
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2017

Modeling Two Phase Flow Heat Exchangers for Next Generation Modeling Two Phase Flow Heat Exchangers for Next Generation

Aircraft Aircraft

Hayder Hasan Jaafar Al-sarraf
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Mechanical Engineering Commons

Repository Citation Repository Citation
Al-sarraf, Hayder Hasan Jaafar, "Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft"
(2017). Browse all Theses and Dissertations. 1831.
https://corescholar.libraries.wright.edu/etd_all/1831

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1831&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1831?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

 MODELING TWO PHASE FLOW HEAT EXCHANGERS FOR NEXT

GENERATION AIRCRAFT

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Mechanical Engineering

By

HAYDER HASAN JAAFAR AL-SARRAF

B.Sc. Mechanical Engineering, Kufa University, 2005

2017

Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

July 3, 2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION

BY Hayder Hasan Jaafar Al-sarraf Entitled Modeling Two Phase Flow Heat Exchangers for

Next Generation Aircraft BE ACCEPTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF Master of Science in Mechanical Engineering.

 Rory Roberts, Ph.D.

 Thesis Director

 Joseph C. Slater, Ph.D., P.E.

 Department Chair

 Committee on Final Examination

 Rory Roberts, Ph.D.

 James Menart, Ph.D.

 Mitch Wolff, Ph.D.

 Robert E. W. Fyffe, Ph.D.

 Vice President for Research and

 Dean of the Graduate

iii

ABSTRACT

Al-sarraf, Hayder Hasan Jaafar. M.S.M.E. Department of Mechanical and Materials

Engineering, Wright State University, 2017. Modeling Two Phase Flow Heat Exchangers

for Next Generation Aircraft.

Two-phase heat exchangers offer the potential of significant energy transfer by taking

advantage of the latent heat of vaporization as the working fluid changes phase.

Unfortunately, the flow physics of the phase change process is very complex and there

are significant gaps in the fundamental knowledge of how several key parameters are

affected by the phase change process. Therefore, an initial investigation modeling a two-

phase flow heat exchanger has been accomplished. Many key assumptions have been

defined which are critical to modeling two-phase flows. This research lays an initial

foundation on which further investigations can build upon. Two-phase heat exchangers

will be a critical enabling technology for several key aerospace advancements in the 21st

century.

In this research, modeling two- phase flow heat exchangers to be used in modeling of

NASA’s next generation aircraft (N3- X) is accomplished. The heat exchanger model,

which could be a condenser or an evaporator, currently accommodates two working

fluids; kerosene (jet fuel) and a refrigerant (R134a).

The primary goal is to obtain a dynamic, robust model by using numerical simulation

tools (MATLAB/ SIMULINK) which can simulate the system efficiently and would be

iv

used in the conceptual aircraft (N3-X) model. The final goal of this project is to

investigate the influence of pressure and enthalpy perturbations on the system. In other

words, how quickly this system responds to change to perturbations, therefore the model

will be transient.

Two examples are used for demonstration of the transient response of a two- phase

heat exchanger to a perturbation in pressure and enthalpy. Initially, pressure perturbation

variation effects on how the quality of R134a effects the magnitude of the two- phase

flow heat transfer coefficient, therefore the two- phase heat transfer rate calculated. This

changing pressure approach used to provide a rapid thermal response to a rapid thermal

load variation. Other conventional thermal methods (decreasing the temperature of the

cold fluid or increasing the mass flow rate) results in slower response times than

changing the pressure. For this analysis, a sample time of 0.000001 seconds was used.

In addition, an enthalpy perturbation was investigated. Since, changing pressure

suddenly from higher value (650 kPa) to the lower value (555 kPa) is not a real, physical

scenario in life, the pressure change with transfer function would be employed to

transform the system into first order system with two different time constants. Eventually,

the time constant of the system plays a significant role in obtaining a quicker response.

v

TABLE OF CONTENTS

ABSTRACT ... iii

TABLE OF CONTENTS ...v

LIST OF FIGURES ... ix

NOMENCLATURE ... xii

ACKNOWLEDGEMENTS ...xv

INTRODUCTION ...1

Overview – NASA 2035 Commercial Aircraft Concept ...1

Technical Specifications .. 4

Two Phase Flow Heat Exchangers ...6

BACKGROUND ...9

MATHEMATICAL MODELING ...15

Cold Subsystem Balance ..17

Hot Subsystem Balance ..18

Heat Exchanger Subsystem ..19

Exergy Analysis Subsystem ...21

RESULTS ..24

Pressure Perturbation..24

vi

Enthalpy Perturbation ...32

Realistic Pressure Response ...38

Time constant = 0.1 sec. .. 39

Time constant = 0.01 sec. .. 43

CONCLUSION ..48

APPENDICES ...49

APPENDIX A ..49

APPENDIX B ..67

APPENDIX C ..99

REFERENCES ..106

vii

 LIST OF TABLES

Table 1: NASA conceptual design goals [4]... 4

Table 2: Possible HTS materials for use in the N3-X ... 5

Table 3: Fluid dependent parameter for various types of fluids in copper and brass

tubes [25] .. 14

Table 4: Mass flow rate and temperature for both sides ... 16

Table 5: Cp, rho, and k for SS-316, Cu, and Al .. 16

Table 6: Steady state hot side heat transfer coefficient (hTP) with pressure step

change ... 28

Table 7: Steady state Qh .. 31

Table 8: Steady state Tc, out .. 34

Table 9: Steady state total entropy generated ... 38

Table 10: Dynamic viscosity for kerosene versus temperature .. 50

Table 11: Dynamic viscosity for R-134a @ different pressure lines versus enthalpy 51

Table 12: Density for R-134a @ different pressure lines versus enthalpy versus

enthalpy ... 52

Table 13: Specific heat for R134a @ different pressure lines versus enthalpy 53

Table 14: Thermal conductivity for R134a @ different pressure lines versus enthalpy .. 54

Table 15: Temperature for R134a @ different pressure lines versus enthalpy 55

Table 16: Specific volume for R134a vs. internal energy @ different pressure lines 56

Table 17: Specific heat for R-134a @ liquid phase versus sat. temperature 57

viii

Table 18: Dynamic viscosity for R-134a @ liquid phase versus sat. temperature 58

Table 19: Thermal conductivity for R-134a @ liquid phase versus sat. temperature 59

Table 20: Density for R-134a @ liquid phase versus sat. temperature............................. 60

Table 21: Specific heat for R-134a @ vapor sat. phase versus sat. temperature 61

Table 22: Dynamic viscosity for R-134a @ vapor sat. phase versus temperature 62

Table 23: Thermal conductivity for R-134a @ vapor sat. phase versus sat.

temperature ... 63

Table 24: Density for R-134a @ vapor sat. line versus sat. temperature 64

Table 25: Enthalpy of evaporation for R-134a. versus sat. temperature 65

Table 26: Entropy for R134a @ different pressure lines versus enthalpy 66

ix

LIST OF FIGURES

Figure 1: The increase in aviation demands [2] .. 1

Figure 2: The increase in price and consumption of miscellaneous types of fuels [2] 2

Figure 3: Proposed NASA N3-X aircraft.. 3

Figure 4: N3-X wingtip turbo generator and transmission cables [2] 3

Figure 5: Resistance versus temperature [2] ... 5

Figure 6: Basic components of a PHE [10] .. 6

Figure 7: Offset strip- fin configuration [16] .. 7

Figure 8: The regular configuration of OSF ... 7

Figure 9: R134a phases and the saturated dome ... 8

Figure 10: Heron's turning sphere invention [22] ... 9

Figure 11: Heat exchangers classifications [23] ... 12

Figure 12: Offset strip fin heat exchanger geometry [27]... 15

Figure 13: Diagram of the heat exchanger model ... 16

Figure 14: The whole heat exchanger simulation model .. 23

Figure 15: Hot side (R134a) pressure step change ... 24

Figure 16: Hot side (R134a) enthalpy with pressure step change 25

Figure 17: Cold flow (kerosene) temperature out with pressure step change 25

Figure 18: Hot flow (R 134a) temperature out with pressure step change 27

Figure 19: Heat exchanger material temperature with a pressure change 27

file:///C:/Users/Hayder/Desktop/HayderThesis_final.docx%23_Toc491695866

x

Figure 20: Cold flow (kerosene) heat transfer coefficient, ℎ𝑐, with pressure step

change ... 28

Figure 21: Hot side (R134a) heat transfer coefficient (ℎ𝑇𝑃) with pressure step

change ... 29

Figure 22: Hot side (R134a) quality with pressure step change 29

Figure 23: Heat transferred to the cold fluid (Kerosene) with pressure step change 30

Figure 24: Heat transferred from hot side (R134a) with pressure step change 30

Figure 25:Total entropy generated with pressure step change .. 31

Figure 26: Hot side (R134a) enthalpy out with pressure step change 32

Figure 27: Hot side (R134a) enthalpy step change ... 33

Figure 28: Hot side (R134a) pressure with enthalpy step change 33

Figure 29: Cold flow (Kerosene) temperature out with enthalpy step change 33

Figure 30: Hot side (R134a) temperature out with enthalpy step change......................... 34

Figure 31: Heat exchanger material temperature with enthalpy step change 35

Figure 32: Hot side (R134a) heat transfer coefficient, hTP, with enthalpy step change 35

Figure 33: Hot side (R134a) quality with enthalpy step change 36

Figure 34: Heat transferred to the cold fluid (Kerosene) with enthalpy step change 37

Figure 35: Heat transferred from hot side (R134a) with enthalpy step change 37

Figure 36: Total entropy generated with enthalpy step change .. 38

Figure 37: Hot side (R134a) pressure response for a time constant of 0.1sec 40

Figure 38: Hot side (R134a) temperature out for a time constant of 0.1sec 40

Figure 39: Hot side (R134a) quality for a time constant of 0.1sec 41

Figure 40: Heat transferred from hot side (R134a) for a time constant of 0.1sec 41

xi

Figure 41: Temperature difference between Hot side (R134a) and the heat exchanger

material for a time constant of 0.1sec ... 42

Figure 42: Total entropy generated for a transfer function with a time constant of

0.1sec .. 42

Figure 43: Hot side (R134a) pressure response for a time constant of 0.01sec 43

Figure 44: Hot side (R134a) temperature out for a time constant of 0.01sec 44

Figure 45: Temperature difference between Hot side (R134a) and the heat exchanger

material for a time constant of 0.01sec ... 45

Figure 46: Hot side (R134a) quality for a time constant of 0.01sec 45

Figure 47: Heat transferred from hot side (R134a) for a time constant of 0.01sec 46

Figure 48: Total entropy generated for a time constant of 0.01sec 47

Figure 49: Results of hot flow (R-134a) ... 104

Figure 50: Results of cold flow (kerosene) ... 105

xii

NOMENCLATURE

BLI Boundary Layer Ingestion

BWB Blended Wing Body

HTS High Temperature Superconductors

HWB Hybrid Wing Body

N3-X NASA Next Generation Aircraft

PHE Plate Heat Exchanger

OSF Offset Strip fin heat exchanger

NASA National Aeronautics and Space Administration

s Transverse spacing (free flow width), mm

h Free flow height, mm

t Fin thickness, mm

l Fin length, mm

tf Plate thickness, mm

L Heat exchanger length, mm

α 𝑠 ℎ⁄ ratio

δ 𝑡 𝑙⁄ ratio

γ 𝑡 𝑠⁄ ratio

β surface compactness factor, (𝑚2/𝑚3)

f Fanning friction factor, dimensionless

Re Reynolds number, dimensionless

Pr Prandtl number, dimensionless

Nu Nusselt number, dimensionless

μ Dynamic viscosity, pa- sec

cp Specific heat at constant pressure, j/kg-k

cv Specific heat at constant volume, j/kg-k

xiii

k Thermal conductivity, w/m-k

ΔP Pressure drop, pa

ṁ Mass flow rate, kg/sec

𝐷ℎ Hydraulic diameter, m

𝐴𝑐 Cross sectional area, 𝑚2

𝐴𝑠 Surface area, 𝑚2

ℎ𝑙 Convective heat transfer coefficient @ liquid phase, w/𝑚2-k

ℎ𝐺 Convective heat transfer coefficient @ vapor phase, w/𝑚2-k

ℎ𝑇𝑃 Heat transfer coefficient @ two phase, w/𝑚2-k

Co Convective number, dimensionless

Bo Boiling number, dimensionless

𝐹𝑓𝑙 Fluid dependent parameter, dimensionless

𝑟ℎ𝑜𝑙 Liquid density, kg/𝑚3

𝑟ℎ𝑜𝐺 Gas density, kg/𝑚3

x Quality, dimensionless

𝑞′′ Heat transfer per unit area, w/𝑚2

G Mass flux, kg/𝑚2- sec

ℎ𝑙𝐺 Enthalpy of evaporation, j/kg

ℎ Specific enthalpy, j/kg

𝑢 Internal energy, j/kg

𝑝 Pressure, pa

𝑣 Specific volume, 𝑚3/kg

𝑇𝑜 Dead-state temperature, k

Tc Cryogenic temperature, k

hin Enthalpy in, j/kg

hout Enthalpy out, j/kg

Q̇ Heat transfer rate, w/sec

nm Nautical mile

xiv

Subscripts

m Average value for the two-phase mixture

wall Fluid near the wall

𝑙 Liquid phase

𝐺 Gas phase

𝑇𝑃 Two- phase

𝐻𝑋 Heat exchanger

𝑐 Cold side

ℎ Hot side

𝑖𝑛 Inlet

𝑜𝑢𝑡 Outlet

𝑖𝑟𝑟 Irreversible

xv

ACKNOWLEDGEMENTS

Primarily, I would like to give big thanks to my thesis directors; Dr. Mitch Wolff,

and Dr. Rory Roberts. They have not treated me as a student, they have worked with me

as a colleague. I have learned lots of knowledge from them regarding research skills,

selecting appropriate courses, and becoming a good researcher. Both have already given

me many and many of hours to help me out solve programming issues, and teach me even

fundamentals. In the beginning of doing this research, they encouraged me to learn new

software enabling me to accomplish my thesis smoothly such as MATLAB/ Simulink

software, and Engineering Equations Solver, EES. They guided me wisely and considered

my time sufficiently. The most wonderful thing, they have open – door policy so that I

could stop by to ask them and then solve all problems I had.

Additionally, I would also like to thank my fellow students whom have been

working on the electric aircraft project headed by Dr. Mitch Wolff and Dr. Rory Roberts

for their support and advice. These indispensable students are: Jay Vora, Abada, Hashim

Hameed, Al Agele, Saif Shamil Hamzah, and Foshee, Robert.

Also, my thanks go towards my sponsor, Higher Committee of Education

Development in Iraq, HCED who granted me full funded scholarship. This amazing

opportunity enables me to get advanced education from Wright state University.

Finally, unlimited thanks to my father, mother, brother, and sisters for their efforts

to make this study successful and stress less.

xvi

In short, I am so gratitude that I am a person who surrounded with this spectacular

environment.

