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ABSTRACT 

Ballester, Nicholas Ph.D., Engineering Ph.D. program, Wright State University, 2017. 

Engineering Inpatient Discharges: Disposition Prediction and Day-of-Discharge 

Planning. 

 

 

Inpatient discharge planning is a critical decision point in patient care, with 

implications for the efficiency of the inpatient unit as well as other units of the acute care 

hospital. Inefficient discharge planning can cause patient boarding (waiting for beds) in 

the upstream units. While this is a poignant and well-known problem in healthcare, very 

little quantitative research exists that proposes approaches to alleviate it. To address this 

issue, we apply Systems Engineering methods with focus on three key challenges in 

inpatient discharge planning. 

First, to aid inpatient care providers in predicting discharge disposition (home vs. 

non-home) within 24-hours of a patient being admitted, we develop an early-warning 

prediction tool. This tool is derived from a multivariable logistic regression model built 

using data from a general medicine unit at a VA hospital. The tool is expected to aid the 

inpatient staff in proactively classifying non-home discharges from home in an effort to 

initiate early discharge planning and avoid non-medically related discharge delays. 

Second, to improve hospital bed flow and reduce upstream patient boarding, we 

propose a novel discharge target strategy, n-by-T, for an inpatient unit’s planning of daily 

discharges. A stochastic simulation model developed in collaboration with a trauma unit 

at a local hospital predicted that this strategy could offer significant advancement in 
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discharge completion time and reduction in upstream boarding; these findings were later 

validated via a pilot at the unit. Consistent findings via an extension to a neurology unit at 

another hospital suggest potential generalizability of this strategy. 

Third, to assist ancillary service providers on inpatient units in sequencing their 

daily patient workflow, we propose a novel approach to construct implementable and 

robust strategies. We develop a scenario-specific mixed-integer programming model to 

derive optimal sequences that minimize average upstream patient boarding under due-

date constraints. We then design a simulated annealing based metaheuristic to derive a 

single sequencing strategy that is promising across all scenario-specific optimal 

sequences for a given system configuration. An experimental evaluation of our approach 

suggests that our proposed strategies outperform several realistic strategies on boarding 

time. 

In summary, our research proposes easy-to-understand and implementable 

strategies derived from optimization and data analytics based methodologies to aid 

effective and efficient planning of discharges and improve patient flow through the 

hospital. 
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1 INTRODUCTION 

1.1 The US Healthcare Continuum 

The United States spares no expense when it comes to healthcare. In 2014, 

healthcare spending totaled $3 trillion, or 17.5% of the GDP (CDC, 2016). Yet, despite 

this extraordinary cost, the U.S. has consistently ranked behind other developed countries 

in healthcare system quality. In the same year, the U.S. ranked last among 11 nations in 

healthcare system efficiency, equity, and support for healthy living, while ranking 9th in 

healthcare system access and 5th in quality of care, coming in last overall, even though it 

had the highest healthcare spending per capita (Davis et al., 2014).  Clearly, there is much 

room for improvement. 

Healthcare encompasses a broad continuum, including home health care, acute 

care (outpatient and inpatient), long-term care, and others (Figure 1-1). Each stage in the 

continuum provides a different level of care, corresponding to different stages in the 

human life cycle, and a typical person may transition from one to another multiple times 

throughout his life. Thus, each facet of healthcare faces unique challenges and associated 

areas for potential improvement, both clinical and logistical, while the efficient 

coordination of care between them poses another set of challenges.  
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Figure 1-1: The U.S. Care Continuum 

Among the various elements of the healthcare continuum, acute care hospitals 

(ACH) are the most expensive and the most utilized, with hospital care accounting for 

32.1% of U.S. national health expenditures in 2014 (CDC, 2016). ACHs provide a vast 

array of services to patients with highly variable needs and preferences. These services 

are delivered by a set of functional units, such as emergency departments (ED), 

laboratory and diagnostic facilities, perioperative systems, intensive care units (ICU), 

post-anesthesia care units (PACU), inpatient medical/surgical units (IU), and so forth. 

Patients coming to an ACH must be navigated through many, if not all, of these differing 

functional units to receive the service they need during an episode of care; they also 

arrive in multiple different ways, such as walk-ins, ambulance, scheduled (elective), or 

transfers from other hospitals (Figure 1-2). For example, a patient (referred to as he for 

ease of exposition) injured in a car accident may arrive via ambulance to the ED, where, 

in addition to the ED physicians and nurses, he may require the services of the medical 

imaging department; after being triaged in the ED, he may be sent to surgery, after which 
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he may be admitted to an inpatient ward for care and rehabilitation over the course of 

several days before being discharged to home with home health therapy services (a nurse 

therapist visiting him at home regularly for the next week). 

 

Figure 1-2: Example Patient Pathways at an ACH 

Patient care at an ACH can be grouped into two major categories: emergency 

care, provided in the emergency department (ED), and inpatient care, provided in 

inpatient units (IU). EDs and IUs operate independently of one another for the most part, 

the critical exception being that EDs can (and often do) send their patients on to IUs for 

further care (referred to as hospital admissions). This is the crucial link between the two, 

with EDs accounting for over half of inpatient admissions in the U.S. by 2009 (Morganti 

et al., 2013).  

The IU plays a vital role in acute patient care; it is the heart of an ACH. This is 

where patients with acute conditions, medical and surgical, are cared for over days and 

weeks until the patient is clinically ready to resume normal life directly or indirectly via 

rehab. The IU receives patients from multiple sources, some of which are within that 
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ACH;  e.g., ED patients with conditions requiring more than 24 hours of care are 

admitted into the IU, and perioperative suites perform surgeries, after which patients are 

transferred to the IU (via PACU) for recovery and monitoring. Other sources of patient 

admissions to an IU are external, such as elective patients with scheduled admissions 

directly to the IU and patients directly transferred into the IU from other hospitals. The 

IU is supported by various ancillary units such as laboratories, imaging suites, in-house 

therapy departments, social work, and the environmental and transportation services. 

