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ABSTRACT 

Arkan, Ethar. M.S., Physiology and Neuroscience, Wright State University, 2017. The 
effect of aging on the blood brain barrier permeability and response to fluoxetine 
enantiomers. 

We tested the effect of the fluoxetine enantiomers (S-fluoxetine and R-fluoxetine) 

versus Prozac (50:50 ratio of R- and S- fluoxetine enantiomers) and/or control on blood 

brain barrier (BBB) permeability in different brain regions in both male and female rats. 

The rats consumed orally the drug (5 mg/kg) or vehicle for a total of three days, then 

were injected with sterile Evans blue dye ip, at least 12 hours before euthanasia.. We 

see significant regional brain differences in BBB permeability (hippocampus has tighter 

BBB), significant differences based on the age of the animals (young rats show 

enhanced permeability in lower brain region), and significant differences based on the 

sex of animals interacting with specific regional differences in BBB permeability 

(female rats have enhanced permeability in cerebellum).  We also see some effect of 

the fluoxetine enantiomers, with S-fluoxetine enhancing permeability, and R fluoxetine 

reducing permeability. 
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BACKGROUND 

    Among elderly people worldwide, neurodegenerative diseases are the major cause of 

disability and premature death. The most common neurodegenerative diseases include 

Alzheimer’s disease, vascular dementia, frontotemporal dementia, Parkinson disease and 

Huntington’s disease (1).  

    Neurodegeneration is defined as a progressive loss of neuronal structure and function, 

which eventually leads to neuronal cell death. It is an important component of age-related 

pathology. Neurodegenerative diseases begin in mid-life. They are characterized by motor 

and/or cognitive symptoms that worsen with age, and its symptoms reduce the life 

expectancy (2). In addition, genetic and environmental factors play a critical role in 

neurodegenerative diseases development (3, 4), such as Amyotrophic lateral sclerosis 

(ALS) (5). There are many possible causes for the neurodegenerative diseases. In this 

study, we are focusing mainly on the changes in the blood brain barrier permeability due 

to aging.  

     A tight blood brain barrier is important to keep out peripheral immune cells that may 

attack and kill cells in the brain. It is critical to regulate the blood brain barrier permeability 

to ensure a stable environment and an optimal ionic composition that are significant for 

neural function and synaptic signaling functions. For example, the concentration of 

potassium is maintained at 4.5 mM in mammalian plasma but it is maintained around 2.5-

2.9 mM in cerebrospinal fluid (CSF) and brain interstitial fluid (ISF) in spite of changes 

that occur after having a meal or exercise (6, 7). Also, the blood brain barrier helps to 

regulate the amount of neurotransmitters in the blood and it keeps the neurotransmitters in 

the central and peripheral nervous system separate. For example, blood plasma contains a 
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high level of neuroexcitatory amino acid glutamate, which if increased in the brain could 

result in a considerable neurotoxic damage in the neural tissue (8, 9). The blood brain 

barrier regulates the entry of many macromolecules because high level of certain plasma 

proteins could lead to nervous tissue damage. For example, high levels of plasma proteins 

such as albumin, pro-thrombin, and plasminogen cause cellular activation that results in 

apoptosis and nervous tissue damage (10, 11).  For example, thrombin entry into the brain 

will cause the potentiation of NMDA receptor that will result in glutamate-mediated cell 

death (12).  

The blood brain barrier (BBB) has low permeability to essential water soluble nutrients 

and metabolites that are important for the nervous tissue’ however it has transport systems 

in the BBB to ensure the supply of nutrients to the central nervous system (8, 13, 14).  

  Understanding how the BBB changes in permeability with age and in the presence of 

enantiomers of fluoxetine may provide new approaches to treat the chronic 

neurodegenerative diseases in the elderly human population that are currently without 

effective treatment (2). Fluoxetine is used to treat neurodegenerative diseases because of 

its ability to convert harmful microglia to beneficial microglia, a new role discovered in 

the Corbett lab.  

 

 

 

 



 

3 
 

 

 

 

I.INTRODUCTION 
1.1 The Blood Brain Barrier 

Paul Ehrlich was the first one to identify the blood brain barrier. He injected basic dyes 

into the circulatory system and found out that it did not stain the brain but it stained most 

other organs. Therefore, a conclusion was made that the blood brain barrier separates the 

central and the peripheral nervous system in order to maintain ion hemostasis state in the 

CNS by regulating the entry of toxic and pathogenic substances in and out of the CNS 

except for lipid soluble molecules (15).  That separation is important to insure the integrity 

of neural network connectivity and to insure the longevity of neurons. Also, maintaining 

ion hemostasis is critical for neuron signaling (16).  
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Figure1: The brain interfaces include the following: the blood brain barrier, the blood-

CSF barrier, and the arachnoid barrier (17).  

     The choroid plexus is a structure that is located within the brain ventricles. It is 

composed of monolayer of epithelial cells. These epithelial cells are derived from the 

ependymal cells of the brain ventricles (18). Mitochondria are found in the choroid plexus 

epithelial cells to provide energy that is needed for the active transport and secretion (19). 

These epithelial cells are connected by the tight junctions in order to limit the paracellular 

diffusion (20). From the capillaries total surface area in the brain, the epithelial surface area 

of the microvilli in the choroid plexus is composed of about 25 to 50% of the total surface 
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area (21) . At the choroid plexuses, the blood flow rate is about five times more than the 

blood flow rate at other brain regions (20). 

    The arachnoid barrier limits the exchange between the blood and the CNS because of its 

avascular epithelium surface and its small surface area (17). The barrier is composed of 

tight junctions. It functions as a physical barrier by separating the dural layer from the 

cerebrospinal fluid that is found in the subarachnoid space. It is considered as the most 

complex barrier among the different barriers of the brain (22-24). The arachnoid barrier is 

found at the meninges of the brain under the dura layer of the brain (8).  

 1.2 Neurovascular Unit 

Figure 2: Cellular elements of the BBB (2).  
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     “Modular” Neurovascular unit (NVU) is made of a capillary segment with basal lamina,  

pericytes, perivascular astrocytes,  and microglial cells (16). Also, different neurons types 

(e.g. noradrenergic, serotonergic, cholinergic, GABAeric) have been observed to be part 

of the neurovascular unit (25).  

1.2.1 Microglia 

      The first one to describe microglia was the Spanish neuroanatomist Del Rio-Hortega. 

The microglial cells represent about 20% of the total glial cell population within the CNS 

(26). The microglial cells are characterized by a small cell body (5-10 µm) and they possess 

many radial cell processes extending from the cell body. Branched microglia are involved 

in extracellular fluid cleansing and neurotransmitter deactivation which contributes to the 

maintenance of homeostasis. Microglial cells lack endocytic and phagocytic activity under 

normal physiological conditions (27). Diseases or trauma could lead to microglial 

activation, and this activation is directly correlated to the type and severity of brain injury 

(28). Activated microglia have a relatively large cell body and short cytoplasmic processes. 

Activated microglia secrete high levels of neurotoxic mediators such as nitric oxide, 

peroxide, inflammatory cytokines, proteases and complement components (28, 29). 

Excessive production of these substances further lead to cell injury in the CNS which in 

turn leads to astrocyte activation which leads to further microglial activation. That will 

eventually lead to neuronal cell death (25). Dysfunction of the BBB is characterized by 

changes in tight junction protein expression and enhanced paracellular permeability which 

is directly associated with the activation of microglia (30). The microglial functional state 

determines the expression of ion channels in the microglia (31-34). There are several ion 

channels in the microglia including multiple potassium, calcium, sodium and chloride 
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channels (35). In addition, microglia express glutamate receptors (36) and transporters such 

as GLUT-1 (37). Furthermore, these cells express membrane proteins, which are involved 

in drug transport. The microglial cells are involved in a variety of physiological functions 

including proliferation, ramification and maintenance of membrane potential. They are also 

involved in intracellular pH regulation and cell volume regulation (31-34) .   

1.2.2 The Basement Membrane  

    The basement membrane (BM) is an important component of the neurovascular unit. It 

surrounds all the cerebral capillaries (38). Collagen type IV, I, fibronectin, thrombospondin 

(39), laminin, nidogen, heparin sulfate proteogltcans, and agrin (40) are the main 

components of the basement membrane. There are two types of the basement membrane. 

The vascular basement membrane and the parenchymal basement membrane. The vascular 

basement membrane is an extracellular matrix secreted by the endothelial cells and 

pericytes and it contains laminins a4 and a5. In contrast, the parenchymal basement 

membrane is secreted by astrocytic processes and it contains laminins a1 and a2 (41, 42). 

The basement membrane plays an important role as an anchor for signaling processes at 

the vasculature and it provides an additional barrier for molecules and cells to cross before 

accessing the neural tissue. BBB dysfunction and leukocyte infiltration during the 

neurodegenerative diseases can result from the disruption of the basement membrane by 

matrix metalloprotienases (43).  

1.2.3 Endothelial Cells (ECs) 

    Endothelial cells are simple squamous epithelial cells that line the interior of all blood 

vessels. They are derived from the mesoderm layer (44, 45). The phenotypic characteristics 
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of the ECs depend primarily on the location of the ECs. The CNS endothelial cells are very 

thin cells: they are 39% less thick (46) than the vascular endothelial cells that are found in 

the skeletal muscle (43). They make the inner walls of the blood vessels by folding onto 

itself to form the lumen of the vessel. Endothelial cells are considered as the major cell that 

is responsible for the blood brain barrier integrity. They regulate the CNS homeostasis by 

providing a combination of a physical barrier, and a molecular barrier. The endothelial 

cells that forms the BBB are characterized by having a high numbers of mitochondria that 

are essential to generate ATP in order to transfer the ions across the the cells using 

transporters. Also, they are characterized by lacking fenestrations in their cell membrane 

and having a reduced pinocytotic activity. The endothelial cells limit the paracellular 

movement of solutes at the BBB by forming intercellular tight junctions (22, 47, 48). In 

addition, they limit the transcellular movement of solutes by limiting the vesicle-mediated 

transcellular movement of solutes. Furthermore, they express very low level of leukocyte 

adhesion molecules in order to limit the amount of immune cells that enter the CNS (43, 

49, 50). There two main categories of transporters are found in the CNS endothelial cells. 

At the luminal surface of the endothelia are found the efflux transporters which transport 

the lipophilic molecules (51-53). Highly specific nutrient transporters are the second type 

of transporters which transport nutrients across the BBB into the CNS and remove the 

waste products from the CNS into the blood (54).  

1.2.4 Astrocytes 

    Astrocytes are the most abundant glial cell type in the brain. The astrocytic end feet 

contain an array of proteins including connexins, dystroclycan, dystrophin, and aquaporin 

4 that surround the cerebral capillaries of the brain (43). The close proximity of the 
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astrocytic end feet to the capillary network and its close relation to the neuron makes the 

astrocytes participate in a significant role to ensure development and maintenance of the 

BBB.  The astrocytes maintain the metabolic and the nutritive support of the neuron (15). 

The endfeet of the astrocyte is linked to the basement membrane by the dystroglycan-

dystrophin complex by binding agrin (43). This linkage is critical to place aquaporin 4 in 

a position to regulate water homeostasis in the CNS. Also, astrocytes disperse vascular 

nutrients away from the blood vessel in support of neuron in that region. Astrocytes induce 

tight junction formation by secreting soluble factors (15) . Some of the examples of the 

glial derived factors that are secreted by the astrocytes and result in the induction of the 

BBB phenotype in endothelial cells include: transforming growth factor (55), aniopoetin 

1, basic fibroblast growth factor, and glial derived neurotrophic factor (56).  

Astrocytes act as a cellular link between the capillaries and the neurons. That link is 

significant to regulate the contraction/dilation of vascular muscle cells that surround the 

capillaries by responding to changes in neuronal activity (43). Moreover, astrocytes 

participate in the regulation of cerebral microvascular permeability via Ca signaling (57, 

58). In addition, astrocytes have a high-affinity transporter for glutamate that contributes 

to maintaining low excitatory neurotransmitter concentrations in the brain. Furthermore, 

astrocytes act as a secondary barrier for CNS drug permeation by preventing the drug to 

reach their action site either by sequestering the drug within the astrocyte cytoplasm or by 

keeping the drugs at the brain extracellular fluids (25).  

1.3 Tight Junction 
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Figure 3: Tight junction proteins (25). ZO-1 stands for zona occludin protein-1. 7H6 stands 

for cytoplasmic tight junction-associated protein (59). AF-6 stands for afadin (60).  

  The tight junction is an almost impermeable continuous barrier that interconnects the 

BBB endothelial cells to prevent the entry of foreign substances with the exception of small 

lipid-soluble molecules (61). Tight junctions are formed by transmembrane proteins which 

include occludin, claudins, junction adhesion molecules (JAMs) that are connected to the 

cytoskeleton through accessory proteins (e.g., zonula occlude 1, 2, and 3) (62).  
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Figure 4: Basic Structure of selected tight junction proteins (63).  

     Occludin is considered as the first identified membrane protein within the tight junction. 

It consists of four transmembrane domains, two extracellular domains, and three 

cytoplasmic domains. It has a molecular weight of 60-65 kDa (64). It has two extracellular 

loops that span the intercellular cleft and are separated by a short cytoplasmic loop. The 

amino (N-terminus) and carboxy (C-terminus) are both cytoplasmic terminal domains (65).  

     Claudins are 20-24 KDa proteins (62). They have a similar basic structure to occludin, 

with much smaller cytoplasmic chains (65). It forms that primary “seal” of the tight 

junction (25). Junctional adhesion molecules (JAM) has several isoforms at the BBB 

including junction adhesion molecules-1 (JAM-1), junction adhesion molecules-2 (JAM-

2) and junction adhesion molecules-3 (JAM-3) (62, 66). Junctional adhesion molecules-1 

(JAM-1) is 40-KDa, and it play a role in the early developmental stages of the BBB. 

Junctional adhesion molecules-1 (JAM-1) mediates the early attachment of endothelial 

cells during the development of the BBB (67). Moreover, it regulates the transendothelial 

migration of leukocytes during inflammation (66). Loss of junctional adhesion molecules 
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(JAM) protein expression is correlated with BBB breakdown (68, 69) but it is not a 

sufficient marker for the BBB breakdown (70).  

     Accessory proteins including Membrane-associated guanylate kinase-like (MAGUK) 

family, cingulin, AF-6, 7H6 and EMP-1 (62, 71) are involved in coordination and 

clustering of tight junction protein complexes to the cell membrane (72). Three proteins of 

the membrane-associated guanylate kinase-like (MAGUK) family have been identified at 

the tight junction: ZO-1, -2, and -3. The protein that was directly involved with tight 

junction complexes is ZO-1 (73). It connects the transmembrane proteins of the tight 

junction to the actin cytoskeleton (74). In addition, ZO-1 acts as a signaling molecule that 

communicates the state of the tight junction to the cellular interior (75). ZO-2 is a protein 

that binds structural tight junction constituents, signaling molecules and transcription 

factors (76). ZO-3 function is still not known yet (25).      

 

Figure 5: the structure of connexin 43 (77).  
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Connexins have many different types (at least twenty-one) that are named according to 

their molecular weights. The above figure represents the structure of connexin 43. About 

150 amino acids form the structure of the connexin’s C-terminus (78, 79). Arginine, 

aspartic acid, asparagine, serine and proline are the most common amino acids that are 

found in the connexine 43. Protein interactions and kinases target the proline and serines 

composition of the connexin 43 (80). It is made of four transmembrane segments with two 

extracellular loops and one intracellular loop. Also, two terminals that are found in the 

cytosol: an amino terminal and a carboxy terminal that has multiple phosphorylation sites 

as figure shows it. Hemichannel is formed by six connexin that surrounds the aqueous pore. 

Two hemichannels form the gap junctions (77). Cell to cell communication occurs through 

gap junction (81) that allows cytoplasmic contents to passes through the opening of the 

hemichannels to the extracellular fluid. Gap junctions are considered as a dynamic structure 

because of cell ability to modify the number of the gap junctions through connexins 

biosynthesis, degradation and endocytosis (81). Some of the integral membrane proteins 

show half-lives of more than 75hrs (82, 83). In contrast, some other integral membrane 

proteins has a half-life of less than 5hrs (82-84). Regarding connexin degradation, it has a 

half-life of 1.5-5 hours. It shows that half-life in both vivo and in cultured cells (85-87).  
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Figure 6: phosphorylation sites at the connexin carboxy terminus (88).  

1.4 Transport across the BBB 

 

 

 

 

 

 

 

 

Figure 7: Transport across the BBB (89). 
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There are several ways to transport across the blood brain barrier. Passive diffusion 

(membrane transport in Figure 5) is for small lipophilic molecules with a molecular weight 

less than 500 Da (90, 91). An example of small molecules that passively diffuse through 

the cell membrane are barbiturates, ethanol, and caffeine. Also, gaseous lipophilic 

molecules can diffuse through the cell membrane such as O2 and CO2 (92, 93).  Carrier-

mediated transport is for small polar molecules, such as glucose, amino acids, organic 

anions and cations, and nucleosides (94). Large molecules and 98% of all small molecules 

do not cross the BBB (92, 93). Previous studies have shown that catecholamines do not 

cross the blood brain barrier (95). 

1.5 BBB Disruption 

Any disturbance to the function of these proteins will results in destabilizing the junctions, 

and it will enhance the paracellular diffusion. In the basal region of the lateral plasma 

membranes, there are adherens junctions below the tight junctions. Catenins connect 

cadherins to the cytoskeleton, and cadherins stabilize adhesion between basal endothelial 

cells in the adherens junctions.  

Any disruption to the blood brain barrier permeability could lead to many central nervous 

system diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, 

cerebrovascular disease (e.g. stroke), epilepsy, seizures, brain infection, meningitis, 

inflammatory disease, brain tumors, neurotrauma (89). Changes in ion balance, disrupting 

transport systems, and alternating the enzymatic barrier from being effective could be the 

results from BBB dysfunction. The blood brain barrier has tight junctions which limits the 

entry of certain molecules such such polar molecules and large molecules. Also, it limits 
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the entry of solute carrier protein along with ectoenzyme and endoenzyme that is found 

inside the endothelial cells. Therefore, it functions as an enzymatic (metabolic barrier) (16). 

 

 

Figure 8: causes, characteristics, and consequences of BBB breakdown (5). 

