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ABSTRACT

Hamilton, Andrew J. M.S. EGR., Department of Electrical Engineering, Wright State University,
2017. Plasma Property Estimation from Dual-Wavelength Interferometry.

Diagnostics are necessary for measurement of plasma parameters such as electron, ion

and atomic densities, electron temperature, plasma expansion velocity and spatial resolu-

tion of density gradients. These parameters play a critical role in defining how a plasma will

interact with electromagnetic radiation. For example, the plasma black-out phenomenon

occurs when electromagnetic waves are at frequencies below the plasma frequency, where

plasma frequency is a function of electron density. Wave propagation diagnostics can im-

prove understanding of a plasma when measurement supports parameter estimation. In

this report, the dual-wavelength interferometry method provides a single diagnostic capa-

bility to measure plasma expansion velocity, atomic density and electron densities. Using

a laboratory plasma created with wire-ablation pulsed-power techniques and the Sarkisov

model [1], electron densities and atomic densities are estimated for copper and aluminum

plasmas.
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Introduction

1.1 Motivation

It is estimated that 99% of all matter in the universe is in the plasma state [2]. Plasma is

the fourth state of matter and is found in a gaseous-like state comprised of many ionized

particles, free electrons, and neutral particles contained in electrostatic fields, magneto-

static fields and/or electromagnetic fields. Plasma’s existence on earth, though rare, can be

observed in lightning, neon signs, fluorescent lighting, Aurora Borealis, Aurora Australis

and laboratory experiments [3]. An improved understanding of plasma is critical to under-

standing how modern communications, radar and telemetry will interact in the presence of

plasma [3]. It has been found that different diagnostics measuring the same plasma param-

eter differ by up to a factor of 10 [3]. This error is unacceptable for applying mitigation

techniques of radio frequency (RF) transmission [4, 5, 6, 7]. Plasma physics has recently

experienced significant growth in all of these categories with the computational advance-

ment of memory, processing capabilities and simulation methods [3], yet, measurement

methods are critical for validation.

Light interference, as first described by Robert Hooke in the late 17th century, explains

the phenomenon observed when fringes develop after light reflects from two glass surfaces

between a thin air film [8]. This initial observation of fringe lines provided validation for

Hooke to present a wave theory of light accounting for the periodicity of fringe lines. This

theory was opposed by Newton due to his beliefs in wave theory being unable to describe
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rectilinear propagation or polarization, but was later put into6 present form by Huyghens in

1690 [8]. It was not until Young’s double slit experiment in 1801, when the wave nature of

light was accepted in the scientific community [8]. In this experiment, Young demonstrated

that light from a single source, traveling through two separate pinholes, and viewed on

an opaque surface would create fringe lines where the waves of light overlapped [9].This

is due to constructive and destructive interference of the phase. Deriving from Young’s

work, significant advances in interferometry have yielded validation of empirical standards,

measurements of wavelengths, frequency and Doppler information, distance, displacement

and astrophysical information [10]. In 1896, Michelson used interferometry to measure

the wavelength of the red Cd line and verify the accuracy of the Pt-Ir bar (International

Standard of the meter at that time) [8]. After the execution of these classical experiments,

it became apparent that interferometry was a useful diagnostic for precision measurements.

Single-wavelength interferometry is commonly used as a laboratory measurement to

measure electron densities of a plasma, but dual-wavelength has been suggested for plasma

measurements [11, 12]. Propagating waves from a probing laser through a frequency dou-

bling crystal yields two independent, coherent waves during the laser pulse. This polychro-

matic pulse is suitable for a dual-wavelength measurement.

Dual-wavelength interferometry is our proposed diagnostic that can be used to mea-

sure plasma expansion velocity, atomic densities and electron densities in a laboratory

plasma. This diagnostic will produce two measurements, collected at the same moment

in time, providing both temporal and spatial information about the ionization process oc-

curring during wire ablation. Furthermore, development of this technique will utilize the

same equipment as a single-wavelength interferometry measurement and require only an

additional camera and beam splitter.

Following the Sarkisov model for atomic and electron densities, fringe shift measure-
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ments enable plasma property analysis [1].

δ(y) =
2πα

λ

∫
Nadx− 4.49 × 10−14λ

∫
Nedx (1.1)

Of interest here is Eq. (1.1), this theoretical model will provide the technique to estimate

both atomic and electron densities.

1.2 Challenges

The biggest challenges are measurement repeatability and interferometry analysis due to

the turbulent nature of plasma. The wire ablation technique forms a temporally-varying

plasma. Therefore, the plasma behavior must be observed from creation to dissipation.

Measurement repeatability requires planning and strict following of established proce-

dures to complete each experiment. Secure and precise placement of the optics is necessary

before alignment. Multiple devices are connected together and require proper timing for

the experiments to be successful. Sample preparation, handling and placement are consid-

erations that cannot be ignored. A checklist is utilized for each experiment to ensure no

procedures are missed.

The output from an experiment utilizing optical interferometry as a diagnostic, is an

image known as an interferogram. Interferograms represent measured data in fringes. One

set of both dark and light fringes represents a periodic shift due to the phase difference be-

tween two coherent light sources [8]. Interferometric images containing a plasma region,

as found in our work, will have several fringes, with fringe shifts in the plasma region. The

distance a fringe shifts is proportional to atomic and electron densities [1]. These inter-

ferograms will need to be analyzed through computer algorithms or manually measured to

extract the fringe information. There are many codes available for this, but are very costly

[13]. A simple method to extract the fringe information is developed during this research

effort.
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(a)

(b)

Figure 1.1: (a) Interferogram at 532 nm of a single Al wire pre-shot. (b) Interferogram at
532 nm of a single Al wire at 200 ns.

An example of two separate interferograms is provided in Fig. 1.1. The first image

was taken before the wire was ablated by a pulsed power source. This image is used as a

reference when post processing. The second image was taken at 200 ns after wire ablation.

Note how the fringes are shifted during wire ablation process. The process of evaluating

the fringe shift will be explained in Chapter 3.

The engineering challenge for this setup is to create the optical experiment. Any time

an optical experiment is setup, there is a significant effort involved in planning, design,

installation, alignment, and focusing of optics. Without proper care during this step, results
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obtained may be inaccurate or difficult to analyze.

There are many published and accepted methods to perform an interferometry exper-

iment [1, 11, 12]. We plan to evaluate some of the methods and choose the most effective

method for our work.

