicted 

in Scheme 9.  A Lewis acid, commonly aluminum chloride, is used to form the necessary 

electrophile.  The acylium ion is then attacked by the arene and a chloride ion 

deprotonates the arenium ion to form hydrochloric acid, leaving behind the substituted 

aromatic ring. Some functional groups unaffected by acylation are halogens, ethers, 

thioethers, and tertiary amines.        

 

Scheme 9. General Acylation Reaction  
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EAS is a route to initially functionalize as well as synthesize the monomers.  The 

functional groups previously mentioned can be further functionalized with Suzuki 

coupling, Sonogashira Cross coupling, reduction of the nitro group, and further reactions 

with a methyl group.  Scheme 10 shows some functionalization routes, which could be 

employed in either pre or post polymerization routes.  

 

Scheme 10. Synthetic Route for ‘pre’ and ‘post’ Functionalization of Benzophenones 

 

Suzuki Coupling 

 The cross coupling of organic boronic acids with organic halides is catalyzed by 

palladium and known as Suzuki-Miyaura coupling.12 Scheme 11 shows a slightly 

modified procedure that was demonstrated by Wallow et al. and was employed in the 

current work.12  
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Scheme 11. Modified Suzuki-Miyaura Coupling Reaction with Palladium Cycle 

 For the coupling to occur, the catalyst must complete a redox cycle.  The 

palladium cycle is a multistep process.  The organoboronic acid and halide cross coupling 

with the palladium catalyst begin with an oxidative addition between palladium and the 

aryl halide.  The intermediate undergoes transmetallation with base and the boron-ate 

complex.  The desired product is then obtained by reductive elimination which intern 

reestablishes the palladium catalyst.   
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Modified PEEK with a Functionalized Monomer and/or Preformed Polymer 

 Modifications of the monomer or preformed polymer are two general routes to 

functionalize polymers.  A functionalized monomer in the polymer synthesis can later be 

used for further modification.  Due to the chemical resistance of PEEK, modification is 

limited.  PEEK is soluble in strong protic acids, such as sulfuric acid, which will result in 

sulfonation of the preformed polymer.13  Another approach to modification was 

demonstrated by Pramanik et al. where initial acylation was conducted for further 

functionalization to pendant acetyl groups, which were then be converted to pendant 

carboxylic acids, amides, and/or amines.14  The modification kept the ether/ketone 

linkages intact, while other modifications utilized the carbonyl group to form soluble 

derivatives.  An example by Colquhoun et al. demonstrated post modification at the 

carbonyl to form poly(ether dithioketal)s.15     

An example of a functionalized PEEK, which uses both approaches of ‘pre’ and 

‘post’ modification was published by Wang et al.16,17  Toluhydroquinone replaced 

hydroquinone to form methyl-substituted poly(aryl ether ether ketone), MePEEK.  The 

resulting polymer had one pendant methyl group per repeat unit, which caused only 

minor disruption in backbone conformation.  In comparison, Mohanty et al. has 

synthesized PEEK with t-butyl substituents, and the resulting amorphous polymer 

showed a higher glass transition (Tg: 175 °C) and better solubility in common organic 

solvents, but lacked crystallinity.18  MePEEK, while less soluble, had a double melting 

endotherm between 200 to 250 °C, and low molecular weight polymer was predisposed 

to crystallize in chlorinated hydrocarbons.  MePEEK fractions had Tg values ranging 

from 124 to 154 °C, and were directly proportioned to the molecular weight.  The 
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polymerization was similar to that of Rose et al. with slight variations as shown in 

Scheme 12.  

 

Scheme 12.  Synthetic route for MePEEK 

Further functionalization of MePEEK by Wang et al. transformed the polymer to 

a dibromomethyl substituted version, which was converted, through hydrolysis and 

oxidation, to other functional groups (Scheme 13).16  The aldehyde and carboxylic acid 

PEEK displayed Tg values of 175 and 210 °C, respectively.   The higher glass transition 

temperatures were ascribed to interactions of the polar groups amongst polymer chains.  

The polymers exhibited lower decomposition temperatures (Tde), and the findings 

suggested that it was due to the loss of the carboxyl group (Tde: 445 °C ) and the 

carboxylate (Tde: 312 °C).16 

 

Scheme 13.  Functionalization of Preformed MePEEK 

PEEK Modifications with Constitutional Isomers 

 Without functionalization, traditional (para) PEEK has been modified 

structurally to alter physical and thermal properties with constitutional isomers. An 

amorphous analog of PEEK prepared with 4,4’-difluorobenzophenone and catechol was 
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reported by Ben-Haida et al. to form ortho-PEEK (o-PEEK).18  The step-growth 

polymerization of o-PEEK was synthesized at 145 °C with a suspension of potassium 

carbonate (K2CO3) in a mixture of dimethylacetamide (DMAc) and toluene.  The isolated 

cyclic o-PEEK oligomer underwent ring-opening polymerization to obtain block 

copolymers of PEEK to o-PEEK, which contained 30 to 50 % o-PEEK.  A semi-

crystalline polymer, which contained 30 % o-PEEK, had a Tg of 131 °C and Tm of 273 

°C.18  

 With 3,5-difluorobenzophenone and 4,4'-dihydroxydiphenyl ether, meta-PEEEK 

(m-PEEEK) was synthesized by van Beek and Fossum.10  A later variation of the 

bisphenol was made by Fortney and Fossum utilizing 4-methoxyphenol to form meta-

PEEK (m-PEEK). To overcome cyclization and oxidative issues, a larger bisphenol 

oligomer was formed with the benzophenone and 4-methoxyphenol, and the subsequent 

product underwent demethylation and protonation to obtain a bisphenol for later 

polymerization.  The thermal data for the amorphous polymer were 105 °C for Tg and 

428 °C for T(d5%, N2).19  Further exploration of m-PEEK, with varying ratios of PEEK, 

was later conducted by Fortney and Fossum.19  An alternating para to meta 

benzophenone system was formed by initial reaction with 4-methoxyphenol, and later 

deprotected to form a larger diol monomer (4).  Various molar ratios of the two 

difluorobenzophenones were then utilized to tailor the thermal properties of the polymer 

system.  Copolymers of PEEK to m-PEEK were obtained with ratios 50:50, 75:25, 

80:20, 85:15, and 90:10, respectively.  Molar ratios of > 80% of the 4,4’-

difluorobenzophenone showed crystallinity by DSC and X-Ray diffraction as well as the 

75% having a potential for annealing.  The level of crystallinity directly affected the 
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solubility, and the more crystalline materials had limited solubility.  Figure 3 illustrates 

the copolymers with some corresponding thermal data.    

 

Figure 3. Semi-Crystalline PEEK:m-PEEK Copolymer  
Structure with Thermal Data (°C)19 

 

Current Work 

 Similar to Fortney and Fossum, the current research was to focus on varying 

ratios of the m-PEEK to PEEK.19  However, the goal was to use functionalized 

monomers for the polymerization.  Also the preformed polymers with pendant functional 

groups were to be utilized for further functionalization.  The objective was to tailor the 

thermal and physical properties of the polymer systems.  Initially, the constitutional 

isomer 3,5-difluorobenzophenone (1) was substituted to obtain a functional group in the 

meta position on the pendant phenyl ring.  The substituent was less sterically hindered 

than the substitution on the 4,4’-difluorobenzophenone (2) and this is further illustrated 

by Scheme 14. 

y = x 
z = 1 - x 



 18

 

Scheme 14. Functionalization Differences between 1 and 2 

The substitution is an EAS with bromination or iodination of 1 utilizing N-

bromosuccinimide (NBS) or N-iodosuccinimide (NIS), respectively.  The halogenated 

monomer could then be further modified after polymerization to incorporate additional 

functional groups.  Another EAS system would utilize nitric acid for the nitration of 1.   

 The synthesis of 1 is achieved via Friedel-Crafts acylation, and can also be 

utilized for placement of functional groups in the para position.  Scheme 15 shows the 

formation of functionalized derivatives of 1, via acylation.  Functional groups available 

via this methodology include halogens, alkyl, aryl, ether, and thioether groups.  
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Scheme 15. General Acylation for 1 and Functionalized Monomers 

The aryl halide can then be further functionalized with a variety of other 

conversions of the bromo or iodo groups (either before or after the polymerization) as 

illustrated in Scheme 16, using 4’-bromo-3,5-difluorobenzophenone (3) as an example.  

Further functionalization of the aryl halide is explored via Suzuki-Miyaura cross-

coupling.  The synthetic route is a modification of published work by Wallow et al.12 

Heck-Matsuda reaction is another palladium catalyzed coupling, which attaches an 

activated alkene in the presence of a base with low to mild heat.  Also NAS with sodium 

azide would replace a halogen, and the thermal Huisgen 1,3 cycloaddition of an alkyne 

with aryl azide would result in triazole formation by click chemistry. 