As the above figure shows that there are several factors that could lead to the blood brain 

barrier breakdown. Examples for the different causes that could cause the blood brain 

barrier permeability include the following: reactive oxygen species, matrix 

metalloproteinases (MMPs), angiogenic factors, inflammatory cytokines, autoantibodies, 

leukocyte adhesion, immune cell extravasation and pathogens. The characteristics of the 

blood brain barrier breakdown include the following: increased permeability, reduced tight 

junction protein expression and redistribution, impaired transporter function, insufficient 

clearance function, pericyte detachment, astrocyte loss and a disrupted basement 

membrane. The blood brain barrier breakdown leads to the following: imbalance of ions, 

leakage of plasma protein, entry of toxins, microglial activation and release of cytokines 
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and chemokines. That will eventually lead to neuronal dysfunction, inflammation and 

degeneration.  

   Previous studies have indicated that it is not certain yet that the blood brain barrier 

disruption is always caused by or a consequence of the oxidative stress (5). Nevertheless, 

some neurological diseases have blood brain barrier disruption associated with oxidative 

stress such as stroke, multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) (96-

98). Oxidative stress refers to having many reactive oxygen species (ROS) that are more 

than necessary or required, possibly because of a damaged intrinsic antioxidant defense 

system. There are several mechanisms by which elevated reactive oxygen species could 

lead to the BBB dysfunction. One of the mechanisms is that the reactive oxygen species 

could cause destruction and damage to the cellular molecules such as proteins, lipids and 

DNA.  Other mechanisms include the following: increasing the response to the 

inflammatory mediators, damaging the tight junction proteins, causing cytoskeletal 

reorganization and causing the activation of the matrix metalloproteinases (MMPs) (99).   

    Blood brain barrier disruption could lead to an abnormal neuronal activity that is caused 

by the imbalance of certain molecules in the interstitial fluid (e.g. ions, transmitters and 

metabolic products). An example of this situation occurs in seizures. Several neurological 

diseases have seizures such as epilepsy, central nervous system infections, stroke and 

neurodegenerative diseases (100). It is not known yet if epilepsy is a cause or a 

consequence of damaged blood brain barrier (101). Inflammation could lead to 

neurological diseases by causing a blood brain barrier disruption. An example of this 

situation is the neurological disease neuromyelitis optica (NMO). It is an inflammatory 
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disease that attack the central nervous system. It mainly affects the spinal cord and the optic 

nerve (102).  

     The table below lists the blood brain barrier disruption as either a primary or a 

secondary result of certain diseases. 

Diseases linked to BBB dysfunction 

Disease Level of 
BBB 
effect 

Comment 

Stroke Primary Microvascular injury induced by oxidative stress during 
ischemia/reperfusion 

 

Epilepsy 

Primary 
Systemic inflammation can disturb brain homeostasis by 
allowing entry of ions and epileptogenic substances 
across the BBB 

 

Secondary 
Seizures reduce BBB integrity, which enables entry of 
plasma proteins into the brain that sustain the 
epileptogenic state 

 

AD Primary BBB dysfunction, including defective amyloid-beta 
clearance from brain and congophilic angiopathy 

 

Familial 
ALS Primary 

Loss of BBB integrity at an ultrastructural level, 
associated with expression of mutant SOD1 in brain 
capillary endothelial cells 

 

PD Secondary 
Increased BBB permeability and decreased transport 
activity across the BBB, including inefficient efflux of 
toxic molecules via P-glycoprotein 

 

MS Secondary Extravasation of autoreactive T cells and monocytes 
across a compromised BBB 

 

Natalizum 
ab-PML with 
IRIS 

Secondary 
Infiltration of T cells in perivascular space and 
parenchyma after discontinuation of Natalizumab in 
context of PML 
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Disease Level of 
BBB 
effect 

Comment 

NMO Primary BBB breakdown including loss of AQP4 and of 
astrocytes caused by AQP4-IgG 

 

Primary 
CNS 
vasculitis 

Primary Inflammation of cerebral vessels without systemic 
disorder 

 

Secondary 
CNS 
vasculitis 

Primary Inflammation of cerebral vessels associated with 
systemic inflammatory illness 

 

VZV 
vasculopathy Primary Viral infection (primary or upon reactivation) of cerebral 

arteries 
 

Cerebral 
malaria Primary Sequestration of parasitized red blood cells in lumen of 

cerebral microvasculature 
 

Primary 
CNS 
lymphoma 

Secondary Leaky angiogenic vessels in malignant tissue  

Glioblastoma Secondary 
Leaky neo-angiogenic vessels and loss of BBB integrity 
in pre-existing vessels (by subcellular mislocalization of 
astroglial AQP4) in malignant tissue 

 

PRES Primary 
Vascular injury by systemic influence, such as disorders 
of clotting or bleeding, and chemotherapy agents 
(particularly those which inhibit VEGFR kinase) 

 

TBI Secondary Mechanical disruption of BBB followed by post-
traumatic BBB dysfunction 

 

Migraine Secondary Cortical spreading depression with subsequent vascular 
reaction 

 

Diabetes Secondary Increased BBB permeability, possibly leading to 
cognitive impairment  
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*Primary level of BBB effect indicates that the cerebrovasculature is probably 
compromised upstream from CNS pathogenesis whereas secondary level of BBB effect is 
interpreted as happening downstream from the initial insult and aggravating disease. 

AD, Alzheimer’s disease; ALS, Amyotrophic lateral sclerosis; PD, Parkinson’s disease; 
MS, Multiple sclerosis; PML, Progressive multifocal leukoencephalopathy; IRIS, 
Immune reconstitution inflammatory syndrome; NMO, Neuromyelitis optica; VZV, 
Varizella zoster virus; PRES, Posterior reversible encephalophathy syndrome; TBI, 
Traumatic brain injury 

Table 1: Diseases and blood brain barrier disruption (5). 

Table 2.  Changes in the BBB constituents with aging (2). 

BBB elements Properties 

ECs Capillary wall thickness: increased in humans decreased in rats  
                               decreased in monkeys Number of ECs: decreased in humans  
                               Number of mitochondria: decreased 
 
Tight junctions Expression of tight junction proteins: decreased 
 
Basal lamina Thickness of basement membrane: Increased 

Concentration of collagen IV and agrin: Increased 
Concentration of laminin: decreased 

 
Astrocytes Astrocyte proliferation: Increased number and 

size  
                               GFAP expression: Increased 
 
Microglia Changes to amoeboid morphology 

Production of neurotoxic proinflammatory mediators 
 
Pericytes Number of pericytes: Degeneration and loss of pericytes 

Ultrastructural changes: vesicular and lipofuscin-like 
inclusions, increased size of mitochondria, foamy 
transformation 
 

Neurons Deterioration of synaptic plasticity Deficit in long-term 
potentiation Impaired neurogenesis.  Increased apoptosis, 
Neuronal damage due cytokine release 
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The above table lists the changes that occur in the blood brain barrier permeability with 

aging (2). We see that the tight junction proteins are decreased with age. Also, we noticed 

more neuronal damage with age caused due to cytokine release. Most of the animal models 

used in the above table were mice.  

1.6 Fluoxetine 

Fluoxetine is (R, S)-N-methyl-3-phenyl-3-(4-(trifluoromethyl) phenoxy) propan-1-

amine. It is the first selective serotonin uptake inhibitor approved by the United States Food 

and Drug Administration (FDA)(103). It is used to treat diseases that are related to the 

Central Nervous System. For examples, it is used to treat major depressive disorder, 

obsessive-compulsive disorder, acute depressive episodes in Bipolar I disorder, panic 

disorder bulimia nervosa, and premenstrual dysphoric disorder (104), 

   

 

Figure 9: Chemical Structure of Fluoxetine (105). 

1.6.1 Fluoxetine Metabolism 

Fluoxetine has the largest volume of distribution among SSRI drugs. Fluoxetine 

has a long half-life and low plasma protein binding. It takes between 1 and 22 months to 

achieve steady state due to its long half-life according to depression studies. Also, it is 
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almost completely absorbed following oral administration. High performance liquid 

chromatography (HPLC) was used to detect the presence of fluoxetine and its active 

metabolites in the serum and the brain of the Sprague Dawley rats after drug ingestion 

(106, 107).  

Fluoxetine is metabolized in the liver by cytochrome P450 that results in forming different 

metabolites.  

 

 
 
 

Figure 10: Structures of the oxidative and conjugative metabolites of fluoxetine. The major 

metabolite is norfluoxetine, equipotent to fluoxetine for the S-enantiomer but with a 

significantly longer half-life than fluoxetine 1. The phenolic metabolite is inactive. The 

single enantiomers (S)-1 and (R)-1 showed divergent 2D6 metabolism (108) . 

Fluoxetine is excreted as either norfluoxetine or as fluoxetine glucuronide or 

norfluoxetine glucoronide. The norfluoxetine metabolite is formed mainly by CYP2D6 

while the inactive phenolic metabolite 14 is formed by CYPs 2C19.   Norfluoxetine is 

pharmacologically similar to fluoxetine for the S-enatiomer, but not the R-enantiomer, yet 

it has a longer half-life (4-16 days). Fluoxetine is both a substrate and an inhibitor of 

CYP2D6 while norfluoxetine is both substrate and an inhibitor of CYP3A4.  Both 
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Fluoxetine and norfluoxetine have R and S enantiomers. (S)-fluoxetine is 1.5 times more 

potent than (R)-fluoxetine while (S)-norfluoxetine is 5 to 20 times more potent than (R)-

norfluoxetine (108).  

1.6.2 Fluoxetine Effect on Microglial cells 

Neuroinflammation involves microglial activation (109). Pro-inflammatory factors which 

include reactive oxygen species, chemokines and cytokines are secreted during microglial 

activation. Neuronal damages occur due to the accumulation of the previous pro-

inflammatory factors. Toxic soluble factors get released from the damaged neurons. These 

toxic soluble factors amplify microglial activation. Hence, preventing the microglial 

activation that is associated with neuroinflammation represent a therapeutic potential to the 

neurological disorders that are caused by neuroinflammation. Fluoxetine has an important 

role in neuroprotection. It inhibits the release of a microglial transcription factor, NF-KB 

that results in the production of cytotoxic factors and proinflammatory factors. In addition, 

fluoxetine decreases the morphological changes that are associated with activated 

microglia. These changes involve a larger cell body, irregular shapes and thicker processes 

(110). The fluoxetine exert its effect though affecting the immune system. It activates M2 

through IL-4 induction and inhibits M1 through LPS + INF induction (111).    

   

1.7 HYPOTHESIS 

In this study, we predict that aging will cause more neurodegenerative diseases by 

increasing the blood brain barrier permeability. Also, we expect that certain drugs such as 

fluoxetine will change the blood brain barrier permeability by either making it tighter or 
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by increasing its permeability. Each enantiomer of fluoxetine will have a different effect 

on the permeability of the blood brain barrier.  We expect that our results will match the 

results of the stroke study. In stroke animals, our lab saw that R-fluoxetine is increased the 

permeability while S-fluoxetine is decreased the permeability of the blood brain barrier. 

However, this will be the first test of these enantiomers in a normal, uninjured brain. The 

research study that was conducted by Dr. Debra’s Mayes by using an artificial blood brain 

barrier found that R-fluoxetine tighten the blood brain barrier while S-fluoxetine loosen 

the blood brain barrier.  

1.7.1 Specific Aims 

Specific Aim 1:  The main aim of this study is to test the effect of Prozac 

enantiomers (R-fluoxetine and S-fluoxetine) on the blood brain barrier permeability in 

different brain regions (cortex, hippocampus, striatum-caudate putamen-hypothalamus 

(brain), and the cerebellum).  We chose the cortex and the hippocampus regions because 

they are aged related regions that are associated with neurodegenerative diseases such as 

Alzheimer. Previous stroke studies have chosen cerebellum region to study.    

Specific Aim 2: We will determine if there are age and gender difference in the 

blood brain barrier permeability across the different tested brain regions among the males 

(at different ages) and females rats (at an older age). Males and females animals showed 

no difference in blood brain barrier permeability as previous studies have shown (112).  

During this study, we did not have enough funding to include young females.  
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Specific Aim 3: We are comparing the results of this study in the discussion with 

previous studies that have been conducted on stroke injured animals, to examine changes 

in normal versus injured brains.  
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II. MATERIALS AND METHODS 

2.1 Voluntary Drug Administration 
 

The purified R-enantiomer and S-enantiomer of 5mg/kg fluoxetine have been given 

to the Sprague Dawley rats. Also, its 50/50 combined racemic mixture (trade name Prozac) 

has been given to the young male rats at a dosage of 5mg/kg. Prozac was purchased from 

a pharmacy while the enantiomers of fluoxetine were purchased from Sigma-Aldrich. The 

drug Prozac is a combination of 50:50 R-fluoxetine/S-fluoxetine. Studies have shown that 

subcutaneous drug administration could increase the level of stress to the animal by 

increasing the level of stress hormones such as corticosterone, particular if the drugs need 

to be administered on a daily basis (113). In order to reduce the amount of stress that the 

animals might experience during this study, the medicine was delivered to the animal 

encased in sugar cookie dough that weighted about 4 grams. The control animals were only 

given the cookie dough without medicine. Each animal received the drugs for a total of 3 

days and were euthanized on the fourth day. 

The animals were injected ip with sterile 2% Evans blue in PBS (1 ml for young 

animals; 2.5 mls for old animals) late on the third day of drug administration. During this 

study, we had to give the animals the medicine first then injecting them with Evan’s blue 

because the animals did not eat their medications if they were given Evans’ blue dye first. 

After 12-16 hours later, the animals were euthanized, and cardioperfused.       
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In order to avoid bias, randomization and blinding were applied during this study 

(114). During this study, I did not know any information about the animal except their 

numbers.  

 

Figure 11: method for voluntary drug administration (113).  

2.2 Euthanization  

Intraperitoneal injection of Euthasol (100 mg/kg pentobarbital) was performed in 

order to euthanize the animals. The tail-pinch method was applied to check the 

consciousness of the rat. When the animal reached the stage of surgical anesthesia by 

showing no pain reflexes, the animal was ready to go through the cardioperfusion 

procedure.    

2.3 Cardioperfusion  

An incision was made at the diaphragm region extended to the upper thorax. We 

basically removed a flap of the ribs covering the heart, so that the heart was fully exposed. 

Then, a hemostat was placed at the apex of the heart and loosely held.  A scissor was used 

to cut the apex heart muscle held in the hemostat, and a cannula was pushed through into 
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the left ventricle.  After the perfusion needle (cannula) was inserted into the apex of the 

heart, the hemostat was clamped. The perfusion needle was supplied with ice cold 

phosphate buffered saline (PBS). The heart was slightly tilted toward the left to locate the 

thinner right ventricle. Then, a cut was made at the right atria to let the blood flow out of 

the body of the rat.  

Brain Dissection 

Once perfusion is completed, generally after 150 mls of buffer is passed through 

the heart, we see a change in the color of the liver to a lighter color.  The head of the rat 

was decapitated. Then, the skin that covered the skull was removed starting from the base 

of the skull near the spinal cord. A smooth curved rongeurs was slid under the skull bone, 

around the midline of the skull. Then, it was lifted away from the brain to remove the skull, 

and we made sure not to damage the brain tissue. A curved spatula was placed under the 

anterior of the brain, near  the olfactory bulbs and then the brain was lifted upward. The 

optic nerves were cut and the brain was removed from the head of the rat. A microtome 

blade was used to dissect the brain sections.   
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 Figure 12: Steps to dissect the rat brain (115).  

 

The dissected brain sections, including the cortex, the peri-ventricular and 

hippocampus region, the lower brain region (composed of the striatum-caudate putamen-

hypothalamus) and the cerebellum, were individually placed in a beaker filled with dry ice 

and isopentane for about 10 sec to quick freeze the brain sections. The vials with these 

quick frozen brain sections were weighed while they were empty and weighed again with 

the brain tissue in order to find the weight (mg) of the dissected brain tissue.  
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Evan’s Blue Protocol 

A 50% trichloroacetic acid (TCA) stock solution is prepared by mixing 10 ml of 

cerebrospinal fluid (ACSF) with 5 grams of TCA. Brain tissues were homogenized in 1:3 

ACSF: TCA stock which was prepared by adding 375 µl of TCA stock solution and 125 

µl of ACSF to every single brain section. Then, they were spun at 10,000 relative 

centrifugal force for 20 minutes. The pellets and the supernatants were separated and have 

been collected into different vials, and they were kept at the freezer with -80 degree Celsius. 

Calibration Curve Solutions Preparations 

Two stocks solutions were prepared in order to prepare the calibration standard. 

The first stock solution is the 1:3 TCA solution which was prepared by mixing 1.25 ml of 

the ACSF with 3.75 ml of TCA stock, described above.  The second stock solution was 1 

mg/ml Evans blue (for evans blue calibration curve) or 1 mg/ml bovine serum albumin 

(BSA; for protein assay) dissolved in the 1:3 TCA solution (calibration stock). 

Four test tubes were labeled with 0 µg/ml, 2 µg/ml, 5 µg/ml, and 10 µg/ml 

sequentially. Then, 1ml of 1:3 TCA stock solution was added to the first tube, 2 µl of 1 

mg/ml evans blue stock with 998 µl of 1:3 TCA were added to the second tube, 5 µl of 1 

mg/ml evans blue stock with 995 µl of stock 1:3 TCA were added to the third tube, and 10 

ul evans blue with 990 µl of 1:3 TCA were added to the last tube. Then, the test tubes were 

mixed well and vortexed.  These were the calibration curve stocks for Evans blue assay.   

Microtiter plate Preparation 
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Supernatants and homogenized pellets from each brain sample (four different 

regions for each animal) were read using a microtiter plate.  An empty blank sheets were 

filled with the numbers and the labeling of the brain tissues in order to help with filling out 

the real microtiter plate, using 3 replicates for each sample. Then 30 µl of each the 

calibration stocks and each sample of the brain (supernatant or homogenized pellet) were 

added to the microtiter plate (3 replicate wells for each). Later, 90 µl of 95% ethanol was 

added to each well on the plate. The plates were taken to a spectrofluorometer microtiter 

plate reader in order to be read. The fluorescence values for the spectrophotometer were 

620nm for the excitation value and 680nm for the emission value. In order to determine 

the number of nanograms of evans blue detected per milligram of brain tissue is available, 

the standard calibration curve was analyzed for its slope and y-intercept.  These values 

were used to determine the number of nanograms of evans blue in each 30 ul brain sample, 

using the formula: 

 Ng Evans blue = (average brain sample fluorescence- y intercept)/slope. 