These units provide specialized staff such as physical therapists, occupational therapists, 

and social workers to assist the physicians and nurses with patient care in the IU. 

The IU, in a sense, is the hospital proper. Inefficiencies here reverberate back to 

the rest of the ACH, especially the ED in terms of ED boarding and crowding (Powell et 

al., 2012; Wong et al., 2010; M. Vermeulen et al., 2009), and from the ACH they spread 

to the rest of the healthcare continuum. Given this central role IUs play in the entire 

healthcare system, we now focus on the key decisions involved in IU planning and 

operation.       

1.2 Decisions Related to IU Operations 

To understand the IU operations, consider a typical inpatient hospital stay. From 

admission to discharge, there are a myriad of potential decision points, each with its 

associated objectives, constraints, vested parties, and subsequent impact upon both 

patient care and overall system efficiency.  

Figure 1-3 illustrates some of the most important decision-making areas during a 

typical inpatient hospitalization. These focus areas can be grouped into three basic 

categories by their location within the timeline of the hospitalization—upon patient 
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admission or shortly thereafter, throughout the duration of the patient treatment, and on 

the day of discharge or within a few days prior. We now discuss each of these briefly.  

 

Figure 1-3: Decision Points during an Inpatient Stay 

1.2.1 At Admission 

The following are a few key decisions during the admission of a patient to an IU: 

• Bed Capacity/Allocation: From a patient care perspective, the patients must be 

assigned the most appropriate resources corresponding to their condition, as well as 

a location amenable to their comfort (e.g., shared vs private room, windows, 

aesthetics, space to accommodate family/visitors). From a hospital logistics 

standpoint, patients must be assigned to inpatient beds as quickly as possible to 

reduce ED boarding and crowding, while still attempting to meet patient needs. In a 

broader sense, the hospital must also determine how to allocate bed capacity to each 

service based on multiple factors such as predicted arrival rates, average length of 

stay, and target unit occupancy rate. Several analytical studies have examined these 

questions, usually with simulation or queueing theory (Green, 2004; Harper & 

Shahani, 2002). 

• Care Team Formulation: Unfortunately there is often a tradeoff between the care 

providers most qualified to care for the patient and the care providers who have 

1 2 3 n-1 n . . . 
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capacity to spare. This problem is particularly poignant for nurses. Balancing nurse 

workload can have serious impacts on patient safety; nurse staffing levels and 

patient assignments are important questions for units to consider (Penoyer, 2010; 

Caryon & Gurses, 2008). Both simulation and mathematical optimization studies 

exist on this topic (Sundaramoorthi et al., 2009; Punnakitikashem, 2008).  

• Patient Outcomes Prediction: Either upon admission or shortly thereafter, units wish 

to know what to expect with regards to the patient’s needs, so that they can plan 

ahead and pre-allocate the necessary resources. Prevention of negative clinical 

patient outcomes is also a top priority. Some of the most commonly targeted areas 

for predictive model development include: patient mortality (Lee et al., 2003), 

length of stay (Paterson et al., 2006), hospital cost (Evers et al., 2002), and 

discharge disposition (Beaulieu et al., 2014). 

1.2.2 During Treatment 

Some of the key decisions while the patient is being treated in the IU include the 

following: 

• Length of Stay (LOS) Reduction: This has always been the most important and 

challenging topic for hospitals, from both an administrative and a clinical 

perspective. Due to the fact that Medicare and Medicaid reimbursements to 

hospitals are based on geometric length of stay (GLOS), hospitals have an incentive 

to not exceed the established GLOS. Additionally, reducing length of stay can 

reduce the risk of hospital-based adverse patient outcomes, such as hospital-

acquired infections; however, reducing length of stay and potentially discharging a 

patient before they are medically ready can lead to negative patient outcomes after 



7 

 

leaving the hospital and increased readmission risk (Bueno et al., 2010). Different 

approaches have been taken to address this problem (Wang et al., 2012; Lagoe et 

al., 2005). 

• Care Team Communication Improvement: Given the diverse nature of the team 

caring for a patient, which consists of physicians, nurses, therapists, social workers, 

and others, effective communication and collaboration on the patient’s course of 

treatment is a major challenge. Lack thereof can, and often does, result in 

inadvertent patient harm (Leonard et al., 2004).   

• Workplace Organization/Layout: Previous studies have examined hospital layout 

from a standard facility layout approach (Elshafei, 1977) or with simulation-based 

optimization (Butler et al., 1992). Recently, lean principles are increasingly being 

used in hospitals to assist with everything from storage of medical instruments 

(Marchwinski, 2007a) to workspace organization (Marchwinski, 2004) to location 

of offices and exam rooms (Marchwinski, 2007b). 

• Operating Room Efficiency/Turnover: A broad area of research exists on increasing 

the efficiency of operating suites, measured in various ways such as reducing OR 

turnaround times, reducing OR delays, and increasing OR throughput. Multiple 

approaches exist, including Lean and Six Sigma (Mason et al., 2015), process 

redesign interventions (Harders et al., 2006), and scheduling optimization (Cardoen 

et al., 2010). 

• Readmission Risk Identification: Readmissions are a highly undesirable 

phenomenon, with negative implications for both patient quality of care and 

hospital costs. Multiple studies have attempted to develop methods to identify 
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patients who are at a high risk of readmission so that hospitals can introduce 

proactive interventions in the patient’s care (Kansagara et al., 2011).  

