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ABSTRACT 

 

Evdokiou, Alexander. M.S. Department of Microbiology and Immunology, Wright State 

University, 2017. Vitamin D3 and Suppressor of Cytokine Signaling Proteins Reduces 

Pro-Inflammatory Cytokines in an Alzheimer’s Disease Like-Model Consisting of 

Microglial and Neuronal Co-Cultures. 

 

This study examined the inflammatory effects of amyloid-β (Aβ42) in a 

microglial-neuronal co-culture system and determined whether 1α, 25-dihydroxyvitamin  

D3 (1,25-(OH)2D3) along with suppressor of cytokine signaling (SOCS)1 and SOCS 3 

mimetics would attenuate the inflammatory response to Aβ42.  This culture system, when 

seeded with Aβ42, serves as an in vitro model for Alzheimer’s disease (AD).  In a 

neuronal-microglia co-culture, Aβ42 stimulated microglia to secrete TNF-α, but with the 

addition of 1,25-(OH)2D3, TNF-α levels dropped by nearly eight-fold and to near zero 

values in the presence of both 1,25-(OH)2D3 and SOCS1 and SOCS 3 mimetics.  The 

reduction of the inflammatory cytokine TNF-α by both 1,25-(OH)2D3 and SOCS 

mimetics, suggests that these molecules may be an effective means of treating AD related 

inflammation, and that 1,25-(OH)2D3 along with SOCS proteins mimetics should be 

considered for early onset AD.   
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Introduction 

Alzheimer’s Disease (AD) is a neurodegenerative disorder that affects nearly 5 

million people in the United States (Hebert et al., 2013).  The total number of Americans 

with AD is predicted to reach approximately 14 million people by the year 2050 (Hebert 

et al., 2013).  One singular cause for the disease is not known; however, amyloid-β (Aβ) 

has been found to play a large role in the pathology of AD (O’Brien et al., 2011).  Aβ42 

is involved in synaptic plasticity and neuronal health, but changes in the expression of 

Aβ42 result in a disease state (Puzzo et al., 2008).  As concentrations of Aβ42 rise to 

nanomolar or micromolar levels, aggregates of Aβ42 form in the brain (Combs et al., 

2001; Cardenas-Aguayo et al., 2014). The mechanism by which these plaques arise is 

unknown, but their effect is such that neurons become starved, proper signaling is 

diminished, and the cells eventually die.  These plaques of Aβ42 cause an immune 

response, with the main effector cell being microglia.  Microglia are the resident 

macrophage of the central nervous system (CNS).  In a non-inflamed CNS, microglia are 

kept in circulation, where they maintain a fairly even ratio of M1 to M2 microglia.  

Microglia interact directly with extracellular aggregated Aβ42, through toll like receptor 

(TLR) 4 (Joshi et al., 2014), which activates a pro-inflammatory response and the release 

of cytokines such as TNF-α from microglia (Combs et al., 2001).  Therefore, in AD, an 

overproduction of Aβ42 results in the production of pro-inflammatory cytokines and 

inflammation in the brains of AD patients.   
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AD is a progressive neurological disorder, that worsens severely with age.  An 

early, preventative measure to counter the neuroinflammation in AD could help to reduce 

symptoms from becoming worse.  A candidate for this preventative measure is Vitamin 

D3 (VD3), which has many anti-inflammatory properties.  The active form of VD3, 1α, 

25-dihydroxyvitamin D3 (1,25-(OH)2D3), is the most effective anti-inflammatory form 

of VD3.  Previous studies have shown that, following activation of the inflammatory 

response, 1,25-(OH)2D3 was able to shift microglial activation away from M1 towards 

the anti-inflammatory M2 (Boontanrart et al., 2016).  In doing so, the presence of pro-

inflammatory cytokines decreases, while the concentration of anti-inflammatory 

cytokines increases (Boontanrart et al., 2016).  1,25-(OH)2D3 inhibits the inflammatory 

response by preventing NF-κB signaling.  NF-κB is a complex of proteins, that has been 

shown to act as a strong inducer of the inflammatory response (Tak and Firestein, 2001; 

Yoshimura et al., 2007; Lawrence, 2009).  The entire complex acts as a transcription 

factor to upregulate transcription of M1 cytokines and to initiate the inflammatory 

response.  1,25-(OH)2D3 can directly bind to this complex to prevent the translocation of 

NF-κB into the nucleus.  Along with 1,25-(OH)2D3, SOCS1 can also directly bind to 

NF-κB to prevent translocation of the complex to the nucleus.  SOCS3 prevents the 

complex of TRAF-6 and TAK1 from activating the NF-κB complex (Yoshimura et al., 

2007).  In this study, 1,25-(OH)2D3 and SOCS mimetics successfully reduced Aβ42 

induced TNF-α secretion (p<0.05).  In concert, 1,25-(OH)2D3 and SOCS mimetics 

reduced Aβ42 induced TNF-α secretion to near zero values (p<0.05).    With supplements 

found readily over the counter, VD3 could serve as an excellent means to slow early 

inflammation in an early onset AD brain.
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Literature Review 

This review is focused on describing the possible underlying mechanisms of 

amyloid-β (Aβ42)-related inflammation.  These mechanisms include Aβ42 aggregation, 

amyloid precursor protein splicing, miRNA-dependent gene expression of the amyloid 

precursor protein and β-secretase, transport, and clearance of Aβ42, and mutations within 

apolipoprotein E.  Also included are the innate functions of microglia, suppresser of 

cytokine signaling, and vitamin D and how they have been studied in inflammation. 

The synthesis of Aβ42 is crucial to understanding AD pathology.  Aβ42 arises 

from secretase activity on its precursor, the amyloid precursor protein (APP) (Chow et 

al., 2010; O’Brien et al., 2011).  Aβ42 is released from the APP and, in AD, this activity 

is increased.  An increase in the concentration of Aβ42 results in plaque formation, called 

aggregates (Maezawa et al., 2010).  These aggregates of Aβ42 are a strong inducer of the 

inflammatory response (Sengupta et al., 2016).  The resident phagocytic cell of the CNS, 

microglia, are unable to process the plaques and, in response, they secrete pro-

inflammatory cytokines.  Over the years of AD progression, this inflammation 

continually increases (Martorana et al., 2012).  Questions remain over how Aβ42 would 

cause AD.  The most supported theory is the amyloid cascade theory which states that 

Aβ42 aggregation does not directly cause AD but does begin a cascade of inflammation 

and misfolded proteins that may lead to AD (Karran et al., 2011).  At the heart of this 

theory is the inflammatory response to aggregated Aβ42.  This review will describe two 
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means of controlling this inflammation: suppressor of cytokine signaling (SOCS) proteins 

and Vitamin D3 (VD3).  SOCS proteins function to inhibit cytokine signaling and have 

been shown to reduce pro-inflammatory cytokines.  The active metabolite of VD3, 1,25-

(OH)2D3, has been shown to possess potent anti-inflammatory properties (Boontanrart et 

al., 2016).  With the ability to cross the blood brain barrier (BBB), 1,25-(OH)2D3 is a 

candidate for reducing neuro-inflammation in AD.  This review will cover how Aβ42 

plays a large role in AD, and how these negative effects of Aβ42 may be controlled using 

SOCS proteins and VD3. 

