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ABSTRACT 

 

 

Cerone, Matthew. M.S., Department of Chemistry, Wright State University, 2017. 

Synthesis of Alkyl Substituted Phenylated Poly(ether ether ketone ketone)s. 

 

A phenylated bis(fluorobenzoyl) monomer, 5-hexyl-2,3-diphenyl-1,4-

bis(fluorobenzoyl)benzene, was synthesized via a four-step process. The first three 

compounds synthesized were diethyl 5-hexyl-2,3-diphenyl-1,4-benzenedicarboxylate, 5-

hexyl-1,4-bis(hydroxymethyl)-2,3-diphenylbenzene and 5-hexyl-2,3-diphenyl-1,4-

benzenedicarboxaldehyde. The final step involved the reaction of the Grignard formed 

from p-bromofluorobenzene with the dialdehyde to yield a diol intermediate which was 

oxidized to the bis(fluorobenzoyl) monomer by use of a Jones oxidation. The monomer 

was polymerized by nucleophilic aromatic substitution (NAS) with bisphenol-A, 

resorcinol, and hydroquinone in N-methyl-pyrrolidone (NMP) to yield novel, phenylated 

PEEKKs. The number-average molecular weights (Mn) for the polymers were found to 

be 35,700 g/mol, 34,800 g/mol and 28,000 g/mol, respectively and the weight-average 

molecular weights (Mn) for the polymers were found to be 63,000 g/mol, 85,100 g/mol 

and 55,600 g/mol, respectively with dispersities of 1.76, 2.44 and 1.98, respectively. 

Thermal analysis provided both the glass transition temperatures (Tg) of 164°, 148°, 162°, 

respectively and the 5% thermal decomposition temperatures (Td5%) of 460°, 448°, 458°, 

respectively. All of the polymers were highly soluble in chlorinated solvents and formed 

robust, free-standing, thin films.  
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INTRODUCTION 

 

Poly(ether ether ketone)s (PEEK) are a useful class of engineering thermoplastics. 

They exhibit exceptional thermal stability, chemical resistance, and machinability. This is 

responsible for their use in the automotive and aerospace industries.1-2 

Previous work3 has shown that adding two phenyl rings to the backbone of 

poly(ether ether ketone)s results in the polymers having enhanced solubility in common 

organic solvents while many of the other desirable properties of PEEK such as 

thermooxidative stability were retained. The increased solubility of the phenyl substituted 

polymer backbone was due to an increase in the flexibility of the polymer and better 

solvent penetration.3 These polymers are prepared via a nucleophilic aromatic 

substitution reaction in which aryl diols 1 react with the monomer 2,3 diphenyl-1,4-

bis(fluorobenzoyl)benzene 2 in NMP using potassium carbonate as the base. 

 1 2 3 

The objectives of this research were to 1) synthesize and characterize an alkyl 

substituted phenylated bis(fluorobenzoyl) monomer, 2) polymerize the new monomer 

with bisphenols of varying rigidity, 3) characterize the resulting novel poly(ether ether 

ketone ketone)s (PEEKKs) and 4) compare the physical properties of the unsubstituted, 

the phenylated, and the phenylated and alkyl substituted PEEKKs.  
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HISTORICAL 

History of Poly(aryl ether)s 

Poly(aryl ethers)s (PAE) 4a-c are a class of high-performance engineering 

thermoplastics. PAEs are known for exhibiting excellent chemical resistance, possessing 

high thermal stability, demonstrating strong mechanical properties, and having decent 

processability. Also, compared to other high performance thermoplastics, PAEs are 

relatively inexpensive.4 They generally consist of phenylene units activated by electron-

withdrawing groups connected by ether linkages. 

 
 4 a b c 

The most commonly used method for synthesizing PAEs is by the formation of 

ether links via nucleophilic aromatic substitution (NAS). To accomplish this, the 

polymerization usually occurs between an activated dihalo compound and a bisphenolate. 

In order to activate the dihalo compound, a withdrawing group is needed, and one of the 

more common activating groups is a ketone as shown in 4a.4 

PAEs are further classified based on which activating group is employed. The 

three most common activating groups are imides, sulfones, and ketones resulting in 

poly(ether imide)s, poly(aryl ether sulfone)s and poly(ether ether ketone)s, respectively. 

With such a variety in the structure of PAEs, these polymers are used in many different 

applications. 
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Poly(ether imide)s differ from common polyimides in that they contain ether 

linkages. These linkages provide flexibility in the polymer backbone, which in turn 

lowers the glass transition temperature of the polymer and make it easier to process.5 

Without the ether linkages, aromatic polyimides are generally difficult to process due to 

the rigidity of the polymer and frequently must be processed as the poly(amic acid) 

precursor and then cycloimidized to the polyimide.5 As for the use of poly(ether imide)s 

in industry, they are most prevalent in the aerospace and electronics industry in the form 

of films and moldings. One of the most well-known commercial poly(ether imide)s is 

Ultem 1000® 5. One of the reasons that polyimide 5 is useful is that it has reasonable 

processing parameters. This is due to the small aliphatic region of the polymer that 

increases flexibility making the polymer more soluble.6 

 

 5 

In 1997, Hsiao7 reported a series of poly(ether imide)s that were soluble and 

processable like 5 but had better thermal stability. These polymers utilized an ortho 

substituted ring between the ether linkages. 

 

 6 

The ortho substitution of polymer 6 gave similar flexibility as the aliphatic region 

of 5 gives, but without the thermal vulnerability of the aliphatic unit. It was shown that 



 4 

polymer 6 had only a slightly elevated Tg of 224° versus 212° for 5, and an even greater 

thermal stability with a 5% decomposition temperature of 533° versus 505° for 5. The 

number-average molecular weights (Mn) achieved for 6 was 11,700 g/mol and the weight 

average-molecular weight (Mw) achieved was 44,000 g/mol. Polymer 6 also showed 

excellent solubility in several common organic solvents such as NMP and DMSO, as well 

as chlorinated solvents like dichloromethane and chloroform.7 

Poly(arylene ether sulfone)s PAES, are a subset of poly(arylene ethers) that are 

completely amorphous. PAES consist of the subunit aryl-sulfone-aryl connected by ether 

linkages as shown in polymer 7.8 

 

 7 

Most recently they have been employed as membranes in fuel cells. The use of 

PAES as anion exchange membranes is due to their excellent physical properties and 

chemical resistance as well as their high thermal stability. Alkaline anion exchange 

membrane fuel cells (AAEMFCs) operate using electrolytes like KOH, a strong base, at 

temperatures up to 90°. PAES are some of the few membranes that can survive these 

conditions.9 

The first commercial poly(arylene ether sulfone) was Udel® 10, developed by 

Union Carbide in 1965.10 This was synthesized by an NAS polycondensation method 

using the bis-sodium salt of bisphenol-A 8 and 4,4-dichlorodiphenyl sulfone 9. The 

reaction was performed in a high-boiling polar aprotic solvent such as NMP. 

 



 5 

 
 8 9 

 
 10 

NAS is typically the preferred method to synthesize these polymers because the 

reagents used are inexpensive and this method yields the highest molecular weight 

polymers.10 

Poly(ether ether ketone)s, PEEK are very similar to poly(arylene ether sulfone)s 

in chemical resistance and thermal stability. PEEK polymers like 11 are defined as 

having a ketone between two aryl groups. Each subunit is connected by ether linkages.11 

 
 11 

One example of how similar the properties of PAES and PEEK can be seen in the 

synthesis of anion exchange membranes. In 2016, Lee12 showed that for a series of 

sterically encumbered, sulfonated, alternating poly(arylene ether) copolymers, 12a and 

12b, there was virtually no difference between the corresponding PEEK and PAES in 

terms of proton exchange membrane performance. 

