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ABSTRACT 
 
Brackett, Nathaniel. M.S., Department of Chemistry, Wright State University, 2017. 
Incorporation of Indeno[2,1-c]fluorenes into Polymers via Nucleophilic Aromatic 
Substitution. 
 
 

A difluoro indeno[2,1-c]fluorene monomer was synthesized by a four-step 

process. The first compound synthesized by a two-step process was 2,5-

bis(ethoxycarbonyl)-3,4-di(4-fluorophenyl)cyclopentadienone. The next two compounds 

synthesized were diethyl 2,3-bis(fluorophenyl)-5-hexylterephthalate and 2,3-

bis(fluorophenyl)-5-hexylterephthalic acid. The final step involved an intramolecular 

Friedel-Crafts acylation of the terephthalic acid derivative to form 3,10-difluoro-5,8-

dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene. The difluoro monomer was reacted in a 

series of nucleophilic aromatic substitution (NAS) polymerization reactions with 

bisphenol-A in N-methyl-pyrrolidone (NMP) in an attempt to form novel poly(ether ether 

ketone ketone)s containing the indeno[2,1-c]fluorene structure. Analysis of the product 

by NMR and TLC showed the reaction was unsuccessful and the difluoro monomer did 

not undergo significant fluorine displacement. A series of model reactions in NMP and 

dimethyl sulfoxide (DMSO) also confirmed that the monomer did not undergo fluorine 

displacement under polymerization conditions. In addition, the synthesis of diethyl 5,6-

diphenyl-2,3-bis(2-thienyl)terephthalate and 2,8-dibromo-5,11-bis(4-bromophenyl)-

indeno[1,2-b]fluorene-6,12-dione were carried out. 
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INTRODUCTION 

In 1998,1 a new method for synthesizing 5,8-dioxo-5,8-dihydroindeno-[2,1-

c]fluorene 1 was discovered when the Friedel-Crafts acylation of fluorobenzene with  

2,3-diphenylterephthaloyl dichloride 2 produced the intramolecular product 1 instead of 

the intermolecular product 1,4-bis(fluorobenzoyl)-2,3-diphenylbenzene 3. This straight 

forward approach to the indeno[2,1-c]fluorene structure was aided by the facile 

 
 1 2 3 

 
 4 5 2 

generation of the phenylated diacid halide 2 from 2,5-bis(ethoxycarbonyl)-3,4-

diphenylcyclopentadienone 4 (“Orange”) by way of the diester 5. Although derivatives of 

1 are readily generated by this process, no report of the incorporation of 1 or those 

derivatives into polymeric systems has been reported. 

The objectives of this research were 1) to explore the functionalization of 1 to 

include polymerizable groups, 2) to assess the potential of appropriately substituted 

derivatives for polymerization and 3) to characterize the new materials produced.  
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HISTORICAL 

Indenofluorenes are a class of compounds comprised of indene and fluorene that 

are fused together in a five-ring system.2 Indenofluorenes exist as five distinct region-

isomers that are named according to orientation of the indene structure with respect to the 

fluorene structure.  

 

Figure 1. Structures of fluorene, indene and the five regioisomers of the dihydro-
indenofluorenes with number/letter designations and IUPAC names. 

 
The bold numbers in italics (Figure 1) refer to the methylene bridge formed by 

each isomer. The [1,2] isomers have the five membered rings of the dihydroindeno-

flourene in an anti-conformation. The [2,1] isomers have the five membered rings in a 
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syn conformation. The lower case lettering (Figure 1) in the isomers pertain to the 

location of the indene/fluorene fusion. The [2,1] isomers all give rise to an a, b and c 

fusion structure. However, the [1,2] isomers only give rise to a and b fused structures due 

to the fact that the [1,2-c] structure is identical to the [1,2-a] structure. This work will be 

concerned with the indeno[2,1-c]fluorene isomer. 

Initial Synthesis of 5,8-Dioxo-5,8-dihydroindeno[2,1-c]fluorene 

The first reported synthesis of 5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene 1 was 

completed in 1961.3 The initial reaction involved the Pinacol reaction of indanone 6 with 

aluminum amalgam to provide 1,1’-biindanyl-1,1’-diol 7. Diol 7 was transformed into 

3,3’-biindenyl 8 by the dehydration of the pinacol 7 using acetic anhydride/acetic acid. 

 
 6 7 8 

 
 9 10 1 

Diene 8 underwent a standard Diels-Alder reaction with maleic anhydride as the 

dienophile in xylenes to yield 5,5a,6,7,7a,8-hexahydroindeno[2,1-c]fluoren-6,7-

dicarboxylic anhydride 9. A one-pot reaction using copper powder, barium hydroxide and 

soda-glass under an inert atmosphere was employed to first aromatize, then hydrolyze 

and finally decarboxylate 9 to form 5,8-dihydroindeno[2,1-c]fluorene 10. 
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Compound 10 was oxidized at the 5 and 8 positions to provide 5,8-Dioxo-5,8-

dihydroindeno[2,1-c]fluorene 1. The synthesis resulted in an overall yield of 1.7-8.3%. 

This suggested the need for further investigation to identify a more efficient route to 

compound 1. 

In 1966,4 a second total synthesis of 5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene 

was reported which employed propiophenone 11 as the starting material. A Pinacol 

reaction of 11 using aluminum amalgam was used to provide 3,4-diphenyl-3,4-

hexanediol 12. 

 
 11 12 13 

 
 14 15 16 

 
 17 1 10  

The diol 12 was dehydrated using acetic anhydride to afford 3,4-diphenyl-2,4-hexadiene 

13.  A standard Diels-Alder reaction between 13 and maleic anhydride as the dienophile 

was carried out in benzene to yield 3,6-dimethyl-4,5-diphenyl-4-cyclohexene-1,2-



 5 

dicarboxylic anhydride 14. Elemental sulfur was use to aromatize compound 14 to the 

anhydride 15. The anhydride 15 underwent hydrolysis to afford 3,6-dimethyl-4,5-

diphenylphthalic acid  which was decarboxylated with copper chromite to 2,3-diphenyl-

1,4-xylene 16. The methyl groups in 16 were oxidized with potassium permanganate to 

create the terephthalic acid derivative 17.  The desired product 1 was then formed using 

sulfuric acid to catalyze an intramolecular Friedel-Crafts acylation of 17. A Wolf-Kishner 

reduction was performed on the ketones of 1 at the 5 and 8 positions to yield compound 

10.. The overall synthesis still only had around a 7% yield, thus a more direct approach to 

the synthesis of 1 was desired. 

Synthesis of 2,5-Dicarboethoxy-3,4-diphenylcyclopentadienone 

A novel two-step sequence was discovered in 1971 as an easy way to produce 

2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 4 from benzil 18 and diethyl 1,3-

acetonedicarboxylate 19.5 The diene, 2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclo-

pentadienone 4, is a key precursor in the five-step synthesis of 5,8-dioxo-5,8-

dihydroindeno[2,1-c]fluorene although this fact was not known for the succeeding 27 

years. Benzil 18 and diethyl 1,3-diacetonedicarboxylate 19 were refluxed in ethanol using 

sodium ethoxide as base to provide a sodium salt 20 that was protonated and dehydrated 

with sulfuric acid and acetic anhydride to provide 4. 

 
 18 19 20 4 
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Cyclopentadienones as Precursors to Indenofluorenones 

In 1998,1 a new method for general indenofluorene synthesis was discovered after 

it was observed that the diacid halide 2 undergoes an intramolecular ring closure instead 

of the expected intermolecular reaction of fluorobenzene with 2 using aluminum chloride 

as catalyst. It was later shown that other acid derivatives behaved similarly. The intial 

step of the synthesis is an Inverse Electron Demand Diels-Alder (IEDDA) reaction 

between 4 and norbornadiene to form a terephthalic diester 21. The diester 21 was 

hydrolyzed with KOH in ethylene glycol to form 2,3-diphenylterephthalic acid 22. Both 

the terephthalic diester 21 and the terephthalic diacid 22 undergo intramolecular acylation 

in sulfuric acid to produce 1. 

 
 4 21 22 

  
 21 1 22 

Because of the limited solubility of 1, an additional pendent on the indeno[2,1-

c]fluorene skeleton was added. The only difference in the overall synthesis is the 

employment of 1-octyne 23 as the dienophile. The product, 5,8-dioxo-5,8-dihydro-5-

hexylindeno[2,1-c]fluorene 25, produced from the diester 24, exhibited a melting point 

170° lower than the unsubstituted indenofluorene 1. 
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 4  23 24 25 

The added alkyl pendent in a 5,8-dioxoindeno[2,1-c]fluorene invariably leads to a 

lower melting point and increased solubility for a variety of indenofluorenes. This 

method proved to be a very efficient method for producing indenofluorenes from both 

functionalized benzils and alkynes. 

Halogenated Indeno[2,1-c]fluorenes 

In 1999,6 a bromophenyl substituted indenofluorene was synthesized by using 

4,4’-dibromobenzil 26a and diethyl 1,3-acetonedicarboxylate 19 in the same synthesis 

described above to yield 2,5-bis(ethoxycarbonyl)-3,4-di(4-bromophenyl)cyclopenta-

dienone 28a. The brominated cyclopentadienone 28a underwent an IEDDA reaction with 

norbornadiene in toluene at reflux to form diethyl 2,3-di(4-bromophenyl)-1,4-

benzenedicarboxylate 29a. The terephthalic acid derivative 29a underwent base 

hydrolysis with potassium hydroxide in ethylene glycol to provide diacid 30a. The 

brominated diester 29a and diacid 30a both underwent the intramolecular ring closure 

under the same conditions as the unsubstituted diacid and diester to form 3,10-dibromo-

5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene 31a. The substitution of 1-octyne for 

norbornadiene in the cycloaddition reaction of cyclopentadiene 28a was employed to 

generate 3,10-dibromo-5,8-dioxo-5,8-dihydro-5-hexylindeno[2,1-c]fluorene 31b. As 

expected, the melting point of 31b was 204° lower than that of 31a and the solubility 

increased dramatically. 