The Amyloid Precursor Protein (APP) 

The APP is a single-pass transmembrane protein with extracellular domains 

(O’Brien et al., 2011).  Within the full length of the APP is Aβ42, which must first be 

spliced by several enzymes to be released.    Once the APP reaches the cell surface, it can 

then be spliced by several secretases.  However, only a single pathway leads to the 

creation of Aβ.  Full length APP is initially cleaved by α-secretase or β-secretase, 

although α-secretase activity does not result in Aβ production. If the APP is cleaved by β-

secretase (BACE1, an aspartyl protease (Pearson et al.,2006)), the splice site for γ-

secretase is made available, which results in the release of three proteins: soluble APP 

beta (sAPPβ), the amyloid precursor protein intracellular domain (AICD), and Aβ (Zhang 

et al., 2011).  sAPPβ functions as a death receptor ligand, mediates axon shortening, and 

neuronal cell death (Mills and Reiner, 1999).  The AICD remains within the cell, and can 

impair mitochondrial functions. The oxidative stress that results from dysregulated 

mitochondrial function, has been shown to increase oxidative stress and inflammation 

(Ward, 2010).  This oxidative stress increases the inflammation seen in AD and disease 
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progression. Therefore, a potential cause of Aβ42-related AD is alternative splicing of the 

APP.  In mice, knockout of the APP gene has been shown to result in deformities, 

decreased brain size, decreased ratio of surface area to volume of brains, and 

underdeveloped brains were common phenotypes (Ring et al., 2007). Clearly, the 

presence of the APP is necessary for normal development, so downstream proteins or 

enzymes must be targeted as potential treatments for inappropriate alternative splicing of 

the APP. 

The expression of the APP and its post-transcriptional modifications are two other 

avenues of research for AD treatment.  Researchers have shown that downregulation of 

miRNA-124 expression was more commonly found in AD patients (Smith et al., 2011).  

This group showed that miR-124 normally functions to bind the transcripts for the APP, 

thereby controlling the expression of Aβ42 (Smith et al., 2011).  Without mi-124, APP is 

more highly expressed, and, following secretase activity, Aβ42 concentrations are 

increased.  miRNAs also play a role in controlling the expression of BACE1.  If miR-

29a/b1 is present, BACE1 expression is decreased because this miRNA specifically binds 

the transcripts responsible for BACE1 (Hebert et al., 2008).  In the same study, miR-

29a/b1 levels were also found to be decreased in AD patients (Hebert et al., 2008).  In 

another study, AD transgenic mice with reduced BACE1 expression showed increased 

learning and memory, both of which diminish in AD, suggesting that BACE1 plays a 

large role in the progression of worsening symptoms in AD. (Kimura et al., 2010).   To 

substantiate this claim, Coulson et al. (2010) studied the post-mortem brains of AD 

patients to determine the mRNA levels of BACE1.  This group found that brains of AD 

patients contained increased levels of  BACE1 mRNA.  Furthermore, in a transgenic 
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mouse model of AD with a single BACE1 allele knocked out, (Kimura et al., 2010), 

levels of both Aβ40 and Aβ42 were significantly reduced and plaque formation was 

decreased.  The decrease in Aβ suggests that an inhibitor for BACE1 may be a potential 

therapeutic target for AD.   

Amyloid-β (Aβ42) 

Aβ42 has been implicated in the pathogenesis of AD since its isolation from AD 

patient brains by Genner and Wong (1984).  Since then, a large effort has been made to 

understand Aβ42 and how the presence of Aβ42 plaques leads to AD.  For many years, 

researchers puzzled over the fact that the presence of plaques did not always correlate 

with increased patient dementia (Murphy et al., 2011).  Now, it is understood that both 

the concentration of Aβ42 and its solubility plays a large role in AD progression.  Aβ42 

exists in two major isoforms, Aβ40 and Aβ42 (Tapiola et al., 2009; Bibl et al., 2012).  

The ratio of Aβ42: Aβ40 is currently being used as an AD-biomarker, with a high ratio 

correlating to a higher likelihood of developing AD (Bibl et al., 2012).  In a healthy brain, 

the relative ratio of Aβ42: Aβ40 is approximately 1:10 (Deane et al., 2009).  However, in 

AD neurons, this ratio rises because of the sequestering of Aβ42 by plaque formation 

(Hansson et al., 2007; Deane et al., 2009).  These plaques are insoluble aggregates and 

are attractants for microglia.  Unable to destroy the aggregates, microglia release 

chemoattractants and cytokines that result in edema and prolonged inflammation in the 

CNS.  As the number of plaques increase, so does the inflammation (Martorana et al., 

2012).  This may explain the progressive nature of AD.    Chronic inflammation can lead 

to heart failure, arthritis, and many other issues.  Therefore, AD should be treated as an 
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inflammatory disease and requires attention in controlling the inflammatory response 

(Hong et al., 2016; Heneka et al., 2015).     

 Microglia are critical in the development of AD.  Understanding their interaction 

with Aβ42 will aid in determining effective means of treating AD. Microglia interact with 

Aβ42 through toll-like receptor (TLR)-4 (Lehnardt et al., 2002; Walter et al., 2007), and 

through MAPK signaling cascades to increase transcription of  M1 cytokines such as 

TNF-α (Heneka et al., 2012).  Extracellular TNF-α secreted from microglia triggers 

further inflammation and edema in the brain.  However, only insoluble aggregates of 

Aβ42 cause this reaction.  Aβ42 is required for proper synaptic plasticity and neuronal 

health (Plant et al., 2003).  Plant et al. (2003) determined that secretase inhibitors or anti-

Aβ42 antibodies significantly increased rat neuronal death.  Astrocytes and other cell 

types remained viable in the presence of both secretase inhibitors and antibody, 

suggesting that the effects of Aβ42 are neuron-specific. Cells treated with secretase 

inhibitors could be rescued by the addition of Aβ42, where significant increase in 

viability was detected (Plant et al., 2003).  This work shows that, while Aβ42 is clearly 

implicated in AD, removal of Aβ42 is not a therapeutic target for treating patients with 

AD.   

