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ABSTRACT 

Fletcher, Aaron Thomas M.S. Department of Physics, Wright State University, 2017. A Study of 
Alkali-Resistant Materials for Use in Atomic Physics Based Systems. 
 
 

Due to shortcomings in emerging alkali-based atomic physics based systems, a need to 

investigate alkali resistant materials has arisen. There is interest in alkali based systems such as 

atomic clocks and diode pumped alkali laser (DPAL) systems. In the case of atomic clocks and 

DPALs, alkali metal vapor, such as Rb, is the active part of the systems. The alkali vapor is 

confined in some manner of housing, but the transmission of electromagnetic radiation is required 

in the cells. This requires the incorporation of windows into the cell. The current window material, 

however, have been shown to degrade over time, thus reducing the effectiveness of these systems. 

It is believed that the alkali atoms diffuse into the bulk of the housing material. This diffusion 

results in changes of optical and, in some cases, structural properties of the material. These changes 

lead to the degradation of window materials in these alkali-based systems.  

In an effort to improve the longevity of alkali-based systems, a material study was 

conducted to identify window material that could resist diffusion-based changes in optical 

properties. Candidate materials were selected based on their structure, optical properties, and/or 

density. All candidate materials underwent baseline characterization. Baseline characterization 

techniques included atomic force microscopy, spectrophotometry, reflectometry, ellipsometry, and 

X-ray diffraction spectroscopy. Once baseline data was collected, the candidate materials were 

exposed to Rb at high temperatures for an extended period of time to simulate atomic physics 

devices. Exposure was achieved by heating the Rb source to ~ 550 °C while the candidate materials 

were kept at ~ 450 °C. This created a 100 °C temperature gradient to thoroughly expose the 

materials to gaseous Rb. After exposure, the materials underwent the same analysis techniques to 
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ascertain the changes in structural and optical properties. Additionally, time of flight secondary 

ion mass spectroscopy depth profiling was conducted to quantitatively determine the depth of Rb 

into the bulk of the material.  

The results of this research effort found that highly crystalline materials were capable of 

resisting alkali diffusion better than amorphous materials, often only tens of nm. Their optical 

properties were also relatively unchanged. Amorphous materials were not able to resist the 

diffusion of Rb; diffusion depths were shown to be on the order of microns. Based on this research 

effort, aluminum oxynitride, MgAl2O4, MgO, and ZrO2 are being recommended as materials that 

will improve the longevity of emerging atomic physics systems. A vapor cell made from ZrO2 was 

fabricated and is being evaluated for use in atomic clock systems. For DPAL systems, window 

materials will need to be further tested to determine whether it can resist the high fluence laser 

radiation after being exposed to Rb.  
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CHAPTER 1: INTRODUCTION 

In emerging alkali metal based atomic physics systems, damage to windows housing 

gaseous alkali metals have shown that they degrade over a period of time which makes the transfer 

of these technologies from the laboratory to the field intractable. The goal of this research is 

twofold: first, identify the mechanism of degradation of window material in emerging atomic 

physics based systems and second, determine the optimal window material to improve the 

longevity of such systems. This Chapter will discuss the motivation behind this research and 

identify and expand upon the goals of this effort. Chapter 2 will discuss the emerging atomic 

physics systems this research aims to assist, namely diode pumped alkali lasers (DPAL) systems 

and atomic clocks. Chapter 3 will identify general properties of alkali resistance in materials as 

well as a list of candidate materials to be studied with a summary of their properties. Chapter 4 

will explain the principles and application of the experimental measuring techniques used in this 

research. Chapter 5 will outline and explain the overall experimental approach. The results of the 

experimental data will be addressed in Chapter 6. Finally, Chapter 7 will discuss the significance 

of the results, make a formal recommendation of improved window materials, and outline future 

work.  

1.1  Motivation 

There are several vested interests in atomic physics based systems, specifically atomic 

clocks and DPALs. These systems, while distinct in function and, to an extent, operation as will 

be discussed in later sections, both rely on excited alkali vapor [1, 2]. Phenomena associated with 

energetic alkali metal vapor have led to several issues in these systems. In atomic clocks, the 

precision of the frequency standard decreases with prolonged use. This is believed to be caused by 

deterioration of window material within the atomic clock’s resonance cavity. This decline in 
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effectiveness is a concern to those working to transition these systems from the laboratory to the 

field because, in some applications, (such as atomic clocks on satellites) replacing a failing atomic 

clock is not a viable option. Improving the longevity of atomic clocks is, therefore, an interest.  

DPAL systems have been shown to hold promise for directed energy weapon (DEW) 

applications due to their ability to scale output power with the diode laser pump power, maintain 

high beam quality for extended continuous wave (CW) operation, and require low logistical 

support to operate. For these reasons, DPAL systems are being actively developed. A problem 

with these systems has been found: the window material used inside the laser cavity will 

catastrophically fail after approximately one month’s use. Discoloration and physical etching are 

evident on the surface of the DPAL windows as is illustrated in Figure 1.  These surface effects 

are believed to be either (or a combination of) a) the deposition of carbon from ethane 

decomposition on the surface of the DPAL window leaving soot, or b) the diffusion of Rb into the 

window material thereby altering the optical properties of the window itself. While both 

possibilities are actively being researched, the experiments and results presented herein will focus 

predominately on the diffusion of Rb into the window material in an effort to experimentally find 

a superior window material than quartz. The dramatic visual changes in the DPAL windows after 

catastrophic failure can be quantified by comparing their transmission as shown in Figure 2. 

 

Figure 1. A visual comparison of an unused (unexposed, left) and a damaged (exposed, right) 
DPAL window. 
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Figure 2. Rough transmission measurements of DPAL windows before and after catastrophic 
failure. 

To understand these problems it is important to note that while both systems are distinct in 

function, they have a number of similarities in terms of operation and internal conditions. In 

addition to both systems relying on excited alkali metals, they both operate at elevated 

temperatures. The transmission of light through windows containing the alkali vapor is a 

requirement of both systems, even though the intensity of light is significantly higher in DPALs. 

Because of the similarities in system operation, it is believed that the issues plaguing atomic clocks 

and DPALs are similar and researching a means to improve the longevity of one system may also 

be a useful solution for the other. Atomic physics in general and specifics of both atomic clock 

and DPAL operating principles will be discussed in Chapter 2. 
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CHAPTER 2: BACKGROUND 

2.1 Atomic Physics 

Atomic physics generally refers to the study of an atom, its electrical structure, and 

associated transitions and emissions. This thesis will not delve into the considerable depth of the 

field of atomic physics as a tremendous amount of work done on the subject by Rutherford, Born, 

Fermi, Slater, Oppenheimer, Feynman, etc., and by the countless researchers who have spent their 

careers developing the field. However, a discussion will be given herein in an effort to provide a 

working knowledge of the phenomenon relevant to this research.  

For purposes of this research effort, the focus of the introduction of atomic physics shall 

be on electron transitions and relaxations, the mechanisms that cause these phenomena, and the 

consequences thereof. When energy is exchanged between a source and an atom, it is possible for 

the atom to absorb that energy and move to an excited state if enough energy is transferred. 

Because of the propensity for any system to minimize its energy state and maximize entropy, the 

atom will not remain in an excited state for long and will relax to its lowest energy state if possible. 

Due to the law of energy conservation, however, the difference in energy between the excited state 

and the state to which the atom is falling to must be accounted for. If no collisions occur or other 

mechanisms exist to transfer energy, the energy from the difference in states will be expelled from 

the atom in the form of a photon whose frequency ν depends on the energy scaled by the inverse 

of Planck’s constant h from the familiar Planck’s equation, ∆𝐸𝐸 = ℎ𝜈𝜈. The classical process of a 

photon being emitted when an atom will relax from an excited state to a lower state as described 

above is known as spontaneous emission. 

Stimulated emission is a quantum mechanical phenomenon that provides the mechanism 

for lasers to emit radiation. While similar to spontaneous emission in some sense, stimulated 
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emission differs significantly from that classical effect. In stimulated emission, a photon will 

interact with an atom in an excited state. If the interacting photon corresponds to the energy gap 

between the excited state and a lower state, the original photon will continue on its path after 

interaction. There will however be an additional photon with the same frequency, phase, and 

direction that is generated by the excited atom or molecule thus effectively doubling the initial 

photon energy of the system, or amplifying the photon energy. This principle is the core mechanic 

behind all laser technology. Lasers function using the phenomena of stimulated emission coupled 

with a population of atoms or molecules that when more of these particles are in excited states 

than, for example, a ground state (this is called a population inversion) will release stimulated 

radiation as a spatially coherent beam of photons.  

2.1.1  Atomic Clocks 

Atomic clocks, like all other timekeeping devices, rely on a consistent, measurable 

frequency. Pendulum clocks, for example, can keep time based on the time it takes for the 

pendulum to swing to the point furthest from whence it started and to return to its origin. The 

frequency of the oscillation between the pendulum’s extrema is and has been used to keep time. 

Because of external forces acting on a pendulum, the oscillations will eventually decay to an 

equilibrium position and stop moving. Because of these forces, the timekeeping ability of 

pendulum clocks is imprecise. Timing is an essential part in modern society and a need for accurate 

and precise timing is required. One of the most familiar uses of precision timing is the global 

positioning system (GPS).  