 



 6 

 
 12 

 
 a b 

PEEK and PAES differ structurally and therefore stereochemically. The ketone 

and ether functionalities in PEEK can adopt a planar geometry. Also, the bond angle and 

bond distances of the ketone and ether linkages in PEEK are the same giving the polymer 

a strong affinity towards crystallinity.13 PAES on the other hand have the built-in 

tetrahedral structure of the sulfonyl unit and thus cannot adopt a planar geometry. This 

means that most PEEK polymers have at least a small degree of crystallinity whereas 

PAES are completely amorphous.14 This crystallinity causes many PEEK polymers to be 

insoluble in many common organic solvents, and soluble only in concentrated sulfuric 

acid or other similarly strongly acidic solvents. Amorphous PEEK polymers are typically 

soluble in chlorinated solvents and are easier to process due to their lower glass transition 

temperatures (Tg). The reason for this amorphous nature and increased solubility is 

usually due to the presence of bulky side groups on the polymer backbone, or, in the case 

of bis(fluorobenzoyl) monomer 13, the use of nonlinear bisphenols 14, leading to 
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flexibility in the polymer backbone because of the tetrahedral geometry of the bisphenol-

A as seen in 15.13 

 

 
 13 14 

 
 15 

There are two main ways to synthesize poly(ether ketone) polymers. The earliest 

method used by Bonner of DuPont in 1962 employed Friedel-Crafts acylation.15 

Unfortunately, this method only produced low molecular weight polymeric material. The 

poly(ether ketone ketone) 18 was synthesized by the reaction of diphenyl ether 16 and 

terephthaloyl chloride 17 using nitrobenzene as a solvent and aluminum chloride as a 

catalyst.15 

 

 16 17 18 

A later, and more effective, method to synthesize PEEK polymers employed NAS 

polycondensation systems. The original reaction was carried out in DMSO using 
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hydroquinone 19 and bis(fluorobenzophenone) 20. This led to low molecular weight 

because of the crystallinity and the resulting insolubility of the polymer in DMSO.16 In 

order to increase the molecular weight, Atwood17 carried out the polymerization using 

diphenyl sulfone as the solvent and kept the temperature of the reaction near the melting 

point of the polymer to promote solubility and increase the molecular weight. 

 

 19 20 11 

With appropriate optimization, high-molecular-weight polymer was achieved. For 

the nucleophilic route, fluoro-monomers work the best but are also expensive. The less 

reactive monomers, the dichlororo monomers, do not easily produce high molecular 

weight polymers. One reason for this is the tendency for side reactions such as single 

electron transfer in which 4,4’-dichlorobenzophenone 21 could be reduced by one 

electron to the radical anion that quickly decomposes to the halide anion and the aryl 

radical 22. The aryl radical then abstracts a hydrogen atom from the solvent to yield chain 

terminating 4-chlorobenzophenone 23.18  

 

 21 22 23 

Poly(phenylene vinylene)s (PPV) 

Phenylene vinylenes 28 were first reported by Gilch and Wheelwright in 1965. 

While originally named poly(xylylidene)s, the more common name currently is 

poly(phenylene vinylene)s.20 The original study was focused on the reaction of α, α‘-
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dihalo-p-xylenes 24 with base. The reaction produced 28 via a proposed 1,6-

dehydrohalogenation.19 

 
 24 25 

 
 28 27 26 

 

The mechanism for this reaction involves initial removal of an alpha proton in 24. 

The resulting anion 25 then eliminates a chlorine to give the quinoid structure 26. This 

molecule polymerizes by an addition process to form 27, which undergoes thermal 

dehydrohalogenation to yield polymer 28.20 

These polymers were insoluble in almost all common organic solvents but had 

excellent thermal stability. While the thermal properties were desirable, the polymer’s 

usefulness was greatly diminished because the polymer was so difficult to process. Since 

the backbone of the PPV polymer consists of a completely conjugated system, no 

modification that significantly disrupts this conjugation can be proposed as a solubility 

enhancement. This means that to increase the solubility or processability, substituent 

groups must be added onto the aromatic ring. 

Highly Substituted Aromatic Dialdehydes for PPV Synthesis 

The first attempt to make a phenylated PPV occurred in 1982.21 The phenylated 

dialdehyde monomer, 2,3-diphenylterephthaldehyde 31, was synthesized by a two-step 
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process starting with 3’,6’-dimethyl-o-terphenyl 29. The dimethyl compound 29 was 

reacted with N-bromosuccinimide in carbon tetrachloride to yield 3’,6’-

bis(bromomethyl)-o-terphenyl 30 in a 86% yield.21 

 
 29 30 

The Sommelet reaction was used to convert the 3’,6’-bis(bromomethyl)-o-

terphenyl 30 to the corresponding dialdehyde, 2,3-diphenyltetephthaldehyde 31. This 

reaction is a process in which aldehydes are made from alkyl halides using 

hexamethylene tetramine (HTMA). In this particular instance, the solvent that produced 

the best yields was 90/10 acetic acid/water. The 2,3-diphenylterephthaldehyde 31 was 

recovered in 65% yield.21 

 
 30 31 

Dialdehyde 31 was then reacted with p-xylenebis(triphenylphosphonium chloride) 

32 to yield polymer 33 in 83% yield via a phase transfer catalyzed Wittig reaction.21 

 
 31 32 33 
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A similar reaction was then carried out using m-xylenebis(triphenylphosphonium 

chloride) 34 to produce polymer 35. 

 
   31 34 35 

A third polymer, 37 was synthesized using the phenylated dialdehyde 31 

combined with 2,3-diphenyl-p-xylenebis(triphenylphosphonium bromide) 36. 

 
 31 36 37 

The incorporation of phenyl substituents appeared to be responsible for the 

solubility of polymers 33, 35 and 37 in chlorinated solvents and partial solubility in 

aliphatic ketones.22 Polymers 33, 35 and 37 were found to have number-average 

molecular weights (Mn) of 2157 g/mol, 1963 g/mol, and 1470 g/mol, respectively.21 

These are extremely low molecular weights and the materials are better considered 

oligomeric than polymeric. They were, however, highly fluorescent. 

The yield of the Sommelet reaction was inconsistent. However, the success of 

producing a soluble PPV led to a search for a better synthetic pathway for dialdehyde 31, 

and thus a better overall method for producing soluble phenylated PPV and other 

phenylated polymeric material. 
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The sequence that resulted as a  response to the previous study begins with the 

synthesis of 2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 40. This is formed 

from the reaction of benzil 38 and diethyl 1,3-acetonedicarboxylate 39 with sodium 

ethoxide in ethanol. A second step employs acetic anhydride and sulfuric acid.23 

 
 38 39 40 

The cyclopentadienone 40 was then reacted with norbornadiene 41, that can be 

viewed a hidden acetylene, in toluene in a Diels-Alder reaction to form 2,3-diphenyl-1,4-

benzenedicarboxylate 42 in 85% yield.24 

 
 40 41 42 

As anticipated, the diester 42 could be hydrolyzed to the corresponding diacid 43 

which could be smoothly converted to the diacid halide 44 by the use of thionyl chloride. 

Diacid halide 44 proved to be an important intermediate in future reactions. 

 
 42 43 44  
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The corresponding diol, 3,6-bis(hydroxymethyl)-1,2-diphenylbenzene 45, can be 

synthesized by reducing 42 with lithium aluminum hydride. This resulted in fine white 

crystals recovered in a yield of 86%.3 

 
 42 45 

Diol 45 was then oxidized to the corresponding dialdehyde, 2,3-

diphenylterephthaldehyde 46, by reaction with manganese dioxide in THF. The crude 

product was recrystallized from absolute methanol to yield white flaky crystals in a 75% 

yield.3 

 
 45 46 

The Diels-Alder reaction of 40 can also be used in several different ways to 

functionalize 46. In 1998, Cheek synthesized diethyl 5-hexyl-2,3-diphenyl-1,4-

benzenedicarboxylate 48 by reacting cyclopentadienone 40 with 1-octyne 47.25  

 
 40 47 48 
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Following the Diels-Alder reaction, diester 48 was reduced with lithium 

aluminum hydride to yield 5-hexyl-1,4-bis(hydroxymethyl)-2,3-diphenylbenzene 49 in 

64% yield. The diol was purified by aqueous ethanol recrystallization. 

 
 48 49 

Diol 49 was oxidized to the corresponding alkyl substituted dialdehyde 5-hexyl-

2,3-diphenyl-1,4-benzenedicarboxaldehyde 50 using pyridinium chlorochromate (PCC) 

in dichloromethane.25 The use of MnO2 resulted in only one of the primary benzylic 

alcohols, the least hindered one, being oxidized. Dialdehyde 50 was not employed to 

prepare any PPV polymeric material but would prove to be a useful intermediate later. 

 
 49 50 

At about this same time, Lorge,24 who sought a pathway to 2,3 diphenyl-1,4-

bis(fluorobenzoyl)benzene 2, discovered that the Friedel-Crafts reaction of diacid halide 

44 with fluorobenzene led to the intramolecular cyclization product, 5,8-dioxo-5,8-

dihydroindeno[2,1c]fluorene 51 rather than 2. Although not initially anticipated, the 

reaction can be rationalized because of the proximity of the intermediate cation in the 

Friedel-Crafts reaction to the ortho situated phenyl substituents. 