2.4 Pellet Homogenization 

Two rat brain sample pellets were homogenized at the same time. First, 0.5 ml of 

phosphate buffered solution (PBS) was added to the pellet. Then, the each pellet was 

ground by using the PTFE pestle. Next, the pellet was homogenized by using a Tissumizer 

rotor. After that, the pellet’s solution was transferred to a Dounce tissue grinder in order to 

be thoroughly homogenized, breaking up all clumps of tissue. Later, another 0.5 ml of PBS 

was added and the homogenized pellet was mixed by using the Tissumizer.  After the pellet 

is completely homogenized in a total of 1ml PBS, it was transferred with to a new vial and 

labeled.  
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2.5 Bradford Protein Assay 

Bradford Solution Preparation 

Bradford solution is prepared in steps: in the first step 100mg of Coomassie blue G 

is mixed with 850 ml of distilled water overnight. That solution should be dark in color due 

to the presence of Coomassie blue.  In the second step, 50 ml of ethanol is added to the 

solution and it will cause the solution to turn bright blue. Finally, 100 ml of phosphoric 

acid (85%) is added to the solution and the solution is expected to turn brown.  

Calibration Standard Stocks Preparation 

Six test tubes will be labeled with the following numbers: 0 µg/ml, 1 µg/ml, 2 

µg/ml, 5 µg/ml, 10 µg/ml, and 20 µg/ml. Then, 1ml of distilled water is added to the 0 

µg/ml. Then, 20 µl of BSA with 980 µl were added to the 1 µg/ml labeled tube. Next, 40 

µl of 1mg/ml BSA with 960 µl distilled water were added to 2 µg/ml labeled tube. Later, 

100 µl of 1mg/ml BSA with 900 µl of distilled water were added to the 5 µg/ml labeled 

tube. After that, 200 µl of 1mg/ml BSA with 800 µl of distilled water were added to the 10 

µg/ml labeled tube. Finally, 400 µl of 1mg/ml BSA with 600 µl distilled water were added 

to the 20 µg/ml labeled tube.  

Pellets Dilution Preparation 

At least two dilutions of each pellet were prepared for protein determination. The 

dilution factor was determined based on the amount of the protein that was present in the 

vial. Most of the time the dilution was 1:2 and 1:4 for the cortex, striatum-caudata putamen 

and the cerebellum. For the peri-ventricular and hippocampus, the dilution was 1:1 and 1:2.   
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All brain pellets were homogenized into 1 ml of PBS before they were assayed for protein 

content.   

The 1:2 dilution stock was prepared by adding 75 µl of the homogenized pellet 

sample with 75 µl of PBS while the 1:4 dilution was prepared by adding 50 µl of the 

homogenized pellet sample with 150 µl of the PBS.  Then, 50 µl of pellet dilution stock 

was added to each of the two test tubes label with 1:1 dilution. After all the tubes are 

completed, 50 µl of water was added to all the tubes.  Two replicated was prepared for each 

tube from the calibration stock solution by taking 50 µl from the calibration stock solution. 

Then, 50 µl of PBS was added to each replicate to ensure that the chemical composition of 

the protein in the standards and the protein in the samples is matched.  Later, Bradford 

solution was added to all of the test tubes. About 30 mins had passed until the 

spectrophotometer reading were taken. First the blank test tube is placed inside the 

spectrophotometer. While placing the spectrophotometer on transmission, the 

spectrophotometer was zeroed by blocking transmission and then full transmission was set 

to 100. Following this, the spectrophotomer was set to absorbance at 595 nm, and each 

tube was read. 

2.6 Animal Model 

Sprague-Dawley rats males and females were used during this research study. 

Young rats weighed 100gm (1.5 months) while the old male rats weighed about 500 grams 

(10-12 months) and old female rats weighed about 300 grams. The rats were kept in cages 

provided with water and ad libitum food. The animals were obtained from the laboratory 

animal resource department. The research study was conducted in accordance with the 

federal guidelines for the care and use of laboratory animals for scientific purposes.   
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2.7 Statistical Analysis 

Graph prism 7 software was used to determine the statistical differences between 

the groups. One-way and two-way ANOVA were the statistical methods that have been 

used in this research study. ROUT analysis was used to identify outliers.  
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III. Results 

In Table 1, the animal treatment groups used in this study are shown, with the 

amount of drug they were given by voluntary oral administration for three days, and the 

abbreviation that is used for that group. On the third day, after drug administration, animals 

were injected ip with Evans blue and were euthanized and cardioperfused approximately 

16-20 hours later.  Since we only used Prozac in the young rats, we will only compare it to 

the enantiomers of fluoxetine and the control in the young rats.  Also we do not have a 

young rat control for the female rats, so we will only compare male old rats with female 

old rats to analyze for gender differences 

 

Animal Age and Gender Drug Treatment Abbr. 
1.5 month male rats Control CYM 
1.5 month male rats 5 mg/kg S-fluoxetine SYM 
1.5 month male rats 5 mg/kg R-fluoxetine RYM 
1.5 month male rats 5 mg/kg Prozac PYM 
10 month male rats Control COM 
10 month male rats 5 mg/kg S-fluoxetine SOM 
10 month male rats 5 mg/kg R-fluoxetine ROM 

10 month female rats Control COF 
10 month female rats 5 mg/kg S-fluoxetine SOF 
10 month female rats 5 mg/kg R-fluoxetine ROF 

Table 3: Abbreviations for the animals age, gender and drug treatments that have been 
used in this study. 
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3.1 Young Male Rats 
One Way ANOVA of Total ng EB/mg Protein 

In the next set of figures, we presented the total ng Evans blue per protein (mg) for 

the different young male groups (the control young male, the young male that have taken 

R-fluoxetine and the young male that have taken the S-fluoxetine). The data was 

normalized by diving the total amount of Evans blue in ng per the amount of protein 

concentration in mg that was determined by using the Bradford protein assay.   
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Figure 13: Young male rats that have not taken any drug (Control Young Male). The x-

axis represents the different brain regions: the red color represents the cortex, the blue 

color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus (brain), and the purple color represents the 

cerebellum. The y-axis represents the total ng EB/mg protein. One-way ANOVA was 
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performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). P= 0.7877. The animal number, n = 10. 

Figure 13 shows that there was no significant difference between the different brain 

regions (P= 0.7877). The cortex showed the lowest blood brain barrier permeability among 

the different brain regions. The mean ± the standard error of the mean (SEM) for the 

different brain regions are as follow: cortex: -246.7±379, peri-ventricular and 

hippocampus: 6386±8309, striatum-caudate putamen-hypothalamus (brain): 2755±908.5 

and the cerebellum: 4048±4099. Outliers were determined by ROUT software at medium 

setting. In the hippocampus region the outlier: 80868.926 was located while 40375.985 

was located in the cerebellum. 

 

Figure 14: Young male rats that have not taken any drug (Control Young Male) without 

outliers. The x-axis represents the different brain regions: the red color represents the 

cortex, the blue color represents peri-ventricular and hippocampus, the green color 

represents the striatum-caudate putamen-hypothalamus (brain), and the purple color 
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represents the cerebellum. The y-axis represents the total ng EB/mg protein. One-way 

ANOVA was performed. Columns represent the mean for each group and error bars show 

standard error of mean (SEM). P= 0.0012. The n for the animal groups are as follow: the 

n for the cortex =10, the n for the hippo = 9, the n for the lower brain =10 and the n for 

the cerebellum =9.   

Figure 14 shows that there was a significant difference between the different brain 

regions (P= 0.0012). The brain region (striatum-caudate putamen-hypothalamus) showed 

the highest blood brain barrier permeability among the different brain regions. The mean 

± the standard error of the mean (SEM) for the different brain regions are as follow: cortex: 

-246.7±379, peri-ventricular and hippocampus: -1890±825.8, striatum-caudate putamen-

hypothalamus (brain): 2755±908.5 and the cerebellum: 12.1±796.3.  

 

Figure 15: Young male rats that have taken 5 mg/kg R-fluoxetine (RYM) for three days. 

The x-axis represents the different brain regions: the red color represents the cortex, the 

blue color represents peri-ventricular and hippocampus, the green color represents the 
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striatum-caudate putamen-hypothalamus, and the purple color represents the cerebellum. 

The y-axis represents the total ng EB/mg protein. One-way ANOVA was performed. 

Columns represent the mean for each group and error bars show standard error of mean 

(SEM). P=0.3311. The animal number, n= 11. 

Figure 15 shows that there was no significant difference between the different brain 

regions (P=0.3311). The mean ± the standard error of the mean (SEM) for the different 

brain regions are as follow: cortex: 12308 ±12294, peri-ventricular and hippocampus: -

2205±3224, striatum-caudate putamen-hypothalamus: 1397±851.6 and the cerebellum: 

24093±17789. Outliers were determined by ROUT software at medium setting. In the 

cerebellum the following outliers were found: 24064.006, 41496.548, and 197113.230. In 

the cortex region the following outlier was found: 134723.409. 

  

Figure 16: Young male rats that have taken 5mg/kg R-fluoxetine for three days (RYM) 

without outliers. The x-axis represents the different brain regions: the red color represents 

the cortex, the blue color represents peri-ventricular and hippocampus, the green color 
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represents the striatum-caudate putamen-hypothalamus, and the purple color represents 

the cerebellum. The y-axis represents the total ng EB/mg protein. One-way ANOVA was 

performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). P=0.5943. The animal number, n for the cortex = 9, n for the hippo 

= 11, n for the lower brain = 11, n for the cerebellum = 8. 

Figure 16 shows that there was no significant difference between the different brain 

regions (P=0.5943). The mean ± the standard error of the mean (SEM) for the different 

brain regions are as follow: cortex: 66.77 ±1253, peri-ventricular and hippocampus: -

2205±3224, striatum-caudate putamen-hypothalamus: 1397±851.6 and the cerebellum: 

293.1±824.6.  

 

Figure 17: Young male rats that have taken 5 mg/kg S-fluoxetine (SYM) for three days. 

The x-axis represents the different brain regions: the red color represents the cortex, the 

blue color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus, and the purple color represents the cerebellum. 
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The y-axis represents the total ng EB/mg protein. One-way ANOVA was performed. 

Columns represent the mean for each group and error bars show standard error of mean 

(SEM). P=0.0853. The animal number, n = 7. 

Figure 17 shows that there was no significant difference between the different brain 

regions (P=0.0853). There is a strong trend towards a significant difference between the 

permeability of the lower brain region and the cortex and hippocampus. The mean ± the 

standard error of the mean (SEM) for the different brain regions are as follow: cortex: -

778.2 ±1282, peri-ventricular and hippocampus: -853.8±1635, striatum-caudate putamen-

hypothalamus (brain): 4991±1649 and the cerebellum: 2018±2218. Outlier was determined 

by ROUT software at medium setting, and it was located in the cerebellum: 15175.114. 

 

Figure 18: Young male rats that have taken 5mg/kg S-fluoxetine for three days (SYM). The 

x-axis represents the different brain regions: the red color represents the cortex, the blue 

color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus, and the purple color represents the cerebellum. 



 

42 
 

The y-axis represents the total ng EB/mg protein. One-way ANOVA was performed. 

Columns represent the mean for each group and error bars show standard error of mean 

(SEM). P= 0.0164. The n for the animal groups was as follow: the n for the cortex = 6, the 

n for the hippo = 7, the n for the lower brain = 7, the n for the cerebellum = 6.  

Figure 18 shows that there was a significant difference between the different brain 

regions (P=0.0164). The brain region showed the highest blood brain barrier permeability 

among the different brain regions. The mean ± the standard error of the mean (SEM) for 

the different brain regions are as follow: cortex: -778.2 ±1282, peri-ventricular and 

hippocampus: -853.8±1635, striatum-caudate putamen-hypothalamus (brain): 4991±1649 

and the cerebellum: -174.7±392.8.  

 

 

Figure 19: Young male rats that have taken 5mg/kg Prozac (PYM) for three days. The x-

axis represents the different brain regions: the red color represents the cortex, the blue 

color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus (brain), and the purple color represents the 
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cerebellum. The y-axis represents the total ng EB/mg protein. One-way ANOVA was 

performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). P= 0.1967. The animal number, n = 7. 

Figure 19 shows that there was no significant difference between the different brain 

regions (P= 0.1967), and the cerebellum showed the highest blood brain barrier 

permeability among the different brain regions. The mean ± the standard error of the mean 

(SEM) for the different brain regions are as follow: cortex: 3193±3273, peri-ventricular 

and hippocampus: -11231±14227, striatum-caudateputamen-hypothalamus(brain 

): 3593±1440 and the cerebellum: 17815±10890.    

Summary:  When total ng Evans blue in regions is normalized by the amount of 

protein measured from the tissue in milligrams, we see that control young males have show 

a statistical difference in the permeability of Evans blue in the lower brain region compared 

to the cortex, hippocampus and cerebellum, showing enhanced permeability in that region.   

S-fluoxetine did produce increased permeability (statistically different) in the lower brain 

region, while R-fluoxetine tightened the BBB permeability in this region, removing 

statistical differences in BBB permeability between the regions.  Prozac, which is a mixture 

of R- and S-fluoxetine, did not show any significant differences in permeability between 

the brain regions tested.   

3.2 Old Male Rats 

 One Way ANOVA total ng EB/mg protein 
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In the next set of figures, we normalized the amount of Evans blue in a region by 

dividing the total ng Evans blue in that region by the protein concentration in mg, 

determined by a Bradford protein assay for the old male rats. 

 

Figure 20: Old male rats that have not taken any drug (COM). The x-axis represents the 

different brain regions: the red color represents the cortex, the blue color represents peri-

ventricular and hippocampus, the green color represents the striatum-caudate putamen-

hypothalamus (brain), and the purple color represents the cerebellum. The y-axis 

represents the total ng EB/mg protein. One-way ANOVA was performed. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

P= 0.0074. The animal number, n = 7.  

Figure 20 shows that there was a significant difference between the different brain 

regions (P= 0.0074), and the hippocampus region showed the lowest blood brain barrier 

permeability among the different brain regions. The mean ± the standard error of the mean 

for the different brain regions are as follow: cortex: 347.2±188.8, peri-ventricular and 
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hippocampus: -771.1±317.7, striatum-caudate putamen-hypothalamus (brain): 263±179.6 

and the cerebellum: 140.8±207.  

 

Figure 21: Old male rats that given 5 mg/kg S-fluoxetine (SOM) for three days. The x-axis 

represents the different brain regions: the red color represents the cortex, the blue color 

represents peri-ventricular and hippocampus, the green color represents the striatum-

caudate putamen-hypothalamus (brain), and the purple color represents the cerebellum. 

The y-axis represents the total ng EB. One-way ANOVA was performed. Columns represent 

the mean for each group and error bars show standard error of mean (SEM). P= 0.2667. 

The animal number, n = 7. 

Figure 21 shows that there was no significant difference between the different brain 

regions (P=0.2667). The hippocampus showed the lowest blood brain barrier permeability. 

The mean ± the standard error of the mean for the different brain regions are as follow: 

cortex: 194.2 ±135.1, peri-ventricular and hippocampus: -3411±3191, striatum-caudate 

putamen-hypothalamus (brain): 820±603.6 and the cerebellum: 4306.474579. Outliers 
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were determined by ROUT software at medium setting. The outlier: 22521.990 was located 

in the hippocampus region. The outlier: 4306.475 was located in the brain region.  

 

Figure 22: Old male rats that given 5 mg/kg S-fluoxetine (SOM) for three days without 

outliers. The x-axis represents the different brain regions: the red color represents the 

cortex, the blue color represents peri-ventricular and hippocampus, the green color 

represents the striatum-caudate putamen-hypothalamus (brain), and the purple color 

represents the cerebellum. The y-axis represents the total ng EB. One-way ANOVA was 

performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). P= 0.2553. The n for the animal numbers are as follow: the n for the 

cortex = 7, the n for the hippo = 6, the n for the lower brain = 6, the n for the cerebellum 

= 7.  

Figure 22 shows that there was no significant difference between the different brain 

regions (P=0.2553). The mean ± the standard error of the mean for the different brain 

regions are as follow: cortex: 194.2 ±135.1, peri-ventricular and hippocampus: -
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226.3±237.1, striatum-caudate putamen-hypothalamus (brain): 238.9±193.4 and the 

cerebellum: 161.2±127.9.  

 

Figure 23: Old male rats that have taken 5 mg/kg R-fluoxetine (ROM) for three days. The 

x-axis represents the different brain regions: the red color represents the cortex, the blue 

color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus (brain), and the purple color represents the 

cerebellum. The y-axis represents the total ng EB/mg protein. One-way ANOVA was 

performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). P= 0.0221. The animal number, n = 7. 

Figure 23 shows that there was a significant difference between the different brain 

regions (P= 0.0221), and the hippocampus showed the lowest blood brain barrier 

permeability among the different brain regions. The mean ± the standard error of the mean 

for the different brain regions are as follow: cortex: 326.1±180.3, peri-ventricular and 
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hippocampus: -902±267, striatum-caudate putamen-hypothalamus (brain): -72.23±565.1 

and the cerebellum: 671.2±231. 

Summary: When total ng Evans blue in regions is normalized by the amount of 

protein measured from the tissue in milligrams, we see that there is a significant difference 

in the blood brain barrier regions among the old male rats that have not taken any medicine 

and the old male rats that have taken 5mg/kg of R-fluoxetine, with the hippocampus 

showing statistically lower permeability compared to the other brain regions. The old male 

rats that have taken 5mg/kg of S-fluoxetine did not show any significant difference in the 

blood brain barrier permeability.  

3.3 Old Female Rats 

One Way ANOVA total ng EB/mg protein 

The following figures represent the one-way ANOVA for the different female rats 

(control female rats, the female rats that have taken R-fluoxetine, and the female rats that 

have taken S-fluoxetine). The figures represent the normalized measurements of Evans 

blue in the different brain regions of the female rats. The Evans blue was normalized by 

measuring the total amount of Evans blue per the protein concentration (mg). The protein 

was measured by using the Bradford protein assay.  
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Figure 24: Old female rats that have not taken any drug (COF). The x-axis represents the 

different brain regions: the red color represents the cortex, the blue color represents peri-

ventricular and hippocampus, the green color represents the striatum-caudate putamen-

hypothalamus (brain), and the purple color represents the cerebellum. The y-axis 

represents the total ng EB/mg protein. One-way ANOVA was performed. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

P= 0.0601. The animal number, n = 7. 