 If Aβ42 is crucial to neuronal health, but aggregates of Aβ42 cause severe 

inflammation, then it is thought that changes in transport and clearance of Aβ42 are 

crucial to AD development.  Mutations in transport proteins such as apolipoprotein E 

(ApoE) could serve as a strong biomarker for AD.  ApoE is a transport molecule that is 

responsible for the clearance of Aβ42 into the blood stream for degradation and removal 

(Deane et al., 2009).  Mutations in this transport protein have recently been considered a 
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top candidate for the increase in Aβ42 concentrations in AD (Morris et al., 2010).  Using 

CSF from patients with a mutated ApoE2 allele, it was found that these patients had 

higher CSF concentrations of Aβ42 (Morris et al., 2010).  The concentration of AΒ42 in 

CSF was higher with increasing age as well.  Not only do older individuals suffer from 

more chronic inflammation, but this inflammation would be coupled with an increase in 

Aβ42 concentrations within brain tissue, and increasing the probability of aggregation 

formation.  Morris et al. (2010) state that only Aβ42 pathology is related to mutations in 

ApoE and it has been previously shown that Aβ42 does not directly cause the disease 

state seen in AD.  The amyloid cascade theory is currently the most supported model for 

predicting the mechanism by which Aβ42 could result in AD (Karren et al., 2011; 

McGeer et al., 2013).         

The Amyloid Cascade Theory 

 As more Aβ42 is generated, aggregation formation, inflammation and stress cause 

changes within the cell.  As Aβ42 concentrations reach nanomolar or micromolar 

concentrations, monomers tend to form large aggregate pools.  The “Amyloid Cascade 

Theory” states that Aβ42 alone is not what causes AD, but rather begins a detrimental 

cascade of improper protein folding that leads to the onset of AD (Karran et al., 2011).  In 

the beginning, most likely due to genetic mutations, extracellular levels of Aβ42 levels 

start to rise.  Friedrich et al. (2009) studied how Aβ42 aggregation may begin.  Their 

study showed that initially, Aβ42 is phagocytosed and housed in vesicles.  Within 

vesicles, Aβ42 monomers form structured oligomers, putting stress of the vesicle walls.  

Eventually, the rigid structure of Aβ42 oligomers causes vesicles to rupture, releasing 

Aβ42 oligomers into the cytosol of the cell.  In this in vitro model, extensive cell death 
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was reported following this release of Aβ42 oligomers.  Following cells death, extensive 

Aβ42 release from cells was reported (Friedrich et al., 2009). This study provides insight 

into how Aβ42 oligomers make their way out of the cell and begin the amyloid cascade. 

While the mechanism remains undetermined, this increase in extracellular Aβ42 

causes a cytoskeletal protein called Tau to become hyper-phosphorylated and lose its 

conformation (Asuni et al., 2010; Simic et al., 2016).  In healthy cells, tau functions to 

maintain microtubule structure in axons.    How this change in structure occurs is 

unknown, but a single misfolded and hyper-phosphorylated tau protein results in an 

increase in the number of tau molecules that are misfolded and hyper-phosphorylated 

(Asuni et al., 2010; Simic et al., 2016).  This theory states that it is tau, not Aβ42, which 

causes progression of AD.  However, Aβ42 remains at the forefront of this theory.  Any 

targets that could prevent aggregation of Aβ42, would be an excellent means of treating 

AD.     

 Microglia 

With increased levels of Aβ42, either extracellular or intracellular, there are 

increased levels of pro-inflammatory cytokines.  These cytokines are primarily secreted 

from the resident phagocytic cell of the CNS called microglia.  Microglia are myeloid 

derived cells and share many features with macrophages.  Microglia express surface 

markers like CD11b+, CD45, CD68 and have the capacity to detect and respond to any 

foreign substance in the CNS.  Microglia can assume any of three states: M0 (resting), 

M1 (inflammatory), M2 (anti-inflammatory).  M0 microglia are theoretically ready to 

shift their activation towards a M1 or M2 state, but recent evidence suggests that M0 

microglia may not exist (Tang et al., 2016).  Rather, a consistent ratio of M1/M2 
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microglia is maintained at homeostasis.  M1 microglia are activated by 

lipopolysaccharide (LPS), Aβ42, and other foreign substances.  The M1 microglia have a 

more elongated morphology and secrete cytokines such as: TNF-α, IL-6, and IL-1β.  M1 

microglia are responsible for recognition of antigens through major histocompatibility 

complex (MHC) II, processing and generating an inflammatory response by secretion of 

cytokines and chemokines.  Both activities draw other effector cells to the site of 

inflammation in order to contain and remove antigens in the CNS.  Once the antigen has 

been processed, the inflammatory response must be dampened to prevent consistent 

inflammation and damage to cells.  M2 microglia assume this role by secreting anti-

inflammatory cytokines like IL-10.  IL-10 reduces inflammation by activating signal 

transducer and activator of transcription (STAT) 3 (Niemand et al., 2003).  STAT3 

prevents kinase activity from activating NF-κB (Yu et al., 2009), which prevents NF-κB 

from acting as a transcription factor for the pro-inflammatory response.  IL-10 also 

inhibits NF-κB mediated inflammation by preventing the MAPK cascade activation and 

thereby preventing NF-κB from being phosphorylated (Hubo et al., 2013).  

Suppressor of Cytokine Signaling 1 and 3  

 SOCS proteins function to prevent cytokine signaling.  Two of the SOCS proteins 

will be discussed in this review, SOCS1 and SOCS3.  Both SOCS proteins function in 

similar ways to prevent pro-inflammatory cytokine signaling (Yoshimura et al., 2007).  

SOCS1 can prevent the inflammatory response by preventing kinase activity that would 

otherwise activate the NF-κB complex. This prevents NF-κB from acting as a 

transcription factor, and the upregulation of pro-inflammatory cytokines is reduced 

(Strebovsky et al., 2011).  SOCS1 can also interfere with JAK signaling by preventing 
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phosphorylation of JAK domains.  This prevents the activation of the signaling cascade at 

the beginning and no signal is transduced (Yosimura et al., 2007).  SOCS3 inhibits pro-

inflammatory cytokine signaling by preventing TRAF6 from activating kinase proteins 

(Yoshimura et al., 2007).  These kinase proteins are no longer active, which prevents 

activation of NF-κB.  A secondary target of SOCS3 suppression of the inflammatory 

response is IκB which prevents IκB from becoming part of the NF-κB complex.  Without 

the complete molecule, there is no upregulation of pro-inflammatory cytokines through 

NF-κB (Nair et al., 2011).  

 SOCS proteins do not only reduce pro-inflammatory cytokines.  Both SOCS1 and 

SOCS3 can reduce the anti-inflammatory cytokine IL-10; both SOCS1 and SOCS3 

prevent the phosphorylation, and therefore activation of JAK proteins, to prevent IL-10 

mediated signaling (Berlato et al., 2002; Ding et al., 2003).  Because IL-10 signaling is 

autocrine in nature (Saraiva et al., 2010), a strong response by SOCS proteins is required 

to decrease IL-10 signaling cascades.  