1

INTRODUCTION

Overview – NASA 2035 Commercial Aircraft Concept

There has been and continues noticeable increases in aviation demands over

several decades [1-3], Figure 1. This increased number of flights results in the amount of

hydrocarbon fuels burned increasing as well. The hydrocarbon- fossil fuels worldwide are

a limited resource. Typically, fossil fuel becomes more expensive day by day [1]. Figure

2 illustrates the rising of price and consumption for different types of fuels. From another

perspective, the global concerns are rising regarding the environment, less pollution (i.e.,

the greenhouse gases emissions). Therefore, NASA has proposed a new generation of

aircraft (N3-X) to address these various issues. Figure 2 shows how much increases are in

aviation demands.

Figure 1: The increase in aviation demands [2]

2

Figure 2: The increase in price and consumption of miscellaneous types of fuels [2]

The main features of this aircraft are a significant departure from conventional aircraft.

To address the various performance issues, the new aircraft model must have many

improvements in comparison with current aircraft. The existing baseline aircraft used by

NASA is the Boeing 777-200LR [1] [2]. NASA has proposed a commercial subsonic

aircraft working completely by electric power to obtain the desired performance goals.

There are no hydraulic and pneumatic subsystems on the board of aircraft. Consequently,

minimizing weight, complexity, operating and maintenance cost. In addition, they

propose a hybrid wing body (HWB) or blended wing body (BWB). An advantage of this

type of aircraft design is by increasing the boundary layer ingestion (BLI) into the

propulsion system overall aircraft drag is decreased [3]. These advancements are on the

external shape level. Internally, they will make use of high temperature superconductor

(HTS) technology to substantially improve the usage of the electric power generated [4].

The electric power comes from two wingtip turbo generators and passes through HTS

transmission cables. Figure 3 shows the proposed N3-X aircraft concept. Figure 4 gives

3

details of the wingtip turbo generators and transmission cables.

Figure 3: Proposed NASA N3-X aircraft.

Figure 4: N3-X wingtip turbo generator and transmission cables [2]

The various goals of this conceptual aircraft are to address noise, fuel

consumption, pollution, and mission length [5] [4]. These goals are listed in Table 1.

4

Table 1: NASA conceptual design goals [4]

Technical Specifications

This electric aircraft is a significant departure from traditional aircraft. NASA has

proposed several innovative technologies, which will be highlighted. The propulsion

system will be changed to a distributed propulsion system consisting of 14 electric fans

driven by HTS motors [6]. This array of fans is located in the rear of the fuselage

maximizing the boundary layer ingestion. Consequently, the thrust is obtained with

reduced drag. In addition, high temperature superconductor technology will be employed

in this aircraft. Therefore, motors, rectifiers, inverters, and power lines will be made from

superconductor components only [7] [8]. The beauty of using these types of conductors is

that the resistance will be zero if the operating temperature is at the appropriate level (i.e.

a cryogenic temperature) [9]. Figure 5 demonstrates the relationship between the

resistance and temperature for normal and super conductor power transmission.

5

Figure 5: Resistance versus temperature [2]

There are three kinds of HTS lines, which can be used as shown in Table 2

Table 2: Possible HTS materials for use in the N3-X

 HTS Definition Operating temperature (˚K)

1. BSCCO
Bismuth Strontium Calcium

Copper Oxide
below 59

2. YBCO Yttrium Barium Copper Oxide 60 ~77

3. MgB2 Magnesium Diboride 30 ~ 39

From the operating temperatures, the need of a cryogenic system to maintain these low

temperatures is evident [10]. The need of a cryogenic system to provide the thermal loads

required for superconductor operation has led to the need for a two-phase heat exchanger.

The ability to use a two-phase heat exchanger will substantially reduce the size of the

required thermal management system. Unfortunately, there is not much known about how

a two-phase heat exchanger performs – basically the phase change is a transient

phenomenon therefore a transient heat exchanger.

6

Two Phase Flow Heat Exchangers

Selecting an appropriate heat exchanger that can manage these thermal loads and

provide a suitable cooling rate will be addressed next. Plate fin heat exchangers, PHE will

be used because of their compactness, lightweight, and high heat transfer rate which

match aerospace industry needs [14] [15] [16] [17] [18]. The value of heat transfer

coefficient of PHE heat exchangers is nine times the heat transfer coefficient in typical

circular tubes heat exchangers for the same Reynolds number [15]. Enhancing heat

exchange through the heat exchanger is essential. Namely, the input energy is conserved.

[19] [20]. Figure 6 illustrates the basic components of a PHE.

Figure 6: Basic components of a PHE [10]

There are several kinds of PHE heat exchangers as listed below [21]

1. Plain rectangular

2. Plain trapezoidal

3. Wavy

4. Serrated or offset strip fin

5. Louvered

6. Perforated

7

An offset strip- fin PHE will be used in this investigation. Figure 7 is given to illustrate

the geometry parameters of an offset strip- fin PHE.

Figure 7: Offset strip- fin configuration [16]

Hence, the flow is 1D and counter flow. Figure 8 shows a typical offset strip-fin (OSF)

configuration.

Figure 8: The regular configuration of OSF

Two different working fluids are used in this investigation, which are kerosene

(jet fuel) and R134a. R134a is the hot fluid, while kerosene is cold fluid. Since R134a

enters the heat exchanger as a superheated vapor, it will undergo a condensation process

in the heat exchanger. This process occurs inside the R134a saturated liquid/- vapor

dome, the refrigerant will be two- phases (liquid + vapor). Figure 9 shows R134a phases

and the saturated dome.

8

Figure 9: R134a phases and the saturated dome

9

BACKGROUND

A heat exchanger is one of most wide spread pieces of equipment used in

industry. It is used in oil refineries, food processing, and cooling/ refrigeration

applications [15] [16]. The geometry of heat exchangers varies depending on the use and

types of fluids for the heat exchange. A high percentage of heat exchangers used in

different industries work with a two- phase flow [22]. Therefore, providing an essential

need to clearly understand phase change through heat exchangers [19].

The background of two- phase flow heat exchangers begins in very ancient eras

when people first used cooking- vessels to prepare their food. In addition, Archimedes

used two- phase flow heat exchangers in the steam- gun, which has been considered the

first application of two phase flow heat exchangers in the military. Heron created a

turning sphere, which was operated by steam. Figure 10 shows Heron’s turning sphere

invention.

Figure 10: Heron's turning sphere invention [22]

10

Ancient Egyptians also used two- phase flow heat exchangers in wine production.

In the nineteenth century- industrial revolution, James Watt discovered the steam engine

which opened many applications to use two- phase flow in so many fields [22]. Heat

exchangers can be classified according to following criteria shown in Figure 11.

11

12

Figure 11: Heat exchangers classifications [23]

As previously discussed, for the aircraft industry a PHE heat exchanger is

typically utilized to address the various application requirements, therefore a PHE heat

13

exchanger with a typical offset strip- fin (OSF) configuration is used for this research. As

shown in Figure 9, the OSF causes the boundary layer to be recreated after every couple

of strips. In addition, the OSF design causes the flow to be unsteady. Unsteadiness in the

flow will expedite the transition to turbulent flow which enhances heat transfer rate [23].

 It is obvious the importance of understanding two phase mode and analyzing its

characteristics [19]. The first step requires coming up with a suitable correlation of the

heat transfer coefficient. The initial attempts to correlate heat transfer coefficient were for

flow in tubes, but for single phase flow only. Dittus and Boelter, Incropera and Dewitt,

and Gnielinski arrived at the following equations to find Nusselt number used to calculate

heat transfer coefficient. Their three equations respectively are:

 Nu = 0.023 𝑅𝑒0.8 𝑃𝑟0.4 (1)

 Nu = 0.023 𝑅𝑒0.8 𝑃𝑟0.4 (
𝜇𝑚

𝜇𝑤𝑎𝑙𝑙
)0.14 (2)

Nu =
ζ 8⁄ (Re – 1000) Pr

12.7 √ζ 8⁄ (𝑃𝑟2 3⁄ −1)+1.07

(3)

 where 𝜁 = (0.79 ln(𝑅𝑒) − 1.64)−2 (4)

Various studies have been made to obtain suitable correlation of two- phase flow

heat transfer coefficient in plate heat exchangers with Kandlikar proposing the best

correlation (17% error) [24]. A fluid dependent parameter (correction factor [25]) is

included in this equation in addition to the convective and boiling number. Table 3 lists

values of the fluid dependent parameter for various types of fluids in copper and brass

tubes.

14

Table 3: Fluid dependent parameter for various types of fluids in copper and brass tubes

[25]

ref Fluid Fluid dependent parameter

1. Water 1

2. R-11 1.30

3. R-12 1.50

4. R-13B1 1.31

5. R-22 2.20

6. R-113 1.30

7. R-114 1.24

8. R-124 1.9

9. R-134a 1.63

10. R-152a 1.10

It is interesting to note that for stainless-steel , the fluid dependent parameter is 1 for all

fluids [26].

15

MATHEMATICAL MODELING

A physics based model of a two-phase flow heat exchanger has been developed. The

model was developed in the MATLAB/Simulink software environment. Various

assumptions have been made in this model. The main characteristics of this model are as

follows:

 One dimensional flow

 Indirect contact type (not mixing)

 Two fluids used; kerosene/ jet fuel (cold side) and R134a (hot side)

 Compact surface (β ≥ 700 𝑚2/ 𝑚3)

 Extended surface (plate fin) heat exchangers

 Single pass (counter flow)

 Single- phase convection for kerosene and two-phase convection for R134a

 Process function is as condensers

Figure 12 illustrates the geometry of the heat exchanger modeled.

Figure 12: Offset strip fin heat exchanger geometry [27]

16

Table 4 lists the mass flow rate and temperature of the two fluids used in this research.

Table 4: Mass flow rate and temperature for both sides

ref side �̇� (kg/sec) Temperature (k)

1. Cold 1 280

2. Hot 1.5 360

The model is developed such that the heat exchanger could be made from one of the three

materials; Stainless Steel 316, Copper, or Aluminum. Table 5 lists the material

characteristics for each of these metals.

Table 5: Cp, rho, and k for SS-316, Cu, and Al

ref Material Cp (J/kg- k) (kg/𝒎𝟑) k (w/m- k)

1. Stainless steel- 316 502 8027 16.26

2. Aluminum 896 2707 220

3. Copper 380 8954 386

A basic diagram of the heat exchanger model is shown in Figure 13. The model uses one

node to model the flow from inlet to the exit of each fluid.

Figure 13: Diagram of the heat exchanger model

The assumptions made in this model are:

17

 Adiabatic system (heat in and heat out are zero)

 Kinetic and potential energy are negligible

 Linear interpolation between pressure lines inside the dome

Primarily, this model consists of four subsystems. The subsystems are:

• Cold balance

• Hot balance

• Heat exchanger balance

• Exergy analysis

To investigate these subsystems, each subsystem will be studied discretely to

understand the input and output parameters.

Cold Subsystem Balance

This subsystem simply takes care of the kerosene/ jet fuel analysis. In general, it

is made up of a subsystem to calculate the fanning friction factor, a subsystem to compute

the pressure drop, and a subsystem to calculate the energy balance analysis. For this

purpose, Manglik and Bergles correlations are used with the following equations [28].

f = 9.6243*𝑅𝑒−0.7422*𝛼−0.1858*𝛿0.3053*𝛾−0.2859 * (1 + 7.669 ∗ 10−8 ∗

𝑅𝑒4.429 ∗ 𝛼0.92 ∗ 𝛿3.787 ∗ 𝛾0.238)0.1

(5)

 𝐷ℎ =
4𝑠ℎ𝑙

2(𝑠𝑙+ℎ𝑙+𝑡ℎ)+𝑡𝑠
 (6)

 Re =
ṁ∗ 𝐷ℎ

𝜇∗ 𝐴𝑐
 (7)

 ∆P =
𝑓

2
 *

𝐿

𝐷ℎ
 *

1

𝜌
 * (

�̇�

𝐴𝑐
) 2 (8)

18

Applying an energy balance for the kerosene will allow the outlet temperature to be

calculated, utilizing the following equations:

dE

dt
 = Q̇+ ṁ*(hin - hout) (9)

dE

dt
 = m * cv *

dT

dt
 (10)

The left-hand side of Equation 10 is the time rate of change of energy which equals the

time rate of change in internal energy only because the kinetic and potential energy are

negligible.

Recalling cp and cv for incompressible fluids are identical, so using either cp or cv in (10)

wouldn’t affect the result. By integrating the
dT

dt
 term, the outlet kerosene temperature is

determined. Equation (11) is used to calculate the rate of entropy change for kerosene.

dS

dt
 =

m ∗ cp

T
 *

dT

dt
 (11)

Hot Subsystem Balance

The hot fluid, R134a, model is now presented. The following parameters are

calculated using the same equations as the cold subsystem: the fanning friction factor, the

hydraulic diameter, the pressure drop, and the energy balance models use the same

equations as the cold subsystem balance. However, the outcome of the energy balance is

the internal energy not the temperature. Using the thermodynamic definition of enthalpy

(Eqn. 12), the model formulated an enthalpy- based model.

 ℎ = 𝑢 + 𝑝𝑣 (12)

Many different pressure lines have been selected to approximate the

thermodynamic properties. Hence, 66.19, 132.8, 243.5, 414.9, and 665.8 kPa have been

used to get specific volume, density, enthalpy, enthalpy of evaporation, internal energy,

19

temperature, quality, specific heat, dynamic viscosity, thermal conductivity, and entropy

for R134a. Appendix A contains a list of the lookup tables used in the model. The lookup

tables have been determined using EES. Various pressure lines have been taken to

diminish errors. But, errors still exist because the assumption of a linear interpolation is

not always valid. In addition, some thermodynamic properties cannot be determined

directly inside the dome. Dynamic viscosity, specific heat, and thermal conductivity are

examples of these properties. To address this problem, the following equations are used

[29].

 𝜇𝑇𝑃 = 𝜇𝑙 + 𝑥 (𝜇𝐺 − 𝜇𝑙) (13)

 𝑐𝑝𝑇𝑃 = 𝑐𝑝𝑙 + 𝑥 (𝑐𝑝𝐺 − 𝑐𝑝𝑙) (14)

 𝑘𝑇𝑃 = 𝑘𝑙 + 𝑥 (𝑘𝐺 − 𝑘𝑙) (15)

Utilizing Equations (13) - (15), the respective properties are easily calculated.

Heat Exchanger Subsystem

From the previous subsystems, temperature distributions for kerosene and R134a

are known to use in the heat exchanger calculations. This subsystem will be divided into

two parts.

Part 1: Kerosene heat transfer coefficient

Part 2: R134a heat transfer coefficient or two-phase flow heat exchanger

Initially, the Prandtl and Nusselt number, heat transfer equations are used to implement

these calculations.

 Pr =
μ cp

k
 (16)

 h =
𝑁𝑢 𝑘

𝐷ℎ
 (17)

For part 1, one would use (Eqn. 3) to compute Nusselt number using the Prandtl number.