 20

  

Scheme 16. Further Functionalization of Aryl Halide 3 Prior to Polymerization 

The 3,5-difluoro aromatics will undergo NAS, which will allow for the 

preparation of PAEs.  To avoid synthetic challenges, and to achieve varying ratios of 

functionalized m-PEEK to PEEK, an oligomeric bisphenol is synthesized from 2 with a 

slight modification from the published work by Hwang et al.20 The 4,4’-bis(4-

hydroxyphenoxy)benzophenone (4) is polymerized with various functionalized 3,5-

difluoro monomers and varying ratios of 2 to explore the thermal and physical properties. 



 21

The general polymerization (Scheme 17) for molar variations utilizes published work by 

Fortney and Fossum.19  

 

Scheme 17. Synthesis of Py-X-m-Pz Copolymers (X: Pendant Functional Group) 

 After polymerization, preformed polymer modifications provide the possibility of 

additional functional groups.  The procedure by Wang et al. describes the conversion of a 

methyl substituent to additional functional groups on the preformed polymer 

(MePEEK).17  Scheme 18 shows the possible conversions of P50-Alt-methyl-m-

P50 copolymer. 
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Scheme 18. Possible Modification of P50-Alt-methyl-m-P50 copolymer 
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EXPERIMENTAL 

Chemicals and Instrumentation 

The monomer reactions were conducted with a nitrogen or argon purge, while 

polycondensation reactions were performed with a nitrogen sweep.  Most solvents and 

reagents were purchased from Sigma Aldrich Chemical Company (Aldrich). The 

anhydrous potassium carbonate (K2CO3) from Aldrich was dried at 130 °C before use.  

N-Bromosuccinimide (NBS) from Aldrich was recrystallized in water, and vacuum dried 

prior to use.  Thionyl chloride (SOCl2) was used immediately after distillation and 

transferred, via cannula, to nitrogen-purged vessels. N-methylpyrrolidinone (NMP) was 

dried over and distilled from calcium hydride (CaH2) prior to use.  All boronic acid 

derivatives, palladium catalyst, and 4-tert-butylphenol were used as received from 

Aldrich.  N-iodosuccinimide (NIS) at 98% purity was used as received from Acros 

Organics.  3, 5-Difluorobenzoic acid, 4,4’-difluorobenzophenone, and hydroquinone 

were purchased from Oakwood Products at ≥99%.  The 4,4’-difluorobenzophenone was 

recrystallized from ethanol prior to use.  Benzene, fluoro-, chloro-, bromo-, and 

iodobenzene were used without further purification as received from Aldrich.  

Hydrobromic acid (HBr) was 48 wt. % in water ≥ 99.99% from Aldrich.  4-

Methoxyphenol (MEHQ) was ReagentPlus®, ≥99% from Aldrich and recrystallized from 

ethanol.  All other acids, denatured ethanol, methylene chloride, and isopropanol were 

used as received from Pharmco-Aaper.  ACS-certified toluene, acetone, sodium 

bicarbonate, aluminum chloride (AlCl3) and magnesium sulfate (MgSO4) were used as 
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received from Fischer Scientific, except toluene, which was dried with sodium metal, and 

freshly distilled prior to use.  Lastly the deuterated solvents, such as acetone-d6, 

dimethylsulfoxide (DMSO-d6), and chloroform-d (CDCl3) were purchased from Aldrich 

and transferred under nitrogen via syringe.   

Nuclear Magnetic Resonance (NMR) 1H and 13C NMR spectra were obtained 

using a Bruker Avance 300 MHz spectrometer, operating at 300 and 75.5 MHz, 

respectively.  Samples were dissolved in deuterated solvents at concentrations of 50-80 

mg / 0.7 mL.  A Mel-Temp instrument was utilized to determine melting points, which 

are uncorrected.  The Gas-Chromatographic-Mass Spectrometric (GC-MS) data were 

obtained with a Hewlett-Packard (HP) 6890 Series with a HP 5973 Mass Selective 

Detector/Quadrupole system, and the flow rate was 1 mL / min, with helium as the carrier 

gas to a HP-5MS capillary column.  Differential Scanning Calorimetry (DSC) and 

Thermal Gravimetric Analysis (TGA) data were performed on TA Instruments DSC 

Q200 and TGA Q500, respectively.  The instruments had a heating ramp of 10 °C per 

minute, and were conducted under nitrogen and air, as needed.  

3,5-Difluorobenzophenone, DFK, 1  

Prior to acylations, 3,5-difluorobenzoic acid was reacted with freshly distilled 

thionyl chloride and catalytic amounts of DMF(2 drops).  After two hours at 55 °C, the 

excess thionyl chloride was distilled between 75 and 77 °C.  The acid halide was then 

fractionally distilled at 174 °C, and recovery was generally around 75%. To a 50 mL 

round bottom flask, equipped with a gas inlet, addition funnel, condenser, and drying 

tube, were added 3.01 g (22.6 mmol) of AlCl3.  A mixture of 3.62 g (20.5 mmol) 3,5-

difluorobenzoyl chloride and 8.01 g (102.5 mmol) benzene was added dropwise to the 
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AlCl 3.  The reaction mixture was stirred for 4 hours, before heating to 75 °C.  After 16 

hours the reaction mixture was quenched by pouring into acidic ice water, followed by 

addition of 300 mL of chloroform, and transferring to a separatory funnel.  The layers 

were separated and the organic layer was washed with 5 wt. % bicarbonate, distilled 

water, and then dried with MgSO4 and the solvents were removed, via rotary evaporation, 

leaving an off-white solid.  The crude material was recrystallized from aqueous ethanol to 

afford (3.00 g, 67 %) of a crystalline white solid with a m.p. 58-59 °C (lit.21 m.p. 57-58 

°C); 1H NMR (300 MHz, CDCl3, δ) 7.04 (tt, 1H, J = 8.4, 2.4 Hz), 7.31 (m, 2H), 7.51 (m, 

2H), 7.63 (tt, 1H, J = 7.5, 1.2 Hz), 7.78 (m, 2H).   

(3,5-Difluorophenyl)(4-methylphenyl)methanone, 7 

The procedure described for preparation of 1 was used with toluene instead of 

benzene for synthesis of 7.  After the addition of all reagents, the reaction mixture was 

stirred for 4 hours at 25 °C.  The reaction was quenched with water, diluted with 

additional toluene (350 mL), and transferred to a separatory funnel.  The organic layer 

was washed with 5 wt. % bicarbonate, distilled water, dried with MgSO4 and evaporated 

to leave a beige solid.  The solid was recrystallized from aqueous ethanol to afford a 

crystalline white solid (91%): 1H NMR (300 MHz, CDCl3, δ) 2.36 (s, 3H, CH3), 6.93 (tt, 

1H, J = 8.7, 2.1 Hz, ArCH), 7.20 (m, 4H, ArCH), 7.62 (d, 2H, J = 8.1 Hz, ArCH), 13C 

NMR (75 MHz, CDCl3, ppm) 21.66, 107.37 (t, J = 24.75 Hz), 112.77 (dd, J = 25.5, 9.0 

Hz), 129.62, 130.20, 133.72, 140.97 (t, J = 7.5 Hz), 144.12, 162.75 (dd, J = 249.75, 12 

Hz), 193.57 (t, J = 2.6 Hz). 
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3,4,5-Trifluorobenzophenone, 8 

The compound 3,4,5-trifluorobenzophenone (8) was synthesized following a 

previously published procedure by Raghavapuram.22  The NMR parameters and physical 

constants were consistent with those reported in the literature (lit.23 m. p. 66 °C; found 66 

– 68 °C). 

(3,5-Difluorophenyl)(4-chlorophenyl)methanone, 9  

The procedure described for preparation of 1 was used with chlorobenzene 

instead of benzene for synthesis of 9.  After the addition of all reagents, the reaction 

mixture was stirred for 4 hours at 25 °C.  The reaction was quenched with acidic water, 

diluted with methylene chloride (200 mL), and transferred to a separatory funnel.  The 

organic layer was washed with 5 wt. % sodium bicarbonate, distilled water, dried over 

MgSO4 and evaporated to yield a light yellow solid.  The solid was recrystallized from 

aqueous ethanol to afford a crystalline white solid (95%): found m.p. 75-77°C. 