 8 

The scope of these reactions were expanded in 2003 to include difluoro- and 

dichlorocyclopentadienones as shown in the reaction scheme below. 7 

 
 26a X = Br 19 27a X = Br 28a X = Br 
 26b X = Cl  27b X = Cl 28b X = Cl 
 26c X = F  27c X = F 28c X = F 

 
 29a R = H, X = Br 30a R = H, X = Br 31a R = H, X =Br 
 29b R = C6H13, X = Br 30b R = C6H13, X = Br 31b R = C6H13, X = Br 
 29c R = H, X = Cl 30c R = H, X = Cl 31c R = H, X =Cl 
 29d R = C6H13, X = Cl 30d R = C6H13, X = Cl 31d R = H, X =Cl 
 29e R = H, X = F 30e R = H, X = F 31e R = H, X = F 
 29f R = C6H13, X = F 30f R = C6H13, X = F 31f R = C6H13, X = F 

It should be noted that at the time, the difluoro substituted terephthalates 29e and 

29f exhibited different behavior in ring closure reactions as compared to the dibromo and 

dichloro derivatives. Diester 29e did not undergo ring closure in strong acid. Instead, the 

reaction resulted in a mixture of half-product and unreacted starting material. Diester 29f, 

however, forms 3,10-difluoro-5,8-dihydro-5,8-dioxoindeno[2,1-c]fluorene 31f on 

extended heating in strong acid. 
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 30f 31f 

Indeno[1,2-b]fluorenes 

The first tetraphenylterephthalate was synthesized in 19398 during an attempt to 

create hexaphenylbenzene. Hexabromobenzene 32 and phenylmagnesium bromide react 

to produce a symmetrical 2,3,5,6-tetraphenyl intermediate that could be carbonated with 

gaseous carbon dioxide at 0° to form 2,3,5,6-tetraphenylterephthalic acid 33. The acid 

 
 32 33 34 

was esterified with diazomethane to form dimethyl 2,3,5,6-tetraphenylterephthalate 34. 

However, the overall yield was less than 1%. 

In 1998,9 a much more efficient, high-yield process involving cyclopenta-

dienones was used to produce tetraphenylterephthalates. The reaction of 2,5-

bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 4 with diphenylacetylene in a melt 

reaction yielded diethyl 2,3,5,6-tetraphenylterephthalate 35. Terephthalate 35 underwent 

an intramolecular ring closure in methanesulfonic acid to form 5,11-diphenyl 6,12 
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dihydro-6,12-dioxoindeno[1,2-b]fluorene 36. Tetraphenyl terephthalates only form the 

1,2-b regioisomer of the indenofluorene structure.10 

 
 4 35 36 

Indenofluorene Containing Polymers 

Indenofluorenes were first incorporated into polymers in 1996.11 Initially, 2,5-

dibromo-1,4-bis-(4-tert-butylbenzoyl)benzene 37 underwent an intramolecular coupling 

using a Pd(0) catalyst to form 6,12-dioxo-6,12-dihydroindeno[1,2-b]fluorene 38. The 

diketone 38 was converted into the monomer, 3,9-di-tert-butyl-6,6,12,12-tetrachloro-

6,12-dihydroindeno[1,2-b]fluorene 39 by reaction with phosphorus pentachloride. The 

tetrachloro monomer 39 underwent a polycondensation reaction to form poly(3,9-di-tert-

butylindeno[1,2-b]fluorene) 40 referred to as a “picket fence” polymer. Many different 

coupling methods were investigated in an attempt to increase the degree of 

 
 37 38 39 40 
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polymerization. The number average molecular weights (Mn, determined by GPC) ranged 

from 3,500-19,500 and the polydispersity index (PDI) range was 2.16-4.35. 

Another example of indenofluorene incorporation into linear polymers was 

reported in 1999.12 Initially, 6,12-dihydroindeno(1,2-b)fluorene 41 was tetraalkylated 

using n-butyl lithium and an alkylbromide to form 6,6’,12,12’-tetraalkyl-6,12-

dihydroindeno(1,2-b)fluorene 42. The alkylated indenofluorene 42 was brominated at the 

2 and 8 positions with copper(II) bromide on aluminum oxide in chloroform to provide 

2,8-dibromo-6,6’,12,12’-tetraalkyl-6,12-dihydroindeno(1,2-b)fluorene 43. A Yamamoto 

coupling with a Ni(0) catalyst was used to form poly(6,6’,12,12’-tetraalkyl-6,12-

dihydroindeno(1,2-b)fluorene) 44. Two polymerizations resulted in Mn values of 33,000 

with a PDI of 5.2 for one and 39,000 with a PDI of 2.75 (determined by GPC) for the 

other. It was noted that rigid rod polymers in GPC can exhibit results that inflate the  

 
 41 42 43 

 
 44 
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molecular weights by as much as 25%. The high PDI indicates that a wide variety of 

chain lengths were produced by this polymerization technique. The polymers did exhibit 

excellent thermal properties with 5% weight loss occurring at 380° and decomposition at 

450° by Thermal Gravimetric Analysis (TGA).   

The first example of an indeno[2,1-c]fluorene being incorporated into a polymer 

occurred in 2013.13 A Diels-Alder reaction between “Orange” 4 and 4-octyne provided 

diethyl 2,3-diphenyl-5,6-dipropylterephthalate 45. The tetrasubstituted terephthalate 

underwent an intramolecular ring closure in polyphosphoric acid to form 6,7-dipropyl-

5,8-dihydro-5,8-dioxoindeno[2,1-c]fluorene 46. The dioxoindenofluorene was reduced by 

a Wolf-Kishner reduction to yield 6,7-dipropyl-5,8-dihydroindeno[2,1-c]fluorene 47. The 

5 and 8 positions were alkylated using n-butyllithium and 1-bromopropane to form 

5,5’,6,7,8,8’-hexapropyl-5,8-dihydroindeno[2,1-c]fluorene 48. The indenofluorene was 

brominated at the 3 and 10 positions using copper (II) bromide and aluminum oxide in 

carbon tetrachloride to form 3,10-dibromo-5,5’,6,7,8,8’-hexapropyl-5,8-

dihydroindeno[2,1-c]fluorene 49. The alkylated dibromoindenofluorene derivative was 

converted to a bis(dioxaborolane) derivative 50 by a Pd(0) coupling reaction. A Suzuki 

polycondensation of 50 with a dibromo compound 49 gave rise to a polymer 51 that 

contains the indeno[2,1-c]fluorene subunit. Three polymers containing the indeno[2,1-

c]fluorene subunit had a Mn range of 6,968-11,575 g/mol and the PDI were fairly 

consistent with a range from 1.57-1.92. The polymers showed desirable absorption and 

emission properties with maximum absorptions in the ranges of 416-432 nm. 
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 4 45 46 

 
 47 48 49 

 
 50 51 

It is clear that the indeno[2,1-c]fluorene and related indenofluorene substructures 

can be incorporated into polymeric systems. The substructures were, however, not the 

keto derivatives. From the previous discussion, the compound that appears to be a 

candidate for incorporating the 5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene substructure 

into a polymeric system is 3,10-difluoro-5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene 31f. 

The resonance structures shown in Figure 2 appear to indicate an electronic activation of 

the fluorine ipso carbon toward nucleophilic attack. Therefore, the main objectives of the 

current research were 1) the synthesis of reasonable quantities of 31f, 2) the complete 
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characterization of 31f and 3) the investigation of the behavior of 31f in model 

Nucleophilic Aromatic Substitution (NAS) reactions with p-cresol as well as 

polymerizations with bisphenol-A. 

 
Figure 2. Resonance structures for nucleophilic fluorine 
displacement activation in 3,10-difluoro-5,8-dioxo-5,8-

dihydroindeno[2,1-c]fluorene 31f. 
 

Poly(aryl ether)s 

Poly(aryl ethers)s (PAE) 52a-b are a class of high-performance, step-growth 

polymers which generally consist of phenylene units that are activated by electron 

withdrawing groups and connect by ether linkages. PAEs exhibit many desirable 

properties including excellent chemical resistance, high thermal stability, strong 

mechanical properties, and reasonable processability. PAEs are fairly inexpensive to 

manufacture which makes them very desirable.14 

 
 52 a b 

Nucleophilic aromatic substitution (NAS) is the most common synthetic 

technique used for creating the ether linkages in PAEs. PAEs are usually formed by step- 

growth polymerizations between a dihalo compound and a bisphenol (Figure 3). The 

halogens are activated by an electron-withdrawing group that increases the partial 

positive charge associated with the halogen ipso carbon.14 Ketones are a common 
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Meisenheimer Complex 

 

 
Figure 3. General mechanism for fluoro displacement via 

nucleophilic aromatic substitution (NAS). 
 

withdrawing group used in the formation of PAEs. Nucleophilic attack by the phenoxide 

occurs at the halogen ipso carbon. A Meisenheimer complex is proposed as an 

intermediate in the reaction. The loss of fluoride completes the formation of the ether 

linkage. Repetition of these steps leads to polymers. Sulfones and imides are also 

commonly used as withdrawing groups in PAEs, all of which form a Meisenheimer 

complex in a similar fashion. This versatility allows for a wide variety of PAEs that have 

many desirable properties. 

13C NMR Shifts and Fluorine Displacement 

In 1995,15 an investigation was conducted to determine the fluorine displacement 

potential in PAE formation reactions by predicted by 13C NMR. The 13C NMR chemical  
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Table 1. List of fluorinated compounds that undergo fluoro displacement and the 
chemical shifts of the fluorine ipso carbon (from reference 14 unless otherwise noted). 