Figure 24 shows that there was a strong trend for a significant difference between 

the different brain regions (P= 0.0601). The hippocampus showed the lowest blood brain 

barrier permeability among the different brain regions. The mean for the different brain 

regions are as follow: cortex: -540.4±675.7, peri-ventricular and hippocampus: -

2376±1649, striatum-caudate putamen-hypothalamus (brain): 455.9±139.6 and the 

cerebellum: 1172±393.9. Outliers were determined by ROUT software at medium setting. 
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The outlier -4503.975 was located in the cortex while the outlier -12021.576 was located 

in the hippocampus.  

 

Figure 25: Old female rats that have not taken any drug (COF). The x-axis represents the 

different brain regions: the red color represents the cortex, the blue color represents peri-

ventricular and hippocampus, the green color represents the striatum-caudate putamen-

hypothalamus (brain), and the purple color represents the cerebellum. The y-axis 

represents the total ng EB/mg protein. One-way ANOVA was performed. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

P= 0.0023. The animal numbers, n for the different brain regions are as follow: the n for 

cortex = 6, the n for the hippo = 6, the n for the lower brain = 7, the n for the cerebellum 

= 7.  

Figure 25 shows that there was a significant difference between the different brain 

regions (P= 0.0023), with the cerebellum showing enhanced permeability compared to the 

other brain regions. The mean ± the standard error of the mean for the different brain 
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regions are as follow: cortex: 120.2±168.3, peri-ventricular and hippocampus: -768±434.8, 

striatum-caudate putamen-hypothalamus (brain): 455.9±139.6 and the cerebellum: 

1172±393.9. 

 

 

Figure 26: Old female rats that have taken 5 mg/kg S-fluoxetine (SOF) for three days. The 

x-axis represents the different brain regions: the red color represents the cortex, the blue 

color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus, and the purple color represents the cerebellum. 

The y-axis represents the total ng EB/mg protein. One-way ANOVA was performed. 

Columns represent the mean for each group and error bars show standard error of mean 

(SEM). P= 0.0136. The animal number, n = 6.  

Figure 26 shows that there was a significant difference between the different brain 

regions (P= 0.0136). The hippocampus showed the lowest blood brain barrier permeability 
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among the different brain regions, and the cerebellum showed the highest permeability. 

The mean ± the standard error of the mean for the different brain regions are as follow: 

cortex: 509.7±252.4, peri-ventricular and hippocampus: -4622±2673, striatum-caudate 

putamen-hypothalamus (brain): 29.63±250.6 and the cerebellum: 3232±1428.  

 

Figure 27: Old female rats that have taken 5 mg/kg R-fluoxetine (ROF) for three days. The 

x-axis represents the different brain regions: the red color represents the cortex, the blue 

color represents peri-ventricular and hippocampus, the green color represents the 

striatum-caudate putamen-hypothalamus (brain), and the purple color represents the 

cerebellum. The y-axis represents the total ng EB/mg protein. One-way ANOVA was 

performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). P= 0.1956. The animal number, n = 7. 

Figure 27 shows that there was no significant difference between the different brain 

regions (P=0.1956). The hippocampus showed the lowest blood brain barrier permeability 

among the different brain region. The mean ± the standard error of the mean for the 
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different brain regions are as follow: cortex: -856.5±1463, peri-ventricular and 

hippocampus: -2369±847.8, striatum-caudate putamen-hypothalamus (brain): -

207.1±250.5 and the cerebellum: 240.8±390.3. The outlier was determined by using ROUT 

analysis at medium setting. It was located at the cortex region. The outlier was -9420.832. 

 

 

Figure 28: Old female rats that have taken 5 mg/kg R-fluoxetine (ROF) for three days 

without outliers. The x-axis represents the different brain regions: the red color represents 

the cortex, the blue color represents peri-ventricular and hippocampus, the green color 

represents the striatum-caudate putamen-hypothalamus (brain), and the purple color 

represents the cerebellum. The y-axis represents the total ng EB/mg protein. One-way 

ANOVA was performed. Columns represent the mean for each group and error bars show 
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standard error of mean (SEM). P= 0.0028. The animal number, n for the cortex = 6, n for 

hippo = 7, n for the lower brain = 7, n for the cerebellum = 7.  

Figure 28 shows that there was significant difference between the different brain 

regions (P=0.0028), with the hippocampus showing statistically lower permeability. The 

mean ± the standard error of the mean for the different brain regions are as follow: cortex: 

570.8±380.8, peri-ventricular and hippocampus: -2369±847.8, striatum-caudate putamen-

hypothalamus (brain): -207.1±250.5 and the cerebellum: 240.8±390.3.  

Summary: Total ng Evans blue in regions was normalized by the amount of protein 

measured from the tissue in milligrams. Our statistical analysis showed that there was a 

significant difference in the blood brain barrier permeability in the different brain regions 

with the hippocampus showing the lowest blood brain barrier permeability and the 

cerebellum showing higher blood brain barrier permeability in both control and S-

fluoxetine groups.  

3.4. Young Male Rats versus Old Male Rats 

Two-Way ANOVA of total ng EB/mg Protein 

The following set of figures represents the two-way ANOVA of the comparison 

between the different groups of the old males and the young males. The measurements of 

Evans blue were normalized by measuring the total amount of Evans blue in ng and then 

dividing it by the amount of protein concentration in mg. The Bradford protein assay was 

used to measure the amount of the protein concentration.  
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Figure 29: Comparison between young male and old male rats that have given 5 mg/kg R-

fluoxetine (RYM vs. ROM) for three days. The x-axis represents the different brain regions: 

cortex, peri-ventricular and hippocampus, striatum-caudate putamen-hypothalamus 

(brain), cerebellum. The y-axis represents the total ng EB/mg protein. Two-way ANOVA 

was performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). Interaction, P=0.5811. Region, P=0.4934. Age, P=0.2044. The 

number of the animals, n was as follow: the n for the ROM =7, the n for the RYM =11.   

Figure 29 shows that there was no significant difference for interaction between the 

different brain regions and age groups (P = 0.5811). Also, there was no significant 

difference between the different brain regions between the groups (P = 0.4934). In addition, 

there was no significant difference between the young and the old males (P =0.2044).  The 

root mean square error, which is defined as the residual mean square. It is used to estimates 

the common within-group standard deviation which also known as the standard error of 

the estimate were as the following. The mean ± the standard error of the mean for ROM: 
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5.78±338.6, RYM: 8898±5930. The mean ± the standard error of the mean: ROM: 5.787 

± 4783.159, RYM: 8410.804 ± 4079.092. The mean ± the standard error of the mean for 

the different brain regions are as follow: cortex: 6317.183 ± 6541.099, hippo: -2528.268 ± 

6541.099, brain: 662.374 ± 6541.099, cerebellum: 12381.893 ± 5450.916.  

 

Figure 30: Comparison between old male rats that have given R-fluoxetine for three days, 

and young male rats that R-fluoxetine (ROM vs. RYM). The x-axis represents the different 

brain regions: cortex, peri-ventricular and hippocampus, striatum-caudate putamen-

hypothalamus (brain), and cerebellum. The y-axis represents the total ng EB. Two-way 

ANOVA was performed. Columns represent the mean for each group and error bars show 

standard error of mean (SEM). Interaction, P=0.820. Region, P=0.466. Age, P=0.916. 

The n for the animal numbers was as follow: the n for the ROM = 7, the n for the animal 
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groups of the RYM was as follow: the n for the cortex was 9, the n for the hippo was 11, 

the n for the brain was 11 and the n for the cerebellum was 8.   

Figure 30 shows that there was no significant difference for interaction between the 

different brain regions and age groups (P = 0.820). Also, there was no significant difference 

between the different brain regions between the groups (P = 0.466). In addition, there was 

no significant difference between the young and the old males (P =0.916). The root mean 

square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following. The mean ± the standard error of the mean for the different 

brain regions are as follow: cortex: 196.441 ±1133.443, peri-ventricular and hippocampus:-

1553.296 ±1112.027, striatum-caudate putamen-hypothalamus (brain): 662.367± 

998.075and the cerebellum: 482.149 ±1190.354. The mean ± the standard error of the mean 

for the treatment groups was as follow: RYM: -111.950 ±691.300, ROM: 5.780 ±869.311. 

 

Figure 31: Comparison between young male and old male rats that have given 5 mg/kg S-
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fluoxetine (SYM vs. SOM) for three days. The x-axis represents the different brain regions: 

cortex, peri-ventricular and hippocampus, striatum-caudate putamen-hypothalamus 

(brain), cerebellum. The y-axis represents the total ng EB/mg protein. Two-way ANOVA 

was performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). Interaction, P=0.5558. Region, P=0.0342. Age, P=0.1354. The 

animal numbers, n for the different animal groups were as follow, the n for the SOM =7, 

the n for the SYM =7.    

Figure 31 shows that there was no significant difference for interaction between the 

different brain regions and age groups (P = 0.5558). Also, there was a significant difference 

between the different brain regions between the groups (P = 0.0342). In addition, there was 

no significant difference between the young and the old males (P =0.1354). The root mean 

square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following.   The mean ± the standard error of the mean for SOM: -

559.023 ± 806.390, SYM: 534.440 ± 823.019. The mean ± the standard error of the mean 

for the different brain regions: cortex: -292.006 ± 1186.974, hippo: -1888.090 ± 1140.408, 

brain: 1041.251 ± 1140.408, cerebellum: 1089.678 ± 1140.408.  
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Figure 32: Comparison between old male rats that have given S-fluoxetine, and young 

male rats that have given S-fluoxetine (SOM vs. SYM) for three days without outliers. The 

x-axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus (brain), and cerebellum. The y-axis represents 

the total ng EB. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P= 0.599. Region, 

P= 0.446. Age, P= 0.850. The animal numbers, n for the SOM of the cortex was 7, the 

hippocampus was 6, the brain was 6 and the cerebellum was 7. The n for the SYM was as 

follow: the n for the cortex was 6, the n for the hippo was 7, the n for the brain was 7, and 

the n for the cerebellum was 6.  

Figure 32 shows that there was no significant difference for interaction between the 

different brain regions and age groups (P = 0.599). Also, there was no significant difference 

between the different brain regions between the groups (P = 0.446). In addition, there was 

no significant difference between the young and the old males (P =0.850). The root mean 

square error, which is defined as the residual mean square. It is used to estimates the 
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common within-group standard deviation which also known as the standard error of the 

estimate were as the following.  The mean ± the standard error of the mean for SOM: 

91.98±107.3, SYM: 796.1±1407. The mean ± the standard error of the mean for the 

different brain regions: cortex: -292.006 ± 576.364, hippo: -295.543 ± 576.364, brain: 

750.708 ± 492.705, cerebellum: -6.736 ± 576.364. 

 

Figure 33: Comparison between young male and old male rats that have not given any 

drug (CYM vs. COM). The x-axis represents the different brain regions: cortex, peri-

ventricular and hippocampus, striatum-caudate putamen-hypothalamus (brain), 

cerebellum. The y-axis represents the total ng EB/mg protein. Two-way ANOVA was 

performed. Columns represent the mean for each group and error bars show standard 

error of mean (SEM). Interaction, P=0.8059. Region, P=0.9141. Age, P=0.2539. The 
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animal numbers, n for the different animal groups were as follow, the n for the COM =7, 

the n for the CYM =10.    

Figure 33 shows that there was no significant difference for interaction between the 

different brain regions and age groups (P = 0.8059). Also, there was no significant 

difference between the different brain regions between the groups (P = 0.9141). In addition, 

there was no significant difference between the young and the old males (P =0.2539). The 

root mean square error, which is defined as the residual mean square. It is used to estimates 

the common within-group standard deviation which also known as the standard error of 

the estimate were as the following.   The mean± the standard error of the mean for COM: 

-5.023±258.9, SYM: 3236±1383. The mean ± the standard error of the mean was as follow: 

COM -5.023 ± 2157.676, CYM: 3235.603 ± 1805.242. The mean ± the standard error of 

the mean for the different brain regions was as follow: cortex: 50.286 ±, hippo: 2807.251, 

brain: 1508.976, cerebellum: 2094.647.  
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Figure 34: Comparison between old male rats that have not taken a drug (COM), and 

young male rats that have not taken a drug (CYM). The x-axis represents the different brain 

regions: cortex, peri-ventricular and hippocampus, striatum-caudate putamen-

hypothalamus (brain), and cerebellum. The y-axis represents the total ng EB. Two-way 

ANOVA was performed. Columns represent the mean for each group and error bars show 

standard error of mean (SEM). Interaction, P=0.030. Region, P<0.001. Age, P=0.736. 

The animal numbers, n for the different animal groups were as follow: the n for the COM 

=7, the n for the CYM for the different brain regions were as follow: the n for the cortex 

was 10, the n for the hippocampus was 9, the n for the brain is 10 and n for the cerebellum 

was 9.    

 

Figure 34 shows that there was significant difference for interaction between the different 

brain regions and age groups (P = 0.030). Also, there was significant difference between 
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the different brain regions between the groups (P < 0.001). In addition, there was no 

significant difference between the young and the old males (P =0.736). The root mean 

square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following.  The mean ± the standard error of the mean for the different 

brain regions are as follow: cortex: 50.288 ± 486.556, peri-ventricular and hippocampus: -

1330.710 ± 497.562, striatum-caudate putamen-hypothalamus (brain): 1508.976 ± 433.586 

and the cerebellum: 76.453 ± 497.562. The mean ± the standard error of the mean for the 

treatment groups was as follow: CYM: 157.526 ± 301.182, COM: -5.023 ± 373.171. 

Summary: Total ng Evans blue in regions was normalized by the amount of protein 

measured from the tissue in milligrams. We compared the amount of total ng Evans blue 

among the different groups (control, S-fluoxetine and R-fluoxetine) between the young and 

the old males. The R-fluoxetine groups showed no significant difference in interaction, 

region nor age. The S-fluoxetine showed a significant difference in interaction and region. 

The young males in the S-fluoxetine showed the highest blood brain barrier permeability 

in the lower brain regions among the different brain regions in the brain. The S-fluoxetine 

has increased the blood brain barrier permeability in the brain region. The control group 

showed a significant interaction in the interaction and the region. In the control group, the 

brain showed the highest blood brain barrier permeability among the different brain 

regions.  

3.5 Comparison among the Young Males Groups 

Two Way ANOVA of total ng EB/mg Protein 
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In the figures that are listed below, we compared the total ng Evans Blue per mg of 

protein for the different groups of the young males. We normalized the data by diving the 

total ng of Evans blue by the protein concertation (mg) which was measured by Bradford 

protein assay.  

 

Figure 35: Comparison between young male rats that have given 5 mg/kg S-fluoxetine for 

three days, and young male rats that have not given any drug (SYM vs. CYM). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

Evans Blue/mg protein. Two-way ANOVA was performed. Columns represent the mean for 

each group and error bars show standard error of mean (SEM). Interaction, P= 0.7098. 

Region, P =0.7486. Treatment, P= 0.5249. The n for the different animal groups were as 

follow: the n for the CYM =10, the n for the SYM =7. 

Figure 35 shows that there was no significant difference in ng Evans Blue/mg protein in 

young male rats for interaction between the different brain regions and the drug treatment 

groups (P = 0.7098). Also, there was no significant difference between the different brain 
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regions between the groups (P =0.7486). In addition, there was no significant difference 

between the different drug treatment groups (P =0.5249).  ROUT analysis at medium 

setting was used to find out the outliers. The SYM had an outlier (15175.114) at the 

cerebellum region of the brain. The CYM had two outliers. The first outlier (80868.926) 

was located at the hippocampus region while the second outlier (40375.985) was located 

at the cerebellum region. The root mean square error, which is defined as the residual mean 

square. It is used to estimates the common within-group standard deviation which also 

known as the standard error of the estimate were as the following.  The mean ± the standard 

error of the mean: CYM: 3235.604 ± 1874.775, SYM: 1344.297 ± 2286.992. The mean ± 

the standard error of the mean for the different brain regions was as follow: Cortex: -

512.418 ± 3061.495, hippo: 2765.933 ± 2921.626, brain: 3872.970 ± 2921.626, 

cerebellum: 3033.315 ± 2921.626.  

 

  

Figure 36: Comparison between young male rats that have given 5 mg/kg S-fluoxetine for 

three days, and young male rats that have not given any drug (SYM vs. CYM). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-
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caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P= 0.5247. Region, 

P <0.0001. Treatment, P= 0.3874. The n for the animal groups of the CYM was as follow: 

the n for the cortex was 10, the n for the hippocampus was 9, the n for the brain was 10 and 

the n for the cerebellum was 9.  The n for the SYM was as follow: the n for the cortex was 

6, the n for the hippocampus was 7, the n for the brain was 7, and the n for the cerebellum 

6.  

     Figure 36 shows data from Figure 35 that has removed the statistical outliers.  This data 

indicates there was no significant difference in ng Evans Blue/mg protein for the interaction 

between the different brain regions and the drug treatment groups (P = 0.5247). However, 

there was a significant difference in ng Evans Blue/mg protein between the different brain 

regions for the young male (P < 0.0001), with the lower brain region showing a higher 

permeability. There was no significant difference between the different drug treatment 

groups (P =0.3874; control versus S-fluoxetine) in the young male rats. The root mean 

square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following.  The mean ± the standard error of the mean for CYM: 

157.526 ± 466.809, SYM: 796.089 ± 565.238. The mean ± the standard error of the mean 

for the different brain regions are as follow: cortex: -512.418 ± 741.965, hippo: -1372.028 

± 724.084, brain: 3872.970 ± 708.067, cerebellum: -81.294 ± 757.265.   
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Figure 37: Comparison between young male rats that have given 5 mg/kg R-fluoxetine for 

three days, and young male rats that have not given any drug (RYM vs. CYM). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P= 0.939. Region, 

P= 0.062. Treatment, P = 0.804. The animal numbers (n) for the different animal groups 

were as follow: the n for the CYM =10, the n for the RYM =11.    