 15 

 
 44 2 

 
 51 

In 2005, Dancevic3 discovered a method to synthesize 2,3 diphenyl-1,4-

bis(fluorobenzoyl)benzene 2. This was accomplished through a two-step process starting 

 
 46 52 

  
 2 
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with the reaction of dialdehyde 46 with p-fluorophenylmagnesium bromide to produce 

the diol intermediate 52 containing two chiral centers. The product was a mixture of 

stereoisomers resulting in a purification problem. A Jones oxidation reaction was used to 

convert the chiral secondary alcohols in 52 to ketones, resulting in the product, 2,3-

diphenyl-1,4-bis(4-fluorobenzoyl)benzene 2 thus eliminating the stereocenters and the 

corresponding purification problem. 

Monomer 2 was polymerized with various aromatic bisphenols 14, 19, 53a-c via a 

nucleophilic aromatic substitution reaction to yield a series of poly(ether ether ketone 

ketone) polymers 54a-e. The reaction was carried out in N-methyl-2-pyrrolidone using 

potassium carbonate as a base. Toluene was also used for azeotropic removal of water 

from the system with a Dean-Stark trap.3 

 
 2 14, 19, 53a-e 54a-e 

 

 
 14, 54a 53a, 54b 53b, 54c 19, 54d 53c, 54e 

The resulting polymers were obtained in yields of greater than 90% and were all 

soluble in chlorinated solvents like chloroform. The polymers could be cast as thin films. 

The polymers retained excellent thermal stability, which will be discussed later.3 

 The unanticipated intramolecular ring closure of the diacid halide 44 in the 

Friedel-Crafts reaction with fluorobenzene reported by Lorge,24 the synthesis of a 

https://en.wikipedia.org/wiki/N-Methyl-2-pyrrolidone
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phenylated dialdehyde 31 by Ganesan,21 the synthesis of a alkylated/phenylated 

dialdehyde 50 by Cheek25 and the success of the use of aromatic dialdehydes in the 

synthesis of bis(fluorobenzoyl) monomers by Dancevic3 suggests a variety of additional 

modifications of monomer 2. 

Thus, the objectives of this research were to 1) synthesize and characterize an 

alkyl substituted phenylated bisfluorobenzoyl monomer by way of dialdehyde 50, 2) 

polymerize the new monomer with bisphenols of varying rigidity, 3) characterize the 

resulting novel poly(ether ether ketone ketone)s (PEEKKs), and 4) compare the physical 

properties of the unsubstituted 15, the phenylated 54a, and the phenylated and alkyl 

substituted PEEKK. 
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Experimental 

Instrumentation and Chemicals. 

Carbon (13C) and proton (1H) Nuclear Magnetic Resonance (NMR) spectra were 

obtained using a Bruker Avance 300 NMR Spectrometer. Solvents used were deuterated 

chloroform (CDCl3) and deuterated acetone (acetone-d6). Bruker Topspin 3.5 was used to 

process all NMR spectra. A Thermo Scientific Nicolet 6700 FT-IR was used to acquire 

the Infrared spectra (IR) employing thin films on a NaCl plate. Polymer IR spectra were 

obtained by casting thin films. Number-average molecular weights (Mw) and weight-

average molecular weights (Mw) were obtained using a Viscotek Triple Detector Array 

(TDA) Model 300 Gel Permeation Chromatograph (GPC) calibrated with polystyrene. 

Melting points were determined with a DigiMelt MPA-160 apparatus. Thermal 

Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) were 

obtained with a TGA Q 500 and a TA DSC Q 200 in air or nitrogen atmospheres. 

Elemental analyses were performed by Midwest Micro Laboratories, Indianapolis, 

Indiana. Starting materials were acquired from Sigma-Aldrich and used without further 

purification unless otherwise stated. 

2,5-Bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 40 
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A solution of sodium metal (2.572 g, 0.1118 mol) dissolved in ethanol (50 mL) 

was added to diethyl 1,3-acetonedicarboxylate (24.2 g, 0.1196 mol) and benzil (21.0 g, 

0.0998 mol) dissolved in ethanol (100 mL) heated to reflux (80°) in a 250 mL, three-

necked, round-bottomed flask. The initial orange solution then slowly turned yellow and 

a yellow precipitate rapidly formed. The precipitate was vacuum filtered and washed with 

ethanol three times. After air drying, the yellow solid was slurried with acetic anhydride 

(70 mL) in a 500 mL Erlenmeyer flask. Sulfuric acid was added dropwise until the 

solution was a deep red and the solid had dissolved. Water was added dropwise 

alternating with drops of sulfuric acid until the temperature had reached 50°. The 

temperature was maintained by drops of water between 50° and 80° until the addition of 

water no longer raised the temperature. The red solution was diluted with water and 

stirred overnight. The orange precipitate was filtered and air dried to yield 16.02g 

(42.5%) of orange product: mp 117-119° (lit23 mp 120-121°); 1H NMR (300 MHz, 

CDCl3, δ) 1.17 (t, 6H, J = 7.1 Hz, CH3), 4.20 (q, 4H, J = 7.1 Hz, CH2), 7.00-7.07 (m, 4H, 

Ar CH), 7.22-7.31 (m, 4H, Ar CH), 7.32-7.41 (m, 2H, Ar CH). 

Diethyl 5-hexyl-2,3-diphenyl-1,4-benzenedicarboxylate 48 

 

Into a 35 mL Q-tube® were placed 2,5-bis(ethoxycarbonyl)-3,4-

diphenylcyclopentadienone (3.136 g, 0.0083 mol), 1-octyne (0.9181 g 0.0083 mol) and 

toluene (7 mL) and the solution was heated in an oil bath at 120° overnight. The solution 

was cooled to room temperature and evaporated under vacuum to yield 2.75 g (71.9%) of 
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a dark brown oil: IR (NaCl, cm-1) 3053, 3025 (Ar CH), 2927 (Ali CH), 1724 (C=O 

Ester); 1H NMR (300 MHz, CDCl3, δ) 0.90 (m, 9H, CH3), 1.36 (m, 6H, CH2), 1.72 (m, 

2H, CH2), 2.71 (t, 2H, CH2), 3.95 (q, 2H, J= 7.1 Hz, CH2), 3.99 (q, 2H, J= 7.1 Hz, CH2), 

6.92 - 7.17 (m, 10H, Ar CH), 7.67 (s, 1H, Ar CH); 13C NMR (75 MHz, CDCl3, ppm) 

13.51 (CH3), 13.58 (CH3), 14.07 (CH3), 22.55 (CH2), 29.29 (CH2), 31.18 (CH2), 31.60 

(CH2), 33.50 (CH2), 60.96 (CH2), 60.99 (CH2), 126.46 (Ar, CH), 126.81 (Ar, CH), 

127.19 (Ar, CH), 127.21 (Ar, CH), 128.94 (Ar, CH), 129.83 (Ar, CH), 130.17 (Ar, CH), 

133.56 (Ar, C), 137.11 (Ar, C), 138.26 (Ar, C), 138.47 (Ar, C), 138.79 (Ar, C), 139.02 

(Ar, C), 139.59 (Ar, C), 168.65 (C=O Ester), 168.79 (C=O Ester). 