Then, utilizing (Eqn. 17) the heat transfer coefficient is calculated. Note, the dynamic

20

viscosity varies according to temperature. This variation is handled via a lookup table

(Appendix A). Next, heat transfer rate is calculated by

 𝑄𝑐 = ℎ𝑐 𝐴𝑠 (𝑇𝐻𝑋 − 𝑇𝑐) (18)

For part 2, since R134a enters the heat exchanger as superheated vapor, there are three

regions R134a could reach because of condensation. In other words, the amount of heat

transferred from R134a to kerosene will determine the phase of refrigerant at exit.

Therefore, there are three states R134a could exit the heat exchanger.

 Vapor

 Saturated mixture

 Liquid

In such cases, three simulation models have been created to address this issue. If

R134a comes out in one phase (vapor or liquid), then (Eqn. 3) is used in the model.

However, for the saturated mixture (liquid +vapor), a two- phase heat transfer coefficient

correlation proposed by Kandlikar is used. The basis for that comparison depends on

quality, which specifies the state of the refrigerant. This is modeled using a Simulink

“State flow logic”. The advantage of state flow use is making logic, much cleaner,

simpler, and more maintainable. Hence, transition between states would be easier by state

flow logic. Furthermore, ability to see the transition is available for any values of quality.

Hence, the condition placed is that if x ≥ 1, the Nusselt number at vapor phase would be

implemented. While if 0 < x <1, the two- phase heat transfer coefficient would be

computed. Otherwise, x = 0, then, the Nusselt number at liquid phase would be

calculated. The next equations would be used to execute the model.

21

 ℎ𝑇𝑃 = [(1.183744 𝐶𝑜−0.3 + 225.5474 𝐵𝑜2.8 𝐹𝑓𝑙)] (1 − 𝑥)0.003 ℎ𝑙 (19)

 Co = [
𝑟ℎ𝑜𝐺

𝑟ℎ𝑜𝑙
]

0.5

 * [
1−𝑥

𝑥
]

0.8

 (20)

 Bo =
𝑞′′

G∗ ℎ𝑙𝐺
 (21)

Once h has been calculated, finding the heat transfer rate is straightforward. Equation

(22) is used.

 𝑄ℎ = ℎ 𝐴𝑠 (𝑇ℎ − 𝑇𝐻𝑋) (22)

Now, the magnitude of Q for both kerosene and R134a is known. By applying an energy

balance on the heat exchanger material, the heat exchanger temperature, 𝑇𝐻𝑋, is

calculated by integrating (Eqn. 24).

 𝑄𝐻𝑋 = 𝑄𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑛𝑡 + 𝑄𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 (23)

𝑑𝑇

𝑑𝑡
 =

𝑄𝐻𝑋

𝑚 𝑐𝑝
 (24)

Exergy Analysis Subsystem

An exergy model of the two-phase heat exchanger is developed for future

research where the heat exchanger model is incorporated with other component models to

model a more complex system like an aircraft. An exergy analysis is consistent with the

2nd law of thermodynamics. The model is consistent with the previous heat exchanger

model based on the 1st law of thermodynamics. The two-phase heat exchanger will be

divided into three parts, the hot side, cold side, and heat exchanger materials.

The appropriate exergy equations as follows.

 𝑚𝑐
𝑐𝑝𝑐

𝑇𝑐

𝑑𝑇

𝑑𝑡
 =

−�̇�𝑐

𝑇𝐻𝑋
 + ṁ (𝑠𝑖𝑛,𝑐 - 𝑠𝑜𝑢𝑡,𝑐) + �̇�𝑖𝑟𝑟,𝑐 (25)

22

 𝑚ℎ
𝑐𝑝ℎ

𝑇ℎ

𝑑𝑇

𝑑𝑡
 =

− �̇�ℎ

𝑇𝐻𝑋
 + ṁ (𝑠𝑖𝑛,ℎ - 𝑠𝑜𝑢𝑡,ℎ) + �̇�𝑖𝑟𝑟,ℎ (26)

 𝑚𝐻𝑋
𝑐𝑝𝐻𝑋

𝑇𝐻𝑋

𝑑𝑇

𝑑𝑡
 =

�̇�𝑐+�̇�ℎ

𝑇𝐻𝑋
 + �̇�𝑖𝑟𝑟,𝐻𝑋 (27)

 �̇� = 𝑇𝑜 [�̇�𝑖𝑟𝑟,𝐻𝑋 + �̇�𝑖𝑟𝑟,ℎ + �̇�𝑖𝑟𝑟,𝑐] (28)

�̇� = 𝑇𝑜 [𝑚𝐻𝑋
𝑐𝑝𝐻𝑋

𝑇𝐻𝑋

𝑑𝑇

𝑑𝑡
 + 𝑚ℎ

𝑐𝑝ℎ

𝑇ℎ

𝑑𝑇

𝑑𝑡
 - ṁ (𝑠𝑖𝑛,ℎ - 𝑠𝑜𝑢𝑡,ℎ) + 𝑚𝑐

𝑐𝑝𝑐

𝑇𝑐

𝑑𝑇

𝑑𝑡
 - ṁ

(𝑠𝑖𝑛,𝑐 - 𝑠𝑜𝑢𝑡,𝑐)]

(29)

For the R134a analysis, a lookup table (appendix A) is used to find the entropy.

Combining all of the various subsystem models together results in the complete two-

phase heat exchanger model shown in Figure 14.

23

Figure 14: The whole heat exchanger simulation model

24

RESULTS

Transient analysis of a two-phase heat exchanger is critical to managing the

thermal loads on next generation aircraft especially the NASA N3-X concept vehicle. A

step change is typically a limiting transient input. Therefore, a step change in both

pressure and enthalpy will be initially investigated to define the limits of the model. The

overall duration of the simulation will be 6 seconds with a time step of 10-6 seconds. A

simulation time step of 10-4 seconds is stable but to ensure model stability a time step two

orders of magnitude lower was used for all of the results presented. The pressure step

change is from 650 to 555 kPa and the enthalpy step change is from 350 to 300 kJ/kg.

Pressure Perturbation

A step change in the heat exchanger pressure for the cold side is presented. Figure 15

shows the pressure step change for R134a from 650 to 555 kPa. The enthalpy of the

R134a is shown in Figure 16. The enthalpy of the R134a is constant as the pressure is

changed.

Figure 15: Hot side (R134a) pressure step change

25

Figure 16: Hot side (R134a) enthalpy with pressure step change

The kerosene temperature out of the heat exchanger is 282.3 K before the step change in

R134a pressure, while 𝑇𝑐,𝑜𝑢𝑡 is 281.8 K after the pressure step changes. Therefore,

dropping the refrigerant pressure results in a decrease in kerosene temperature out of the

heat exchanger of 0.5 °K. The reduction in operating pressure of the condensing heat

exchanger reduces the saturation temperature of the refrigerant, which in turn reduces the

amount of heat rejected from the refrigerant to kerosene through the heat exchanger.

Figure 17: Cold flow (kerosene) temperature out with pressure step change

26

The effect of the step change in pressure of the R134a on the R134a temperature is shown

in Figure 18. The temperature out decreases due to the change in saturation temperature

caused by the drop in pressure. As expected, a step decrease in the pressure of the R134a

will affect the R134a temperature (𝑇ℎ,𝑜𝑢𝑡) directly. In the steady- state regions, when the

pressure is 650 kPa, 𝑇ℎ,𝑜𝑢𝑡 is 297 K, while at 555 kPa, 𝑇ℎ,𝑜𝑢𝑡 is 292 K, which is due to the

change in saturation pressure and temperature. The transient response predicted by the

model between the two steady state values is of significant interest. Note: the temperature

is calculated using pressure and internal energy through a lookup table. The model

predicts the transient change to occur over 0.000001 seconds as result of the sudden

change in pressure. This is due to the temperature being a non-dynamic state in the

model. With respect to the conservation of energy, the internal energy is in a dynamic

state in the model. Therefore, the transient response is calculated for temperature is a

result of the step change in pressure. The model is capturing some trends in the transient

region of the two- phase fluid. The initial response of over 0.1 seconds is driven by the

internal energy of the mass in the control volume. The slower response is due the

thermal equilibrium of the heat exchanger temperatures. Will the refrigerant temperature

actually change to 292 K this quickly as shown? If not, how much? Experimentation and

further analysis at the molecular level is needed to determine non-equilibrium physics of

the fluid. Figure 19 presents the response of the heat exchanger material temperature to

the step change. The temperature of the heat exchanger material is a dynamic state and

the step change results in an appropriate first order response.

27

Figure 18: Hot flow (R 134a) temperature out with pressure step change

Figure 19: Heat exchanger material temperature with a pressure change

Figure 20 shows the heat transfer coefficient of kerosene, which only changes slightly

due to the fluid properties changing with temperature.

28

Figure 20: Cold flow (kerosene) heat transfer coefficient, ℎ𝑐, with pressure step change

On the contrary, the heat transfer coefficient of the two- phase refrigerant, ℎ𝑇𝑃

changes significantly with the pressure drop, Figure 21. Table 6 provides the steady- state

values, which are nearly twice. This reinforces the idea of rapid pressure change

approach for achieving a rapid thermal response to a transient heat load.

Table 6: Steady state hot side heat transfer coefficient (hTP) with pressure step change

Ref Pressure (kPa) 𝒉𝑻𝑷 (w/𝒎𝟐 − 𝒌)

1. 650 3140

2. 555 4360

Figure 22 highlights the dependency of the quality on the pressure (as the pressure

is decreased because the step change; the quality quickly increases). Hence, the quality is

0.6241 at a pressure of 650 kPa, while at a pressure of 555 kPa, the quality is 0.8023. As

the pressure drops, R134a quality increases for the same value of internal energy. The

quality does not change instantly with the pressure, but starts to increase as the internal

energy of the fluid increases. The initial response takes approximately 0.01 seconds.

The two- phase flow heat transfer coefficient is influenced significantly by the value of

the quality, therefore, the heat transfer coefficient (ℎ𝑇𝑃) will increase even if temperature

29

decreases. Basically, ℎ𝑇𝑃 is a function of temperature and quality. The quality has a

slight overshoot. The internal energy is not in equilibrium and it increases as the

refrigerant is evaporating instead of condensing during the transient region. The quality

reaches a steady-state value as the temperature of the heat exchanger settles to 285.6 K.

This takes approximately 0.2 seconds.

Figure 23 shows how much heat is transferred from the hot side (R134a) through the heat

exchanger material into the cold side (Kerosene). The cold side heat transfer, 𝑄𝑐,

decreases because ℎ𝑐 decreases and the temperature difference between the two flows

decreases.

Figure 21: Hot side (R134a) heat transfer coefficient (ℎ𝑇𝑃) with pressure step change

Figure 22: Hot side (R134a) quality with pressure step change

30

Figure 23: Heat transferred to the cold fluid (Kerosene) with pressure step change

Figure 24: Heat transferred from hot side (R134a) with pressure step change

The heat transfer on the hot side (R134a) increases initially as the quality increases

resulting in evaporation instead of condensation, but decreases with the reduction of

quality as the heat exchanger becomes in thermal equilibrium. Once equilibrium in the

31

quality is reached, heat leaves the refrigerant resulting in condensing of the refrigerant

once again. The steady state values of 𝑄ℎ for the respective pressures of 650 and 555 kPa

are presented in Table 7. Even though the heat transfer coefficient increases for the

refrigerant the overall heat transfer decreases. This is because the temperature difference

between the heat exchanger and refrigerant decreases from 10.2 K to 6.6 K. Table 7

demonstrates 𝑄ℎ with respect to pressure 650 kPa and 555 kPa.

Table 7: Steady state Qh

Ref Pressure (kPa) 𝑸𝒉 (w)

1. 650 116000

2. 250 91700

Figure 25:Total entropy generated with pressure step change

The steady state regions in Figure 25 show that entropy generated equals to 798 (w/k) at

pressure 650 kPa, but at pressure of 555 kPa, �̇�𝑔𝑒𝑛 = 632 (w/k). Figure 26 presents the

enthalpy out for R134a. R134a enthalpy out at 650 kPa is 184 kJ/kg. while at 555 kPa it

is 208 kJ/kg.

32

Figure 26: Hot side (R134a) enthalpy out with pressure step change

The step change in pressure results in a sudden change in enthalpy of the fluid. The

sudden step in enthalpy follows the 0.01 second response in quality. Therefore, there are

two time scales in the quality and enthalpy results. The time constants are from the

equilibrium in the fluid and the heat exchanger temperatures.

Enthalpy Perturbation

The two-phase heat exchanger model will be used to analyze a step change in enthalpy.

The hot side enthalpy for the R134a is reduced from 350 kJ/kg to 300 kJ/kg by a step

change, Figure 27. This change in enthalpy does not result in any change of the hot side

pressure, Figure 28. The effect of the enthalpy step change on the cold side (Kerosene)

temperature out is shown in Figure 29. It is clear from this figure that the impact of an

enthalpy step change is similar to the pressure step change effect. Hence, both cause a

decrease in the cold side (Kerosene) temperature out. The steady state cold side

temperatures are given in Table 8.

33

Figure 27: Hot side (R134a) enthalpy step change

Figure 28: Hot side (R134a) pressure with enthalpy step change

Figure 29: Cold flow (Kerosene) temperature out with enthalpy step change

34

Table 8: Steady state Tc, out

ref Enthalpy (kJ/kg) 𝑇𝑐,𝑜𝑢𝑡 (k)

1. 350 282.5

2. 300 282.2

Since the pressure has not changed, the hot side (R134a) temperature out will remain at

the saturated temperature as shown in Figure 30 as long as the quality is less than 1.0.

This means there will be no opportunity for any error in the hot side (R134a) temperature

out calculations because pressure is constant and the internal energy is dynamically

calculated with a step change in enthalpy.

Figure 30: Hot side (R134a) temperature out with enthalpy step change

35

Figure 31: Heat exchanger material temperature with enthalpy step change

The enthalpy step change results in a slight change in the heat exchanger material

temperature as shown in Figure 31. The heat exchanger material temperature shows a

first order response for the enthalpy perturbation, which is similar to the pressure

perturbation response in the previous section.

Figure 32: Hot side (R134a) heat transfer coefficient, hTP, with enthalpy step change

36

Figure 33: Hot side (R134a) quality with enthalpy step change

Figures 32 and 33 illustrate the convection coefficient and quality response of the hot side

refrigerant (R134a). As enthalpy decreases, the quality will decrease. Since ℎ𝑇𝑃 is related

to the quality, therefore ℎ𝑇𝑃 will also decrease. Figure 34 shows the heat transferred to

the cold side (Kerosene) 𝑄𝑐, which is reduced due to the decrease in temperature

difference between the heat exchanger and Kerosene. Figure 35 presents the heat

transferred from the hot side (R134a) to the heat exchanger during the perturbation. There

are two different responses to the enthalpy step change. The step change in enthalpy

results in a near step change in the quality, which drives the heat transfer. The heat

exchanger thermal mass drives a slower response time. The temperature difference

between the R134a and heat exchanger material is increasing because 𝑇ℎ is constant at

saturated pressure and 𝑇𝐻𝑋 decreases. So, the difference is larger which explains 𝑄ℎ gets

larger slowly over time.