(3,5-Difluorophenyl)(4-bromophenyl)methanone, 3 

A 50 mL round bottom flask, equipped with an addition funnel, condenser, and 

gas inlet, was charged with 5.62 g (42.2 mmol) of AlCl3.  A mixture of 6.77 g (38.3 

mmol) of 3,5-difluorobenzoyl chloride and 6.02 g (38.3 mmol) of bromobenzene was 

added dropwise to the AlCl3.  During the addition the reaction mixture was kept below 10 

°C, and was allowed to warm to 25 °C over four hours.  The reaction mixture was 

quenched with acidic H2O, diluted with 300 mL of methylene chloride, and transferred to 

a separatory funnel.  The organic layer was washed with distilled H2O, dried over MgSO4 

and evaporated to leave a light orange solid.  The solid was recrystallized from aqueous 

ethanol.  The crude material was recrystallized from aqueous ethanol to afford a 
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crystalline white solid (10.0 g, 88 %): m.p. 85-86 °C, 1H NMR (300 MHz, CDCl3, δ) 7.05 

(tt, 1H, J = 8.7, 2.4 Hz, ArCH), 7.27 (m, 2H, ArCH), 7.66 (s, 4H), DEPT90 NMR (75 

MHz, CDCl3, ppm) 107.94 (t, J = 25.5 Hz), 112.81 (dd, J = 25.5, 9.0 Hz), 131.39, 131.94.  

13C NMR (75 MHz, CDCl3, ppm) 107.93 (t, J = 25.5 Hz), 112.79 (dd, J = 25.5 Hz, 9.0 

Hz), 128.37, 131.38, 131.93, 135.10, 140.10 (t, J = 7.6 Hz), 162.75 (dd, J = 249.75, 12 

Hz), 192.76 (t, J = 2.43 Hz). 

(3,5-Difluorophenyl)(4-iodophenyl)methanone, 10  

The procedure described for preparation of 3 was used with iodobenzene instead 

of bromobenzene for synthesis of 10.  After the addition of all reagents, the reaction 

mixture was stirred for 8 hours at 0 °C.  The reaction was quenched with water, diluted 

with methylene chloride (300 mL), and transferred to a separatory funnel.  The organic 

layer was washed with 5 wt. % bicarbonate, distilled water, dried with MgSO4 and 

evaporated off to present a light purple solid.  The solid was recrystallized from aqueous 

ethanol to afford a crystalline white solid (17%): 1H NMR (300 MHz, CDCl3, δ) 7.05 (tt, 

1H, J = 8.4, 2.4 Hz, ArCH), 7.27 (m, 3H, ArCH), 7.66 (s, 3H, ArCH), 13C NMR (75 

MHz, CDCl3, ppm) 107.96 (t, J = 25.5 Hz), 112.81 (dd, J = 25.5, 9.0 Hz), 128.39, 131.39, 

131.95, 135.11, 140.10 (d, J = 7.5 Hz), 162.75 (dd, J = 249.75, 12 Hz), 192.81. 

General Procedure for Suzuki Coupling 

(3,5-Difluorophenyl)[p-(2-naphthyl)phenyl]methanone, 17 

 The phosphine-free Suzuki Miyaura coupling was slightly modified from a 

procedure reported by Wallow et al.12 Initially, a 10 molar % stock solution was made 

with 0.0378 g (0.168 mmol) of palladium acetate, Pd(OAc)2, and 10 mL of acetone.  To a 

25 mL Schlenk flask, equipped with a stir bar, were added 2.0 mL of palladium stock 
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solution, potassium carbonate (1.14 g, 8.26 mmol) and 9.0 mL of distilled water for a 

concentration of 0.9176 M.  A second Schlenk flask, equipped with a stir bar, was 

charged with 3 (1.00 g, 3.37 mmol), 2-naphthylboronic acid (0.681 g, 3.96 mmol), and 

9.0 mL of acetone, for a concentration of 0.37 M.  Both Schlenk flasks were purged with 

nitrogen followed by three freeze-pump-thaw cycles, and then back filled with nitrogen 

prior to a cannula transfer to combine the catalyst with the reactants.  The reaction 

mixture was heated to 60 °C for four hours at which point an aliquot was removed for 

GC/MS analysis, which showed complete conversion.  The reaction mixture was then 

poured into distilled water, and a crude off-white precipitate was isolated by filtration.  

The solid was recrystallized from aqueous ethanol to afford a crystalline white solid (1.08 

g, 93%) with a m.p. of 149-150 °C, 1H NMR (300 MHz, CDCl3, δ) 7.05 (tt, 1H, J = 8.7, 

2.4 Hz, ArCH), 7.36 (m, 2H, ArCH), 7.53 (m, 2H, ArCH), 7.76 (dd, 1 H, J = 8.5, 1.9 Hz, 

ArCH), 7.88 (m, 7H, ArCH), 8.10 (m, 1H, ArCH), 13C NMR (75 MHz, CDCl3, ppm) 

107.65 (t, J = 24.75 Hz), 112.88 (dd, J = 25.5, 9.0 Hz), 125.12, 126.52, 126.61, 126.64, 

127.46, 127.72, 128.39, 128.82, 130.71, 133.12, 133.58, 135.04, 136.97, 140.79 (t, J = 

7.5 Hz), 145.90, 162.75 (dd, J = 249.75, 12 Hz), 193.45. 

 (4-Biphenylyl)(3,5-difluorophenyl)methanone, 16 

The procedure described for preparation of 17 was used with phenylboronic acid 

instead of 2-naphthylboronic acid for synthesis of 16.  After combination of all reagents, 

the reaction mixture was stirred for 4 hours at 60 °C.  An additional 10% of 

phenylboronic acid was added, and the reaction continued for 8 hours more.  The reaction 

contents were then poured into distilled water, and crude off-white product was isolated 

by filtration.  The crude material was recrystallized from isopropanol to afford a 
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crystalline white solid ( 94%): m.p. 134-135 °C, 1H NMR (300 MHz, CDCl3, δ) 7.05 (tt, 

1H, J = 8.4, 2.4 Hz, ArCH), 7.45 (m, 5H, ArCH), 7.66 (m, 2H, ArCH), 7.72 (m, 2H, 

ArCH), 7.88 (m, 2H, ArCH), 13C NMR (75 MHz, CDCl3, ppm) 107.63 (t, J = 25.0 Hz), 

112.86 (dd, J = 25.5, 9.0 Hz), 127.23, 127.32, 128.40, 129.03, 130.63, 135.01, 139.71, 

140.78 (t, J = 7.87 Hz), 146.00, 162.75 (dd, J = 249.75, 12 Hz), 193.46. 

1-[4'-(3,5-Difluorobenzoyl)-4-biphenylyl]-1-ethanone,  18 

The procedure described for preparation of 17 was used with 4-

acetylphenylboronic acid instead of 2-naphthylboronic acid for synthesis of 18.  After 

combination of all reagents, the reaction mixture was stirred for 4 hours at 60 °C.  An 

additional 10% of 4-acetylphenylboronic acid was added, and the reaction continued for 

8 hours more.  The reaction contents were then poured into distilled water, and crude off-

white product was isolated by filtration.  The crude material was recrystallized from 

isopropanol to afford a crystalline white solid (92%): m.p. 159-160 °C, 1H NMR (300 

MHz, CDCl3, δ) 2.66 (s, 3H, CH3), 7.06 (tt, 1H, J = 8.4, 2.4 Hz, ArCH), 7.35 (m, 2H, 

ArCH), 7.76 (m, 4H, ArCH), 7.90 (m, 2H, ArCH), 8.08 (m, 2H, ArCH), 13C NMR (75 

MHz, CDCl3, ppm) 26.66, 107.80 (t, J = 25.12 Hz), 112.87 (dd, J = 25.5, 9.0 Hz), 127.42, 

127.49, 129.06, 130.66, 135.85, 136.75, 140.46 (d, J = 7.5 Hz), 144.12, 144.51, 162.75 

(dd, J = 249.75, 12 Hz), 193.30, 197.48.  

General Model Reaction for Pre Functionalized Monomers 

In a 20 mL flask, equipped with stir bar, condenser, and gas inlet, were placed, 

100 mg (0.337 mmol) of 3, 1.00 g (0.673 mmol) of t-butyl phenol, 140 mg (1.010 mmol) 

of K2CO3, and 0.5 mL of NMP.  The reaction mixture was heated at 170°C for four 
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hours, at which point an aliquot was removed and analyzed by GC-MS, showing the 

desired product was not formed.   