1.3 Research Hypothesis

We aim to improve upon the state of the art in diagnostics for plasma parameter measure-

ment through further development of dual-wavelength interferometry. This will yield mea-

surement results of electron density, atomic density and expansion velocity after wire ab-

lation from a pulsed power source. Specifically, we intend to estimate electron and atomic

densities, determine plasma conditions and determine the accuracy of the method.

1.4 Outline

Here, we explain the organization of the remainder of the thesis document. In Chapter 2,

we will provide references to the current state of the art in experimental diagnostics and

experimental plasma creation. These previous works lay the foundation for our work and

provide opportunities for advancement of the technology. In Chapter 3, we will describe in

great detail the technique of interferometry. Starting with single-wavelength interferometry,

we progress into dual-wavelength interferometric analysis, and present plasma parameter

estimates. Chapter 4 will contain results for different materials. Chapter 5 summarizes our

work.
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Background

2.1 Previous Work

A survey of plasma physics experiments focused on techniques using pulsed power as an

energy source in the generation of plasma [1, 11, 12]. The review of optical techniques

considered interferometric experimental setups and basic optical techniques [1, 11, 12].

Experiments by Sarkisov et al. [1] used a pulsed power technique to perform wire

ablation along with several optical and electrical diagnostics to measure the plasma param-

eters. Samples consisted of single metallic wires between 10–38 µm in diameter and 20

mm in length installed into a vacuum chamber at mTorr pressure. These wires were ab-

lated by the pulsed power source which delivered a maximum current rate of 150 A ns−1.

Electrical diagnostics were employed to measure current with a shunt resistor and voltage

measured with a capacitive divider. The authors’ goal was to evaluate the initial stage of

wire ablation, a necessary understanding for fusion research. They used single wavelength

interferometry, shadowography and emission spectroscopy to analyze atomic density, tem-

perature, expansion velocity and how the sample is affected throughout the current pulse.

While discussing the interferometry technique, Sarkisov proposed Eq. (1.1) which

relates fringe shift δ to atomic polarization α, atomic density Na and electron density Ne.

Phase shift and its correlation to fringe lines and interferometry will be further explained in

Chapter 3. The coordinates in Eq. (1.1), x, y are defined where x is in the direction of the

propagation of the probing laser and y is normal to the wire axis and probing direction [1].
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Equation (1.1) cannot be solved directly. Sarkisov stated that there are three cases in

which one can reconstruct electron and/or atomic densities through this density equation.

In a high temperature plasma (10–100’s eV), the electron densities are significantly greater

than atomic densities. Thus, the contribution from the neutral densities is negligible and the

equation can be simplified. The electron density could be recovered with single wavelength

interferometry. In the second case, we consider low temperature plasma. In this case, the

atomic densities are much greater than the electron densities and the equation can again be

simplified and atomic densities resolved with single wavelength interferometry. In the final

case, electron and atomic densities are comparable and two-wavelength interferometry is

necessary to resolve each value [1].

After explanation of experimental setup and some theory behind the work, Sarkisov

began analysis of the diagnostics to determine the plasma parameters. Through interfer-

ometry he found the gaseous atomic density, Na, to be on the order of 4.3×1019 cm−3.

Shadowgrams taken using the shadowography technique, show that the expansion velocity

of plasma through his wire ablation experiment was on the order of 3.5 km s−1. Emission

Spectroscopy was used to estimate the temperature of the plasma at 4–6 eV. Though, only

single-wavelength interferometry was performed in his work, it was later mentioned that he

intended to publish two-wavelength interferometry in a future paper [1]. After contacting

him, he mentioned he has not yet published on dual-wavelength interferometry.

There were two publications in 2016 [11, 12] that utilized dual-wavelength interfer-

ometry to determine densities in laboratory plasma. Both publications generated plasma

using dissimilar techniques and achieved noticeably different results in densities. This dif-

ference is due to the methods used to generate the plasma.

Wu et al. [11], concentrated on the energy deposition and vaporization of metallic

wires. In this work, 15 µm Al or W wires were placed in a parallel configuration into a

vacuum chamber with a pulsed power source. The vacuum removed other impurities from

the experiment to simplify results. Temporal and spatial comparisons were made between
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aluminum and tungsten wire ablations. The comparisons included expansion velocity and

surface densities. In Wu’s experiment, the pulsed power source delivered 100 A ns−1 to

both wires. Dual-wavelength interferometry was used to measure atomic and electron den-

sities. Current and voltage were measured with a Rogowski coil and a resistive voltage

divider respectively. Optical emission was measured with a photo tube for temperature

measurements. The probing laser produced the first and second harmonic at 532 nm and

1064 nm with a pulse width of 30 ps.

The density model of [11] is slightly different from Eq. (1.1). Instead of a numerical

coefficient in front of the electron density term, Wu defines this to be the classical electron

radius. Wu et al. observed the expansion velocity of Al wires was 7.3 km s−1, while W

wires were 3.7 km s−1. Since there were two parallel wires, an interesting portion of his

work was the merging of the plasma between the wires. Densities of this central region

and near the wires were observed. Wu defines these densities as surface densities and

represented in units of cm−2. Measured data showed the electron densities to be almost

negligible as the current applied was just enough to vaporize the wires with little ionization.

Maximum surface atomic density, mass per unit area integrated along the laser path, was

2.2×1018 cm−2 at 53 ns after initial current pulsed the wires. At 336 ns most of the mass

merged into the center region defined as the stagnation region. Here, the surface atomic

density is 1.6×1018 cm−2 [11].

The specific interferometry technique used for measurement was not mentioned in

[11], and the fringe lines were manually traced to measure fringe shifts. The measured

fringe shift distances were input into a MATLAB algorithm to determine the specific den-

sity information presented in [11].

Yang et al. [12] describes a different way to generate plasma and use dual-wavelength

interferometry to discern the atomic and electron densities. In his method, a high-power-

density laser heats up a small area of a Cu sample. This heating creates plasma that expands

away from the sample into air. This method of creating plasma is known as laser induced
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plasma (LIP) [12].

The Cu plasma was created with a 20-ns pulse from a neodymium-doped yttrium

aluminum garnet (ND:YAG) laser [14] at 1064 nm and 24 mJ [12]. A plano-convex lens

was used to focus this beam. The optical experiment, used to measure plasma parameters,

employed a Mach-Zehnder [15] interferometry technique. A separate probing laser was

used to conduct the interferometry measurement with wavelengths of 1064 nm and 532

nm. The pulse width of this probing laser was not defined. To conduct the Mach-Zehnder

interferometry experiment, the probing laser underwent an amplitude division and took

separate but equal path lengths until recombined. One of the paths was routed through

the Cu plasma, while the other path traversed free space. After recombining, the beam

then underwent wavelength division through the use of a dichroic mirror [16] and both

interferometric images were collected with separate charge-coupled devices (CCDs) [17].