37

Figure 34: Heat transferred to the cold fluid (Kerosene) with enthalpy step change

Figure 35: Heat transferred from hot side (R134a) with enthalpy step change

Now, the entropy variation is analyzed. The change in entropy is based on the enthalpy

step change. A non- physical instantaneous change in entropy is predicted as shown in

Figure 36 at the instant the enthalpy is changed. This happens because of the

instantaneous change of a non-dynamic parameter. Table 9 presents the steady- state

entropy values.

38

Figure 36: Total entropy generated with enthalpy step change

Table 9: Steady state total entropy generated

ref Enthalpy (kJ/kg) Entropy generated (w/k)

1. 350 846

2. 300 771

Realistic Pressure Response

Previously, an ideal step change in pressure was investigated. In this section, a transfer

function is employed to emulate the response time of a plenum volume and a valve for

perturbing the pressure of the system. The ideal input pressure would be a step change

but a first order response is more realistic. The initial pressure is 650 kPa, while the final

pressure is 555 kPa. This investigation will provide a more realistic test of the two-phase

flow heat exchanger model using different time constants. Finally, a comparison between

the transfer function results and the previous pressure step change results can be made.

The sample time has been taken as 0.00001sec. To approximate the volume for a given

39

time constant, the ideal gas equation of state is used for simplicity even though R134a

does not behave as an ideal gas.

 𝑃 𝑉 = 𝑚 𝑅 𝑇 (30)

is transformed to the following form

 𝑃 =
𝑚 𝑅 𝑇

𝑉
 (31)

Taking the derivative of Eqn. (31) with respect to time results in

𝑑𝑃

𝑑𝑡
=

𝑅 𝑇

𝑉

𝑑𝑚

𝑑𝑡
 (32)

where the term [
𝑉

𝑅 𝑇
] represents the time constant. To calculate the time constant, the

temperature (T) is taken as 298 k and R for R134a is 81.5
𝐽

𝑘𝑔−𝑘
. Note, that Eqn. (32)

assumes temperature is not changing with time. This does introduce some additional error

in the approximation of the time constant for a given volume and temperature. Two

different time constants were analyzed to evaluate a range of approximate volumes.

From Figure 19 in pressure step change section the heat exchanger mass time constant is

0.3 seconds which will be constant for both time constants 0.1 and 0.01 seconds.

Time constant = 0.1 sec.

Figure 37 shows the hot side (R134a) pressure change from 650 kPa to 555 kPa as a first

order response with a time constant of 0.1 seconds. In this case, the plenum volume is

approximately 2.4 𝑚3.

40

Figure 37: Hot side (R134a) pressure response for a time constant of 0.1sec

Figure 38 plots the hot side (R134a) temperature out during the pressure response for a

0.1 time constant. The hot side (R134a) temperature changes simultaneously with respect

to the pressure changes if the hot side (R134a) quality is less than 1. Therefore, Th,out

decreases as the pressure decreases from 650 kPa to 555 kPa.

Figure 38: Hot side (R134a) temperature out for a time constant of 0.1sec

Figure 39 shows the hot side (R134a) quality during the pressure response for a 0.1 time

constant. Since the pressure decreases, the quality increases as stated earlier. In the time

range (1~1.3) seconds, the hot side (R134a) quality increases due to the decrease in the

refrigerant pressure. Next, the quality decreases after 1.3 seconds because the hot side

41

(R134a) heat transferred increases. The change in equilibrium of the fluid is more evident

in Figure 41.

Figure 39: Hot side (R134a) quality for a time constant of 0.1sec

Figure 40 shows the heat transferred from the hot side refrigerant during the pressure

response for a transfer function with a 0.1 sec time constant. The heat transfer rate does

not have the sudden step change as in the previous section, but still has the undershoot

due to the changing quality of the fluid as it reaches a new equilibrium.

Figure 40: Heat transferred from hot side (R134a) for a time constant of 0.1sec

42

The temperature difference between the hot side (R134a) temperature and the heat

exchanger material temperature decreases by time during the transient region as shown in

Figure 41 because Th,out decreases as a result of pressure decreases.

Figure 41: Temperature difference between Hot side (R134a) and the heat exchanger

material for a time constant of 0.1sec

Figure 42 shows the total entropy generated during the pressure response for a transfer

function with 0.1 sec time constant. Since the total entropy generated is a function of the

temperatures and the latter decrease due to the pressure drop, the total entropy generated

decreases.

Figure 42: Total entropy generated for a transfer function with a time constant of 0.1sec

43

After running the model with a specified time constant (0.1 sec), a comparison to the step

change results is done. All figures of the results are identical except for pressure, Th,out,

Qh, and total entropy generated results. Therefore, a 0.1 second time constant with a first

order response does not introduce any issues with the model. The approximate time

constant of the heat exchanger temperature is 0.3 seconds. With the plenum volume time

constant of 0.1 seconds the heat exchanger-to-plenum volume ratio of time constants is

approximately 3-to-1. This ratio of time constants results in normal operation of the heat

exchanger, but larger ratios of time constants result in different behavior in heat transfer

as is presented in the next section.

Time constant = 0.01 sec.

Figure 43 shows the hot side (R134a) pressure change from 650 kPa to 555 kPa as a first

order response with a time constant of 0.01 seconds. The plenum volume for this time

constant is approximately 0.24 𝑚3. The pressure response is relatively faster and equates

to a 30- to- 1 ratio for heat exchanger temperature to plenum volume time constant.

Figure 43: Hot side (R134a) pressure response for a time constant of 0.01sec

44

Figure 44 shows the hot side (R134a) temperature out during the pressure change for a

0.01 second transfer function. As expected, the hot side (R134a) temperature direction is

similar to the hot side (R134a) pressure as long as the refrigerant quality is less than one.

The results of the Th,out for 0.1 time constant are identical to the results of the Th,out for

0.01 time constant. Therefore, selecting different time constants will not affect the results.

Figure 44: Hot side (R134a) temperature out for a time constant of 0.01sec

Figure 45 shows the temperature difference between the hot side (R134a) and the heat

exchanger materials. In the time range (1~ 1.04) seconds, the temperature difference

decreases due to the hot side (R134a) temperature decreases because the pressure

decreases. After 1.04 seconds, the temperature difference increases due to the decrease in

the heat exchanger material temperature.

45

Figure 45: Temperature difference between Hot side (R134a) and the heat exchanger

material for a time constant of 0.01sec

Figure 46 shows the hot side (R134a) quality during the pressure response for a 0.01 time

constant. Again, once the pressure decreases, the quality increases and vice versa. The

response of the hot side (R134a) quality is quicker for this time constant than for 0.1 time

constant. Hence, in one second, the refrigerant quality approximately reaches the

equilibrium state.

Figure 46: Hot side (R134a) quality for a time constant of 0.01sec

46

Figure 47 shows the heat transferred from the refrigerant during a 0.01 second time

constant transfer function- pressure change. The hot side (R134a) heat transferred in this

Figure is similar to hot side (R134a) heat transferred in the pressure step change. Hence,

there is a region in which the evaporation is occurring instead of condensation. In the

time range (1~ 1.04) seconds, the hot side (R134a) heat transferred decreases as the Th,out

decreases due to the pressure decreases Next, after 1.04 seconds, the refrigerant heat

transferred increases according to the temperature difference increase in that range of

time.

Figure 47: Heat transferred from hot side (R134a) for a time constant of 0.01sec

Figure 48 represents the total entropy generated during time constant of 0.01 seconds first

order pressure change.

47

Figure 48: Total entropy generated for a time constant of 0.01sec

48

CONCLUSION

A stainless-steel two- phase heat exchanger has been modeled transiently. The

numerical simulation tool (MATLAB/SIMULINK) was used to study and understand the

influence of input perturbations on the operation of the heat exchanger. Two working

fluids were selected; Kerosene and R134a.

The heat exchanger model demonstrates its ability to respond quickly to two

different perturbations; pressure and enthalpy in very short period of time. Therefore, the

results prove manipulation of pressure will dramatically change the heat transfer of

R134a. The pressure drop results in a decrease in; kerosene temperature out, R134a

temperature out, heat exchanger temperature, kerosene heat transfer coefficient, heat

transferred to kerosene, heat transferred from R134a, and the total entropy generated. In

turn, two- phase heat transfer coefficient, quality, and R134a enthalpy out increase as a

result of the pressure drop. In particular, ℎ𝑇𝑃 will be increased approximately twice.

There are two time constants of interest. The smaller time constant of the refrigerant

fluid effected the fluid quality, enthalpy and heat transfer. Pressure manipulation of a

refrigerant provides the opportunity to quickly change the fluid properties and overall

heat transfer rate much faster than manipulating the inlet enthalpy or temperature. As

shown in the enthalpy perturbation, the fluid temperature does not change. Pressure

manipulation provides a rapid capability of manipulating both the heat transfer rate and

the temperature of the refrigerant fluid. If a thermal system is designed with the ability to

manipulate pressure, then the heat transfer rate may be actively rapidly controlled.

49

APPENDICES

APPENDIX A

In the Simulink model, it is very necessary to set up many lookup tables. These

tables facilitate computing outcomes corresponding to incomes by linear interpolation

procedure. There are basically various software/ programs could be used to do this task.

However, EES program has been chosen to create these tables.

50

Table 10: Dynamic viscosity for kerosene versus temperature

51

Table 11: Dynamic viscosity for R-134a @ different pressure lines versus enthalpy

52

Table 12: Density for R-134a @ different pressure lines versus enthalpy versus enthalpy

53

Table 13: Specific heat for R134a @ different pressure lines versus enthalpy

54

Table 14: Thermal conductivity for R134a @ different pressure lines versus enthalpy

55

Table 15: Temperature for R134a @ different pressure lines versus enthalpy

56

Table 16: Specific volume for R134a vs. internal energy @ different pressure lines

57

Table 17: Specific heat for R-134a @ liquid phase versus sat. temperature

58

Table 18: Dynamic viscosity for R-134a @ liquid phase versus sat. temperature

59

Table 19: Thermal conductivity for R-134a @ liquid phase versus sat. temperature

60

Table 20: Density for R-134a @ liquid phase versus sat. temperature

61

Table 21: Specific heat for R-134a @ vapor sat. phase versus sat. temperature

62

Table 22: Dynamic viscosity for R-134a @ vapor sat. phase versus temperature

63

Table 23: Thermal conductivity for R-134a @ vapor sat. phase versus sat. temperature

64

Table 24: Density for R-134a @ vapor sat. line versus sat. temperature

65

Table 25: Enthalpy of evaporation for R-134a. versus sat. temperature

66

Table 26: Entropy for R134a @ different pressure lines versus enthalpy

67

APPENDIX B

In this appendix, MATLAB files will be presented to set the foundation of

creating the Simulink model. These files are doing four major tasks. First, setting the

thermodynamic properties (specific heat, density, thermal conductivity, and dynamic

viscosity) for fluids used in the heat exchanger model which are kerosene and R-134a.

Second, initializing dimensions and size of the heat exchanger. Third, exporting all

properties into the Simulink model mask. Therefore, the model will be ready to process

all these data and find the results. Finally, plot outcomes with respect to time

The code below is written to set the thermodynamic properties.

function [cp ,rho, k, mu, muT] = fluidproperties(val)

%val = input ('give me the name of fluid ')

 %%% Fluid properties,

 % Specific heat, kJ/kg/K [in polyval() form]

 % Density, kg/m^3 [in polyval() form]

 % Thermal conductivity, W/m/K [in polyval() form]

 % Dynamic viscosity, kg/m/s [in interp1() form]

 % Temperatures for mu, K [in interp1() form]

 switch val

 case {'PAO'}

 cp = [3.7749e-3 1.02255];

 rho = [1.5859e-8 -2.6056e-5 1.4797e-2 -4.37867 1346.36];

 k = [5.8823e-5 1.5411e-1];

 mu = [0.90889, 0.11814, 0.030046, 0.011483, 0.0056626,

0.003295, 0.0021441, 0.0015094, 0.0011254, 0.0008761, 0.0008275];

 muT = [220, 240, 260, 280, 300, 320, 340, 360, 380, 400,

405];

68

 case {'JP8'}

 cp = [4.43359e-3 6.48908e-1];

 rho = [-7.23225e-1 1.02036e3];

 k = [-1.799e-4 1.67663e-1];

 mu = [0.0137298, 0.00807381, 0.00515649, 0.00360287,

0.00265331, 0.00205681, 0.00162952, 0.00131464, 0.00109445,

0.000937041, 0.000804244, 0.000701833, 0.000617844, 0.000543122,

0.000485191, 0.000435239, 0.000388231, 0.000353682, 0.000321021,

0.000295718];

 muT = [222.778, 232.778, 242.778, 252.778, 262.778,

272.778, 282.778, 292.778, 302.778, 312.778, 322.778, 332.778, 342.778,

352.778, 362.778, 372.778, 382.778, 392.778, 402.778, 412.778];

 case {'AIR'}

 cp = [2.80023e-13 -1.0498e-9 1.38033e-6 -0.000535927

1.06747];

 rho = [2.09244e-16 -7.65474e-13 1.12524e-9 -8.51881e-7

0.000353846 -0.0793459 8.72074];

 k = [-3.6206e-14 9.9793e-11 -1.13283e-7 0.000118727 -

0.00171684];

 mu = [7.06e-6, 0.00001038, 0.00001336, 0.00001606,

0.0000172, 0.00001769, 0.00001853, 0.00001911, 0.00002002, 0.00002081,

0.00002177, 0.00002294, 0.00002682, 0.0000303, 0.00003349, 0.00003643,

0.00003918, 0.00004177];

 muT = [100, 150, 200, 250, 273, 283, 300, 313, 333, 350,

373, 400, 500, 600, 700, 800, 900, 1000];

 case {'H2O'}

 cp = [4.0871e-10 -5.9806e-7 3.37478e-4 -8.56835e-2

1.23546e1];