GPS is a tool that is ubiquitous in commercial, government, and defense industries as well 

as at the individual level for social media and navigation. GPS is based on a constellation of 

satellites that orbit the Earth that are able to, in effect, triangulate the position of a GPS receiver 
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anywhere on or about the surface of the Earth. These satellites have this capability because of 

highly precise timing devices onboard them. A satellite is able to identify a point on the Earth’s 

surface relative to its position. Its position is known based on the amount of time that has passed 

after it has passed directly over a point with a specific location on the ground. The timing between 

the satellite passing over points like this are critical in relaying accurate spatial about some point 

on Earth. If the timing system on the satellite has some difference between its own timing and 

timing on the ground, then inaccuracies in perceived position can occur. It is for this reason that 

not only accurate time keeping devices be installed on satellites, but they must be compact enough 

to minimize the logistical cost of launching the satellite into orbit.  

Atomic clocks function by allowing gaseous alkali metal atoms to be excited and to allow 

them to relax and spontaneously emit a photon [3]. Generally speaking, there is an interrogation 

beam that will go into and through the alkali cloud. When the cloud is excited, the alkali will relax 

to its ground state emitting a photon. This fluorescence occurs at highly regular intervals and can 

be detected. The oscillation between the excited and ground state is highly periodic; cesium (Cs), 

used in the current atomic timing standard clocks, has a transition frequency of 9.192631770 GHz 

[3]. This highly precise periodicity allows for effective timekeeping.  

Because the alkali metal is pumped by an external light source, there obviously must be a 

window that allows the transmission of that source into the cell. In order to maintain the longevity 

of the atomic clock, these windows must ensure that the pump beam reaches the alkali within the 

cell. Over time, however, the ability for these windows to ensure the transmission of light degrades 

which, in turn, results in inaccuracies and eventual failure of the atomic clock. The degradation of 

these windows is something worth investigating in order to improve the longevity of atomic clock 

systems. Additionally, there is work being done on alkali-earth based atomic clocks (e.g., Ca and 
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Sr) and the degradation of the cell windows and vapor cells as a whole is an impediment for such 

research [4]. Atomic clock windows and cell material, as was mentioned above, must allow for the 

transmission of the wavelength generated from transitions between ground and excited states. The 

wavelength of interest ranges from the UV (318 nm for Cs) to the visible (657 nm for Ca) for the 

clocks involved. These ranges are of great interest for this research.  

2.1.2  Diode Pumped Alkali Lasers 

DPAL systems are of great interest to many for high energy and DEW applications for 

several reasons. DPAL systems, by virtue of being a gas phase laser, are not plagued by heat 

buildup as severely as solid state lasers are [2]. This allows for better beam quality without 

degradation thereof due to thermal effects while in CW mode [5]. DPALs also have the ability to 

scale power outputs with relative ease due to the fact that they are pumped by a diode. DPAL 

power outputs can range from the sub kW to the MW output power regimes [5].  DPAL systems 

also have lower logistics costs when compared to other high power gas laser systems. Arguably 

the most appealing feature of DPAL systems of solid state lasers is the quantum efficiency; DPAL 

systems have quantum efficiency above 95% [2]. This is significant when compared to a typical 

Nd:YAG laser whose quantum efficiency is 76% [2]. This means that the ratio of input power to 

output power for DPALs is higher than that of typical Nd:YAG lasers. 

This research effort deals predominately with Rb-based DLAP systems. These DPALs use 

a gaseous mix of Rb, He, and C2H6, as the gain medium for the laser system [6]. In order to 

maintain the gas phase of the Rb, the gain medium is kept at ~ 250 °C. Each of the gases has a 

specific role; Rb is the active lasing medium that is pumped by a 780 nm diode laser and is excited 

from the 2S1/2 state to the 2P3/2 state [2, 6]. From that state, the C2H6 will relax the excited Rb to 
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the 2P1/2 state by collision where a population inversion will occur and the Rb will lase at 795 nm 

[6]. The helium is simply a buffer gas [5].  

As with all high powered laser systems, maximizing output power is a high priority, 

particularly if the laser system is to be used in a DEW-type role. Because of this, the windows used 

to pass light from the gain medium to the outside environment must be as transmissive as possible 

at the output wavelength; in the case of Rb DPAL systems that wavelength is 795 nm [2]. Windows 

used in current Rb DPAL lasers are made of fused silica and have anti-reflective (AR) coatings on 

the surface in order to bring transmission as close to 100% as possible. As was shown earlier in 

this Section, these windows cannot withstand the high energy, caustic environments of DPAL 

systems for extended periods of time. The cause of the catastrophic failure of these windows is of 

paramount importance to this research. 

2.2  Alkali Damage Mechanism 

As it was alluded to earlier, both atomic clocks and DPALs have intrinsic issues associated 

with the use of alkali atoms, specifically in the degradation and ultimate failure of the systems’ 

windows. This occurs when alkali metals diffuse into the bulk of a material and alter its optical 

properties [7]. Diffusion is frequently modeled by using Fick’s laws. These laws are shown below 

(Eqs. (1) and (2)): 

𝐽𝐽 = −𝐷𝐷∇��⃑ 𝐶𝐶     (1) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷∇2𝐶𝐶     (2) 

The above are Fick’s first (Eq. (1)) and second (Eq. (2)) laws of diffusion where 𝐽𝐽 ��⃑ is the 

mass flux vector, 𝐷𝐷 is the diffusivity, and 𝐶𝐶 is the concentration as a function of time and position. 
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Diffusion is often well modelled by the Fick’s laws. There is, however, shortcoming. The diffusion 

of gaseous matter into solids is often difficult to calculate because of the unknown diffusivity. 

Diffusivity is given by Eq. (3) as follows 

𝐷𝐷 = 𝐷𝐷∞𝑒𝑒
−𝐸𝐸𝐴𝐴

𝑘𝑘𝐵𝐵𝑇𝑇�     (3) 

Eq. (3) is known as the Arrhenius equation where 𝐷𝐷∞ is diffusivity at infinite temperature, 𝐸𝐸𝐴𝐴 is 

the activation energy required for the gas to react with the bulk material, 𝑘𝑘𝐵𝐵 is the Boltzmann 

constant, and 𝑇𝑇 is absolute temperature. While the Arrhenius equation does provide the basis for 

determining the diffusivity, there are two variables that are not necessarily well known 𝐷𝐷∞  and      

𝐸𝐸𝐴𝐴. Literature detailing 𝐷𝐷∞ and 𝐸𝐸𝐴𝐴 for Rb – glass reactions are sparse and can vary greatly owing 

to the strong temperature dependence of the diffusivity and activation energy. This temperature 

dependence is not well described in literature and it is also difficult to account for local non-

uniformities in material properties and how that effects thermal energy distribution. Furthermore, 

because many materials will need to be characterized solving the Arrhenius equation and applying 

the results to Fick’s laws will require experimental data to solve accurately. Because of the need 

for experimentation, other methods for examining how diffusion occurs in window material will 

be explored instead of solving the Arrhenius equation and Fick’s laws for each material studied.  

In order to understand the mechanisms of alkali diffusion and damage without using the 

well-known Fick’s laws, a search of literature for other explanations and approaches was 

conducted. It has shown that alkali metals, like Rb, have a propensity to “attack” materials – 

particularly oxides and halides, breaking bonds and forming alkali-oxide or alkali-halide 

compounds as the case may be [5, 7, 8]. Simulations and experiments have been conducted to 

describe physical mechanism by which alkali metals diffuse into bulk materials [7, 8]. Work by 



 

10 
 

Tilocca used Car–Parrinello Molecular Dynamics (MD) simulations to model trajectories of Na 

and Ca particles into amorphous glasses. Na diffusion in a silicate material is shown in Figure 3. 

Note that the Na atom is bonding to the oxygen molecules and pulls itself through the bulk of the 

material. The Na-O bonds and the breaking of metal-oxide (e.g., Si-O) are the mechanism by which 

alkali atoms migrate through a material. 

 

Figure 3. Molecular Dynamics simulation done by Tilocca illustrating the diffusion of a Na (red) 
atom through a silicon (white) oxide (gray) cluster. Adapted from [8] 

A steady state thermodynamics argument made by Lau [7] shows that it is favorable for 

silicate glasses to be reduced by alkali metals as shown in Eqs. (4)−(6).  

4𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑂𝑂2 → 2𝑁𝑁𝑁𝑁2𝑂𝑂 + 𝑆𝑆𝑆𝑆   ∆𝐺𝐺 > 0   (4) 

2𝑁𝑁𝑁𝑁2𝑂𝑂 + 4𝑆𝑆𝑆𝑆𝑂𝑂2 → 2𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆2𝑂𝑂5  ∆𝐺𝐺 < 0   (5) 

4𝑁𝑁𝑁𝑁 + 5𝑆𝑆𝑆𝑆𝑂𝑂2 → 2𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆2𝑂𝑂5 + 𝑆𝑆𝑆𝑆  ∆𝐺𝐺 < 0   (6) 

Eq. (4) indicates that the reaction of Na with SiO2 does not occur frequently since the Gibbs free 

energy is positive. Eqs. (5) and (6), however, show that when such a reaction as in Eq. (4) does 

occur, the reduction of the silicate and formation of alkali-silicate compounds occurs readily owing 

to a negative Gibbs free energy [7]. This process and the MD simulation show that it is relatively 

easy for metal-oxide materials to have alkali metals diffuse into them.  
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Diffusion, it is believed, precipitates in physical damage to the windows in atomic physics 

based systems. The amount of diffusion has previously been shown to have strong temperature 

dependence [9]. At temperatures below 200 °C, the diffusion goes as approximately the square 

root of temperature [9]. The diffusion can lead to discoloration, changes in optical properties and 

structure. If diffusion occurs under 200 °C, it is generally reversible in amorphous materials as 

bleaching agents can remove the diffused particles caught in the grain boundaries [7]. Above 200 

°C, the diffusion rate increases and is roughly linear in terms of temperature and is a chemically 

limited process – that is bonds are being broken and reformed as the alkali atom diffuses through 

the bulk material [9]. This high temperature, chemically driven diffusion can also produce changes 

in optical properties and structure but these changes are largely irreversible. 

