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 ABSTRACT  

Aljagthmi, Amjad Ahmed. M.S. Department of Biochemistry and Molecular Biology, 

Wright State University, 2017. Np63 suppresses cell invasion by targeting Rac1 

through miR-320a 

ΔNp63α, a member of the p53 family of transcription factors, is overexpressed 

in a number of cancers and known to play a role in proliferation, differentiation, migration 

and invasion. ΔNp63α has been shown to regulate several microRNAs that play a role in 

both development and cancer, but to date there has not been a global analysis of p63-

regulated miRNA. Using next-generation sequencing of small RNA from wild type and 

sip63 transfected HaCaT cells, our laboratory recently identified a number of ΔNp63α-

regulated miRNAs by RNA-Seq studies which may serve as biomarkers of cancer 

progression.  We identified a novel miRNA, miR-320a which is positively regulated by 

p63. Previous studies have shown that miR-320a is downregulated in colorectal cancer and 

targets Ras-related C3 botulinum toxin substrate 1 (RAC1), leading to a decrease in non-

canonical WNT signaling and EMT and thereby a corresponding decrease in tumor 

metastasis and invasion. We hypothesize that ΔNp63α decreases cell invasion 

through down-regulation the activity of Rac1 via miR-320a.  We showed that knockdown 

of ΔNp63α in HaCaT and A431 cell lines lead to a decrease in miR-320a levels and a 

corresponding increase in the phosphorylation of Rac1 at Ser71, while overexpression of 

ΔNp63α in SW480 and Caco2 cells led to a decrease in the S71 phosphorylation of 
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Rac1. We also showed that ΔNp63α effect the GTP activity of Rac1. Knockdown of 

ΔNp63α showed significant increase in Rac1 GTP levels and subsequent increase the 

activity of its effector PAK1. Finally, we showed that the increase observed upon 

knockdown of ΔNp63α is reversible by overexpressing miR-320a. Taken together, our data 

suggest that ΔNp63α-mediated increase in miR-320a levels has potential implications for 

cancer migration and metastasis. 
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I. INTRODUCTION 

 

 Np63

 
ΔNp63α is a homolog of the p53 tumor suppressor gene and the dominant p63 

isoform expressed in the proliferative basal layer of epithelial tissues (Mills et al., 1999; 

Shimada et al., 1999; Yang et al., 1999). Like p53, p63 contains three functional domains: 

a transactivation domain, a DNA binding domain (DBD), and an oligomerization domain 

(Yang et al., 1998). Unlike p53, p63 exists as 6 different isoforms arising from alternative 

promoter usage and differential 3’ splicing (Figure 1). The p63 gene contains two 

promoters. Transcription initiation from promoter 1 (P1) yields the TAp63 isoforms that 

have a full N-terminal activation domain, while initiation from promoter 2 (P2) yields the 

Np63 isoforms that have a truncated N-terminal domain. The TAp63 isoforms generally 

function similarly to p53, while the Np63 isoforms generally oppose p53 function 

(Kommagani, Caserta, & Kadakia, 2006; Marinari et al., 2009; Ortt, Raveh, Gat, & Sinha, 

2008; Osada et al., 2005; Senoo, Matsumura, & Habu, 2002). Moreover, alternative 

3’splicing of TAp63 and Np63, leads to the ,  and  isoforms (Figure  

ΔNp63α is involved in many cellular processes including cellular differentiation, 

proliferation, adhesion and cell survival (Mills et al., 1999; Shimada et al., 1999; Yang et 

al., 1999). A previous study showed that p63 plays a crucial role in the development of 

ectodermal structures during the early development stages (Mills et al., 1999). Mice lacking 

p63 are born without a stratified epithelium, their limbs are truncated and they die shortly  
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Figure 1: p63 isoforms. Schematic of the p63 gene comprised of the two promoter sites, 3’ 

splicing segments, resulting in six main p63 isoforms. The p63 domains are as follows: 

transactivation domain (TA), DNA-binding (DBD), oligomerization domain (OD), sterile alpha 

motif (SAM) and transactivation inhibitory domain (TI).  
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after birth due to dehydration (Mills et al., 1999; Yang et al., 1999). In addition, they lack 

mammary glands, hair follicles and teeth (Mills et al., 1999).Furthermore, the loss of 

Np63, but not TAp63, induces cell detachment and it has been shown that Np63 

modulates many key proteins involved in cell adhesion (Carroll et al., 2006). Np63 is 

the most abundantly expressed and physiologically relevant isoform of p63 (Koster, Kim, 

Mills, DeMayo, & Roop, 2004). 

B. Np63 and human cancer 

 
ΔNp63α is known for its oncogenic role in squamous cell carcinoma (SCC) and 

basal cell carcinoma (BCC) where it is overexpressed, and recent evidence suggests that 

ΔNp63α can modulate cellular processes critical for the spread of tumors, metastasis and 

epithelial-mesenchymal transition (EMT). Interestingly, invasive cancers such as 

colorectal cancer (CRC) have low levels of ΔNp63α expression (Finlan & Hupp, 2007). 

ΔNp63α expression is found to be decreased as cancer becomes more aggressive which 

suggests that ΔNp63α can act as an oncogene in the early stages of cancer, however, it 

plays a role in inhibiting cancer migration and metastasis in the late stages (Bergholz et al., 

2014; Danilov et al., 2011; Finlan & Hupp, 2007; Kommagani et al., 2009).  Metastasis, 

the spread of cancer cells from the site they first formed through the blood or lymph system 

to other parts of the body, frequently occurs in lung, liver and brain and that serves as the 

primary cause of mortality of cancer patients (Vatandoust, Price, & Karapetis, 2015). The 

epithelial-mesenchymal transition (EMT) is the primary driver of tumor invasion and 

migration, and is one of key cellular programs activated during cancer metastasis (Cao, Xu, 

Liu, Wan, & Lai, 2015). Previous studies from ours and other laboratories have shown that 

ΔNp63α dramatically inhibits cell migration and invasion, potentially by regulating 
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signaling pathways that induce the EMT (Bergholz et al., 2014; Danilov et al., 2011; Finlan 

& Hupp, 2007; Kommagani et al., 2009; Leonard et al., 2011). Np63 has been shown 

to inhibit EMT through miRNA-mediated regulation (Lin et al., 2015; Ratovitski, 2014; 

Stacy, Craig, Sakaram, & Kadakia, 2017; Tucci et al., 2012). A number of microRNAs 

(miRNAs) that are regulated by ΔNp63α have been implicated in EMT. ΔNp63α was 

shown to inhibit EMT by upregulating miR-205 which suppresses Zeb1 and Zeb2 

expression, EMT-related transcription factors (Chu et al., 2013; Tran et al., 2013; Tucci et 

al., 2012). 

C. microRNAs  

 
microRNAs (miRNAs) are small non-coding RNA molecules of 18-24 nucleotides 

in length. They regulate gene expression post-transcriptionally by binding to 

complementary sequences in the 3’ untranslated region (UTR) of their target mRNA. This 

binding can lead to translation inhibition or mRNA degradation (Finnegan & Pasquinelli, 

2013; Kloosterman & Plasterk, 2006). miRNA synthesis begins with transcription of the 

primary miRNA (pri-miRNA) by RNA polymerase II (RNA POL II) (Figure 2). The pri-

miRNA is then processed by Drosha/DGCR8 in the nucleus to yield a hairpin structured 

precursor miRNA (pre-miRNA) which is then exported to cytoplasm through Exportin 5. 

The pre-miRNA is processed in cytoplasm by Dicer to produce mature double-stranded 

miRNA (Figure 2).  A single strand is selected from the double-stranded miRNA molecule 

for loading into Argonaute (AGO) to form RNA-induced silencing complex (RISC), 

whereas the second strand is degraded (Lin et al., 2015; Wahid, Shehzad, Khan, & Kim, 

2010). 
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Figure 2: miRNA biosynthesis. The synthesis of microRNA starts with transcribing gene into primary 

miRNA (pri-miRNA) by the action of RNA Pol II. pri-miRNA is then processed by Drosha to generate 

miRNA precursor (pre-miRNA) which is exported to the cytoplasm by Exportin 5. The loop region in 

the pre-miRNA is removed by an endonuclease complex containing Dicer to generate a mature double-

stranded miRNA. One strand of the duplex miRNAs is degraded and the other strand is loaded on 

Argonaute (AGO) to form RISC which then binds to mRNA of the target gene and leads mRNA 

degradation or translation inhibition. 
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The miRNA-loaded RISC then binds to the target mRNA and inhibits translation or leads 

to mRNA degradation (Figure 2). 

A single miRNA may regulate multiple mRNAs and a single mRNA may be 

targeted by multiple miRNAs, thus the dysregulation of miRNAs can have strong 

consequences on the dysregulation of genes. miRNAs have been implicated in multiple 

cellular processes including cell development, differentiation, proliferation and apoptosis  

(Andersen, Duroux, & Gazerani, 2014). Dysregulation in miRNAs expression is greatly 

involved in tumor initiation and progression, drug resistance and other cancer pathogenesis 

(Ratovitski, 2014).  

D. miRNA in cancer 

  
miRNAs control the expression of proteins involved in cancer biology (Hayes, 

Peruzzi, & Lawler, 2014). They can enhance or suppress the pathogenesis of cancer by 

regulating the expression of tumor suppressors and oncogenes, respectively, or by directly 

functioning as oncogenes or tumor suppressors (Zhang et al., 2012). Importantly, each 

tumor type has a unique miRNA signature that distinguishes it from normal tissues and 

other cancer types (Hayes et al., 2014). Thus, miRNAs can be used as diagnostic and 

prognostic biomarkers for cancers especially since they are stable and abundant in 

biological fluids such as serum, urine and saliva (Alemar, Gregorio, & Ashton-Prolla, 

2015; Hayes et al., 2014). 

miRNA are dysregulated in many cancers through different genetic mechanisms 

such as promoter methylation, gene amplification or deletion, and regulation by 

transcription factors(Hayes et al., 2014). In addition, mutations in the miRNA binding 
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sites of the target mRNA is yet another mechanism observed in cancer cells which makes 

mRNA insensitive (Hayes et al., 2014).   