Yang found that the dual-wavelength interferometry technique was not well-suited

for this study as not only were Cu atoms and free electrons present, but also interference

due to air, as the measurement is conducted at atmosphere. In fact, he mentioned that

three-wavelength interferometry would be better suited for this experiment. To simplify

his study, he created two assumptions that allowed for atomic and electron density mea-

surements. First, Yang assumed the plasma core occurs very near the heated surface. In

the core, only Cu atoms, free electrons and Cu ions exist. He later showed analysis of

interferometry images where he defined this region. The second assumption was that the

atomic polarizability of Cu was significantly greater than air. This assumption means that

the contributions to fringe shifts are dominated by the Cu particles. These two assumptions

allowed progress to be made on the experiment.

Yang analyzed the interferograms using a Delauney triangulation algorithm and Abel

transformation [12]. He showed that the atomic density in the core region was 4.6×1024 m−3,

and the electron density was 1.1×1024 m−3. Temperature of the plasma was not measured

in this experiment.
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2.2 Technical Component

In Section 2.1, we identified the current state-of-the-art in laboratory diagnostics to show

how two separate wavelengths were used to evaluate plasma expansion velocity, electron

densities and atomic densities with dual-wavelength interferometry. Both wire ablation and

LIP techniques were used to generate the plasmas. These plasma generation techniques are

very complicated areas of study in themselves.

In the wire ablation technique, a pulsed current is applied to the wires. The wires

undergo several changes of state. The wires melt into a liquid before expanding into a gas

cloud. If enough energy is remaining, the gas cloud of the metal begins to ionize. These

cold plasmas described above with the wire ablation technique are primarily dominated by

atomic particles and electron densities are difficult to extract.

The other technique discussed was LIP. In this technique, a 1064 nm, 20 ns laser

pulse heats a metallic sample until plasma forms. In this method, electron densities are

comparable to the atomic densities in the core region. It is apparent that two-wavelength

interferometry was well-suited for measurement of densities in the core region when con-

sidering the assumptions that were made. Additionally, these interferometric observations

utilize different methods to solve for the densities.

In [1], the electron densities were negligible and simplified the solution from Eq.

(1.1). The fringes from single-wavelength interferometry were manually measured and

codes were developed to solve for Na and Ne utilizing the measured phase shift. Wu used a

very similar computation for atomic densities even though dual-wavelength interferometry

was employed [11]. Yang [12] utilized dual-wavelength interferometry to generate results

for both atomic and electron densities. Yet, [12] was the only report successful in estima-

tion of atomic and electron densities using dual wavelength interferometry. Certainly, the

computation of densities is the most critical part of this work.
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2.3 Technical Challenges

As mentioned in Chapter 1 and observed in Section 2.1, electro-optical techniques are

employed to observe densities with dual-wavelength interferometry. Any time an optical

experiment is utilized, the design, installation, alignment and focus of the experiment are

not trivial. Secondly, analysis of the interferometry images is challenging because of the

time variation.

There are still many areas of this work that need to be resolved. It is evident that Yang

was successful with the measurement of both densities. This is attributed to comments

made by Sarkisov [1] that the electron and atomic densities must be comparable. In [1, 11],

the authors negate the contributions from electron density to enable computation of atomic

densities. One thing that is not clear to us is when it is acceptable to negate the contribution

from one density or the other. Perhaps it is possible to modify the experiment and create

ideal conditions for when this could be realized. Lastly, there was no mention in any of

these publications to assign a percentage of error in the calculations. It would be useful to

know the precision of a dual-wavelength interferometry measurement.

2.4 Summary

In this chapter, we reviewed several publications that set the stage for our study. Sarkisov

utilized a pulsed power technique to ablate individual metal wires [1]. The source delivered

150 A ns−1 to ablate the wires. Unfortunately, he did not see enough electron density, so

only atomic density results were provided. He was the first to model density as a function of

phase shift, but the equation that cannot be solved directly for electron and atomic densities.

Wu, utilized a similar, but dual-wire technique. In this case, only 100 A ns−1 was delivered

to the pair of wires in parallel to the source [11]. Again, no discernible electron density

could be measured. The density model was simplified to reach a solution for atomic den-

sity. Lastly, Yang used LIP to generate the plasma. He was able to solve for both atomic

11



and electron densities using an Abel transform technique [12]. We will thus try to build

upon this interferometric work with wire ablation and LIP and show how dual-wavelength

interferometry can be a diagnostic for the plasmas created in our laboratory.
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Methodology

3.1 Proposed Study

We set out to measure both atomic and electron density using a dual-wavelength interfer-

ometry method. For this method, we utilize the first and second harmonic from an ND:YAG

laser [14], routed through optics and the plasma chamber, to create interferograms for each

wavelength. The fringe shifts in the plasma region of the interferograms are measured,

and estimates of atomic and electron densities are calculated. The underlying assumptions,

experimental methods, and mathematical approach are further detailed in this chapter.

3.1.1 Experimental Setup

Experiments were conducted at the Antenna and Electromagnetic Technology Branch (RYMH),

Plasma Physics and Sensors Laboratory (PPSL), located at the Sensor’s Directorate on

Wright Patterson Air Force Base. In the PPSL, a section of the laboratory is dedicated to

pulsed power research. In this area, an 8 ft × 4 ft optics table supports the plasma chamber,

optical setup and measurement equipment.

The plasma chamber has an experimental volume of 10 cm3. The configuration of

the chamber is 6 sided with 15.24 cm flanges on each side. The top flange is utilized for

mounting the electrode configuration and feed through of the high Voltage pulsed-power

cable. The bottom flange is connected to a vacuum pump, capable of creating a vacuum
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Figure 3.1: Illustration of plasma chamber and electrode configuration.

of sub-mTorr pressure.. The side flanges are fitted with optically transparent windows to

allow for optical diagnostics. Figure 3.1 shows a drawing of the electrode configuration.

The vacuum chamber is mounted on a non-conductive slab to insulate from the electrically

noisy, grounded table. The anode of the electrode assembly is connected to the center

conductor of the high voltage cable. The anode connection is insulated from electrical

contact with the chamber. The cathode outputs through a current viewing resistor (CVR)

of 0.05 Ω in parallel configuration with the return path through the chamber to the pulsed-

power source along the shield of the high voltage cable. A thin, metallic wire is placed in

the chamber between the electrodes and serves as the load.