5-Hexyl-1,4-bis(hydroxymethyl)-2,3-diphenylbenzene 49   

 

In a 500 mL, three-necked, round-bottomed flask containing anhydrous 

tetrahydrofuran (THF) (80 mL) equipped with a nitrogen inlet and outlet, lithium 

aluminum hydride (1.88 g, 0.046 mol) was added slowly at 0°. A solution of diethyl 5-

hexyl-2,3-diphenyl-1,4-benzenedicarboxylate (4.75 g, 0.010 mol) in THF (30 mL) was 

added dropwise from an addition funnel over 30 min. The solution was stirred at room 

temperature for 1h after which the heat was increased to reflux (65°) and maintained 

overnight. The reaction was cooled with an ice bath and treated with 1) H2O (4 mL) 

added dropwise and stirred for 15 min, 2) 15% NaOH (12 mL) added dropwise and 

stirred for 15 min, and 3) H2O (12 mL) added slowly and stirred for 15 min. The solution 

was evaporated in a stream of nitrogen and the resulting mixture was stirred overnight in 
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150 mL of 10% H2SO4 to dissolve any aluminum salts. The product was vacuum filtered 

and recrystallized from aqueous ethanol to yield 3.03 g (78%) of a white powder: mp 

142-144° (lit25 mp 135-136°);IR (NaCl, cm-1) 3313 (OH), 3054 (aromatic CH), 2923 

(aliphatic CH); 1H NMR (300 MHz, CDCl3, δ) 0.81-1.93(m, 14H, Ali CH), 2.88 (m, 2H, 

CH2), 4.44 (s, 2H, CH2OH), 4.47 (s, 2H, CH2OH), 6.92-7.23 (m, 10H, Ar, CH), 7.47 (s, 

1H, Ar, CH); 13C NMR (75 MHz, CDCl3, ppm) 14.12 (CH3), 22.66 (CH2), 29.69 (CH2), 

31.79 (CH2) 32.13 (CH2), 33.24 (CH2), 59.61 (O-CH2), 63.64 (O-CH2), 126.44 (Ar, CH), 

126.47 (Ar, CH), 127.50 (Ar, CH), 127.59 (Ar, CH), 128.24 (Ar, CH), 130.00 (Ar, CH), 

130.11 (Ar, CH), 135.49 (Ar, C), 138.39 (Ar, C), 138.99 (Ar, C), 139.66 (Ar, C), 142.05 

(Ar, C), 142.58 (Ar, C); Anal. Calcd. for C26H30O2: C, 83.38%; H, 8.59%. Found: C, 

83.93%; H, 8.08%. 

5-Hexyl-2,3-diphenyl-1,4-benzenedicarboxaldehyde 50 

 

In a 500 mL, round-bottomed flask equipped with a drying tube, containing 

CH2Cl2 (175 mL) was added pyridinium chlorochromate (PCC) (10.95 g, 0.051 mol) and 

5-hexyl-1,4-bis(hydroxymethyl)-2,3-diphenylbenzene (7.6 g, 0.0203 mol). The mixture 

was heated to 50° and stirred for 2h. Ethyl ether (175 mL) was added, the mixture was 

stirred for 20 min and decanted into a 500 mL Erlenmeyer flask. The decanted solution 

was then filtered through a sintered-glass funnel containing a pad of filter-aid. The yellow 

filtrate was evaporated under reduced pressure. The product was purified by column 

chromatography using an eluent of 90% hexane and 10% ethyl acetate on solid silica. 
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The eluents were evaporated under reduced pressure to yield 6.81g (75%) of a yellow 

powder: mp 75.5-78.5° (lit25 mp 73-75°); IR (NaCl, cm-1) 3056 (aromatic CH), 2927 

(aliphatic CH), 1693 (C=O); 1H NMR (300 MHz, CDCl3, δ) 0.93 (t, 3H, J = 6.9 Hz, 

CH3), 1.11-2.02 (m, 8H, CH2), 3.01-3.06 (m, 2H, CH2), 6.98-7.26 (m, 10H, Ar CH), 7.95 

(s, 1H, Ar CH), 9.77 (s, 1H, HC=O aldehyde), 9.80 (s, 1H, HC=O aldehyde); 13C NMR 

(75 MHz, CDCl3, ppm) 31.68 (CH2), 31.81 (CH2), 33.62 (CH2), 127.60 (Ar, CH), 127.67 

(Ar, CH), 127.78 (Ar, CH), 127.86 (Ar, CH), 128.43 (Ar, CH), 130.92 (Ar, CH), 131.05 

(Ar, CH), 134.82 (Ar, C), 135.85 (Ar, C), 135.99 (Ar, C), 137.54 (Ar, C), 143.02 (Ar, C), 

143.61 (Ar, C), 146.02 (Ar, C), 192.33 (CH aldehyde), 194.38 (CH aldehyde). Anal 

Calcd. for C26H26O2: C, 84.29%; H, 7.07%. Found: C, 84.72%; H 7.17%. 

5-Hexyl-2,3-diphenyl-1,4-bis(fluorobenzoyl)benzene 55 

 

The bis(fluorobenzoyl) monomer 2 was synthesized via a two-step process 

involving a Grignard reaction followed by a Jones oxidation. 

Step 1: In a 3-necked, round-bottomed, 250 mL flask equipped with magnetic stir 

bar, nitrogen inlet, and constant pressure dropping funnel, was placed 1.006 g (0.041 

moles) of dried and crushed magnesium. The flask was then flame dried under nitrogen 

flow. To the magnesium was added a solution of dry tetrahydrofuran (THF) (15 mL) and 

p-bromofluorobenzene (5.43 g, 0.031 mol). The reaction was initiated by the addition (1-
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2 drops) of dibromoethane. The reaction was then left to stir for 1h after which a solution 

of the dialdehyde 55 (3.80 g, 0.010 mol) in 50 mL of dry THF was added dropwise over 

10 min. After the dialdehyde 55 was added, the nitrogen flow was stopped, the dropping 

funnel was replaced by a condenser equipped with a drying tube, and the temperature was 

increased to 70° for 2h. The solution was then cooled to room temperature and poured 

over 10% HCl and ice water (100 mL). The mixture was then extracted with ethyl 

acetate. The ethyl acetate was evaporated in vacuo and used directly in the next step.  

Step 2: The yellowish oil was dissolved in 20 mL of acetone and placed in a 

three-necked, round-bottomed flask, equipped with a magnetic stir bar, a condenser, 

drying tube and a constant-pressure dropping funnel. Jones reagent was made by 

dissolving 10 g of sodium dichromate dihydrate in 30 mL of water, adding 7.3 mL of 

concentrated sulfuric acid (99%) and diluting further to a total of 50 mL. The Jones 

reagent (15 mL) was then added dropwise over 10 min. The reaction mixture was then 

refluxed (70°) overnight. The reaction was cooled to room temperature, poured into 100 

mL H2O, extracted with ethyl acetate, and dried under reduced pressure. The crude 

product was a yellow oil, which was chromatographed on silica using an eluent of 95% 

hexane and 5% ethyl acetate. The fractions containing the desired product were located 

using thin layer chromatography. The combined fractions were then recrystallized from 

aqueous acetone to yield 4.56 g (63% yield) of colorless crystals: mp 143-144°; IR 

(NaCl, cm-1) 3058 (aromatic CH), 2929 (aliphatic CH), 1670 (C=O), 1596 (C=C), 1151 

(F-C); 1H NMR (300 MHz, CDCl3, δ) 0.84 (t, 3H, J =6.6 Hz, CH3), 1.15-1.39 (m, 6H, 

CH2), 1.47-1.81 (m, 2H, CH2), 2.57 (d, 1H, J = 9 Hz, Ar-CH2), 2.63 (d, 1H, J = 9 Hz, Ar-

CH2), 6.21-7.40 (m, 14H, Ar, CH), 7.47 (s, 1H, Ar, CH), 7.58 (d of d, 2H, JHH = 8.8 Hz, 
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JHF = 5.4 Ar, CH), 7.62 (d of d, 2H, JHH = 8.8 Hz, JHF = 5.4 Ar, CH); 13C NMR (75 MHz, 

CDCl3, ppm) 13.99 (CH3), 22.43 (CH2), 29.18 (CH2), 31.05 (CH2), 31.42 (CH2), 33.24 

(CH2), 115.15 (d, 1C, J = 22.0 Hz Ar, CH), 115.33 (d, 1C, J = 22.0 Hz Ar, CH), 126.78 

(Ar, CH), 127.36 (Ar, CH), 127.65 (Ar, CH), 130.80 (Ar, CH), 131.38 (Ar, C), 131.88 (d, 

1C, J = 9.4 Hz Ar, CH), 132.28 (d, 1C, J = 9.4 Hz Ar, CH), 133.57 (d, 1C, J = 2.8 Hz Ar, 

C), 133.87 (d, 1C, J = 2.8 Hz Ar, C), 136.97 (Ar, C), 137.21 (Ar, C), 137.38 (Ar, C), 

138.89 (Ar, C), 139.37 (Ar, C), 141.00 (Ar, C), 141.15 (Ar, C), 165.44 (d, 1C, J = 254.25 

Hz C-F), 165.63 (d, 1C, J = 254.25 Hz C-F), 197.33 (C=O ketone). Anal. Calcd. for 

C38H32F2O2: C, 81.70%; H, 5.77%. Found: C, 81.86%; H, 5.75%.  

General Polymerization Procedure 

The polymerizations were carried out in a Q-tube™, equipped with a magnetic 

stir bar. Calculated equimolar quantities of the bis(fluorobenzoyl) monomer 55 (0.966 

mmol) and bisphenol-A 14 were charged and dissolved in N-methyl-2-pyrrolidone 

(NMP) (5 mL). Finely crushed, dry, potassium carbonate (0.0029 mol) was also added. 