Figure 37 shows there was no significant difference in ng Evans Blue/ mg protein for the 

interaction between the different brain regions and the drug treatment groups (P = 0.939; 

control versus R-fluoxetine). Also, there was no significant difference between the 

different brain regions for the young male rats (P = 0.062). In addition, there was no 

significant difference between the drug treatment groups (P =0.804; control versus R-

fluoxetine).  The statistical outliers were determined by using the ROUT analysis at 

medium setting. The CYM had two outliers. The first outlier (80868.926) was located at 

the hippocampus region while the second outlier (40375.985) was located at the cerebellum 
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region. The RYM group had four outliers. The first outlier (134723.409) was located at the 

cortex. In contrast, the rest of the outliers (24064.006, 41496.548 and 197113.231) were 

located at the cerebellum. The root mean square error, which is defined as the residual 

mean square. It is used to estimates the common within-group standard deviation which 

also known as the standard error of the estimate were as the following.  The mean ± the 

standard error of the mean: CYM: 3235.604 ± 4171.233, RYM: 8898.305 ± 3720.250. The 

mean ± the standard error of the mean for the brain regions was as follow: cortex: 6060.813 

± 5763.387, hippo: 2090.514 ± 5763.387, brain: 2075.962 ± 5030.697, Cere: 14070.529 ± 

5763.387.  

 

Figure 38: Comparison between young male rats that have given 5 mg/kg R-fluoxetine for 

three days, and young male rats that have not given any drug (RYM vs. CYM). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P= 0.9388. Region, 
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P= 0.0620. Treatment, P = 0.8042. The n for the animal numbers for the different animal 

groups were as follow: the n for the CYM for the different brain regions were as follow: 

the n for the cortex was 10, the n for the hippocampus was 9, the n for the brain was 10 and 

the n for the cerebellum was 9. The n for the RYM was as follow: the n for the cortex was 

9, the n for the hippocampus was 11, the n for the brain was 11 and the n for the cerebellum 

was 8.  

Figure 38 shows the data from Figure 37 with the statistical outlier removed.  The data 

indicates there was no significant difference in the ng Evans Blue/mg protein for interaction 

between the different brain regions and the drug treatment groups (P = 0.9388; control 

versus R-fluoxetine). Also, there was no significant difference between the different brain 

regions between the groups (P = 0.0620), but the P value does indicate a very strong trend 

here. In addition, there was no significant difference between the treatment groups (P 

=0.8042). The root mean square error, which is defined as the residual mean square. It is 

used to estimates the common within-group standard deviation which also known as the 

standard error of the estimate were as the following.  The mean ± the standard error of the 

mean for the different brain regions are as follow: cortex: -89.943±1063.861, peri-

ventricular and hippocampus:-2047.447 ±1069.221, striatum-caudate putamen-

hypothalamus (brain): 2075.962 ±1039.401 and the cerebellum: 152.580 ±1155.921. The 

mean ± the standard error of the mean for the treatment groups was as follow: CYM: 

157.526 ± 772.877, RYM: -111.950 ± 758.648. 
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Figure 39: Comparison between young male rats that have given 5 mg/kg R-fluoxetine for 

three days, and young male rats that have given 5 mg/kg of S-fluoxetine (RYM vs. SYM). 

The x-axis represents the different brain regions: cortex, peri-ventricular and 

hippocampus, striatum-caudate putamen-hypothalamus (brain), cerebellum. The y-axis 

represents the total ng EB/mg protein. Two-way ANOVA was performed. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

Interaction, P= 0.5279. Region, P= 0.5251. Treatment, P = 0.2921. The n for the animal 

numbers of the different animal groups were as follow: the n for the RYM =11, the n for 

the SYM =7.      

Figure 39 shows that the data indicates that there was no significant difference in 

the ng Evans blue/ mg protein for interaction between the different brain regions and drug 

treatment groups (p= 0.5279; R-fluoxetine vs. S-fluoxetine treatment group). Also, there 

was no significant difference between the different brain regions between the groups (P = 

0.5251). In addition, there was no significant difference between the treatment groups (P 

=0.2921).  The ROUT analysis at medium setting was used to determine the outliers. The 
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SYM had an outlier at the cerebellum. The outlier was 15175.114. The RYM had four 

outliers. The first outlier was 134723.409. It was found at the cortex. The other outliers 

were found at the cerebellum. These outliers include: 24064.006, 41496.548, and 

197113.231. The root mean square error, which is defined as the residual mean square. It 

is used to estimates the common within-group standard deviation which also known as the 

standard error of the estimate were as the following.  The mean ± the standard error of the 

mean, RYM: 8898.305 ± 4378.361, SYM: 1344.297 ± 5601.744. The mean ± the standard 

error of the mean for the different brain regions: cortex: 5765.054 ± 7369.880, hippo: -

1529.182 ± 7020.997, brain: 3193.973 ± 7020.997, cerebellum: 13055.360 ± 7020.997.   

Figure 40: Comparison between young male rats that have given 5 mg/kg R-fluoxetine for 

three days, and young male rats that have given 5 mg/kg of S-fluoxetine (RYM vs. SYM). 

The x-axis represents the different brain regions: cortex, peri-ventricular and 

hippocampus, striatum-caudate putamen-hypothalamus (brain), cerebellum. The y-axis 

represents the total ng EB/mg protein. Two-way ANOVA was performed. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 
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Interaction, P= 0.6384. Region, P= 0.0787. Treatment, P = 0.5082. The n for the animal 

numbers of the different animal groups were as follow: the n for the RYM for the different 

brain regions were as follow: the n for the cortex was 9. The n for the hippocampus was 

11, the n for the brain was 11 and the n for the cerebellum was 8, the n for the SYM was as 

follow: the n for the cortex was 6, the n for the hippocampus was 7, the n for the brain was 

7, and the n for the cerebellum was 6.   

 

Figure 40 shows the data from Figure 39, but with the statistical outliers removed.  

The data shows there was no significant difference in ng Evans Blue/mg protein for the 

interaction between the different brain regions and the drug treatment groups (P = 0.6384; 

R-fluoxetine versus S-fluoxetine). Also, there was no significant difference between the 

different brain regions between the groups (P = 0.0787), but the P value does show a very 

strong trend here. In addition, there was no significant difference between the treatment 

groups (P =0.5082). The root mean square error, which is defined as the residual mean 

square. It is used to estimates the common within-group standard deviation which also 

known as the standard error of the estimate were as the following.  The mean ± the standard 

error of the mean: RYM: -111.950 ± 901.296, SYM: 1344.297 ± 1090.216. The mean ± 

the standard error of the mean: cortex: -355.702 ± 1459.425, hippo: -1529.182 ± 1366.432, 

brain: 3193.973 ± 1366.432, cerebellum: 1155.606 ± 1462.679.  

Summary: Total ng Evans blue in regions was normalized by the amount of protein 

measured from the tissue in milligrams. Our analysis showed that there were no significant 

difference in the interaction, region and treatment in the comparison between the CYM 

versus RYM. Also, there were no significant difference in the interaction, region and 
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treatment in the comparison between RYM versus SYM. There was a significant difference 

in the region for the SYM group in the comparison of CYM versus SYM.  

5 mg/kg Prozac young male versus different treatment groups among young males 

 

Figure 41: Comparison between young male rats that have given 5 mg/kg S-fluoxetine, 

and young male rats that have given 5 mg/kg Prozac (SYM vs. PYM) for three days. The x-

axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the 

total ng EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for 

each group and error bars show standard error of mean (SEM). Interaction, P=0.2677. 

Region, P=0.1259. Treatment, P=0.6755. The n for the animal groups was as follow: 

SYM=7, PYM=7.   

Figure 41 shows there was no significant difference in ng Evans Blue/mg protein for 

interaction between the different brain regions and the drug treatment groups (P = 0.2677; 

S-fluoxetine versus Prozac). Also, there was no significant difference between the different 
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brain regions between the groups (P = 0.1259). In addition, there was no significant 

difference the drug treatment groups (P =0.6755Outlier was determined by using the 

ROUT analysis at medium settings. The outlier was located at the SYM group at the 

cerebellum (15175.114). The root mean square error, which is defined as the residual mean 

square. It is used to estimates the common within-group standard deviation which also 

known as the standard error of the estimate were as the following.  The mean ± the standard 

error of the mean for the SYM: 1344.297 ± 2976.671, PYM: 3342.441 ± 3109.031. The 

mean ± the standard error of the mean for the different brain regions was as follow: the 

cortex: 1207.318 ± 4576.370, the hippo: -6042.555 ± 4396.834, the brain: 4292.009 ± 

3807.770, the cerebellum: 9916.704 ± 4396.834. 

   

 

Figure 42: Comparison between young male rats that have given 5 mg/kg S-fluoxetine, 

and young male rats that have given 5 mg/kg of Prozac (SYM vs. PYM) for three days. The 

x-axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus, and cerebellum. The y-axis represents the total 

ng EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 
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group and error bars show standard error of mean (SEM). Interaction, P=0.175. Region, 

P=0.289. Treatment, P=0.046. The n for the animal groups of the SYM was as follow: the 

n for the cortex was 6, the n for the hippocampus was 7, the n for the brain was 7, the n for 

the cerebellum was 6. The n for the PYM = 7. 

Figure 42 shows the data from Figure 41 with the statistical outliers removed.  The data 

shows that there was no significant difference in ng Evans Blue/mg protein for the 

interaction between the different brain regions and the drug treatment (P = 0.175; S-

fluoxetine versus Prozac). Also, there was no significant difference between the different 

brain regions in the young male rats (P = 0. 289). In addition, there was a significant 

difference between the drug treatments (P =0.046; S-Fluoxetine versus Prozac). The root 

mean square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following.  The mean ± the standard error of the mean for the different 

brain regions are as follow: cortex: 1207.318 ± 3150.173, peri-ventricular and 

hippocampus: 1369.637 ± 3026.589, striatum-caudate putamen-hypothalamus (brain): 

4149.152 ± 3026.589 and the cerebellum: 8820.290 ± 3150.173. The mean ± the standard 

error of the mean for the treatment groups was as follow: SYM: 724.661± 2227.509, PYM: 

7048.537 ± 2140.121.  
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Figure 43: Comparison between young male rats that have given 5 mg/kg R-fluoxetine, 

and young male rats that have given 5 mg/kg Prozac (RYM vs. PYM) for three days. The 

x-axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the 

total ng Evans Blue/mg protein. Two-way ANOVA was performed. Columns represent the 

mean for each group and error bars show standard error of mean (SEM). Interaction, 

P=0.947, Region, P=0.066, Treatment, P=0.465. The n for the different animal groups 

was as follow, RYM=11, PYM =7 .  

Figure 43 shows there was no significant difference in ng Evans Blue/mg protein for the 

interaction between the different brain regions and drug treatment groups (P = 0.947; R-

fluoxetine versus Prozac). Also, there was no significant difference between the different 

brain regions between the groups (P = 0.066), although this P value does show a strong 

trend. In addition, there was no significant difference between the different drug treatment 

groups (P =0.465; R-fluoxetine versus Prozac).  The outliers were determined by using the 

ROUT analysis at medium setting. The RYM group had four outliers. The first outlier 

(134723.409) was located at the cortex. In contrast, the rest outliers (24064.006, 41496.548 
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and 197113.231) were located at the cerebellum. The root mean square error, which is 

defined as the residual mean square. It is used to estimates the common within-group 

standard deviation which also known as the standard error of the estimate were as the 

following.  The mean ± the standard error of the mean: RYM: 8898.305 ± 4905.524, PYM: 

3342.441 ± 5752.236. The mean ± the standard error of the mean for the different brain 

regions was as follow: cortex: 7750.548 ± 7866.338, hippo: -6717.974 ± 6555.282, brain: 

2495.001 ± 7866.338, cerebellum: 20953.918 ± 7866.338. The mean ± the standard error 

of the mean: RYM: 8898.305 ± 4905.524, PYM: 3342.441 ± 5752.236. The mean ± the 

standard error of the mean for the different brain regions are as follow: cortex: 7750.548 ± 

7866.338, hippo: -6717.974 ± 6555.282, brain: 2495.001 ± 7866.338, cerebellum: 

20953.918 ± 7866.338.  

Figure 44: Comparison between young male rats that have given 5 mg/kg R-fluoxetine, 

and young male rats that have taken 5mg/kg of Prozac (RYM vs. PYM) for three days. The 

x-axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus, and cerebellum. The y-axis represents the total 

ng EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 
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group and error bars show standard error of mean (SEM). Interaction, P= 0.152, Region, 

P=0.059, Treatment, P= 0.387. The n of the animal groups of the RYM were as follow: the 

n for the cortex was 9, the n for the hippo was 11, the n for the brain was 11 and the n for 

the cerebellum was 8. The n for the PYM =7. 

 

Figure 44 shows the data from Figure 43 without the statistical outliers.  The data shows 

that there was no significant difference in ng Evans Blue/mg protein for the interaction 

between the different brain regions and drug treatments (P = 0.152; R-fluoxetine versus 

Prozac) although the P value is low and does show a trend. Also, there was no significant 

difference between the different brain regions in the young male rats (P = 0. 059), with this 

P value just missing significance, showing a very strong trend. In addition, there was no 

significant difference between the drug treatments (P =0.387; R-fluoxetine versus Prozac). 

The root mean square error, which is defined as the residual mean square. It is used to 

estimates the common within-group standard deviation which also known as the standard 

error of the estimate were as the following.  The mean ± the standard error of the mean for 

the different brain regions are as follow: cortex: 1629.792±3950.262, peri-ventricular and 

hippocampus: -6717.974±3875.621, striatum-caudate putamen-hypothalamus (brain): 

2495.001 ±3875.621and the cerebellum: 9054.164±4148.604. The mean ± the standard 

error of the mean for the treatment groups was as follow: RYM: -111.950 ± 2556.352, 

PYM: 3342.441±3029.712. 
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Figure 45: Comparison between young male rats that have not given any drug, and young 

male rats that have given 5 mg/kg Prozac for three days (CYM vs. PYM). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

Evans Blue/mg protein. Two-way ANOVA was performed. Columns represent the mean for 

each group and error bars show standard error of mean (SEM). Interaction, P= 0.134, 

Region, P=0.245, Treatment, P= 0.982. The n for the animal groups was as follow: CYM 

=10 , PYM =7.  

Figure 45 shows there was no significant difference in ng Evans Blue/mg protein 

for the interaction between the different brain regions and drug treatment groups (P = 

0.134). Also, there was no significant difference between the different brain regions for the 

young male rats (P = 0.245). In addition, there was no significant difference between the 

different drug treatment groups (P =0.982).  The outliers were determined by using the 

ROUT analysis at medium settings. The CYM had two outliers. The first outlier 
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(80868.926) was located at the hippocampus region while the second outlier (40375.985) 

was located at the cerebellum region. The root mean square error, which is defined as the 

residual mean square. It is used to estimates the common within-group standard deviation 

which also known as the standard error of the estimate were as the following.  The mean ± 

the standard error of the mean: CYM: 3760.815 ± 3939.969, PYM: 1492.191 ± 4097.067. 

The mean ± the standard error of the mean for the different brain regions was as follow: 

cortex: 969.421 ± 5320.791, hippo: -3701.888 ± 4483.520, brain: 1620.648 ± 7493.500, 

cere: 9516.984 ± 5320.791.  
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Figure 46: Comparison between young male rats that have given 5 mg/kg of Prozac, and 

young male rats that have not given any drug (CYM vs. PYM). The x-axis represents the 

different brain regions: cortex, peri-ventricular and hippocampus, striatum-caudate 

putamen-hypothalamus, and cerebellum. The y-axis represents the total ng EB/mg protein. 

Two-way ANOVA was performed. Columns represent the mean for each group and error 

bars show standard error of mean (SEM). Interaction, P= 0.121, Region, P=0.059, 

Treatment, P= 0.417. The n of the animal groups of the CYM were as follow: the n for the 
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cortex was 10, the n for the hippo was 9, the n for the brain was 10, and the n for the 

cerebellum was 9. The n for the PYM=7. 

 

Figure 46 shows the data from Figure 45 without the statistical outliers.  The data shows 

that there was no significant difference in ng Evans Blue/mg protein for interaction 

between the different brain regions and the drug treatment (P = 0.121; Prozac versus 

Control). Also, there was no significant difference between the different brain regions in 

young male rats (P = 0.059). In addition, there was no significant difference between the 

drug treatment (P =0.417). The root mean square error, which is defined as the residual 

mean square. It is used to estimates the common within-group standard deviation which 

also known as the standard error of the estimate were as the following.  The mean ± the 

standard error of the mean for the different brain regions are as follow: cortex: 1473.077 ± 

3855.508, peri-ventricular and hippocampus:-6560.820 ± 3942.719, striatum-caudate 

putamen-hypothalamus (brain): 3173.998 ± 3855.508and the cerebellum: 8913.678 ± 

3942.719. The mean ± the standard error of the mean for the treatment groups was as 

follow: CYM: 157.526 ± 2541.831, PYM: 3342.441 ± 2957.040. 

  Summary: When total ng Evans blue in regions is normalized by the amount of 

protein measured from the tissue in milligrams. We also compared the different treatment 

groups (R-fluoxetine and S-fluoxetine) with Prozac treatment group. We found there was 

no significant difference in interaction, region and treatments. The hippocampus showed 

the lowest blood brain barrier permeability among the different brain regions and the 

cerebellum showed the highest blood brain barrier permeability among the different brain 

regions.  
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3.6 Comparisons among the Old Males Groups   

One Way ANOVA of total ng EB/mg protein 

The listed figures represent the comparison of the normalized measurements of 

Evans blue among the different old male rat groups (COM vs. SOM, COM vs. ROM and 

ROM vs. SOM). The amount of Evans blue was normalized by measuring the total amount 

of Evans blue in (ng). Then, dividing it by the amount of the protein concentration in mg 

which was determined by a Bradford protein assay.  

 

Figure 47: Comparison between old male rats that have not taken any drug, and old male 

rats that have taken 5 mg/kg S-fluoxetine for three days. The x-axis represents the different 

brain regions: cortex, peri-ventricular and hippocampus, striatum-caudate putamen-

hypothalamus (brain), and cerebellum. The y-axis represents the total ng EB/mg protein. 

Two-way ANOVA was performed. Columns represent the mean for each group and error 
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bars show standard error of mean (SEM). Interaction, P= 0.5154. Region, P= 0.1007. 