 

Fluoroaromatic Monomer Fluorine ipso carbon 13C 
chemical shift (ppm) 

 

165.4416 

 
165.31 

 
165.27 

 

 
165.05 

 
164.50 

 

163.10 

 162.82 

 
162.8017 

 

??? 

 
shifts of the ipso carbon for several fluoroaromatic PAE monomers (Table 1) were 

correlated with the reactivity of the compounds in model reactions with m-cresol. The 

investigation showed that ipso carbons of a C-F bond that have a chemical shift in the 

range of 162.80-165.31 ppm should undergo halogen displacement. Monomers with a 

chemical shift below 162.80 ppm are usually not able to form high molecular-weight 
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polymers due to the inability of the nucleophile to complete the SnAr reaction or that high 

temperature degradations preclude the formation of high molecular weight polymers. 

 
 53 54 55 

It appears that NAS could be a new way of incorporating indenofluorenes into 

polymeric systems. These systems could represent novel materials, some of which could 

be very useful for organic field effect transistors (OFET) and organic light emitting 

diodes (OLED) currently being developed. 

The objectives of this research were to 1) to further explore the functionalization 

of 1 to include polymerizable groups, 2) to assess the potential of appropriately 

substituted derivatives for polymerization and 3) to characterize the new materials 

produced. 
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Experimental 

Instrumentation and Chemicals. 

Carbon (13C) and proton (1H) Nuclear Magnetic Resonance (NMR) spectra were 

acquireded using a Bruker Avance 300 NMR Spectrometer. Solvents used were 

deuterated chloroform (CDCl3) and deuterated acetone (Acetone-d6). Bruker Topspin 

3.5pl7 was used to process all NMR spectra. Splitting patterns are indicated as singlet – s, 

doublet – d, triplet – t, quartet – q, quintet – qn, sextet – sx. A Thermo Scientific Nicolet 

6700 FT-IR was used to acquire the Infrared spectra (IR) employing thin films on a NaCl 

and KBr plates. Melting points were determined with a DigiMelt MPA-160 apparatus and 

a MEL-TEMP capillary MPA. Elemental analyses were performed by Midwest Micro 

Laboratories, Indianapolis, Indiana. Starting materials were acquired from Sigma-Aldrich 

and used without further purification unless otherwise stated. 

2,5-Bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 4 

 

A solution of sodium metal (2.56 g, 0.11 mol) in ethanol (60 mL) was added to 

diethyl 1,3-acetonedicarboxylate (24.2 g, 0.12 mol) and benzil (21.0 g, 0.10 mol) 

dissolved in ethanol (100 mL) heated to reflux in a 250 mL round-bottomed flask. The 

solution initially turned orange and a yellow precipitate formed after 0.5 h. The solution 
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was heated at reflux for an additional 0.5 h and cooled to room temperature. After the 

precipitate was collected on a filter, washed with ethanol and air-dried, it was slurried in 

acetic anhydride (60 mL) in a 500 mL Erlenmeyer flask. Sulfuric acid was added 

dropwise until the solution was a translucent red and all solid had dissolved. Water was 

added dropwise, alternating with drops of sulfuric acid, until the temperature rose above 

60°. The temperature was then maintained at 70° until the addition of water no longer 

raised the temperature. The orange precipitate was filtered and air-dried to yield (33.11 g, 

0.088 mol, 88%) an orange product: mp 119-120° (lit.5 mp 120-121°); 1H NMR (300 

MHz, CDCl3, δ) 1.17 (t, 6H, 3JHH = 7.1 Hz, CH3), 4.20 (q, 4H, 3JHH = 7.1 Hz, CH2), 7.00-

7.07 (m, 4H, ArCH), 7.22-7.31 (m, 4H, ArCH), 7.32-7.41 (m, 2H, ArCH). 

2,5-Bis(ethoxycarbonyl)-3,4-di(4-fluorophenyl)cyclopentadienone 28c 

 

Sodium metal (0.47 g) was dissolved in ethanol (16 mL) to create a 12% sodium 

ethoxide solution. The solution was slowly added to a solution containing 4,4’-

fluorobenzil (5.0 g, 0.021 mol, 1 equiv) and diethyl 1,3-acetonedicarboxylate (5.0 g, 

0.025 mol, 1.2 equiv) in ethanol (50 mL) at reflux. The solution was held at reflux for 1 h 

during which a yellow precipitate formed. After the mixture was cooled to room 

temperature, the precipitate was collected by vacuum filtration, air dried overnight and 

slurried in acetic anhydride (30 mL). Sulfuric acid was added dropwise until the solution 

was a translucent red and all solid had dissolved. Water was added dropwise alternating 

with drops of sulfuric acid until the temperature was above 60°. The temperature was 
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maintained at 70° until the addition of water no longer raised the temperature. The crude 

product was filtered and recrystallized from hexanes to form orange crystals (7.541 g, 

0.018 mol, 89%): mp 106-107°; IR (NaCl, cm-1) 3074 (ArCH), 2986 (Aliphatic CH), 

1735-1742 (C=O), 1H NMR (300 MHz, CDCl3, δ) 1.22 (t, 6H, 3JHH = 7.1 Hz, CH3), 4.22 

(q, 4H, 3JHH = 7.1 Hz, CH2), 7.03 (m, 8H, ArCH); 13C NMR (75 MHz, CDCl3, ppm) 

190.58 (C=O), 163.72 (d, 1JCF = 252.5 Hz, ArCF), 161.91 (C=O), 160.90 (ArC), 131.38 

(d, 3JHF = 8.5 Hz, ArCH), 126.78 (d, 4JHF = 3.5 Hz, ArC), 119.76 (ArC), 115.22 (d, 2JCF = 

22.0 Hz, ArC), 61.39 (CH2), 13.97 (CH3). Anal Calcd for C23H18F2O5: C, 66.99; H, 4.40. 

Found: C 66.95; H, 4.50. 

Diethyl 2,3-bis(4-fluorophenyl)-5-hexylterephthalate 29f 

 

A mixture of 2,5-bis(ethoxycarbonyl)-3,4-di(4-fluorophenyl)cyclopentadienone 

(5.05 g, 20.5 mmol, 1 equiv) and 1-octyne (4.98 g, 24 mmol 1.2 equiv) were heated at 

reflux in toluene (60 mL) for 20 h. Toluene was removed under vacuum to form a light-

brown oil. The oil was dried under vacuum and purified by column chromatography to 

yield a translucent oil (7.5 g, 15 mmol 75% yield): IR (NaCl, cm-1) 2954-2859 (Aliphatic 

CH) 1728 (C=O); 1H NMR (300 MHz, CDCl3, δ) 0.91 (t, 3H, 3JHH = 6.9 Hz, CH3), 0.97 

(t, 6H, 3JHH = 7.1 Hz, CH3), 1.37 (m, 6H, CH2), 1.70 (qn, 2H, 3JHH = 8.0 Hz, CH2), 2.70 

(t, 2H, 3JHH = 8.1 Hz, CH2), 3.99 (q, 2H, 3JHH = 7.1, CH2), 4.03 (q, 2H, 3JHH = 7.1 Hz, 

CH2), 6.90 (m, 8H, ArCH), 7.70 (s, 1H, ArCH); 13C NMR (75 MHz, CDCl3, ppm) 168.59 
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(C=O), 168.19 (C=O), 161.79 (d, 1JCF = 246.7 Hz, ArCH), 161.65 (d, 1JCF = 246.3 Hz, 

ArC), 139.13 (ArC), 138.68 (ArC), 137.64 (ArC), 137.33 (ArC), 134.81 (d, 4JCF = 3.7 

Hz, ArC) 134.00 (d, 4JCF = 3.6 Hz, ArCH) 133.4 (ArC), 131.79 (d, 3JCF = 8.1 Hz, ArCH) 

131.33 (d, 3JCF = 8.1 Hz, ArCH), 129.35 (ArCH), 114.41 (d, 2JCF = 21.5 Hz, ArCH), 

114.37 (d, 2JCF = 21.4 Hz, ArCH ), 61.12 (CH2), 61.09 (CH2), 33.50 (CH2), 31.58 (CH2), 

31.15 (CH2), 29.26 (CH2), 22.55 (CH2), 14.05 (CH3), 13.69 (CH3), 13.64 (CH3). 