For atomic clock applications, diffusion occurs and degrades the optical characteristics of 

the windows used to house the alkali vapor thereby reducing the effectiveness of atomic clocks. 

This is of particular concern in satellite-based atomic clocks as repair and replacement of damaged 

atomic clocks is not a viable option. The issue of diffusion is exacerbated in DPAL systems 

because the local changes in optical properties, specifically absorbance, leads to the previously 

mentioned catastrophic failure of DPAL windows. It is believed that the changes in absorption in 

the window leads to tremendous heat buildup as laser fluence on the order of kW/cm2 attempt to 

pass through the window [5]. Because current materials used in atomic physics based systems are 

susceptible to alkali attack, i.e., diffusion, a rigorous study of materials that can resist such attack 

is described herein.  
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CHAPTER 3: MATERIALS 

3.1  Alkali-resistant Materials 

The study of materials that resist alkali damage has been of interest for some time, 

particularly in the concrete industry [10, 11, 12]. In that industry, high alkalinity leads to the 

degradation of concrete over time. In most modern concrete, there are silica fibers that reinforce 

the concrete, making it more durable [12]. Alkali metals, Na in particular, in aqueous solution 

attack these silica fibers which lead to irreparable damage in concrete. Cheng, et al. [12] developed 

a strategy to combat degradation of silica fibers by coating the fibers in zirconia. It was shown that 

zirconia-coated fibers resisted the damage caused by Na better than uncoated fibers; the damage 

analysis was done by visual inspection and comparison of the fibers using scanning electron 

microscopy (SEM) [12].  

Other factors that resist aqueous alkali damage have been investigated: the density of 

amorphous glasses (e.g. silicates), temperature of the environment, and amount of surface area 

exposed to the alkali solution [13]. It is important to note that in DPALs and atomic clocks that an 

aqueous alkali is not present – the alkali is in gas phase. However, many of the materials that resist 

aqueous alkali solutions also resist diffusion of gaseous alkali as well [7]. The more densely packed 

the grains in polycrystalline material or the high degree of crystallinity are both major factors in a 

material’s ability to resist [5, 7].  

3.2  Candidate Materials 

The materials used for this research were selected for a variety of reasons. These reasons 

were generally based on optical characteristics at 795 nm, density and/or degree of crystallinity, 

relative ease of fabrication, melting point (𝑇𝑇𝑚𝑚), and ability to resist alkali damage and diffusion. 

This Section will discuss the materials that participated in this study. They are broken up into 
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amorphous, crystalline oxide, sapphire-like, Rb-based crystals, perovskite, and other crystalline 

materials.  

3.2.1 Amorphous Materials 

Even though literature suggests that amorphous materials are unlikely to be useful 

candidates for alkali resistance, several materials were analyzed anyway [7]. First, DPAL windows 

were acquired in order to ascertain what the current, ineffective windows’ properties are and 

determine what should be avoided. While more detail about analysis on the DPAL window will 

be given later in this work, it should be noted that the DPAL windows have an anti-reflective (AR) 

coating of MgF2/Ta2O5/Al2O3 on top of the bulk quartz. 

Another amorphous material being tested is a commercially available glass made by Schott 

under their designation of 8436. Schott 8436 is advertised as an alkali-resistant glass and contains 

a small amount of ZrO2 [14]. ZrO2, as was mentioned earlier, is a material that can resist alkali 

metals. Small amounts (~ 3 atm. %) incorporated into a bulk glass has been shown to resist alkali 

metal diffusion and damage [15]. Schott only manufactures 8436 in tubing so it was necessary to 

fabricate a more disk-like sample. This was done by pulverizing the tubing and melting it into a 

puck, then polish the puck until it was not opaque.  

The other amorphous glass tested was a tantalum flint glass known as TAFD-40. Tantalum-

flint glasses are used commonly in optics and windows. TAFD-40 is a particularly dense tantalum 

flint glass and as such should be better at resisting alkali diffusion even though it is an amorphous 

material. If TAFD-40 is successful at resisting alkali diffusion, then other dense amorphous 

materials could become candidates for alkali resistant windows. This could be advantageous as 

amorphous materials are typically easier and less expensive to produce than single crystals. TAFD-

40 also has reasonable optical properties at the desired wavelength. Some of the handbook physical 
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properties which include melting temperature Tm, initial transmission Ti and mass density ρ are 

summarized in Table 1. 

Table 1. Physical properties of amorphous materials. 

MATERIAL Structure Tm [°C] Ti [%] (at λ [nm]) ρ [g/cm3] 

Fuse Silica[16] Amorphous 1728  85 (795)  2.65  

Schott 8436[14] Amorphous 1100  > 80 (visible)  2.77  

TAFD-40[17] Amorphous 771  99.8 (800)  5.19  

 

3.2.2 Crystalline Oxides 

As discussed above, highly crystalline materials have been shown to better resist alkali 

diffusion and damage. ZrO2 was already mentioned explicitly because of its ability to resist alkali 

damage in the concrete industry. In addition to its intrinsic ability to resist alkali damage, ZrO2 has 

high transmission in the region of interest and can be grown with high crystallinity and in large 

pieces. Additionally, ZrO2 has a high melting point which can protect it from both heated 

environments of atomic clocks and, ideally, from high fluence laser radiation.  

             Bismuth germinate Bi4Ge3O12 (BGO) and lutetium-yttrium oxyorthosilicate Lu2(1-

x)Y2xSiO5 (LYSO) are a cubic structured material that is commonly used as a scintillator. Both of 

these materials are densely packed crystal whose optical properties are not unreasonable for the 

work being conducted. Additionally, both BGO and LYSO have high mechanical strength which 

will be useful for creating window and vapor cell materials. 

Magnesium oxide is a very common material in optics and can be made with a high degree 

of crystallinity and is highly transparent at the desired wavelength. Because of its ubiquity in the 

optical industry, the manufacturing of MgO windows or small vapor cells would not be excessively 
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difficult to accomplish. The bond between Mg and O is also fairly strong which should discourage 

the diffusion of alkali metals through the MgO network.  

ThO2 is a material with one of the highest melting points of any known compound to date. 

ThO2 can also be grown as a single crystal. It should be noted, however, that ThO2 is not widely 

manufactured as demand is low and there are inherent safety concerns when dealing with Th as it 

is a radioactive substance.  

Because yttria-stabilized zirconia (YSZ) is a material identified as alkali resistant, yttria 

itself may prove to be useful in resisting alkali-based damage and diffusion as well. Y2O3 is also a 

single crystal with decent transmission at the desired wavelength. It is for these reasons that this 

material will be tested. Specific physical properties of these materials are listed in Table 2. 

Table 2. Tabulated physical properties of crystalline oxides. 

MATERIAL Structure Tm [°C] Ti [%] (at λ [nm]) ρ [g/cm3] 

BGO[18,19] Cubic  1050  70 (500)  7.13  

LYSO[18,20] Monoclinic  2000  85 (600) 6.99  

MgO[16] Cubic  2800  84 (1000)  3.65  

ThO2[16,21] Cubic  3050  76 (2500)  9.87  

Y2O3[18,22] Cubic  2410 60 (800)  5.01  

ZrO2[16,23] Monoclinic  2700  80 (750)  5.82  

 

3.2.3 Sapphire-like Materials 

Sapphire has long been known to be a robust laser window material because of its 

mechanical strength, high optical transmission, high melting point, and ability to be grown as large 

single crystals. Sapphire is also a dense, highly crystalline material and has been suggested as a 

material that can resist alkali diffusion [7]. Sapphire itself will be tested, but since its alkali 



 

16 
 

resistance and physical properties are already known, two other sapphire-like materials were 

immediately selected to also be tested. 

Aluminium oxynitride (ALON) is a transparent ceramic that is currently used in bullet- and 

blast-resistant windows. Its mechanical and thermal properties are nearly the same as sapphire. 

The inclusion of the nitride within the material may help to discourage alkali diffusion through the 

bulk material. It is transparent at 795 nm and because of its use as bullet- and blast-resistant 

windows is commercially available in relatively large amounts. Because it is a ceramic, however, 

it may not be as effective as single crystal materials for alkali resistance.  

Another material that has similar qualities to sapphire is magnesium aluminate spinel. 

Spinel technically refers to a family of minerals with an octahedral structure with chemical 

composition of the form A2+B23+O42-. As magnesium aluminate is the only member of the spinel 

family of materials that participated in this research effort, “spinel” shall refer only to magnesium 

aluminate MgAl2O4. Spinel is a hard, dense material that can be grown in single crystals. It has 

thermal, mechanical, and optical properties similar to sapphire and with the addition of Mg to the 

chemical structure, it may be more challenging for alkali metals to diffuse into the bulk as Mg is 

more similar to, for example Rb, than transition metals and may fill vacancies and defect sites that 

Rb might otherwise occupy and use to pull its way through the bulk material. Table 3 contains 

tabulated physical properties of sapphire-like materials. 

Table 3. Physical properties of sapphire and sapphire-like materials. 