E. ΔNp63α regulation of miRNAs 

 
Several studies showed that many proteins involved in cell death, survival, and 

tumor development are controlled by Np63 through miRNA-mediated regulation (Lin 

et al., 2015; Ratovitski, 2014; Stacy et al., 2017). In fact, Np63 can control miRNA 

expression through regulating several steps in miRNA synthesis. It can decrease the 

binding of RNA POL II to the promoter of the miRNA host gene leading to transcriptional 

inhibition (Tran et al., 2013). It can also influence pri-miRNA processing through 

transcriptionally regulating the expression of DGCR8 (Chakravarti et al., 2014). In 

addition, p63 can control the processing of pre-miRNA by regulating the expression of 

DICER (Boominathan, 2010; Huang et al., 2011). Finally, p63 can also regulate 

transcription factors that control miRNA expression levels. For instance, p63 can indirectly 

upregulate the expression of miR-630 and miR-885-3p by upregulating the transcription 

factors CARM1, KAT2B and TFAP2A that can bind to the promoter of the of these 

miRNA genes and induce their expression. 

 Recent studies in our laboratory sought to examine the effects of Np63 on global 

miRNA regulation. Therefore small RNA sequencing studies were performed to determine 

microRNAs regulation by Np63. miR-320a was identified as a novel microRNA 

regulated by Np63.  

F. miR-320a  

 

miR-320a generally functions to repress tumor metastasis. Accordingly,  it is 

strongly downregulated in many metastatic cancer types such as Salivary adenoid cystic 
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carcinoma (SACC), colorectal cancer (CRC), non‐small cell lung cancer (NSCLC) and 

breast cancer (L. Sun et al., 2015; J. Yu et al., 2016; Zhang et al., 2012; Zhao et al., 2014). 

miR-320a has been shown to inhibit breast cancer metastasis in vitro and in vivo by directly 

targeting metadherin (MTDH) (J. Yu et al., 2016). miR-320a also suppresses NSCLC 

growth and invasiveness through downregulation of  insulin‐like growth factor 1 (IGF-1) 

receptor (L. Sun et al., 2015). In addition, a number of oncogenic proteins that are 

upregulated in CRC are known targets for miR-320a. miR-320a inhibits colorectal cancer 

growth by directly targeting SOX4, FOXM1, and FOXQ1 (Vishnubalaji et al., 2016). 

Moreover, it also inhibits colorectal cancer cell migration and invasion by targeting Rac1 

(Zhao et al., 2014). 

G. Small GTPase-Rac1: 

 
The Ras homology (Rho) GTPases family is subfamily of Ras small GTPases that 

are small G proteins with molecular weight of ~21 kDa. The members of this family are 

signaling molecules that control cellular responses to stimuli by regulating a variety of 

cellular processes including actin organization, cell cycle progression, activation of protein 

kinases and transcriptional regulation (Hartman & Spudich, 2012). Ras-related C3 

botulinum toxin substrate 1 (Rac1) belongs to the Rho family and plays fundamental roles 

in cellular proliferation, adhesion, migration and gene transcription. Rac1 is a plasma 

membrane associated small GTPase encoded by RAC1 gene that also produces another 

splice variant of the Rac1 protein, Rac1b (Matos & Jordan, 2006). Like other small 

GTPases, Rac1 fluctuates between its active form (GTP-bound) and inactive form (GDP-

bound) (Figure 3). Rac1 also has GTPase activity which facilitates the hydrolysis of GTP. 

This molecular switch is regulated by three types of regulatory molecules including  
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Figure 3 Rac1 molecular switch. Rac1 is a plasma membrane associated small GTPase that 

cycles between its active form (GTP-bound) and inactive form (GDP-bound) by the action of 

Guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP), respectively. 

GTP-Rac1 is localized to the plasma membrane, whereas GDP-Rac1 associated with Rho GDP-

dissociation inhibitor (RhoGDI) localized to the cytoplasm. GTP-Rac1 is also present in the 

nucleus where it upregulates gene transcription.  



10 
 

Guanine nucleotide exchange factor (GEF), GTPase-activating protein (GAP) and Rho 

GDP-dissociation inhibitor (RhoGDI) (Bos, Rehmann, & Wittinghofer, 2007). GEFs 

activate Rac1 by facilitating the exchange of GDP with GTP, whereas GAPs facilitate the 

hydrolysis of GTP to GDP and converting Rac1 to its inactive conformational state. 

RhoGDI has been shown to downregulate Rac1 activity by preventing the exchange of 

GDP with GTP and by sequestering Rac1 in the cytoplasm (Bos et al., 2007). Moreover, 

the carboxyl (C-) terminus of Rac1 undergoes post-translation modification by prenylation 

(i.e. addition of a lipid tail) that facilitates the attachment of Rac1 to plasma membrane. 

RhoGDI prevents the association of Rac1 to cellular membrane and localizes it to the 

cytoplasm through sequestrating this lipid tail (Figure 3) (ten Klooster, Leeuwen, Scheres, 

Anthony, & Hordijk, 2007). 

The subcellular localization of Rac1 is essential to its function in the cells. In 

addition to its association to the plasma membrane and cytoplasm, Rac1 can also be 

localized to the early endosomal compartment, the nuclear envelope and the nucleoplasm 

(Navarro-Lerida et al., 2015). In fact, the subcellular compartmentalization of Rac1 

depends on its activation state. When Rac1 is bound to GTP, it is detected at the plasma 

membrane where it is involved in inducing the membrane ruffling and lamellipodia, 

structures which are associated with cell movement and are indicative of metastasis, 

through coordinating the dynamics of the actin cytoskeleton (ten Klooster et al., 2007). On 

other hand, inactive GDP-Rac1 is associated with RhoGDI which is a cytoplasmic protein 

and localized to the cytoplasm (ten Klooster et al., 2007). 

   



11 
 

While the cytoplasmic and plasma membrane functions of Rac1 are well 

investigated, little is known about Rac1 nuclear localization and function. Lanning et al., 

(2004) identified a molecular mechanism by which Rac1 is imported to nucleus (Lanning, 

Daddona, Ruiz-Velasco, Shafer, & Williams, 2004). They found that the C-terminal 

polybasic region (PBR) within Rac1 is essential to promote the interaction of Rac1 with 

the nucleocytoplasmic shuttling proteins such as SmgGDs. The C-terminal poly basic 

region (PBR) of Rac1 consists of a series of basic residues, lysines and arginines (Lanning 

et al., 2004). The PBR contains a specific amino acid sequence called the nuclear 

localization signal (NLS) that is required for shuttling Rac1 to nucleus. Other Rac isoforms, 

Rac2 and Rac3, lack NLS (Sandrock, Bielek, Schradi, Schmidt, & Klugbauer, 2010). It is 

thought that Rac1 nuclear importing induces its proteasome-mediated degradation. GTP-

Rac1, but not GDP-Rac1, interacts with the anaphase-promoting complex (APC/C) that 

ubiquitinates Rac1 and targets it for degradation by 26 S proteasome. Interestingly, only 

Rac1 is found to be subjected to proteasomal degradation among Rac isoforms. This could 

be a result of the lack of an NLS in Rac2 and Rac3. When Rac1 PBR is replaced by Rac2 

PBR or Rac3 PBR, Rac1 is protected from degradation (Lanning et al., 2004). 

Sequestering Rac1 to the nucleus may prevent it from interacting with cytoplasmic 

proteins and inhibit its membrane ruffling induction that is driven by the assembly of actin 

filaments and essential for epithelial cells to be motile (Koster et al., 2004). The fact that 

Rac1 is degraded in the nucleus does not eliminate its other nuclear functions. In fact, active 

nuclear Rac1 has been reported and was attributed to binding to exchange factors such as 

Dock180 (Wong & Isberg, 2005). It is thought that Rac1 shuttling to nucleus occurs in a 

cell cycle-dependent manner. Rac1 is not detectable in the nucleus during G1, however, it 
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has been shown to accumulate in the nucleus in G2 phase. The presence of Rac1 in the 

nucleus is believed to accelerate the cell cycle and protect cells from apoptosis, however, 

the underlying mechanism is not understood (Michaelson et al., 2008). In addition, Rac1 

participates in a number of nuclear processes that facilitate its degradation (Lanning et al., 

2004). Thus, there is a critical need for further investigation of nuclear Rac1 function(s) 

and the mechanism that regulates its activation in the nucleus. 

The C-terminal domain of Rac1 has been shown to bind to its downstream effectors 

leading to activation of Rac1 signaling (ten Klooster et al., 2007). Active Rac1, GTP-Rac1, 

can activate signaling pathways through binding to PAK (p21-activated kinase), IQ-GAP, 

POSH, POR1, WASP, p67PHOX and Sra-1 (Rane & Minden, 2014). Among Rac1 

effectors, p21-activated kinases (PAKs) are the best characterized and the prime mediators 

of Rac1 signaling in the cells. PAKs are serine/threonine kinases that consist of 6 isoforms 

(PAK1-6) and are classified into two groups based on their biochemical structures (Rane 

& Minden, 2014). Group I consists of PAK1, 2 and 3, while group II consists of PAK4, 5 

and 6. Both groups have an N-terminal regulatory domain and a carboxyl terminal kinase 

domain, however the structure of the regulatory domains is completely different between 

the two groups resulting in distinct activation mechanisms (Rane & Minden, 2014). In 

addition, they share only 50% identity to Cdc42 Rac interactive binding (CRIB) domain 

(Rane & Minden, 2014).  

PAK1 is the most extensively studied member of PAKs and a major mediator of 

Rac1 signaling. In its inactive state, PAK1 is present as homodimers in a trans-

autoinhibitory conformation in which the autoinhibitory domain (AID) in one monomer 

binds to the kinase domain in the second monomer preventing it from autophosphorylation 
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(Kumar, Sanawar, Li, & Li, 2017). GTP-Rac1 binds to the CRIB domain overlapping by 

the AID in PAK1 leading to disruption of the homodimerization structure, and subsequent 

auto-phosphorylation of PAK1 at Ser21, Ser144 and T423 in the activation loop of the 

catalytic domain in addition to other residues in other sites (Parrini, Lei, Harrison, & 

Mayer, 2002; Zenke, King, Bohl, & Bokoch, 1999). Upon activation, PAK1 can 

phosphorylate or interact with downstream effectors leading to regulation of a variety of 

cellular processes including cytoskeleton rearrangement, survival, proliferation and cell 

motility.  