2,3-Bis(4-fluorophenyl)-5-hexylterephthalic acid 30f 

 

A mixture of diethyl 2,3-bis(4-fluorophenyl)-5-hexylterephthalate (9.70 g, 19.6 

mmol, 1 equiv) and potassium hydroxide (6.60 g, 118 mmol, 6 equiv) was heated to 160° 

in ethylene glycol (90 mL) for 20 h. The solution was cooled to room temperature, 

poured into water (400 mL) and stirred for 2 h. The solution was acidified with 

hydrochloric acid to a pH of 2. The milky white solution was filtered and the product was 

dried to yield a white solid (7.76 g, 17.7 mmol, 90% crude yield): IR (NaCl, cm-1) 3300-

2600 (OH), 2954-2860 (aliphatic CH), 1699 (C=O); 1H NMR (300 MHz, CDCl3, δ) 0.91 

(t, 3H, 3JHH = 6.7 Hz, CH3), 1.37 (m, 6H, CH2), 1.69 (qn, 2H, 3JHH = 7.5 Hz, CH2), 2.71 

(t, 2H, 3JHH = 7.5 Hz, CH2), 6.87 (m, 8H, ArCH), 7.81 (s, 1H, ArCH), 8.76 (s, 2H, OH); 

13C NMR ( 75 MHz, CDCl3, ppm) 173.74 (C=O), 172.64 (C=O), 161.85 (d, 1JCF =  247.3 

Hz, ArCF), 161.72 (d, 1JCF = 246.5 Hz, ArCF), 138.91 (ArC), 138.83 (ArC), 137.19 

(ArC), 134.48 (d, 4JCF = 3.4 Hz, ArC), 133.36 (d, 4JCF = 3.5 Hz, ArC), 131.75 (d, 3JCF = 
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8.2 Hz, ArCH) 131.56 (ArC) 131.20 (d, 3JCF = 8.0 Hz) 130.26 (ArCH), 114.54 (d, 2JCF = 

21.5 Hz, ArCH), 114.47 (d, 2JCF = 21.5 Hz, ArCH), 33.49 (CH2), 31.51 (CH2), 31.08 

(CH2), 29.17 (CH2), 22.51 (CH2), 14.05 (CH3). Anal Calcd for C26H24F2O4: C, 71.22; H, 

5.52. Found: C, 70.77; H, 5.32. 

3,10-Difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 31f 

  

A mixture of 2,3-bis(4-fluorophenyl)-5-hexylterephthalic acid ( 2.0 g, 4.6 mmol, 

1 equiv) was dissolved in sulfuric acid (25 mL) and heated to 75° for 20 h. The solution 

was cooled to room temperature, poured in water (250 mL) and stirred for 1 h. The 

mixture was extracted with ethyl acetate and dried with magnesium sulfate. Ethyl acetate 

was removed by reduced pressure and crude product was purified by column 

chromatography (80:20, hexanes:ethyl acetate) to yield a yellow solid (1.55 g, 4.1 mmol, 

90% yield): mp 156-157° (lit.7 mp 157°); IR (KBr, cm-1) 3074 (ArCH), 2956-2858 

(Aliphatic CH), 1707 (C=O); 1H NMR (300 MHz, CDCl3, δ) 0.90 (t, 3H, 3JHH = 6.5 Hz, 

CH3), 1.35 (m, 6H, CH2), 1.54 (m, 2H, CH2) 2.94 (t, 2H, 3JHH =  7.6 Hz, CH2), 7.21 (td, 

2H, 3JHH = 8.4, 3JHF = 8.4 Hz,  4JHH =  2.5 Hz, ArCH), 7.29 (s, 1H, ArCH) 7.32 (dd, 1H, 

3J = 7.1 Hz, 4JHH = 2.6 Hz, ArCH), 7.35 (dd, 1H, 3JHF = 7.1, 4JHH = 2.6 Hz, ArCH)  7.78 

(dd, 2H, 3JHH = 8.4 Hz, 4JHF = 4.3 Hz, ArCH); 13C NMR ( 75 MHz, CDCl3, ppm) 191.53 

(d, 4JCF = 2.0 Hz, C=O), 190.83 (d, 4JCF = 2.0 Hz, C=O), 163.43 (d, 1JCF = 253.2 Hz, 

ArCF), 163.13 (d,1 JCF = 253.3 Hz, ArCF), 146.39 (ArC), 139.95 (d, 5JCF = 2.1 Hz, ArC), 

139.43 (d, 4JCF = 3.2 Hz, ArC), 138.18 (ArC), 138.11 (d, 4JCF = 3.2 Hz, ArC), 137.52 (d, 
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3JCF = 7.2 Hz, ArC), 137.37 (d, 3JCF = 7.2 Hz, ArCH), 136.25 (d, 5JCF = 2.4 Hz, ArC), 

134.60 (ArC), 126.97 (ArCH), 124.94 (d, 3JCF = 7.2 Hz, ArCH), 124.85 (d, 3JCF = 7.2 Hz, 

ArCH), 121.22 (d, 2JCF = 23.9 Hz, ArCH), 120.91 (d, 2JCF = 23.4 Hz, ArCH), 112.35 (d, 

2JCF = 23.2 Hz, ArCH), 111.94 (d, 2JCF = 23.2 Hz, ArCH), 31.61 (CH2), 31.25 (CH2), 

30.05 (CH2), 29.72 (CH2), 22.58 (CH2), 14.06 (CH3); Anal Calcd for C26H20F2O2: C, 

77.60; H, 5.01. Found: C, 77.79; H, 5.02. 

Polymerization of 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 
and Bisphenol-A  

 
A solution of 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 

(0.588 g, 1.47 mmol, 1 equiv), bisphenol A (0.334 g, 1.47 mmol, 1 equiv) and potassium 

carbonate (0.811 g, 5.87 mmol, 4 equiv) was heated in NMP (5 mL) for 24 h using Q-

tube™ (30 mL) at 170°. The solution was cooled to room temperature. The solution was 

precipitated in a methanol/water solution (80:20, 100 mL) containing glacial acetic acid 

(2.5 mL), collected by vacuum filtration and reprecipitated two more times. The product 

was filtered and dried under vacuum overnight. A second polymerization was carried out 

at 150°. Proton NMR analysis is shown in Figure 18. 

Model reaction of 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 
and p-Cresol in NMP and DMSO 

 
Monomer 31f (0.2002 g, 0.497 mmol, 1 equiv) was weighed into a Q-Tube™ (30 

mL) containing a magnetic stir bar. The transfer of p-cresol (0.1075 g, 0.994 mmol, 2 

equiv) to the Q-Tube™ was aided by the use of NMP. Potassium carbonate (0.2805 g, 

2.03 mmol, 4 equiv) was added to the reaction vessel. The remaining NMP (from 4 mL 

total) was used to insure all reactants were in the solvent. The mixture was slowly heated 

with stirring to 170° and held for 24 h. The solution was cooled to room temperature and 
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pipetted into a methanol-water solution (80:20, v:v) containing acetic acid (1.5 mL) and 

stirred for 1 h. The product was collected by vacuum filtration and reprecipitated twice 

from NMP into an acidified methanol-water solution. The product was a reddish solid 

(0.0847 g) that was collected by filtration and dried under vacuum. Proton and carbon 

NMR were used to analyze the product (Figure 18 and 19). Model reactions were 

conducted with DMSO as solvent under similar conditions and with similar results. 

2,5-Bis(ethoxycarbonyl)-3,4-di(4-bromophenyl)cyclopentadienone 28a 

 

Sodium metal (0.76 g) was dissolved in ethanol (20 mL) to create a 12% sodium 

ethoxide solution. The solution was slowly added to a solution containing 4,4’-

dibromobenzil (10.1 g, 0.027 mol, 1 equiv) and diethyl 1,3-acetonedicarboxylate (6.8 g, 

0.032 mol, 1.2 equiv) in ethanol (70 mL) at reflux. The solution was held at reflux for 1 h 

during which a yellow precipitate formed. The mixture was cooled to room temperature. 

After the precipitate was collected by vacuum filtration and air-dried overnight, it was 

slurried in acetic anhydride (40 mL). Sulfuric acid was added dropwise until the solution 

was a translucent red and the solid had dissolved. Water was added dropwise alternating 

with drops of sulfuric acid until the temperature was above 60°. The temperature was 

maintained at 70° until the addition of water no longer raised the temperature. The orange 

precipitate was collected and recrystallized from ligroine (14.12 g, 0.026 mol, 98%): mp 

155-156° (lit.6 mp 154-156°); 1H NMR (300 MHz, CDCl3, δ) 1.21 (t, 6H, 3JHH = 7.1 Hz, 
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CH3), 4.21 (q, 4H, 3JHH = 7.1 Hz, CH2), 6.93 (m, 4H, 3JHH = 8.6 Hz, Ar, CH), 7.45 (m, 

4H, 3JHH = 8.6 Hz, Ar, CH); 13C NMR (75 MHz, CDCl3, ppm) 190.35 (C=O), 161.74 

(ArC), 160.59 (ArC), 131.27 (ArCH), 130.51 (ArCH), 129.46 (ArC), 125.14 (ArC), 

119.97 (ArC), 61.50 (CH2), 13.99 (CH3). 

Diethyl 2,3,5,6-tetrakis(4-bromophenyl)terephthalate 61 

 

A solution of 2,5-bis(ethoxycarbonyl)-3,4-di(4-bromophenyl)cyclopentadienone 

(1.50 g, 2.9, mmol, 1 equiv.) and 1,2-bis(4-bromophenyl)ethyne19 (1.00 g, 3 mmol, 1.05 

equiv.) was mixed and heated in a Q-Tube™ (30 mL) at reflux in dichlorobenzene (5 

mL) for 24 h. The solution was cooled to room temperature and a small amount of 

hexanes (5 mL) was added to the Q-Tube™ and the mixture was stirred for 3 h in an ice 

bath to precipitate the reaction product. The solution was vacuum filtered and the 

precipitate was washed with hexanes. The product was heated in ligroine and hot filtered 

to remove unreacted starting material. The product was dried to yield a white solid (1.67 

g, 1.9 mmol, 68%): mp 368-370°; IR (KBr, cm-1) 2866-2969 (aliphatic CH), 1726 (C=O); 

1H NMR (300 MHz, CDCl3, δ) 0.77 (t, 6H, 3JHH = 7.1 Hz, CH3), 3.71 (q, 4H, 3JHH = 7.1 

Hz, CH2), 6.97 (d, 8H, 3JHH = 8.5 Hz, ArCH), 7.35 (d, 8H, 3JHH = 8.5 Hz, ArCH); 13C 

NMR ( 75 MHz, CDCl3, ppm) 167.50 (C=O), 137.21, (ArC), 136.56 (ArC), 136.19 

(ArC), 131.52 (ArCH), 130.97 (ArCH), 121.92 (ArC), 61.23 (CH2), 13.42 (CH3). Anal 

Calcd for C32H14Br4O2: C, 51.34; H, 3.11. Found: C, 51.61; H, 3.25. 
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2,8-dibromo-5,11-bis(4-bromophenyl)indeno[1,2-b]fluorene-6,12-dione 62 

 

A suspension of diethyl 2,3,5,6-tetrakis(4-bromophenyl)terephthalate (0.870 g, 

1.19 mmol, 1 equiv) in sulfuric acid (15 mL) was heated at 130° for 3 h. The solid 

dissolved and the solution turned red after 1 h. The solution was cooled to room 

temperature and slowly poured into water (200 mL) and stirred for 2 h. The solution was 

filtered to yield a red solid. The red solid was washed with hot toluene to purify the 

product (0.712 g, 0.949 mmol, 80% yield): mp >400°; IR (KBr, cm-1) 1716 (C=O), 1H 

NMR (300 MHz, CDCl3, δ) 6.22 (d, 2H, 4JHH = 8.2 Hz, ArCH), 7.30 (m, 4H, ArCH), 

7.37 (dd, 2H, 3JHH = 8.2 Hz, 4JHH = 1.9 Hz, ArCH), 7.63 (d, 2H, 4JHH = 1.7 Hz, ArCH), 

7.74 (d, 4H, 3JHH = 8.4 Hz). Anal Calcd for C32H14Br4O2: C, 51.24; H, 1.88. Found: C, 

51.07; H, 2.04. 