Vitamin D3 (VD3 

 Vitamin D3 (VD3) is a vitamin commonly found in the body and frequently taken 

as a supplement.  VD3 is key for calcium regulation, maintaining healthy teeth and bone 

structure, and functions as an anti-inflammatory molecule.  Importantly, VD3 can cross 

the blood brain barrier (BBB), so the anti-inflammatory effects are able to take hold in 

the CNS (Harms et al., 2011).   To become an active molecule, VD3 must first undergo 

two hydroxylation reactions to form the active metabolite 1α, 25-dihydroxyvitamin D3 

(1,25-(OH)2VD).  This metabolite can enter a cell to bind its receptor, the vitamin d 

receptor (VDR).  Once bound, this ligand/receptor pair moves into the cell and forms a 
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heterodimer with the retinoid x receptor (RXR).  This complex acts as a transcription 

factor to bind the vitamin d response element (VDRE), leading to upregulation of anti-

inflammatory molecules (Wobke et al., 2014; Yin et al., 2014).  Furthermore, 1,25-

(OH)2D3 can directly prevent transcription of pro-inflammatory molecules in two ways.  

First, 1,25-(OH)2D3 can enter the cytosol and bind to NF-κB, a transcription factor 

known to increase the transcription of TNF-α.  Second, when the heterodimer of 1,25-

(OH)2D3, VDR, and RXR bind to the VDRE, transcription of MAPK phosphatase 1 

(MKP1) is increased.  MKP1 serves to remove phosphate groups from MAPK signaling 

molecules, halting the cascade (Wobke et al., 2014); Yin et al., 2014; Boontanrart et al., 

2016).  VD3 is a powerful modulator of the immune system and should be considered as 

a means of reducing inflammation in AD (Lue et al., 2010; Lehmann et al., 2011; 

Boontanrart et al., 2016).   

The ratio of M1/M2 microglia is crucial in the progression of AD.  The ratio of 

M1:M2 microglia is increased in AD, as well as the presence of inflammatory cytokines 

such as TNF-α (Tang et al., 2016).  VD3 plays a crucial role in switching microglia 

activation to a M2 state.  Boontanrart et al. (2016) showed that microglia treated with 

LPS followed with 1,25-(OH)2D3 showed a significant increase in the transcription of 

IL-10.  This secretion of IL-10 would be beneficial in an AD brain, as IL-10 specifically 

functions to prevent transcription of pro-inflammatory cytokines.    

 Understanding the Aβ42-related mechanisms of inflammation is crucial to finding 

a treatment for AD.  The amyloid cascade remains the most supported theory but work is 

still required to verify several components of the theory.  Microglia play a large role in 

the inflammation seen in AD.  Their ability to interact with Aβ42 leads to chronic and 
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damaging inflammation.  Future work in studying the effects of not only SOCS proteins 

but also the anti-inflammatory effects of VD3, would be an important step in determining 

potential treatments for AD.  
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Materials and Methods 

Cell Lines 

Spontaneously Immortalized Microglia (SIM) A9 murine microglia (ATCC, 

Manassas, VA) were originally derived from cortical tissues collected from 1 day old 

mice.  These microglia are an adherent cell line, and were incubated in 5% CO2 at 37 ºC 

in a water jacketed incubator.  Splitting of this cell line, using a solution of  1 mMEDTA, 

1 mM EGTA, and 1 mg/mLGlucose in PBS, occurred 3 to four times a week, and was 

done at 70% confluency in a T25 or T75 BioLite vented flask with complete growth 

media.  Growth media consisted of 5% Heat Inactivated Horse Serum, 10% Heat 

Inactivated Calf Serum, and Dulbecco’s Modified Eagle Medium (DMEM)-F12. Flasks, 

serum, and media were purchased from ThermoFisher (Waltham, MA).   

  Neuro-2a murine neurons (N2A) (ATCC, Manassas, VA) were originally derived 

from a spontaneous tumor from an albino strain of mouse.  Splitting of this cell line using 

trypsin occurred two to three times a week, and grown in in T25 or T75 BioLite vented 

flasks in 5% CO2 at 37ºC with complete growth media.  Growth media consisted of 5% 

fetal bovine serum (FBS) in DMEM.  DMEM, sera, and dishes were all purchased from 

ThermoFisher (Waltham, MA). 

Cell Counting 
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 Cells were grown to 70% confluency, split from the flask and centrifuged to form 

a pellet.  Cells were re-suspended in 1 mL of complete growth medium.  25 uL of this 

suspension was mixed with 50 ul of Trypan Blue (Fisher Sciences, Pittsburg, PA), and 

put onto a hemocytometer.  All live cells and all dead cells were counted.  For 

calculating viable cells, the total number of cells in 5 squares, in a total grid of 25, 

squares were counted.  Counting was performed as shown below:  

𝑉𝑖𝑎𝑏𝑙𝑒 𝐶𝑒𝑙𝑙𝑠

𝑚𝐿
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 5 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

5
∗ 25 𝑡𝑜𝑡𝑎𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 ∗ 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 104  

𝐷𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 5 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

5
∗ 25 𝑡𝑜𝑡𝑎𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 ∗ 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 104  

Percent viability was calculated using the following equation:  

𝑉𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠

𝑉𝑖𝑎𝑏𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 + 𝐷𝑒𝑎𝑑 𝐶𝑒𝑙𝑙𝑠
∗ 100 = % 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

Cell Polarization and Treatments 

Microglia were grown to 70% confluency and then treated.  To polarize to the M1 

state, microglia were treated with LPS (100 ng/mL), IFN-γ (100 ng/mL), and Aβ42 (20 

µM).  To polarize to the M2 state, microglia were treated with IL-10 (100 ng/mL).  

Suppressor of Cytokine Signaling (SOCS) 1 and SOCS 3 mimetics were added 

immediately following treatments at a concentration of 35 µM for each (81 ng/mL and 88 

ng/mL respectively). 1,25-(OH)2D3 treatments were initially added at concentrations 

1,5,10,15, and 20 ng/mL but these concentrations did not induce IL-10 production by 

microglia.  The concentration of 1,25-(OH)2D3 was increased to 10 µM (42 ng/mL) and 

20 µM (84 ng/mL).  All treatments were incubated for 24 hours unless noted otherwise.  
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IFN-γ, IL-10, IL-4 were purchased from BioLegend (San Diego, CA), LPS from E. coli 

0111.B4 was purchased from Chondrex (Redmond, WA). Vitamin D was purchased from 

from Sigma Aldrich (ST. Louis, MO).  Aβ42 was purchased from rPeptide (Bogard, GA). 

  ELISA ASSAY 

 A CorningStar 96 well plate was incubated with capture antibody and incubated 

overnight.  The next day, the capture antibody was aspirated and the plate was washed 

three times with a wash buffer of PBS and 5% Tween-20.  After washing, a standard 

curve was created in the first two columns.  Per manufacturer’s directions, the top 

concentration for the curve was created to be 4000 pg/mL for IL-10 and 1000 pg/mL for 

TNF-α.  From there, a twofold dilution was created for a total of 8 points and duplicated 

for accuracy.  The remaining columns were filled with samples that had been collected 

and stored at -80°C.  After samples were added, the plate was kept at 4°C overnight for 

maximum detection by the capture antibody.  The next day samples and standard curve 

solutions were aspirated.  The plate was again washed three times with wash buffer.  