H. Rac1 in cancer 

 
The dysregulation of signaling pathways regulated by Rac1 can promote various 

aspects of tumorigenesis including anchorage-independent growth, cell transformation, 

survival, and invasion (Navarro-Lerida et al., 2015). Rac1 expression or activity has been 

shown to be frequently altered in human cancers. This alteration can be at the transcript or 

protein levels of Rac1. Rac1 overexpression has been reported in multiple types of cancer 

such as myeloma, head and neck squamous cell carcinomas, colorectal, pancreatic, breast, 

and testicular cancers and in leukemia (Davis et al., 2013; Tong, Li, Ballermann, & Wang, 

2013). Rac1 has been shown to be strongly involved in colorectal adenocarcinoma 

initiation and progression (Espina et al., 2008; Matos et al., 2000). Moreover, Rac1b, a 

highly activated splicing variant of Rac1 with increased expression in colorectal tumors, 

was also shown to promote cell transformation and epithelial-mesenchymal transition 

(Matos et al., 2000). Although, mutation in Rac1 is rarely detected, mutations in its 

upstream regulators such as GEFs, GAPs or RhoGDI, or mutation in its downstream 

effectors, e.g. PAK1, have been reported to alter Rac1 activity. For instance, upregulation 
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of PAK1 activity is associated with the malignancy of breast cancer (Holm et al., 2006). 

PAK1 also found to promote the progression of colorectal cancer (Huynh, Liu, Baldwin, 

& He, 2010). 

I. miRNA regulation of Rac1 

 
Recent studies have uncovered an additional regulatory mechanism by which 

miRNA can alter Rac1 expression and activity. For example, miR-320a suppresses 

colorectal cancer progression by directly binding to the 3’-UTR of Rac1 and 

downregulating its protein levels (Zhao et al., 2014). Moreover, miR-124 is reported to 

negatively regulate Rac1 by changing its localization to nucleus, without affecting its 

protein levels, where it participates in signaling pathways that target its degradation 

(Figure 3) (Lanning et al., 2004; J. Y. Yu, Chung, Deo, Thompson, & Turner, 2008). 

miRNA can also indirectly regulate Rac1 activity through targeting GEFs or GAPs 

upstream of Rac1. miR-512-3p is found to inhibit migration and invasion in non-small cell 

lung cancer (NSCLC) through down regulating Rac1-GEF, DOCK3 (Zhu et al., 2015). 

Taken together, these studies demonstrate both direct and indirect regulation of Rac1 

signaling by miRNA. 

J. Phosphorylation of Rac1 

 
The function of Rac1 may also be modulated via protein phosphorylation. Rac1 has 

been shown to be phosphorylated at multiple sites (Table 1).  Although the 

phosphorylation of other Rho family members RhoA and CDC42 limits their functions and 

increases their binding to RhoGDI, the effect of Rac1 phosphorylation on its activity is not 

fully understood (Forget, Desrosiers, Gingras, & Beliveau, 2002). ERK1/2 directly 

interacts with Rac1 through an ERK D site that is present in the C-terminus of Rac1. This 
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interaction results in phosphorylation of Rac1 at T108 by ERK1/2 (Tong et al., 2013). Rac1 

phosphorylated at T108 showed less binding to PAK and accumulated in the nucleus. It is 

suggested that this accumulation isolates Rac1 from the cytoplasmic GEFs that are not 

localized to nucleus. However, phospho-Rac1 T108 is still able to interact with other 

molecules in the nucleus and regulates different cellular process.  Thus, phosphorylation 

of Rac1 at T108 may inhibit the migratory function of Rac1 by isolating it to nucleus, 

however, it retains its activity in terms of cell growth and proliferation.   

Y64 in Rac1 is shown to be phosphorylated by Focal Adhesion Kinase (FAK) and 

Src kinase (Table1). The phosphorylation at this site inhibits cell spreading and decreases 

Rac1 binding to PAK. It also increases the binding of Rac1 to RhoGDI (Chang, Lemmon, 

Lietha, Eck, & Romer, 2011). Thus, phosphorylation of Rac1 at Y64 is thought to decrease 

its activity. By contrast, FAK has been reported before to upregulate Rac1 activity by 

phosphorylating PIX (PAK-interacting exchange factor) and increasing its binding to 

Rac1. PIX targets Rac1 to focal adhesion and leading to an upregulation in cell spreading 

and migration (Chang et al., 2011). 

AKT can phosphorylate Rac1 at S71 (Table 1). Phosphorylation at S71 decreases 

Rac1 binding to GTP since this phosphorylation site is located in Switch II domain (Rac1 

residues 57–75), where the GTP can bind (Kwon, Kwon, Chun, Kim, & Kang, 2000; 

Worthylake, Rossman, & Sondek, 2000). Another study showed that Rac1 phosphorylation 

does not affect the activity of Rac1, but rather leads to a decrease in Rac1 binding to 

specific effectors and a shift in specificity toward other effectors (Schwarz et al., 2012) . 

Another study showed that phosphorylation of Rac1 interferes with its interaction with 

RhoGDI, while pRac1 still binds to PAK1 even though the phosphorylation decreases 
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Rac1 residue Kinase References 

T108 ERK1/2 (Tong et al., 2013) 

Y64 Src (Chang et al., 2011) 

Y64 FAK (Chang et al., 2011) 

S71 Akt (Kwon et al., 2000) 

Table1: Known phosphorylated residues in Rac1 
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its GTP binding (Schoentaube, Olling, Tatge, Just, & Gerhard, 2009). Thus, the impact of 

S71 phosphorylation on Rac1 activity and function is controversial and poorly understood 

and more investigation is needed.  

Rac1 phosphorylation at T108, Y64 and S71 occurs in an EGF-dependent manner. 

Rac1, but not CDC42 or RhoA, has been shown to be required for EGF-stimulated 

migration (Dise, Frey, Whitehead, & Polk, 2008). EGF stimulates SRC and PI3K resulting 

in an upregulation of Rac1 activity (Dise et al., 2008). Phosphorylation of related GEFs 

has not been identified. These two kinases work in parallel to activate Rac1 and the 

inhibition of one of them does not block the activity of the other (Dise et al., 2008). 

K. Significance 

 
Determining the mechanisms by which p63 regulates migration and invasion 

is critical for understanding its proto-oncogenic functions and thereby the appropriate 

conditions for its use as chemotherapeutic agent. Previous studies and our data indicate that 

Np63 plays an important role in inhibiting invasion and migration. Np63 is known 

for its pro-proliferative oncogenic role in Squamous cell carcinoma (SCC) and basal cell 

carcinoma (BCC) where it is overexpressed (Bircan, Candir, Kapucoglu, & Baspinar, 2006; 

Lo Muzio et al., 2005; Reis-Filho, Torio, Albergaria, & Schmitt, 2002). The mechanisms 

by which Np63 negatively regulates tumor invasion and migration are not fully 

understood. Based on previous studies and our data, we hypothesize that ΔNp63α 

positively regulates miR-320a resulting in reduced migration and invasion through 

modulation of Rac1 activities. The proposed study will advance our understanding of the 

role played by Np63 in regulating EMT and thereby cancer progression. Our goal is to 

elucidate the mechanisms by which ΔNp63α inhibits invasion and metastasis, and to 
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determine if ΔNp63α elicits these functions through its regulation of miR-320/Rac1. Our 

purposed studies will fill a gap in understanding of ΔNp63α-mediated inhibition of cancer 

migration and invasion.  

L. Rationale  

 
ΔNp63α expression is downregulated in a number of invasive cancers (Finlan & 

Hupp, 2007). EMT represents one of cellular programs that are activated during cancer 

metastasis and can drive tumor invasion and migration. Multiple markers associated with 

EMT are shown to be affected by ΔNp63α (Olsen et al., 2013; Stacy et al., 2017; Tran et 

al., 2013). ΔNp63α can act as an oncogene in the early stages of cancer, however, it plays 

a role in inhibiting cancer migration and metastasis in the late stages (Bergholz et al., 2014; 

Danilov et al., 2011; Finlan & Hupp, 2007; Kommagani et al., 2009). Previous studies and 

data from our laboratory showed that ΔNp63α inhibits cell migration and invasion, 

potentially by inhibiting signaling pathways that induce EMT (Bergholz et al., 2014; 

Danilov et al., 2011; Finlan & Hupp, 2007; Kommagani et al., 2009; Leonard et al., 2011).  

miR-320a is downregulated in many cancer types such as colorectal cancer (CRC) 

and non‐small cell lung cancer (NSCLC). Small RNA sequencing studies from our 

laboratory indicated that mi-R320a is positively regulated by Np63. miR-320a is known 

to downregulate a number of oncogenic proteins such as SOX4, FOXM1 and Rac1 that are 

involved in EMT (Vishnubalaji et al., 2016; Zhao et al., 2014). Chief among these is Rac1, 

a key protein that modulates actin cytoskeletal dynamics including cell adhesion and 

motility (Zhao et al., 2014). Rac1 activity is upregulated in several different tumor types 

and correlate with aggressive malignant characteristics (Bid, Roberts, Manchanda, & 
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Houghton, 2013). Our preliminary data showed that Np63 negatively regulates Rac1 

activity and changes its subcellular localization to nucleus, thus, suggesting a potential 

mechanistic link between p63 and cancer invasiveness through the regulation of Rac1. 

Therefore, in this study we tested whether Np63 could potentially inhibit the activities 

of Rac1 through upregulating miR-320a levels.   
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II. II. MATERIALS AND METHODS 

 

A. Cell culture and Reagents 

 
The squamous cell carcinoma cell line A431, the human non-small cell lung 

carcinoma H1299, the colorectal adenocarcinoma SW480 and the colorectal 

adenocarcinoma Caco2 were purchased from American Type Culture Collection 

(Manassas, Virginia, USA). The non-tumorigenic immortalized human keratinocyte 

HaCaT cell line was obtained from Dr. Nancy Bigley (Wright State University). The five 

cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 8 % fetal bovine serum (FBS) and 250 U penicillin and 250 g streptomycin.  