The pulsed-power unit is manufactured by FID GmbH [18]. This unit was specifically

designed for PPSL and provides 80 kV, 2.5 kA with a rise time of 10 ns. These specifica-

tions are equivalent to 0.2 J of energy. A high-voltage cable is connected from the pulser

to the plasma chamber.
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The probing laser used for this experiment is a New Wave (Tempest 10) ND:YAG

laser [19]. The fundamental wavelength is 1064 nm and the beam propagates through a

frequency doubling crystal to obtain the second harmonic of 532 nm. Both wavelengths

are contained in a single pulse of the probing laser. The pulse length of the laser is 10

ns with energy output of 100 mJ. There are separate trigger inputs for the flash lamp and

Q-switch.

Cameras used to collect the optical information are FLI Microline series CCDs with

an ML 8300 sensor [20]. These CCDs provide a resolution of 3326 × 2504 pixels. This

provides high resolution images for accurate analysis of the interferograms. Exposure time

is set to 100 ms. The CCDs are ideal for this experiment as they can be configured to

operate from the leading edge of a trigger input.

The laser, pulser and CCDs are connected to a Berkeley Nucleonics Corporation

(BNC) (Model # 575) 4-channel signal delay generator [21]. The purpose of the signal

delay generator is to transmit a trigger signal to each device at a prescribed time. The

sequence begins through a manual push of the trigger button or a command through USB

input. Each connection can be configured to delay the trigger signal or wait until the initial-

ization of a separate channel. Configuration of channels that trigger upon the button push

require a synchronization setting of T0. Table 3.1 shows the configuration of the signal

delay generator.

Table 3.1: SIGNAL DELAY GENERATOR CONFIGURATION

Device Connection Sync Width (s) Delay (s)
CCDs A T0 0.002 0.000000000
Pulsed Power Source B T0 0.002 0.020000000
Laser Flash Lamp C T0 0.002 0.019760140
Laser Trigger D C 0.002 0.000240000

An HP Infinium (model# 54845A) oscilloscope [22] is used to measure voltage across

the CVR and voltage from the diagnostic probe at the anode. It then becomes necessary to

design the optical configuration used to conduct the interferometric measurement. Figure
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Figure 3.2: Experimental layout used in PPSL.

3.2 shows a picture of this experimental layout.

To begin the installation of this setup it is helpful to use an alignment laser, and addi-

tionally for later modifications and adjustments. Here, the alignment laser is 532 nm and

continuous wave. This laser is used to define the optical path and for placement of optics.

Once completed, the diagnostic probing laser is aligned to share the same optical path. The

diagnostic laser is routed through several optics. First, the laser passes through a negative

50-mm focal length lens for beam expansion. Then, a 1000-mm focal length lens is placed

in line with the beam path to set the beam waist to be large enough to fill the window of the

plasma vacuum chamber. This beam passes through the region of the chamber in which the

wire sample is placed. This volume of the test region is referred to as the object. After pass-

ing through the object, the beam is then routed through a relay system. Here two 300-mm

focal length lenses are positioned at a 600-mm distance to extend the image of the object.

An exact copy of the image incident upon the first lens is transmitted through the second

lens. The beam is then guided through a third 300-mm focal length lens and positioned to

provide adequate magnification on the CCDs. The beam is then incident upon an air-wedge

shearing interferometer and reflected back towards the CCDs. This type of interferometer

will be further explained later in the next section. Before entering the CCDs, a harmonic
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beam splitter is used for wavelength division to separate the 532 and 1064 nm wavelengths.

Each time an experiment is conducted, a wire sample is loaded in between the elec-

trodes. The vacuum chamber is pumped down to less than 10 mTorr. The purpose of the

vacuum is to remove impurities present in the air. The experiment is conducted and re-

sults in two interferograms. Each interferogram is representative of a specific wavelength

taken at a prescribed instance in time during the wire ablation process. A new sample is

loaded into the chamber and the experiment is repeated until the entire lifetime of plasma

is imaged.

3.1.2 Interferometry

As mentioned during the introduction, interferometric techniques have been used since

the 17th century. There are a number of techniques to generate fringe shifts due to the

interference of two light sources. Some of the common methods include Michelson, Mach-

Zehnder, Sagnac, Twyman-Green, Fabry-Perot and a shearing air wedge interferometer [8].

One thing they all share is a coherent light source. Two light waves are coherent if the

difference in phase is constant and each wave is monochromatic. It is well known that that

the velocity of light in a vacuum c is 299792458 m s−1. When light waves are traveling

through a non-vacuum medium, this velocity υ is changed by a factor of the refractive

index η.

υ =
c

η
(3.1)

The index of refraction for plasma, the medium of interest to us, is defined in (3.2)

[23].

η =

√
1 −

ω2
pe

ω2
(3.2)

Here, ωpe is the plasma frequency for a collisionless, unmagnetized and cold plasma, and
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defined in (3.3) [23].

ωpe =

√
4πNee2

me

(3.3)

Here, Ne is electron density in cm−3, e is charge of electron in statcoulombs and me

is mass of electron in grams. Finally, the index of refraction is proportional to the effective

permittivity as defined in (3.4) [23].

εr = 1 − 4πNee
2

meω2
= η2 (3.4)

In the Michelson and Mach-Zehnder interferometry experiment, which can be used to

measure plasma properties, the laser beam undergoes amplitude division into two beams.

One beam is routed through a plasma and is considered the probing beam. The second

beam is known as the reference beam and does not pass through the plasma. Both beams

travel the same path length before recombining. Propagation path differences cause phase

differences, which result in interference fringe patterns. In this case, there is not a fringe

spacing based upon path length difference as both path lengths are equal. Rather, the

different electric permittivities along the path of the probing beam will cause a phase shift

that can lead to calculation of atomic and electron densities. Recombining of the beams is

not a trivial process.