The reaction was then sealed and heated to 170° for 18h. After cooling to room 

temperature, the reaction mixture was coagulated in methanol-water solution (80/20 v/v) 

acidified with glacial acetic acid (~ 3 mL). The polymer was collected by filtration. The 

polymer was then dissolved in NMP, and coagulated in methanol-water solution (80/20 

v/v) acidified with glacial acetic acid. The polymer was collected by filtration dissolved 

in NMP again, and coagulated in methanol-water solution (80/20 v/v) acidified with 

glacial acetic acid. The polymer was collected by filtration and dried under vacuum 

overnight at 70°. 
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Poly(oxy-1,4-phenylene-1-methylethylidene-1,4-phenylene-oxy-1,4-phenylene-

carbonyl-(5-hexyl-2,3-diphenyl-1,4-phenylene)-carbonyl-1,4-phenylene) 56a 

 

 

 

 

The white paper like substance was obtained in a 57% yield: IR (film) cm-1 3060 

(aromatic CH), 2920 (aliphatic CH), 1660 (C=O), 1590 (C=C), 1230, 1160 (C-O-C); 1H 

NMR (300 MHz, CDCl3 δ) 0.84 (t 3H CH3), 1.12-1.36 (m 6H (CH2)3), 1.48-1.63 (m 2H 

CH2), 1.69 (s 6H (CH3)2), 2.56-2.63 (m 2H CH2), 6.40-7.35 (m 22H Ar, CH), 7.44 (s 1H 

Ar, CH), 7.52-7.61 (m 4H Ar, CH); 13C NMR (75 MHz, CDCl3, ppm) 14.05 (CH3), 22.46 

(CH2), 29.20 (CH2), 31.00 (CH3), 31.04 (CH2), 31.47 (CH2), 33.25 (CH2), 

42.33(quaternary C), 116.90 (Ar, CH), 116.94 (Ar, CH), 119.35 (Ar, CH), 119.47 (Ar, 

CH), 126.61 (Ar, CH), 126.82 (Ar, CH), 127.25 (Ar, CH), 127.54 (Ar, CH), 128.24 (Ar, 

CH), 130.89 (Ar, CH), 131.63 (Ar, CH), 131.89 (Ar, C), 132.08 (Ar, CH), 132.22 (Ar, 

C), 136.93 (Ar, C), 137.55 (Ar, C), 137.72 (Ar, C), 138.85 (Ar, C), 139.13 (Ar, C), 

141.13 (Ar, C), 141.30 (Ar, C), 146.63 (Ar, C), 146.74 (Ar, C), 153.24 (OAr, C), 153.40 

(OAr, C), 161.67 (OAr, C), 161.92 (OAr, C), 197.43 (C=O), 197.48 (C=O). Anal. Calcd. 

for C53H47FO4: C, 83.00%; H, 6.18%. Found C, 84.6%; H, 6.48%. 
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Poly(oxy-1,3-phenylene-oxy-1,4-phenylene-carbonyl-(5-hexyl-2,3-diphenyl-1,4-

phenylene)-carbonyl-1,4-phenylene) 56b 

 

 

 

 

The pale brown paper like substance was obtained in a 42% yield: IR (film) cm-1 

3057 (aromatic CH), 2926 (aliphatic CH), 1667 (C=O), 1585 (C=C), 1223, 1157 (C-O-

C);1H NMR (300 MHz, CDCl3 δ) 0.85 (t 3H CH3), 1.11-1.41 (m 6H (CH2)3), 1.46-1.80 

(m 2H CH2), 2.49-2.70 (m 2H CH2), 6.27-7.39 (m 18H Ar CH), 7.46 (s 1H Ar CH), 7.46-

7.60 (m 4H Ar CH); 13C NMR (75 MHz, CDCl3, ppm) 14.03 (CH3), 22.44 (CH2), 29.19 

(CH2), 31.06 (CH2), 31.45 (CH2), 33.27 (CH2), 111.11 (Ar, CH), 114.98 (Ar, CH), 

115.10 (Ar, CH), 115.24 (Ar, CH), 117.49 (Ar, CH), 117.60 (Ar, CH), 126.65 (Ar, CH), 

126.88 (Ar, C), 127.29 (Ar, CH), 127.72 (Ar, CH), 130.77 (Ar, CH), 130.90 (Ar, C), 

131.64 (Ar, CH), 132.05 (Ar, CH), 132.54 (Ar, C), 132.79 (Ar, C), 136.92 (Ar, C), 

137.46 (Ar, C), 137.64 (Ar, C), 138.82 (Ar, C), 139.34 (Ar, C), 141.09 (Ar, C), 141.31 

(Ar, C), 157.02 (Ar, C), 157.07 (Ar, C ), 157.29 (Ar, C), 157.35 (Ar, C), 160.65 (OAr C), 

160.97 (OAr C), 197.47 (C=O). Anal. Calcd. for C44H37FO4: C, 81.46%; H, 5.75%. 

Found C, 77.57%; H, 5.58%. 
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Poly(oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-(5-hexyl-2,3-diphenyl-1,4-

phenylene)-carbonyl-1,4-phenylene) 56c 

 

 

 

 

The pale brown, straight, brittle, fibers were obtained in a 51% yield: IR (film) 

cm-1 3052 (aromatic CH), 2920 (aliphatic CH), 1663 (C=O), 1592 (C=C), 1222, 1159 (C-

O-C);1H NMR (300 MHz, CDCl3 δ) 0.84 (t 3H CH3), 1.10-1.41 (m 6H (CH2)3), 1.45-1.8 

(m 2H CH2), 2.57-2.64 (m 2H CH2), 6.31-7.4 (m 18H Ar CH), 7.46 (s 1H Ar CH), 7.54-

7.62 (m 4H Ar CH); 13C NMR (75 MHz, CDCl3, ppm) 14.04 (CH3), 22.45 (CH2), 29.20 

(CH2), 31.03 (CH2), 31.46 (CH2), 33.25 (CH2), 116.81 (Ar CH), 116.90 (Ar, CH), 121.28 

(Ar, CH), 121.44 (Ar, CH), 126.62 (Ar, CH), 126.80 (Ar, CC), 127.25 (Ar, CH), 127.59 

(Ar, CH), 130.91 (Ar, CH), 131.69 (Ar, CH), 132.13 (Ar, CH), 132.40 (Ar, C), 136.92 

(Ar, C), 137.51 (Ar, C), 137.70 (Ar, C), 138.84 (Ar, C), 139.20 (Ar, C), 141.01 (Ar, C), 

141.28 (Ar, C), 151.78 (Ar, C), 151.88 (Ar, C), 151.99 (Ar, C), 152.10 (Ar, C), 161.57 

(OAr C), 161.80 (OAr C), 197.42 (C=O). Anal. Calcd. for C44H37FO4: C, 81.46%; H, 

5.75%. Found C, 83.69%; H, 5.83%. 
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RESULTS AND DISCUSSION 

Diester Synthesis 

The reaction of 2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 40 with 

1-octyne 47 in toluene at reflux yielded diethyl 5-hexyl-2,3-diphenyl-1,4-benzene-

dicarboxylate 48. Excess solvent, and any unreacted alkyne were removed via reduced 

pressure and heat. 

 
 40 47 48 

Diester 48 was characterized by IR, 1H NMR, and 13C NMR spectroscopy. The IR 

spectrum (Figure 12) exhibited an absorption at 1724 cm-1, indicating the presence of the 

conjugated ester carbonyl, at 2927cm-1 indicating the presence of aliphatic C-H stretching 

and at 3053 cm-1 signifying the presence of aromatic C-H stretching. 

The 1H NMR spectrum of 48 (Figure 13) indicated that the reaction between 1-

octyne and 2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone had been successful. 

The spectrum shows the appearance of multiple aliphatic absorptions between 0.85-1.81 

δ, which indicate the inclusion of an alkyl chain in the compound. The multiplet at 2.72 δ 

integrating to 2H is indicative of the aliphatic methylene closest to the aromatic ring on 
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the pendant chain. The ester methylenes appear at 3.97 δ as a pair of overlapping quartets 

that together integrate to 4H due to the slightly asymmetric nature of the molecule. In the 

aromatic region, the proton absorptions appear as two multiplets at δ 6.99 and δ 7.11 that 

integrate to 4H and 6H, respectively. The only other proton absorption in the aromatic 

region is a singlet at δ 7.68 integrating to 1H, which represents the lone proton on the 

center phenyl ring. It is shifted downfield because of its proximity to the carbonyl group. 