B. microRNA and siRNA transfection 

 
miR-320a mimic and miRNA mimic negative control were obtained from 

Dharmacon (Lafayette, CO, USA). The mature sequence for miR-320a mimic is 5’-

AAAAGCUGGGUUGAGAGGGCGA-3’ and the mature sequence for miRNA mimic 

negative control is 5’-UCACAACCUCCUAGAAAGAGUAGA-3’. A total of 40 nM of 

miR320a mimic or mimic negative control was transfected into A431 or HaCaT cells using 

Lipofectamine RNAi-Max as per manufacturer’s instructions (Life Technologies, 

Carlsband, CA, USA).  miR-320a inhibitor and miRNA inhibitor negative control were 

also obtained from Dharmacon (Lafayette, CO, USA). The precursor sequence for miR-

320a inhibitor is 5’-GCUUCGCUCCCCUCCGCCUUCUCUUCCCGGUUCUUCCCGG 

AGUCGGGAAAAGCUGGGUUGAGAGGGCGAAAAAGGAUGAGGU-3’ and the 

mature sequence for miRNA inhibitor negative control is 5’-
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UCACAACCUCCUAGAAAGAGUAGA-3’. A total of 40 nM of miR-320a inhibitor or 

inhibitor negative control was transfected into A431 using Lipofectamine RNAi-Max. 

Rac1 and p63 knockdown studies conducted in HaCaT and A431 cells were performed by 

two rounds of siRNA transfection using Lipofectamine RNAi-Max. Rac1 and p63 siRNA 

used in this study were purchased from Qiagen (Valencia, CA, USA). A pool of four 

siRNAs was used to target Rac1: 5’-ATGCATTTCCTGGAGAATATA-3’, 5’-

CAGCACGTGTTCCCGACATAA-3’, 5’-ACGAAGTGGAGATTTACACTA-3’ and 5’-

ACAAGCCTTCTTAAAGCCTTA -3’, and the siRNA sequence used for p63 was 5’-

CACCCTTATAGTCTAAGACTA-3’. 

C. DNA constructs and transient transfections  

EGFP-tagged wild type Rac1, dominant-negative Rac1 (T17N) and constitutive 

active Rac1 (Q61L) constructs were purchased from Addgene (Cambridge, MA, USA). 

EGFP-tagged Rac1 S71A was generated commercially by site-directed mutagenesis 

(GenScript, Piscataway, NJ), and the mutant sequence was verified by sequencing the 

entire coding region. Np63, Rac1-WT, T17N Rac1, Q61L Rac1 or S71A Rac1 

expression vectors or the empty vector control, pcDNA3.1, was transiently transfected into 

H1299, SW480 or Caco2 cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 

USA). Briefly, cells were trypsinized and plated onto a six-well plate at a density of 

3.0 × 105 cells / well for H1299 and 5.0× 105 cells / well for SW480 and Caco2 cells per 

well in 2 ml of DMEM plus 8% FBS with 250 U penicillin and 250 g streptomycin for 

24 hours. 1μg of plasmid DNA in 250 μl of Opti-MEM (Invitrogen, Carlsbad, CA, USA) 

was mixed with 2 μl of Lipofectamine 2000 in 250 μl of Opti-MEM, incubated for 20 

minutes and added to cells in DMEM media supplemented with 8% FBS without antibiotic 
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for overnight incubation. The following day, media was changed to DMEM plus 8% FBS 

with 250 U penicillin and 250 g streptomycin. Cells were harvested 24 hours after 

transfection and cell pellets were used for immunoblot analysis and extraction of total RNA 

for qRT-PCR studies.  

D. Immunoblot analysis 

Whole cell lysates were prepared by lysing cells in phosphatase inhibitors 

containing buffer (50mM Tris-HCl pH 8, 120 mM NaCl, 5mM sodium pyrophosphate 

phosphatase inhibitor [NaPPi], 10mM NaF, 30 mM paranitrophenylphosphate, 1mM 

benzamidine, 0.1% NP-40, 1% Triton X-100 and 0.2 PMSF, 100nM sodium 

orthovanadate) supplemented with 10% protease inhibitor cocktail (Sigma, St. Louis, MO). 

Total protein concentrations were determined by BCA assay (Thermo Fisher Scientific 

Inc., Fremont, CA, USA). Equivalent concentrations of protein were resolved on 10% 

SDS-PAGE and transferred to polyvinylidene difluoride membranes. Proteins were 

detected using rabbit polyclonal anti-GFP (FL) and mouse monoclonal anti β-actin 

antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) used at 1:1,000 and 

1:10,000, respectively. β-actin was used as a loading control. Rabbit polyclonal anti-p63 

[N2C1] (Gene Tex, Irvine, CA, USA). Mouse monoclonal anti-Rac1 (Abcam, Cambridge, 

MA, USA) was used at 1:1,000 to 1:2,000. Rabbit polyclonal anti-Rac1 (C-11) and rabbit 

polyclonal anti-phospho-Rac1 (Ser71) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) 

were used at1:500 and 1:1,000, respectively. Rabbit polyclonal anti-PAK1 and rabbit 

polyclonal anti-pPAK1/2 (Cell Signaling Biotechnology, Cambridge, MA, USA) were 

used at 1:500. Appropriate horseradish peroxidase-conjugated secondary antibodies 
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(Promega, Madison, WI, USA) were used for chemiluminescence detection with Western 

Lightning Plus chemiluminescent kit (Perkin Elmer, Waltham, MA, USA).  

E. Rac1 activation assay  

A Rac1 pull-down activation assay (Cytoskeleton, BK035, Denver, CO) was used 

to measure Rac1-GTP activity. Whole cell lysates were prepared by lysing cells in ice-cold 

lysis buffer (50mM Tris pH 7.5, 10mM MgCL2, 0.5M NaCL, and 2% Igepal) containing 

1X Protease Inhibitor Cocktail and protein concentrations were determined by BCA assay 

(Thermo Fisher Scientific Inc., Fremont, CA, USA). Equivalent concentrations of protein 

(500 g) were added to 10 μl of p21-activated kinase-protein binding domain (PAK-PBD) 

beads and rotated at 4°C on a tube rotator for 1 hour. Next, the PAK-PBD beads were 

pelleted by centrifugation at 5,000 x g at 4°C for 1 minute. After removing about 90 % of 

the supernatant, the pellet was washed one time with 500 μl of wash buffer. GTP-Rac1 

bound to PAK-RBD beads were run on an SDS-PAGE (10% gradient gel), 

electrotransferred to a polyvinylidene difluoride membrane (Sequi-Blot PVDF 

membranes; BIO-RAD). After blocking with 5 % milk, membranes were probed with a 

rabbit polyclonal anti-Rac1 (C-11) to detect total Rac1 and rabbit polyclonal anti-phospho-

Rac1 (Ser71). Subsequently, the membranes were probed with a mouse monoclonal anti-

Rac1 (Abcam) which detects both pRac1 and total Rac1. Antibodies dilutions used as 

described previously in section D. 

F. Cell Immunofluorescence Assay 

H1299 cells were grown on sterile glass coverslips and transiently transfected with 

the following plasmids: GFP-Rac1 WT, GFP-Rac1 S71A, GFP-Rac1 T17N and GFP-Rac1 

Q61L alone or along with overexpression of Np63. At 24 hours post transfection, cells 



24 
 

were fixed with 2% paraformaldehyde for 15 min. After three consecutive washes with 

PBS, cells were permeabilized with 0.2% Triton X-100 diluted in PBS for 5 min. Cells 

were washed and blocked with 0.5% normal goat serum in PBS (PBS-NGS) three times 5 

min each before incubating with rabbit polyclonal anti-p63 (H129) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) primary antibody used at 1:100 dilution for 1 h at 

room temperature. Excess primary antibody was removed with three consecutive 5 min 

washes in PBS-NGS followed by incubation with AlexaFluor goat anti-rabbit 568 used at 

1:500 for 1 h at room temperature. Excess secondary was removed with three consecutive 

5 min washes in PBS-NGS and one wash in PBS prior to mounting with Vecta-Shield plus 

DAPI Mounting Media (Vector Laboratories, Burlingame, CA, USA). Cells were 

visualized and captured with a Leica CTR 6000 Microscope (Leica Microsystems, Wetzlar, 

Germany) using a 63X objective and analyzed using ImagePro 6.2 software (Media 

Cybernetics, Bethesda, MD). Rac1 subcellular localization was quantified by imaging at 

least 100 cells per condition with the same exposure parameters. The localization of Rac1 

in plasma membrane, cytoplasm or nucleus was determined manually by evaluating each 

single cell. 

G. Migration and Invasion assay 

Cell migration and invasion was assessed using a two-chamber transwell system. 

For migration assays, a total of 9 x 104 stable transfected SW480 cells, 8 x 104  transient 

transfected A431 or HaCaT cells were suspended in 200 l of serum-free DMEM medium 

and seeded into 8 m pore size inserts (BD Biosciences) and placed into 24-well plate. 

Then, 600 l of DMEM containing 8% FBS was added to the bottom of each insert. Cells 

were incubated at 37 °C and allowed to migrate for 18 hours for SW480 and 21 hours for 
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A431 and HaCaT cells following. Cells that did not migrate were removed with cotton 

swab and migrated cells which had attached to the bottom of the transwell were fixed with 

4% of paraformaldehyde for 20 min and washed once with Dulbeco’s Phosphate Buffered 

Saline . Next, cells were stained with 600 l of crystal violet solution (0.1g in 100 ml of 

H2O) for 10 min and then washed with water. Cells were visualized and imaged in four to 

six random fields at magnification of 40X using a Leica CTR 6000 Microscope (Leica 

Microsystems, Wetzlar, Germany) and ImagePro 6.2 software (Media Cybernetics, 

Bethesda, MD). Cells were counted manually from these pictures and average was taken 

to calculate the standard deviation. Invasion assay was performed using the same protocol 

except that transwell inserts were coated with 1 mg/ml Matrigel (BD Biosciences) to 

measure cell invasion. A total of 1.4 x 105 stable transfected SW480 cells were suspended 

in 200 l of serum-free DMEM medium and seeded into 8 m pore size inserts and allowed 

to invade for 21 hours at 37 °C.  