In the experiments conducted for this report, our monochromatic light source is the

diagnostic probing laser. We use an air-wedge shearing interferometer [24] to create the

fringe pattern. After the laser beam passes through the plasma, it is incident upon the first

lens in the interferometer. A portion of this light is reflected and some transmitted. The

transmitted light reflects off the second lens, behind an air gap, and recombines with the first

reflection providing an interference pattern. This process causes a phase difference between

the two reflections due to the extra distance that the second reflection travels. Since the

beam was collimated to a larger area than which plasma existed in the chamber, two regions

in the interferogram exist. The first region that surrounds the plasma is considered free
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Figure 3.3: Regions of interferogram.

space and the phase difference is due to the path length difference of both reflections. The

second region, the plasma region, has phase difference due to the path length difference plus

contributions from the atomic and electron densities. This plasma region will create shifted

fringes in the interferograms. Due to the arrangement of fringes on the interferograms, we

also designate the free space region into upper and lower free space regions. An example

is shown in Fig. 3.3.

3.2 Analysis Methods

In this section, we will detail the techniques required to understand how to analyze an

interferogram and determine atomic and electron density information. As mentioned pre-

viously, fringes are arranged on an image in a periodic configuration. At each wavelength,

an image is taken before the shot and at a prescribed time after the current pulse is applied

to the wires. The images are time resolved to the pulse width of the probing laser. After

literature review, we found that some researchers preferred manually measuring the fringe
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shifts [11], while others developed or used commercial off-the-shelf programs capable of

this task [12] [1]. We use a combination of computer algorithms and manual techniques in

order to obtain this information for each interferogram.

In each image collected during the shot, we evaluate three distinct regions. There is an

upper free space region that is not perturbed by the plasma, a plasma region that expands

radially away from the initial wire position and a lower free space region. We expect that the

periodicity of the fringes is unchanged in all three regions. Fringe shift analysis provides

the distance fringes are shifted along the plasma region.

The interferograms obtained contains high-frequency noise, DC contributions and

poorly defined edges of the fringes. This makes analysis of the images difficult as observed

from the line plotted in Fig. 3.4. The DC contribution and noisy edges can be observed

through visual inspection. It is necessary to filter the image to allow for proper analysis

of the fringes. This is accomplished through applying a window in frequency space. The

peaks observed after computing a discrete Fourier transform of the original pixel informa-

tion are displayed in Fig. 3.5. A window is applied around the positive and negative peaks

surrounding the DC contribution. These peaks appear at the periodicity of the fringe lines.

All other information is suppressed and the data is transformed back to the, now filtered,

spatial domain. The filtered interferogram is presented in Fig. 3.6 and information such as

fringe spacing and periodicity is observed without additional contributions from noise and

DC.

Additionally, fringe lines in our interferograms are not vertical. The fringes appear

with both a curvature and tilt. This is due to the interference pattern created from the air-

wedge shearing interferometer. As alignment of the system was ongoing, it was observed

that the fringe pattern is a circular configuration with concentric fringe lines emanating

away from the center, reminiscent of Newton’s rings. It could be desired to find the region

in which horizontal fringe lines appear or vertical fringe lines. We chose to use the region
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Figure 3.4: Unfiltered row data.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1/X 10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
(k

)

Upper free space
Plasma region
Lower Free Space

Figure 3.5: Peaks observed after Fourier transform.
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Figure 3.6: Filtered row data.

closest to where vertical fringe lines appeared. This was challenging as adjustments to the

air-wedge shearing interferometer affected the 532-nm and 1064-nm images differently.

Whether vertical or horizontal, fringe lines are obtained, and the plasma region of the inter-

ferogram will shift the fringes proportional to contributions from both atomic and electron

density. Our solution to measure the fringe shift from the curved fringes is to create a

cubic spline fit from the corresponding free space fringe. The cubic spline fit extends the

reference fringe through the plasma region, enabling the fringe shift to be measured. An

example of this cubic spline fit is observed in Fig. 3.7 of the filtered data.

Once the fringe shift information has been obtained for each wavelength, we perform

analysis of that information. We have utilized a model for fringe spacing from [25].

I(x) = I4 cos2 δ (3.5)

Born [25] shows that the intensity model is convenient for relating physical distance
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Figure 3.7: Cubic spline fit at 1064 nm.

and wavelength to fringe spacing. This model assumes that both monochromatic sources

creating the interference pattern have the same intensity and that the periodicity of the

fringe spacing is on the order of π. Each set of dark and light fringes, one complete phase

cycle, occurs at multiples of π. Furthermore, Born defines the phase as:

δfs =
2π

λ

d

L
x (3.6)

Here, λ is the probing laser wavelength in meters, d is the distance between lenses

in the interferometer in meters, L is the total distance each source travels from the in-

terferometer to the CCD in meters, and x represents the location being measured in the

interferogram. This model works well to analyze fringe spacing.

With a simple model for fringe spacing, we return to the density equation (1.1) for

evaluation of both densities. Once the fringe shift information is obtained for 532-nm and

1064-nm interferograms we set up Eq. (1.1) as two equations. We set the first equation
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variables atomic polarizability α [26] and wavelength λ to represent 1064-nm values, and

setting δ equal to the normalized fringe shift observed from the 1064-nm interferogram.

In the second equation, we set the variables to represent 532-nm properties and the fringe

shift equal to that observed in the 532-nm interferogram. Revisiting Eq. (1.1), we are left

with two equations and two unknowns in the densities.

δ1064 =
2πα1064

λ1064

∫
Nadl − 4.49 × 10−14λ1064

∫
Nedl

δ532 =
2πα532

λ532

∫
Nadl − 4.49 × 10−14λ532

∫
Nedl

(3.7)

To enable computation, the line integral for electron density is assigned the variable χe.

The line integral for atomic density is assigned the variable χa, and the two values are

determined by solving both equations.

δ1064 =
2πα1064

λ1064
χa − 4.49 × 10−14λ1064χe

δ532 =
2πα532

λ532
χa − 4.49 × 10−14λ532χe

(3.8)

3.3 Summary

In this section, we defined the methods used to measure two-wavelength interferometry.

The experimental configuration was discussed to describe the plasma chamber, optical

configuration and diagnostics. Interferometry techniques were explained. Lastly a brief

mention of analytical methods was described with lots of room for improvement.
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Experimental Results

In this chapter we will describe the experimental results obtained during this effort. We will

first take a look at the conditions observed during the experiment. Then, we will examine

the fringe shift measured for each of the experiments. The fringe shift measurements will

lead to calculation of the densities as described in Chapter 3. Interferograms collected

during this effort are presented in Appendix A and B.

4.1 Experiment Description

Before each experiment is conducted, a new sample is loaded into the vacuum chamber.