69

 rho = [-2.9681e-8 4.91535e-5 -3.25219e-2 9.18133

8.21792e1];

 k = [-2.98213e-11 5.47109e-8 -4.25128e-5 1.54729e-2 -

1.44067];

 mu = [0.001791, 0.001308, 0.001003, 0.0007977, 0.0006531,

0.0005471, 0.0004668, 0.0004044, 0.0003549, 0.000315, 0.0002822,

0.0001961, 0.0001494, 0.000121, 0.0001015];

 muT = [273.16, 283.15, 293.15, 303.15, 313.15, 323.15,

333.15, 343.15, 353.15, 363.15, 373.15, 413.15, 453.15, 493.15,

533.15];

 case {'Kerosene'}

 cp = [0 2.01];

 rho = [0 820];

 k = [0 0.15];

 mu = [0.004077 0.003377 0.002797 0.002317 0.001919 0.001589

0.001316 0.00109 0.0009025 0.0009025 0.0009025 0.0009025 0.0009025

0.0009025 0.0009025 0.0009025 0.0009025 0.0009025 0.0009025 0.0009025

];

 muT = [293 303 313 323 333 343 353 363 373 383 393 403 413

423 433 443 453 463 473 483];

 case {'R134a'} % these values are exact numbers because we need

to specify the exact number @ each internal energy value NOT in

polynomials format

 cp = [1264 1293 1263 1262 1262; 1217 1290 1295 1294

1293;1171 1243 1322 1332 1331;1124 1197 1276 1364 1376;1078 1150 1229

1317 1418;1031 1104 1183 1271 1373;985.1 1057 1137 1225 1327;938.6 1011

1090 1179 1281;892.2 964.5 1044 1133 1235;845.8 918.1 997.7 1087

1190;799.4 871.6 951.3 1041 1144;769 825.2 905 994.5 1098;802.9 826

869 948.3 1052;842.3 857 882.4 925 995.9;881.1 891.6 909.3 937.9

70

982.8;918.4 926.2 939.5 960.5 992.7;954 960.1 970.3 986.5 1011;987.8

992.7 1001 1014 1033;1020 1024 1031 1041 1057;1051 1054 1060 1069

1082].*1e-03;

 rho = [1403 1403 1404 1404 1405;36.99 560 1355 1356

1357;18.73 62.3 555.2 1306 1307;12.54 32.99 98.07 639.8 1254; 9.429

22.43 53.79 146.1 770.6; 7.553 16.99 37.05 82.47 208.3; 6.3 13.68 28.26

57.45 120.4; 5.403 11.44 22.84 44.08 84.68; 4.73 9.838 19.17 35.76

65.31; 4.206 8.627 16.51 30.08 53.14; 3.787 7.682 14.5 25.95 44.8;

3.413 6.923 12.93 22.83 38.72;3.051 6.196 11.59 20.37 34.1;2.777 5.621

10.46 18.25 30.33; 2.56 5.171 9.591 16.64 27.42; 2.383 4.806 8.893

15.37 25.18; 2.235 4.504 8.318 14.34 23.39; 2.109 4.247 7.834 13.47

21.92;2.001 4.026 7.419 12.74 20.68;1.906 3.833 7.058 12.1 19.61];

 k = [0.1083 0.1084 0.1084 0.1085 0.1087; 0.09905 0.1021

0.1024 0.1025 0.1027; 0.08978 0.0931 0.09566 0.09606 0.09626; 0.0805

0.08408 0.08694 0.089 0.08944; 0.07123 0.07506 0.07822 0.08062 0.08216;

0.06195 0.06605 0.06951 0.07224 0.07416; 0.05268 0.05703 0.06079

0.06386 0.06615; 0.0434 0.04801 0.05207 0.05548 0.05815; 0.03412 0.039

0.04335 0.0471 0.05014; 0.02485 0.02998 0.03463 0.03872 0.04214;

0.01557 0.02096 0.02591 0.03033 0.03413; 0.009281 0.01195 0.01719

0.02195 0.02613;0.01169 0.01194 0.01234 0.01357 0.01813; 0.01378

0.01396 0.01425 0.01471 0.01539; 0.01558 0.01572 0.01594 0.0163

0.01682; 0.01712 0.01723 0.01742 0.0177 0.01812; 0.01845 0.01854

0.01869 0.01892 0.01927;0.01957 0.01964 0.01977 0.01997 0.02026;

0.02051 0.02057 0.02068 0.02086 0.02111; 0.02129 0.02135 0.02144

0.02159 0.02182];

 mu = [0.0004305 0.0003462 0.0004317 0.0004328

0.0004345;0.0003913 0.0003438 0.0003411 0.000342 0.0003433;0.0003522

0.0003111 0.0002797 0.0002769 0.000278;0.000313 0.0002784 0.0002518

0.0002305 0.0002286;0.0002738 0.0002457 0.0002239 0.0002063 0.0001915;

71

0.0002347 0.0002129 0.000196 0.0001821 0.0001703;0.0001955 0.0001802

0.0001681 0.0001579 0.000149;0.0001564 0.0001475 0.0001402 0.0001337

0.0001277;0.0001172 0.0001148 0.0001123 0.0001095 0.0001065;0.00007803

0.00008212 0.00008439 0.00008534 0.00008522;0.00003887 0.00004941

0.00005649 0.00006114 0.00006396;0.000009796 0.00001671 0.00002859

0.00003695 0.00004269;0.00001082 0.0000109 0.00001104 0.00001275

0.00002143;0.00001179 0.00001185 0.00001196 0.00001212

0.00001239;0.00001271 0.00001276 0.00001284 0.00001297

0.00001318;0.00001359 0.00001363 0.00001369 0.0000138

0.00001398;0.00001442 0.00001446 0.00001451 0.00001461

0.00001476;0.00001522 0.00001525 0.0000153 0.00001539

0.00001552;0.00001599 0.00001602 0.00001607 0.00001614

0.00001626;0.00001674 0.00001676 0.0000168 0.00001687 0.00001698];

 muT = [6290 27012 47733 68455 89176 109898 130619 151341

172063 192784 213506 234227 254949 275671 296392 317114 337835 358557

379278 400000];

end

% disp (cp)

% disp (rho)

% disp(k)

% disp(mu)

% disp(muT)

end

The following code is written to initialize the dimensions and size of the heat exchanger.

function [parameter] = HXsize_v12(params,fluids,params2,material)

params = [1,1, 6.35,0.1, 0.9 ,0.83, 10, 6.35, 0.1, 0.9, 0.07]; %

numbers from simulink model

 %[1 , 0.83, 6.35,0.1, 0.9 ,0.83, 10.6, 6.35, 0.1, 0.9, 0.07]

72

params2 = [1 , 1.5 ,293, 360.3 , 32, 1]; % numbers from simulink

model

%HXsize(s1, h1, tf1, l1, t1, L, s2, h2, tf2, l2, t2) % %For Matlabs

optimization toolbox.

%This function written by Peter Weise determines the weight and

pressure

%drop of a compact heat exchanger based on its physical parameters and

%heat transfer characteristics. The methodology used is laid out in

the

%book "Compact Heat Exchangers: Selection, Design, and Operation" by

J.E.

%Hesselgreaves. Also see "Compact Heat Exchangers" by Kays and London.

 %%% Heat exchanger fixed parameters: The following parameters need to

be

%%% fixed for a given optimization trial. However, they can be varied.

%%% For example, the heat load varies from one heat exchanger to

another.

%%% Additionally, the fluids vary from one exchanger to another.

s1 = params(1)/1000; %

h1 = params(2)/1000; %

l1 = params(3)/1000; %

tf1 = params(4)/1000; %

t1 = params(5)/1000; %

s2 = params(6)/1000; % Only used for MATLAB optimization toolbox.

h2 = params(7)/1000; %

l2 = params(8)/1000; %

tf2 = params(9)/1000; %

t2 = params(10)/1000; %

L = params (11); %

73

fluids.ctype = get_param(gcb,'ctype');

fluids.htype = get_param(gcb,'htype');

fluid1 = fluids.ctype;

fluid2 = fluids.htype;

m_dot1 = params2(1); %(kg/s) cold flow rate

m_dot2 = params2(2); %(kg/s) hot flow rate

T_in1 = params2(3); %(K) inlet temperature. In the actual T2T

model, the inlet temperature will be based on downstream conditions and

accepted as an input.

T_in2 = params2(4); %(K) inlet temperature. See note above

Q_dot = params2(5); %(kW) heat load

%set_param(gcb, 'mdot1', m_dot1);

% set_param(gcb, 'mdot2', m_dot2);

% set_param(gcb, 'Tin1', T_in1);

% set_param(gcb, 'Tin2', T_in2);

% set_param(gcb, 'load', Q_dot);

eta = 0.7; %(N) fin efficiency

b1=h1+tf1;

b2=h2+tf2;

%% Material density,

%mat = get_param(gcb,'material');

%material = mat;

%rho_m = (kg/m^3) material density

switch material

 case {'Stainless steel - 316'}

 rho_m = 8027;

 case {'Aluminum'}

 rho_m = 2707;

 case {'Copper'}

74

 rho_m = 8954;

end

%% Solves for the properties of each fluid based on inlet

temperatures, steady state outlet temperatures and fluid property

correlations.

 [f1.cp, f1.rho, f1.k, f1.mu, f1.muT] = fluidproperties(fluid1);

 [f2.cp, f2.rho, f2.k, f2.mu, f2.muT] = fluidproperties(fluid2);

 b = 500 ; % pressure line

 a = 300000 ; % enthalpy

 %%% Specific heat

 cp1 = polyval(f1.cp,T_in1);

 % cp2 = polyval(f2.cp,T_in2);

 X = [66.19 132.8 243.5 414.9 665.8];

 Y = [6290 27012 47733 68455 89176 109898 130619 151341 172063

192784 213506 234227 254949 275671 296392 317114 337835 358557 379278

400000] ;

 Z_cp = [1264 1293 1263 1262 1262; 1217 1290 1295 1294 1293;1171

1243 1322 1332 1331;1124 1197 1276 1364 1376;1078 1150 1229 1317

1418;1031 1104 1183 1271 1373;985.1 1057 1137 1225 1327;938.6 1011 1090

1179 1281;892.2 964.5 1044 1133 1235;845.8 918.1 997.7 1087 1190;799.4

871.6 951.3 1041 1144;769 825.2 905 994.5 1098;802.9 826 869 948.3

1052;842.3 857 882.4 925 995.9;881.1 891.6 909.3 937.9 982.8;918.4

926.2 939.5 960.5 992.7;954 960.1 970.3 986.5 1011;987.8 992.7 1001

1014 1033;1020 1024 1031 1041 1057;1051 1054 1060 1069 1082].*1e-03;

 cp2 = interp2(X,Y,Z_cp,b,a);

 %%% Density

 rho1 = polyval(f1.rho,T_in1);

 % rho2 = polyval(f2.rho,T_in2);

75

 Z_rho= [1403 1403 1404 1404 1405;36.99 560 1355 1356 1357;18.73

62.3 555.2 1306 1307;12.54 32.99 98.07 639.8 1254; 9.429 22.43 53.79

146.1 770.6; 7.553 16.99 37.05 82.47 208.3; 6.3 13.68 28.26 57.45

120.4; 5.403 11.44 22.84 44.08 84.68; 4.73 9.838 19.17 35.76 65.31;

4.206 8.627 16.51 30.08 53.14; 3.787 7.682 14.5 25.95 44.8; 3.413 6.923

12.93 22.83 38.72;3.051 6.196 11.59 20.37 34.1;2.777 5.621 10.46 18.25

30.33; 2.56 5.171 9.591 16.64 27.42; 2.383 4.806 8.893 15.37 25.18;

2.235 4.504 8.318 14.34 23.39; 2.109 4.247 7.834 13.47 21.92;2.001

4.026 7.419 12.74 20.68;1.906 3.833 7.058 12.1 19.61];

 rho2 = interp2(X,Y,Z_rho,b,a);

 %%% Thermal Conductivity

 k1 = polyval(f1.k,T_in1);

 % k2 = polyval(f2.k,T_in2);

 Z_k = [0.1083 0.1084 0.1084 0.1085 0.1087; 0.09905 0.1021 0.1024

0.1025 0.1027; 0.08978 0.0931 0.09566 0.09606 0.09626; 0.0805 0.08408

0.08694 0.089 0.08944; 0.07123 0.07506 0.07822 0.08062 0.08216; 0.06195

0.06605 0.06951 0.07224 0.07416; 0.05268 0.05703 0.06079 0.06386

0.06615; 0.0434 0.04801 0.05207 0.05548 0.05815; 0.03412 0.039 0.04335

0.0471 0.05014; 0.02485 0.02998 0.03463 0.03872 0.04214; 0.01557

0.02096 0.02591 0.03033 0.03413; 0.009281 0.01195 0.01719 0.02195

0.02613;0.01169 0.01194 0.01234 0.01357 0.01813; 0.01378 0.01396

0.01425 0.01471 0.01539; 0.01558 0.01572 0.01594 0.0163 0.01682;

0.01712 0.01723 0.01742 0.0177 0.01812; 0.01845 0.01854 0.01869 0.01892

0.01927;0.01957 0.01964 0.01977 0.01997 0.02026; 0.02051 0.02057

0.02068 0.02086 0.02111; 0.02129 0.02135 0.02144 0.02159 0.02182];

 k2 = interp2(X,Y,Z_k,b,a);

 %%% Approximate outlet temperature

 T_out1 = T_in1 + Q_dot/(m_dot1*cp1);

 T_out2 = T_in2 - Q_dot/(m_dot2*cp2);

76

 %%% Dynamic Viscocity

 mu1 = interp1(f1.muT,f1.mu,(T_in1+T_out1)/2);

 % mu2 = interp1(f2.muT,f2.mu,(T_in2+T_out2)/2);

 Z_mu = [0.0004305 0.0003462 0.0004317 0.0004328

0.0004345;0.0003913 0.0003438 0.0003411 0.000342 0.0003433;0.0003522

0.0003111 0.0002797 0.0002769 0.000278;0.000313 0.0002784 0.0002518

0.0002305 0.0002286;0.0002738 0.0002457 0.0002239 0.0002063 0.0001915;

0.0002347 0.0002129 0.000196 0.0001821 0.0001703;0.0001955 0.0001802

0.0001681 0.0001579 0.000149;0.0001564 0.0001475 0.0001402 0.0001337

0.0001277;0.0001172 0.0001148 0.0001123 0.0001095 0.0001065;0.00007803

0.00008212 0.00008439 0.00008534 0.00008522;0.00003887 0.00004941

0.00005649 0.00006114 0.00006396;0.000009796 0.00001671 0.00002859

0.00003695 0.00004269;0.00001082 0.0000109 0.00001104 0.00001275

0.00002143;0.00001179 0.00001185 0.00001196 0.00001212

0.00001239;0.00001271 0.00001276 0.00001284 0.00001297

0.00001318;0.00001359 0.00001363 0.00001369 0.0000138

0.00001398;0.00001442 0.00001446 0.00001451 0.00001461

0.00001476;0.00001522 0.00001525 0.0000153 0.00001539

0.00001552;0.00001599 0.00001602 0.00001607 0.00001614

0.00001626;0.00001674 0.00001676 0.0000168 0.00001687 0.00001698];

 mu2 = interp2(X,Y,Z_mu,b,a);

%% Calculate important heat exchanger physical parameters

 parameter.dh1=(4*s1*h1*l1)/(2*(s1*l1+h1*l1+tf1*h1)+tf1*s1);

 parameter.dh2=(4*s2*h2*l2)/(2*(s2*l2+h2*l2+tf2*h2)+tf2*s2);

 sigma1=s1*(b1-tf1)/(s1+tf1)/(b1+t1); %porosity of side 1

 sigma2=s2*(b2-tf2)/(s2+tf2)/(b2+t2); %porosity of side 2

 alpha1=s1/h1; %various aspect ratios used in calculating j and f

 delta1=tf1/l1;

 gamma1=tf1/s1;