MATERIAL Structure Tm [°C] Ti [%] (at λ [nm]) ρ [g/cm3] 

Sapphire[16] Hexagonal  2050  82 (1000)  3.99  

ALON[24] Polycrystalline  2150  85 (795)  3.70  

Spinel[16] Cubic  2135  90 (1000)  3.57  
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3.2.4 Rb-based Crystalline Materials 

One working hypothesis regarding the diffusion of alkali metals is that they are finding and 

occupying vacancies within crystal lattices or are forcing out the native metal in the transparent 

material. If this is the case, a material that already has an alkali metal (e.g., Rb) incorporated into 

its lattice may discourage Rb for diffusing into the bulk, or at least mitigate the effect Rb has on 

bulk properties. RbTiOAsO4 (rubidium titanyl arsenate or RTA) and RbTiOPO4 (rubidium titanyl 

phosphate or RTP) are materials that incorporate Rb in their natural structure. Titanates, as was 

mentioned earlier, are also supposed to be resistant to alkali metals. RTA and RTP are also often 

advertised to have high damage thresholds [25]. Because of the combination of these materials, 

RTA and RTP may make for strong candidates for alkali resistant materials. Table 4 lists physical 

properties of RTA and RTP. 

Table 4. Physical properties of Rb-based glasses. 

MATERIAL Structure Tm [°C] Ti [%] (at λ) ρ [g/cm3] 

RTA Orthorhombic [26] 1092 [27] > 80 (visible) [28] 4.05 [29] 

RTP Orthorhombic [30] 1000 [31] > 80 (visible) [28] 3.60 [25] 

 

3.2.5 Perovskite Materials 

Perovskite structured materials have a unique arrangement of atoms in the lattice; it is a 

variation of the cubic crystal structure. In general, perovskites have a chemical structure of ABO3, 

where A and B are cations. The crystal structure is illustrated in Figure 4. 
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Figure 4. Perovskite cubic cell structure. Adapted from [32]. 

Some perovskite structured materials have been used for superconductivity, YBCO being a 

common example. Perovskites, such as CdWO4, KTaO3, and LaAlO3, have been used as 

scintillators. The crystal structure is, in part, what lends to the special properties of perovskite 

materials. These three materials are of interest to this research because of their optical and 

mechanical properties and high density. They have a very dense crystal structure and have 

reasonable optical properties at 795 nm. Physical properties of perovskite structured materials are 

listed in Table 5. 

Table 5. Physical properties of perovskite structured materials. 

PEROVSKITE Structure Tm [°C] Ti [%] (at λ [nm]) ρ [g/cm3] 

CdWO4[18,33,34] cubic  1271 75 (795)  7.90  

KTaO3[16,35] cubic  1357  99 (900)  7.02  

LaAlO3[18,36,37] cubic  2110  65 (750)  6.51  

SrTiO3[16] cubic  1910  72 (1000)  5.11  

 

3.2.6 Non-oxide Crystalline Materials 

Because of alkali metals’ propensity to migrate through an oxide network by bonding with 

oxygen, non-oxide materials may be advantageous. One such material that has been used as a laser 
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window is diamond. Carbon and alkali metals are not as likely to interact chemically. Additionally, 

because of the high thermal and mechanical strength, diamond may make a highly effective laser 

window. One factor to bear in mind, however, diamond’s optical properties at 795 nm (T ~ 70 %, 

n ~ 2.4) may require additional finagling to improve transmission [38, 39]. Such work will be 

addressed briefly in Chapter 7. 

Calcium fluoride is a dense, non-oxide cubic crystal with low refractive index and high 

optical transparency. CaF2 is also a material that is already used in optics, both as a lens and 

windows and as an AR coating. Because fluorine is a principle part of CaF2, there is some concern 

that an alkali metal-fluoride bond may be more favorable than the alkaline earth (Ca)-fluoride 

bond. This may accelerate alkali damage to CaF2 as Ca-F bonds may be broken more aggressively 

than metal-oxide bonds. This material, however, may prove to be resilient and may provide insight 

on other candidate materials.  

Table 6. Physical properties of non-oxide crystals. 

MATERIAL Structure Tm [°C] Ti [%] (at λ [nm]) ρ [g/cm3] 

CaF2[16,18] Cubic  1423  95 (1000)  3.18  

Diamond[18,39] Cubic  3730  70 (1000)  3.50  

 

  



 

20 
 

CHAPTER 4: ANALYSIS TECHNIQUES 

Because of the experimental nature of this research, many techniques were used to 

characterize the candidate materials and to verify theories about the phenomenon being observed. 

The basic principles of each system, applications, and shortcomings will be discussed in this 

Chapter including an overview of the most important analysis methods. This will by no means be 

a comprehensive discussion of these systems, but enough information will be provided to ensure 

a working knowledge of them and an understanding of capabilities.  

4.1  Spectrophotometry 

Spectrophotometry is a technique that quantitatively measures the transmission of a 

material as a function of wavelength. This is done directly by passing light through the material 

and comparing how much light is passed through compared to how much light would reach the 

detector if there was no material. The specifics of operating spectrophotometers and some of their 

limitations are presented in 4.1.1. 

4.1.1 Operating Principles of Spectrophotometry 

Transmission is measured by direct comparison of the relative intensity of light passing 

through the sample material and the amount of light detected in the absence of such a sample. 

Figure 5 shows a typical setup for a spectrophotometer. In order to create a direct comparison of 

the intensity of the beam passing through a sample and in a sample’s absence, the light source is 

usually split by a beam splitter. This creates two beams with the same intensity, one beam is passed 

directly to a detector and the other is passed to a second detector through the sample. The relative 

intensity from both beams is then compared to show the change in relative intensity. This change 

represents how much light from the medium reached the detector as compared to the reference. 

With this information, transmission can be determined.  
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Because a material’s optical properties are wavelength-dependent, the light used must be 

monochromatic in order to give a representation of transmission at specific wavelengths. To 

accomplish this, multi-chromatic light sources are used and a diffraction grating separates the 

white light into (ideally) monochromatic rays which are used to determine transmission at specific 

wavelengths.  

 

Figure 5. A typical setup for a spectrophotometer. 

4.1.2 Using a Spectrophotometer 

Spectrophotometers, while usually simple in operation, do require some amount of finesse 

when being used – specifically since calibration is important as is awareness of artifacts that can 

occur during a data acquisition cycle. Calibration methods vary from spectrophotometer to 

spectrophotometer, but the one used in this research effort required a zeroing-baseline calibrations. 

This is where the spectrophotometer will run through the spectrum of interest twice; the first time 

being where there is neither beam is obstructed. This creates a baseline of 100% transmission. The 

second run will involve the total obstruction of the probe beam resulting in a 0% transmission 

reference. After these two transmission curves are generated, the spectrophotometer will calibrate 

itself based on those curves. 
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Some spectrophotometers, like the one used in this research effort, will occasionally 

generate artifacts when collecting data. These artifacts arose due to either a change of light sources 

or diffraction gratings to assess transmission in different bands. So long as this is understood when 

taking data, it can be corrected either by fitting the spectrum or by retaking it.   

4.2  Reflectometry 

Reflectometry is a technique that can determine the reflectance of a material as a function 

of wavelength. Reflectance is measured directly by irradiating a sample with monochromatic light 

and measuring the intensity of light that is reflected from the surface of the sample and comparing 

it to the original intensity of the monochromatic light [40]. This gives a ratio of reflected intensity 

to incident intensity at a specific wavelength [40]. The specifics of how this is done are overviewed 

in 4.2.1. 

4.2.1 Operating Principles of Reflectometry 

The operating principles of reflectometry are fundamentally similar to spectrophotometry. 

A beam of light is split and part of the split beam is sent to a reference detector [40]. The second 

split beam is sent towards the sample which is placed in front of a diffuse absorptive backdrop. 

The backdrop prevents transmitted light from reflecting back through the sample and towards a 

second detector. This second detector measures the intensity of the light reflected off of the sample 

relative to the first split beam and from that reflectance is determined. 
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Figure 6.  An example of a reflectometer setup. 

4.2.2 Using a Reflectometer 

In this research effort, reflectometry was conducted by attaching a differential 

reflectometer accessory to the spectrophotometer that was used to conduct transmission 

measurements. Much like when collecting transmission data, one had to calibrate the machine in 

order to obtain accurate reflection measurements. This is done through software calibrating itself 

to both 0% and 100% reflectance prior to analyzing a sample, just as with the spectrophotometer 

calibration. 

4.3  X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS), also referred to as electron spectroscopy for 

chemical analysis (ESCA),  is a surface analysis technique that can semi-quantitatively identify 

constituent elements of a material if the element is abundant enough – generally on the order of 

parts per thousand (ppt). Surface analysis generally refers to only with the first few atomic layers 

of a material, often between 0.1 nm and 10 nm. While XPS is not the most sensitive surface 

analysis technique, it is nonetheless used frequently in surface sciences. More details into operating 

mechanism and applications and limitations of XPS will be discussed in 4.3.1 and 4.3.2. 
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4.3.1 Operating Principles of XPS 

The core mechanic behind XPS is the photoelectric effect. High powered X-rays bombard 

the surface of a material. These X-rays are capable of dislodging electrons from the material due 

to the interaction of electromagnetic radiation and the material (the photoelectric effect). These 

ejected photoelectrons move at a particular velocity away from the material. The velocity at which 

the photoelectron moves is directly related to the transformation of the energy carried by the X-

ray (ℎ𝜈𝜈, where ℎ is Planck’s constant and 𝜈𝜈 is frequency) into the kinetic energy (𝐸𝐸𝐾𝐾) of the 

photoelectron [41]. The amount of energy to generate a photoelectron is directly related to 

electron-nuclear interaction of the element, i.e. binding energy (𝐸𝐸𝐵𝐵) of the photoelectron and the 

nucleus of the constituent atoms [41]. This relationship of energy is illustrated in Eq. (7) 

𝐸𝐸𝐵𝐵 = ℎ𝜈𝜈 − 𝐸𝐸𝐾𝐾      (7) 

Additonally, the process by which XPS functions is illustrated in Figure 7. 