1.2.3 At Discharge 

The following are a few key decisions associated with discharging a patient from the IU: 

• Disposition Determination/Discharge Initiation: At some point before the patient is 

discharged, the discharge disposition (e.g. home, home with health services, long 

term care hospital, nursing home, rehab facility) must be identified in order to 

initiate the corresponding preparation. This includes insurance paperwork, 

coordination with any destination facilities, transportation arrangement, post-

discharge care planning, and patient and family instruction. Such preparation can 

take days, and failure to initiate in a timely manner can result in significant 

discharge delays; unfortunately, this is often the case in practice. 

• Day-of-Discharge Unit Target Strategies: In an effort to reduce discharge delays 

and mitigate upstream boarding, IUs often set targets by which all discharges on a 

given day should be completed; typically, 12 noon is the standard. However, this is 

difficult to implement in reality, and may not be appropriate for every unit. This 

topic has but recently come to the awareness of the world of industrial 

engineering/operations research (IE/OR), and only a few studies have made initial 

attempts to optimize it (Matis et al., 2015; Ozen et al., 2014). 

• Care Provider Patient Prioritization: Clinical providers, such as doctors and nurses, 

and ancillary services, such as physical therapists, occupational therapists, and 

social workers, must attend to multiple patients every day. While some of these 

patients are new arrivals, others are either currently in treatment or slated for 



9 

 

discharge on that day. The order in which these patients are seen affects the time of 

discharge for the discharge-ready patients. However, prioritizing them may be 

difficult, given the imperative care needs of new arrivals or patients in treatment. In 

practice, care providers may have individual prioritization schemas to handle their 

daily workload, but there are no enforced, optimal strategies. 

1.3 Research Focus—Inpatient Discharges  

From a logistics standpoint, one of the most important events in an inpatient’s 

care encounter is the discharge. Unnecessary discharge delays negatively impact the 

patients and their families (frustration, risk of hospital acquired adverse care outcomes), 

the hospital (increased costs, extra days of stay), patients in other units of the hospital 

(boarding in upstream units while awaiting beds), care team and physicians (increased 

workload, chaos), and potential patients not yet in the hospital (ambulance diversion due 

to ED crowding due to boarding).  

The emerging field of healthcare systems engineering (HSE) is uniquely 

positioned and equipped to balance these various objectives in order to achieve the best 

outcomes for all parties while maintaining patient quality of care. HSE uses principles of 

systems engineering (originally developed and honed for manufacturing, warehousing, 

and distribution) to address the logistical challenges within healthcare such as resource 

use, scheduling, workload balancing, and facility layout that are typically outside of the 

clinical scope of healthcare providers. 

We note that despite the importance of discharge efficiency and the many 

associated problems in practice, as illustrated previously, there is an apparent dearth of 

research on improving IU discharges using principles of HSE. Thus, we attempt to 
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confront this challenge by examining each of the three above-mentioned major decision 

points associated with an IU discharge from an HSE perspective.  

1.4 Research Questions 

We address the following questions in this research: 

Contribution 1. With regards to disposition determination/discharge initiation: 

Q1. What factors, on admission, predict a general medicine inpatient’s eventual 

discharge disposition to a home or non-home location? 

Q2. How can we develop an easily implementable and intuitive disposition 

prediction decision aid for healthcare providers such as admitting nurses? 

Contribution 2. With regards to day-of-discharge target strategies: 

Q3. What are some effective and feasible IU discharge target strategies, and how 

can we estimate their potential effects on both IUs and upstream units?  

Q4. What are the realistic benefits of a pilot implementation at a hospital IU, and 

what are the associated challenges? 

Q5. Is our proposed strategy, and method to evaluate it, generalizable across 

different IUs and hospitals? 

Contribution 3. With regards to an ancillary service provider’s patient 

prioritization in the IU: 

Q6. How can we model the daily process for an ancillary service provider and its 

relationship with various outcome measures across IU and upstream patients?  

Q7. How can this model be used to identify an optimal patient sequencing strategy 

for an ancillary service provider to optimize the outcome measures in question? 

How sensitive is the optimal solution to the problem input characteristics? 
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1.5 Research Contributions 

1.5.1 Contribution 1 (Questions 1 and 2): An Early-Warning Tool for Predicting-at-

Admission the Discharge Disposition of a Hospitalized Patient 

The objective of this study was to identify clinical and health services factors that 

predict discharge disposition (home vs. non-home) for a general medicine population. 

Once a satisfactory predictive model has been constructed, our further objective was to 

derive a decision tool that can be implemented in practice. 

We performed a retrospective study using 4760 admissions records of patients 

discharged from the Boston VA facility’s general medicine service in 2013. Utilizing 

logistic regression with backward selection in a train-test approach, we developed a 

predictive model for non-home discharges which incorporates both clinical factors 

present on admission and health history factors that are often considered by clinicians in 

practice. We used the standardized coefficients from the final model to develop a point-

based additive scoring system, which was implemented in a sheet-based decision tool for 

practical implementation. 

Our final logistic regression model identifies a small set of factors, some current 

and some historical, that can predict with high accuracy whether a patient recently 

admitted to the general medicine service is likely to be discharged to a non-home 

location. The additive score derived from this model closely follows the model’s 

predictive performance. We have delivered the sheet-based scoring tool to the Boston VA 

general medicine service, and plan to support them in its implementation. 

This contribution was funded by the New England Veterans Resource Center 

(NE-VERC) and involved medical collaborators (Dr. Steven Simon, Associate Chief of 



12 

 

Staff, Brockton Campus, and Chief, Geriatrics and Extended Care, and Michael Donlin, 

nurse practitioner at the West Roxbury site), both affiliated with Boston VA. Findings of 

this work are in review with Health Services Management Research; see Chapter 2 for 

more details. 