4,4'-Bis(p-hydroxyphenoxy)benzophenone, 4  

The compound 4,4'-bis(p-hydroxyphenoxy)benzophenone (4) was synthesized  

following a previously published procedure by Hwang et al.20  Found m.p. 220-222 °C,  

1H NMR (300MHz, DMSO-d6, δ) 6.83 (d, 4H, J = 8.7 Hz, ArCH), 6.96 (d, 4H, J = 2.7 

Hz), 6.99 (d, 4H, J = 2.7 Hz), 7.70 (d, 4H, J = 8.7 Hz, ArCH), 9.53 (s, 1H, OH), 13C 

NMR (75MHz, DMSO-d6, ppm) 115.81, 116.43, 121.70, 131.01, 131.98, 146.44, 154.58, 

162.05, 193.07. 

Poly(ether ether ketone), PEEK  

PEEK was prepared following a procedure published by Rose et al.8 

General Polycondensation Procedure 

P50-Alt-phenyl-m-P50 copolymer  

In a 10 mL round bottom flask, equipped with a condenser, gas inlet, and 

mechanical stir bar, were placed 0.5635 g (4.077 mmol) K2CO3, 0.4000 g (1.359 mmol) 

3,5-difluoro-4’-phenylbenzophenone, and 0.5415 g (1.359 mmol) bis-[4-(4-hydroxy-

phenoxy)-phenyl]-methanone.  A concentration of 0.65 mol/L was used by the addition 

of 2.1 mL NMP.  The reaction mixture was stirred and heated to 185 ̊ C for 34 hours.  

The reaction mixture was precipitated in distilled water to afford an off-white solid. The 

solid was dissolved in 20mL of chloroform precipitated in methanol, and then ethanol.  

The off-white solid was vacuum dried at 110  ̊ C to obtain 0.682 g of polymer.  13C NMR 

(75 MHz, CDCl3, δ) 111.66, 111.76, 113.72, 113.87, 117.00, 120.97, 121.13, 121.65, 

127.03, 127.26, 128.35, 129.00, 130.71, 132.26, 132.35, 135.45, 139.71, 139.75, 140.49, 
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145.72, 151.86, 151.91, 152.10, 152.31, 152.49, 158.90, 158.97, 159.02, 161.40, 194.05, 

194.73. 

P50-Alt-methyl-m-P50 copolymer  

13C NMR (75 MHz, CDCl3, δ) 21.69, 111.52, 111.63, 116.95, 117.03, 120.91, 

121.12, 121.69, 129.10, 130.29, 132.28, 134.12, 140.68, 143.86, 151.81, 152.08, 152.29, 

152.54, 158.80, 158.91, 161.47, 175.07, 194.09, 194.86. 

P50-Alt-naphthyl-m-P50 copolymer  

 13C NMR (75 MHz, CDCl3, δ) 110.64, 112.73, 115.96, 119.97, 120.11, 120.64, 

124.07, 125.42, 125.58, 126.25, 126.68, 127.33, 127.76, 129.76, 131.24, 131.31, 132.03, 

132.52, 134.46, 135.95, 135.99, 139.50, 144.61, 150.89, 151.07, 151.31, 151.47, 157.90, 

158.01, 160.37, 193.01, 193.71. 
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RESULTS AND DISCUSSION 

3,5-Difluorobenzophenone, DFK, 1 

The base compound, 1, was first synthesized by a few general routes (vide infra).  

Friedel-Crafts acylation provided the highest yield with lowest number of byproducts.  

Synthesis by Grignard produced multiple side reactions with only 15-20% product yield.  

Further discussion of the syntheses will be presented in a later section that describes other 

monomers formed by the general route (Scheme 21).  The structure of DFK (1) was 

confirmed by a melting point of 58-60 °C, and its 1H NMR spectrum (Figure 4). 

 

Figure 4. Expanded 300 MHz 1H NMR spectrum (CDCl3) of 1 

1 
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 The expanded 1H NMR shows absorption of the protons (8H) on the aromatic 

rings, and the most distinguishing feature is the proton a between the C-F groups as a 

triplet of triplets at 7.04 ppm (J = 8.4, 2.4 Hz).  The other protons (5H) b,c,d resulted in 

multiplets.  Proton e (1H) also results in a triplet of triplets at 7.63 ppm (J = 7.5, 2.1 Hz).  

With pure 1 in hand, further reactions were carried out to prepare functionalized 

monomers for subsequent conversion to functionalized polymer systems via the “pre” 

approach.      

Electrophilic Aromatic Substitution of 3,5-Difluorobenzophenone (1) 

The ideal position for “pre” functionalization would be meta to the carbonyl with 

a group that could survive polymerization.  A viable substituent would be a halogen (Br 

or I) or a nitro group, which would be reduced to an amine prior to polymerization.  

Attachment of these substituents could be achieved with EAS.  Electrophilic aromatic 

substitutions of the base compound may occur at two different positions.  Figure 5 shows 

the most electron rich location on the structure at the carbon between the two fluorines, as 

measured by 13C NMR (108 ppm).  The meta position on the adjoining benzene ring, 

while less electron rich, as measured by 13C NMR (131 ppm), is not sterically hindered, 

and the most likely location of mono substitution.  The intermediate formed when the 

EAS occurs between the two fluorine atoms has a resonance form in which the (+) charge 

is adjacent to the carbonyl, whereas, the intermediate formed on the lower ring does not.   
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Figure 5. Base compound (1) and most likely substitution locations 

 As previously discussed, the bromination reaction is a typical electrophilic 

aromatic substitution.  Due to unexpected results of multiple substitutions, the reaction 

conditions were adjusted in favor of the monosubstituted analogs, but Scheme 19 shows 

the general route.  The reactions were monitored by GC-MS, and indicated an assortment 

of products.  Varying reaction conditions were explored to reduce the reaction rate of 

substitution, and to achieve a majority of mono substituted product.  

 

Scheme 19. General Halogenation Reaction of 1  

Multiple attachments were occurring during the reaction, where GC-MS results 

showed the formation of a mixture of unreacted, mono, di, and tri substituted 1.  Figure 6 

shows the presence of isomers, and also suggested the substitution was not selective.   

1 

1 
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Figure 6. GC Chromatogram Bromination 

In Figure 6, the monosubstituted in the purple box was the majority product with 

four isomers.  The bromination was occurring at the ortho and para positions on both 

rings, which suggests the reaction conditions may have been too aggressive.  The 

reactions varied with isomer formation, but some reactions had five isomers for a single 

bromine attachment.  The chromatogram shows the analysis of an aliquot removed during 

the reaction of 1 with a 10% excess of N-bromosuccinimide (NBS), and a ratio of 80:20 

sulfuric acid to acetic acid after 24 h.  The reaction conditions of the presented 

chromatogram along with reaction variations are found in Table 2.   
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Table 2.   Reactions Conditions for Mono Substitution of 1 

Reactant 
H2SO4 
: HOAc 

Desired 
Product 

(%) 

Selectivity (%) 
Unreacted:Mono:Di:Tri 

t 
(hrs) 

Temp. 
(℃) 

Isomer 
Formation of 

Desired 
Product (%) 

NBS  80:20 37.4 24.9: 37.4: 10.8: 1.9  24 60 9.3 a 

NBS 20:80 54.3 12.2: 54.3: 10.3: 0 24 25 20.9 

NBS 0:100 50.9 5.1: 50.9: 7.0: 0 72  60 20.3 

NBS 10:90 36.8 32.8: 36.8: 5.9: 0 72 60 23.0 

NBS 50:50 33.7 55.0: 33.7: 0.9: 0 1 0 10.4 b 

NBS 50:50 42.4 24.5: 42.4: 7.1: 0 2 0 18.9 b 

NBS 50:50 45.2 19.6: 45.2: 8.5: 0.8 3 0 17.9 b 

NBS 50:50 44.0 20.5: 44.0: 8.0: 0.8 48  25 19.0 b 

SMBI 100:0 22.8 40.8: 22.8: 15.3: 11.8 2 25 7.7 

NIS 100:0 25.1 34.7: 25.1: 24.6: 5.5 18 25 6.0 

NIS 50:50 37.8 17.7: 37.8: 12.7: 0 22 25 31.3 

HNO3 100:0 24.9 41.7: 24.9: 18.0: 0 24 0 9.7 

HNO3
 100:0 0 0: 0: 82.2: 0 24 0 17.8 c,d 

a Initial reaction used a 10% excess of NBS, and all proceeding halogenations reduced the excess to 5%. b 

Same reaction monitored over time. c The reaction used double the initial amount of Nitric Acid. d Reaction 
yielded only di substituted isomer. 
 