Secondary antibody was then added and incubated for 1 hour at room temperature.  Wash 

buffer was then added three times to each well.  Avidin-Horseradish Peroxidase (HRP) 

enzyme was added to each well, and allowed to incubate for 30 minutes at room 

temperature.  Five more wash steps followed, and then substrate was added to each well 

and allowed to react with enzyme for 15 minutes.  A stop solution of 1M phosphoric acid 

was added to each well to cease any excess color formation.  The plate was reader in a 

SpectraMax Plus 384 Microplate Reader at 450 nm.  Each sample was duplicated per 

plate, and each well was read twice by the reader.  If a sample provided a negative optical 

density (OD) value, and was said to be below the detectable limit, the value was counted 
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as a zero in this experiment.  Data shown are representative of the entire well contents.  

Triplicates were performed on separate days, and are presented as mean ± SEM.  Data 

were collected using SoftMax Pro 4.8 software.  Statistical analysis was performed using 

an one way analysis of variance (ANOVA) in SigmaPlot 11.0 (Systat Software Inc., San 

Jose, CA). 

Co-Culture Method 

Co- culture plates and inserts were purchased from FisherScientific (Waltham, 

MA).  Inserts contained 1 µm size pores in the well to allow for diffusion of microglial 

cytokines response to the neurons below.  In a 24 well plate, 50,000 murine neuronal 

cells were plated in 700 µL of complete growth media.  The insert was then placed into 

the well, where it sat directly on the top of the neuronal media.  50,000 microglia in 300 

µL of complete growth media was added to the insert.  The neurons and microglia were 

incubated in 5% CO2 at 37°C for 24 hours.  Following incubation, media for both cell 

types were aspirated and fresh media added.  Treatments were added only to the 

microglia, and then the cells were incubated in 5% CO2 at 37°C for 24 hours.  Following 

this incubation, inserts containing the microglia were discarded, and the supernatant from 

the neuronal cells was collected, spun, and stored at -80°C.   

 To ensure that no microglia projections could fit through the pores of the inserts, 

crystal violet dye was added to an insert and the inserts were viewed under a parfocal 

microscope at 400x total magnification.  There was no indication of projections coming 

through the insert by the microglia. 

Cytotoxicity Assay 
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A Lactate Dehydrogenase (LDH) cytotoxicity kit was purchased from Cayman Chemical 

(Ann Arbor, MI). In a CorningStar 96 well plate, three wells were only plated with 

neuronal complete growth media.  A LDH positive control was plated into the next three 

wells.  For detection of maximum release of LDH by the neurons, 20 µL of Triton X-100 

was added.  In the last three wells, only cells were plated to determine the spontaneous 

release of LDH.  Cells were added at 50,000 cells per well in 200 µL of complete growth 

media.  These wells were incubated at 37°C for 24 hours.  100 uL of each control well 

was moved to a fresh 96 well plate, and 100 µL of supernatants from experimental 

groups were plated.  A LDH reaction solution was generated following the 

manufacturer’s instructions.  100 µL of the reaction solution was added to each well, and 

incubated at 37°C for 30 minutes.  The plate was then read for optical density (OD) on 

the SpectraMax 384 Plus plate reader at 490 nm.  To calculate the percent cytotoxicity, 

the following formula was used:  

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑂𝐷 − 𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑂𝐷

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑂𝐷 − 𝑆𝑝𝑜𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑂𝐷
∗ 100 = % 𝐶𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 

    To ensure that the serum in the complete growth media did not interfere with the 

results, the OD reading from the media only wells was subtracted from experimental 

values.  Each OD value was converted into a percent cytotoxicity first.  Triplicates were 

performed on separate days, and the data are presented as mean ± SEM.  Statistical 

analysis was done using a one way ANVOA on SigamPlot 11.0 (Systat Software Inc., 

San Jose, CA). 

Immunofluorescence 
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Eight-chamber slides were purchased from FisherScientific (Waltham, MA).  Microgila 

were seeded into four of the chambers at a density of 5000 cells in 200 µL of media.  

Neurons were seeded into four of the chambers at a density of 5000 cells in 200 µL of 

media.  Both cell lines were growing on the slide in 5% CO2 at 37 ºC for 24 hours.  

Following incubation, the media were aspirated and the cells were washed with 1x PBS 

twice.  Cells were fixed using 4% paraformaldehyde and incubated at room temperature 

for 15 minutes. Following three washes with 1x PBS, both cell lines were permeabilized 

using 100 µL of 0.2% Triton X100 and incubated at room temperature for 10 minutes.  

Cells were washed with 1X PBS three times, and then blocked using a blocking solution 

comprised of 5% goat serum, 3% BSA, 0.5 Tween-20, and 1% BSA.  Cells were blocked 

for 45 minutes at room temperature.  The blocking solution was aspirated, and the cells 

were washed three times with 1X PBS.  50 uL of primary antibody was added to each 

well at a concentration of 1 mg/mL and incubated at room temperature for 1 hour.  

Primary antibody was aspirated, and cells were washed three times with 1% BSA.  

Working in dark conditions, 50 uL of secondary antibody was added at a concentration of 

5 µg/mL, and incubated at room temperature for 1 hour.  Secondary antibody was 

aspirated, and the cells were washed with 1% BSA three times.  The slide was viewed 

using an Olympus Epi Fluorescent Spot Scope (Wright State University, Microscope 

Core).  Anti-MAP2 and Goat Anti-Rabbit IgG H&L (Alexa Fluor 488) secondary 

antibodies were purchased from abcam (Cambridge, MA).  Anti-CD 11b and Goat Anti-

Rat IgG H&L (Alexa Fluor 488) were purchased from abcam (Cambridge, MA).  
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IMMUNOFLUORESENCE SLIDE SETUP 
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Results 

1,25-(OH)2D3 induces Microglia to Secrete IL-10, but Requires SOCS mimetics to 

Reduce TNF-α Production in the Presence of LPS and/or IFN-γ 

 To determine what concentration of 1,25-(OH)2D3 would stimulate IL-10 

secretion from microglia, concentrations of 1,5,10,15, or 20 ng/mL of 1,25-(OH)2D3 

were incubated with the microglia for 6,12,18, and 24 hours.  None of these 

concentrations or time points resulted in any production of IL-10 (data not shown).  

Concentrations of 10 µM (42 ng/mL) and 20 µM (84 ng/mL) were used instead, and were 

also treated with LPS alone, or LPS+IFN-γ.  This combination of treatments resulted in 

IL-10 production as measured by ELISA (Figure 5).  However, only the 20 µM 

concentration of 1,25-(OH)2D3 resulted in significant increases in IL-10 as compared to 

a negative control (p<0.05) (Fig. 6; Table 1).  Both SOCS1 mimetic and SOCS3 mimetic 

reduced IL-10 concentrations to below the detectable range of the assay, regardless of the 

treatment group (data not shown).  