The top flange is unbolted from the chamber and a 25 µm, 99.99% purity, copper wire is

installed between the electrodes. This is quite challenging as the wires are small and can

easily break if not handled carefully. Tweezers and a jewelers hat with a light, makes this

part a little easier. The distance between the electrode is 10144.76 µm. The ends of the

wires are trimmed away so that they do not interfere with the interferogram. A small piece

of heat shrink tubing is placed over each of the electrodes to hold the wire in place. At this

time a resistance value is measured between the electrodes. This value can be observed in

Table 4.1 for each experiment. A high resistance value at this point is indicative of the wire

not making good contact with the electrodes. If a resistance measurement greater than 5

Ω between the electrodes is observed, the sample is removed and a new sample installed.

Resistivity of Copper for 100% purity is 1.7×10−8 Ω m. The theoretical calculation of
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resistance for a similar length of 100% pure copper wire is 0.3513 Ω. This can be found

by solving for R = ρl
A

. Here, ρ is resistivity, l is the length of the wire and A is the cross

sectional area.

After proper installation of the wire sample, the top flange is installed to the chamber.

The vacuum pump is activated, and the pressure is lowered to less than 10 mTorr. This

pressure, much lower than atmospheric pressure at sea level (760 Torr), removes most of

the impurities from the environment that will be probed by the laser. These values are

tabulated in Table 4.1 and 4.2.

4.2 Fringe Shift

In this section we present the measured values for the fringe shifts. Interferograms were

collected at 532 nm and 1064 nm. Fringe spacing, measured in free space, was defined in

Eq. (4.1).

δ
(fs)
1064nm[pixels]

δ
(fs)
532nm[pixels]

(4.1)

As described in Section 3.2 a cubic spline fit was applied to the reference fringe line

and the distance measured between this cubic spline and the maximum point of fringe shift

was measured in pixels.

δ
(p)
1064nm[pixels]

δ
(p)
532nm[pixels]

(4.2)

The normalized fringe shift value δ, as defined in Eq. (3.8), was calculated as a ratio

of fringe shift vs. fringe spacing, and resulted in units of fringes. These values were
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Table 4.1: PARAMETERS OBSERVED DURING COPPER EXPERIMENTS

Experiment Time Resistance Pressure δ1064 δ532 Ne Na

(ns) (Ω) (mTorr) fringes fringes cm−3 cm−3

1 0 3.7 8 0 0.000 NAN NAN
2 50 2.8 9 NAN NAN NAN NAN
3 100 1.3 8 NAN NAN NAN NAN
4 150 1.7 8 3.399 NAN NAN NAN
5 200 1.2 8 2.348 NAN NAN NAN
6 250 2.6 9 1.888 NAN NAN NAN
7 300 2.7 8 1.518 3.212 1.76 × 1018 4.31 × 1019

8 350 2.7 9 1.105 2.583 6.44 × 1017 3.02 × 1019

9 400 2.7 9 0.956 2.318 4.34 × 1017 2.60 × 1019

10 450 2.2 9 0.954 2.112 5.33 × 1017 2.01 × 1019

11 500 1.6 8 0.632 1.586 1.70 × 1017 1.36 × 1019

12 550 1.5 8 0.617 1.246 4.36 × 1017 1.02 × 1019

13 600 2.1 8 0.570 1.112 1.90 × 1017 9.65 × 1018

14 1501 1.1 8 3.177 NAN NAN NAN
15 1502 2.4 8 3.118 NAN NAN NAN
16 1503 1.6 5 2.888 NAN NAN NAN
17 1504 1.6 8 3.110 NAN NAN NAN
18 1505 2.6 8 2.826 NAN NAN NAN
19 1506 2.6 6 3.095 NAN NAN NAN
20 3001 1.9 5 1.431 2.856 1.77 × 1018 3.94 × 1019

21 3002 1.6 6 1.588 3.271 1.81 × 1018 4.56 × 1019

22 3003 1.2 7 1.424 3.008 1.51 × 1018 4.23 × 1019

23 3004 1.3 8 1.591 3.270 1.82 × 1018 4.56 × 1019

24 3005 2.8 8 1.537 2.957 2.07 × 1018 4.03 × 1019

25 3006 1.7 8 1.500 NAN NAN NAN
26 4501 1.3 8 1.020 2.153 6.06 × 1017 2.11 × 1019

27 4502 3.1 8 0.751 1.891 7.58 × 1017 1.95 × 1019

28 4503 1.8 8 0.849 2.109 2.37 × 1017 2.17 × 1019

29 4504 1.2 8 0.977 1.779 2.98 × 1017 1.66 × 1019

30 4505 1.4 9 0.866 1.866 6.03 × 1017 1.84 × 1019

31 4506 1.5 7 0.842 2.171 2.12 × 1017 2.25 × 1019

32 6001 3.2 9 0.535 1.072 3.77 × 1017 8.52 × 1018

33 6002 1.3 9 0.413 1.063 8.73 × 1016 9.07 × 1018

34 6003 3.0 5 0.417 1.120 4.78 × 1016 9.64 × 1018

35 6004 2.8 6 0.496 1.293 9.07 × 1016 1.10 × 1019

36 6005 3.0 7 0.508 1.234 1.71 × 1017 1.04 × 1019

37 6006 1.3 9 0.478 1.200 1.27 × 1017 1.02 × 1019
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Table 4.2: PARAMETERS OBSERVED DURING ALUMINUM EXPERIMENTS

Experiment Time Resistance Pressure δ1064 δ532 Ne Na

(ns) (Ω) (mTorr) fringes fringes cm−3 cm−3

1 150 1.2 9 2.09 4.07 2.51 × 1018 6.15 × 1019

2 300 1.2 8 0.594 1.41 7.06 × 1016 1.08 × 1019

3 450 1.1 9 0.316 0.87 7.60 × 1016 6.08 × 1018

4 1501 3 3 1.61 3.65 5.32 × 1017 4.19 × 1019

5 1502 1.8 9 2.04 3.43 3.22 × 1018 4.40 × 1019

6 3001 1.7 9 0.74 1.73 1.26 × 1017 1.49 × 1019

7 3002 1.7 9 0.70 1.54 2.19 × 1017 1.21 × 1019

8 4501 1.2 9 0.47 1.17 1.42 × 1016 7.98 × 1018

9 4502 1.5 8 0.39 0.97 6.30 × 1015 6.82 × 1018

determined from copper and aluminum samples, and summarized in Fig. 4.1.