H. Quantitative Reverse transcription PCR for gene expression 

mRNA expression: Total RNA was extracted from human cell lines using the EZNA 

RNA isolation kit according to the manufacturer protocol (Omega Bio-Tek, Norcross, GA, 

USA). A TaqMan reverse transcription kit (Life Technologies, Carlsbad, CA USA) was 

used to synthesize cDNA from 1g of total RNA. Quantitative real-time PCR was 

performed using the Applied Biosystem 7900HT or QuantStudio 7 Flex Real-Time PCR 

Systems using using Assay on Demand (AOD) specific for the genes of interest and 

normalized to endogenous GAPDH for human genes (Life Technologies, Carlsbad City, 

CA, USA) (Kommagani et al., 2009; Pfaffl, 2001). AODs used were GAPDH (4325792), 

RAC1 (Hs01902432_s1) and pan-p63 (Hs00978340_ml).  
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miRNA expression- Total RNA was extracted from human cells using the EZNA 

RNA isolation kit according to the manufacturer protocol (Omega Bio-Tek, Norcross, GA, 

USA). TaqMan MiroRNA reverse transcription kit (Life Technologies, Carlsband, CA, 

USA) was used to synthesize cDNA from 10 ng of total RNA with primers specific to hsa-

miR-320a (RT:002277) or RNU-48 (RT:001006) as per manufacturer protocol. 

Quantitative real-time PCR was performed using the Applied Biosystem 7900HT or 

QuantStudio 7 Flex Real-Time PCR Systems using TaqMan 2X universal master mix and 

miRNA specific assays on demand. Assays on demand used were hsa-miR-320a 

(TM:002277) normalized to RNU-48 (TM:001006). qRT-PCR was done in triplicate for 

each specific gene of interest for each sample. 
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III. RESULTS 

A. Np63 positively regulates miR-320a  

EMT, a process in which epithelial cells lose their characteristics and gain a 

mesenchymal-like phenotype, is a fundamental process in embryonic development and 

during wound healing (Kalluri & Weinberg, 2009). In carcinogenic context, EMT is 

upregulated which allows cancer cells to lose their cell-cell adhesion and gain migratory 

and invasive properties. Np63 plays an important role in inhibiting EMT by 

upregulating genes involved in cell adhesion, while loss of Np63 upregulates genes that 

promote cell motility and mesenchymal phenotypes (Tucci et al., 2012; Yoh et al., 2016). 

Np63 is a known regulator of miRNA, including many which have been shown to 

regulate EMT (Tran et al., 2013; Tucci et al., 2012). Thus, small RNA sequencing was 

performed by Dr. Natasha Hill and Suraj Sakaram to study the regulation of miRNA by 

Np63. Np63 was silenced in three biological replicates of HaCaTs, a non-

tumorigenic keratinocyte cells which express Np63. Np63 protein and transcript 

levels were significantly reduced by 80% in cells transfected with siRNA specific to p63 

relative to non-silencing (NSC) controls (Figure 4A) (representative data shown). 

Following confirmation of p63 knockdown by immunoblot and qRT-PCR analysis, small 

RNA was sequenced using the Ion Torrent Platform. Differential gene expression analysis 

was performed using Partek Flow and PGS which led to the identification of several 

miRNAs potentially regulated by the knockdown of Np63Table 2 represents a subset 

of7 microRNAs significantly regulated by Np63 Of these, let-7d-5p was previously 
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Figure 4: Np63knockdown in HaCaT cells leads to a reduction in miR-320a 

levels. (A) HaCaT cells were transfected with non-silencing control siRNA and 

siRNA against p63. At 24 h post-transfection, the change in transcript levels of 

Np63 was measured by Taqman based qRT-PCR. In the bottom panel, 

immunoblot analysis was performed with the indicated antibodies. Immunoblot 

with -actin was performed to confirm equivalent protein loading. (B) miR-320a 

transcript levels in NSC and sip63 HaCaT samples following small RNA sequencing 

on HaCaT cells transfected with the indicated siRNA.  Error bars indicate +1 

standard deviation.   
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miRNA 

 

p-Value 

 

Fold Change 

 

hsa-let-7d-5p* 

 

8.68x10-231 

 

-1.68 

 

hsa-miR-141-3p+ 

 

2.42x10-14 

 

-1.19 

 

hsa-miR-23a-3p+ 

 

2.09x10-132 

 

-1.19 

 

hsa-miR-24-3p+ 

 

9.33x10-24 

 

-1.31 

 

hsa-miR-31-5p+ 

 

7.77x10-263 

 

-1.38 

 

hsa-miR-320a+ 

 

3.92x10-87 

 

-1.42 

 

hsa-miR-9-5p+ 

 

5.79x10-18 

 

1.45 

Table 2: Knockdown of p63 identified putative p63-regulated miRNAs involved in 

EMT. Small RNA was isolated from three biological replicates of HaCaT cells 

transfected with non-silencing control or p63 siRNA and sequenced on the IonTorrent 

platform. Partek Flow was used to identify miRNA with significant changes in 

expression (p≤0.05) and to identify differentially expressed miRNA with known roles 

in EMT. * indicate known p63 Targets; + indicate novel p63 targets. 
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shown to be regulated by Np63(Boominathan, 2010), and the remaining 6 were novel 

miRNAs. In this study we only focused on miR-320a. miR-320a is a metastatic repressor 

that is known to inhibit EMT via targeting Wnt pathway and which has not previously 

shown to be regulated by p63 (J. Y. Sun et al., 2012; Zhao et al., 2014). Np63 

knockdown led to a concomitant decrease in miR-320a levels (Fold Change = -1.42, p = 

3.92x10-87) (Table 2, Figure 4 B). Therefore miR-320a is positively regulated by Np63.  

In order to validate miR-320a is positively regulated by Np63, we silenced 

Np63 in HaCaT cells, the same cell line used in the RNA sequencing study which 

identified miR-320a as a putative p63-regulated miRNA. Np63 was also silenced in 

A431 squamous cell carcinoma cells that have Np63 as the only expressed form of p63 

(Kommagani et al., 2009). HaCaT and A431 cells were transfected with siRNA against 

Np63 resulting in a greater than 80% reduction in Np63 transcript in both cell lines 

and no detectable p63 protein in sip63 whole cell lysates by immunoblotting, thus p63 

knockdown (Figure 5A). Knockdown of Np63 led to a significant reduction in miR-

320a transcript levels in A431 (FC= 0.47 ± 0.04) and in HaCaT (FC= 0.69 ± 0.05) cell 

lines (Figure 5B), thus validating the NGS data (Table 2). 
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Figure 5: Np63 knockdown leads to a reduction in miR-320a transcript levels. 

(A) A431 and HaCaT cells were transfected with nonsilencing control siRNA (NSC) or 

siRNA specific to p63. The change in mRNA level and protein expression of Np63 

were measured by Taqman based qRT-PCR and immunoblot analysis. Immunoblot with 

-actin was performed to confirm equivalent protein loading. (B) Taqman based qRT-

PCR was used to quantify miR-320a levels from the experiment described in (A). Error 

bars indicate +1 standard deviation. Significant changes with p ≤ 0.05 are indicated with 

an asterisk. 
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To further verify that Np63 regulates miR-320a, we examined the effects of 

Np63 overexpression on miR-320a in SW480, a colorectal adenocarcinoma cell line, 

and H1299, a human non-small cell lung carcinoma cell line. Both of these cell lines are 

highly invasive and do not express Np63. H1299 and SW480 cells were transfected with 

a plasmid encoding Np63or the corresponding empty plasmid vector (EV) as a control. 

At 24 hours post-transfection, p63 transcript and protein levels were examined by qRT-

PCR and immunoblotting, respectively. As shown in Figure 6A we observed a significant 

increase in both p63 transcript and protein levels confirming Np63 overexpression in 

both cell lines. Endogenous Np63 was not detected in cells transfected with EV for 

either cell line, while robust overexpression was shown in cells transfected with Np63 

plasmids (Figure 6A, bottom).  miRNA qRT-PCR quantitation of miR-320a levels in 

these cells indicated that miR-320a was upregulated in cells overexpressing Np63 

compared to cells transfected with EV.  miR-320a transcript levels increased significantly 

in both H1299 (FC= 1.68 ±0.27) and in SW480 (FC= 1.3 ±0.16)  (p≤0.05) (Figure 6B). 

Taken together, these results along with the knockdown experiments confirm that Np63 

positively regulates miR-320a.  
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Figure 6: Np63 overexpression leads to an increase in miR-320a transcript 

levels. (A) H1299 and SW480 cells were transfected with empty vector (EV) control or 

expression plasmid encoding Np63. Transcripts were quantified by qRT-PCR (upper 

panel) while protein levels were confirmed using immunoblot analyses (lower panel). 

Immunoblot with β-actin was performed to confirm equivalent protein loading. (B) 

Taqman based qRT-PCR was used to quantify miR-320a levels from the experiment 

described in (A). Error bars indicate +1 standard deviation.  Significant changes with p 

≤ 0.05 are indicated with an asterisk. 
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B. Np63 does not regulate the total protein levels of Rac1 

miR-320a exerts its metastatic suppressive function through targeting genes 

involved in EMT (J. Y. Sun et al., 2012; Zhao et al., 2014). Using TargetScan 7.1 and 

miRDB.org, Rac1 was identified as a putative target for miR-320a. In addition, a previous 

study showed that miR-320a suppresses EMT in colorectal cancer through targeting Rac1 

(Zhao et al., 2014). Since we validated that Np63 positively regulates miR-320a, we 

next sought to determine if regulation of Rac1 by Np63could be detected in H1299 and 

SW480 cells. We overexpressed Np63 in H1299 and SW480 cells and measured the 

change in Rac1 transcript and protein levels. Np63 overexpression in H1299 and 

SW480 cells was confirmed by immunoblotting with p63 specific antibody (Figure 7A). 