 TNF-α production by microglia was also measured by ELISA.  Addition of 1,25-

(OH)2D3 to LPS, IFN-γ or LPS+IFN-γ groups did not result in any significant reduction 

in TNF-α production (Figure 7; Table 2).  However, treatment with SOCS1 mimetic, 

SOCS3 mimetic or SOCS1 mimetic with SOCS3 mimetic significantly reduced TNF-α 

production even further (p<0.05) (Figure 7; Table 2).  When 1,25-(OH)2VD was added 
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along with SOCS mimetics to LPS and IFN-γ treatments, TNF-α production was reduced 

even further (p<0.05) (Figure 7; Table 2).     

Microglia treated with Aβ42 secrete TNF-α, which can be reduced by 1,25-(OH)2D3 

and SOCS-Mimetics 

 To determine the M1 stimulation properties of Aβ42, microglia were seeded with 

20 µM Aβ42.  Using an ELISA, it was determined that microglia do secrete TNF-α in the 

presence of Aβ42 (Figure 8; Table 3).  1,25-(OH)2D3 was added to Aβ42 treatments, 

along with SOCS mimetics, to determine if the production of TNF-α by Aβ42 could be 

reduced.  1,25-(OH)2D3 can reduce the production of Aβ42 (p<0.05) to nearly half of the 

Aβ42 treatment alone (Figure 8; Table 3).  The secretion of TNF-α was also reduced by 

the addition of both SOCS1 and SOCS3 mimetics (p<0.05) (Figure 8; Table 3).  

In the presence of Aβ42, 1,25-(OH)2D3 does not stimulate IL-10 secretion  

 Microglia were treated with 20 µM Aβ42, and then treated with 1,25-(OH)2D3 

and/or SOCS proteins.  Only SOCS1 and SOCS1+1,25-(OH)2D3 induced IL-10 

secretion, but neither was statistically significant (Figure 9; Table 4). 

In a Co-Culture of Neurons and Microglia, Aβ42 induces TNF-α secretion, but 1,25-

(OH)2D3 and SOCS mimetics reduce TNF-α concentrations  

Aβ42 induced TNF-α secretion which was detectable in neuronal supernatant.  

TNF-α secretion was significantly reduced by 1,25-(OH)2D3 and SOCS mimetics 

(p<0.05) (Figure 10; Table 5).  1,25-(OH)2D3 significantly reduced TNF-α secretion 

following Aβ42 treatment (p<0.05) (Figure 10; Table 5).  The combination of SOCS1 

mimetic and SOCS3 mimetic reduced TNF-α levels to near zero (p<0.05) (Figure 10; 



23 
 

Table 5).  1,25-(OH)2D3 and SOCS mimetics in concert reduced TNF-α concentrations 

to near zero values (p<0.05) (Figure 10; Table 5). 

In a Co-Culture of Neurons and Microglia, Aβ42 does not induce IL-10 secretion  

No significant secretion of IL-10 was detected following 20 µM of Aβ42 (data not 

shown). 

Immunofluorescence staining of SIM-A9 and N2A cells 

SIM-A9 microglia and N2A neurons were each stained with anti-CD11b+ and 

anti-MAP2 antibodies for immunofluorescent confirmation of each cell lines identity.  As 

expected, microglia expressed CD11b+ and neurons did not (Figure 11).  Neurons 

expressed MAP2 and microglia did not (Figure 11). 

Cell Viability and Cell Cytotoxicity Assays 

Using trypan blue exclusion dye, neuronal cells from co-culture plates were 

stained for viability.  Compared to untreated cells, all treatment groups had 

approximately a 1.5-fold decrease in viability (p<0.05) (Figure 12).  To supplement these 

data, a cytotoxicity assay was performed. Aβ42 treated cells showed little cytotoxicity, 

while 1,25-(OH)2D3 treated cells, compared to those treatments without 1,25-(OH)2D3, 

showed approximately a 1.5-fold increase in cytotoxicity (p<0.05) (Figure 13).  
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Discussion 

Aβ42 has been associated with the pathology of AD since its discovery (Glenner 

and Wong, 1984), but its role has not yet been determined.  The amyloid cascade theory 

suggests that Aβ42 aggregation begins an inflammatory-related cascade that leads to tau 

hyper-phosphorylation and, therefore, resulting in AD.  However, how Aβ42 aggregates 

start the cascade remains unknown.  Several studies have identified the inflammatory 

response as the mechanism behind the cascade. Understanding the inflammatory response 

to Aβ42, and its effects on neurons, would prove useful to better understanding AD 

pathogenesis.     

Vitamin D3 (VD3) is a known anti-inflammatory substance (Yin et al., 2014).  

Physiological levels of VD3 have been reported anywhere from 20 ng/mL to 100 ng/mL 

(Holick, 2009).  Our study used a concentration of 84 ng/mL, well within this range.  The 

active form of VD3, 1,25-(OH)2D3, can bind its cytosolic receptor, the vitamin D 

receptor (VDR).  Once 1,25-(OH)2D3 binds the VDR, the retinoid X receptor (RXR) 

binds the 1,25-(OH)2D3 and VDR complex to form a heterodimer (Kongsbak et al., 

2013).  This heterodimer can then act as a transcription factor to upregulate transcription 

of IL-10 and MAP kinase phosphatase 1(Wobke et al., 2014; Yin et al., 2014).  In this 

experiment, 1,25-(OH)2D3 alone could not induce IL-10 secretion.  Microglia required a 

M1 stimulant to allow for transcription of IL-10.  Microglia treated with LPS, followed 
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by 1,25-(OH)2D3, do secrete IL-10 through MAPK signaling, where VDR transcription 

is upregulated as a protective measure to the inflammatory response (Wobke et al., 2014).  

Following LPS treatment, VDR is more highly expressed (Boontanrart et al., 2016), and 

therefore more available to bind 1,25-(OH)2D3.  As a result, IL-10 is more prevalent in 

supernatant.   

Based on previous literature, TNF-α concentrations were expected to decrease 

after the addition of 1,25-(OH)2D3 (Boontanrart et al., 2016).  Boontanrart et al. (2016) 

showed that transcription of pro-inflammatory cytokines decreases in the presence of 

1,25-(OH)2D3, while the transcription of anti-inflammatory cytokines increased.  In this 

experiment, 1,25-(OH)2D3 did not reduce TNF-α production following LPS treatment, 

nor did IL-10 production increase.  This result could be a limitation of studying 

inflammation in our study in that an in vitro study cannot have all of the immune system 

interactions that would occur in vivo.  The same study was able to show IL-10 increases 

in the presence of a M1 stimulant such as LPS, but only transcription was measured by 

real time PCR, no functional data based on these transcripts was provided (Boontanrart et 

al., 2016).  It could be that transcription does not correlate to expression of IL-10, where 

post transcriptional modifications may be masking the effects of IL-10.   

However, the addition of SOCS mimetics did reduce TNF-α, as well as IL-10 

production.  This was an expected result, as SOCS1 mimetics and SOCS3 mimetics are 

both known to reduce cytokine production (Ahmed et al., 2015; Reichard et al., 2010).  