1.5.2 Contribution 2 (Questions 3-5): The n-by-T Target Discharge Strategy for 

Inpatient Units 

Questions 3 and 4 

The objectives of this study were to develop day-of-discharge targets for IUs, 

evaluate their potential impact upon both IU discharges and upstream patient boarding, 

and then perform a trial of the most promising target in a real-world setting. 

We used retrospective data consisting of 1604 records of patients discharged in 

2013 from the trauma unit of Kettering Medical Center (KMC) in Dayton, OH to develop 

a validated discrete-event simulation model of a typical day-of-discharge on a trauma IU. 

We used this simulation model to estimate the impact of implementing the novel n-by-T 

discharge strategy, which gives units a target number of patients, n, to be discharged by a 

target time of day, T. We evaluated the effect of various combinations of n and T under 

different occupancy rates.  

Our simulation model accurately replicates an average day on the trauma IU. It 

predicts that n-by-T can offer substantial improvements over the current system in both 

earlier discharge completion time of day (up to 3.17 hours) and reduced upstream 

boarding (up to 15.4%). The model further demonstrates that n is a more critical factor 

than T, and that the potential benefits of n-by-T increase with increasing occupancy rate. 

A pilot on the unit demonstrated that our model accurately predicted the outcomes of 
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successful 2-by-12 implementation (~2 hr advancement in mean discharge completion 

time and ~15% reduction in mean upstream boarding time), although it also identified 

several challenges to such implementation highlighted further  in our recent paper in 

Medical Decision Making and elaborated in Chapter 3. This work was part of an NSF 

grant led by Dr. Parikh and in collaboration with Dr. Nancy Pook (Emergency Physician 

at KMC). 

Question 5 

During the summer of 2016, we had an opportunity to extend our research from 

Contribution 2 to Maine Medical Center (MMC) in Portland, ME, under the guidance of 

Dr. Peck. The objective of this study was to evaluate the generalizability of the modeling 

approach and n-by-T target discharge strategy developed in the study with KMC.  

Employing the same modeling approach, we evaluated n-by-T for a 

neurology/trauma unit at this new hospital, using retrospective data consisting of 1303 

records of patients discharged in 2015. Analysis of the model outcomes indicated the 

model’s robustness towards adapting to a new unit at a new hospital. The model also 

predicted similar outcomes for an n-by-T implementation at this new unit: up to 2.56 

hours advancement in completion time and 13.57% reduction in upstream boarding time. 

This study was recently published in the conference proceedings of the 2017 Industrial 

and Systems Engineering Research Conference, for which it received the best healthcare 

systems track paper award. See Chapter 4 for further details. 
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1.5.3 Contribution 3 (Questions 6 and 7): Sequencing Daily Patient Workload for 

an Ancillary Service Provider 

The objective of this study was to develop optimal (or near-optimal) patient 

workload sequencing strategies that would enable an ancillary service provider (ASP) in 

an inpatient unit to balance discharge-ready patients and other patients (newly-arriving 

and recurring), while ensuring patient due dates are met, in order to minimize upstream 

boarding time.  

To address this stochastic sequencing problem, we developed a scenario-specific 

MIP model of a typical day for an ASP in an inpatient unit. We combined this model with 

a scenario sampling optimization approach and a simulated annealing meta-heuristic to 

derive robust and easily implementable strategies for the ASP. An experimental 

evaluation of our combined approach using the retrospective dataset from MMC and 

interviews with ASPs at this hospital revealed strategies, specific to the different system 

configurations considered in our design, that were robust to variability within these 

systems, averaging 13% deviation from scenario-specific optimality. We further 

compared these derived strategies to several simple, practical strategies and found that 

such strategies either trade simplicity for worse performance or bring better performance 

at the expense of constraint violations. 

This contribution was part of an NSF grant led by Dr. Parikh and Dr. Kong, in 

collaboration with Dr. Peck who sponsored the work at MMC. Findings of this study will 

be submitted to IEEE Transactions on Automation Science and Engineering (special 

issue on Smart and Interconnected Healthcare Delivery Systems) by October 1, 2017; see 

Chapter 5 for further details.  
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2 AN EARLY-WARNING TOOL FOR PREDICTING-AT-

ADMISSION THE DISCHARGE DISPOSITION OF A 

HOSPITALIZED PATIENT* 

2.1 Background 

The US Accountable Care Act (ACA) highlights value-based reimbursement, 

which encourages hospitals to focus on high-quality care at lower cost. While the 

Department of Veterans Affairs (VA) health system is not necessarily reimbursement 

based, it strives to manage quality and resource utilization via evidence-based practice 

and continuous measurement and improvement. Managing patient flow effectively 

through VA medical centers requires the proactive identification of appropriate level of 

care and services; this strategy has also been identified in the ACA. This activity is a vital 

first step towards effective patient care management, prompt discharge planning, and 

reduction in service delays. 

Early planning and coordination from the healthcare team, including physicians, 

social workers, rehabilitation specialists, and post-acute care services, improves care 

quality and access, while managing costs (Schlegel et al., 2004; De Guise et al., 2006). 

The ability to predict discharge disposition – whether a patient can return home or 

requires placement in a care facility – could expedite rehabilitation, improve coordination 

of care among consultants, prepare caregivers, and help community agencies plan for 

needed resources. It also helps reduce length of hospital stay, which, in turn, may 

* Ballester, N., Parikh, P. J, Donlin, M. & Simon, S. (2017). An early-warning tool for predicting-at-admission the 

discharge disposition of a hospitalized patient. Health Services Management Research (in review). 
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mitigate the risks of hospitalization and improve patient recovery (Hagino et al., 2011; 

Ekstrand et al., 2008; Simonet et al., 2008; Tanaka et al., 2008; Meijer et al., 2004). 