Np63 overexpression did not significantly affect the transcript levels of Rac1 in H1299 

(FC= 1.14 ± 0.18) and in SW480 (FC= 0.90 ±0.04) cells (Figure 7A upper). Furthermore, 

no change in total protein levels in Rac1 was observed in both those cell lines (Figure 7A 

bottom). Conversely, we silenced Np63 in HaCaT and A431 cells. The loss of Np63 

protein was confirmed by immunoblot (Figure 7B). Although Np63 knockdown led to 

a modest increase in Rac1 transcript levels in A431 (FC= 1.31 ±0.11) and HaCaT (FC= 

1.41 ±0.20), there was no change in total protein levels of Rac1 (Figure 7B). These data 

suggest that Np63 does not regulate Rac1 protein and transcript levels and Rac1 in our 

studies is not affected by miR-320a levels.  
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Figure 7: Np63 does not regulate the Rac1 protein levels. (A) H1299 and SW480 

cells were transfected with empty vector (EV) control or expression plasmid encoding 

Np63. Np63 transcript levels were quantified by qRT-PCR while protein levels 

were confirmed using immunoblot analyses using p63 specific antibody. Rac1 was 

detected with mouse anti-Rac1 antibody from Abcam.  (B) A431 and HaCaT cells were 

transfected with nonsilencing control siRNA (NSC) or siRNA specific to p63. The 

change in transcript and protein levels of Rac1 were measured by TaqMan based qRT-

PCR and immunoblot analysis, respectively. Immunoblot with β-actin was performed 

to confirm equivalent protein loading. Error bars indicate +1 standard deviation.  

Significant changes with p ≤ 0.05 are indicated with an asterisk.   

* 
* 
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C. Np63 negatively regulates phospho-Rac1 at S71 

 Interestingly, the mouse monoclonal anti-Rac1 antibody obtained from Abcam that 

we used to probe for Rac1 protein levels detects two bands close to the expected 21kDa 

molecular weight of Rac1. Although we did not see change in the band that appeared at 21 

kDa which was assumed to be total Rac1, the higher 26 kDa band showed a significant 

increase with the knockdown of Np63 (Figure 8A) and a significant decrease with the 

overexpression of Np63 (Figure 8B). Interestingly, this observation happened in every 

experiment and in all cell lines except H1299 cells (Figure 8A). Rac2 and Rac3 isoforms 

have the same molecular weight of Rac1, thus eliminating the possibility that the upper 

band could be either of these Rac isoforms. Rather, it appeared likely that the 26 kDa band 

observed might be phosphorylated Rac1 as phospho-Rac1 at S71 was is detected at 26 kDa 

. To determine if the upper band was indeed phosphorylated Rac1, we obtained two other 

Rac1 antibodies: rabbit polyclonal anti-Rac1 (C-11) that detects total Rac1 and rabbit 

polyclonal anti-phospho-pRac1 which detects phospho-Rac1 at Ser 71 (Table 3). We 

overexpressed Np63 in two colorectal adenocarcinoma cell lines, SW480 and Caco2, 

and confirmed overexpression of Np63 at the protein levels in both cell lines (Figure 

9A).  Using the phosphospecific antibody for pRac1 S71, a single band was detected at 26 

kDa which showed a significant decrease in cells overexpressing Np63 (Figure 9A). 

Anti-Rac1 C-11 antibody was used to detect total Rac1 that was observed at 21 kDa. To 

further confirm these findings, we also knocked down Np63 in A431 and HaCaT and 

we observed that pRac1 S71 significantly increased with Np63 silencing (Figure 9B). 

Thus, these findings suggest that the band at 26 kDa detected earlier using the Abcam 

mouse monoclonal anti-Rac1 antibody was pRac1, and further that Np63 
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Figure 8: Np63 negatively regulates an p-Rac1 reactive 26 kDa protein. (A) 

H1299 and SW480 cells were transfected with empty vector control or expression 

plasmid encoding Np63 Overexpression of Np63 was confirmed using 

immunoblot analyses.  (B) A431 and HaCaT cells were transfected with nonsilencing 

control siRNA (NSC) or siRNA specific to p63. The change in Np63 and Rac1 

protein levels were measured by immunoblot analysis as indicated. Immunoblot with β-

actin was performed to confirm equivalent protein loading. 
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Antibody Bands detected 

Mouse monoclonal anti-Rac1-

Abcam 

Detects total Rac1:  unphosphorylated and 

phosphorylated Rac1 

Rabbit polyclonal anti-

phospho-Rac1 (Ser71)-Santa 

Cruz 

Detects only pRac1 at S71 

Rabbit polyclonal anti-Rac1 

(C-11) -Santa Cruz 

Detects only unphosphorylated Rac1 

Table 3: Rac1 antibodies used to detect protein levels of Rac1. 
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Figure 9:Np63 negatively regulates Rac1 S71 phosphorylation. (A) SW480 and 

Caco2 cells were transfected with empty vector control or expression plasmid encoding 

Np63 protein levels were confirmed using immunoblot analyses. (B) A431 and 

HaCaT cells were transfected with nonsilencing control siRNA (NSC) or siRNA 

specific to p63 and the change in protein expression was measured by immunoblot 

analysis. Immunoblot with β-actin was performed to confirm equivalent protein 

loading. 
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negatively regulates  phosphorylation of Rac1 at S71, but not total Rac1 levels.  However, 

further investigation was needed to confirm the specificity of the pRac1 antibody.  

D. Phospho-Rac1 antibody is specific 

Until recently, there was no antibody available that could detect the 

phosphorylation of Rac1 at S71. Previous studies that investigated the phosphorylation of 

Rac1 used antibodies that could not distinguish between pRac1 and pCdc42 S71 and were 

therefore limited to use in cells lacking Rac1 gene (Kwon et al., 2000; Schoentaube et al., 

2009; Schwarz et al., 2012). To confirm that the phosphospecific antibody was specific for 

pRac1 S71, we silenced either Np63 alone, Rac1 alone, or both Np63 and Rac1 in 

HaCaT cells. Immunoblot analysis confirmed the successful knockdown of Np63 and 

Rac1 in these cells (Figure 10, lanes 2 and 3 respectively). The rabbit polyclonal anti-

Rac1 C-11 antibody was used here to confirm the silencing of Rac1. As expected, the 26 

kDa band increased significantly with the silencing of Np63 alone and disappeared 

when Rac1 was silenced (Figure 10, compare lanes 2 and 3 to lane 1). Interestingly when 

both Np63 and Rac1 were silenced, the 26 kDa band was not observed (Figure 10, lane 

4), thus confirming that anti-phospho-Rac1 antibody is specific and detects phosphorylated 

Rac1. Taken together, this experiment confirm phospho-Rac1 antibody specificity and 

indicate that the lower 21 kDa band is total Rac1 and the upper 26 kDa band is pRac1 

Ser71.  
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Figure 10: The Santa Cruz anti-pRac1 (S71) antibody is specific for pRac1 S71. 

HaCaT cells were transfected with nonsilencing control siRNA (NSC), siRNA specific 

to p63 and/or  Rac1 as indicated. The change in protein expression was measured by 

immunoblot analysis using p63, Rac1 and pRac1 antibodies as indicated. Immunoblot 

with β-actin specific antibody was performed to confirm equivalent protein loading. 
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E. Np63 negatively regulates pRac1 S71 via miR-320a 

Since we showed that Np63 positively regulates miR-320a and negatively 

regulates pRac1 S71, we next wanted to investigate if Np63 negative regulates pRac1 

S71 via upregulating miR-320a. We used miRNA gain or loss of function experiments 

using a miR-320a mimic that functions like endogenous miR-320a or a single-stranded 

miR-320a inhibitor designed to bind to and inhibit endogenous miR-320a. Both HaCaT 

and A431 cells were co-transfected with siRNA against p63 or NSC along with negative 

control mimic or miR-320a mimic. HaCaT cells have endogenous Np63that suppresses 

pRac1S71 levels; thus, pRac1 S71 was detected at the basal levels when NSC and negative 

control mimic were co-transfected (Figure 11A). Silencing Np63 upregulated the levels 

of pRac1 S71 as observed early (Figure 11A, lane 2). Overexpressing miR-320a 

significantly decreased pRac1 to the basal levels when Np63was silenced in both 

HaCaT cells (Figure 11A, lane 4) and A431 cells (Figure 11B). These results clearly 

demonstrate that miR-320a rescued the effect of Np63 silencing on pRac1 S71 protein 

levels  

 Next we wanted to examine the effect of miR-320a inhibitor on pRac1 levels in presence 

or absence of Np63. A431 cells with endogenous Np63 were transfected with 

negative control inhibitor or miR-320a inhibitor. The miR-320a inhibitor significantly 

increased pRac1 S71 levels in the presence of endogenous Np63 (Figure 12). Together, 

these results demonstrate that Np63 negatively regulates the levels of pRac1 through 

upregulation of miR-320a. It is likely that miR-320a may target an upstream regulator that 

induces the phosphorylation of Rac1. 
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Figure 11:  Overexpression of a miR-320a mimic counters the effect of Np63 

knockdown on Rac1 phosphorylation. HaCaT (A) and A431 (B) cells were transfected 

with either non-silencing control (NSC) or siRNA specific for p63 in conjunction with a 

negative control mimic or miR-320a mimic. The change in indicated protein levels were 

measured analyzed via immunoblotting with p63, Rac1 and pRac1 antibodies as indicated. 

Immunoblot with β-actin was performed to confirm equivalent protein loading. 
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Figure 12: Inhibition of miR-320a increases pRac1 S71 levels. A431 cells were 

transfected with a negative control inhibitor or miR-320a inhibitor. The change in 

protein levels were analyzed via immunoblot as indicated. Immunoblot with β-actin was 

performed to confirm equivalent protein loading. 
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F. Np63 negatively regulates GTP-Rac1 levels 

Rac1 is considered in its active state when it is bound to GTP. GTP-bound Rac1 

has been shown to control cell shape, adhesion and mobility (Hartman & Spudich, 2012). 