Diethyl 5,6-diphenyl-2,3-bis(2-thienyl)terephthalate 64 

 

A mixture of 2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone (1.98 g, 5.2 

mmol, 1 equiv) and 1,2-bis(2-thienyl)ethyne20 (1.0 g, 5.2 mmol, 1 equiv) was heated at 

reflux in dichlorobenzene (10 mL) for 18 h in a Q-Tube™ (30 mL). The solution was 



 27 

cooled to room temperature, hexanes (8 mL) was added to the Q-Tube™ and solution 

was stirred for 2 h. The Q-Tube™ was placed in an ice bath for 2 h to precipitate the 

product. The solution was filtered by vacuum and the product was washed with hexanes. 

The crude product was recrystallized from benzene to yield a white solid (1.95 g, 3.6 

mmol, 70%): mp 242-244; IR (NaCl, cm-1) 3103 (ArCH), 2975-2896 (Aliph CH), 1725 

(C=O); 1H NMR (300 MHz, CDCl3, δ) 0.80 (t, 6H,3JHH = 7.1 Hz, CH3), 3.77 (q, 4H, 3JHH 

= 7.1 Hz, CH3), 6.92 (dd, 2H, 3JHH = 5.1 Hz, 3JHH = 3.5 Hz, ArCH), 6.99 (dd, 2H, 3JHH = 

3.5 Hz, 4JHH = 1.2 Hz, ArCH), 7.15 (m, 10H, ArCH), 7.28 (dd, 2H, 3JHH = 5.1 Hz, 4JHH = 

1.2 Hz, ArCH); 13C NMR ( 75 MHz, CDCl3, ppm) 167.73 (C=O), 139.11 (ArC), 138.06 

(ArC), 137.66 (ArC), 137.45 (ArC), 132.05 (ArC), 130.01 (ARCH), 129.26 (ArCH), 

127.45 (ArCH), 127.32 (ArCH), 127.24 (ArCH), 126.18 (ArCH), 61.00 (CH2), 13.46 

(CH3); Anal Calcd for C32H26O4S2: C, 71.35; H, 4.87. Found: C, 71.33; H 4.79. 

Intramolecular ring closure of diethyl 5,6-diphenyl-2,3-bis(2-thienyl)terephthalate 

A solution of diethyl 5,6-diphenyl-2,3-bis(2-thienyl)terephthalate (0.50 g, .93 

mmol, 1 equiv) was dissolved in a mixture of acetic acid (3.5 mL) and sulfuric acid (1.5 

mL) and heated at 75° for 3 h. The solution was poured into water (150 mL) and stirred 

for 2 h. The black precipitate was collected by vacuum and dried. Analysis by NMR 

showed what appeared to be the degradation of the thiophene ring. 

2,5-Bis(methoxycarbonyl)-3,4-di(4-methoxyphenyl)cyclopentadienone 66 
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A solution of 4,4’-dimethoxybenzil (4.0 g, 14.8 mmol, 2.75 equiv), dimethyl 1,3-

acetonedicarboxylate (2.73 g, 14.8 mmol, 2.75 equiv) and potassium hydroxide (0.34 g, 

5.3 mmol, 1 equiv.) was refluxed in acetonitrile (40 mL) for 3.5 h. The solution was 

cooled and filtered to remove unreacted starting material. The filtrate was extracted with 

toluene and the solution was dried with magnesium sulfate. Toluene was removed by 

reduced pressure evaporation and the resulting oil was stirred in acetic anhydride (3 mL) 

containing 3 drops of sulfuric acid at room temperature for 1.5 h. The resulting solution 

was poured into water (200 mL) and stirred overnight. The precipitate was collected by 

vacuum filtration and purified by column chromatography (70:30, hexanes:ethyl acetate) 

to yield (0.81 g, 13%, 1.9 mmol) a red solid: mp 125-126° (lit18 mp 126-127°); IR (NaCl, 

cm-1) 3085 (ArCH), 2980-2901 (Aliph CH), 1738 (C=O), 1712 (C=O); 1H NMR (300 

MHz, CDCl3, δ) 3.78 (s, 6H, CH3), 3.84 (s, 6H, CH3), 6.82 (d, 4H, 3JHH = 8.9 Hz, ArCH) 

7.02 (d, 4H, 3JHH = 8.9 Hz, ArCH); 13C NMR (75 MHz, CDCl3, ppm) 191.0 (C=O), 163.1 

(C=O), 162.3 (ArC) 161.4 (ArC), 131.6 (ArCH), 123.2 (ArC), 118.6 (ArC), 113.6 

(ArCH), 55.3 (-OCH3), 52.3 (COOCH3). 
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RESULTS AND DISCUSSION 

The major objective of this work was the generation of polymerizable derivatives 

of 5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene. The initial discussion will focus on the 

difluoro derivative, 3,10-difluoro-5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene 31f, and its 

model compound and polymerization reactions. Subsequent discussions will focus on 

related syntheses. 

Cyclopentadienone Synthesis 

The reaction of the 4,4’-difluorobenzil 26c with diethyl 1,3-acetonedicarboxylate 

19 was carried out using the reported method5 for the synthesis of 2,5-dicarboethoxy-3,4-

dihpenylcyclopentadienone 4. Initially, a sodium ethoxide catalyzed reaction in absolute 

ethanol resulted in the formation of the sodium salt 27c. The sodium salt was protonated 

and dehydrated in acetic anhydride by adding sulfuric acid dropwise. The dehydration 

reaction resulted in the formation of 2,5-bis(ethoxycarbonyl)-3,4-di(4-fluorophenyl)-

cyclopentadienone 28c. The difluoro substituted cyclopentadienone was characterized by 

IR, 1H NMR and 13C NMR. 

 
 26c 19 27c 28c 

The IR absorption at 1742 cm-1 (Figure 27) corresponds to the ester carbonyl and 

that at 1735 cm-1 can be attributed to the ketone carbonyl.  The 1H NMR absorption 
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integrals are as expected (Figure 28). The 1H NMR spectrum indicated the successful 

synthesis of the difluorocyclopentadienone 28c. The absorptions in the aromatic region 

appear as a multiplet of peaks at δ 7.03 due to the similar chemical shifts of the protons 

and the fluoro-splitting that occurs in the molecule. The methylene absorption appears as 

a quartet at δ 4.22 labeled b in Figure 4, the methyl group absorption is present at δ 1.22 

as a triplet labeled a.  

 
Figure 4. 1H NMR assignments for 2,5-bis(ethoxycarbonyl)-3,4-di(4-

fluorophenyl)cyclopentadienone 28c 
 

The 13C NMR spectrum (Figure 29) displays ten distinct carbon absorptions. The 

comparison between the calculated 13C NMR chemical shifts21-23 and the experimental 

13C NMR chemical shifts are displayed in Figure 5. 

 
Figure 5. 13C NMR absorptions for 2,5-dicarboethoxy-3,4-bis(fluorophenyl)-

cyclopentadienone 28c (predicted left and experimental right). 
 

The 13C NMR spectrum of difluorocyclopentadienone 28c exhibits four aromatic 

carbon absorptions that appear as doublets due to C-F couplings (Figure 6); 1) 163.72 

ppm with a 1JCF = 252.5 Hz which is consistent with fluorine ipso carbon coupling, 2) 
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115.22 ppm with a 2JCF = 22.0 Hz which occurs as a result of the ortho C-F coupling, 3) 

131.38 ppm with a 3JCF = 8.5 Hz which indicates meta C-F coupling and 4) 126.78 ppm 

with a 4J = 3.5 Hz which indicates para C-F coupling (Figure 6 & Figure 29). 

 

Figure 6. Carbon-fluorine couplings present in 13C NMR spectrum of 2,5-
bis(ethoxycarbonyl)-3,4-di(4-fluorophenyl)cyclopentadienone 28c. 

 

Terephthalate Synthesis 

 
 28c 23 29f 

Diester derivatives of cyclopentadienones contain an electron-deficient diene that 

can rapidly undergo an inverse-electron-demand Diels-Alder (IEDDA) with acetylenes to 

form terephthalic acid derivatives. The reaction of 2,5-bis(ethoxycarbonyl)-3,4-di(4-

fluorophenyl)cyclopentadienone 28c and 1-octyne 23 in toluene at reflux results in the 

formation of the asymmetric aromatic compound, diethyl 2,3-bis(4-fluorophenyl)-5-

hexylterephthalate 29f, that was characterized by IR, 1H NMR and 13C NMR. 



 32 

The IR spectrum (Figure 31) of 29f contains an ester carbonyl absorption at 1728 

cm-1 and aliphatic CH stretch absorptions from 2960-2859 cm-1. The disappearance of the 

ketone absorption in the carbonyl range indicates successful synthesis of the 

pentasubstituted terephthalate 29f. 