 

Figure 7.  A diagram of how XPS functions: the generation of photoelectrons with different 
kinetic energies from X-rays. 

Determining the binding energy is important because each element is defined by the 

number of protons in the nucleus, the amount of force (and therefore energy) that binds electrons 
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to the atom can serve as a signature of a particular element [41]. If the X-ray has that amount of 

energy equal to that state, then that is the amount of kinetic energy the photoelectron will be 

jettisoned with a specific velocity. The ejected photoelectron will then move into a magnetic field 

and will deflect the electron based on its speed. Based on the amount of deflection, an electron will 

strike a detector at a particular position. This position corresponds with a specific kinetic energy 

and therefore binding energy. With an ensemble of ejected particles, a spectrum of relative 

intensity vs. binding energy can be generated. This spectrum affords insight to the specific binding 

energies and therefore chemical composition of the sample being analyzed. 

4.3.2 Limitation of XPS 

While XPS is a versatile surface analysis technique, it does have limitations. The detection 

limit on many XPS systems is on the order of ppt. More sensitive surface techniques are required 

for more precise surface characterization, e.g., secondary ion mass spectroscopy. Because of the 

reliance of detecting photoelectrons, ultra-high vacuum conditions are often essential in order to 

both maximize the detected signal of the photoelectrons and to eliminate other particles from 

interacting with the detector. This often requires bulky vacuum chambers and expensive pumps. 

Additionally, because of the intrinsic nature of identifying elements based on electrical structure, 

XPS has difficulty identifying elements with an atomic number less than three since atoms like 

hydrogen, helium and lithium only have peaks in relatively low binding energies. This creates an 

issue in positively identifying these small atoms as nearly all other atoms also have peaks in the 

low energy regime.  

4.4  Time of Flight Secondary Ion Mass Spectrometry 

Time of flight secondary ion mass spectrometry (ToF-SIMS) is an extremely sensitive 

surface analysis technique that analyzes secondary ions from a sample by measuring how long 
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those ions take to move from the sample to the detector [42]. ToF-SIMS is capable of detecting 

concentrations of elements and molecules on the order of parts per billion (ppb) [42]. ToF-SIMS 

is, at its core, a mass spectroscopy technique that identifies atoms and molecules by their charge 

to mass ratio, from which atomic weight can be determined. The general operating principles and 

how they contrast from regular mass spectroscopy as well as applications and drawbacks of ToF-

SIMS systems will be discussed in 4.4.1. 

4.4.1  Operating Principles of ToF-SIMS 

ToF-SIMS differs from regular mass spectroscopy in several ways. Instead of a sample 

being vaporized, an ion beam is used to bombard the surface of the solid sample, hereafter referred 

to as primary ions [42]. These primary ions can be liquid metal ions, Ga+ or Cs+, ionized noble 

gases, Ar+ or Xe+, oxygen ions, O- or O2±, or other ions depending on the need and apparatus. The 

primary ions will ablate the surface of the sample generating ionized particles called secondary 

ions. The secondary ions will be either atoms of the constituent elements of the sample (these are 

emitted near incidence of the primary ion beam) or molecules that form the compound (these larger 

particles occur farther from where the primary ion beam strikes). The signed charge of the primary 

ions determines the charge of secondary ions emitted. The secondary ions are the analytes from 

which molecular weight can be determined and molecules identified.  

The time of flight aspect of ToF-SIMS refers to the method by which the mass of analyte 

particles from the sample can be determined. The time of flight method is different from how 

ordinary mass spectrometers measure analyte particle mass. Because the ionized analytes have the 

same kinetic energy from the field it is possible to discriminate them based not only on their mass 

but also their velocity. In ToF-SIMS, the detectors can retrieve data about the charge-to-mass ratio 

based on how long the particles are “airborne,” i.e., how long they were in flight. It is important to 
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note that unlike regular mass spectrometers, ToF-SIMS cannot analyze a continuous stream of 

ions. The analyte ions must be sent through in pulses in order to accurately track their time of 

flight. This process is illustrated in Figure 8. 

 

Figure 8. A typical schematic of a ToF-SIMS system. 

ToF mass spectrometers have become more common for several reasons. ToF mass 

spectrometers have higher sensitivity and as such can detect particle concentrations on the order 

of 1 ppm or better [43]. Improved signal to noise ratio is often achieved because there are fewer 

ion-ion interactions while in flight owing to the fact that there are fewer particles in motion as the 

secondary ions are analyzed in pulses [43].  

SIMS has several unique advantages over traditional mass spectroscopy systems. Solid 

samples can be analyzed easily since the primary ion source generates secondary ions from the 

sample, regardless of the phase of the sample. SIMS can provide highly localized surface analysis 

on samples. This is because the primary ion beam can be focused down to sub-micron sizes [42]. 

If secondary ions are only generated from sub-micron areas, then one can probe different places 
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on the same sample; this can be useful for identifying if the local chemistry is varying throughout 

a sample. 

4.4.2  Applications and Limitation of ToF-SIMS 

ToF-SIMS, while very useful in many respects, has its limitations. There are a number of 

drawbacks when using ToF-SIMS and these will be addressed. The disadvantages include: charge 

buildup on dielectric samples, ToF-SIMS cannot detect positive and negative secondary ions 

simultaneously, and sample damage [42, 44].   

Charge buildup is not an uncommon problem when bombarding electrically insulating samples 

with charged particles. This charging, however, can be a detriment to analysis as built up charge 

can deflect primary ions from their intended target. This is usually corrected by a charge 

compensator – a low energy electron gun – that allows for the neutralization of surface charges 

thereby reducing surface charge effects.  

As was discussed earlier, the signed charge of the primary ions used is an important aspect 

of ToF-SIMS analysis. A single polarity must be selected before beginning a ToF-SIMS analysis. 

Ions of opposite polarity than those being analyzed will not be detected in high enough quantities 

to perform the necessary analytics and information can be lost. Multiple analyses of the same 

sample using different polarity modes can achieve a more complete set of data, provided that the 

sample is intact enough for multiple analyses.  

SIMS in general is a moderately destructive analysis technique. The expulsion of secondary ions 

from the surface unsurprisingly affects the topology of the sample. Continuous analysis on the 

same spot will cause more secondary ions to be emitted thereby making the damage worse. If the 

analyzed area has changed from its original state and only one polarity of ions was collected some 

information can be lost.  
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4.5  Ellipsometry 

Ellipsometry is a technique that can be used to determine a number of physical features of 

a sample including composition, roughness, films thickness, crystallinity, and most commonly 

optical constants, specifically complex refractive index, 𝑛𝑛� [40].  While the full range of capabilities 

of ellipsometry is interesting and useful in many applications, this Section will focus exclusively 

on the determination of 𝑛𝑛�. The complex refractive index, 𝑛𝑛� is defined to be 𝑛𝑛 + 𝑖𝑖𝑖𝑖 where 𝑛𝑛 is the 

index of refraction and 𝑘𝑘 is extinction coefficient (𝑖𝑖 is the imaginary unit). These values are found 

indirectly by measuring. This is done by measuring the complex reflectance ratio 𝜌𝜌 in terms of 

intensity 𝜓𝜓 and phase   𝛿𝛿. In order to determine   𝑛𝑛�,   curve fitting of 𝜓𝜓 and 𝛿𝛿 must be done and 

based on these curve fittings, refractive index and extinction coefficient can be calculated.  

4.5.1 Operating Principles of Ellipsometry 

Ellipsometry is based on Fresnel equations that govern how polarized light interacts with 

a sample [45]. The data collected from a sample does not directly yield the familiar optical or 

dielectric (tensor) values. Instead, the relative intensity and phase of the light are collected. The 

way how to find 𝑛𝑛 and 𝑘𝑘 will be discussed next, but for now the setup of the ellipsometer is 

reviewed. In general, a light source is passed through a polarizer in an effort to linearly polarize 

the electromagnetic radiation from the source. This now polarized source strikes the sample at 

some angle of incidence   𝜃𝜃 and is reflected off the surface. The reflected beam of light then passes 

through another polarizer and is then collected by a detector. This process is illustrated in Figure 

9. 



 

30 
 

 

Figure 9. A typical ellipsometer setup. 

This setup collects a piece of information known as the complex reflectance ratio   𝜌𝜌𝑅𝑅. This 

ratio is the quotient of the parallel and perpendicular reflectance coefficients  𝑟𝑟𝑝𝑝 and  𝑟𝑟𝑠𝑠 , 

respectively. This quotient can also be represented in terms of 𝜓𝜓 and 𝛿𝛿 as shown in Eq. (8)  

𝜌𝜌𝑅𝑅 = tan𝜓𝜓 𝑒𝑒𝑖𝑖𝑖𝑖    (8) 

with 𝜓𝜓 and 𝛿𝛿, complex refractive index 𝑛𝑛�  can be calculated.  