It is shown that the phosphorylation of Rho small GTPases inhibits their activity by 

increasing their interaction with RhoGDI (Forget et al., 2002). However, there are multiple 

contradicting reports about the effect of phosphorylation on Rac1 activity. Phosphorylation 

of Rac1 at S71 by AKT kinase was shown to inhibit its GTP-binding activity (Table 1) 

(Kwon et al., 2000). However, pRac1 S71 was also shown to bind to the PAK-CRIB 

domain indicating that phosphorylation of Rac1 at S71 does not significantly affect GTP 

binding function, but instead modulates its downstream signaling by inhibiting its 

interaction with some effectors and increasing its interaction with others (Schwarz et al., 

2012). Thus, we wanted to investigate if Rac1 GTP-binding activity is modulated by 

Np63. To this end, we silenced Np63 in A431 cells and measured the level of 

endogenous GTP-bound (active) Rac1 by pulling down active Rac1 with purified p21-

activated protein kinase protein binding domain (PAK-PBD). Immunoblotting was 

performed to analyze the whole cell lysates and lysates immunoprecipitated with the GST-

tagged PAK-PBD. Knockdown of Np63 significantly increased the levels of pRac1 in 

the whole cell lysates and total Rac1 showed no change (Figure 13, compare lanes 1 and 

3). GST pull down of GTP-bound total Rac1 showed that the Np63 knockdown 

significantly increased the level of GTP-Rac1 (Figure 13, lane 4). pRac1 S71 was also 

detected in the immuneprecipitated material and it was also significantly increased with 

the knockdown of Np63. The activity of Rac1 can also be assessed by measuring the  
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Figure 13: Np63negatively regulates GTP-binding activity of Rac1. A431 cells 

were transfected with non silencing control siRNA (NSC) or siRNA specific to p63. 

Whole cell lysates were subjected to pull down using PAK-PBD beads which 

specifically bound only GTP-bound active Rac1. Immunoblot analysis was performed 

with the indicated antibodies. The amount of Rac1 visualized by immunoblot represents 

the amount of GTP-bound Rac1. Immunoblot for the downstream effector pPAK1 was 

included as an additional readout of Rac1 activity. 



48 
 

Phosphorylation of its target effector protein PAK1. We probed for pPAK1 at Threonine 

423. Knockdown of Np63 significantly increased the phosphorylation of PAK1 at T423 

suggesting that increased active Rac1 levels in sip63 cells led to increased pPAK1 levels. 

Our results showed that the knockdown of Np63 increased GTP-Rac1 levels as observed 

early (Figures 9). Moreover, pRac1 S71 was also detectable in the activation assay 

indicating that pRac1 S71 does not affect the binding of Rac1 to its effector PAK1.  

G. Overexpression of Np63 decreases Rac1 localization to the plasma 

membrane and induces its nuclear localization 

Rac1 subcellular localization plays critical role in its function. Rac1 is associated with 

the plasma membrane when it is GTP-bound and localized to the cytoplasm with RhoGDI 

in its inactive state, GDP bound. However, the effect of Rac1 phosphorylation on its 

localization is not well investigated. Having demonstrated that Np63 decreases pRac1 

S71 and GTP-Rac1, we wanted to study the effect of Np63 on Rac1 localization. We 

overexpressed GFP-Rac1 WT, GFP-Rac1 S71A, GFP-Rac1 T17N and GFP-Rac1 Q61L 

(Table 4) in H1299 cells by transient transfection. GFP-Rac1 WT or mutants were 

transfected alone or in conjunction with Np63 and the localization of was assessed by 

immunofluorescence microscopy through measuring the intrinsic fluorescence of GFP 

without the need for an anti-Rac1 antibody. We first overexpressed Np63alone as 

positive control for p63 overexpression.Np63was robustly overexpressed in the 

nucleus (Figure 14A). Rac1 WT was mainly localized to the plasma membrane when it 

was transfected alone (Figure 14B and Figure 15) (representative images shown). 

Np63overexpression decreases Rac1 WT localization to plasma membrane and targets 
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it to the nucleus (Figure 14B and Figure 15). Overexpressing Rac1 S71A mutant (Table 

4) decreased the localization of Rac1 to plasma membrane (48/100) in comparison to the 

wild-type Rac1 (80/100), Moreover, localization of Rac1 S71A mutant to nucleus was 

higher than observed with Wild type Rac1 (16/100 for Rac1S71A and 5/100 for Rac1 WT) 

when expressed alone (Figure 14C and Figure 15). Consistent with wild type Rac1, co-

overexpression of Np63 with Rac1 S71A also decreased Rac1 localization to the plasma 

membrane and induced its nuclear localization (Figure 14C and Figure 15). Dominant 

negative Rac1 T17N and the constitutively active Rac1 Q61L (Table 4) were used as 

negative and positive controls for Rac1 activity, respectively.  Rac1 T17N was primarily 

localized either to plasma membrane (33/100) or nucleus (22/100) or in some cases 

distributed over cells (Figure 14E and Figure 15). Co-expression of Np63 led to a 

decrease in Rac1T17N localization to plasma membrane (19/100) and a modest increase 

its localization to nucleus (43/100) (Figure 14D and Figure 15). Interestingly, 

constitutively active Rac1 Q61L mutant showed increased localization to both the plasma 

membrane and nucleus and in many cases was localized to both plasma membrane and 

nucleus simultaneously (plasma membrane= 43/100, nucleus= 3/100 to and plasma 

membrane and nucleus= 46/100). Furthermore, co-overexpression of Np63 did not 

affect Rac1 Q61L localization (Figure 14E and Figure 15). These results suggest that 

Np63 inhibits the activity of Rac1 as it decreases its localization to the plasma 

membrane and targets it to nucleus.  

  



50 
 

 

Table 4: Rac1 mutants used to study the subcellular localization of Rac1. 

Rac1 mutants 

Position Wild 

Type 

Mutant Description 

71 S A Phospho-deficient at S71 

17 T N Constitutively active (CA) 

(GTP-bound) 

61 Q L Dominant negative (DN) (GDP-

bound) 
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Figure 14: Overexpression of Np63 decreases Rac1 localization to the plasma 

membrane and induces its nuclear localization. H1299 cells were transfected with 

Np63alone, Rac1 WT alone, Rac1 S71A alone, Rac1 T17N alone, Rac1 Q61L alone 

or along with Np63as indicated in the panels above. The localization ofRac1 WT 

or mutants was examined by fluorescence microscopy following immunostaining for 

p63.  
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Figure 15: Overexpression of Np63 decreases Rac1 localization to the plasma 

membrane and induces its nuclear localization. Quantification of the 

immunofluorescence analysis for Figure 14.  Rac1 subcellular localization was 

quantified by imaging at least 100 cells per condition with the same exposure 

parameters. The localization of Rac1 in plasma membrane, cytoplasm or nucleus was 

determined manually by evaluating each single cell. Cells were grouped into four 

categories based on Rac1 localization: (Red) cells that have Rac1 mainly localized to 

plasma membrane, (Orange) cells that have Rac1 mainly localized to nucleus, (Yellow) 

cells that have Rac1 localized to both nucleus and cell membrane, and (Green) cells that 

have Rac1 distributed over cells without main localization to either plasma membrane 

or nucleus. 
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H. miR320a mimic rescues the effect of Np63 silencing on invasion 

Np63 is known to inhibit cell invasion by negatively regulating genes involved 

in EMT (Bergholz et al., 2014; Danilov et al., 2011; Finlan & Hupp, 2007; Kommagani et 

al., 2009).  miR-320a was also shown to inhibit cell invasion through targeting Rac1 (Zhao 

et al., 2014). In our results, we confirmed that miR-320a is positively regulated by Np63. 

In addition, Np63 negatively regulates Rac1 activity and this regulation is mediated by 

miR-320a. Thus, we hypothesized that Np63 may inhibit invasion through targeting 

Rac1 activity via miR-320a. To this end, we transfected HaCaT cells with control mimic 

or miR-320a mimic along in presence or absence of Np63 silencing and assessed cell 

invasion using a transwell invasion assay. Knockdown of Np63 dramatically increased 

the number of invading cells (Figure 15), consistent with the expected role of p63 and our 

hypothesis. Overexpression of the miR-320a mimic in sip63 cells significantly decreased 

the number of invading cells although Np63 was knocked down (Figure 15). This 

experiment was repeated in A431 cells, a more invasive cell line, and same results were 

obtained (Figure 16). We concluded that the increase in invasion observed upon Np63 

knockdown is reversed by miR-320a mimic, potentially through targeting Rac1 activity.  
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Figure 16:  Overexpression of a miR-320a mimic counters the effect of Np63 

knockdown on invasion in HaCaT cells. HaCaT cells were transfected with either 

non-silencing control (NSC) or sip63 in conjunction with a negative control mimic or 

miR-320a mimic for two rounds of transfections. 24 hours after the second of 

transfection, 8.0x104 cells were subjected to Matrigel-based invasion assay (A) and the 

number of invading cells was quantitated after 21 hours (B). The y-axis represents the 

number of cells invaded.  

  



 

* 

* 
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Figure 17: Overexpression of a miR-320a mimic counters the effect of Np63 

knockdown on invasion in A431 cells. A431 cells were transfected with either non-

silencing control (NSC) or sip63 in conjunction with a negative control mimic or miR-

320a mimic for two rounds of transfections. 24 hours after the second of transfection, 

8.0x104 cells were subjected to Matrigel-based invasion assay (A) and the number of 

invading cells was quantitated after 21 hours (B). The y-axis represents the number of 

cells invaded.  