77

 alpha2=s2/h2;

 delta2=tf2/l2;

 gamma2=tf2/s2;

 %%% Initialize Ac1 and Ac2. Correct values will be solved for in an

 %%% iterative process.

 parameter.Ac1_opt = 0.01;

 parameter.Ac2_opt = 0.01;

 difference1 = inf;

 difference2= inf;

 count = 0;

 %% This iterative while loop solves for Ac1 and Ac2.

 if params2(6)>0.5

 while count<=100 && abs(difference1)>=1e-5 &&

abs(difference2)>=1e-5

 %%% parameter.Reynolds' number

 Re1=m_dot1*parameter.dh1/mu1/parameter.Ac1_opt;

 Re2=m_dot2*parameter.dh2/mu2/parameter.Ac2_opt;

 %%% Fanning friction factor

 parameter.f1=9.6243*(Re1^-0.7422)*(alpha1^-

0.1856)*(delta1^0.3053)*(gamma1^-0.2659)*((1+7.669E-

8*(Re1^4.429)*(alpha1^0.92)*(delta1^3.767)*(gamma1^0.236))^0.1);

 parameter.f2=9.6243*(Re2^-0.7422)*(alpha2^-

0.1856)*(delta2^0.3053)*(gamma2^-0.2659)*((1+7.669E-

8*(Re2^4.429)*(alpha2^0.92)*(delta2^3.767)*(gamma2^0.236))^0.1);

 %%% Colburn coefficient

 j1=0.6522*(Re1^-0.5403)*(alpha1^-0.1541)*(delta1^-

0.1409)*(gamma1^-0.0678)*((1+5.269E-

5*(Re1^1.34)*(alpha1^0.504)*(delta1^0.456)*(gamma1^-1.055))^0.1);

78

 j2=0.6522*(Re2^-0.5403)*(alpha2^-0.1541)*(delta2^-

0.1409)*(gamma2^-0.0678)*((1+5.269E-

5*(Re2^1.34)*(alpha2^0.504)*(delta2^0.456)*(gamma2^-1.055))^0.1);

 %%% Effectiveness-Ntu method

 T_h1=max(T_in1,T_in2);

 T_c1=min(T_in1,T_in2);

 Cmax=max(m_dot1*cp1,m_dot2*cp2);

 Cmin=min(m_dot1*cp1,m_dot2*cp2);

 Cstar=Cmin/Cmax;

 epsilon = Q_dot/(Cmin*(T_h1-T_c1));

 %if 0>=epsilon || epsilon >1

 %disp('epsilon must be between 0 and 1. Heat load

(Q_dot) is too large or T_h1-T_c1 is too small')

 %break

 %end

 if 0.99<=Cstar<=1.01

 Ntu=epsilon/(1-epsilon);

 else

 Ntu=Log((epsilon-1)/(Cstar*epsilon-1))/(Cstar-1);

 end

 N=2*Ntu/eta;

 %%% Pressure drop

parameter.del_P1=((m_dot1/parameter.Ac1_opt)^2)*4*L*parameter.f1/2/rho1

/parameter.dh1;

parameter.del_P2=((m_dot2/parameter.Ac2_opt)^2)*4*L*parameter.f2/2/rho2

/parameter.dh2;

 %%% Prandtl number

 Pr1=cp1*mu1/k1 * 1000;

 Pr2=cp2*mu2/k2 * 1000 ;

79

 %%% Flow velocity

 G1=sqrt(2*rho1*parameter.del_P1*j1/parameter.f1/(Pr1^(2/3))/N);

G2=sqrt(2*rho2*parameter.del_P2*j2/parameter.f2/(Pr2^(2/3))/N);

 %%% Flow area

 Ac1_0=m_dot1/G1;

 Ac2_0=m_dot2/G2;

 difference1=parameter.Ac1_opt-Ac1_0;

 difference2=parameter.Ac2_opt-Ac2_0;

 parameter.Ac1_opt=Ac1_0;

 parameter.Ac2_opt=Ac2_0;

 count = count + 1;

 end

 %parameter.Ac1_opt=parameter.Ac1;

 %parameter.Ac2_opt=parameter.Ac2;

 else

 parameter.Ac1_opt= str2num(get_param(gcb,'Ac1_opt'));

 parameter.Ac2_opt= str2num(get_param(gcb,'Ac2_opt'));

 end

 parameter.Ac1= parameter.Ac1_opt;

 parameter.Ac2= parameter.Ac2_opt;

 parameter.Ac1;

 parameter.Ac2;

 %disp('iterations =')

 %disp(count)

%%% Calculate volume and Weight

 parameter.weight_kg=rho_m*L*(parameter.Ac1/sigma1*(1-

sigma1)+parameter.Ac2/sigma2*(1-sigma2));

 parameter.weight_f1 = (parameter.Ac1*rho1*L);

 parameter.weight_f2 = parameter.Ac2*rho2*L;

80

 parameter.vol_HX = L*(parameter.Ac1/sigma1*(1-

sigma1)+parameter.Ac2/sigma2*(1-sigma2));

 parameter.vol_f = (parameter.Ac1+parameter.Ac2)*L;

 Beta = [4*sigma1/parameter.dh1 4*sigma2/parameter.dh2];

 parameter.vol1 = L*parameter.Ac1;

 parameter.vol2 = L*parameter.Ac2;

 parameter.As1 =Beta(1) * (L*(parameter.Ac1/sigma1*(1-sigma1)) +

parameter.Ac1);

 parameter.As2 =Beta(2) * (L*(parameter.Ac2/sigma2*(1-sigma2)) +

parameter.Ac2);

 parameter.L = L;

 %%% Additional outputs,

 parameter.ratios1 = [alpha1 delta1 gamma1];

 parameter.ratios2 = [alpha2 delta2 gamma2];

 parameter.Achx = (sqrt(parameter.Ac1) +

sqrt(parameter.Ac2))/2*parameter.L;

 parameter.Aht1 = parameter.Ac1*(s1 + tf1)/(s1*h1)*L;

 parameter.Aht2 = parameter.Ac2*(s2 + tf2)/(s2*h2)*L;

% Feb 7, 2017

 Third, the next code is written to export and feed the Simulink model.

number = str2num(get_param(gcb,'number'));

ctype=get_param(gcb,'ctype');

%%%%%%%%%%%%%%%% START COLD FLUID PROPERTIES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Get parameters,

 %ctype = input (' get the cold flow ')

 %ctype = get_param(gcb,'ctype');

R_c = '0';

81

check_c = '0'; % 1=incompressible, 2= ideal Gas, 3= real

Gas, 4= 2-phase

%%% Fluid properties,

 % Specific heat, J/kg/K [in polyval() form]

 % Density, kg/m^3 [in polyval() form]

 % Thermal conductivity, W/m/K [in polyval() form]

 % Dynamic viscosity, kg/m/s [in interp1() form]

 % Temperatures for mu, K [in interp1() form]

 switch ctype

 case {'PAO'}

 cp = '[3.7749e-3 1.02255].*1000';

 rho = '[1.5859e-8 -2.6056e-5 1.4797e-2 -4.37867 1346.36]';

 k = '[1.9058e-21, -5.882e-05, 0.1541]';

 mu = '[0.90889, 0.11814, 0.030046, 0.011483, 0.0056626,

0.003295, 0.0021441, 0.0015094, 0.0011254, 0.0008761, 0.0008275,

.00001]';

 muT = '[220, 240, 260, 280, 300, 320, 340, 360, 380, 400,

405, 1000]';

 case {'JP8'}

 cp = '[4.43359e-3 6.48908e-1].*1000';

 rho = '[-7.23225e-1 1.02036e3]';

 k = '[-1.799e-4 1.67663e-1]';

 mu = '[0.0137298, 0.00807381, 0.00515649, 0.00360287,

0.00265331, 0.00205681, 0.00162952, 0.00131464, 0.00109445,

0.000937041, 0.000804244, 0.000701833, 0.000617844, 0.000543122,

0.000485191, 0.000435239, 0.000388231, 0.000353682, 0.000321021,

0.000295718, .00001]';

82

 muT = '[222.778, 232.778, 242.778, 252.778, 262.778,

272.778, 282.778, 292.778, 302.778, 312.778, 322.778, 332.778, 342.778,

352.778, 362.778, 372.778, 382.778, 392.778, 402.778, 412.778, 1000]';

 case {'AIR'}

 cp = '[2.80023e-13 -1.0498e-9 1.38033e-6 -0.000535927

1.06747].*1000';

 rho = '[2.09244e-16 -7.65474e-13 1.12524e-9 -8.51881e-7

0.000353846 -0.0793459 8.72074]';

 k = '[-3.6206e-14 9.9793e-11 -1.13283e-7 0.000118727 -

0.00171684]';

 mu = '[7.06e-6, 0.00001038, 0.00001336, 0.00001606,

0.0000172, 0.00001769, 0.00001853, 0.00001911, 0.00002002, 0.00002081,

0.00002177, 0.00002294, 0.00002682, 0.0000303, 0.00003349, 0.00003643,

0.00003918, 0.00004177]';

 muT = '[100, 150, 200, 250, 273, 283, 300, 313, 333, 350,

373, 400, 500, 600, 700, 800, 900, 1000]';

 R_c = '287';

 check_c = '1';

 case {'H2O'}

 cp = '[4.0871e-10 -5.9806e-7 3.37478e-4 -8.56835e-2

1.23546e1].*1000';

 rho = '[-2.9681e-8 4.91535e-5 -3.25219e-2 9.18133

8.21792e1]';

 k = '[-2.98213e-11 5.47109e-8 -4.25128e-5 1.54729e-2 -

1.44067]';

 mu = '[0.001791, 0.001308, 0.001003, 0.0007977, 0.0006531,

0.0005471, 0.0004668, 0.0004044, 0.0003549, 0.000315, 0.0002822,

0.0001961, 0.0001494, 0.000121, 0.0001015, .0001]';

83

 muT = '[273.16, 283.15, 293.15, 303.15, 313.15, 323.15,

333.15, 343.15, 353.15, 363.15, 373.15, 413.15, 453.15, 493.15, 533.15,

1000]';

 case {'Kerosene'}

 cp = '[0 2010]';

 rho = '[0 820]';

 k = '[0 0.15]';

 mu = '[0.004077 0.003377 0.002797 0.002317 0.001919

0.001589 0.001316 0.00109 0.0009025 0.0009025 0.0009025 0.0009025

0.0009025 0.0009025 0.0009025 0.0009025 0.0009025 0.0009025 0.0009025

0.0009025]';

 muT = '[293 303 313 323 333 343 353 363 373 383 393 403 413

423 433 443 453 463 473 483]';

 end

%%% Calculate enthalpy, J/kg

 icp = [str2num(cp)./(length(str2num(cp)):-1:1), 0];

 %%% For polyval,

 hin = strcat('[',num2str(icp),']');

%%% Calculate entropy J/kg-K

 cp1 = str2num(cp);

 n=length(cp1);

 if n==1

 coef_s = [0 cp1];

 else

 kk = (n-1):-1:1;

 coef_s = [cp1(1:(n-1))./kk 0 cp1(n)];

 end

 s_a = ['[', num2str(coef_s(1:(end-1))), ']'];

 s_end = num2str(coef_s(end));

84

%%% Make coefficients available to masked subsystem

 set_param(gcb, 'rho_c', rho);

 set_param(gcb, 'enthalpy_c', hin);

 set_param(gcb, 'cp_c',cp);

 set_param(gcb, 'mu_Input_c', muT);

 set_param(gcb, 'mu_Output_c', mu);

 set_param(gcb, 'k_c', k);

 set_param(gcb, 'entropy_c', s_a);

 set_param(gcb, 'entropy_end_c', s_end);

 set_param(gcb, 'R_c', R_c);

 set_param(gcb, 'fluid_check_c', check_c);

%%%%%%%%%%%%%%%% END COLD FLUID PROPERTIES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% START HOT FLUID PROPERTIES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Get parameters,

htype=get_param(gcb,'htype');

R_h = '0';

check_h = '0';

%%% Fluid properties,

 % Specific heat, J/kg/K [in polyval() form]

 % Density, kg/m^3 [in polyval() form]

 % Thermal conductivity, W/m/K [in polyval() form]

 % Dynamic viscosity, kg/m/s [in interp1() form]

 % Temperatures for mu, K [in interp1() form]

 switch htype

 case {'PAO'}

 cp = '[3.7749e-3 1.02255].*1000';

 rho = '[1.5859e-8 -2.6056e-5 1.4797e-2 -4.37867 1346.36]';

85

 k = '[1.9058e-21, -5.882e-05, 0.1541]';

 mu = '[0.90889, 0.11814, 0.030046, 0.011483, 0.0056626,

0.003295, 0.0021441, 0.0015094, 0.0011254, 0.0008761, 0.0008275,

.00001]';

 muT = '[220, 240, 260, 280, 300, 320, 340, 360, 380, 400,

405, 1000]';

 case {'JP8'}

 cp = '[4.43359e-3 6.48908e-1].*1000';

 rho = '[-7.23225e-1 1.02036e3]';

 k = '[-1.799e-4 1.67663e-1]';

 mu = '[0.0137298, 0.00807381, 0.00515649, 0.00360287,

0.00265331, 0.00205681, 0.00162952, 0.00131464, 0.00109445,

0.000937041, 0.000804244, 0.000701833, 0.000617844, 0.000543122,

0.000485191, 0.000435239, 0.000388231, 0.000353682, 0.000321021,

0.000295718, .00001]';

 muT = '[222.778, 232.778, 242.778, 252.778, 262.778, 272.778,

282.778, 292.778, 302.778, 312.778, 322.778, 332.778, 342.778, 352.778,

362.778, 372.778, 382.778, 392.778, 402.778, 412.778, 1000]';

 case {'AIR'}

 cp = '[2.80023e-13 -1.0498e-9 1.38033e-6 -0.000535927

1.06747].*1000';

 rho = '[2.09244e-16 -7.65474e-13 1.12524e-9 -8.51881e-7

0.000353846 -0.0793459 8.72074]';

 k = '[-3.6206e-14 9.9793e-11 -1.13283e-7 0.000118727 -

0.00171684]';

 mu = '[7.06e-6, 0.00001038, 0.00001336, 0.00001606,

0.0000172, 0.00001769, 0.00001853, 0.00001911, 0.00002002, 0.00002081,

0.00002177, 0.00002294, 0.00002682, 0.0000303, 0.00003349, 0.00003643,

0.00003918, 0.00004177]';

86

 muT = '[100, 150, 200, 250, 273, 283, 300, 313, 333, 350,

373, 400, 500, 600, 700, 800, 900, 1000]';