The primary objective of this study was to identify both clinical and health utilization 

factors (at index and previous hospitalizations) that predict discharge disposition for 

Veterans within 24 hours of admission to the general medical service at a VA medical 

center.  

2.2 Methods 

2.2.1 Setting 

To develop our approach, we collaborated with the medical staff at the West 

Roxbury campus of the VA Boston Healthcare System (VA-BHS), a medium-sized, 

tertiary-care VA hospital affiliated with Harvard Medical School and Boston University 

School of Medicine. All patients were cared for by internal medicine resident teams on 

typical mixed medical/surgical floors throughout the 168-bed hospital. Annually, the 

general medical service admits and discharges approximately 6,000 Veterans. 

At the time of the study, discharge planning occurred within an interdisciplinary 

group consisting of a nurse case manager, social worker, and a clinician representing the 

medical team (attending physician, resident physician, and nurse practitioner or physician 

assistant). Consultations to other services such as physical therapy and occupational 

therapy were made based on the individual assessments of these groups, mostly prompted 

by clinical judgment. No formal tool was used to guide assessment of patients’ needs for 

placement in a facility after discharge.  
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2.2.2 Data Collection 

We obtained data from the Corporate Data Warehouse of the VA-BHS for 

January 1 through December 31, 2013. We identified 4,817 discharge records (of which 

3,187 were unique patients) admitted to and discharged alive from the general medical 

service. After excluding 57 records (1.18%) with missing discharge disposition, the final 

dataset consisted of 4,760 records. We considered factors for inclusion in this study 

which would be readily available to the care team within 24 hours of admission. 

Index Admission: For the index admission, we ascertained demographic 

information (i.e., age, sex, race, presence of non-VA health insurance, and marital status), 

clinical factors (primary diagnosis, number of diagnoses), source of admission, and 

specialty of the admitting ward. The primary diagnosis at the time of admission is not an 

available field in VA administrative data; however, the primary hospitalization diagnosis, 

recorded clinically at the time of discharge, is routinely transcribed from the admission 

history and physical note, and thus represents the likely primary diagnosis at the time of 

admission. These diagnoses were grouped into 19 categories based on ICD-9 standard 

code groups. Admission sources included VA nursing home, VA domiciliary, transfer 

from other VA hospital, outpatient treatment, and other direct (e.g., walk-ins, directly 

admitted from home, transfers from non-VA facilities). Admitting ward specialties 

included general (acute medicine), cardiac intensive care unit (ICU), medical ICU, 

medical step down, telemetry, and hospice for acute care. We included ICU patients 

because the variables considered in predicting their disposition are comparable to those 

patients admitted to non-critical care units. We further derived the 31 Elixhauser 
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comorbidities using the updated ICD-9-CM coding schema of Quan et al. (2005). This 

study was approved by the VA Boston Institutional Review Board. 

Historical Factors: We also derived several historical clinical and health services 

factors using a 12-month “look back” into 2012 records of each of the unique patients. 

The clinical factors included the primary diagnosis of the immediately preceding hospital 

admission, the number of diagnoses on the immediately preceding admission, and the 

discharge disposition for the immediately preceding admission. The health 

services/utilization factors included number of previous admissions in the past 12 months 

prior to the index admission, and an indicator of whether the index admission was an all-

cause readmission within 30 days.  

Main Outcome Measure: The main outcome was the patient’s discharge 

disposition, home vs. non-home. Patients discharged to the community, including those 

who were homeless and referred to a shelter, were considered discharged to “home.” 

Non-home locations included VA nursing homes, known internally as Community Living 

Centers (CLC), and non-VA nursing homes. 

2.2.3 Data Analysis 

Due to pragmatic limitations to conducting a prospective validation, we adopted 

the standard derivation-validation approach.  Accordingly, we split the records randomly 

into two subsets, 70%-30%.  Using the 70% data (the derivation set, N=3351), we built a 

case-mix adjusted logistic regression model of non-home discharge disposition (using 

backward selection), with sex forced into the model.  

After the first model was built, admission from a VA nursing home care unit 

(NHCU) was found to have a disproportionately large odds ratio (~145), attributable to 
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the fact that nearly all patients admitted from a NHCU (40/42, or 95%) were discharged 

to a non-home location. Consequently, admission from NHCU was deemed as the major, 

and sufficient, factor for the hospital care team; i.e., if a patient is admitted from NHCU, 

they will almost certainly return to NHCU or to another non-home location. In order to 

build a predictive model for patients who do not meet this first criterion, these records 

were removed from both the derivation and validation datasets for subsequent analyses. 

Consequently, the final multivariate model does not include NHCU admission as a 

predictor.  

Once the final multivariate model was derived, we used the remaining 30% data 

(the validation dataset, N=1409) to estimate the model’s predictive power based on area 

under the operating curve (AUC) values. A score for clinical application was derived 

from the final model. Using the standardized logistic regression coefficients, each factor 

in the final model was assigned a relative weight out of a 20-point scale; the score for a 

patient would then be the sum of these weights (if the corresponding factors were present 

for that patient). The 20-point scale was chosen as the best balance between 

discrimination (to allow enough separation between factors) and ease-of-use. These 

weights were rounded to integer values for ease of addition in practice. In deciding 

whether to round each weight up or down, our objective was to maximize the correlation 

between the total score for a patient and the predicted probability of non-home discharge 

for that patient from the logistic regression model (across all records in the derivation 

data set). Continuous predictors (age and number of diagnoses) were separated into 

categories based on the distribution of the data; the weight assigned to each of these was 

then divided among the corresponding categories (these divisions were considered as 
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additional decision variables in the optimization). The sum of all the weights in the score 

was constrained to be 20 (i.e., if a patient exhibited all predictors from the final model, 

they would be assigned a score of 20). 