 

 



 

* 

* 
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IV. Discussion 

Cancer invasion has remained a focus of research for many years. Invasion is the 

main phenomena of tumor progression. EMT, a process in which epithelial cells lose their 

characteristics and gain a mesenchymal-like phenotype, is a fundamental process in 

embryonic development and during wound healing. In a carcinogenic context, EMT is 

upregulated which allows cancer cells to lose their cell-cell adhesion and gain migratory 

and invasive properties. Np63 is the most abundantly expressed isoform of p63 and 

considered the master regulator of epithelial differentiation (Mills et al., 1999; Yang et al., 

1998). It was previously shown that Np63 suppresses cell invasion through 

downregulating genes involved in EMT, however, the detailed molecular regulation of 

Np63 in EMT is not fully understood (Chu et al., 2013; Tran et al., 2013; Tucci et al., 

2012). Np63 has been shown to regulate several miRNAs many of them play a role in 

EMT. Thus, small RNA sequencing study was performed previously in our laboratory to 

investigate the regulation of global miRNAs by Np63.  

miR-320a, a tumor suppressive miRNA that is downregulated in many metastatic 

cancers, was shown in our RNA-Sequencing data set to be positively regulated by Np63 

(L. Sun et al., 2015; J. Yu et al., 2016; Zhang et al., 2012; Zhao et al., 2014). We confirmed 

the regulation of miR-320a by Np63 through performing RT-PCR validating the small 

RNA sequencing results. Here, we examined the effect of Np63 loss or gain on one of 

miR-320a targets, Rac1, shown to play a critical role in cell motility. We found a novel 

mechanism by which Np63 can regulate the activity of Rac1. Np63 suppresses Rac1 

phosphorylation through upregulating miR-320a levels. We also showed that the negative 
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regulation of pRac1 S71 by Np63 correlates with Rac-1-GTP-levels potentially through 

miR-320a. This is the first study which demonstrates a mechanistic link between p63 and 

Rho small GTPase family.  

Rac1 belongs to the Rho family and plays a fundamental role in cellular 

proliferation, adhesion, migration and gene transcription (Hartman & Spudich, 2012). The 

role of Rac1 in the acquisition of invasive and metastatic phenotypes and thus cancer 

progression has been well known. In the present study, we first sought to examine the direct 

regulation of Rac1 by miR-320a since it was previously shown that miR-320a directly 

binds to the 3’-UTR of Rac1 and reduces its expression (Zhao et al., 2014). Although we 

saw a modest increase in Rac1 transcript levels upon Np63 knockdown, we did not 

observe any change in total Rac1 protein levels. These results were further confirmed by 

Np63 overexpression in two cell lines, SW480 and H1299 which are null for Np63 

and showed no change in Rac1 transcripts or protein levels. In line with our results, the 

study by Zhao et al (2014) also showed no change in Rac1 transcripts with the modulation 

of miR-320a levels. Although they did see a change in total protein levels of Rac1 when 

miR-320a was overexpressed, we argue here this change could be in phosphorylated Rac1 

but not total Rac1 protein levels since the antibody they used detects both total Rac1 as 

well as pRac1 (as shown in Figure 8). 

Rho small GTPases share high homology thus it is likely that regulation of one 

member of Rho family is also observed with other Rho family members. Protein 

phosphorylation is thought to negatively affect RhoA and CDC42 activities, however, this 

is not totally true in the context of Rac1 activity (Forget et al., 2002). In this study we focus 
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on studying the only available phospho Rac1-S71 antibody which detects the 

phosphorylated Rac1. We found that Rac1 phosphorylation is greatly inhibited by 

Np63This pattern of regulation was observed in every experiment we have done in all 

cell lines except in H1299 cells where we do not see phosphorylation of Rac1. This 

suggests that the effector molecular that modulates Rac1 phosphorylation and is a target 

for miR-320a is missing in H1299 cells.  

One essential tool for investigating Rac1 phosphorylation is using a 

phosphospecific antibody. Until recently, there was no antibody available that could detect 

the phosphorylation of Rac1 at S71. Thus, previous studies that investigated the 

phosphorylation of Rac1 used antibodies that could not distinguish between pRac1 and 

pCdc42 S71 and were therefore limited its use in cells lacking Rac1 gene (Kwon et al., 

2000; Schoentaube et al., 2009; Schwarz et al., 2012). In the present study we used two 

Rac1 antibodies that can recognize the phosphorylated form of Rac1. We confirmed the 

specificity of the anti-phospho-Rac1 (S71) antibody by knockdown of Rac1 and 

Np63and monitor the change in total and pRac1 levels.  

 Rac1 phosphorylation is poorly understood and there are contradicting reports 

regarding whether phosphorylation of Rac1 at S71 affects its activity. For example, one 

study showed that phosphorylation of Rac1 at S71 by Akt kinase decreases Rac-1 GTP 

levels and hence its activity (Kwon et al., 2000). In contrast, another study showed that 

pRac1 still binds to PAK-PBD in pull down assay indicative of active Rac1-GTP 

(Schoentaube et al., 2009). Our results in this study were was consistent with the latter 

study wherein we found that Np63 knockdown led to a dramatic increase in both pRac1 
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S71 Rac1 GTP levels. Moreover, our observations confirmed that pPAK1 levels were 

increased upon Np63 knockdown, a downstream effector of active Rac1. A recent study 

showed that Rac1 phosphorylation leads to a decrease in Rac1 binding to specific effectors, 

such as PAK1, and a shift in specificity toward other effectors without affecting its activity 

(Schwarz et al., 2012). This could be interpreted as the reduction in the interaction between 

Rac1 and PAK1 due to Rac1 phosphorylation may lead to a decrease in the cell invasion 

since PAK1 is one of major mediators for Rac1 activity in cell migration and invasion.  In 

contrast, the increase we see in pPAK1 upon knockdown of Np63 is more likely 

through upregulating Rac1 activity which means the phosphorylation of Rac1 at S71 does 

not affect its binding to PAK1 in our experiments.  

Based on our results it is likely that upregulation of miR-320a by Np63leads to 

inhibition of a kinase upstream of Rac that is a target for miR-320a and can phosphorylate 

Rac1 at S71. We exclude Akt-mediated phosphorylation in our study since our laboratory 

previously showed that Np63 positively regulates Akt kinase (Leonard et al., 2011). In 

silico analysis led to the identification of a number of putative kinases associated with Rac1 

activity and are likely to be targets of miR-320a. However none of those have been shown 

to phosphorylate Rac1. Further studies are therefore essential to determine which of the 

upstream effector(s) of Rac1 mediate its phosphorylation.  

Targeting Rac1 to different subcellular compartments is an important mechanism 

to regulate Rac1 activity. Our study clearly demonstrated that Np63 targets Rac1 to the 

nucleus. We showed that the overexpression of Np63 decreases the localization of Rac1 

to the plasma membrane and induces its nuclear localization. It was previously shown that 
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Rac1 accumulates in nucleus during G2 phase and induces cell division (Michaelson et al., 

2008). Moreover, Rac1 is shown to affect the transcription machinery by directly binding 

to STAT3 which plays significant roles in upregulating cell proliferation (Simon et al., 

2000). Thus, targeting Rac1 to nucleus by Np63 may upregulate cell proliferation which 

is known oncogenic role of Np63. Moreover, the decrease in GTP-Rac1 levels in cells 

co-transfected with Np63could be as a result of Rac1 degradation in nucleus. It was 

previously shown that GTP-Rac1, but not GDP-Rac1, is subjected to proteasomal 

degradation in nucleus (Lanning et al., 2004). Moreover, we observed decreased plasma 

membrane localization of Rac1 S71A mutant when compared to WT Rac1. This mutation 

also did not increase Rac1 localization to nucleus. These results highlight the importance 

of Rac1S71 phosphorylation in both the stability of Rac1 GTP activity to the plasma 

membrane and the kinase that phosphorylates it is a plasma membrane kinase although this 

remains to be experimentally validated. It is likely that when Rac1 activated through 

binding to GTP is localized to the plasma membrane and interacts with a plasma membrane 

kinases that phosphorylates it back and stabilizes its binding to plasma membrane. We also 

found that the overexpression of Np63 also targets Rac1 S71A to nucleus. The 

mechanism by which Np63 affects Rac1 nuclear localization is unclear and could be a 

third mechanism by which Np63 can regulate Rac1 activity.  

The main goal of this study is to elucidate the mechanism by which Np63 can 

inhibit cell invasion. We hypothesized that Np63 inhibits cell invasion though targeting 

Rac1 activity via miR-320a. Our study demonstrated that increased invasion observed upon 

Np63 knockdown can be reversed by miR-320a mimic Cell invasion was significantly 
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reduced after knockdown of Np63 and overexpressing miR-320a. This notion is 

supported by previous data demonstrating that miR-320a greatly suppresses cell invasion 

through targeting Rac1.  
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V. Conclusion 

Np63 and Rac1 play central roles in cancer through modulation of cell invasion. 

The work presented in this dissertation elucidates one arm by which Np63functions to 

inhibit cell invasion as shown in our model (Figure 17). We showed that 

Np63positively regulatesmiR-320a levels. Furthermore, we showed that 

Np63downregulates Rac1 activity leading to inhibition in cell invasion.  

Np63significantly inhibits Rac1 phosphorylation at S71 and this regulation occurs 

through miR-320a (Figure 17). Further experiments are needed to identify the miR-320a 

target that modulates Rac1 phosphorylation. GTP-Rac1 level is also inhibited by 

Np63Figure 17). The mechanism by which Np63regulates GTP-Rac1 levels is not 

fully revealed. Np63 may indirectly regulates GTP-Rac1 through either downregulating 

a GEF or upregulating a GAP that induces or inhibits Rac1 GTP activity, respectively. We 

further showed that the activity of PAK1 is negatively affected by Np63emphasizing 

the tight and effective regulation of Rac1 by Np63Moreover, we found that 

Np63reduces Rac1 localization to plasma membrane while promoting its nuclear 

localization. These findings are consistent with the negative regulation of GTP-Rac1 levels 

by Np63since GTP-Rac1 is bound to plasma membrane.  

The interplay between Np63and Rac1 will not only allow us to understand the 

anti-invasive role of Np63but may also explain some of other known biological roles 

of Np63. In addition, Rho small GTPases works in signaling network to regulate 

cytoskeleton rearrangement and subsequently cell motility (Sadok & Marshall, 2014). The 



64 
 

regulation of one member may easily impact the regulation of other members. Thus, the 

presented study strongly links Np63to regulation of Rho small GTPases.  
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Figure 18: Np63 inhibits Rac1 activity through upregulating miR-320a. Np63 upregulates the 

levels of miR-320a which targets a kinase that phosphorylates Rac1 (1). GTP-Rac1 is also regulated by 

Np63 through targeting a GEF or GAP that works upstream of Rac1 (2).  
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