 R_h = '287';

 check_h = '1';

 case {'H2O'}

 cp = '[4.0871e-10 -5.9806e-7 3.37478e-4 -8.56835e-2

1.23546e1].*1000';

 rho = '[-2.9681e-8 4.91535e-5 -3.25219e-2 9.18133

8.21792e1]';

 k = '[-2.98213e-11 5.47109e-8 -4.25128e-5 1.54729e-2 -

1.44067]';

 mu = '[0.001791, 0.001308, 0.001003, 0.0007977, 0.0006531,

0.0005471, 0.0004668, 0.0004044, 0.0003549, 0.000315, 0.0002822,

0.0001961, 0.0001494, 0.000121, 0.0001015, .0001]';

 muT = '[273.16, 283.15, 293.15, 303.15, 313.15, 323.15,

333.15, 343.15, 353.15, 363.15, 373.15, 413.15, 453.15, 493.15, 533.15,

1000]';

 case {'R134a'} % These values are exact numbers because

we need to specify the exact number @ each internal energy value NOT in

polynomials format

 cp = '[1264 1293 1263 1262 1262; 1217 1290 1295 1294

1293;1171 1243 1322 1332 1331;1124 1197 1276 1364 1376;1078 1150 1229

1317 1418;1031 1104 1183 1271 1373;985.1 1057 1137 1225 1327;938.6 1011

1090 1179 1281;892.2 964.5 1044 1133 1235;845.8 918.1 997.7 1087

1190;799.4 871.6 951.3 1041 1144;769 825.2 905 994.5 1098;802.9 826 869

948.3 1052;842.3 857 882.4 925 995.9;881.1 891.6 909.3 937.9

982.8;918.4 926.2 939.5 960.5 992.7;954 960.1 970.3 986.5 1011;987.8

992.7 1001 1014 1033;1020 1024 1031 1041 1057;1051 1054 1060 1069

1082]';

87

 rho = '[1403 1403 1404 1404 1405;36.99 560 1355 1356

1357;18.73 62.3 555.2 1306 1307;12.54 32.99 98.07 639.8 1254; 9.429

22.43 53.79 146.1 770.6; 7.553 16.99 37.05 82.47 208.3; 6.3 13.68 28.26

57.45 120.4; 5.403 11.44 22.84 44.08 84.68; 4.73 9.838 19.17 35.76

65.31; 4.206 8.627 16.51 30.08 53.14; 3.787 7.682 14.5 25.95 44.8;

3.413 6.923 12.93 22.83 38.72;3.051 6.196 11.59 20.37 34.1;2.777 5.621

10.46 18.25 30.33; 2.56 5.171 9.591 16.64 27.42; 2.383 4.806 8.893

15.37 25.18; 2.235 4.504 8.318 14.34 23.39; 2.109 4.247 7.834 13.47

21.92;2.001 4.026 7.419 12.74 20.68;1.906 3.833 7.058 12.1 19.61]';

 k = '[0.1083 0.1084 0.1084 0.1085 0.1087; 0.09905 0.1021

0.1024 0.1025 0.1027; 0.08978 0.0931 0.09566 0.09606 0.09626; 0.0805

0.08408 0.08694 0.089 0.08944; 0.07123 0.07506 0.07822 0.08062 0.08216;

0.06195 0.06605 0.06951 0.07224 0.07416; 0.05268 0.05703 0.06079

0.06386 0.06615; 0.0434 0.04801 0.05207 0.05548 0.05815; 0.03412 0.039

0.04335 0.0471 0.05014; 0.02485 0.02998 0.03463 0.03872 0.04214;

0.01557 0.02096 0.02591 0.03033 0.03413; 0.009281 0.01195 0.01719

0.02195 0.02613;0.01169 0.01194 0.01234 0.01357 0.01813; 0.01378

0.01396 0.01425 0.01471 0.01539; 0.01558 0.01572 0.01594 0.0163

0.01682; 0.01712 0.01723 0.01742 0.0177 0.01812; 0.01845 0.01854

0.01869 0.01892 0.01927;0.01957 0.01964 0.01977 0.01997 0.02026;

0.02051 0.02057 0.02068 0.02086 0.02111; 0.02129 0.02135 0.02144

0.02159 0.02182]';

 mu = '[0.0004305 0.0003462 0.0004317 0.0004328

0.0004345;0.0003913 0.0003438 0.0003411 0.000342 0.0003433;0.0003522

0.0003111 0.0002797 0.0002769 0.000278;0.000313 0.0002784 0.0002518

0.0002305 0.0002286;0.0002738 0.0002457 0.0002239 0.0002063 0.0001915;

0.0002347 0.0002129 0.000196 0.0001821 0.0001703;0.0001955 0.0001802

0.0001681 0.0001579 0.000149;0.0001564 0.0001475 0.0001402 0.0001337

0.0001277;0.0001172 0.0001148 0.0001123 0.0001095 0.0001065;0.00007803

88

0.00008212 0.00008439 0.00008534 0.00008522;0.00003887 0.00004941

0.00005649 0.00006114 0.00006396;0.000009796 0.00001671 0.00002859

0.00003695 0.00004269;0.00001082 0.0000109 0.00001104 0.00001275

0.00002143;0.00001179 0.00001185 0.00001196 0.00001212

0.00001239;0.00001271 0.00001276 0.00001284 0.00001297

0.00001318;0.00001359 0.00001363 0.00001369 0.0000138

0.00001398;0.00001442 0.00001446 0.00001451 0.00001461

0.00001476;0.00001522 0.00001525 0.0000153 0.00001539

0.00001552;0.00001599 0.00001602 0.00001607 0.00001614

0.00001626;0.00001674 0.00001676 0.0000168 0.00001687 0.00001698]';

 muT = '[6290 27012 47733 68455 89176 109898 130619 151341

172063 192784 213506 234227 254949 275671 296392 317114 337835 358557

379278 400000]';

 check_h = '2' ;

 end

 %%% Calculate entropy J/kg-K

 cp1 = str2num(cp);

 n=length(cp1);

 if n==1

 coef_s = [0 cp1];

 else

 kk = (n-1):-1:1;

 coef_s = [cp1(1:(n-1))./kk 0 cp1(n)];

 end

 s_a = ['[', num2str(coef_s(1:(end-1))), ']'];

 s_end = num2str(coef_s(end));

 %%% Calculate enthalpy, J/kg

if check_h == 0 || check_h == 1

 icp = [str2num(cp)./(length(str2num(cp)):-1:1), 0];

89

 % For polyval,

 hin = strcat('[',num2str(icp),']');

 %%% Fluid properties for hot_balance,

 set_param(gcb, 'rho_h', rho);

 set_param(gcb, 'enthalpy_h', hin);

 set_param(gcb, 'cp_h',cp);

 set_param(gcb, 'mu_Input_h', muT);

 set_param(gcb, 'mu_Output_h', mu);

 set_param(gcb, 'k_h', k);

 % set_param(gcb, 'entropy_h', s_a);

 % set_param(gcb, 'entropy_end_h', s_end);

 set_param(gcb, 'R_h',R_h);

 set_param(gcb, 'fluid_check_h', check_h);

 else

 RG_cp = cp ;

 RG_rho = rho ;

 RG_k = k ;

 RG_mu = mu ;

 RG_muT = muT ;

 set_param(gcb, 'RG_rho_h', RG_rho);

 % set_param(gcb, 'enthalpy_h', hin);

 set_param(gcb, 'RG_cp_h',RG_cp);

 set_param(gcb, 'RG_mu_Input_h', RG_muT);

 set_param(gcb, 'RG_mu_Output_h', RG_mu);

 set_param(gcb, 'RG_k_h', RG_k);

 % set_param(gcb, 'entropy_h', s_a);

 % set_param(gcb, 'entropy_end_h', s_end);

 set_param(gcb, 'RG_R_h',R_h);

 set_param(gcb, 'RG_fluid_check_h', check_h);

90

end

%%%%%%%%%%%%%%%%%% END HOT FLUID PROPERTIES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% START HX MATERAL PROPERTIES

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Get parameters,

 material = get_param(gcb,'material');

 %material = get_param(gcb,'material');

%%% Material properties,

 % Specific heat, J/kg/K

 % Density, kg/m^3

 % Thermal conductivity, W/m/K

 switch material

 case {'Stainless steel - 316'}

 cp = '502';

 rho = '8027';

 k = '16.26';

 case {'Aluminum'}

 cp = '896';

 rho = '2707';

 k = '220';

 case {'Copper'}

 cp = '380';

 rho = '8954';

 k = '386';

 end

 %%% HX parameters,

 set_param(gcb, 'cp_m', cp);

 set_param(gcb, 'rho_m', rho);

91

 set_param(gcb, 'k_m', k);

%%%%%%%%%%%%%%%%%%%% END HX MATERIAL PROPERTIES

%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Import geometry,

 cgeo = str2num(get_param(gcb,'cgeo'));

 hgeo = str2num(get_param(gcb,'hgeo'));

 length1 = str2num(get_param(gcb,'length'));

 vec = [cgeo hgeo length1];

ctype = get_param(gcb,'ctype');

 htype = get_param(gcb,'htype');

 fluids.ctype = ctype;

 fluids.htype = htype;

mdot1 =evalin('base', get_param(gcb,'mdot1'));

 mdot2 = str2num(get_param(gcb,'mdot2'));

 Tin1 = str2num(get_param(gcb,'Tin1'));

 Tin2 = str2num(get_param(gcb,'Tin2'));

 Q_load = str2num(get_param(gcb,'load'));

 optimize = strcmp(get_param(gcb,'optimize'),'on');

 vec2 = [mdot1 mdot2 Tin1 Tin2 Q_load optimize];

 %HX_Size_Factor12=evalin('base', get_param(gcb,'HX_Size_Factor'));

 %%% Run HXsize function,

 hx = HXsize_v2(vec,fluids,vec2,material);

 if optimize>0.5

 Ac1_opt=num2str(hx.Ac1_opt);

 Ac2_opt=num2str(hx.Ac2_opt);

92

 set_param(gcb, 'Ac1_opt',Ac1_opt);

 set_param(gcb, 'Ac2_opt',Ac2_opt);

 end

%%% Volume of fluid, m^3

 volume_c = num2str(hx.vol1);

 volume_h = num2str(hx.vol2);

 volume_tot = num2str(hx.vol_HX);

 set_param(gcb, 'volume_c', volume_c);

 set_param(gcb, 'volume_h', volume_h);

 set_param(gcb, 'hx_total_volume', volume_tot);

%%% Surface area, m^2

 surf_area_c = hx.As1;

 surf_area_h = hx.As2;

 noverall = 0.9;

 dummy1 = num2str(surf_area_c*noverall/number);

 dummy2 = num2str(surf_area_h*noverall/number);

 set_param(gcb, 'noAs_c', dummy1);

 set_param(gcb, 'noAs_h', dummy2);

%%% Channel length, m

 length1 = linspace(0,length1,number+1);

 length1 = length1(2:end);

 set_param(gcb, 'spacing', mat2str(length1));

%%% Free flow area, m^2

 freeflow_c = num2str(hx.Ac1);

 freeflow_h = num2str(hx.Ac2) ;

 set_param(gcb, 'freeflow_c', freeflow_c);

 set_param(gcb, 'freeflow_h', freeflow_h);

%%% Hydraulic diameter, m

 Dh_c = num2str(hx.dh1);

93

 Dh_h = num2str(hx.dh2);

 set_param(gcb, 'Dh_c', Dh_c);

 set_param(gcb, 'Dh_h', Dh_h);

%%% Geometric channel dimension ratios,

 ratio_c = hx.ratios1;

 % set_param(gcb, 'alpha_c', num2str(ratio_c(1)));

 % set_param(gcb, 'delta_c', num2str(ratio_c(2)));

 % set_param(gcb, 'gamma_c', num2str(ratio_c(3)));

 ratio_h = hx.ratios2;

 % set_param(gcb, 'alpha_h', num2str(ratio_h(1)));

 % set_param(gcb, 'delta_h', num2str(ratio_h(2)));

 % set_param(gcb, 'gamma_h', num2str(ratio_h(3)));

%%% Heat exchanger mass, kg

 mass = hx.weight_kg ;

% set_param(gcb, 'hx_total_mass', num2str(mass));

 % set_param(gcb, 'hx_CV_mass', num2str(mass/number));

%%% Heat exchanger area / thickness, m

 Aht = (hx.Aht1 + hx.Aht2)/2;

 t = (cgeo(5) + hgeo(5))/2/1000;

 set_param(gcb, 'Aht_t', num2str(Aht/t));

 %%% Clear workspace,

 clear cytpe cp rho k mu muT icp hin cp1 n s_a s_end htype material

 clear cgeo hgeo length1 vec fluids mdot1 mdot2 Tin1 Tin2 Q_load

vec2

 clear number hx volume_c volume_h surf_area_c surf_area_h noverall

 clear dummy1 dummy2 freeflow_c freeflow_h Dh_c Dh_h ratio_c ratio_h

 clear mass Aht t Ac1_opt Ac2_opt

 % Feb 7, 2017

94

Finally, this code is specialized to plot results versus time.

% Fin plate Heat Exhanger plots

ti= 3; % Start time

whichElements = ti/SampleTime:1:length(time); % Which elements of the

arrays to plot

timeUnit = 'Sec'; % Unit for time axis

timeScale = 1; % Divisor for time axis

theTime = (time(whichElements)-ti)/timeScale; % The scaled time array

xLimits = [0, theTime(end)]; % The limits for time axis

RShift = 459.67; % Difference of Rankin and Fahrenheit

K2R = 9/5; % Conversion from K to R

lbm2kg = 0.4536; % Conversion from lbm to kg

kPa2psi = 14.7/101.325; % Conversion from kPa to psi

 % Set plotting defaults.

set(0,'DefaultFigureWindowStyle','docked'); % Undock all figures.

set(0,'DefaultFigureColor','w'); % Set default figure background color.

set(0,'DefaultLineLineWidth',4); % Set default line size.

set(0,'DefaultAxesFontSize',20); % Set default axes font size.

set(0,'DefaultTextFontSize',20); % Set default text font size.

set(0,'DefaultLineMarkerSize',12); % Set default marker size.

set(0,'DefaultAxesFontWeight','bold'); % Set the default axes font to

bold.

set(0,'DefaultTextFontWeight','bold'); % Set the default text font to

bold..

set(0,'DefaultAxesColorOrder',[0 0 0;0 0 0;0 0 1])

 %%

figure('Name','Pressure')

plot(theTime,Pressure(whichElements))

95

ylabel('Pressure [kpa]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title (' Pressure vs.time ')

grid on

%%

figure('Name','Enthalpy')

plot(theTime,ENTHALPY(whichElements))

ylabel('Enthalpy [kJ/kg]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title (' Enthalpy vs.time ')

grid on

%%

figure('Name','Kerosene Temperature')

plot(theTime,KerTempOut(whichElements))

ylabel('Temperature [\circK]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title (' KerTempOut vs.time ')

grid on

%%

figure('Name','R134a Temperature ')

plot(theTime,RefTempOut(whichElements))

ylabel('Temperature [\circK]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title (' RefTempOut vs.time ')

grid on

96

%%

figure('Name','Heat exchanger temperature')

plot(theTime,Thx(whichElements))

ylabel('Heat exchanger temperature [\circK]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('Heat exchanger temperature vs.time ')

grid on

%%

figure('Name','kerosene heat transfer coefficient')

plot(theTime,KerHeatCoef(whichElements))

ylabel('h_c [w/m^2-k]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title (' kerosene heat transfer coefficient vs.time ')

grid on

 %%

figure ('Name' ,'Two phase flow heat transfer coefficient')

plot (theTime, h (whichElements))

ylabel('h_TP [w/m^2-k]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('Two phase flow heat transfer coefficient vs. time ')

grid on

%%

figure('Name','X')

plot(theTime,x(whichElements))

ylabel('Quality');

xlabel(['Time [' timeUnit ']']);

97

xlim(xLimits);

title (' X vs.time ')

grid on

%%

figure('Name','Qc')

plot(theTime,Qc(whichElements))

ylabel('Qc [w]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('Heat transferred to kerosene vs.time ')

grid on

%%

figure('Name','Qh')

plot(theTime,Qh(whichElements))

ylabel('Qh [w]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('Heat transferred from R134a vs.time ')

grid on

%%

figure('Name','Total Entropy generated')

plot(theTime,Sgen(whichElements))

ylabel('Total Entropy generated [w/k]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('Total Entropy generated vs.time ')

grid on

98

%%

figure('Name','R134a Enthalpy')

plot(theTime,RefHOut(whichElements))

ylabel(' R134a Enthalpy [J/kg]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('R134a Enthalpy vs.time ')

grid on

%%

figure('Name','R134a Internal Energy')

plot(theTime,RefHOut1(whichElements))

ylabel(' R134a Internal Energy [J/kg]');

xlabel(['Time [' timeUnit ']']);

xlim(xLimits);

title ('R134a Internal Energy vs.time ')

grid on

99

APPENDIX C

To verify the results of the Simulink model, EES program has been used to check

equations employed in the model. Below, EES script shows these equations.