The 1H NMR spectrum clearly shows the addition of the hexyl tail as a result of 

the IEDDA reaction. The 1H NMR spectrum of 29f (Figure 32) exhibits: 1) overlapping 

triplet absorptions at δ 0.91 and δ 0.97 assigned to the CH3 of the hexyl tail and the ethyl 

esters methyl groups, respectively (labeled a and a’ in Figure 7), 2) a multipet absorption 

at δ 1.37 accounting for six hydrogens located in the middle of the hexyl tail labeled b, 3) 

a multiplet absorption at δ 1.70 accounting for two protons of a CH2 group on the hexyl 

tail labeled c, 4) a distorted triplet absorption at 2.70 assigned to the CH2 group directly 

attached to the benzene ring labeled d, 5) a pair of overlapping quartet absorptions at δ 

3.99 and δ 4.03 attributed to the methylene groups in the ethyl esters labeled e, 6) a 

multiplet absorption at δ 6.90 attributed to the eight aromatic protons located on the 

fluorine substituted rings labeled f, 7) a singlet absorption at δ 7.70 accounting for the 

aromatic CH labeled g which is shifted downfield due to its proximity to the ketone 

carbonyl. 

 
Figure 7. 1H NMR assignments for diethyl 2,3-bis(4-fluorophenyl)-5-hexylterephthalate. 
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The asymmetric nature of the terephthalate results in a 13C NMR spectrum 

(Figure 33) complicated by long-range C-F coupling. This both assists and obstructs 

assignments. For consistency, when absorptions are identified as belonging to similar 

carbons in related parts of the molecule, the downfield absorption will be assigned (in 

figures) to what is considered to be the carbon in the more sterically hindered position 

(this will be followed in subsequent 13C NMR descriptions as well). The calculated21-23 

and observed 13C NMR chemical shifts for diethyl 2,3-bis(4-fluorophenyl)-5-

hexylterephthalate are shown in Figure 8. 

The aliphatic region exhibits the anticipated absorptions. Absorptions at 13.64 and 

13.69 ppm can be attributed to the methyls and two absorptions at 61.09 and 61.12 ppm 

can be assigned to the methylenes of the ethyl esters. A third methyl absorption at 14.05 

ppm can be assigned to the methyl group at the end of the hexyl tail. The DEPT135 

spectrum (Figure 34) spectrum confirms the presence of five methylene groups in the 

pendant hexyl chain. 

 
Figure 8. Calculated (left) and observed (right) 13C NMR absorptions for 

diethyl 2,3-bis(4-fluorophenyl)-5-hexylterephthalate 29f. 
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The aromatic region of the 13C NMR spectrum displays eight doublets, four for 

each pendent fluorophenyl ring (Figure 9). Positional assignments for these absorptions 

can be made by a combination of coupling constant values and the DEPT135 spectrum. 

Thus, the doublet absorptions at 161.65 ppm, 1JCF = 246.3 Hz and 161.79 ppm, 1JCF = 

246.7 Hz can be assigned to the ipso carbons. The doublet absorptions at 114.37 ppm, 

2JCF = 21.4 Hz, and 114.41 ppm, 2JCF = 21.5 Hz, can be assigned to the ortho carbons. 

The doublet absorptions at 131.33 ppm, 3JCF = 8.1 Hz, and 131.79 ppm, 3JCF = 8.1 Hz can 

be assigned to the meta carbons. The doublet absorptions at 134.00 ppm, 4JCF = 3.6 Hz, 

and 134.81 ppm, 4J = 3.7 Hz, can be assigned to the para carbons. The DEPT135 

(Figure 34) spectrum clearly indicates that the absorption at 129.4 ppm can be assigned 

to the lone ArCH on the central pentasubstituted ring and the remaining quaternary 

carbon absorptions can be assigned to the remaining five carbons of that ring. 

 

Figure 9. Carbon-fluorine couplings present in 13C NMR spectrum of diethyl 2,3-bis(4-
fluorophenyl)-5-hexylterephthalate 29f. 

 
Finally, two absorptions at 168.19 and 168.55 ppm can be attributed to the 

carbonyl carbons of the ester groups. 

Terephthalic Acid Synthesis  

The terephthalic ester 29f was hydrolyzed in KOH/ethylene glycol to yield 2,3-

bis(4-fluorophenyl)-5-hexylterephthalic acid 30f.  
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 29f 30f 

The IR spectrum of 2,3-bis(4-fluorophenyl)-5-hexylterephthalic acid 30f shows a 

broad absorption from 3300-2600 cm-1 which is assigned to the O-H stretch from the 

carboxylic acid functional group. The absorption at 1699 cm-1 (Figure 35) is attributed to 

the carboxylic acid carbonyl. 

The 1H NMR spectrum (Figure 36) integrations are as predicted for the 

terephthalic acid 30f. The 1H NMR spectrum displays 1) a singlet absorption at δ 7.81 

which is attributed to the aromatic CH on the pentasubstituted benzene ring labeled a 

(Figure 10) and 2) a broad absorption at δ 8.76 which is assigned to the two hydrogens of 

the OH groups of the terephthalic acid labeled b. The integrations of the aliphatic region 

show the loss of ten hydrogens and that confirms that the hydrolysis of the ester was 

effective. Small peaks attributed to the diester 29f and ethylene glycol remain in this 

region. The multiplet absorption in the aromatic region is due to the asymmetric nature of 

the diacid. 

 

Figure 10. 1H NMR proton assignments for 2,3-bis(4-
fluorophenyl)-5-hexylterephthalic acid 30f. 
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The 13C NMR spectrum (Figure 37) shows small absorption peaks attributed to 

minute amounts of diester 29f and ethylene glycol. The calculated21-23 and observed 

peaks are shown in Figure 11. The DEPT135 spectrum (Figure 38) aided in the 

assignment of the nine absorptions of the aromatic CH groups. The singlet absorption at 

130.27 ppm can be assigned to the lone CH group on the pentasubstituted aromatic ring. 

The two absorptions at 172.64 and 173.74 ppm are attributed to the carbonyl carbons of 

the ester groups. The two separate peaks for the carbonyls are due to asymmetry and 

proximity to the pendant hexyl tail.  

 

Figure 11. Predicted (left) and observed (right) 13C NMR absorptions 
for 2,3-bis(4-fluorophenyl)-5-hexylterephthalic acid 30f. 

 
Among these peaks are eight distinct doublets that can clearly be seen in the 

aromatic region of the 13C NMR spectrum of the terephthalic acid 30f (Figure 37). The 

C-F couplings and J values can be seen in Figure 12. 

 

Figure 12. Carbon-fluorine couplings present in 13C NMR spectrum 
of 2,3-bis(4-fluorophenyl)-5-hexylterephthalic acid 30f. 
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The eight different doublets are present due asymmetry arising from the hexyl tail 

of the pentasubstituted benzene ring. The doublet absorptions at 161.72 ppm, JCF = 246.5 

Hz and 161.85 ppm, JCF = 247.3 Hz can be assigned to the fluorine ipso carbons. The 

doublet absorptions at 114.47 ppm, JCF = 21.5 Hz and 114.47 ppm, JCF = 21.5 Hz can be 

assigned to the ortho carbons. The doublet absorptions at 131.20 ppm, JCF = 8.0 Hz and 

131.75 ppm, JCF = 8.2 Hz can be assigned to the meta carbons. The doublet absorptions at 

133.36 ppm, JCF = 3.5 Hz and 134.48 ppm, JCF = 3. Hz can be assigned to the para 

carbons. The other five quaternary carbon absorptions in the aromatic region can be 

assigned to the pentasubstituted ring. 

Monomer Synthesis 

 
 30f 31f 

The conversion of diacid 30f to the monomer 31f was accomplished by an 

intramolecular Friedel-Crafts reaction in sulfuric acid. The product was purified by 

column chromatography to yield 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-

c]fluorene 31f which was characterized by IR, 1H NMR and 13C NMR and exhibited 

acceptable elemental analysis. 

The IR spectrum (Figure 39) of 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-

hexylindeno[2,1-c]fluorene exhibited absorption peaks from 2956-2858 cm-1 which are 
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indicative of the aliphatic CH stretches associated with the hexyl tail. The absorption at 

1707 cm-1 can be attributed to the conjugated ketone carbonyl. 

A combination of 1H NMR, 13C NMR, 13C DEPT135 NMR and HSQC 2D NMR 

of 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 31f were used to 

confirm the structural features of 31f. 

Initially, a proton NMR spectrum of 31f (Figure 13, spectrum a) revealed an 

aromatic region composed of three absorption areas integrating to 2H : 3H : 2H in accord 

with the structure and a singlet being the lone proton on the pentasubstituted ring. 

Whereas the downfield pattern was obviously a doublet of doublets, the other two 

patterns defied simple interpretation with respect to anticipated proton-proton and/or 

proton-fluorine couplings. Subsequently, a proton NMR spectrum at higher concentration 

(Figure 13, spectrum b, also see Figure 40) provided a clearer picture of the chemical 

shifts and coupling interactions. Two other 1H NMR spectra at differing concentrations 

(Figure 13, spectrum c and d) show the concentration dependence of the proton chemical 

shifts and indicate significant intermolecular interactions in solution. 