4.5.2 Determination of Complex Refractive Index 

Finding  𝑛𝑛 and 𝑘𝑘 from 𝜌𝜌𝑅𝑅 is not a trivial matter. A brief overview of a process by which 𝑛𝑛 

and 𝑘𝑘 are determined will be presented herein; a more thorough explanation can be found in the 

papers published by Forouhi and Bloomer [46, 47]. A model of a dispersion relation must be 

generated in order to determine 𝑛𝑛 and   𝑘𝑘. Forouhi and Bloomer derived dispersion equations for 

𝑛𝑛 (Eq. (9)) and 𝑘𝑘 (Eq. (10)) as a function of wavelength  𝜆𝜆. The case for amorphous materials will 

be shown here for the sake of simplicity; crystalline materials have similar dispersion relationships 

and similar logic applies to those equations and for other dispersion relations [46, 47]: 
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𝑛𝑛(𝜆𝜆) = 𝑛𝑛∞ + 𝐵𝐵0(ℎ𝑐𝑐 𝜆𝜆⁄ )+𝐶𝐶0
(ℎ𝑐𝑐 𝜆𝜆⁄ )2−𝐵𝐵(ℎ𝑐𝑐 𝜆𝜆⁄ )+𝐶𝐶

   (9) 

𝑘𝑘(𝜆𝜆) = 𝐴𝐴((ℎ𝑐𝑐 𝜆𝜆⁄ )−𝐸𝐸𝑔𝑔)2

(ℎ𝑐𝑐 𝜆𝜆⁄ )2−𝐵𝐵(ℎ𝑐𝑐 𝜆𝜆⁄ )+𝐶𝐶
    (10) 

where 𝐸𝐸𝑔𝑔 is the bandgap energy of the material, ℎ is Planck’s constant, 𝑐𝑐 is the speed of light in 

vacuum, 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 are related to the broadening of bonding and antibonding states, |𝜎𝜎𝑏𝑏⟩ and |𝜎𝜎𝑎𝑎⟩ 

respectively, as shown in Eqs. (11) - (13) [46, 47]: 

𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.× |⟨𝜎𝜎𝑎𝑎|𝑥𝑥�|𝜎𝜎𝑏𝑏⟩|2𝛾𝛾    (11) 

𝐵𝐵 = 2(𝐸𝐸𝑎𝑎 − 𝐸𝐸𝑏𝑏)     (12) 

𝐶𝐶 = (𝐸𝐸𝑎𝑎 − 𝐸𝐸𝑏𝑏)2 + (𝛾𝛾ħ)2

4
    (13) 

where 𝛾𝛾 is the inverse of the lifetime of the excited state to which the electron transfers, 𝐸𝐸𝑏𝑏 and 𝐸𝐸𝑎𝑎 

are the energies associated with |𝜎𝜎𝑏𝑏⟩ and |𝜎𝜎𝑎𝑎⟩ respectively, and ħ is the reduced Planck’s constant 

[46, 47]. Finally, 𝐵𝐵0 and 𝐶𝐶0 in Eq. (9) are related to  𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 in Eqs. (14) and  (15) [46, 47] 

𝐵𝐵0 = 𝐴𝐴
𝑄𝑄
�−𝐵𝐵

2

2
+ 𝐸𝐸𝑔𝑔 − 𝐸𝐸𝑔𝑔2 + 𝐶𝐶�   (14) 

𝐶𝐶0 = 𝐴𝐴
𝑄𝑄
��𝐸𝐸𝑔𝑔2 + 𝐶𝐶� 𝐵𝐵

2
− 2𝐸𝐸𝑔𝑔𝐶𝐶�   (15) 

where 𝑄𝑄 = 1
2
√4𝐶𝐶 − 𝐵𝐵2. Solving for 𝑛𝑛(𝜆𝜆) and 𝑘𝑘(𝜆𝜆) is a difficult process that is often done by 

computation. Nonlinear least-squares curve fitting is often done to obtain  𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝑛𝑛∞. Tauc-

Lorentz, Cauchy, and Sellmeier are other dispersion models that can be used to obtain 𝑛𝑛(𝜆𝜆) and 

𝑘𝑘(𝜆𝜆) [48, 49, 50].  

4.6 Profilometry 

Profilometry is a technique that is capable of providing surface morphology and roughness 

of a sample generally along a single line trace. The technique is relatively simple and height vs. 

position information is collected directly allowing for fast acquisition of topographic features of a 
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sample. From this, changes in height and roughness can be ascertained [51]. This information is 

often obtained by a fine tipped probe that is dragged across the surface of the sample being 

analyzed. As the probe is dragged, the relative height of the probe will change as a function of the 

surface morphology of the sample, i.e., if there are rises or indentations on the surface, the probe 

will have a different height than where it began when moving over those features [51]. These 

minute differences in height of the probe are often measured by piezoelectric or other mechanical 

configurations that are attached to the cantilever that the probe is attached to [51].  
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CHAPTER 5: EXPERIMENTAL 

In an effort to improve the longevity of atomic physics based devices, an experimental 

research approach was developed in an effort to characterize candidate materials for their use in 

extreme alkali-rich environments. This Chapter will outline the research approach used to 

accomplish the goal of this project. The research was carried out as follows: (1) collect data on the 

physical (primarily optical) properties of the candidate material to serve as a baseline reference, 

(2) introduce the candidate materials to an environment that simulates conditions found in atomic 

clocks and DPAL systems, (3) the samples are then re-characterized to identify changes in physical 

properties, (4) finally, the samples are analyzed by ToF-SIMS in order to ascertain the extent of 

alkali diffusion into the bulk material.  

5.1  Baseline Characterization 

All materials underwent analysis to determine their ordinary optical and structural 

properties. Techniques used included spectrophotometry, reflectometry, and ellipsometry 

measurements. Spectrophotometry was done with a Cary 5000 UV-vis-IR spectrometer. As was 

mentioned earlier, reflectometry was done by installing a differential reflectometer accessory to 

the Cary 5000. Ellipsometry was done using a Bruker ellipsometer. The most vital baseline 

characterization was spectrophotometry and reflectometry in order to ascertain the sample’s base 

transmittance and reflectance. Most transmission and reflectance values were collected between 

200 nm and 1000 nm in order to have available a full transmission spectrum in case any future 

applications required a wavelength that was different than the 318-795 nm range. This data is later 

compared to the same kind of characterization after the samples have been exposed to Rb in the 

simulated environment that was constructed as an alkali diffusion testbed. 
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5.2  Simulated Environment 

A small cell was constructed in an effort to simulate the extreme environments akin to 

those in atomic clocks and DPAL laser cavities. This cell is shown in Figure 10. It was made out 

of 316H stainless steel with Ag-coated Cu gaskets for the conflat flange connections, the cell has 

two major chambers – the sample storage area and the alkali source. As their names imply, the 

sample storage area is where candidate materials are kept during alkali exposure and the alkali 

source houses the alkali. Both areas could be heated independently with heater tape, each 

controlled by a variac (variable power supply). Heater tape was used to create a temperature 

gradient between the alkali and the samples in order to encourage diffusion of alkali metal vapor 

from alkali Rb source to the sample storage. Diffusion was affected by keeping the alkali source 

at higher temperatures than the sample storage area. Typical temperature gradients were generated 

by a ~ 100 °C difference in temperature, but a few other experiments were conducted using other 

temperature differences (these will be discussed in more details in Chapters 6 and 7). All reactions 

involving candidate materials were conducted with the alkali source cell at ~ 550 °C and the sample 

cell at ~ 450 °C. 

 

Figure 10. Alkali exposure cell. The alkali source and sample storage areas are heated with 
heater tape and can be heated independently to create a thermal gradient. 
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Once samples and alkali were loaded into the chamber, it was pumped to rough vacuum (~ 

50 mTorr) using an Agilent SH-110 dry scroll pump. This was done to minimize the reaction of 

the alkali metal with atmospheric gases, particularly water. The pressure of the cell could be 

measured via a convection, however while the alkali was vaporous the convectron was never used 

as there was a concern that the alkali might damage the convectron. Once the alkali vaporized, 1 

g of Rb in the case of the research presented here, there was an estimated 1 atm of pressure within 

the cell.  

Samples were generally left in the alkali exposure cell for one week at a time. Other 

exposure durations were used in part to determine a diffusion trend. This trend was determined by 

a fused silica substrate that was included in most reactions in order to compare the diffusion that 

occurred in one reaction with another. These substrates also served as a kind of control to assess 

how each reaction performed compared to other reactions.  

5.3  Recharacterization 

After the candidate materials were exposed to a high temperature alkali-rich environment, 

the same battery of analysis conducted prior to exposure was repeated. This allowed for a direct 

comparison of the optical properties before and after the samples when they were placed in the 

simulated environment in an effort to determine how the diffusion of Rb affected transmission, 

reflection, etc. The differences in optical properties are summarized in Table 7 in Chapter 6.  

5.4  ToF-SIMS Analysis 

ToF-SIMS was instrumental in this research effort. An IonToF ToF-SIMS system was used 

to conduct all ToF-SIMS analyses. After each sample was exposed to Rb vapor at high 

temperatures, a ToF-SIMS depth profile was conducted to determine the extent of the Rb diffusion. 

The ToF-SIMS was used a Bi emitter and an O2 sputter gun. The bismuth emitter was maintained 
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at 1 µA throughout the run and the oxygen sputtering was held at 2 kV. One or two spots were 

analyzed on each sample. Samples underwent cycles of sputtering using the O2- ions for 45 s and 

then the newly exposed surface was analyzed for 20 s and analysis was conducted 1,000 times, or 

until a “zero” point of Rb was reached. This “zero” point will be discussed later in 6.3.  

The diffusion depth,  𝑧𝑧𝑑𝑑, of the various samples are summarized in Table 7 in Chapter 6. 