δ1064 =
δ
(p)
1064

δ
(fs)
1064

δ532 =
δ
(p)
532

δ
(fs)
532

(4.3)

During evaluation of the fringe shifts, several observations were made. The plasma

region of images collected before 150 ns were indecipherable. The probing laser was un-

able to propagate through this region and fringe shifts could not be observed. Therefore,

our observations were made from 150 to 600 ns. The plasma region for images collected at

532 nm was unobservable before 300 ns for copper samples. Fringe shifts for the 532 nm

plasma region were observed from 300 to 600 ns. Fringe Shifts could be observed for cop-

per samples at 1064 nm from 150 ns to 600 ns. Additionally, aluminum fringe shifts were

observed at both wavelengths from 150 ns to 450 ns. In both cases, measurements were

collected every 50 ns up to 1200 ns when the fringe lines returned to the vacuum pattern.

The fringe shifts observed in the plasma region from 600 to 1200 ns at both wavelengths

were negligible for copper samples and after 450 ns for aluminum samples.

In Fig. 4.1, it is observed that the fringe shift tends towards zero as the plasma dissi-
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Figure 4.1: Measured fringe shift.

pates. Images for copper samples at 1064 nm show a maximum fringe shift of 3.4 fringes

at 150 ns, and a minimum fringe shift of 0.57 fringes at 600 ns. Images for copper samples

at 532 nm show a maximum fringe shift of 3.2 fringes at 300 ns, and a minimum fringe

shift of 1.1 fringes at 600 ns. Measurements of aluminum samples at 1064 nm include a

maximum fringe shift of 2.1 fringes and a minimum of 0.3 fringes. Aluminum wires at 532

nm have a maximum fringe shift of 4.1 fringes and a minimum of 0.9 fringes. The fringe

shift is due to the refractive index of electrons and the metallic gas formed during wire

ablation. This value decreases over time due to the radial expansion of these parameters

away from the center of the wire.

We conducted extra experiments at 150, 300, 450 and 600 ns. At each time step an

additional six experiments were conducted to show the repeatability of the experiments as a

new sample was used each time. Here, the difference between maximum and minimum of

the total fringe shift was computed and displayed with markers. The maximum difference

found was 0.7 fringe shifts and the minimum difference was 0.3 fringe shifts. Comparison
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of error vs. wavelength shows no correlation.

The most intriguing result from fringe shift analysis is the lack of fringe appearance

in the plasma region of copper samples collected from 532 nm interferograms before 300

ns. This indicates that the electromagnetic waves transmitted from the probing laser were

attenuated and could not pass through this region. These observations were apparent for

copper samples, but not for aluminum. I attribute this to the density difference between

the samples. Copper has a density of 8.96 g cm−3, while aluminum density is 2.69 g cm−3

[27]. The density in copper is almost three times greater than that of aluminum and is a

plausible explanation for this observation. Additionally, laser energy measured 1 foot from

laser output was 94 mJ at 1064 nm and 21 mJ at 532 nm. This difference in combination

with the higher density of copper leads to the missing fringe lines in copper measurements

at 532 nm before 300 ns.

Table 4.3: CONFIDENCE INTERVAL FOR COPPER EXPERIMENTS

Time (ns) χL1064 nm χU1064 nm χL532 nm χU532 nm

300 1.34 1.69 2.65 3.53
450 0.67 1.12 1.62 2.41
600 0.35 0.63 0.50 1.81

Utilizing the student T-test, we evaluated the copper experiments at the repeated in-

crements of time (300 ns, 450 ns, 600ns) to determine the confidence interval [χL, χU]

for fringe shift measurements. A t-value of 2.447 was selected from the t-table [28]. At

the 5% error, with 6 degrees of freedom, the population mean for fringe shift is not in the

confidence intervals represented in Table 4.3, with a 5% likelihood.
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Figure 4.2: Electron effective surface density as calculated from Eq. 3.8.

4.3 Electron and atomic density estimation

In this section, we discuss the electron and atomic densities. After solving Eq. (3.8), as

defined in Section 3.2, we display the experimental results in Table 4.1 and 4.2. The results

are plotted in Fig. 4.2, 4.3, 4.4 and 4.5. Electron densities are displayed with the y-axis in

a logarithmic scale, as the densities range two orders of magnitude. Atomic densities are

presented in a linear scale.

Maximum electron effective surface density is 3.44×1017 cm−2 for copper samples,

and the maximum electron efective surface density is 3.8×1017 cm−2 for aluminum sam-

ples. Figure 4.2 shows these densities decreasing as time elapses. This is congruent with

what is expected as the measurement we are conducting is at the center of the wire. As the

experiment develops, the wire melts, turns into a metallic vapor and begins to ionize. As

this process evolves, gas and plasma expand radially away from the initial wire position.
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Figure 4.3: Atomic effective surface density as calculated from Eq. 3.8.

A decrease in both densities is therefore expected and observed. In Fig. 4.3, displayed in

a linear plot, show that maximum atomic effective surface density is 8.61×1018 cm−2 for

copper samples, and 9.31×1018 cm−2 for aluminum samples. The atomic density profile

also decreases with time.

The additional experiments conducted to represent the repeatability of our work are

significant when describing densities. The maximum difference observed for electron ef-

fective surface density is 5×1017 cm−2 for copper samples. These values are substantial and

indicate errors in measurement or sample. The maximum difference observed for atomic

effective surface density is 4.3×1018 cm−2 for copper samples. Again, this indicates a very

substantial error, even greater than that observed for electron density.

A first order approximation to the volumetric densities is achieved through additional

investigation of the plasma region. Measuring the width of this region, and converting from

pixels to centimeters, defines the diameter of the plasma region. It is assumed the geometry

here is cylindrical and the plasma is homogeneous in this region. The maximum fringe shift
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Figure 4.4: Electron density as calculated from Eq. 3.8.

is observed when the laser beam propagated through the entire volume of the plasma, and

electron densities were uniform throughout the plasma region. The width of the plasma

region increased as time elapsed. At each time increment, the diameter of the plasma

cylinders coincide. In order to calculate the volumetric densities, the plasma diameters

were divided on the effective surface densities. Results are displayed in Fig. 4.4, 4.5.

The electron density for copper samples show a maximum of 2.07×1018 cm−3, and

3.22×1018 cm−3 for aluminum. Atomic density results for copper samples show maximum

density of 4.56×1019 cm−3, and 6.15×1019 cm−3 for aluminum. Figures 4.2, and 4.3

provide a more realistic expectation of the atomic and electron densities observed during

our experiments.
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Figure 4.5: Atomic density as calculated from Eq. 3.8.