Since the coefficients in the logistic regression model (and the corresponding 

factor score weights) could be either positive (predictive of non-home discharge) or 

negative (protective factors), we separated them into two positive additive subtotals in the 

scoring tool, one for the predictive factors and one for the protective factors. The latter is 

then subtracted from the former to get the final score for a patient. Clinical practitioners 

were consulted in order to ensure that the questions relating to each factor from the model 

were phrased in a way that would make sense to a care provider. We then determined a 

threshold value beyond which the patient was likely to go non-home, considering an 

acceptable sensitivity and specificity of the score, and various clinical considerations 

suggested by our medical collaborators. SAS v9.4 was used for all statistical analyses.  

2.3 Results  

Of the 4760 patients, 485 (10.2%) were discharged to a non-home location, which 

included VA nursing home (n=301), VA medical centers (n=129), community nursing 

home (n=53), VA domiciliary (n=1), and other government hospital (n=1).  

Table 2-1 indicates that demographic variables such as age, married status, and 

white race were independent predictors of the patient’s disposition location. Several other 

factors around admitting source, admitting ward, clinical diagnosis, and comorbidities 

were also significant.  
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Table 2-1: Characteristics of the Patients at Admission 

Characteristic 

 

Home 

n = 4275 90% 

Non-Home 

n = 485 10% 

Age, years (mean ± SD)*** 70.29 ± 13.43 73.64 ± 12.72 

Female, N (%) 171 (4%) 20 (4%) 

Married, N (%)* 1597 (37%) 135 (28%) 

Race, N (%) 
  

     White, not of Hispanic Origin** 1764 (41%) 244 (50%) 

     Black, not of Hispanic Origin  157 (4%) 12 (2%) 

     Hispanic, White  21 (<1%) 1 (<1%) 

     Asian or Pacific Islander  7 (<1%) 0 (<1%) 

     Hispanic, Black  4 (<1%) 0 (<1%) 

     American Indian or Alaska Native  2 (<1%) 1 (<1%) 

Insurance coverage,  3333 (78%) 364 (75%) 

Primary diagnosis, N (%) 
  

     Infectious and parasitic diseases  131 (3%) 23 (5%) 

     Neoplasms***  176 (4%) 47 (10%) 

     Endocrine, nutritional, and metabolic diseases, and immunity 

disorders 
225 (5%) 15 (3%) 

     Diseases of the blood and blood-forming organs 84 (2%) 7 (1%) 

     Mental disorders  392 (9%) 29 (6%) 

     Diseases of the nervous system**  55 (1%) 13 (3%) 

     Diseases of the sense organs  19 (<1%) 2 (<1%) 

     Diseases of the circulatory system**  1037 (24%) 80 (16%) 

     Diseases of the respiratory system*  564 (13%) 80 (16%) 

     Diseases of the digestive system  378 (9%) 31 (6%) 

     Diseases of the genitourinary system  299 (7%) 26 (5%) 

     Diseases of the skin and subcutaneous tissue  160 (4%) 14 (3%) 

     Diseases of the musculoskeletal system and connective tissue**  136 (3%) 29 (6%) 

     Congenital anomalies 7 (<1%) 0 (0%) 

     Symptoms, signs, and ill-defined conditions 401 (9%) 43 (9%) 

     Injury and poisoning*** 194 (5%) 43 (9%) 

     External causes of injury and supplemental classification 17 (<1%) 3 (1%) 

Number of diagnoses (mean ± SD) *** 10.19 ± 3.75 11.65 ± 3.28 

Source of admission, N (%) 
  

      From home or other non-VA community location**  3392 (79%) 347 (72%) 

     From VA outpatient clinic  856 (20%) 90 (19%) 

     Transfer from another VA hospital**  22 (1%) 7 (1%) 

     VA nursing home care unit***  2 (<1%) 40 (8%) 

     Transfer from non-VA hospital   2 (<1%) 0 

     VA domiciliary  1 (<1%) 1 (<1%) 

Nursing Unit on Admission, N (%) 
  

     General medicine, without telemetry implemented *** 2297 (54%) 319 (66%) 

    General medicine, with telemetry implemented*** 1494 (35%) 118 (24%) 

     Cardiac intensive care unit 242 (6%) 18 (4%) 

     Medical step-down§ 128 (3%) 14 (3%) 

     Medical ICU 113 (3%) 18 (4%) 

     Hospice for acute care 1 (<1%) 0 

Elixhauser comorbidities, N (%)   
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     Congestive heart failure 867 (20%) 109 (22%) 

     Cardiac arrhythmia* 1321 (31%) 170 (35%) 

     Valvular disease 316 (7%) 31 (6%) 

     Pulmonary circulation disorders 170 (4%) 19 (4%) 

     Peripheral vascular disorders 367 (9%) 42 (9%) 

     Hypertension uncomplicated* 1910 (45%) 186 (38%) 

     Hypertension complicated* 614 (14%) 49 (10%) 

     Paralysis** 55 (1%) 16 (3%) 

     Other neurological disorders*** 288 (7%) 58 (12%) 

     Chronic pulmonary disease 1254 (29%) 146 (30%) 

     Diabetes uncomplicated 1198 (28%) 132 (27%) 

     Diabetes complicated 304 (7%) 38 (8%) 

     Hypothyroidism 217 (5%) 32 (7%) 

     Renal failure 859 (20%) 91 (19%) 