The aliphatic portion of the 1H NMR spectrum for 31f can be assigned similarly 

to that of 29f and 30f. The three aromatic hydrogens on each the fluorine substituted 

benzene rings all exhibit H-H and H-F coupling with the individual coupling constants 

shown in Figure 14. The assignments in Figure 13 are; 1) a triplet of doublets absorption 

at δ 7.21 attributed to the aromatic hydrogens which are labeled e, 2) a singlet absorption 

at δ 7.29 attributed to the lone aromatic hydrogen on the pentasubstituted benzene ring 

labeled f, 3) a doublet of doublets absorption at δ 7.32 which is assigned to the aromatic 

hydrogen ortho to the fluorine and ketone groups labeled g and a second doublet of 
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doublets absorption at δ 7.35 attributed to the aromatic hydrogen between the fluorine 

and ketone groups on the hexyl substituted side labeled h (these fortuitously overlap to 

give the appearance of a triplet of doublets) and 4) a doublet of doublets absorption at 

δ 7.78 attributed to the two aromatic hydrogens labeled i in Figure 13. Further 

confirmation of these assignments came from 13C NMR and an HSQC 2D NMR to be 

discussed later. 

 

 
Figure 13. 1H NMR spectra of 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-

c]fluorene 31f - A = 40 mg/mL, B = 30 mg/mL, C = 20 mg/mL, D = 14 mg/mL. 

A h g e 

C 

i 
f 

B 

D 
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Figure 14. H-H and H-F coupling constants for the fluorine substituted benzene rings of 

3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 31f. 
 

The 13C NMR spectrum (Figure 41) for 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-

hexylindeno[2,1-c]fluorene exhibits numerous doublets due to the asymmetric nature of  

 
Figure 15. Predicted (left) and observed (right) 13C NMR absorptions for 3,10-difluoro-

5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 31f. 
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the molecule as well as some singlets for the remaining non-fluorine-coupled carbons. 

The calculated21-23 and observed chemical shifts can be seen in Figure 15. 

The obvious 13C NMR assignments are: 1) the two absorptions at 191.52 and 

191.55 ppm for the carbonyl carbons of the ketones exhibiting long range splitting of 2.0 

Hz, 2) a singlet absorption at 127.0 ppm (Figure 42, DEPT135) attributed to the aromatic 

CH in the pentasubstituted ring and 3) two doublet absorptions at 163.1 and 163.4 ppm 

attributed to the fluorine ipso carbons. The DEPT135 NMR spectrum clearly identified 

the six doublets associated with the aromatic protonated carbons on the fluorinated rings. 

The use of an HSQC 2D NMR (Figure 17) correlated those carbons to the corresponding 

protons in the 1H NMR. 

The carbon-fluorine splittings and the associated J values are shown in Figure 16. 

 

 
Figure 16. Carbon-fluorine couplings for 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-

hexylindeno[2,1-c]fluorene 31f. 
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Figure 17. The HSQC 2D NMR spectrum for 31f. 

 
NAS Polymerization 

After characterization of monomer 31f, its polymerization was contemplated. The 

13C chemical shifts of the ipso carbons (163.1 and 163.4 ppm) in 31f were compared to 

ipso carbon chemical shifts for compounds exhibiting displaceable fluorines (Table 1). 

Although those chemical shifts were at the low end of the series (see Table 1, Entry 6 

and 7) polymerizations were attempted. 

 
 31f 56 57 

i g h e 
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Difluoroindenofluorene 31f and bisphenol-A 56 were polymerized in NMP 

employing potassium carbonate as base at 170° in a Q-tube™ as previously described. 

After a standard work-up, the 1H NMR spectrum (Figure 18, middle) of the isolated 

material did not show that appreciable displacement of fluorine from 31f had occurred. 

Polymer formation should be accompanied by the disappearance of the H-F coupling in 

the aromatic region (simplified 1H spectrum) and the appearance of absorptions 

associated with bisphenol-A, particularly the gem-dimethyl singlet. Slight chemical shift 

changes in the aromatic region are probably due to the concentration effects referred to 

earlier. Subsequent polymerizations produced similar results - the isolation of starting 

monomer 31f. A second polymerization at 150° gave similar results (Figure 18, top). 

 
Figure 18. 1H NMR spectra of the two polymerization attempts and monomer. The 

polymerization attempt at 150° (top), at 170° (middle) and indenofluorene monomer 31f 
(bottom). 
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Corroborating results were obtained from the 13C NMR spectra (Figure 19) 

obtained from the material isolated from two polymerizations. It was expected that 

polymerization would result in the disappearance of the fluorine ipso carbon doublet 

absorptions at 163.1 and 163.4 ppm and the appearance of oxygen ipso carbon singlets in 

 

 
Figure 19. 13C NMR spectra of of the two polymerization attempts and monomer. The 

polymerization attempt at 150° (top), at 170° (middle) and indenofluorene monomer 31f 
(bottom). 

 
the same region as had been seen in other similar polymerizations involving 

fluorobenzoyl monomers. No singlet absorptions in the 163 ppm region were observed 

and the doublet absorptions remain suggesting no (or very minor) polymerization. In 

addition, no absorptions associated with bisphenol-A 56 in the aromatic or aliphatic 

region were observed. The gem-dimethyl singlet attributable to bisphenol-A is 

particularly diagnostic for its incorporation/presence. 
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After these two attempts, it was decided to investigate fluorine displacement in 

monomer 31f through model reactions. 

Model Reaction in NMP and DMSO 

Monomer 31f and p-cresol 58 were reacted in NMP at 170° employing potassium 

carbonate as base. After work-up, the crude reddish product was analyzed by TLC and  

 
 31f 58 59 

1H NMR (Figure 20, middle). It was concluded that little if any fluorine substitution had 

occurred based on the similarity of the spectra of the product and 31f. The reaction was  

 
Figure 20. 1H NMR spectra of 170° model reaction (top), 150° model reaction (middle) 

and monomer 31f (bottom). 
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repeated at a lower temperature (150°) using the same procedure. Analysis of the product 

by 1H NMR (Figure 20, top) again showed the lack of appreciable fluorine displacement. 

TLC analysis also indicated that only starting material was isolated. Model reactions in 

DMSO led to similar conclusions. The 1H NMR spectra of the product obtained from two 

DMSO model reactions are shown in Figure 21. 

 

 
Figure 21. Spectra from DMSO model reaction at 175° (top), model reaction at 150° 

(middle) and monomer 31f (bottom) starting material. 
 
Related Syntheses 

During the course of the polymerization study, a unique cyclopentadienone and 

two related terephthalates were synthesized as potential indenofluorenone precursors and 

monomers. 
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The Diels-Alder reaction of 2,5-bis(ethoxycarbonyl)-3,4-di(4-

bromophenyl)cyclopentadienone 28a and 1,2-bis(4-bromophenyl)ethyne 6019 in o-

dichlorobenzene yielded diethyl 2,3,5,6-tetrakis(4-bromophenyl)terephthalate 61 that was 

characterized by IR, 1H NMR and 13C NMR. 

 
 28a 60 61 

The IR spectrum of 61 (Figure 43) exhibits an absorption at 1726 cm-1 attributed 

to the ester carbonyl. 

The 1H NMR spectrum (Figure 44) of diethyl 2,3,5,6-tetrakis(4-bromophenyl)-

terephthalate 61 exhibits 1) a triplet absorption at δ 0.77 integrating to six hydrogens can 

be assigned to the methyl groups of the esters labeled a (Figure 22), 2) a quartet 

absorption at δ 3.71 assigned to the methylene groups of the ethyl esters labeled b, 3) a 

doublet absorption at δ 6.97 attributed to the eight hydrogens on the phenyl rings labeled 

c and 4) a doublet absorption at δ 7.35 assigned to the eight hydrogens on the phenyl 

rings labeled d. 
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Figure 22. 1H NMR assignments for diethyl 2,3,5,6-tetrakis(4-

bromophenyl)terephthalate 61 
 

The 13C NMR spectrum (Figure 45) for terephthalate 61 shows seven distinct 

absorptions in the aromatic region that would be expected from the symmetry associated 

with compound 61. The absorptions at 61.23 and 13.41 ppm can be attributed to the 

methyl and methylene groups, respectively, in the ethyl ester. The aromatic CH 

absorptions at 130.97 and 131.52 ppm were identified by DEPT135 analysis (Figure 46). 

The calculated and observed 13C NMR peaks are compared in Figure 23. 

 
Figure 23. Predicted (left) and observed (right) 13C NMR chemical shifts for diethyl 

2,3,5,6-tetrakis(4-bromophenyl)terephthalate 61. 
 

Tetrabromophenyl terephthalate 61 was reacted in sulfuric acid to undergo an 

intramolecular Friedel-Crafts ring closure to produce 2,8-dibromo-5,11-bis(4-

bromophenyl)indeno[1,2-b]fluorene-6,12-dione 62 as a red solid as had been indicated 

earlier for 36.10 
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The IR spectrum (Figure 47) exhibited a conjugated ketone carbonyl absorption 

at 1716 cm-1. 

 
 61 62 

Although the product exhibited limited solubility in most deuterated solvents, the 

1H NMR spectrum of 62 in CDCl3 (Figure 24) provides clear evidence of the ring 

closure. Doublet absorptions at δ 7.75 (3JHH = 8.5 Hz) and δ 7.30 (3JHH = 8.5 Hz) 

integrating to 4H each can be attributed to the p-bromophenyl pendent groups and the  

 
Figure 24. 1H NMR spectra of 2,8-dibromo-5,11-bis(4-bromophenyl)indeno[1,2-

b]fluorene-6,12-dione 62. 
 

CDCl3 
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absorptions at δ 7.63 (4JHH = 1.7 Hz), δ 7.63 (3JHH = 8.2 Hz, 4JHH = 1.9 Hz) and δ 6.23 

(3JHH = 8.2 Hz) are indicative of the 1,2,4 proton pattern associated with the fused 

brominated phenyl rings. An expansion of the aromatic portion of the 1H NMR spectra of 

62 is shown in Figure 24.  

The tetrabromo derivative 62 was envisioned as a component in boronate 

coupling reactions but solubility considerations may limit its usefulness. 