When 1,25-(OH)2D3 was added along with SOCS mimetics, TNF-α production was 

reduced even further.  The combinatory anti-inflammatory effects of 1,25-(OH)2VD and 

SOCS mimetics suggests that SOCS mimetics suppression of TNF-α secretion allows for 
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the anti-inflammatory effect of 1,25-(OH)2D3 to take hold.  This result occurs even when 

microglia are treated with LPS and IFN-γ, both of which are strong inducers of 

inflammation.  With the addition of SOCS1 and SOCS3 together, followed by 1,25-

(OH)2D3, there was no TNF-α secretion following LPS and IFN-γ treatment.  The lack 

of TNF-α suggests that the ratio of SOCS1:3 activation plays an important role in 

modulating not only the pro-inflammatory response, but allowing the anti-inflammatory 

effects of 1,25-(OH)2D3 to play a more crucial role in reducing inflammation.  Reichard 

et al. (2010) studied the ratio of SOCS1:SOCS3 expression in vitro by flow cytometry 

analysis.  M1 stimulated cells showed an increase in SOCS1 expression, while M2 

stimulated cells showed an increase in SOCS3 (Reichard et al., 2010).  However, 

cytokine response was not measured in this experiment.  This current experiment showed 

that upregulation of either SOCS1 or SOCS3 using the SOCS mimetics decreases both 

the pro-inflammatory and anti-inflammatory responses while demonstrating that SOCS 

mimetic proteins and 1,25-(OH)2VD work together to reduce Aβ42 related inflammation.  

A separate study with complete knockout out SOCS1 and SOCS3 in mice found a 

significant increase in the secretion of TNF-α in their knockout mice (Ushiki et al., 2016).  

This increase in TNF-α was also directly correlated with an increase in cell death and an 

overall increase in inflammatory disease (Ushiki et al., 2016).     

  While the SOCS mimetics were effective at reducing TNF-α concentrations, IL-

10 was also impacted by these mimetics.  The lack of IL-10 would be a harmful effect in 

vivo, as demonstrated by Ko et al. (2012).  This group found that IL-10 knockout mice 

showed a decrease in percent survival and an increase in inflammatory cytokines.  

Clearly, IL-10 is a necessary cytokine and reducing IL-10 concentrations with SOCS 
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mimetics is a limitation of this study where we showed SOCS mimetics decreased IL-10 

to below detectable ranges of the ELISA assay.  But, further study would be required to 

determine if this same effect occurs in vivo.  

In these co-culture experiments, Aβ42 was shown to induce TNF-α secretion by 

microglia into neuronal supernatant.  It was anticipated that TNF-α would result in an 

increase in neuronal death.  However, 75% of neurons stained viable using trypan blue 

dye.  This was substantiated using a LDH cytotoxicity assay that showed minimal 

cytotoxicity in neurons from co-cultures where microglia were treated with Aβ42.  Aβ42 

has previously been shown to not induce neuronal apoptosis (Carter et al., 2001), and 

these results confirm this.  Interestingly, the cytotoxicity of 1,25-(OH)2D3 treated co-

cultures was significantly increased compared to treatment groups lacking 1,25-

(OH)2D3.  Weitsman et al. (2003) showed that VD3 increased cytotoxicity of human 

breast cancer cells.  Using Western blotting, this group showed that caspase activity 

increased with concentration of calcitriol and time of exposure.  These findings 

substantiate our findings and suggest a detrimental role of 1,25-(OH)2D3.  Previous work 

has shown that 1,25-(OH)2D3 increases reactive oxygen species (ROS) concentrations 

(Koren et al., 2000; Weitsman et al., 2003).  The increase in cytotoxicity may be related 

to an increase in ROS.  More work is required to determine the exact cause of this 

cytotoxicity.  

 A future in vitro experiment would use primary microglia and primary neurons 

from rats as opposed to the cell lines that were used in the current study.  In addition to 

seeding microglia with Aβ42, tau monomers, tau oligomers, and hyper-phosphorylated 

tau oligomers would all be added to microglia in separate experiments.  This new study 
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would aim to better understand the amyloid cascade along with investigating the 

inflammatory response to both Aβ42 and tau.  Importantly, the ratios of SOCS1 and 

SOCS3 would be monitored at 6, 12, 18, and 24 hours with cytokine response measured 

by ELISA at the same time points.  These results would add to the understanding of AD 

as an inflammatory disease, while also attempting to better understand the initial 

processes that lead to AD pathology. 
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Future Studies 

 Using a rat model, the anti-inflammatory effects of 1,25-(OH)2D3 could be tested 

in an AD-like model.  This model would aim to study neuroinflammation, and to 

investigate the amyloid cascade theory.  In individual experiments, a guided CRISPR-

Cas9 system would be developed to remove the wildtype genes for BACE1, ApoE, and γ-

secretase.  The CRISPR-Cas9 system would utilize donor templates for each listed gene, 

where one allele is knocked out.  To test the effects of the CRISPR-Cas9 system, edits 

with no donor templates would need to be run first, to determine if the rats would survive 

the gene editing.  A similar model was performed by Paquet et al. (2016), where CRISPR 

was used to generate APP knockout neurons which either had a single mutated allele or 

complete knockout of the APP gene.   A CRIPSR system is available for purchase from 

Origene for each gene. (Rockville, MD), but this technique would need to be optimized 

as little work has been done with these CRISPR models.  Each gene group would contain 

10 rats, and each group would receive a single CRISPR-Cas9 treatment to provide 

mutated forms of either BACE1, ApoE, or γ-secretase.  Western blots would be 

performed to determine the presence of each mutated protein.  Following CRISPR editing 

and gene addition, rats would be monitored for three separate time points: 1,2, and 3 

months (n=3 rats per time point).  Rats will have weekly behavior checks (using the 

Radial Arm Water Maze (RAWM) technique) (Puzzo et al., 2014) to determine if the 

mutated gene is reducing their cognitive abilities.  The RAWM apparatus has six arms, 

each of which lead to the center of the device.  A rat is placed at the end of an arm, and 
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can search for a food item in an open area.  One week later, the same rat will enter the 

same arm of the device, but the food item is moved behind a sliding hinge door, while a 

new door is opened.  The goal is for the rat to acknowledge spatial cues and use working 

memory to determine where the food item last was.  If the rat has a good working 

memory, it should be able to reach the food item.  CRISPR-Cas9 edited rats for ApoE 

would be expected to perform more poorly than those with mutated BACE1 or γ-

secretase.  After their assigned time point has ended, rats would be sacrificed by 

decapitation. The brain would be collected, along with blood (peripheral and brain), and 

cerebrospinal fluid (CSF).  Cytokines from blood and CSF would be tested for the 

presence of M1 and M2 cytokines by ELISA.  Blood and CSF would also be tested for 