Treatment, P= 0.5452. The n of the animals groups were as follow: COM = 7, SOM=7.  

Figure 47 shows that there was no significant difference in the amount of Evans Blue/mg 

protein for interaction between the different brain regions and drug treatment groups (P = 

0.5154). Also, there was no significant difference between the different brain regions (P = 

0. 1007), although this did show a strong trend. In addition, there was no significant 

difference between the drug treatment groups (P =0.5452) comparing control and S-

fluoxetine in old male rats.  The outliers were determined by using the ROUT analysis at 

medium setting. The outliers were found in the SOM group. The outlier 22521.990 was 

located in the hippocampus while the outlier 4306.475 was located at the brain region. 

The root mean square error, which is defined as the residual mean square. It is used to 

estimates the common within-group standard deviation which also known as the standard 

error of the estimate were as the following.  The mean ± the standard error of the mean 

for COM: 18.412 ± 508.142, SOM: -559.024 ± 543.227. The mean ± the standard error 

of the mean for the different brain regions was as follow: cortex: 270.698 ± 665.315, 

hippo: -2091.274 ± 768.239, brain: 541.472 ± 768.239, cerebellum: 197.881 ± 768.239. 
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Figure 48: Comparison between old male rats that have not taken any drug, and old male 

rats that have taken 5 mg/kg S-fluoxetine for three days (COM vs. SOM) without outliers. 

The x-axis represents the different brain regions: cortex, peri-ventricular and 

hippocampus, striatum-caudate putamen-hypothalamus (brain), and cerebellum. The y-

axis represents the total ng EB/mg protein. Two-way ANOVA was performed. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

Interaction, P= 0.363. Region, P= 0.001. Treatment, P= 0.509. The n of the SOM for the 

different animal groups were as follow: the n for the cortex was 7, the n for the 

hippocampus was 6, the n for the brain was 6, and the n for the cerebellum was 7. The n 

for the COM = 7. 

Figure 48 shows the data from figure 47 without the statistical outliers.  The data 

shows that there was no significant difference in the amount of Evans Blue/mg protein for 

interaction between the different brain regions and the drug treatment groups (P = 0.363). 

However, there was a significant difference in the amount of Evans Blue/protein between 

the different brain regions (P = 0. 001). There was no significant difference between the 

drug treatment groups (P =0.509). The root mean square error, which is defined as the 
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residual mean square. It is used to estimates the common within-group standard deviation 

which also known as the standard error of the estimate were as the following.  The mean ± 

the standard error of the mean: COM: -5.023 ± 101.053, SOM: 92.014 ± 105.180. The 

mean ± the standard error of the mean for the different brain regions: cortex: 270.698 ± 

142.911, the hippo: -498.726 ± 148.747, brain: 250.928 ± 148.747, cerebellum: 151.082 ± 

142.911.  

Figure 49: Comparison between old male rats that have given R-fluoxetine, and old male 

rats that have taken 5 mg/kg S-fluoxetine for three days (ROM vs. SOM). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), and cerebellum. The y-axis represents the total ng 

EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P= 0.536. Region, 
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P= 0.091. Treatment, P= 0.500. The n of the animal groups were as follow: ROM =7, SOM 

=7.  

Figure 49 shows that there was no significant difference in the amount of Evans 

Blue/mg protein for the interaction between the different brain regions and drug treatment 

groups (P = 0.536). Also, there was no significant difference between the different brain 

regions (P = 0. 091), although the P value shows there is a strong trend. In addition, there 

was no significant difference between the drug treatment (P =0.500).  The outliers were 

determined by using the ROUT analysis at medium setting. The outliers were only found 

in the SOM group. The outlier 22521.990 was located in the hippocampus while the outlier 

4306.475 was located at the lower brain region. The root mean square error, which is 

defined as the residual mean square. It is used to estimates the common within-group 

standard deviation which also known as the standard error of the estimate were as the 

following.  The mean ± the standard error of the mean, ROM: 5.780 ± 137.701, SOM: 

120.155 ± 147.132. The mean ± the standard error of the mean for the different brain 

regions are as follow: cortex: 260.137 ± 194.739, hippo: -564.159 ± 202.691, brain: 

139.670 ± 213.326, cerebellum: 416.222 ± 194.739.  
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Figure 50: Comparison between old male rats that have given R-fluoxetine, and old male 

rats that have taken 5 mg/kg S-fluoxetine (ROM vs. SOM). The x-axis represents the 

different brain regions: cortex, peri-ventricular and hippocampus, striatum-caudate 

putamen-hypothalamus (brain), and cerebellum. The y-axis represents the total ng EB/mg 

protein. Two-way ANOVA was performed. Columns represent the mean for each group 

and error bars show standard error of mean (SEM). Interaction, P= 0.161. Region, P= 

0.006. Treatment, P= 0.573. The n for the SOM of the animal groups were as follow: the 

n for the cortex was 7, the n for the hippo was 6, the n for the brain was 6, and the n for 

the cerebellum was 7. The n for the ROM =7.  

Figure 50 shows that there was no significant difference for interaction between the 

different brain regions and treatment groups (P = 0.161). Also, there was a significant 

difference between the different brain regions (P = 0. 006). In addition, there was no 

significant difference between the treatment (P =0.573). The root mean square error, which 

is defined as the residual mean square. It is used to estimates the common within-group 

standard deviation which also known as the standard error of the estimate were as the 

following.  The mean ± the standard error of the mean for the different brain regions are as 
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follow: cortex: 260.137 ± 194.739, peri-ventricular and hippocampus: -564.159 ± 202.691, 

striatum-caudate putamen-hypothalamus (brain): 139.670 ± 213.326 and the cerebellum: 

416.222 ± 194.739. The mean ± the standard error of the mean for the treatment groups 

was as follow: ROM: 5.780 ± 137.701, SOM: 120.155 ± 147.132. 

    

 

Figure 51: Comparison between old male rats that have given 5 mg/kg R-fluoxetine, and 

old male rats that have not taken any drug (ROM vs. COM). The x-axis represents the 

different brain regions: cortex, peri-ventricular and hippocampus, striatum-caudate 

putamen-hypothalamus (brain), and cerebellum. The y-axis represents the total ng EB/ mg 

Protein. Two-way ANOVA was performed. Columns represent the mean for each group 

and error bars show standard error of mean (SEM). Interaction, P= 0.5022. Region, P = 
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0.0003. Treatment, P= 0.9587. The n of the animal groups were as follow: COM =7, ROM 

=7.  

Figure 51 shows that there was no significant difference for ng Evans Blue/mg 

protein in interaction between the different brain regions and drug treatment groups (P = 

0.5022). However, there was a significant difference between the different brain regions 

(P = 0. 0003), with the hippocampal region showing significantly lower permeability. In 

addition, there was no significant difference between the drug treatments for the old male 

rats (P =0.9587). The root mean square error, which is defined as the residual mean square. 

It is used to estimates the common within-group standard deviation which also known as 

the standard error of the estimate were as the following. The mean ± the standard error of 

the mean for the different treatment groups were as follow: COM: -5.023 ± 146.680, ROM: 

71.334 ± 146.680. The mean ± the standard error of the mean for the different regions were 

as follow: cortex: 336.672 ±207.437, hippocampus: -705.451±207.437, brain: 

95.381±207.437, cerebellum: 406.022±207.437.

Summary: Our statistical analysis for different drug treatments in old male rats 

showed that there was a significant difference for the blood brain barrier permeability for 

the different brain regions with the hippocampus showing the lowest blood brain barrier 

permeability. S-fluoxetine and R-fluoxetine seemed to have no effect on the blood brain 

barrier permeability because the treatment effect was not significantly different. Also, there 

was no interaction between the different brain regions and the treatment groups.   

3.7 Comparison among Old Female Rats 

Two-Way ANOVA of total ng EB/mg Protein 
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In the next set of figures, we normalized the amount of Evans blue in a region by 

dividing the total ng Evans blue in that region by the protein concentration in mg, 

determined by a Bradford protein assay.  Then, we compared the total amount of ng Evans 

blue divided by the amount of protein (mg) in old female rats versus old male rats.  

Figure 52: Comparison between old female rats that have given 5 mg/kg R-fluoxetine, and 

old female rats that have given 5 mg/kg S-fluoxetine (ROF vs. SOF) for three days. The x-

axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the 

total ng EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for 

each group and error bars show standard error of mean (SEM). Interaction, P=0.1827. 

Region, P=0.0009. Treatment, P=0.4934. The n of the animal groups were as follow: SOF 

=6, ROF=7.  

Figure 52 shows that there was no significant difference in the ng Evans Blue/mg 

protein for the interaction between the different brain regions and drug treatment groups 

(P = 0.1827). However, there was significant difference between the different brain regions 
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for the old female rats (P = 0.0009), with the hippocampal region showing the lowest 

permeability to Evan Blue. In addition, there was no significant difference between the 

drug treatment groups (P =0.4934: R-fluoxetine versus S-Fluoxetine).  Statistical outliers 

were determined by using the ROUT analysis at medium setting. The outlier (9420.832) 

was found in the cortical region of the old female rats receiving R-fluoxetine. The root 

mean square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following. The mean ± the standard error of the mean for SOF: -

212.614 ± 582.205, ROF: -797.972 ± 504.204. The mean ± the standard error of the mean 

for the brain regions are as follow: cortex: -173.417 ± 793.412, hippo: -3495.600 ± 

793.412, brain: -88.753 ± 793.412, cerebellum: 1736.597 ± 695.868.  

Figure 53: Comparison between old female rats that have taken 5mg/kg R-fluoxetine 

(ROF), and old female rats that have taken 5 mg/kg S-fluoxetine (SOF) for three days. The 

x-axis represents the different brain regions: cortex, peri-ventricular and hippocampus, 

striatum-caudate putamen-hypothalamus, and cerebellum. The y-axis represents the total 
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ng EB. Two-way ANOVA was performed. Columns represent the mean for each group and 

error bars show standard error of mean (SEM). Interaction, P=0.106. Region, P<0.001. 

Treatment, P=0.451. The n for the SOF = 6, the n for the ROF was as follow: the n for the 

cortex = 6, the n for the hippocampus = 7, the n for the lower brain region = 7, the n for 

the cerebellum = 7.  

Figure 53 shows the same data as Figure 52 but without the statistical outliers.  The data 

shows that there was no significant difference for ng Evans Blue/mg protein for interaction 

between the different brain regions and drug treatment groups (P = 0.106; S-fluoxetine 

versus R-fluoxetine). However, there was a significant difference between the different 

brain regions between old female rats given different Fluoxetine enantiomers as drug 

treatments (P < 0. 001), with the hippocampal region showing the lowest permeability to 

Evan Blue. In addition, there was no significant difference between the drug treatment (P 

=0.451; Fluoxetine enantiomers). The root mean square error, which is defined as the 

residual mean square. It is used to estimates the common within-group standard deviation 

which also known as the standard error of the estimate were as the following.  The mean ± 

the standard error of the mean for the different brain regions are as follow: cortex: -173.417 

± 793.412, peri-ventricular and hippocampus: -3495.600 ± 793.412, striatum-caudate 

putamen-hypothalamus (brain): -88.753 ± 793.412 and the cerebellum: 1736 ± 695.868. 

The mean ± the standard error of the mean for the treatment groups was as follow: SOF: -

212.614 ± 582.205, ROF: -797.972 ± 504.204. 
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Figure 54: Comparison between old female rats that have given 5 mg/kg R-fluoxetine for 

three days, and old female rats that have not given any drug (ROF vs. COF). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P=0.9402. Region, 

P=0.0061. Treatment, P=0.3101. The n of the animal groups were as follow: COF = 7, 

ROF = 7.  

Figure 54 shows that there was no significant difference in the total ng Evans Blue/mg 

protein for interaction between the different brain regions and drug treatment groups (P = 

0.9402; control versus R-fluoxetine). However, there was a significant difference between 

the different brain regions for the old female rats (P = 0.0061), with the hippocampal region 

showing the lowest permeability to Evans Blue. There was no significant difference 

between the drug treatment groups (P =0.3101; control versus R-fluoxetine).  The ROUT 

analysis at medium setting was used to determine the outliers. One outlier was found at the 
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cortex in the ROF group. The outlier was 9420.832. The COF group had two outliers. One 

outlier was found in the cortex which was 4503.975. The other outlier was found in the 

hippocampus, the outlier was -12021.576. Cere: 706.182. The root mean square error, 

which is defined as the residual mean square. It is used to estimates the common within-

group standard deviation which also known as the standard error of the estimate were as 

the following.  The mean ± the standard error of the mean: COF: 245.048 ± 346.805, ROF: 

-797.972 ± 333.199. The mean ± the standard error of the mean for the different brain 

regions was as follow: the cortex: -367.930 ± 490.456, hippo: -1568.491 ± 490.456, brain: 

124.390 ± 471.215, cerebellum: 706.182 ± 471.215.  

 

Figure 55: Comparison between old female rats that have given 5 mg/kg R-fluoxetine for 

three days, and old female rats that have not given any drug (ROF vs. COF). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), and cerebellum. The y-axis represents the total ng 

EB. Two-way ANOVA was performed. Columns represent the mean for each group and 
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error bars show standard error of mean (SEM). Interaction, P=0.917. Region, P=0.013. 

Treatment, P=0.035. The number of animals, n for the COF different brain regions were 

as follow: the n for the cortex = 6, the n for the hippocampus = 6, the n for the lower brain 

region = 7, the n for the cerebellum = 7. 

Figure 55 the same data as Figure 54, but without the statistical outliers.  The data shows 

that there was no significant difference in ng Evans Blue/mg protein for interaction 

between the different brain regions and drug treatment groups (P = 0.917). However, there 

was a significant difference between the different brain regions for the old female groups 

being compared (P = 0.013), with cerebellum showing increased permeability and the 

hippocampus showing the lowest permeability. There was also a significant difference 

between the drug treatment groups (P =0.035), with the R-fluoxetine tightening the blood 

brain barrier compared to the control animals. The root mean square error, which is defined 

as the residual mean square. It is used to estimates the common within-group standard 

deviation which also known as the standard error of the estimate were as the following.  

The mean ± the standard error of the mean for the different brain regions are as follow: 

cortex: -368.180 ± 490.460, peri-ventricular and hippocampus: -1568.492 ± 490.460, 

striatum-caudate putamen-hypothalamus (brain): 124.390 ± 471.219and the cerebellum: 

706.182 ±471.219. The mean ± the standard error of the mean for the treatment groups was 

as follow: COF: 244.922 ± 346.808, ROF: -797.972 ± 333.202. 

   



 

96 
 

To
ta

l n
g 

EB
/m

g 
Pr

ot

Figure 56: Comparison between old female rats that have given 5 mg/kg S-fluoxetine for 

three days, and old female rats that have not given any drug (SOF vs. COF). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus (brain), cerebellum. The y-axis represents the total ng 

EB/mg protein. Two-way ANOVA was performed. Columns represent the mean for each 

group and error bars show standard error of mean (SEM). Interaction, P=0.015. Region, 

P<0.001. Treatment, P=0.465. The n of the animal groups were as follow: COF = 7, SOF 

= 6.  

Figure 56 that there was a significant difference in ng Evans Blue/mg protein for the 

interaction between the different brain regions and the drug treatment groups (P = 0.015; 

control versus S-fluoxetine). Also, there was significant difference between the different 

brain regions in these old female drug groups (P < 0.001), with the hippocampus showing 

the lowest permeability of the BBB and the cerebellum showing the highest permeability. 

There was no significant difference between the different drug treatment groups (P 
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=0.465).  The ROUT analysis was used to determine the outliers. The outlier 4503.975 was 

located in the cortex while the outlier -12021.576 was found in the hippocampus. The root 

mean square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following. The mean ± the standard error of the mean: COF: 245.048 

± 433.250, SOF: -212.614 ± 447.155. The mean ± the standard error of the mean for the 

different brain regions are as follow: Cortex: 315.195 ± 585.463, the hippo: -2695.107 ± 

676.034, the brain: 242.768 ± 651.443, the cerebellum: 2202.011 ± 571.353. 

 

Figure 57: Comparison between old female rats that have given no drugs, and old female 

rats that have taken 5 mg/kg S-fluoxetine for three days (COF vs. SOF). The x-axis 

represents the different brain regions: cortex, peri-ventricular and hippocampus, striatum-

caudate putamen-hypothalamus, and cerebellum. The y-axis represents the total ng EB. 

Two-way ANOVA was performed. Columns represent the mean for each group and error 

bars show standard error of mean (SEM). Interaction, P=0.056. Region, P<0.001. 
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Treatment, P=0.544. The animal numbers, n for the SOF = 6, the n for the ROF different 

brain regions were as follow: the n for the cortex = 6, the n for the hippocampus = 7, the 

n for the lower brain region = 7, and the n for the cerebellum = 7.  

Figure 57 shows the same data as Figure 56, but with the statistical outliers removed.  The 

data shows that we just missed having a significant difference in ng Evans Blue/mg protein 

for interaction between the different brain regions and drug treatment groups (P = 0.056; 

control versus S-fluoxetine), showing a very strong trend.  Interestingly, the S-fluoxetine 

increased permeability in the cerebellum, but appears to lower permeability in the 

hippocampus. Also, there was a significant difference between the different brain regions 

between the groups (P < 0. 001), with the hippocampal region showing low BBB 

permeability and the cerebellum showing high BBB permeability. In addition, there was 

no significant difference between the drug treatment groups (P =0.544; control versus S-

Fluoxetine). The root mean square error, which is defined as the residual mean square. It 

is used to estimates the common within-group standard deviation which also known as the 

standard error of the estimate were as the following. The mean ± the standard error of the 

mean for the different brain regions are as follow: cortex: 315.195 ± 762.731, peri-

ventricular and hippocampus: -2695.107 ± 762.731, striatum-caudate putamen-

hypothalamus (brain): 242.768 ± 734.986and the cerebellum: 2202.011 ± 734.986. The 

mean ± the standard error of the mean for the treatment groups was as follow: COF: 

245.048 ± 519.714, SOF: -212.614 ± 539.332. 