4.4 Summary

In this chapter we discussed and documented the experimental conditions observed during

this effort. We have also presented the measured fringe shift data. The purpose for perform-

ing this investigation is to determine the atomic and electron density from our experiments

with a dual-wavelength technique. This information was discussed and density values were

presented.
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Conclusion

5.1 Summary

The overarching purpose of this study was to determine the atomic and electron density of

the plasma generated through wire ablation in the PPSL. Following the model proposed by

Sarkisov [1], a dual-wavelength interferometric system is presented. The interferometric

fringe shifts of two wavelengths are used to estimate the electron and atomic densities.

Utilizing 54 experiments with copper samples, and 9 with aluminum samples, we

presented results of plasma evolution to eventual collapse using interferometric techniques

in 50-ns intervals. The maximum densities of copper samples are observed to be Ne =

2.07 × 1018 cm−3, and Na = 4.56×1019 cm−3. The maximum densities of aluminum

samples are observed to be Ne = 3.22 × 1018 cm−3, and Na = 6.15×1019 cm−3.

In comparing the results to previous work, [1] reported a maximum atomic density

of 4.3×1019 cm−3. It is worth mentioning that [1] used a sample 2-cm in length with

equal diameter to our experiments. Sarkisov’s wire is twice the length of our sample.

Additionally, in [1] their pulsed power source provided 1.5 kA delivered to the sample in

10 ns. In [11], Wu reported a maximum surface atomic density of 1.6×1018 cm−2 using 12

µm diameter, 1 cm long aluminum samples. In [11], the pulsed power source applied 1 kA

current over 10 ns, whereas our pulsed power source provided 2.5 kA during the same time

duration.

It is clear that it is difficult to directly compare our results to this previous work pre-
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sented as wire lengths, diameters, composition and pulsed power source are not compara-

ble. Yet, the order of magnitude is comparable. Through continued work, this technique

can be developed to be more automated and a complete diagnostic for the PPSL laboratory

5.2 Recommendations and Future Work

After collecting numerous interferograms and evaluating the results, there are many things

that could be done differently to improve the time it takes to analyze results and ensure

that no data from any interferogram is overlooked. Various recommendations are presented

here for improving the work and time to complete the experiments.

First, the sample preparation and set up is critical to achieve repeatable results. A

checklist to ensure that each step of the process is completed, would improve procedural

efficiency and prevent error caused by inconsistent sample preparation. It is not ideal to

load a sample and ablate the wire when the camera was not enabled to take the image.

Steps can be made to automate the process through LabView, but every step cannot be

automated.

Image smoothing is critical to accurate detection of fringe spacing and fringe shifts. In

this effort, we utilized Fourier transform windowing as a technique for image smoothing.

This worked well for our analysis, but some errors were noticed at the image corners due

to artifacts lost in the process. The necessary window position and size changes throughout

our images. After literature review, there are literally hundreds of papers describing effi-

cient and fast methods to perform this task through methods of averaging, edge finding and

image enhancement.

Fringe counting is an additional piece that will aid in analysis. When determining the

cubic spline fit for fringe re-creation, it was necessary to manually count fringes to deter-

mine coefficients. This is because the order of fringes in the upper free space region was

different from the fringes in the lower free space region. This was due to fringe curvature.
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For example, evaluating the fourth fringe from the left in the upper free space region at 532

nm, would be referenced to the 7th fringe from the left in lower free space. Fringe number

is required to consider the cubic spline fit for the same fringe line. An algorithm designed

to number the fringes, so that each fringe would not be confused, would make analysis

much easier and save tremendous amounts of time.

Automated fringe shift extraction is another technique that would result in improved

time savings. Our method requires a cubic spline fit to re-create the original fringe line

then measure the number of pixels to the shifted fringe. This was accomplished through

mostly manual techniques and only considered one fringe line. In fact, the fringe lines

shift a greater distance nearest to the anode and a minimum distance nearest the cathode.

We chose to measure nearest to the anode to understand the maximum densities observed

during experiment. A technique to scan the images and reconstruct phase shift would yield

results for the entire region being observed and provide a more complete data set.

Lastly, the techniques used to determine densities yielded results in line integrated

form. This is not a true volumetric density. Able inversion is a technique in which line

integrated densities can be converted to a volumetric density. A volumetric result is fre-

quently presented in literature and naturally easier to comprehend the meaning. If more

time was available, this technique would have been utilized in our analysis
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Appendix A: Interferogram Sequence

Listed below are the interferograms collected during this effort from 0 to 600ns.

1064 nm 0 ns 532 nm 0 ns

1064 nm 50 ns 532 nm 50 ns
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1064 nm 100 ns 532 nm 100 ns

1064 nm 150 ns 532 nm 150 ns

1064 nm 200 ns 532 nm 200 ns

1064 nm 250 ns 532 nm 250 ns
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1064 nm 300 ns 532 nm 300 ns

1064 nm 350 ns 532 nm 350 ns

1064 nm 400 ns 532 nm 400 ns

1064 nm 450 ns 532 nm 450 ns
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1064 nm 500 ns 532 nm 500 ns

1064 nm 550 ns 532 nm 550 ns

1064 nm 600 ns 532 nm 600 ns
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Appendix B: Duplicate Interferograms

The figures below were collected to represent the repeatability of shots. At each increment

of 150 ns, an additional 6 experiments were completed.

1064 nm 150 ns 532 nm 150 ns
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1064 nm 150 ns 532 nm 150 ns

1064 nm 150 ns 532 nm 150 ns

1064 nm 150 ns 532 nm 150 ns

1064 nm 150 ns 532 nm 150 ns
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1064 nm 150 ns 532 nm 150 ns

1064 nm 300 ns 532 nm 300 ns

1064 nm 300 ns 532 nm 300 ns

1064 nm 300 ns 532 nm 300 ns

48



1064 nm 300 ns 532 nm 300 ns

1064 nm 300 ns 532 nm 300 ns

1064 nm 300 ns 532 nm 300 ns

1064 nm 450 ns 532 nm 450 ns
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1064 nm 450 ns 532 nm 450 ns

1064 nm 450 ns 532 nm 450 ns

1064 nm 450 ns 532 nm 450 ns

1064 nm 450 ns 532 nm 450 ns
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1064 nm 450 ns 532 nm 450 ns

1064 nm 600 ns 532 nm 600 ns

1064 nm 600 ns 532 nm 600 ns

1064 nm 600 ns 532 nm 600 ns
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1064 nm 600 ns 532 nm 600 ns

1064 nm 600 ns 532 nm 600 ns

1064 nm 600 ns 532 nm 600 ns
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