     Liver disease 505 (12%) 59 (12%) 

     Peptic ulcer disease, excluding bleeding 28 (1%) 2 (<1%) 

     AIDS/HIV 16 (<1%) 4 (1%) 

     Lymphoma 68 (2%) 8 (2%) 

     Metastatic cancer*** 124 (3%) 37 (8%) 

     Solid tumor without metastasis*** 353 (8%) 71 (15%) 

     Rheumatoid arthritis/collagen vascular disease 58 (1%) 11 (2%) 

     Coagulopathy 162 (4%) 11 (2%) 

     Obesity 238 (6%) 30 (6%) 

     Weight loss 82 (2%) 18 (4%) 

     Fluid and electrolyte disorders 587 (14%) 81 (17%) 

     Blood loss anemia 18 (<1%) 2 (<1%) 

     Deficiency anemia* 208 (5%) 35 (7%) 

     Alcohol abuse** 809 (19%) 69 (14%) 

     Drug abuse 261 (6%) 26 (5%) 

     Psychoses*** 192 (4%) 52 (11%) 

     Depression 848 (20%) 105 (22%) 
§The Medical Step-Down Unit is principally intended for patients requiring more frequent nursing contact 

and/or more intensive respiratory monitoring than the general medical units but not requiring one-to-one 

nursing care or other intensive care of the critical care units. 

*, **, and *** indicate factors found significant at α=0.05, α=0.01, and α=0.001, respectively, in bivariate 

analysis using the Derivation set.   

Some of the categories may not add up to 100% due to missing values not reported here. 

 

Table 2-2 highlights that a previous admission diagnosis of diseases of the 

nervous system, diseases of the circulatory system, or external causes of injury and 

supplemental classification, as well as total number of diagnoses, were independent 

historical clinical predictors, while number of previous admissions in the past 6 months 

and previous discharge to a community hospital, VA medical center, or VA NHCU were 
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independent health services predictors of the discharge disposition for the index 

admission.  

Table 2-2: Historical Clinical and Health Services Variables for the Cohort 

Characteristic 

 

Home 

n = 4275 90% 

Non-Home 

n = 485 10% 

Previous primary diagnosis, N (%) 
  

     Infectious and parasitic diseases 64 (1%) 7 (1%) 

     Neoplasms 131 (3%) 25 (5%) 

     Endocrine, nutritional and metabolic diseases, and immunity 

disorders 
132 (3%) 11 (2%) 

     Diseases of the blood and blood-forming organs 54 (1%) 7 (1%) 

     Mental disorders 485 (11%) 64 (13%) 

     Diseases of the nervous system* 44 (1%) 11 (2%) 

     Diseases of the sense organs 19 (<1%) 2 (<1%) 

     Diseases of the circulatory system*** 664 (16%) 47 (10%) 

     Diseases of the respiratory system 309 (7%) 24 (5%) 

     Diseases of the digestive system 228 (5%) 22 (5%) 

     Diseases of the genitourinary system 167 (4%) 9 (2%) 

     Diseases of the skin and subcutaneous tissue 87 (2%) 10 (2%) 

     Diseases of the musculoskeletal system and connective tissue 91 (2%) 12 (2%) 

     Congenital anomalies 2 (<1%) 0 

     Symptoms, signs, and ill-defined conditions 268 (6%) 35 (7%) 

     Injury and poisoning 102 (2%) 16 (3%) 

     External causes of injury and supplemental classification*** 160 (4%) 83 (17%) 

Previous discharge disposition, N (%) 
  

     Return to community-independent 2730 (64%) 294 (61%) 

     VA medical center*** 135 (3%) 43 (9%) 

     Community nursing home 38 (1%) 8 (2%) 

     VA nursing home care unit*** 24 (1%) 11 (2%) 

     Community hospital* 6 (<1%) 6 (1%) 

     VA domiciliary 1 (<1%) 0 

     Other government hospital 0 1 (<1%) 

     Other placement/unknown (not specified) 0 1 (<1%) 

Previous number of diagnoses (mean ± SD )*** 9.93 ± 4.3 11.1 ± 3.4 

Current admission is an all-cause readmission within 30 days, N (%)* 1255 (29%) 175 (36%) 

Number of admissions in past 6 months (mean ± SD)* 1.42 ± 2.1 1.59 ± 1.84 

Number of admissions in past 12 months (mean ± SD) 2.27 ± 3.39 2.33 ± 2.45 
*, **, and *** indicate factors found significant at α=0.05, α=0.01, and α=0.001, respectively, in bivariate 

analysis using the Derivation set.   

Some of the categories may not add up to 100% due to missing values not reported here. 

 

Table 2-3 shows the case-mix adjusted logistic regression model, along with the 

odds ratios (OR) and 95% confidence interval (CI) based on the derivation dataset;  OR 
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greater than 1 indicate higher chance of placement in a facility (non-home), while OR 

less than  1 indicate higher chance of going home. The AUC of this model was 0.75 for 

the derivation dataset; using the validation set, the AUC was 0.74.  