 

Summary: When total ng Evans blue in regions is normalized by the amount of 

protein measured from the tissue in milligrams for old female rats, we compared the blood 
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brain barrier permeability under different drug treatments. The analysis showed that there 

was a significant difference in the total ng Evans Blue/mg protein among the different brain 

regions in old female rats with the hippocampus showing the lowest blood brain barrier 

permeability and the cerebellum showing the highest permeability.  When we compared 

R-fluoxetine to control in old female rats, we did see a significant drug treatment effect on 

the permeability, with the R-fluoxetine consistently reducing the permeability  

3.8 Comparison of All treatment groups across a Brain Regions 

3.8.1 Cortex 

Two-Way ANOVA of total ng EB/mg Protein 

In the coming figures, we compared the total amount of Evans blue in the cortex 

region for the young male rats, old male rats and old female rats. We normalized the amount 

of Evans blue in a region by dividing the total ng Evans blue in that region by the protein 

concentration in mg, determined by a Bradford protein assay.  
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Figure 58: Comparison between cortex region for the young male, old male and old female 

rats. The x-axis represents the different treatment groups. The y-axis represents the total 

ng Evans Blue/mg protein. Columns represent the mean for each group and error bars 

show standard error of mean (SEM). Two-way ANOVA was performed. Interaction, 

P=0.592. Treatment, P=0.609. Age and gender P=0.622. The n of the animal groups were 

as follow: CYM =10, ROM =7, SOF=6.    

Figure 58 shows that there no significant difference in the amount of Evans Blue/mg 

protein in the cortex for the interaction between the different drug treatments and the 

different animal groups (age and gender differences) (P = 0.592). Also, there is no 

significant difference between the different drug treatments for this region of the brain (P 

= 0.609). In addition, there is no significant difference between the animal groups (young 

male rats, old male rats, old female rats) (P= 0.622). The outliers were determined by using 

the ROUT analysis at medium setting. The outliers were found at the RYM, COF, and ROF 

groups. The outlier at the cortex region of the RYM was 134723.4088. The outlier at the 
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cortex region of the COF was -4503.975. The outlier at the cortex region of the ROF was 

-9420.832. The root mean square error, which is defined as the residual mean square. It is 

used to estimates the common within-group standard deviation which also known as the 

standard error of the estimate were as the following. The mean ± the standard error of the 

mean for the cortex of the young males: 3673.030 ± 2812.087, cortex of the old males: 

289.169 ± 3515.386, the cortex of the old female: -295.748 ± 3611.716. The mean ± the 

standard error of the mean for the treatment groups was as follow: the control: -234.732 ± 

3334.988. R-fluoxetine treatment group: 3925.951 ± 3295.452. S-fluoxetine treatment 

group: -24.768 ± 3365.726.  

 

Figure 59: Comparison between Cortex regions for the young males, old males and old 

female rats that have not taken any drug, have taken 5 mg/kg R-fluoxetine and the ones 
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that have taken the 5 mg/kg S-fluoxetine. The x-axis represents the different drug treatment 

groups. The y-axis represents the total ng Evans Blue/mg protein. Columns represent the 

mean for each group and error bars show standard error of mean (SEM). Two-way 

ANOVA was performed. Interaction, P=0.970. Treatment, P=0.841. Age and gender 

P=0.423. The n of the animal groups were as follow: the n for the cortex of the CYM = 10, 

the n for the hippocampus =9, the n for the lower brain region = 10, the n for the 

cerebellum =9, ROM =7, SOF =6.   

Figure 59 shows the data from Figure 58 without the statistical outliers.  The data 

shows that there was no significant difference in the ng Evans Blue/mg protein for the 

interaction between the different drug treatments and the age/gender of the animals (P = 

0.970). Also, there was no significant difference between the different drug treatments for 

the cortex (P = 0.841). In addition, there was no significant differences in the BBB 

permeability between young males, old males and old females (P = 0.423) in the cortex. 

The root mean square error, which is defined as the residual mean square. It is used to 

estimates the common within-group standard deviation which also known as the standard 

error of the estimate were as the following.  The mean ± the standard error of the mean for 

the cortex of the young male: -379.011 ± 399.901, hippocampus of the old males: 333.287 

± 484.877, the hippocampus of the old females: 444.361 ± 517.246. The mean ± the 

standard error of the mean: R-group: 357.508 ± 426.051, S-group: -81.992 ± 413.714, 

control group: -9.232 ± 594.026.  

3.8.2 Hippocampus 

Two-Way ANOVA of total ng EB/mg Protein: All treatment groups compared across the 
hippocampal brain region 
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In the following set of figures, we measured the amount of the protein concentration 

in mg by using the Bradford protein assay. Then, we normalized the data by dividing the 

total ng Evans blue in that region by the amount of the protein (mg). Then, we compared 

the total amount of Evans blue (ng) divided by the amount of protein (mg) in the 

hippocampus region for the young male, old male and old female rats with the following 

drug treatment:  1) control, 2) 5 mg/kg R-fluoxetine and 3) 5 mg/kg S-Fluoxetine.  

Figure 60: Comparison between hippocampal region for the young males, old males and 

old female rats that have not taken any drug, have taken 5 mg/kg R-fluoxetine and the ones 

that have taken the 5 mg/kg S-fluoxetine. The x-axis represents the different drug treatment 

groups. The y-axis represents the total ng Evans Blue/mg protein. Columns represent the 

mean for each group and error bars show standard error of mean (SEM). Two-way 
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ANOVA was performed. Interaction, P=0.822. Drug Treatment, P=0.506. Age and gender 

P=0.445. The n of the animal groups were as follow: CYM =10, ROM =7, SOF=6.   

Figure 60 shows a comparison of the different drug treatments for all of the different age 

and gender groups on blood brain barrier permeability in the hippocampal region.  There 

was no significant difference in the ng Evans Blue/mg protein for interaction between the 

different drug treatments (listed on the X axis) and the age or gender of the animals (P = 

0.822). Also, there was no significant difference between the different drug treatments (P 

= 0.506) for this region. In addition, there was no significant difference in the blood brain 

barrier permeability in this region based on either age or gender (P = 0.445). The outliers 

were determined by the ROUT analysis at medium setting. The outliers were found in the 

CYM, SOM and COF groups. The outlier at the hippocampus region in the CYM was 

80868.926. The outlier at the hippocampus of the SOM was -22521.990. The outlier at the 

COF was -12021.576. The root mean square error, which is defined as the residual mean 

square. It is used to estimates the common within-group standard deviation which also 

known as the standard error of the estimate were as the following. The mean ± the standard 

error of the mean for the hippo region of the young male: 1166.939 ± 2262.869, the hippo 

region of the old male: -1694.846 ± 2564.188, for the hippo region of the old females: -

3122.296 ± 2634.453. The mean ± the standard error of the mean for the treatment groups 

was as follow: control: 1079.616 ± 2432.602, R-fluoxetine treatment group: -1767.342 ± 

2403.764, S-fluoxetine: -2962.479 ± 2634.453.  
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Figure 61: Comparison in BBB permeability (ng Evans Blue/mg protein) in the 

hippocampal region for the different groups (young males, old males and old female rats) 

and the different drug treatments (control: that have not taken any drug, have taken 5 

mg/kg R-fluoxetine and the ones that have taken the 5 mg/kg S-fluoxetine). The x-axis 

represents the different drug treatment groups. The y-axis represents the total ng Evans 

Blue/mg protein. Columns represent the mean for each group and error bars show 

standard error of mean (SEM). Two-way ANOVA was performed.  Interaction, P=0.781. 

Drug Treatment, P=0.884. Age and gender P=0.518.  The n of the animal groups were as 

follow: the n for the cortex = 10, the n for the hippocampus = 9, the n for the lower brain 

region =10, the n for the cerebellum =9, ROM =7, SOF= 6.  

Figure 61 shows the data from Figure 60 but with the statistical outliers removed.  

The data indicates that there was no significant difference for ng Evans Blue/mg protein in 
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the interaction between the different drug treatments and the age & gender of the animals 

(P = 0.781). Also, there was no significant difference between the different drug treatments 

in this brain region (P = 0.884). In addition, there was no significant difference between 

the young males, old males and the old females (P = 0.518). The root mean square error, 

which is defined as the residual mean square. It is used to estimates the common within-

group standard deviation which also known as the standard error of the estimate were as 

the following. The mean ± the standard error of the mean for the hippocampus of the young 

male: -1381.897 ± 1315.295, the hippocampus of the old male: -468.675 ± 1454.796, the 

hippocampus of the old females: -1803.768 ± 1921.934.  

3.8.3 Brain 

Two-Way ANOVA of total ng EB/mg Protein 

In the following figures, we divided the total amount of Evans blue in a region (ng) 

by the protein concentration (mg) which was determined by using Bradford protein assay 

in order to normalize the data. Then, we compared the total amount of Evans blue (ng) 

divided the amount of the protein (mg) in the lower brain region (striatum, caudate 

putamen, hypothalamus) for the young male, old male and old female receiving the 

following drug treatments: 1) control, 2) 5 mg/kg R-fluoxetine, and 3) 5 mg/kg S-

fluoxetine.  
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Figure 62: Comparison of Blood Brain for the young males, old males and old female rats. 

The x-axis represents the different drug treatment groups. The y-axis represents the total 

ng Evans Blue/mg protein. Columns represent the mean for each group and error bars 

show standard error of mean (SEM). Two-way ANOVA was performed.  Interaction, 

P=0.371. Drug Treatment, P=0.040. Age and gender P<0.0001. The n of the animal 

groups were as follow: CYM =10, ROM =7, SOF = 6.   

Figure 62 shows that there no significant difference in the ng Evans Blue/mg protein for 

interaction between the different drug treatments and the different animal groups (age and 

gender differences) (P = 0.371). Also, there is no significant difference between the 

different drug treatments in the lower brain (P = 0.040), although the low P value does 

indicate a strong trend here. There is significant difference between in the blood brain 

barrier permeability of the young male rats and the older male and female rats, P < 0.0001.  
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The younger rats show enhanced permeability in this region, which includes the choroid 

plexus, while the older animals show reduced permeability.  The statistical outliers were 

determined by ROUT analysis at medium setting. The outlier (4306.475) at brain region 

was found at the SOM group. The root mean square error, which is defined as the residual 

mean square. It is used to estimates the common within-group standard deviation which 

also known as the standard error of the estimate were as the following.  The mean ± the 

standard error of the mean for the brain region of the young male: 3047.635 ± 457.498, 

brain of the old males: 757.866 ± 518.418, brain of the old females: 92.802 ± 532.624. The 

mean ± the standard error of the mean for the treatment groups was as follow: control: 

1157.955 ± 491.814, R-fluoxetine treatment group: 434.820 ± 485.984, S-fluoxetine 

treatment group: 2305.529 ± 532.624.  
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Figure 63: Comparison between brain regions for the young males, old males and old 

female rats that have not taken any drug, have taken 5 mg/kg R-fluoxetine and the ones 

that have taken the 5 mg/kg S-fluoxetine. The x-axis represents the different treatment 

groups. The y-axis represents the total ng Evans Blue/mg protein. Columns represent the 

mean for each group and error bars show standard error of mean (SEM). Two-way 

ANOVA was performed. Interaction, P=0.464. Treatment, P=0.645. Age and gender 

P<0.0001. The animal number, n for the different groups of the CYM were as follow: the 

n for the cortex = 10, the n for the hippocampus =9, the n for the lower brain region =10, 

and the n for the cerebellum =9, ROM=7, SOF=6.   

Figure 63 shows the same data for Figure 62, but with the one statistical outlier 

removed.  This data indicates that there was no significant difference in the ng Evans 

Blue/mg protein for the interaction between the drug treatment and the age/gender of the 
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animal groups (P = 0.464). Also, there was no significant difference between the different 

drug treatments (P = 0.645). However, there was a significant difference young males, old 

males and old females (P <0.0001), with the young males showing enhanced permeability 

in the lower brain region. The root mean square error, which is defined as the residual mean 

square. It is used to estimates the common within-group standard deviation which also 

known as the standard error of the estimate were as the following.  The mean ± the standard 

error of the mean: the brain of the young male: 2983.164 ± 532.173, the brain of the old 

male: 611.074 ± 589.604, the brain of the old female: 35.867 ± 638.137. The mean for the 

different treatment groups was as follow: control: 1135.939 ± 513.319, R-group: 252.743 

± 504.818, S-group:  2613.634 ± 629.453.  

3.8.4 Cerebellum 

 Two-Way ANOVA of total ng EB/mg Protein 

The figures below represent the normalized amount of Evans blue in the cerebellum 

region of the brain in young male, old male and old female with different drug treatment: 

1) control; 2) 5 mg/kg R-fluoxetine, 3) 5 mg/kg S-fluoxetine. The data were normalized by 

dividing the amount of Evans blue (ng) by the amount of protein (mg) that was measured 

by using the Bradford protein assay.  
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Figure 64: Comparison between cerebellum region for the young males, old males and old 

female rats that have not taken any drug (control), have taken 5 mg/kg R-fluoxetine and 

the ones that have taken 5 mg/kg S-fluoxetine. The x-axis represents the different drug 

treatment groups. The y-axis represents the total ng Evans Blue/mg protein. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

Two-way ANOVA was performed.  Interaction, P=0.287. Treatment, P=0.738. Age and 

gender P=0.560. The n of the animal groups were as follow: CYM =10, ROM = 7, SOF 

=6.  

Figure 64 shows that there was no significant difference in the ng Evans Blue/mg 

protein for interaction between the different animal groups (age and gender differences) 

and the drug treatments (P = 0.287) in the cerebellum. Also, there is no significant 

difference between the different the different drug treatments for this region of the brain (P 
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= 0.738). In addition, there is no significant difference between the animal groups (age and 

gender differences) in the cerebellum (P = 0.560). The statistical outliers were determined 

by using the ROUT analysis at medium setting. The outliers were found in the CYM, RYM, 

and SYM groups. The CYM’s outlier was 40375.9851. The SYM’s outlier was 

15175.1144. The RYM’s outliers were 24064.006, 41496.548, and 197113.231. The root 

mean square error, which is defined as the residual mean square. It is used to estimates the 

common within-group standard deviation which also known as the standard error of the 

estimate were as the following. The mean ± the standard error of the mean for the 

cerebellum of the young male: 11987.928 ± 6323.456, the cerebellum of the old male: 

9720.010 ± 6541.153, the cerebellum of the old female: 1613.656 ± 7553.072.  

Figure 65: Comparison between cerebellum region for the young males, old males and old 

female rats that have not taken any drug (control), have taken 5 mg/kg R-fluoxetine and 
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the ones that have taken the 5 mg/kg S-fluoxetine. The x-axis represents the different 

treatment groups. The y-axis represents the total ng Evans Blue/mg protein. Columns 

represent the mean for each group and error bars show standard error of mean (SEM). 

Two-way ANOVA was performed.  Interaction, P=0.103. Drug Treatment, P=0.387. Age 

and gender P=0.017. The animal numbers, n for the CYM different brain regions were as 

follow: the n for the cortex =10, the n for the hippocampus =9, the n for the lower brain 

region=10, the n for the cerebellum =9, ROM = 7, SOF=6.  

Figure 65 shows the data from Figure 64, but with the statistical outliers removed.  

The data indicates that there was no significant difference in ng Evans Blue/mg protein for 

the interaction between the drug treatment and the different ages/gender of the animals 

groups (P = 0.103), but the low P value indicates a strong trend. Also, there was no 

significant difference between the different drug treatments (P = 0.387) in this region of 

the brain. There was a significant difference young males, old males and old females (P = 

0.017), showing an influence of age and gender on the permeability.   In particular, the 

female rat had greater permeability in the cerebellum in the control condition and in the 

presence of S-fluoxetine. The root mean square error, which is defined as the residual mean 

square. It is used to estimates the common within-group standard deviation which also 

known as the standard error of the estimate were as the following.  The mean ± the standard 

error of the mean for the cerebellum of the young males: -84.739 ± 391.646, cerebellum of 

the old males: 327.434 ± 417.002, the cerebellum of the old females: 1490.404 ± 457.757. 

The mean ± the standard error of the mean for the different treatment groups: control: 

586.748 ± 496.978, R-treatment group: 426.862 ± 378.740, S-treatment group: 906.113 ± 

361.394.   
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Summary: 

Two-Way ANOVA of Total ng EB/mg Protein  

Total ng Evans blue in regions was normalized by the amount of protein measured 

from the tissue in milligrams. In this analysis we compared the different brain region 

(cortex, hippocampus, brain region and the cerebellum) among the young male rats, the 

old male rats and old female rats for each of the different drug treatments. In the cortex, 

our analysis showed that there were no significant difference in the interaction between the 

drug treatment and the age and gender factor of the animal groups. Also, there no 

significant difference in the either the drug treatments nor the age and gender factor.  

     In hippocampus, our analysis showed that there was no significant difference in the 

interaction between the drug treatment and the age and gender factor. Also, there were no 

significant difference in the drug treatment, or the age and gender factor in this region of 

the brain. 

    In the lower brain, our analysis showed that there was a significant difference in age and 

gender. The young males showed the highest blood brain barrier permeability, while older 

animals had much lower permeability. In the young male rats, we saw a strong trend 

(P=0.1319) for differences in drug treatment, with the S-fluoxetine increasing the blood 

brain barrier permeability while the R-fluoxetine decreased the blood brain barrier 

permeability.  There was no significant difference in the interactions between drug 

treatment and age/gender in this region.  

     In cerebellum, there were no significant difference in the interaction between drug 

treatment and age /gender of the animal groups, but the P-value indicated a very strong 
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trend. S-fluoxetine increased the blood brain barrier permeability while the R-fluoxetine 

decreased the blood brain barrier permeability in old female rats.  There was a significant 

difference in the BBB permeability when age and gender was considered, with an increase 

in the blood brain barrier in the old female rats compared to the two male groups.   
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IV. Discussion 

The following table represents significant differences in BBB permeability 

(measured with Evans Blue permeability based on either Age or the interaction between Age 

and the region of the brain.  In Figure 63, we see a highly significant P value (<0.0001) based 

on age, when we examined permeability in the lower brain region across the three basic 

groups (young males (YM), old males (OM) and old females (OF).  The YM had enhanced 

permeability in the lower brain region compared to either the OM or OF (Holm-Sidak post-

hoc analysis).  The lower two rows in this table refer to the analysis on Figure 34, which 

compares COM and CYM.  We see an significant interaction (P = 0.0302) between age and 

region. In the middle row, we see an increased permeability of the lower Brain region 

compared to the Cortex, Hippocampus and Cerebellum within the CYM.  In the last row, we 

see another interaction between age in region, with CYM showing enhanced permeability 

compared to COM, but only in the Brain region (Holm-Sidak post-hoc analysis). 