Diffusion depth, however is, is not intrinsically given in the ToF-SIMS that was used. Diffusion 

depth is calculated by taking the total physical depth bored into the sample and dividing that value 

by the length of time spent sputtering. The sputter time is recorded in the ToF-SIMS control 

software and the depth bored was found via Bruker Dektak XT profilometer. With both of these 

pieces of information, the physical depth of the diffusion of Rb can be ascertained.  

CHAPTER 6: RESULTS 

This Chapter will present the data collected on the candidate materials that were used in 

this research. A list of materials characterized and the results of those characterizations will be 

presented herein. The materials that were of great interest were ZrO2, ALON, spinel, LaAlO3, 

CdWO4, and KTaO3 (an explanation of why they are of interest will be given and a more in depth 

discussion and analysis of the data collected will be presented in Chapter 7). 

6.1 Optical Characterization 

Transmission 𝑇𝑇 and reflection 𝑅𝑅 of the samples studied were collected. Initial transmission 

and changes in transmission and reflection are tabulated in Table 7 in 6.3. It should be noted that 

changes in absorption 𝑅𝑅 listed in Table 7 were not measured directly. Instead, it was calculated by 

the simple relationship between reflection, absorption, and transmission: 𝑅𝑅 + 𝐴𝐴 + 𝑇𝑇 = 1 since 𝑅𝑅 

and 𝑇𝑇 were measured. The following Sections will contain transmission and reflectance data of all 
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samples studied.  Some complex refractive data is also presented, but elliposmetric data was not 

collected for all samples due to difficulties in fitting 𝜓𝜓 and 𝛿𝛿 curves. 

6.1.1 Amorphous Materials 

 Amorphous materials’ optical properties were measured before and after exposure to Rb. 

In general, the transmission of the samples decreased slightly after exposure to Rb.  The spectra 

collected for fused silica, Schott 8436 glass, and TAFD-40 are shown in Figures 11-13.  

 

Figure 11. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of fused silica as a 
function of wavelength. 
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Figure 12. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of Schott 8436 glass as a 
function of wavelength. 

 
Figure 13. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of TAFD-40 as a 
function of wavelength. 
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6.1.2 Crystalline Oxides 

Optical properties of crystalline oxides were measured before and after exposure to Rb. 

Overall, exposure to Rb and high temperatures resulted in minor decreases in transmission.  The 

spectra collected for cubic zirconia, LYSO, MgO, and Y2O3 are shown in Figures 15-18.  BGO 

was destroyed in the reaction vessel in the process of being exposed to high temperatures and Rb 

vapor for one week. It appeared that a chemical reaction occurred and the BGO sample became 

dark and opaque (as shown in Figure 14) and became extremely fragile.  

 

Figure 14. BGO after being exposed to Rb for one week in the reaction vessel. Note the white 
“growth” occurring on the material and its opacity. 

Damaged 
BGO 



 

40 
 

 

 

Figure 15. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of ZrO2 glass as a 
function of wavelength. 

 

Figure 16. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of LYSO as a function of 
wavelength. 
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Figure 17. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of MgO as a function of 
wavelength. 

 
Figure 18. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) Y2O3 as a function of 
wavelength. 
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6.1.3 Sapphire-like Materials 

Optical properties of sapphire-like materials were measured before and after exposure to 

Rb. The changes in optical properties were largely small decreases in transmission.  The spectra 

collected for sapphire, spinel, and ALON are shown in Figures 19-21. 

 

Figure 19. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of sapphire as a function 
of wavelength. 
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Figure 20. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of spinel as a function of 
wavelength. 

 

Figure 21.  Comparison of ALON’s transmission pre- (solid blue) and post-exposure (dashed 
red) and of reflection pre- (dotted and dashed blue) and post-exposure (dotted red) as a function 
of wavelength. 
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6.1.4 Rb-based Crystalline Materials 

Optical data for Rb-based crystalline materials was collected. Both RTA and RTP were 

destroyed in the reaction. It is unclear as to why this occurred. There was one difference of note in 

the exposure they were involved in: carbon foam was also present in the reactor. This carbon foam 

disintegrated during this reaction and covered the interior of the reaction vessel and all samples 

therein.  Figure 22 illustrates the state of the samples after the reaction. 

 

6.1.5 Perovskite Materials 

Perovskite materials exhibited unusual changes in optical properties after exposure to Rb. 

Figures 23−26 illustrate the increase in transmission of LaAlO3, CdWO4, KTaO3, and SrTiO3. A 

brief discussion of this phenomenon will be presented in Chapter 7. 

 

 

Figure 22. Image of the result of RTA and RTP after exposure to Rb at high temperatures. 
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Figure 23. Comparison of LaAlO3’s transmission pre- (solid blue) and post-exposure (dashed 
red) and of reflection pre- (dotted and dashed blue) and post-exposure (dotted red) as a function 
of wavelength. 

 
Figure 24. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of CdWO4 as a function 
of wavelength. 
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Figure 25. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of KTaO3 as a function 
of wavelength. 

 
Figure 26. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of SrTiO3 as a function 
of wavelength. 

Further investigation of the anomalous behavior of the perovskite structured materials 
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refractive index decreased while the extinction coefficient increased. This is consistent with the 

transmission and reflection data which indicates that there was no error in the spectrophotometric 

data.  

 

Figure 27. Refractive index before (solid green) and after (dashed orange) exposure to Rb as 
well as extinction coefficient before (dashed and dotted green) and after (dotted orange) 
exposure to Rb of LaAlO3 as a function of wavelength. 
 

6.1.6 Non-oxide Crystalline Materials 

Transmission and reflection data was collected on the non-oxide crystals, CaF2 and 

diamond. CaF2’s transmission decreased greatly after exposure while diamond’s transmission was 

largely unchanged. This is illustrated in Figures 28 and 29. 
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Figure 28. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of CaF2 as a function of 
wavelength. 

 

 

Figure 29. Comparison of transmission pre- (solid blue) and post-exposure (dashed red) and of 
reflection pre- (dotted and dashed blue) and post-exposure (dotted red) of diamond as a function 
of wavelength. 

0
10
20
30
40
50
60
70
80
90

100

200 400 600 800 1000 1200Tr
an

sm
is

si
on

, R
ef

le
ct

io
n 

[%
]

Wavelength [nm]

Transmission and Reflection of CaF2 Before and 
After Rb Exposure

T Before Exposure T After Exposure

R Before Exposure R After Exposure

0
10
20
30
40
50
60
70
80
90

100

200 300 400 500 600 700 800 900 1000

Tr
an

sm
is

si
on

, R
ef

le
ct

io
n 

[%
]

Wavelength [nm]

Transmission and Reflection of Diamond Before 
and After Exposure to Rb

T before exposure T after exposure

R before exposure R after exposure



 

49 
 

6.2 Diffusion Study 

As was discussed in Chapter 5, ToF-SIMS was to analyze the extent of the Rb diffusion 

within the candidate materials. Several exemplary ToF-SIMS depth profiles are shown below such 

as in Figure 30. It can be seen from Figure 30 that the Rb diffuses into the material showing relative 

abundance as a function of sputter time – sputter time is related to the depth of penetration of the 

sample through the sputter rate. It is important to note the point at which a stoppage in diffusion 

was declared. When the relative abundance of Rb was on the order of several tens after successive 

data samplings, diffusion was said to have ended.  

 

Figure 30. A ToF-SIMS depth profile of a used DPAL window showing the extent of the Rb 
diffusion. The sputter rate allows the diffusion depth to be on the order of 3 µm. 

XPS analysis was conducted in order to confirm the results of ToF-SIMS. Figure 31 shows 

an XPS depth profile on the same DPAL window as shown in Figure 30. The XPS spectra identify 

the same constituent elements that were detected by ToF-SIMS on each layer of the AR coating.  
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Figure 31. Successive XPS spectra done on a DPAL window to confirm ToF-SIMS data. The different 
spectra coorispond to the layers of the AR coating on the wondow.These layers were reached by sputtering 
the surface of the sample with an ion gun. Spectra between 0 and 500 eV and between 500 eV and 1100 eV 
are shown in (a) and (b), respectively. Peaks of interest have been labeled. 
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An interesting observation was made when analyzing the exposed and damaged DPAL 

windows. Because the DPAL windows had AR coatings on the surface, ToF-SIMS showed that 

the Rb “dragged” F from the MgF2 coating deeper into the window – that is to say that F was found 

beyond the point of where the MgF2 coating was. Additionally, ToF-SIMS showed that the F 

seemed to build up at interfaces between the other AR coatings. This phenomenon is shown in 

Figure 32. While this is not directly significant to the materials study aspect of this research, it is 

something to note when discussing a solution to the issue of creating effective DPAL windows.  

 

Figure 32. A ToF-SISM depth profile of a DPAL window showing that as the Rb (red) diffuses 
through the material, F (orange) is carried into the bulk. 

Several other exemplary ToF-SIMS depth profiles are presented in Figures 33 and 34. It 

should be noted that Rb was said to have stopped diffusing if its relative intensity reached 50 

counts. 

6.3 Tabulated Results 

The results of optical characterization and ToF-SIMS depth profiling are summarized  
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Figure 33. ToF-SIMS depth profile of fused silica after exposure to Rb. 

 

Figure 34. ToS-SIMS depth profile of cubic zirconia after exposure to Rb. 

in Table 7. Several things to note regarding the data presented in Table 7 are that diffusion depth 

𝑧𝑧𝑑𝑑 was recorded using the experimentally obtained sputter rate as was discussed in 5.4 and that 

diffusion was assumed to end when counts of Rb was on the order of several ten for after successive 

analysis iterations. Information from this table will be discussed extensively in Chapter 7. 