Aβ40 and Aβ42 by ELISA.  Brain tissue would be prepared for immunohistochemical 

analysis of apoptotic markers.  More brain tissue would be used for isolation of 

microglia.  Using Western blots, the ratio of SOCS1/SOCS3 would be determined from 

primary microglia collected from control and experimental rats for each monthly time 

point following the sacrifice of the rat.  Once bioassays and analysis have been completed 

from these animals, the same treatment groups and number of rats would be treated with 

the addition of 1,25-(OH)2D3 to experimental rat groups.  A control group would have 

only 1,25-(OH)2D3 treatment but with CRISPR editing or gene addition.  Separate 

groups of rats would receive a daily dose of 1,25-(OH)2D3 for their allotted experimental 

time point.  The range of 1,25-(OH)2VD treatments would be 10 µM, 20 µM, 30 µM, 40 

µM, and 50 µM.  Groups of three rats would receive a specific concentration of 1,25-

(OH)2VD for their specific monthly time point.  These rats would then be sacrificed, and 

the same assays would be run.  The range of 1,25-(OH)2VD treatments would provide 
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more insight into which concentrations of 1,25-(OH)2VD are toxic and which are 

beneficial. 

 The goal of this study would be to observe not only the inflammatory response to 

common AD mutations, but to determine the role that SOCS protein ratios play in 

controlling the inflammation within the CNS.  We predict that this experiment would 

show three points: mutated BACE1 decreases Aβ42 concentrations in CSF and blood, 

mutated ApoE increases Aβ42 concentrations in CSF and blood, and mutated γ-secretase 

decreases Aβ42 concentrations.  If these predications were supported, these data would 

suggest that the amyloid cascade theory is the correct approach to understanding AD.  

However, if these predictions do not work out as expected, then these data would suggest 

that the splicing of the APP does not play a large role in AD pathology, and that ApoE 

mutations do not impact the formation of Aβ aggregates.  
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Figure 1. Mechanism of microglial activation into M1 and M2 

states (As adapted from Yin et al., 2014) 
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Figure 2.  Proposed mechanism: Inhibition of pro- and anti-inflammatory pathways by SOCS1 and SOCS3.  IL-10 

binds its receptor which leads to phosphorylation of JAK domains.  JAK phosphorylates STAT3, that then acts as a 

transcription factor to upregulate the expression of SOCS3.  LPS binds TLR4, which activates the NF-κB signaling 

cascade.  NF-κB acts as a transcription factor to upregulate the expression of SOCS1.  IFN-γ binds its receptor, 

phosphorylating JAK domains.  JAK phosphorylates STAT1, which acts as a transcription factor to upregulate 

expression of SOCS1.  SOCS3 can inhibit IL-10 signaling by binding JAK domains directly.  SOCS3 can bind IκB 

which prevents the assembly of IκB into the NF-κB complex, preventing NF-κB from upregulating pro-

inflammatory cytokines.  If the NF-κB complex is formed, SOCS3 can bind the complex directly to prevent NF-κB 

from acting as a transcription factor and therefore preventing pro-inflammatory cytokines from being transcribed.  

SOCS1 also binds NF-κB, which prevents transcription of pro-inflammatory cytokines.  SOCS1 binds to JAK 

domains, both on the IL-10 receptor and IFN-γ receptor, preventing transcription of both pro-inflammatory and anti-

inflammatory cytokines. (As adapted from Neimand et al., 2007; Strebovsky et al., 2011; Yin et al., 2014) 
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Figure 3. Proposed mechanism: 1,25-(OH)2VD Induced IL-10 Secretion and Reduction of TNF-α 

Following LPS Treatment.  Following LPS stimulation, Microglia secrete TNF-α through two pathways: 

MAPK signaling and NF-κB signaling.  1,25-(OH)2VD has the ability to reduce this secretion of TNF-α 

by directly binding to the NF-κB complex to prevents the transcription of TNF-α.  1,25-(OH)2VD can 

also bind the VDR and RXR to form a complex capable of binding to the VDRE.  Transcription of 

MKP1 (MAPK phosphatase1) and IL-10 are upregulated as result of the VDRE being bound by the 

1,25-(OH)2VD, VDR, and RXR complex.  MKP1 dephosphorylates p38, which ends the MAPK 

signaling cascade and prevents TNF-α expression. (As adapted from Wobke et al., 2014 and Yin et al., 

2014) 
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Figure 4. IL-10 positive control for ELISA.  Microglia were treated with IL-

10 (100 ng/mL).  After 24 hours of incubation, supernatant was collected and 

put onto a coated anti-IL-10 ELISA plate.  The amount of IL-10 added was 

subtracted from the total concentration of IL-10 to give the true supernatant 

concentration of IL-10.  Significance (*) was determined using an ANOVA 

(p<0.05). The graph represents three individual repeated experiments.  
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* 

N.S. 

Figure 5. Microglia secretion of IL-10 is not induced by 10 µM 1,25-(OH)2VD after 

LPS treatment.  SIM-A9 microglia were treated with LPS (100 ng/mL), IFN-γ (100 

ng/mL), SOCS3 mimetic (35 µM), and 1,25-(OH)2VD (10 µM). After 24 hours of 

incubation, supernatant was collected and put onto a coated anti-IL10 ELISA plate.  

The addition of SOCS mimetics reduced IL-10 secretion below the detectable range of 

the assay (32 pg/mL).  All significance (*) was determined using an ANOVA (p<0.05).  

This graph represents three individual repeated experiments. 
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Figure 6.  Microglia secretion of IL-10 is induced by 20 µM 1,25-(OH)2VD only after 

LPS treatment.  SIM-A9 microglia were treated with LPS (100 ng/mL), IFN-γ (100 

ng/mL), SOCS1 mimetic (35 µM), SOCS3 mimetic (35 µM), and VD (20 µM). After 

24 hours of incubation, supernatant was collected and put onto a coated anti-IL10 

ELISA plate.  The addition of SOCS mimetics reduced IL-10 secretion below the 

detectable range of the assay (32 pg/mL; Data not shown).  All significance (*) was 

determined using an ANOVA (p<0.05).  This graph represents three individual 

repeated experiments. 
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Figure 11. Confirmation of cell types by Immunostaining.  SIM-A9 

microglia stain positive for the known microglia marker CD11b (A), while 

staining negative for the known neuronal marker MAP2 (D).  N2A 

neurons stain positive for the known neuronal marker MAP2 (C), while 

staining negative for the known microglia marker CD11b (B) (Original 

magnification x400). 
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Table 1. Concentration of IL-10 from microglia supernatant 

as detected by ELISA (pg/mL) 
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Table 2. Concentration of TNF-α from Supernatant as detected by ELISA (pg/mL) 
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Table 3. Concentration of TNF-α from microglia supernatant following treatment with Aβ42 as detected by ELISA  



54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Concentration of IL-10 from microglia supernatant following treatment with Aβ42 detected by ELISA 
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Table 5. TNF-α concentration from neuronal supernatant collected from co-cultures and measured by ELISA 
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