The 13C NMR spectrum of 48 (Figure 14) highlights the asymmetric nature of the 

molecule as each individual carbon atom gives rise to a unique absorption in the aliphatic 

region. The two carbon absorptions at 60.96 and 60.99 ppm represent the methylene 

groups of the ethyl esters. They are shifted downfield due to their proximity to the 

electron withdrawing oxygen. The methyl group absorptions of the ester appear at 13.51 

and 13.59 ppm, which is close to the methyl of the alkyl chain at 14.07 ppm. All of the 

other absorptions are methylene absorptions according to the DEPT 135 spectrum 

(Figure 15). 

The two individual ester carbonyl absorptions appear characteristically at 168.65 

and 168.79 ppm. Once again two are observed because the two carbons are not equivalent 

due to the pendant alkyl chain. 

Diol Synthesis 

Diester 48 was reduced using lithium aluminum hydride (LiAlH4) in THF to yield 

5-hexyl-1,4-bis(hydroxymethyl)-2,3-diphenylbenzene 49. The diol was purified by 

aqueous ethanol recrystallization to yield a white powder. 
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 48 49 

Diol 49 was characterized by IR, 1H NMR, and 13C NMR spectroscopy. In the IR 

spectrum (Figure 16), it can be seen clearly that the carbonyl stretching is no longer 

present and has been replaced with a broad OH absorption at 3313 cm-1. This supports the 

conversion of the ester groups to the corresponding alcohols.  

The 1H NMR spectrum of 49 shows an absorption for the methyl at the end of the 

alkyl chain as a slightly distorted triplet at 0.94 δ integrating to 3H. At the other end of 

the alkyl chain, an absorption for the methylene group closest to the aromatic ring can be 

seen as a more distorted triplet at 2.89 δ integrating to 2H. The methylene groups 

adjacent to the hydroxyls appear as two singlet absorptions at 4.44 δ and 4.47 δ, each 

integrating to 2H. The aromatic proton region is split into two absorption areas (Figure 

17). The first region is in the range 6.94 – 7.23 δ is a broad multiplet absorption and 

integrates to 10H, the second is a singlet absorption at 7.47 δ integrating to 1H. 

The 13C NMR spectrum of 49 (Figure 18) showed retention of the six alkyl 

carbons on the pendant chain, with the addition of two new peaks further downfield at 

59.61 ppm, and 63.63 ppm. These two peaks correspond to the benzylic methylenes in 

49. The reason for the separate peaks is that the molecule is asymmetric due to the alkyl 

pendant chain, and the benzylic methylene groups are not equivalent. There are no 

absorptions above 150 ppm, which further supports the conversion of the ester groups to 

primary benzylic alcohols. 
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Dialdehyde Synthesis 

The initial method of oxidizing diol 49 to dialdehyde 50 involved the use of 

manganese dioxide (MnO2) in THF. The reaction product was analyzed using 1H NMR 

spectroscopy and it was discovered that there was incomplete conversion of diol 49 to the  

 
 49 57 50 

dialdehyde 50. This can be seen in the 1H NMR spectra (Figure 1) by the appearance of a 

singlet at 9.70 δ, corresponding to the monoaldehyde 57, and two much smaller peaks of 

equal integration at 9.77 δ and 9.80 δ indicating a small amount of the dialdehyde 50. 

 

Figure 1. Expanded aldehyde region of the 1H NMR spectrum of MnO2 

oxidation products 50 and 57. 

 

It was hypothesized that the steric hindrance of the pendant alkyl chain and the 

phenyl group prevent complete conversion to the dialdehyde (Figure 2). This agrees with 

the observations of Cheek.25  
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Figure 2. Oxidation Attack Steric Effects. 

In order to fully oxidize 49 to 50, the use of a stronger oxidizing agent was 

required. The oxidizing agent that was found to yield complete conversion of 49 to 50 

was pyridinium chlorochromate (PCC). 

 

 49 50 

The identity of the dialdehyde compound was confirmed by IR, 1H NMR, and 13C 

NMR spectroscopy. The IR spectrum (Figure 20) of 50 exhibited a conjugated aldehyde 

carbonyl absorption at 1693 cm-1. It was also noted that the alcohol stretching could no 

longer be observed. The aromatic C-H stretching absorptions were observed at 

wavenumbers greater than 3000 cm-1, and the aliphatic C-H absorptions were observed at 

2950-2850 cm-1. The 1H NMR spectrum (Figure 21) clearly exhibited aldehyde hydrogen 

absorptions at δ 9.77 and δ 9.80. The two distinct absorptions were expected due to the 

asymmetric molecule. The lone aromatic proton on the center phenyl ring could also be 

identified by an absorption at δ 7.95. This absorption is in the same general area for all 

three compounds, the diester 48, the diol 49, and the dialdehyde 50, but is shifted further 

downfield based on the strength of electron-withdrawing group (EWG) that is adjacent  
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to that proton on the central aromatic ring. The aldehyde group in 50 is the best EWG and 

50 has an absorption at δ 7.95, next strongest is the ester group in 48 that gives rise to an 

absorption at δ 7.68, and finally the hydroxymethylgroup in 49 results in an absorption at 

δ 7.47. The 13C NMR spectrum (Figure 22) showed carbonyl peaks at 192.34 ppm and 

194.39 ppm. These peaks were confirmed as aldehyde peaks in the 13C DEPT135 NMR 

spectra (Figure 23). 

The Monomer, 5-Hexyl-2,3-diphenyl-1,4-bis(fluorobenzoyl)benzene 

The bis(fluorobenzoyl) monomer 55 was synthesized from the dialdehyde 50 in a 

two-step process. 

The first step involved a reaction of the Grignard reagent formed from p-

bromofluorobenzene and magnesium in THF, with 50 to yield the diol intermediate 58. 

As observed in the synthesis of 2 by Dancevic, the reaction gave a mixture of four 

stereoisomers by the generation of two new chiral centers. Purification of the mixture was 

abandoned and it was oxidized with Jones reagent, thus eliminating the chiral centers and 

the isomer purification problem as shown in step two.. 

The second step involved converting the two secondary benzylic alcohols into 

ketones. This was achieved through the use of a Jones oxidation of intermediate 58 in 

acetone to yield 5-hexyl-2,3-diphenyl-1,4-bis(fluorobenzoyl)benzene 55. The product 

was purified by chromatography on silica utilizing ethyl acetate and hexanes  (5% /95% 

v/v) as the eluent to achieve “polymer grade” monomer. The fractions containing 

monomer 55 were determined using thin layer chromatography. The desired fractions 

were combined, dried under reduced pressure, and recrystallized from aqueous acetone. 

The product was dried under vacuum at 70° for 12 hours. 
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 50 58 

  
 55 

Monomer 55 was characterized by IR, 1H NMR, and 13C NMR spectroscopy. The 

IR spectrum of 55 (Figure 24) exhibited conjugated aryl ketone absorption at 1670 cm-1. 

The aromatic C-H stretching region showed an absorption at 3058 cm-1, and the aliphatic 

C-H stretching region showed an absorption at 2927 cm-1. The 1H NMR spectrum 

(Figure 7 and 25) showed the disappearance of the aldehyde proton absorptions. The 

absorptions that were retained from 50 included all the aliphatic peaks from δ 2.8 – δ 0.80 

and the lone aromatic proton on the central phenyl ring at δ 7.47. The spectrum also 

clearly showed the appearance of the fluorine-coupled aromatic proton absorptions 

associated with protons adjacent to the carbonyl. These protons experience an H-H ortho 

coupling of 8.8 Hz, and an H-F meta coupling of 5.4 Hz (Figure 3). This causes each pair 
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of protons to appear as a doublet of doublets, as can be seen in Figure 4. The two sets 

overlap making any additional small para coupling difficult to observe.  

 

Figure 3. Aromatic H-H and H-F coupling in 55. 

 
Figure 4. Expansion of aromatic H-F coupling in 55. 

The 13C NMR spectrum (Figure 26) of monomer 55 clearly showed six aliphatic 

carbon absorptions, which corresponds to the six carbons on the alkyl pendant chain. 

With the introduction of a fluorine atom several of the aromatic carbon absorptions 

appeared as doublets. Each of the four unique carbons in the phenyl ring with an attached 
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fluorine should exhibit this splitting. This is further complicated by the asymmetric 

nature of the ring, giving a pair of doublets for each unique carbon in both fluoro 

substituted rings.3 The corresponding carbon atoms and the calculated and observed 

chemical shifts are given below in Figure 5 and Table 1). 