$unitsystem SI K pa J Rad mass

$Tabstops 0.5 2 in

 " verifications for the Simulink model "

" Cold balance - friction factor "

alpha = 1.20482

delta = 0.015748

gamma = 0.1

m_dot_c = 25 [kg/s] " mass flow rate "

D = 0.00098833 [m] " hydraulic diameter "

mu = 0.003567 [pa - sec] " dynamic viscosity "

A_c = 0.001 [m^2] " cross sectional area "

Re = m_dot_c * D / (mu * A_c) " Reynolds number "

 f = 9.6243 * Re^(- 0.7422) * alpha ^(- 0.1856) * delta ^(0.3053) * gamma^(-0.2659) * (1+ 7.669 *

10^(-8) * Re ^ (4.429) * alpha ^(0.92) * delta^(3.767) * gamma^(0.236))^(0.1) " friction factor "

" Cold balance - pressure drop "

L = 0.07 [m] " length "

rho = 820 [kg/m^3] " density "

press_drop = f * L / (2 * D * rho) * (m_dot_c /A_c)^2 " pressure drop in (pa) "

 " Cold balance - energy equation "

Cp = 2010 [J/kg-k] " specific heat for kerosene "

vol_c = 7.0001e-05 [m^3] " volume of kerosene "

100

Q_dot = 14607.48204086 [w] " heat trabsfer "

T_in = 300 [k] " temperature in "

h_in = T_in * Cp " enthalpy in "

T_out = 300.3 [k] " temperature out "

h_out = T_out * Cp " enthalpy out "

dE_dt = Q_dot + m_dot_c * (h_in - h_out) " energy balance "

dT_dt = dE_dt / (Cp * rho * vol_c) " temperature change with

respect to time "

" Cold balance - entropy equation "

dS_dt = rho * vol_c * Cp * dT_dt / T_out " entropy change with respect

to time "

" Heat transfer coefficient - Cold "

k = 0.15 [w/m-k] " thermal conductivity "

Pr = mu * Cp / k " Prandtl number "

zeta = (0.79 * ln (Re) - 1.64)^(-2) " zeta parameter in Gnielinski

correlation "

Z = zeta / 8 " zeta devided by 8"

Nu = (Z* Pr * (Re - 1000)) / ((12.7 * sqrt(Z) * (Pr ^(2/3) -1)) +1.07) " nusselt number "

h = Nu * k / D " convective heat transfer

coefficient "

" Entropy generation - Cold "

S_gen = dS_dt - m_dot_c * Cp * ln (T_out / T_in) " entropy generated "

{ =======================} { =====================} { ======================}

101

{" Hot balance - friction factor "

 alpha = 0.078302

delta = 0.015748

gamma = 0.12048

m_dot_h = 0.5 [kg/sec] " mass flow rate "

D = 0.0015099 [m] " hydraulic diameter "

mu = 1.30327e-5 [pa -sec] " dynamic viscosity for R-134a"

A_c = 0.0018471 [m^2] " cross sectional area "

Re = m_dot_h * D / (mu * A_c) " Reynolds number "

f = 9.6243 * Re^(- 0.7422) * alpha ^(- 0.1856) * delta ^(0.3053) * gamma^(-0.2659) * (1+ 7.669 *

10^(-8) * Re ^ (4.429) * alpha ^(0.92) * delta^(3.767) * gamma^(0.236))^(0.1) "

friction factor "

" Hot balance - pressure drop "

L = 0.07 [m] " length "

rho = 22.98 [kg/m^3] " density of R-134a "

press_drop = f * L / (2 * D * rho) * (m_dot_h/A_c)^2 " pressure drop in pa "

" Hot balance - energy equation "

Qdot = 14607.48 [w] " heat transfer "

h_in = 300000 [J/kg] " enthalpy in "

h_out = 270785.0359 [J/kg] " enthalpy out "

p_out = 500 [kpa] " pressure out "

v = 0.05184 [m^3 / kg] " specific volume "

dE_dt = -Qdot +(m_dot_h * (h_in - h_out)) " energy balance "

m = 0.002971 [kg] " mass of R-134a "

102

du_dt = dE_dt / m " internal energy change with

respect to time "

T_out = 331.5 [K] " temperature out "

u = 270759.118 [J/kg] " internal energy "

h_check = u + p_out * v " h_check should equal to

h_out "

" Hot balance - entropy equation "

dS_dt = m * du_dt / T_out " entropy change with respect

to time "

{ =======================} { =====================} { ======================}

" Heat transfer coefficient - Hot "

" liquid phase "

mu_l = 0.0001857 [pa -sec] " dynamic viscosity @ liquid

phase "

Cp_l = 1440 [J/kg-k] " specific heat @ liquid phase "

k_l = 0.08144 [w/m-k] " thermal conductivity @ liquid

phase "

Pr_l = mu_l * Cp_l /k_l " Prandtl number @ liquid

phase "

Re_l = m_dot_h * D / (mu_l * A_c) " Reynolds number @ liquid

phase "

zeta_l = (0.79 * ln (Re_l) - 1.64)^(-2) " zeta parameter in Gnielinski

correlation "

Z_l = zeta_l / 8 " zeta devided by 8"

103

Nu_l = (Z_l* Pr_l * (Re_l - 1000)) / ((12.7 * sqrt(Z_l) * (Pr_l ^(2/3) -1)) +1.07) " Nusselt number

@ liquid phase "

h_l = Nu_l * k_l / D " heat transfer coefficient @

liquid phase "

" vapor phase "

mu_v = 1.21342e-05 " dynamic viscosity @ vapor

phase "

Cp_v = 1056 [J/kg-k] " specific heat @ vapor phase

"

k_v = 0.01493 [w/m-k] " thermal conductivity @ vapor

phase "

Pr_v = mu_v * Cp_v / k_v " Prandtl number @ vapor

phase "

Re_v = m_dot_h * D / (mu_v * A_c) " Reynolds number @ vapor

phase "

zeta_v = (0.79 * ln (Re_v) - 1.64)^(-2) " zeta parameter in Gnielinski

correlation "

Z_v = zeta_v / 8 " zeta devided by 8"

Nu_v = (Z_v* Pr_v * (Re_v - 1000)) / ((12.7 * sqrt(Z_v) * (Pr_v ^(2/3) -1)) +1.07) " Nusselt

number @ vapor phase "

h_v = Nu_v * k_v / D " heat transfer coefficient @

vapor phase "

" two phase "

F_fl = 1.63 " fluid dependant parameter "

x = 0.9949 " quality "

rho_g = 38.3 [kg/m^3] " vapor density "

104

rho_l = 1182 [kg/m^3] " liquid density "

Co = (rho_g / rho_l)^(0.5) * ((1-x)/x)^(0.8) " convective number "

q = 4023 [w/m^2] " heat transfer per unit area "

u_lg = 174349.4568 [J/kg] " enthalpy for evaporation "

G = m_dot_h /A_c " mass flux"

Bo = q / (G * u_lg) " boiling number "

h_r = (1.183744 * Co^(-0.3) + 225.5474 * BO^(2.8) * F_fl) * (1 - x)^(0.003) * h_l " heat transfer

coefficient for two phase "

" Entropy generation - Hot "

s_in = 1057 [J/kg-k] " entropy in "

s_out = 964.7 [J/kg-k] " entropy out "

S_gen = dS_dt - m_dot_h * (s_in - s_out) " entropy generated "}

Figure 49: Results of hot flow (R-134a)

105

Figure 50: Results of cold flow (kerosene)

106

REFERENCES

[1] S. S. Garba, “Cranfield University,” Applied Sciences. .

[2] H. D. Kim, J. L. Felder, M. T. Tong, and M. J. Armstrong, “Revolutionary

Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed

Propulsion,” 21st Int. Symp. Air Breath. Engines, pp. 1–12, 2013.

[3] H. Kim, “Distributed Propulsion Vehicles,” Int. Congr. Aeronaut. Sci., pp. 1–11,

2010.

[4] R. Radebaugh, “Cryocoolers for aircraft superconducting generators and motors,”

AIP Conf. Proc., vol. 1434, no. 57, pp. 171–182, 2012.

[5] J. Felder, H. Kim, and G. Brown, “Turboelectric Distributed Propulsion Engine

Cycle Analysis for Hybrid-Wing-Body Aircraft,” 47th AIAA Aerosp. Sci. Meet.

Incl. New Horizons Forum Aerosp. Expo., pp. 1–25, 2009.

[6] E. Jones, D. Doroni-dawes, and D. Larkin, “NASA N3-X Preliminary Design

Study : Final Technical Report,” vol. 1, no. June, pp. 1–92, 2016.

[7] C. M. Lewandowski, “Turboelectric Distributed Propulsion in a Hybrid Wing

Body Aircraft,” NASA Tech. Rep. 1 ISABE-20, pp. 1–20, 2011.

[8] G. Brown, “Weights and Efficiencies of Electric Components of a Turboelectric

Aircraft Propulsion System,” 49th AIAA Aerosp. Sci. Meet. Incl. New Horizons

Forum Aerosp. Expo., no. January, 2011.

107

[9] J. Palmer and E. Shehab, “Cryogenic Systems Study for Turbo-Electric Distributed

Propulsion Aircraft Solution.”

[10] F. Berg, J. Palmer, L. Bertola, P. Miller, and G. Dodds, “Cryogenic system options

for a superconducting aircraft propulsion system,” IOP Conf. Ser. Mater. Sci. Eng.,

vol. 101, no. December 2015, p. 12085, 2015.

[11] E. Jones, D. Doroni-dawes, and D. Larkin, “NASA N3-X Preliminary Design

Study : Final Technical Report,” 2016.

[12] Boeing, “Airplane characteristics for airport planning - 747,” Boeing Commerical

Airplanes, no. November, p. 126, 2011.

[13] “Enhanced ECS Generator Models in an Integrated Air Vehicle Platform Final.” .

[14] G. J. Michna, A. M. Jacobi, and R. L. Burton, “Friction Factor and Heat Transfer

Performance of an Offset-Strip Fin Array at Air-Side Reynolds Numbers to

100,000,” Int. Refrig. Air Cond. Conf., vol. 129, no. September 2007, pp. 0–8,

2006.

[15] Y.-Y. Yan and T.-F. Lin, “Evaporation heat transfer and pressure drop of

refrigerant R-134a in a plate heat exchanger,” J. Heat Transf., vol. 121, no. 1, pp.

118–127, 1999.

[16] M. Teruel, “Rectangular offset strip-fin heat exchanger lumped parameters

dynamic model,” Brazilian Symp. Aerosp. Eng. Appl., 2009.

[17] P. Yuan, G. B. Jiang, Y. L. He, and W. Q. Tao, “Performance simulation of a two-

phase flow distributor for plate-fin heat exchanger,” Appl. Therm. Eng., vol. 99,

108

pp. 1236–1245, 2016.

[18] S. Ben Saad, P. Clément, J. F. Fourmigué, C. Gentric, and J. P. Leclerc, “Single

phase pressure drop and two-phase distribution in an offset strip fin compact heat

exchanger,” Appl. Therm. Eng., vol. 49, pp. 99–105, 2012.

[19] J. H. Park and Y. S. Kim, “Evaporation heat transfer and pressure drop

characteristics of R-134a in the oblong shell and plate heat exchanger,” KSME Int.

J., vol. 18, no. 12, pp. 2284–2293, 2004.

[20] M. A. X. Agitators and K. Benefits-, “Process Solutions International,” no. 866,

pp. 4–7.

[21] P. Talukdar, “Plate-Fin Heat Exchanger.”

[22] F.Mayinger, “Classification nad Applications of Two - Phase flow Heat

Exchangers.pdf.”

[23] S. RK and D. Sekuli´c, Fundamentals of heat exchanger design. 2003.

[24] V. Donowski and S. Kandlikar, “Correlating evaporation heat transfer coefficient

of refrigerant R-134a in a plate heat exchanger,” Proc. Boil. 2000 Phenom. …, pp.

1–18, 2000.

[25] “an improved correlation for predicting two phase flow.pdf.” .

[26] S. G. Kandlikar, “Boiling heat transfer with binary mixtures: Part II - Flow boiling

in plain tubes,” Journal of Heat Transfer-Transactions of the Asme, vol. 120. pp.

388–394, 1998.

[27] R. Roberts and J. Doty, “Implementation of a transient exergy analysis for a plate–

109

fin heat exchanger,” Int. J. Exergy, vol. 16, no. 1, pp. 109–126, 2015.

[28] K. Pottler, C. M. Sippel, A. Beck, and J. Fricke, “Heat Transfer and Pressure Drop

Correlations for Offest Strip Fins Usable for Solar Air Heating Collectors,” no.

June, 2017.

[29] R. Cicchitti, A. Lombaradi, C. Silversti, M. Soldaini, G., and Zavattarlli, “Two-

Phase Cooling Experiments- Pressure Drop, Heat Transfer, and Burnout

Measurement,” vol. 7, no. 6, pp. 407–425, 1960.

	Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft
	Repository Citation

	tmp.1540384927.pdf.10vFw