Temperature variations did not appear to alter the formation of undesired 

products.  After initial exploration, the temperature was fixed at 0°C for the addition of 

reactants followed by a gradual warming to 25°C for the remaining reaction.  Limiting 

the reaction time resulted in unsubstituted starting material in the reaction mixture.   The 

ratio of sulfuric to acetic acid had the greatest impact on the outcome. Reduction in 

sulfuric acid extended the product formation time.  While higher concentrations of 

sulfuric acid resulted in the lower mono substituted isomers, and greater quantities of di 

and tri substituted material.  Sodium monobromoisocyanurate (SMBI) was used as an 

alternative brominating agent, but its use provided no advantage to NBS for mono 
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substitution.  Similar results were noticed with the iodination. A slight excess (5%) of N-

iodosuccinimide (NIS) was used with conditions similar to bromination (Table 2).  

Optimal conditions for bromination and iodination were not achieved.   

(3,5-Difluorophenyl)(m-nitrophenyl)methanone, 5 

 The placement of a nitro group for post functionalization (or pre as the amino 

group) was also explored.  Typical conditions with nitric and sulfuric acid were utilized 

to substitute a nitro group onto the base compound.  The general reaction conditions are 

shown by Scheme 20.   

 

Scheme 20. General Nitration Reaction of 1 

The last two entries in Table 2 show the results and variation in reactions. The 

disubstituted product was insoluble in common organic solvents, which made further 

characterization difficult.  In general with EAS, the results showed a lack of selectivity, 

and ease of substitution.  The formation of multiple products made the isolation of the 

desired product cumbersome.  Another approach with the monomer synthesis containing 

a “post” functionalizable group was investigated.  

Synthesis of DFK (1) with Pendant Functional Groups 

The synthetic objective for all monomers was to develop a process, which 

provided a high yielding product, ease of synthesis, and minimal purification.  With the 

consideration to the objective, Friedel-Crafts acylation was utilized with 3, 5-

1 5 
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difluorobenzoyl chloride 6, benzene, and a Lewis acid catalyst (Scheme 21).  The base 

monomer 1 was obtained after the reaction was quenched with water.  The crude product 

was purified by two recrystallizations in ethanol and water.  The process afforded a 67% 

yield of the desired material with a purity of 99.2% (GC).  A similar synthetic route was 

employed for the monomers with pendant functional groups, at the para position rather 

than meta to the carbonyl. 

 

Scheme 21. General Acylation for 1 and Other Monomers 

(3,5-Difluorophenyl)(4-methylphenyl)methanone, 7 

The 4’-methyl-3,5-difluorobenzophenone (7) was synthesized with 3,5-

difluorobenzoyl chloride, aluminum chloride, and an excess of toluene, and was 

quenched with water after 4 hours.  The solution was water washed, and recrystallized 

from ethanol and water, after removal of the toluene, to afford a 91 % yield of 

analytically pure 7 as white crystals.  The structure of the monomer was verified with 1H 

and 13C NMR, and GC-MS analyses.  Figure 7 and 8 shows the 1H and 13C NMR spectra. 

6 
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Figure 7. Expanded 300 MHz 1H NMR spectrum (CDCl3) of 7 

 Due to fluorine coupling, splitting is observed most notably with proton a 

between the fluorines, which results in a triplet of triplets at 6.93 ppm (J = 8.7, 2.1 Hz).  

Aromatic protons b (2H) between the carbonyl and fluorine overlaps with the protons 

(2H) d beside the pendant methyl group, which appears as a multiplet at 7.20 ppm.  The 

remaining aromatic protons (2H) c adjacent to the carbonyl appears as a doublet at 7.62 

ppm (J = 8.1 Hz). Finally, the protons e (3H) of the pendant methyl group are observed as 

a singlet at 2.36 ppm.      

7 
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Figure 8. Expanded 75 MHz 13C NMR spectrum (CDCl3) of 7  

 In the 13C NMR spectrum (Figure 8), all of the signals for carbons e, f, g, and h 

on the phenyl ring, as well as the methyl group j , appear as singlets observed at 133.7, 

130.2, 129.6, 144.1, and 21.7 ppm, respectively.  The remaining carbon atoms, located on 

the fluorinated ring, all display fluorine coupling.  The carbon labeled a, between the 

fluorine atoms, gives rise to a triplet at 107.4 ppm (J = 24.8 Hz).  The aromatic C-F, b, 

appears as a doublet of doublets at 162.8 ppm ( J = 249.8, 12 Hz). A doublet of doublets 

is shown at 112.8 ppm (J = 25.5, 9.0 Hz) for carbon c.  Both the carbonyl i and the carbon 

d meta to the C-F appear as triplets with the carbonyl i at 193.6 ppm (J = 2.6 Hz) and 

carbon d at 141.0 ppm (J = 7.5 Hz).   

 

 

7 
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4’-Bromo-3,5-difluorobenzophenone, 3  

The first monomer synthesized with a pendant functional group was 3, which was 

synthesized with either 3,5-difluorobenzoyl chloride or 3,5-difluorobenzoic acid.  From 

the benzoic acid, polyphosphonic acid was used as the catalyst and solvent with 

phosphorus pentoxide and 5% excess bromobenzene.  The reaction required heating to 

135 °C for 4 days to reach product formation > 70%.  The reaction was quenched with 

ice water and extracted with dichloromethane (DCM).  Residual acid was removed with 

5% bicarbonate washes followed by water washes, and then the solvent was removed to 

recrystallize the product with ethanol.  Purified product was obtained in a 54% yield with 

a melting point of 87-89 °C.  

For all the acylation reactions, synthesis began with the conversion of the acid to 

acid chloride with freshly distilled thionyl chloride and catalytic quantity of N,N-

dimethylformamide (DMF).  The solution was heated for 2 hours at 55 °C before 

fractional distillation.  Excess thionyl chloride was removed at 73 to 77 °C and the 3,5-

difluorobenzoyl chloride was distilled at 173 °C.  The yield varied from 64 to 79% and 

was dependent on fraction quantity and the amount of material remaining in the flask.  

The purified liquid was kept under nitrogen in sealed containers and transferred by 

cannula as required.  

 Primary synthesis of 3 and other variations were made as shown in Scheme 21 for 

the reaction of bromobenzene with 3,5-difluorobenzoyl chloride and aluminum chloride.  

The reactants were present in equimolar amounts and no solvent was used.  An excess of 

bromobenzene resulted in the increase of byproducts, which included the formation of 1, 
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dibromobenzene, and tribromobenzene, as observed with GC-MS analysis.  With 

equimolar reactants, the reaction was conducted under argon and the reactants were 

charged to the aluminum chloride.  The solution was stirred until a thick purple paste 

formed before the reaction was quenched with acidic ice water.  The same purification as 

previously discussed was performed to yield 78 to 93% of a white solid, which melted at 

85-86 °C.  The monomer structure was verified with 1H and 13C NMR spectroscopy, GC-

MS, and elemental analysis.  Figure 9 and 10 show the 1H and 13C NMR spectra. 

 

Figure 9. Expanded 300MHz 1H NMR spectrum (CDCl3) of 3 

 In the expanded 1H NMR spectrum (Figure 9) of 3, the protons (4H) c ortho and 

meta to the bromine absorption appears as a singlet at 7.66 ppm with peak integration 

confirming four protons.  A multiplet absorption corresponding to the aromatic proton 

3 
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(2H) b on the fluorinated ring is observed at 7.27 ppm.  The remaining aromatic proton a 

between the two C-F groups is shown as a triplet of triplets at 7.05 ppm (J = 8.7, 2.4 Hz).  

 

Figure 10. Expanded 75 MHz 13C NMR spectrum (CDCl3) of 3 

In the expanded 13C NMR spectrum (Figure 10), carbons located closely to the 

fluorine atoms display signal splitting from fluorine coupling.  The carbon a ortho to both 

fluorinated carbons resulted in a triplet at 107.9 ppm (J = 25.5 Hz), and the aromatic C-F 

b is observed as a doublet of doublets at 162.8 ppm (J = 249.8, 12 Hz).  A doublet of 

doublets is shown at 112.8 ppm (J = 25.5, 9.0 Hz) for carbon c.  Both the carbonyl i and 

the carbon d meta to the C-F appear as triplets with the carbonyl i at 192.8 ppm (J = 2.4 

Hz) and carbon d at 140.1 ppm (J = 7.6 Hz).  All remaining carbons e, f, g, and h on the 

phenyl ring with the bromo group appear as singlets at 135.1, 131.4, 131.9, and 128.4 

ppm respectively. 

 

 

3 
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Halogenated DFK (1) Derivatives 

To further explore the dehalogenation phenomenon during the synthesis of 3, via 

the Friedel-Crafts acylation process, a series of halogenated 1 systems was investigated. 

An increased formation of 1 was observed with excess bromobenzene, so other pendant 

halogens were synthesized to explore dehalogenation occurring during the acylation.   