 

Figure 5. Calculated chemical shifts of carbons in phenyl rings with attached fluorines. 

 

Table 1. Calculated and observed 13C NMR absorptions for phenyl ring bearing F atoms. 

Carbon Position 

relative to F atom 

Calculated Chemical Shift3 

(ppm) 

Observed Chemical Shift 

(ppm) 

Ipso 165.8 165.62, 165.44 

Ortho 115.2 115.32, 115.15 

Meta 131.7 132.28, 131.88 

Para 133.4 133.87;133.57 

 

The other important absorption is the carbonyl peak at 197.33 ppm (Figure 26). 

This was confirmed as a ketone absorption by inspection of the 13C DEPT 135 NMR 

spectra (Figure 27) where this absorption is not present, identifying it as a quaternary 

carbon, in this case a ketone carbonyl carbon. Since the compound is asymmetric, it 

might be expected that the ketone absorption would appear as two separate peaks. While 

the peaks appear at the same chemical shift in CDCl3, the spectrum run in acetone-d6 

indicates two ketone absorptions at 197.14 ppm and 196.79 ppm supporting the formation 
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of both ketone functional groups. A comparison of the ketone absorption in the two 

different solvents is given below in Figure 6. 

  

 Acetone-d6 CDCl3 

Figure 6. Expanded carbonyl region of 13C NMR of compound 55. 

A composite comparison of the 1H and 13C NMR spectra of compounds 48, 49, 

50, and 55 is given in Figures 7 and 8, respectively.  

Polymerizations 

Polymerization reactions of the phenylated, alkyl-substituted bis(fluorobenzoyl) 

monomer, 55, with a series of bisphenols were carried out in NMP using potassium 

carbonate as base. 

 
 55 56a-c 

 
 a b  c 
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Figure 7. Comparison of the 1H NMR spectra of compounds 48, 49, 50 and 55. 
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Figure 8. Comparison of the 13C NMR spectra of compounds 48, 49, 50, and 55.  
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All polymers were obtained in yields greater than 40%. They also all showed high 

solubility in chlorinated solvents such as chloroform and dichloromethane and could be 

cast as free-standing, thin films. The films were transparent, flexible and did not crack or 

break when creased. Characterization of polymers 56a-c was done by a combination of 

IR, 1H and 13C NMR spectroscopy, GPC, DSC, and TGA analysis. 

The infrared spectra for all three new polymers (Figure 28, 34 and 40) were very 

similar and exhibited common absorptions. These are 1) the aromatic C-H stretching 

absorption at 3057 ± 5 cm-1, 2) the aliphatic C-H stretching absorption at 2920 ± 6 cm-1, 

3) the carbonyl absorption (C=O) at 1663 ± 4 cm-1, 4) the aromatic C=C absorption at 

1590 ± 5 cm-1 and 5) the ether (C-O-C) linkage absorptions at 1223 ± 7 cm-1, and 1159 ± 

2 cm-1. 

The 1H NMR spectra of the PEEKK polymers, (Figure 29, 35 and 41), were 

similar in many ways to monomer 55. The differences observed between the monomer 55 

and polymer 56a were 1) the appearance of a large singlet at δ 1.69 that integrates to six 

protons, and 2) the appearance of more aromatic proton integration at δ 7.20-7.25. These 

occur because of the incorporation of the bisphenol-A molecule into the polymer. 

Another difference is that the absorptions for the group of protons furthest downfield, due 

to protons adjacent to the carbonyl groups, collapse from eight peaks (two doublet of 

doublets), to four peaks (two doublets) (Figure 10). This is due to the displacement of the 

fluorine atom during the polymerization and provides evidence that the polymerization 

did occur. The 1H spectra for polymer 56b and 56c show no difference from monomer 55 

in the aliphatic region because monomers 53c and 19 are completely aromatic. In the 

aromatic region, the resorcinol proton absorptions appear as a broad multiplet centered at 
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δ 6.7. Hydroquinone proton absorptions appear in the aromatic region as a distinct pair of 

doublets centered at δ 6.8. 

In the 13C NMR spectra (Figure 30, 36 and 42) of polymers 56a-c, the absorption 

pattern is once again very similar to that of the monomer 55. In the BPA polymer, it can 

be seen that the absorptions for the two methyl groups from BPA overlap with one of the 

methylenes from the alkyl chain. This overlap can be clarified by examining the 13C 

DEPT135 spectrum (Figure 31). In the spectrum of the monomer 55, all the aromatic 

carbons in the phenyl ring containing the fluorine exhibited doublet absorptions in the 13C 

NMR spectra (Figure 26). Once the fluorine has been displaced during the NAS 

polymerization, the carbon absorptions that previously appeared as doublets now appear 

as singlets. This is most easily seen in a comparison of polymer 56b and monomer 55 as 

seen in Figure 9. The pair of doublets at 133.89/133.85 ppm and 133.59/133.55 ppm 

 

 

Figure 9. 13C NMR comparison of monomer 55 (top) and polymer 56b (bottom). 
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become two singlets at 132.80, and 132.54 ppm, respectively. Also, the pair of doublets 

at 132.35/132.22 ppm and 131.95/131.82 ppm become two singlets at 132.05 ppm and 

131.64 ppm, respectively. 

The 1H and 13C NMR spectra both suggest that the polymerization reaction was 

successful. The aromatic region in the 1H NMR spectrum of 55 (Figure 4) has eight 

peaks, a pair of doublet of doublets. The same region in polymer 56a-c has only four 

peaks, a pair of doublets (Figure 10). This is due to the displacement of the fluorine atom 

during the polymerization. In the 13C NMR spectra of polymers 56a-c, the fluorine 

splitting seen in monomer 55 is no longer present. In monomer 55, the fluorine ipso 

absorptions appear as two doublets with chemical shifts of 165.62 and 165.44 ppm (1JCF 

= 255 Hz). In the same region in polymers 56a-c, four absorptions appear but cannot be 

absorptions due to fluorine coupling. The absorptions are shifted significantly further 

upfield, and the distance between the peaks is either too great or too small to be fluorine 

coupling. Thus, both the 1H and 13C NMR spectra support the successful polymerization 

of monomer 55 with 14, 19, and 53c, respectively. 

The incorporation of the corresponding parts of monomers 14 and 55 into 

polymer 56a can be seen in Figure 10 (1H) and Figure 11 (13C). In Figure 10 the 

aliphatic region of polymer 56a clearly shows the four absorptions from the hexyl chain 

of 55. It also clearly shows the singlet absorption of the two chemically equivalent 

methyl groups of 14. In the aromatic region, the singlet from the proton ortho to the hexyl 

group in 55 is apparent in polymer 56a as well as the doublet further downfield due to the 

aromatic para substitution in monomer 14. In Figure 11 the aliphatic region shows seven 

different absorptions. While it is expected that the aliphatic region would have eight 
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absorptions, two from 14 and six from 55, only seven are observed because two 

absorptions overlap at 31.0 ppm in 14 and 55. Both of these peaks can be seen in the 13C 

DEPT135 spectra of polymer 56a (Figure 31). 

 
 

 

 
 

 

 

Figure 10. Comparison of 1H NMR spectra of bisphenol-A 14, polymer 56a, and 

bis(fluorobenzoyl) monomer 55. 

 

The IR, 1H NMR, and 13C NMR spectral data for polymer 56b can be seen in 

Figures 34, 35, 36 and the IR, 1H NMR, and 13C NMR spectral data for polymer 56c can 

be seen in Figures 40, 41, 42. These spectra are very similar to that of 56a. The biggest 

difference in the 13C NMR spectra is that polymers 56b and 56c only have six aliphatic  
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Figure 11. Comparison of 13C NMR spectra of bisphenol-A 14, polymer 56a, and 

bis(fluorobenzoyl) monomer 55. 