Dithienyl Terephthalate 

 
 4 63 64 

A solution of 2,5-bis(ethoxycarbonyl)-3,4-diphenylcyclopentadienone 4 and 1,2-

bis(2-thienyl)ethyne 6320 was heated at reflux in dichlorobenzene to provide diethyl 5,6-

diphenyl-2,3-bis(2-thienyl)terephthalate 64. 

The IR spectrum (Figure 48) displayed a strong absorption at 1727 cm-1 that can 

be attributed to the ester carbonyls and multiple absorption peaks from 2896–2982 cm-1 

can be attributed to the aliphatic ethyl ester groups. 

The 1H NMR spectrum (Figure 49) of diethyl 5,6-diphenyl-2,3-bis(2-

thienyl)terephthalate 64 displays; 1) a triplet absorption at δ 0.80 which is attributed to 

the methyls of the ethyl group labeled a (Figure 25), 2) a quartet absorption at δ 3.77  

assigned to the methylene groups labeled b, 3) a doublet of doublets absorption at δ 6.92 

representative of an aromatic hydrogen present on the thiophene ring labeled c, 4) a 
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doublet of doublets absorptions at δ 6.99 indicative of an aromatic proton on the 

thiophene labeled e, 5) a multiplet  absorption at δ 7.15 assigned to the ten aromatic 

hydrogens on the unsubstituted phenyl rings labeled d, 6) a doublet of doublets 

absorptions at δ 7.28 indicative of an aromatic proton on the thiophene ring labeled f. 

 
Figure 25. 1H NMR assignments of diethyl 5,6-diphenyl-

2,3-bis(2-thienyl)terephthalate 64 
 

The 13C NMR spectrum (Figure 50) of diethyl 5,6-diphenyl-2,3-bis(2-

thienyl)terephthalate 64 displays fourteen unique carbon absorptions. A comparison of 

the predicted and observed 13C NMR chemical shifts for diethyl 5,6-diphenyl-2,3-bis(2-

thienyl)terephthalate 64 can be seen in Figure 25. The DEPT135 spectrum (Figure 51) 

was used to aid in the carbon assignments. 

 
Figure 26. Predicted (left) and observed (right) 13C NMR chemical shifts of diethyl 5,6-

diphenyl-2,3-bis(2-thienyl)terephthalate 64 
 

Unsubstituted tetraphenyl terephthalates are known to undergo intramolecular 

ring closures and form only 5,8-dioxo-5,8-dihydroindeno[1,2-b]fluorenes. The inclusion 
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of thiophenes in terephthalate 64 was anticipated to provide a competition in the 

intramolecular ring closure reaction by providing an electron-rich closure site that may 

influence the formation of the 1,2-c isomer in preference to the 1,2-b isomer. 

Dithienyl terephthalate 64 was heated at reflux in an acetic acid/sulfuric acid 

mixture to undergo a Friedel-Crafts intramolecular ring closure. The reaction produced a 

black precipitate. The black solid was largely insoluble in deuterated chloroform. 

Extraction attempts of the solid were unsuccessful. The solid (minimal solubility) was 

analyzed by 1H NMR (Figure 52). The spectrum showed no evidence of the 

intramolecular ring closure and seemed to show a decomposition of the thiophene rings 

due to extra absorption peaks in the aliphatic region of the 1H NMR spectrum. 

 
 64 

Originally, it was anticipated that a dihydroxy derivative 67 corresponding to the 

difluoro derivative 31f could be prepared by a sequence starting with 2,5-

bis(methoxycarbonyl)-3,4-di(4-methoxyphenyl)cyclopentadienone 66 that had been 

reported.18 Thus, the reaction of 4,4’-dimethoxybenzil 65 and diethyl  

 
 65 19 66 



 53 

1,3-acetonedicarboxylate 19 yielded  2,5-bis(methoxycarbonyl)-3,4-di(4-

methoxyphenyl)cyclopentadienone 6618 that was characterized by IR, 1H NMR and 13C 

NMR. 

The IR spectrum of 66 (Figure 53) showed an absorption at 1738 cm-1 attributed 

to the ketone carbonyl and an absorption at 1712 cm-1 attributed to the ester carbonyl.  

The 1H NMR spectrum (Figure 54) of 2,5-bis(methoxycarbonyl)-3,4-di(4-

methoxyphenyl)cyclopentadienone exhibits two singlet absorptions in the aliphatic region 

at δ 3.77 and δ 3.84 which are attributed the methoxy groups in cyclopentadienone 66. 

The aromatic region exhibits two doublet absorptions at δ 6.82 and δ 7.02 which are 

attributed to the protons on the para substituted aromatic rings. 

The 13C NMR spectrum (Figure 55) exhibits two singlet absorptions in the 

aliphatic region at 52.09 ppm and 55.31 ppm that are attributed to the methoxy groups. 

The DEPT135 spectrum (Figure 56) shows that the peaks at 113.22 ppm and 131.39 ppm 

can be assigned to the protonated carbons in the para substituted rings. The peak at 191.0 

ppm is assigned to the ketone carbonyl on the cyclopentadiene ring. The highest yield for 

the reaction was 13% and after numerous attempts to increase the efficiency of the 

reaction, the synthesis was abandoned due to low yields with time consuming 

purification. 

 
 66 67  
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CONCLUSIONS 

The monomer, 3,10-difluoro-5,8-dioxo-5,8-dihydro-6-hexylindeno[2,1-c]fluorene 

31f can be produced in a four-step process in 54% yield despite using column 

chromatography purification in the final step. The monomer exhibits a concentration 

dependent 1H NMR spectrum that may suggest significant intermolecular interactions at 

high concentrations. The chemical shift of the fluorine ipso carbon (~163 ppm) casts 

doubt on the potential for polymerization as it is comparable to unactivated fluorine ipso 

carbon chemical shifts. 

The polymerization of monomer 31f under standard NAS PEEKK conditions was 

not successful. Only unreacted monomer was isolated from the polymer reactions under 

normal workup conditions. Likewise, model reactions of monomer 31f with p-cresol gave 

similar results. Apparently the activation of the fluorine ipso carbon in 31f and/or the 

stabilization of the predicted Meisenheimer complex is not sufficient for reaction. 

The indeno[1,2-b]fluorene, 2,8-dibromo-5,11-bis(4-bromophenyl)indeno[1,2-

b]fluorene-6,12-dione 62 and the thienyl derivative, diethyl 5,6-diphenyl-2,3-bis(2-

thienyl)terephthalate 64 were synthesized as potential polymer components/precursors. 

The synthesis of 2,5-bis(methoxycarbonyl)-3,4-di(4-methoxyphenyl)cyclo-

pentadienone 66 proved to be a low yield reaction with a difficult purification that 

precluded an anticipated synthesis of 3,10-dihydroxy-5,8-dioxo-5,8-dihydro-6-

hexylindeno[2,1-c]fluorene 67. 
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Figure 27. IR spectrum (NaCl) of cyclopentadienone 28c.

 

 
Figure 28. 1H NMR spectrum (300 MHz, CDCl3) of cyclopentadienone 28c. 
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Figure 29. 13C NMR spectrum (75 MHz, CDCl3) of cyclopentadienone 28c with insets of 
meta and para fluorine couplings. 
 

 

 
Figure 30. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of cylcopentadienone 28c. 
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Figure 31. IR spectrum (NaCl) of diester 29f. 

 

 

 
Figure 32. 1H NMR spectrum (300 MHz, CDCl3) of diester 29f. 
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Figure 33. 13C NMR spectrum (75 MHz, CDCl3) of diester 29f 

 

 

 
Figure 34. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of diester 29f. 
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Figure 35. IR spectrum (NaCl) of diacid 30f. 

 

 

 
Figure 36. 1H NMR spectrum (300 MHz, CDCl3) of diacid 30f. 
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Figure 37. 13C NMR spectrum (75 MHz, CDCl3) of dacid 30f. 

 
 
 
 

 
Figure 38. 13C DEPT135 NMR spectrum (75MHz, CDCl3) of diacid 30f. 
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Figure 39. IR spectrum (KBr) of indenofluorene 31f. 

 
 
 
 

 
Figure 40. 1H NMR spectrum (300 MHz, CDCl3) of indenofluorene 31f. 
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Figure 41. 13C NMR spectrum (75 MHz, CDCl3) of indenofluorene 31f. 

 
 
 

 

 
Figure 42. 13C DEPT135 NMR spectrum (75MHz, CDCl3) of indenofluorene 31f. 
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Figure 43. IR spectrum (KBr) of diester 61. 

 
 
 
 
 

 
Figure 44. 1H NMR spectrum (300 MHz, CDCl3) of diester 61. 
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Figure 45. 13C NMR spectrum (75 MHz, CDCl3) of diester 61. 

 
 
 

 
Figure 46. 13C DEPT135 NMR spectrum (75MHz, CDCl3) of diester 61. 
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Figure 47. IR spectrum (KBr) of tetrabromo indenofluorene 62. 

 
 
 

 
Figure 48. IR spectrum (NaCl) of diester 64. 
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Figure 49. 1H NMR spectrum (300 MHz, CDCl3) of diester 64. 

 
 
 
 

 
Figure 50. 13C NMR spectrum (75 MHz, CDCl3) of diester 64. 
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Figure 51. 13C DEPT135 NMR spectrum (75MHz, CDCl3) of diester 64. 

 
Figure 52. 1H NMR of attempted ring closure of diester 64. 
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Figure 53. IR spectrum (300 MHz, CDCl3) of dimethoxycyclopentadienone 66. 

 

 

 
Figure 54. 1H NMR spectrum (300 MHz, CDCl3) of dimethoxycyclopentadienone 66. 
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Figure 55. 13C NMR spectrum (75 MHz, CDCl3) of dimethoxycyclopentadienone 66. 

 

 
Figure 56. 13C DEPT135 NMR spectrum (75 MHz, CDCl3) of 

dimethoxycyclopentadienone 66.  
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