 

 

Previously, 4’,3-5-trifluorobenzohenone 8 was made and the reaction was 

completed with five equivalents of fluorobenzene to the acid halide.22  Dehalogenation of 

8 to 1 was not observed, but 10% of 2’,3,5-trifluorobenzophenone was detected by GC-

MS.  The reaction results correlated to previous research, which also showed ~10% ortho 

isomer formation.22 

 

 

The synthetic method was then utilized to make 4’-chloro-3,5-

difluorobenzohenone 9 with the same ratio of chlorobenzene to acid halide (5:1).12  After 

four hours, the reaction was complete with the formation of < 3% ortho isomer and 97% 

8 

9 
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9 (GC-MS).  The synthesis results suggested that the chloro group did not displace as 

easily as the bromo group, but an iodo group may be even more susceptible to 

dehalogenation.   

The synthesis of 4’-iodo-3,5-difluorobenzophenone 10 was carried out with 

equimolar amounts of reactants, and purification was identical to that for 3.  Typically, 

the yield of 10 was under 50% with concurrent formation of 1 and diiodobenzene, as 

confirmed by GC-MS.  The presence of the desired material was confirmed by GC-MS, 

however, during sodium bicarbonate washes some of the iodo groups were removed 

resulting in the formation of 1.  After recrystallization from aqueous ethanol, the product 

structure was confirmed by 1H and 13C NMR, but in only 90 % purity as approximately 

10 % 1 was also present. 

 

Figure 11. Expanded 300MHz 1H NMR spectrum (CDCl3) of 10 with 1 impurity 

10 

1 
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The expanded 1H NMR is similar to 3, and the protons (4H) c ortho and meta to 

the bromine absorption appears as a singlet at 7.66 ppm.  A multiplet absorption 

corresponding to the aromatic proton (2H) b on the fluorinated ring is observed at 7.27 

ppm.  The remaining aromatic proton a between the two C-F groups is shown as a triplet 

of triplets at 7.05 ppm (J = 8.7, 2.4 Hz).  The protons of the impurity overlap some of the 

signals, bur the protons c, d on the phenyl ring without fluorines ortho and meta to the 

carbonyl appear as multiplets at 7.51 and 7.88 ppm respectively.  Figure 5 of the 

expanded proton NMR of 1 is in agreement with the additional proton signals identified 

in Figure 11.  Also the integration concurred with % area for the impurity to product 

ratio previously observed by GC-MS.   

Polymerization Feasibility Study 

 With successful introduction of a halogen group to 1, a model reaction similar to 

polymerization conditions was conducted with 3 and later with 9.  The model reaction 

was used to determine if the pendent halogen would survive the polymerization 

conditions.  The monomers were heated to 165 °C with potassium carbonate and 4-tert-

butylphenol 11.  The expected product of the model reaction is shown, with 3, in Scheme 

22.  

 

 

Scheme 22. Model Reaction with 3 

3 11 12 
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Initial reaction with two equivalents of 11 did not result in difluoro displacement 

to form 12.  Unfortunately, based on GC-MS, the primary displacement with one 

equivalent of 11 was at the bromo group in the para position for 3.  GC-MS analysis 

showed that the product was 62% monobromo substituted 13 (m/z) 366, 7% of 

debrominated monomer 1 (m/z) 218, and 31% monofluoro substituted 14 with one 

equivalent of 11.  After 12 hours with two equivalents of 11, 89% of the disubstituted 15 

was formed.   

Similar results were observed to a lesser extent with 9.  The displacement of the 

chlorine was at 25% while the fluorine displacement was around 53%.  The 9 showed 

15% disubstitution with attachments at one fluorine and the para chlorine. 

 

Scheme 23. Reaction Outcomes Observed with 3 and 11  

The actual reaction outcome is shown by Scheme 23 with 3, and the results were 

more pronounced with 3.  The primary displacement at the para position was between 40 

and 60 % by GC-MS, but displacement could possibly be controlled to exclusively attach 

at the para position with lower temperatures. After the initial reaction with 11, 3 was 

heated in N-Methyl-2-pyrrolidone (NMP) at 160 to 180 °C to determine any additional 

reactions, for which the outcome is shown by Scheme 23.  The model reactions were 
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varied by temperature, base and molar equivalent of 11.  Potassium carbonate (K2CO3) 

was replaced with potassium tert-butoxide (t-BuOK).  The reaction variations performed 

are shown in Table 3. 

Table 3. Reaction Conditions with Percentage of Product Formation by GC-MS 

Reaction Conditions 
% of Identified Compounds (m/z)  

by GC-MS 
Molar 

Equivalent  of 
11 

t 
(hrs) 

T 
(°C) 

Base 
1 

(218.1) 
13 

(366.1) 
14 

(426.1) 
15 

(496.2) 

1 24 180 t-BuOK 2.2 31.3 45.5 20.6 
1 12 180 t-BuOK 8.8 37.0 38.9 15.2 
1 24 165 K2CO3 6.9 30.7 62.4 0 
2 12 170 K2CO3 0 2.4 8.6 88.9 
1 24 160 K2CO3 11.6 37.5 47.1 0 
 

Monomer Modification by Suzuki-Miyaura Coupling  

 For pre modification of 3, a modified phosphine free Suzuki-Miyaura Coupling 

reaction was utilized with aromatic boronic acids.  Since post modification was not a 

possibility with the brominated monomer pre functionalization of the monomers was 

utilized.  The general reaction scheme, for modification reactions of the three monomers, 

is illustrated in Scheme 24. 

 

 

 

Scheme 24. General Phosphine Free Suzuki-Miyaura Coupling Reaction 

3 
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Initially, phenyl boronic acid was reacted with 3 in acetone and water.  Palladium 

acetate and potassium carbonate were used to help facilitate the reaction at 60 °C after 

system degassing.  The air-free synthesis was based on previous work by Wallow et al.12  

After four hours, the product was extracted from the reaction mixture with toluene, 

followed by washing with brine and later water washes.  The organic layer was removed, 

via rotary evaporation, and the product was recrystallized from aqueous ethanol to obtain 

84% yield of the desired product.  The material showed a purity of 99.1% by GC-MS and 

its structure was also confirmed by 1H and 13C NMR spectroscopic analysis. 

 

Figure 12. Expanded 300 MHz 1H NMR spectrum (CDCl3) of 16 

 The successful incorporation of the phenyl group was very evident in the 

expanded 1H NMR spectrum (Figure 12).  The protons (4H) c and d, which originally 

16 
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overlapped as a singlet at 7.66 ppm now appear as multiplets at 7.72 and 7.88 ppm 

respectively.  Also the spectrum shows the absorption from the attached phenyl ring 

protons (5H) as multiplets at 7.45 and 7.66 ppm. The 13C NMR spectrum also confirms 

the replacement of the bromo group with the phenyl ring. 

 The expanded 13 C NMR was similar to that of the reactant except for the 

additional carbon absorptions and the carbon shifts for the C atoms adjacent to the point 

of attachment of the pendent phenyl ring.  The phenyl ring gave rise to singlets in the 

spectrum from carbon atoms j , k, l, and m, located at 135.1, 127.3, 129.0, and 128.4 ppm, 

respectively. The most noticeable change in the spectrum was the absence of the 

chemical shift for the carbon atom where the bromo group was attached and appearance 

of the new peak where the phenyl group was incorporated.  The carbon h absorptions 

shifted downfield from 128.4 to 139.7 ppm.  The other noticeable shift was the carbon e 

adjacent to the carbonyl shifting downfield from 135.1 to 146.0 ppm.  
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Figure 13. Expanded 75 MHz 13C NMR spectrum (CDCl3) of 16 

(3,5-Difluorophenyl)[p-(2-naphthyl)phenyl]methanone, 17 

 Pre modification of the brominated monomer was also completed with 2- 

naphthylboronic acid, using conditions identical to those previously discussed.  The 

reaction was monitored for formation of the desired product by GC-MS analysis. After 

the purification and recrystallization, pure white crystals were obtained at a purity of 

99.5% by GC-MS.  The melting point was 149-150 °C, and further confirmation of the 

product was provided by 1H and 13C NMR spectra. 

16 
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Figure 14. Expanded 75 MHz 13C NMR spectrum (CDCl3) of 17 

 The 1H NMR shows several multiplets and was not a definitive confirmation of 

the formation of 17 in comparison to the 13C NMR.  The expanded 13C NMR better 

illustrates the shifts after attachment as well as the additional carbons present.  Figure 14 

and 15 illustrate the carbon absorption of the product.  Similar features were present and 

expected from the base monomer 1. Other peaks noticed were used to identify and verify 

the formation of the desired product.  Both the carbon e beside the carbonyl and the 

carbon h para to the carbonyl have shifted significantly to 145.9 and 135.0 ppm.  The 

original absorption prior to reaction was at 128.4 ppm for the brominated carbon h, and 

carbon e was at 135.1 ppm.    