Table 4: Significant P-values for the Age. YM: young males; OM old males; OF old 
females;   COM: control old males; CYM control young males; Brain: lower brain 
region; Hippo: hippocampus; Cere: Cerebellum.  

P-Value The Animal 
Groups 

 Variable Significant difference  

<0.0001 Brain Age  Increased permeability in YM 
compared to either OM or OF  

Figure 63 

0.0302 COM vs. CYM Region 
and Age 

Interaction

 
Brain 

 
Increased permeability in 
Brain versus Cortex, 
Hippo and Cere within 
CYM  

Figure 34 

0.0302 COM vs. CYM Age and 
Region 

Interaction 

CYM 
versus 
COM 

Brain Figure 34 
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 The lower brain region showed more blood brain barrier permeability in the young males 

compared to the old males. It contains a region called the choroid plexuses. The choroid 

plexuses have important functions which involve the production of cerebrospinal fluid and 

regulating the movement of molecules across the brain (116). That regulation plays an 

important role in ensuring having a homeostatic state in the brain. However, as we get older 

the brain function changes due to changes in its structure. These changes cause changes in 

cerebrospinal fluid homeostasis. For example, the hippocampus, the prefrontal cortex and 

the choroid plexus decreases in size with aging.  The size of the choroid plexuses is changed 

by changing the height of its epithelial cells and the total volume and length of its apical 

microvilli (117). The change in the choroid plexuses size cause a decrease in the 

cerebrospinal fluid production due to a decrease in the expression of certain proteins in the 

choroid plexuses (118). The following proteins are the main proteins that are associated with 

chorodial CSF production: carbonic anhydrase II, aquaporin 1 (AQP1) and sodium-

potassium exchanging ATPase (Na, K-ATPase) (118).  In addition, the blood vessel’s wall 

gets thicker with aging (117), so that electrolytes that could cross in young rats can no longer 

cross well in older rats. 

4.2 The results of the total ng EB/mg protein in male versus female (Gender difference) 

The next table represents significant differences in BBB permeability based on gender 

differences. We compared the blood brain barrier’s permeability under different drug 

treatments by measuring the total amount of Evans blue in different brain regions. In figure 

65, we saw a significant increase in the BBB permeability in the cerebellum (P value  

of0.0149) based on gender. The results showed that old females showed the highest 
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permeability for the blood brain barrier in the cerebellum when compared to old males and 

young males (Holm-Sidak post-hoc analysis). The cerebellum is the region of the brain that 

is the focus for classical conditioning with the eyeblink response and coordination of motor 

control.  Other studies have shown that the cerebellum has increased blood brain barrier 

permeability when the body is trying to clear viruses, but ours is the first report of a gender 

difference of BBB permeability.  One other study has shown that removing the ovaries 

from female rats, which would cause premature estrogen loss, caused a significant increase 

in BBB permeability, but they did not evaluate regional changes in permeability.   Our 

female rats at 10 months of age are generally thought to have lost their estrogen due to 

menopause.  We would really like to test the BBB permeability of the cerebellum in young 

female rats, to determine if the increase in permeability in the cerebellum in old female rats 

is related to estrogen loss. Research studies found that there is a sex differences in response 

to selective serotonin reuptake inhibitor. Studies have found that females respond better 

than males in response to selective serotonin reuptake inhibitor (119).  

P-Value The Animal 
Groups  Variable Significant difference  

0.0149 Cerebellum Gender 
Increased permeability in 
cerebellum old females versus 
either old males or young males 

Figure 65 

Table 5: Significant P-values for the gender.  

 

4.3 Comparison of All treatment groups across a Brain region 

Lower Brain Region 
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We measured the permeability for the blood brain barrier for the lower brain region 

by using Evans blue method. Then, we normalized the data by measuring the amount of 

Evans blue divided the concentrations of the protein. Table 9 represents the significant p- 

values in the lower brain region of the brain.  

Table 6: Significant P-values in the lower brain region of the brain.   COM: control old 
males; CYM control young males; SYM: S-fluoxetine young males; Brain: lower brain 
region; Hippo: hippocampus 

 

In figure 14, we found a significant P value in the brain region of CYM (0.0012), 

the lower brain region showed the highest blood brain barrier permeability. In figure 18, 

we saw a significant P value in the brain region of SYM (0.0164), and the lower brain 

region showed the highest blood brain barrier permeability among the different brain 

regions. In the comparison between COM vs. CYM, we saw a significant P value (<0.001) 

P-Value The Animal 
Groups  Variable  Significant difference Related 

Figure 
0.0012 CYM 

Region 
 

  
  
 Brain 
  
  
  
  

Increased permeability  
  

Figure 14 
0.0164 SYM Figure 18 

< 0.001 COM vs. CYM 
Increased permeability in 
brain vs. hippo, cortex and 
cerebellum within CYM 

Figure 34 

< 0.0001 CYM vs. SYM 

Increased permeability in 
Brain vs. hippo, brain vs. 
cortex, and brain vs. 
cerebellum. The increased 
permeability of brain vs. 
hippo is within CYM. The 
increased permeability of 
brain vs. hippo, brain vs. 
cortex and brain vs. 
cerebellum is within SYM 

Figure 36 

< 0.001 COM vs. CYM 

Region 
and Age 
In 
 

Increased permeability in 
brain vs. hippo, brain vs. 
cortex, and brain vs. 
cerebellum within CYM 

Figure 34 
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associated with the lower brain region. There was an increased permeability in brain vs. 

hippo, cortex and cerebellum within CYM (Holm-Sidak post-hoc analysis). In figure 36, 

we found out that the significant P value is < 0.0001: We saw an increased permeability in 

brain vs. hippo, brain vs. cortex, and brain vs. cerebellum. The increased permeability of 

brain vs. hippo is within CYM. The increased permeability of brain vs. hippo, brain vs. 

cortex and brain vs. cerebellum is within SYM. The last row of the table, in figure 34, we 

saw a significant p value (<0.001) with an increased permeability in brain vs. hippo, brain 

vs. cortex and brain vs. cerebellum within CYM.   

Hippocampus 

Evans blue method was used to measure the permeability of the blood brain barrier. 

Then, the results were normalized by dividing the amount of Evans blue by the amount of 

the protein concentrations that was measured by using Bradford protein assay. We found 

that the hippocampus showed the lowest permeability of all of the tested brain regions for 

the following groups: control old males, old males that have given 5 mg/kg of R-fluoxetine, 

old females that given 5 mg/kg of S-fluoxetine and old females group that have given 5 

mg/kg of R-fluoxetine (see Table 7) .  
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Table 7: Significant P-values for the hippocampus region of the brain. COM: control old 
males, ROM: R-fluoxetine treated old males, SOF: S-fluoxetine old females, ROF: R-
fluoxetine old females, SOM: S-fluoxetine old males, COF: control old females.  

 

 

 

P-value Animal 
Group(s) Variable  Significant 

Difference 
Related 
Figure 

0.0074 COM 

 
Region 
 

Hippocampus 

 
Decreased 
permeability  
  

Figure 20 
0.0221 ROM Figure 23 
0.0136 SOF Figure 26 
0.0028 ROF Figure 28 

0.001 COM vs. SOM 

Decreased 
permeability in 
hippocampus 
compared to cortex, 
or lower brain, or 
cerebellum within 
COM 

Figure 48 
 

0.006 ROM vs. SOM 

Decreased 
permeability in 
hippocampus versus 
cerebellum or lower 
brain region 

Figure 50 
 

0.001 COM vs. ROM 

Decreased 
permeability in 
hippocampus  
versus cerebellum 
within ROM  

Figure 51 
 

0.013 COF vs. ROF 

Decreased 
permeability in 
hippocampus versus 
cerebellum within 
ROF   

Figure 55 
 

<0.001 COF vs. SOF 

Decreased 
permeability in 
hippocampus versus 
cerebellum, cortex 
or lower brain 
regions  

Figure 57 
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Cerebellum 

The permeability of the blood brain barrier was evaluated by using Evans blue 

method. The evans blue was normalized by measuring the total ng of Evans blue and 

dividing it by the protein concentration that was determined by using Bradford protein 

assay. We saw a significant p value (<0.001) with an increased permeability in cerebellum 

vs. hippo, cortex vs. hippo, and brain vs. hippo within SOF in figure 51. In figure 23, we 

found a significant p value (0.0023). There was an increased permeability in the cerebellum 

region of COF.  

P-Value The Animal 
Groups   Significant difference  

<0.001 SOF vs. ROF 

Region Cerebellum

Increased permeability in 
cerebellum versus cortex, 
hippocampus or lower brain 
within SOF  

Figure 51 

0.0023 COF 
Increased permeability of 
cerebellum compared to other 
brain regions 

Figure 23 

Table 8: Significant P-values for the cerebellum region of the brain. SOF: S-fluoxetine 
treated old females;   ROF:  R-fluoxetine treated old females; COF: control old females 
(old females without treatment).  

 

4.4 The Treatment Effect among the Different Animal Groups 

We used the total amount of normalized Evans blue to measure the blood brain 

barrier permeability. In figure 55, the significant p value is 0.0353. We saw a decreased 

permeability of COF vs. ROF whereas R-fluoxetine decreased the permeability in the 

hippocampus region of the brain (Holm-Sidak post-hoc analysis).  In figure 56, the 

significant P value is 0.015. We saw a decreased permeability in COF vs. SOF whereas S-

fluoxetine decreased permeability in the hippocampus region of the brain. In figure 42, 
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which represents SYM vs. PYM, we saw an increased permeability in the cerebellum 

region of the brain. In the brain region, we saw an increased permeability in young males  

who have taken 5mg/kg of S-fluoxetine (Holm-Sidak post-hoc analysis).  

Table 9:  Significant P-values for Treatment Effect.  COF: Control Old Females; ROF: R-
fluoxetine Old Females, SOF: S-fluoxetine Old Females; SYM: S-fluoxetine Young 
Males; PYM: Prozac Young Males 

4.5 The Activity of the Fluoxetine Metabolites 

The S-fluoxetine enantiomer is metabolized principally to the S-norfluoxetine, 

whereas the R-fluoxetine is metabolized to the R-norfluoxetine. The S-enantiomers show 

stronger action when compared against the R-enantiomer forms: about 1.5 times higher for 

the fluoxetine forms, and 20 times as much for norfluoxetine (120, 121).   In other words, 

the S-norfluoxetine is active, while the R-norfluoxetine is relatively inactive.    

Previous studies have demonstrated that fluoxetine and norfluoxetine get passed 

from the mother to the fetus through the placenta. Also, the serum of the newborn will 

contain the medications and its metabolites even after its birth. In regard to the potential 

pharmacological actions of the drug, the selective disposition of fluoxetine show more 

P-Value The Animal 
Groups Significant difference 

0.0353 COF vs. ROF  Treatment 
Decreased permeability of in old 
female rats that took R-
fluoxetine 

Figure 55 

0.015 COF vs. SOF 
Treatment 
and region 
interaction 

Increased permeability in old 
female rats that took S-
fluoxetine in the cerebellum 
only  

Figure 56 

0.046 SYM vs. PYM 

Treatment 

Increased permeability in the 
cerebellum 

Figure 42 

0.040 Brain 
Increased permeability in young 
males who have taken 5 mg/kg 
of S-fluoxetine 

Figure 62 
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impact on the foetus than on the mother specifically the S-norfluoxetine (122). Studies 

have showed the presence of fluoxetine and its active metabolites in the brain and the 

serum of the Sprague Dawley rats (106, 107) with the presence of norfluoxetine found in 

brain samples over 2 weeks after the drug fluoxetine was given in a single dose.   

Effect of Fluoxetine on Connexin 43  

Astrocytes from the striatum have less number of functional channels formed by Connexin 

43 than the astrocytes of the hypothalamus. Immunoblotting was used to determine the 

amount of Cx43. It was found that the Cx43 protein in the hypothalamus is approximately 

four times than that found in cultures from striatum. Northern blot analysis showed that 

connexin 43 mRNA levels were also approximately 4-fold greater in the hypothalamic 

cultures consistent with the difference seen by immunoblotting  (123). In the prefrontal 

cortex, other labs have found that fluoxetine increases Cx43 protein expression. 

Antidepressant like behavioral activities results when Cx43 gets knocked down. Research 

studies found that Fluoxetine and Corticosterone have opposite effects. Corticosterone 

increases the hippocampal amounts of phosphorylated form of Cx43. Also, it caused 

anxiety and depression-like abnormalities. Fluoxetine exhibit an opposite effect of 

corticosterone. Antidepressant drugs provide therapeutic activity by decreasing the 

expression of Cx43. Anawa trading was used to purchase Fluoxetine hydrochloride. The 

medicine was used for one month. The concentration of fluoxetine was 18 mg/kg per day. 

Old male transgenic were during this research study (124).  

Our results showed that R-fluoxetine caused a decrease in permeability compared to 

control in old female rats. That provided us an evidence that fluoxetine is more effective 
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in females. Dr. Debra found out that there is an increase in connexin 43 in the hippocampus. 

However, during this research study the medications were administrated for three days that 

might was not enough period to cause a change in connexin 43 density. Also, fluoxetine 

stimulates VEGF (vascular endothelial growth factor) which enhances the blood brain 

barrier permeability because it increases angiogenesis (125).  

4.6 Previous Research Studies 

In a thesis named, Examination Of a Post-stroke Drug Treatment For Its Effect on 

Blood Brain Barrier Permeability, and Gene Expression Changes in the Prei-infarct Region” 

The blood brain barrier permeability was quantified by using Evans blue method after stroke 

induction. The animals of this research study had stroke (brain injury) while the animals of 

our research study were healthy and did not suffer from brain injury. Also, in our research 

study we did not use unpaired-t-test with Welch’s corrections while this research study used 

unpaired-t-test with Welch’s corrections. The animals that was used in this study were aged 

animals (10-12 months old) while in our study both old (10-12 months) and young animals 

(1.5 months) were used.  
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Figure 66: Blood brain barrier permeability measurement in the cerebral cortex of the 

males and the females’ animal groups. 

The above figure shows the measurement of the blood brain barrier permeability in 

the cortex of both the male and female rats. No outlier was found by using the ROUT 

analysis. The data shows that there was significant difference in the results. The p-value was 

0.0091. The male S-fluoxetine showed the least amount of the blood brain barrier 

permeability in comparison to the other groups. The graph shows that the male and the 

female rats that have taken S-fluoxetine showed less blood brain barrier permeability than 

the R-fluoxetine. Unpaired t-test with Welch’s corrections showed the p-value for the female 

S-fluoxetine and the female R-fluoxetine are significantly different. The p-value for that test 

was 0.0041. Also, the unpaired t-test with Welch’s corrections showed that the male S-

fluoxetine is significantly different from the male R-fluoxetine with a P-value of 0.0045. 

That confirms that the S-fluoxetine decreased the blood brain barrier permeability while the 

R-fluoxetine increased the blood brain barrier permeability. When we saw significant effects
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of the drug treatments in normal brains, we saw basically the opposite of these results:  the 

R-fluoxetine tightened the BBB compared to controls, and the S-Fluoxetine increased the

permeability of the BBB compared to controls in the cerebellar region of old female rats.   

We believe that the fluoxetine is working on activated microglia in the injured brain, turning 

them into beneficial M2 microglia, which support neuronal survival.  In a normal brain, one 

might expect more inflammatory microglia as an animal ages (126), but the overall effect 

would be very different from an injured animals in terms of the sheer number of activated 

microglia. 

In this research study, we saw a tight BBB in both cortex and hippocampus of all animals tested. 

Our 10 months rats corresponded to about 45 years old person. Neurodegenerative changes occur 

generally after 65 years of age (human). So, we would like to evaluate older animals to see if we 

see an increased in BBB permeability.  

V. Future Directions

For future experiments, the remaining pellets of the experiment are still available 

and we kept them at -80 freezer. For future experiments, we could look for the density of 

the proteins that are found in the tight junctions such as  ZO-1, and Cx43. Also, we could 

possibly continue the work of Dr. Debra Mayes while she is looking for the density of 

Cx43 and the level of estrogen. In addition, we interested to see if we could find a shift in 

tight junction proteins that corresponds to the changes in BBB permeability that we see. 

Also, we would like to use older animals (24 months old) to see if we could see an increased 

BBB permeability.      
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VI. Conclusion

In this study, we found out that there were regional differences in blood brain barrier 

permeability in rats at all ages examined, with the hippocampal region generally showing 

the tightest BBB. As we expected in the hypotheses with aging the blood brain barrier 

permeability changes. Younger animals showed enhanced BBB permeability in the lower 

brain region compared to older animals, which may reflect age related changes to the 

choroid plexus region.  We also saw that old female rats had enhanced BBB permeability 

in the cerebellum, which may possibly be due to estrogen loss, but we would need to test 

the BBB permeability in young female rats to make that conclusion. When we saw the 

fluoxetine enantiomer treatment effects, they were generally opposite what we had seen in 

injured rats (stroked rats):  The R-fluoxetine seemed to tighten the BBB barrier and the S-

fluoxetine loosened the BBB in the cerebellum in old female rats. In a model BBB that was 

used in Dr. Maye’s lab, endothelial cells and astrocytes were the only cells that were 

present at the model. The results of Dr. Maye’s showed that R-fluoxetine tightened the 

BBB while S-fluoxetine increased permeability of the BBB. Microglia play a role in live 

animal. So our results did not matches our expectations from the hypothesis about stroke 

studies. In stroke models, microglial are activated and we see that S-fluoxetine tightening 

the BBB while R-fluoxetine increased permeability. The long-lasting S-fluoxetine and S-

norfluoxetine act to suppress inflammatory response from the microglia in this case. Since 
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R-fluoxetine is only active a short time, the microglial can become inflammatory again

within a short time (hours). In the animals in this study, the microglia probably are not 

activated or inflammatory. So fluoxetine might be working directly on the endothelial cells 

or astrocytes. Interestingly, the R-fluoxetine and S-fluoxetine worked in the same way as 

Dr. Mayes saw in her model BBB. We have negative Evans blue because we used the linear 

regression line. It is the best fitting line for the data. The y-intercept for the line was 15 

which was equivalent to zero. Any value less than 15 represents a negative number which 

means that it is negative relative to the other Evans blue values.   
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