 

absorptions, as opposed to the seven of 56a. The monomers 14 and 19 are completely 

aromatic and thus the 13C NMR spectra of 56b and 56c have only aliphatic absorptions 

from the hexyl chain in monomer 55. Polymers 56b and 56c differ from each other in the 

aromatic region of the 1H NMR. This is due to the difference in substitution pattern of the 

bisphenol. In polymer 56b the bisphenol is meta substituted, and in polymer 56c the 

bisphenol is para substituted. 
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The molecular weight and thermal characteristics for polymers 56a-c were 

determined by GPC, DSC, and TGA analysis. The analysis of polymers 56a-c by GPC 

resulted in Mw values of 63,000 g/mol, 85,100 g/mol, 55,600 g/mol, respectively and Mn 

values of 35,700 g/mol, 34,800 g/mol, 28,000 g/mol, respectively with corresponding 

dispersity values of 1.8, 2.4, and 2.0. The calculated number of repeating units (n) for 

56a-c was calculated to be 46, 53, and 43, respectively. Compared to literature values for 

PEEK polymers 15 (Mn = 85-125,000 g/mol13) the molecular weights achieved for 

polymers 56a-c are modest but well into the critical entanglement region for these 

systems. Even with their modest molecular weights, the polymers could be cast as thin, 

flexible, free-standing films from chloroform or dichloromethane. 

The DSC analysis of polymers 56a-c revealed glass transition temperatures (Tg) 

of 164° (Figure 32), 148° (Figure 38), and 162° (Figure 44), respectively. A composite 

DSC trace is shown in Figure 46. Through TGA analysis, polymers 56a-c exhibited 5% 

weight loss under nitrogen (Td5%) of 460° (Figure 33), 448° (Figure 39), 458° (Figure 

45), respectively. A composite DSC trace is shown in Figure 47. 

A comparison of various PEEKK polymers representing the phenylated and alkyl 

substituted monomer, the phenylated monomer, and the unsubstituted monomer is given 

in Table 2.3,13 From the data it can be seen that while the addition of the phenyl rings to 

polymers 54a-e made the polymers more soluble it also increased the glass transition 

temperatures significantly, 38° for the BPA derivative and 25° for the hydroquinone 

derivative. This is not surprising as the addition of bulky side groups will often increase 

the glass transition temperature. This is because the bulky side groups inhibit the rotation   
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Table 2. Physical data for polymers 15, 54a, 54e, 54d and 56a, 56b, 56c. 

Difluoro Monomer Bisphenol 
Mn 

(g/mol) 

Mw 

(g/mol) 

Tg 

(°C) 

Td5% 

(°C) 

  

13 

Bisphenol-A 

 
(15a) 

95,000 161,500 160 450 

Resorcinol 

 

- - - - 

Hydroquinone 

 
(15b) 

32,800 61,500 154 - 

  

 
2 

Bisphenol-A 

 
(54a) 

8,700 20,700 198° 496° 

Resorcinol 

 
(54e) 

5,100 7,900 171° 521° 

Hydroquinone 

 
(54d) 

4,800 9,300 179° 532° 

  

55 

Bisphenol-A 

 
(56a) 

35,700 63,000 164° 460° 

Resorcinol 

 
(56b) 

34,800 85,100 148° 448° 

Hydroquinone 

 
(56c) 

28,000 55,600 162° 458° 
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of the molecule and thus require more energy before the polymer chains can slide past 

one another as is characteristic of the glass transition region. It can also be seen in the 

data from polymers 56a-c that the alkyl chain effectively lowered the glass transition 

temperature compared to polymers 54a-e. The reason that the alkyl chain lowers the glass 

transition temperature so effectively is that the chain increases the free volume of the 

polymer, which keeps the polymer chains from packing close together. Since there is 

more space between the polymer chains it requires less energy before the chains can slide 

past one another. It can also be seen that the polymers 56a-c are less thermally stable. 

This can be accounted for by the addition of the thermally vulnerable aliphatic 

substituents. Since polymers 15 and 54c-e are completely aromatic it is not surprising that 

they exhibit the highest thermal stability. This would also explain that as more aliphatic 

character is introduced in the polymer, the lower the thermal decomposition temperature.  
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CONCLUSIONS 

The monomer, 5-hexyl-2,3-diphenyl-1,4-bis(fluorobenzoyl)benzene 55, can be 

prepared using a four-step process in ?% yield in spite of using a final chromatographic 

purification. A general sequence of steps starting with 2,5-bis(ethoxycarbonyl)-3,4-

diphenylcyclopentadienone 40 and involving, sequentially, a Diels-Alder cycloaddition, a 

diester reduction to a diol, oxidation of the diol to a dialdehyde, addition of a fluorinated 

aromatic Grignard to the dialdehyde and finally a Jones oxidation provided the monomer. 

The sequence appears to be easily modifiable to allow a variety of substituents to 

be present in the phenyl pendants or as part of the hexyl chain. These might include azo 

compounds, stilbenes and acid/base active materials. 

Polymerization of monomer 55 with bisphenol-A 14, resorcinol 53c, and 

hydroquinone 19, by a typical NAS polymerization in a Q-tube™ without azeotropic 

distillation of water gave amorphous polymers 56a-c of moderate molecular weight 

(Mw/Mn of 63,000 g/mol/35,700 g/mol with Đ = 1.8, 85,100 g/mol/34,800 g/mol with Đ 

= 2.4 and 55,600 g/mol/28,000 g/mol with Đ = 2.0, respectively) that were highly soluble 

in chlorinated solvents, thermally stable (Td5% of 460°, 448°, 458°, respectively), and 

formed free-standing, thin, transparent films. Thermal analysis revealed Tgs of 164° 148°, 

162°, respectively. 

The goal of controlling and correlating Tg, Td5% and solubility with added pendent 

phenyl and alkyl substituents was achieved. 
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Figure 12. IR spectrum (NaCl) of diester 48. 

 

 

 

 

 

Figure 13. 1H NMR spectrum (300 MHz, CDCl3) of diester 48. 
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Figure 14. 13C NMR spectrum (75 MHz, CDCl3) of diester 48. 

 

 

 

 

 

Figure 15. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of diester 48. 

 

 



 51 

 

 

Figure 16. IR spectrum (NaCl) of diol 49. 

 

 

 

 

Figure 17. 1H NMR spectrum (300 MHz, CDCl3) of diol 49. 
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Figure 18. 13C NMR spectrum (75 MHz, CDCl3) of diol 49. 

 

 

 

 

 

Figure 19. 13C DEPT135 NMR spectrum (75MHz, CDCl3) of diol 49. 
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Figure 20. IR spectrum (NaCl) of dialdehyde 50. 

 

 

 

 

Figure 21. 1H NMR spectrum (300 MHz, CDCl3) of dialdehyde 50. 
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Figure 22. 13C NMR spectrum (75 MHz, CDCl3) of dialdehyde 50. 

 

 

 

 

Figure 23. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of dialdehyde 50. 
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Figure 24. IR spectrum (NaCl) of bis(fluorobenzoyl) monomer 55. 

 

 

 

 

Figure 25. 1H NMR spectrum (300 MHz, CDCl3) of bis(fluorobenzoyl) monomer 55. 
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Figure 26. 13C NMR spectrum (75 MHz, CDCl3) of bis(fluorobenzoyl) monomer 55. 

 

 

 

 

Figure 27. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of bis(fluorobenzoyl) 

monomer 55. 
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Figure 28. IR spectrum (NaCl) of polymer 56a. 

 

 

 

 

Figure 29. 1H NMR spectrum (300 MHz, CDCl3) of polymer 56a. 
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Figure 30. 13C NMR spectrum (75 MHz, CDCl3) of polymer 56a. 

 

 

 

 

Figure 31. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of polymer 56a. 
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Figure 32. DSC spectrum of polymer 56a. 

 

 

Figure 33. TGA spectrum (nitrogen) of polymer 56a. 
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Figure 34. IR spectrum (NaCl) of polymer 56b. 

 

 

 

 

Figure 35. 1H NMR spectrum (300 MHz, CDCl3) of polymer 56b. 
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Figure 36. 13C NMR spectrum (75 MHz, CDCl3) of polymer 56b. 

 

 

 

Figure 37. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of polymer 56b. 
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Figure 38. DSC spectrum of polymer 56b. 

 

 

Figure 39. TGA spectrum (nitrogen) of polymer 56b. 
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Figure 40. IR spectrum (NaCl) of polymer 56c. 

 

 

 

 

Figure 41. 1H NMR spectrum (300 MHz, CDCl3) of polymer 56c. 
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Figure 42. 13C NMR spectrum (75 MHz, CDCl3) of polymer 56c. 

 

 
Figure 43. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of polymer 56c. 
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Figure 44. DSC spectrum of polymer 56c. 

 

 

 
Figure 45. TGA spectrum (nitrogen) of polymer 56c. 
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Figure 46. Composite DSC trace for polymers 54a, 54e, 54d, 56a, 56b and 56c. 

 

 

 

Figure 47. Composite TGA trace for polymers 54a, 54e, 54d, 56a, 56b and 56c. 
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