17 
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Figure 15. Expanded 75 MHz 13C NMR spectrum (CDCl3) of 17 

 Noticeable additions to the spectrum were from the carbons associated with the 

naphthyl group.  All absorptions associated with the naphthyl appear as singlets and were 

denoted in Figure FRD# 11a and 11b, between 125 and 140 ppm.     

1-[4’-(3,5-Difluorobenzoyl)-4-biphenylyl]-1-ethanone, 18 

Pre modification of 18 was also completed with 4-acetylphenylboronic acid, using 

conditions identical to those previously discussed.  The reaction was monitored for 

formation of the desired product by GC-MS analysis, and additional 4-

acetylphenylboronic acid (10%) was charged after four hours to advance the reaction to 

completion. After 12 hours, the crude material was purified and recrystallized from 

aqueous ethanol to afford pure white crystals at a purity of 99.6% by GC-MS.  The 

melting point was 159-160 °C, and further confirmation of the product was provided by 

1H and 13C NMR spectra. 

17 
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Figure 16.  Expanded 300 MHz 1H NMR spectrum (CDCl3) of 18 

 The expanded 1H NMR in Figure 16 shows the replacement of the bromo group 

on the phenyl ring with the additional protons from the phenyl ring attachment and the 

protons of the methyl group from the acetyl group.  The proton (1H) a between the two 

fluoro groups appears as a triplet of triplets at 7.06 ppm (J = 8.4, 2.4 Hz).  The other two 

protons (2H) b on the fluoro phenyl ring appear as a multiplet at 7.35 ppm.  The aromatic 

protons e, f of the phenyl acetate appear as two multiplets at 7.76 and 8.08 ppm (4H).  

The remaining aromatic protons c, d appear as two multiplets at 7.76 and 7.90 (4H).  The 

methyl protons g of the acetyl group appear as a singlet at 2.66 ppm and integrate for 3 

hydrogens. 

18 
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Figure 17. Expanded 75 MHz 13C NMR spectrum (CDCl3) of 18 
 

The expanded 13C NMR in Figure 17 shows additional evidence of the 

acetylphenyl group attachment with the methyl carbon o appearing at 26.7 ppm and the 

carbonyl n appearing at 197.5 ppm.  The remaining carbons (j,k,l,m ) of the acetylphenyl 

group appear at 144.2, 127.9, 130.7 and 135.9 ppm, respectively. 

4,4’-Bis-(4-hydroxyphenoxy)benzophenone , 4  

To achieve an alternating polymer system of PEEK, with the substituted 

benzophenone isomers, a bisphenol oligomer was prepared with 4,4’-

difluorobenzophenone (2) as the starting material.  A previously reported procedure by 

Hwang et al., with minor modifications, was utilized for the synthesis of 4,4’-bis-(4-

hydroxyphenoxy)benzophenone (4) (Scheme 25).20   

18 
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Scheme 25. Reaction for 4,4’-bis-(4-hydroxyphenoxy)benzophenone , 4 

Initially, 2 was reacted with p-methoxyphenol, in NMP at reflux.  The reaction 

was monitored with GC-MS, and determined to be complete after eight hours.  At which 

point the reaction mixture was poured into water to isolate the product, which was 

recrystallized from aqueous ethanol.  The phenol groups were then deprotected by 

reaction with hydrogen bromide and glacial acetic acid at 130 °C for 48 hours at which 

point the solution was cooled and poured into ice water.  The product was extracted into 

methylene chloride and washed with 5% bicarbonate and distilled water.  After solvent 

removal, the crude material was purified by recrystallization from aqueous ethanol to 

afford a white crystalline solid with a melting point of 220-222 °C.  The structure was 

confirmed by 1H and 13C NMR spectroscopy.  

 

4 

2 19 

20 
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Figure 18. Expanded 300 MHz 1H NMR spectrum (DMSO-d6) of 4 

The expanded proton NMR (Figure 18) of 4 shows the deprotection of the 

hydroxyl groups with appearance of the absorbance for the hydroxyl protons a (2H) at 

9.53 ppm as a singlet.  The signals for b and e appear as two doublets at 6.83 ppm (4H, J 

= 8.7 Hz) and 7.70 ppm (4H, J = 8.7 Hz), respectively.  The signals for c and d appear as 

two doublets at 6.96 ppm (4H, J = 2.7 Hz) and 6.99 ppm (4H, J = 2.7 Hz), respectively.  

The expanded carbon NMR spectrum (Figure 19) of 4 shows the carbonyl signal 

at 193.1 ppm.  The aromatic methane signals (b,c,f,g) appear at 115.8, 116.4, 121.7, and 

132.0 ppm respectively.  The quaternary carbon signals (a, d, e, h) appear at 162.1, 

131.0, 146.4, and 154.6 ppm respectively. 
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Figure 19. Expanded 75 MHz 13C NMR spectrum (DMSO-d6) of 4 

Synthesis of PEEK  

 The condensation polymerization to form the aromatic poly(ether ether ketone) 

PEEK reported by Rose and Staniland was reproduced.8  The polycondensation occurred 

in the presence of diphenyl sulphone (solvent) with hydroquinone and 2. The electron 

withdrawing carbonyl activated the halogen atoms for nucleophilic aromatic substitution 

(NAS).  The aryl dihalide and bisphenol were heated to 180 °C to form a clear solution 

before the addition of anhydrous potassium carbonate.  The mixture was then ramped in 

temperature and held for 1 hour at 200, 250, 320 °C.  The 320 °C polymer solution was 

then poured on to a metal tray to cool.  The solid reaction mixture was milled, and passed 

through a 500 µm sieve.  The light gray powder was successively washed with N,N-

dimethylformamide/water, acetone, water, and acetone/methanol.  The polymer was then 

dried at 140 °C under vacuum for 72 hours. Thermal analysis data were acquired and 

compared to other polymer derivatives.   

4 
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General Synthesis for Alternating Copolymer 

Alternating copolymers with pendant functional groups utilized the synthetic 

route discussed by Fortney and Fossum.19  The successful synthesis of alternating 

copolymers by NAS was completed with the dialkali metal salt as well as equimolar 

quantities of 4, and pendant functionalized diaryl halides. (Scheme 26)  The reactions 

were conducted at 185 °C for upwards of 48 hours before precipitations.  After reaction 

the polymers were initially precipitated into water and redisolved in chloroform to 

precipitate by dropwise addition into ethanol and then repeated in methanol.  The off-

white powders were dried in vacuo at 110 °C for 24 hours. 

 

Scheme 26. Synthesis of Alternating Functionalized PEEK Copolymers   

The structures of the polymers were confirmed by 1H and 13C NMR spectroscopy. 

The 13C NMR (75 MHz) spectra can be found in Figures 20, 21, 22 for the three 

copolymers P50-Alt-methyl-m-P50 copolymer, P50-Alt-phenyl-m-P50 copolymer and P50-

Alt-naphthyl-m-P50 copolymer.  
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Figure 20.  75 MHz 13C NMR (CDCl3) of P50-Alt-methyl-m-P50 copolymer   
 

Figure 20 shows the carbon NMR spectrum for copolymer P50-Alt-methyl-m-P50 which 

confirms the addition of the tolyl functional group with the methyl carbon absorbing at 

21.6 ppm and the aromatic carbons of the tolyl phenyl absorbing at 129.1 (CH), 130.2 

(CH), 134.1 and 143.8 ppm.  Two carbonyls signals are observed at 194.0 ppm and 194.7 

ppm for the 4 unit and 16 unit, respectively.  The four line pattern that is observed 

between 151.8 ppm and 152.5 ppm is caused by transetherification which was originally 

reported by Fortney and Fossum where the same pattern was observed in the 13C NMR 

spectrum of alternating PEEK-alt-m-PEEK prepared from 4,4’-Bis-(4-

hydroxyphenoxy)benzophenone and 3,5-difluorobenzophenone.19   
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Figure 21.  75 MHz 13C NMR (CDCl3) of P50-Alt-phenyl-m-P50 copolymer 

The 13C NMR spectrum of copolymer P50-Alt-phenyl-m-P50 is shown in Figure 21.  The 

signals for the aromatic carbons of the biphenyl unit are observed at 127.0 (CH), 127.2 

(CH), 128.3 (CH), 129.0 (CH), 130.7 (CH), 135.4, 139.7, and 145.7 ppm. 