Table 7. A list of materials studied. ΔR, ΔA, and ΔT are the relative changes in reflection, absorption, and 
transmission respectively at 795 nm from before and after the samples were exposed in the Rb exposure testbed. A 
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positive number indicates an increase in an optical property relative to the sample before exposure and a negative 
number indicates a decrease. Ti is the initial transmission of the material to give reference to its inherent ability to 
transmit at 795 nm. The diffusion depth, zd, is a statement of how deep the Rb diffused into the sample. 

MATERIAL Ti[%] ΔR[%] ΔA[%] ΔT[%] zd[nm] 

ALON 84.78 -1.78 +1.47 +0.31 55 

BGO 77.95 SAMPLE DESTROYED IN REACTION 

CaF2 93.31 +0.26 +8.43 -8.69 1138 

CdWO4 69.31 +6.39 -7.09 +0.70 31 

Diamond 68.81 +0.29 -1.60 +1.31 9.2 

DPAL Window (averaged) 98.42 +10.33 +6.00 -16.33 3564 

Fused Silica 91.75 -0.15 +0.75 -0.60 200 

KTaO3 71.16 +0.24 -3.16 +2.92 49 

LaAlO3 62.03 -11.38 +0.91 +12.29 45 

LYSO 84.94 +0.95 -1.95 +1.00 14 

MgO 86.48 +0.47 +0.36 -0.11 10 

RbTiOAsO4 (RTA) 83.21 SAMPLE DESTROYED IN REACTION 

RbTiOPO4 (RTP) 82.07 SAMPLE DESTROYED IN REACTION 

Schott 8436 81.01 +0.05 +3.27 -3.33 3472 

Sapphire 85.48 +0.41 -0.35 -0.06 25 

Spinel 83.71 +1.24 -1.28 +0.04 10 

SrTiO3 71.30 +0.46 -0.40 -0.06 91 

TAFD-40 81.11 -4.19 +5.24 -1.05 1064 

ThO2 51.78 NO DATA +37.71 105 

Y2O3 63.57 +4.86 -4.22 -0.64 59 

ZrO2 62.74 +0.08 +1.90 -1.98 50 
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CHAPTER 7: DISCUSSION 

This Section will discuss the data collected and presented in Chapter 6 and make 

interpretations thereof. Based on the data collected a recommendation will be made as to what 

material(s) to pursue for fabrication of DPAL windows and atomic clock vapor cells. Additionally, 

a brief discussion of future work needed to take the materials found resistant to alkali diffusion 

and turn them into viable windows and cells will be presented in this final Chapter.  

7.1 Conclusions from Data 

7.1.1 Effects of Exposure Time on Diffusion 

The length of time, unsurprisingly, has a distinct effect on the amount of diffusion in a 

given sample. In an effort to be determine exactly how Rb diffusion varied with exposure time, a 

fused silica substrate was included in most runs as a control. ToF-SIMS depth profiles were 

conducted on these substrates after they were exposed to Rb for varying amounts of time. Figure 

35 shows three exposure times with their respective Rb diffusion depths. The most consistent and 

effective diffusion studies occurred with a 100 °C temperature gradient with the Rb source at ~ 

550 °C and the sample maintained at 450 °C. Other variations of the temperature gradient were 

tested, but they were ineffective.   

Experiments were conducted for one, seven, and twenty-one days in order to find a suitable 

duration for exposure experiments. It was found that a one week run was sufficient and longer 

times did not substantially improve the amount of diffusion into the samples. As such, most 

experiments were one week long. Optical characterization results varied from one amorphous 

sample to another amorphous sample. The transmission of the Schott 8436 glass varied some, 
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showing increases in transmission in some regions of the spectra and decreases in others as shown 

in Figure 12.  

 

Figure 35. Rb diffusion into fused silica substrates as a function of exposure time. 

7.1.2 Properties of Materials Studied 

Most of the amorphous materials behaved as had been described previously in literature 

[7, 12].  Rb was able to diffuse deep into these samples with relative ease. Diffusion depths were 

on the order of microns. This coupled with conflicting data on the maintenance of transmission at 

the requisite wavelength, i.e., some materials kept their high transmission while others exhibited a 

dramatic decrease in transmission. It makes most amorphous materials poor candidates to be used 

as DPAL windows. Also in line with literature [7, 12], crystalline materials resisted diffusion better 

and in general maintained their optical properties. 

There were several materials that did not behave as expected. LaAlO3, for example, 

exhibited improved optical properties after exposure to Rb. Both spectrophotometric (Figure 23) 

and ellipsometric (Figure 27) data show significant increase in transmission and reduction in both 
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index of refraction and extinction coefficient and a therefore decrease in reflection and absorption. 

These phenomena were observed in several separate experiments that were repeated to confirm 

these results. As was listed in Table 7, CdWO4 and KTaO3 also exhibited similar behavior. All of 

these materials have the perovskite crystal structure and the potential significance of this will be 

discussed in 7.2.3. 

7.1.3 Recommendations for Superior Window Materials 

Based on the results, ALON, spinel, MgO, and ZrO2 have been able both maintain high 

optical transmission while also resisting the diffusion of Rb. It is for these reasons that these 

materials should be tested more aggressively to determine if they can be used in developing atomic 

physics systems, DPALs in particular. The next step in this process will be addressed in 7.2. 

7.2 Future Work 

While this research effort has made headway on the issue of alkali damage and degradation 

for atomic physics-based systems, there is still more work to be done. The field of candidate 

materials has been narrowed based on literature and experimental results, but the optimal material 

still needs to be identified. This section will detail a path forward for future research on the issues 

that still need to be addressed. Additionally, a more in depth commentary on the phenomena 

regarding the improvements in transmission observed in KTaO3, LaAlO3, and CdWO4 will be 

presented. 

7.2.1 Atomic  Clock  Vapor  Cell  Research 

A cell made of cubic zirconia (Figure 36) has been fabricated for use as a vapor cell for Sr-

based atomic clocks that are currently under development [4]. Cubic zirconia was selected due to 

its ability to resist Rb diffusion well while maintaining its optical properties and withstand high 
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temperatures. It is believed that these traits will also be true for Sr vapor, especially considering 

that Sr is a slightly larger and less reactive element than Rb.  

 

Figure 36. A vapor cell fabricated out of cubic zirconia. 

 

7.2.2 DPAL Window Research 

The immediate next step for this research regarding DPAL windows is to analyze the 

ability of these windows to withstand high energy laser radiation. To do this, plans being developed 

to irradiate exposed and unexposed samples of ALON, spinel, MgO, and ZrO2 to a high energy 

laser and through both visual inspection and an IR camera, the effects of heat buildup. If the 

materials can withstand high energy laser radiation after having been exposed to Rb, then a real 

window may be prototyped. 

Another hurdle for fielding these materials involves the ordinary transmission of the 

materials chosen. The materials recommended above, as shown in Table 7, do not inherently have 

optics grade (<99%) transmission. This can be addressed, as was mentioned earlier, anti-reflective 

coatings were employed to maximize transmission of DPAL windows. It was shown, however, 

that the Rb had a propensity to not only diffuse through these coatings but also to generate 

accumulation of material from these AR coatings at the interfaces. This is likely to create a myriad 
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of problems when attempting to pass high energy laser radiation through. It should be noted, 

however, that something must be done to improve the transmission of some of the materials used 

in this study as transmission if often not nearly where it needs to be for high energy laser systems. 

An alternative to AR coats exists that will eliminate the need for coating a window with different, 

less alkali resistant materials. This alternative is known as a motheye coating or surface.  

Motheye surfaces have been shown to dramatically improve the transmission of window 

materials. A prime example of such an improvement involves the addition of a motheye surface to 

a diamond laser window. The laser used was a CO2 laser that emitted at 1064 nm [52]. The 

diamond window’s transmission at the wavelength, however, was approximately only 70%. After 

a motheye surface was added to the faces of the laser window, the transmission increased to over 

99% [52]. Because of the effectiveness of motheye surfaces and the inherent problems associated 

with AR coatings in the harsh DPAL gain cell environments, it is proposed that if a material whose 

transmission is not acceptable for laser window use, but resists alkali diffusion well a motheye 

surface should be applied to improve transmission instead of more conventional AR coatings.  

Another aspect of the DPAL research that could play a crucial role in the damage of 

window material, is the breakdown of the hydrocarbon. There is both visual and surface evidence 

that on the surface of the DPAL windows there is a C based soot that deposits on the window 

surfaces. This soot is likely capable of absorbing some of the DPAL beam which in turn generates 

localized heating that could lead to the etching of the DPAL windows. Further research should be 

done in order to ascertain whether the breakdown of the hydrocarbon in the DPAL gain medium 

is a more significant factor leading to deterioration of DPAL windows than the diffusion of Rb. 

This research has shown, however, that Rb diffusion by itself does alter the optical properties.  
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7.2.3 Perovskite Structured Materials 

Because of the unexpected improvements in LaAlO3, CdWO4, and KTaO3, further research 

should be conducted to ascertain what physical mechanism causes this improvement. It is currently 

unknown at this time whether the changes in optical properties occur due to heating, the diffusion 

of Rb into the material, or some combination thereof. Simple experiments can be conducted to 

determine what the cause of these changes, namely, heating the materials to similar temperatures 

and then analyzing their optical properties. Additionally, crystallographic techniques such as X-

ray diffraction spectroscopy can afford insight to a change in crystal structure (if any) before and 

after exposure to Rb.  
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