 

Figure 22.  75 MHz 13C NMR (CDCl3) of P50-Alt-naphthyl-m-P50 copolymer 
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 The structure of copolymer P50-Alt-naphthyl-m-P50 was confirmed by its 13C 

NMR spectrum (Figure 22).  The signals for the aromatic carbons, associated with the 

naphthyl ring, are observed at 124.0 (CH), 125.4, 125.5, 126.2 (CH), 126.6 (CH), 127.3 

(CH)127.7 (CH), 132.0 (CH), 132.5 (CH), and 134.4 ppm. 

Methyl Substituted Copolymers 

To further study the influence of the percentage of PEEK segments, a series of 

copolymers was synthesized with increasing molar amounts of PEEK segments, and 

decreasing quantities of 7.  The reaction conditions and processing were identical to those 

previously discussed for the alternating copolymer systems.  As such, P50-Alt-methyl-m-

P50 was compared to P75-co-methyl-m-P25, P83-co-methyl-m-P17 and P85-co-methyl-m-

P15 (Scheme 27), where PEEK segments were increased from 50 % to 75, 83, and 85 %, 

respectively.  

 

Scheme 27. Synthetic Route for Pendant Methyl Copolymers 

The increase in PEEK segments increased the viscosity of the reaction mixture.  

The reduction in backbone deformity decreased the polymer solubility.  P85-co-methyl-

m-P15 had low solubility.  The impact of the PEEK segments affected the polymer 

solubility and thermal properties. 
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Table 4. Summary of Polymer Solubility 
 NMP DMSO DMAc THF Chloroform 

PEEK - - - - - 
P85-co-methyl-m-P15 - - - - - 
P83-co-methyl-m-P17 +/- - - - - 
P75-co-methyl-m-P25 + +/- +/- - - 
P50-Alt-methyl-m-P50 + + + +/- + 
P50-Alt-phenyl-m-P50 + + + + + 

P50-Alt-naphthyl-m-P50 + + + + + 
 

PEEK has been well known for having limited solubility, and in some 

applications the chemical resistance is ideal.  The decrease in PEEK segments and the 

increase of bulkier substituents improves the solubility in common organic solvents.  A 

summarization of the solubility of the polymers is depicted in Table 4.    

Thermal Analysis 

Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) 

were utilized to determine the thermal properties of the polymer systems.  The glass 

transition temperature (Tg) and the decomposition temperature under nitrogen after 5 % 

weight loss (T(d 5%, N2)) were determined and compared in the following figures.   

 
Figure 23. TGA thermograms of PEEK, P50-Alt-methyl-m-P50, P50-Alt-phenyl-m-P50, 

and  P50-Alt-naphthyll-m-P50 under nitrogen atmosphere 
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 The thermograms of the alternating functionalized polymers (Figure 23) are 

compared to the synthesized PEEK.  Without multiple step degradations being observed, 

the thermogram suggests backbone decomposition is occurring, and it is not the loss of 

pendant functional groups.  As the aromaticity decreases from naphthyl to phenyl to 

methyl, so does the T(d 5%, N2) at 534, 505, and 441 °C, respectively.  The polymers with 

phenyl and naphthyl substituents endure higher temperatures; rendering more stable 

polymers with better heat resistance.  P50-Alt-methyl-m-P50 is comparable to PEEK.    

 
Figure 24. DSC traces (2nd heat) of PEEK, P50-Alt-methyl-m-P50, P50-Alt-phenyl-m-P50, 

and P50-Alt-naphthyll-m-P50  
 

 Thermal analysis by DSC indicated that the alternating functionalized polymers 

were completely amorphous as only glass transition temperatures, Tg, were observed.  As 

the bulky substituent was reduced from naphthyl to phenyl to methyl, the Tg values also 

decreased with values of 153, 144, and 138 °C, respectively.  The increasing Tg values 
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for P50-Alt-phenyl-m-P50, and P50-Alt-naphthyll-m-P50 may be a result of the reduction 

in free volume for the polymer systems.  The changes in the polymer system affect 

sterics, free volume, and intermolecular forces.   PEEK ‘in-house’ sample shows a Tg of 

154 °C as well as a Tm of 320 °C, and the 2nd heating and cooling traces are depicted in 

Figure 25. 

 

Figure 25. DSC 2nd heating and cooling curve of PEEK prepare “in house.” 

 The PEEK sample shows similar Tg values on the 2nd heat (154 °C) to cooling 

(148 °C), which is higher than reported by Victrex at 143 °C.  The sample displayed a Tc 

on cooling at 252 °C, and enthalpy of 19.4 J/g.  Similar enthalpy of 19.2 J/g is observed 

for the Tm at 320 °C, and is lower than reported by Victrex at 343 °C. 
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Figure 26. DSC traces (2nd heat) of P50-Alt-methyl-m-P50, P75-co-methyl-m-P25, and               

P83-co-methyl-m-P17 

 
 As expected, the polymers with elevated PEEK segments displayed evidence of 

crystallinity.  P75-co-methyl-m-P25 has the highest Tg of 153 °C, and this could be due to 

the polymer having a higher molecular weight. P83-co-methyl-m-P17 is crystalline, and 

has a Tg of 142 °C, and comparable to PEEK.  Figure 27 depicts the heating and cooling 

curve of the semi-crystalline, P83-co-methyl-m-P17.   
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Figure 27. DSC 2nd heating and cooling curve of P83-co-methyl-m-P17 

 The sample shows similar Tg values on the 2nd heat (141 °C) to cooling (142 °C).  

The sample displayed a Tc on heating at 198 °C and cooling at 252 °C.  The combined 

enthalpy of the Tc on heating and cooling is 17.3 J/g.  A similar enthalpy of 17.7 J/g is 

observed for the Tm at 297 °C.  Table 5 summarizes the thermal data for all of the 

polymers reported. 

Table 5. Summary of Thermal Analysis for Polymers 
 T (d 5%) 

(°C) 
Tg 

(°C) 
Tc 

(°C) 
∆H 
(J/g) 

Tm 

(°C) 
∆H 
(J/g) 

Tc 

(°C) 
∆H 
(J/g) 

P50-Alt-phenyl-m-P50 505 144 - - - - - - 
P50-Alt-naphthyll-m-P50 534 153 - - - - - - 

P50-Alt-methyl-m-P50methyl 441 138 - - - - - - 
P75-co-methyl-m-P25 - 153 - - - - - - 
P83-co-methyl-m-P17 - 139 198 3.68 297 17.7 216 13.7 

PEEK 457 154 - - 320 19.2 252 19.4 
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Conclusion 

 The isolation of meta bromo substituted 1 was not completed due to the 

unfavorable reaction outcomes.  Several monomers were synthesized by Friedel-Crafts 

Acylation, and an alternative monomer was explored with the bromo group in the para 

position, which was successfully modified prior to polymerization with Suzuki-Miyaura 

Cross-Coupling reactions.  Even though the bromo group on 3 could not survive 

polymerizations, other monomers were polymerized with various PEEK segments.  

Alternating functionalized PEEK copolymers were confirmed and compared to 

traditional PEEK synthesized ‘in house’.  The copolymers showed greater thermal 

stability and solubility in common organic solvents.  Also semi-crystalline polymers had 

better solubility than traditional PEEK, and also provided a site for further 

functionalization at the pendant methyl group.  All polymers demonstrate the benefits of 

a structurally modified functional PEEK, and should be investigated further.   

Future Work 

In hindsight, monomer synthesis would have been completed with a solvent such 

as methylene chloride to possibly increase yield and reduce the concentration of 

reactants, which may also reduce or eliminate formation of by-product 1.  Another 

possible route for meta substituted halogens would have been to try the reaction in a polar 

solvent such as DMF with NBS and without the aid of strong acids.  As previously 

mentioned milder conditions could help deter di and tri substitution.  The meta position 

could have also been added to the system during synthesis, based on work published by 

Ekoue-Kovi et al.24 (Scheme 28) 
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Scheme 28. Potential Synthetic Route for meta Halogen Benzophenone 24 

Even though the para position would not survive polymerization, the site could be 

functionalized prior to polymerization (alkyl, aryl, ether, thioether, tertiary amine) and 

functionalization could occur with preformed polymers containing some substituents.  

Additional substituents should be explored, and incorporated during monomer synthesis 

or monomer modification prior to polymerization.  

 Based on the model reaction another functionalized polymer isomer could be 

explored.  Further study of  3,5,4’-trihalogens should be completed to determine the 

reactivity differences between the fluorine, bromine, and iodine at the meta and para 

locations.  The possibility would be to introduce a meta halogen on a structural isomer.  

The model reaction did suggest the polymerization could occur exclusively at the 3, 4’ 

locations, and could further be promoted by the use of a halogen in the meta position, 

which is less susceptible to NAS, such as bromine or iodine. 

 Finally, post functionalization conditions should be explored for the methyl 

substituent to further functionalize the preformed polymer.     
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