Table 2-3: Case-mix Adjusted Model for Disposition Prediction of Patients Not Admitted from 

Nursing Home Care Units, Using the Derivation Dataset 

Predictor Odds Ratio (95% CI) p-Value 

Age 1.020 (1.009-1.030) 0.0001 

Female Sex 0.838 (0.426-1.649) 0.6094 

Primary diagnosis   

     Neoplasms 2.714 (1.733-4.250) <0.001 

     Diseases of the nervous system 2.525 (1.255-5.080) 0.0094 

     Diseases of the musculoskeletal system and connective 

tissue 
2.549 (1.523-4.269) 0.0004 

Number of diagnoses§ 1.151 (1.108-1.196) <0.001 

Previous primary diagnosis   

     Diseases of the circulatory system 0.541 (0.353-0.828) 0.0047 

     External causes of injury and supplemental classification 2.578 (1.732-3.837) <0.001 

Previous discharge disposition   

     Community hospital 10.328 (2.066-51.631) 0.0045 

     VA medical center 4.214 (2.599-6.834) <0.001 

     VA nursing home care unit  3.593 (1.489-8.669) 0.0044 

Comorbidities   

     Hypertension uncomplicated 0.615 (0.473-0.800) 0.0003 

     Hypertension complicated 0.309 (0.200-0.476) <0.001 

     Other neurological disorders 1.699 (1.157-2.497) 0.0069 
§ Because discharge diagnosis by definition is not available on admission, the scoring system uses as a 

proxy to active diagnoses being addressed on admission. 

 

Among diagnoses on admission of the index hospitalization, neoplasms (OR = 

2.71, CI = 1.73–4.250), diseases of the nervous system (OR = 2.53, CI = 1.26 – 5.08), 

and diseases of the musculoskeletal system and connective tissue (OR = 2.55, CI = 1.52 – 

4.27) were associated with discharge to a non-home location. In contrast, historical 

primary diagnosis of circulatory system disease was associated with lower likelihood of 

discharge to a non-home location (OR = 0.54, CI = 0.35 -0.83), as were the presence of 
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both uncomplicated hypertension (OR = 0.62, CI = 0.47 – 0.80) and complicated 

hypertension (OR = 0.31, CI = 0.20 – 0.48) during prior hospitalization. The previous 

primary diagnosis of external causes of injury and supplemental classification indicates a 

higher likelihood of patient discharge to a non-home location (OR = 2.58, CI = 1.73 – 

3.84), as does the comorbidity of other neurological disorders (OR = 1.70, CI = 1.16 – 

2.50).  

The 3 previous discharge disposition locations of community hospital, VA 

medical center, and VA NHCU are associated with high odds ratios (OR = 10.33, 4.21, 

3.59, respectively), indicating that if the patient had been discharged to one of these 

locations after the prior admission, then this patient is very likely to go to a non-home 

location again upon discharge from the index hospitalization.  

The score developed for clinical application is shown in the Appendix at the end 

of this chapter (Section 2.5). The weights assigned to the factors in the score achieved an 

84% correlation with the logistic regression model probabilities for the derivation set. At 

a classification threshold of 5 points, the score achieved a sensitivity (number of non-

home discharges correctly identified as such) and specificity (number of home discharges 

correctly identified as such) of 83% and 46%, respectively (Figure 2-1). When tested on 

the validation set, the score with this threshold achieved 82% sensitivity and 48% 

specificity, suggesting that the score is robust in predicting non-home discharges.  
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Figure 2-1: Effect of Classification Threshold on Score Sensitivity and Specificity 

2.4 Discussion 

In this retrospective study of an entire year’s acute care hospitalizations at a 

tertiary care VA medical center, we identified variables that predict, at the time of 

admission, a patient’s likely discharge to a non-home location. We found that nearly all 

patients admitted from a VA nursing home care unit were discharged to a non-home 

location, likely the nursing home care unit from which they were admitted.  Using a 

derivation-validation approach, we determined that older patients, those admitted with 

neurologic, oncologic, and musculoskeletal primary diagnoses, those with larger numbers 

of diagnoses, and those previously hospitalized and discharged to a VA medical center 

were more likely to be discharged to a non-home location during the index 

hospitalization. In contrast, those with hypertension and a prior hospitalization with a 

primary diagnosis of a circulatory disorder were less likely to be discharged to a non-

home location in the index hospitalization.  These findings, validated in a subsequent 
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logistic regression model, led to the creation of a clinically-relevant score that can be 

used to predict at the time of admission, with good sensitivity and acceptable specificity, 

discharge to a non-home location.  

Early, accurate, and effective discharge planning has emerged as a high priority 

for both patients and hospital systems (Cherlin et al., 2013). An important aspect of 

discharge planning is predicting, as soon as possible and ideally at the time of admission, 

the post-acute care disposition location that the patient will need on discharge. Knowing 

with a high degree of certainty whether the patient will be able to be discharged home 

versus another location can facilitate planning, guide decision-making during the acute 

hospitalization, and foster improved communication between and among patients, family 

and care team members. The result is a potential increase in the system efficiency and 

reduction in the patient’s length of stay in the acute care facility. There is a clear 

distinction between predicting discharge location and determining optimal discharge for 

patient care quality, satisfaction, safety, and lowest cost; our study seeks to achieve the 

former only, in order to facilitate discharge planning from day one.  

Our study is one of the first to predict discharge disposition among patients 

admitted to general medical units with a wide array of medical conditions in a VA 

medical center. It is also one of only a few to deliver an implementable predictive tool 

based on the statistical analysis conducted in the study. While current clinical factors 

such as diagnosis and comorbidities typically form the basis of a care provider’s 

instinctive prediction of the eventual disposition location, we uncovered a few historical 

clinical and health utilization factors that also seem to play an important role in this 
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decision-making process in practice. The validated tool that was derived based on these 

findings can help guide planning and decision making on a daily basis. 

Several studies have focused on predicting discharge disposition among specific 

patient populations such as stroke, traumatic brain injury, total joint arthroplasty, 

geriatric, trauma, or cardiac surgery (De Guise et al., 2006; Brauer et al., 2008; Pohl et 

al., 2013; Cuthbert et al., 2011; Sharareh et al., 2014; Gabbe et al., 2005); some have 

proposed various prediction tools (Barsoum et al., 2010; Wachtel et al., 1987; Beaulieu et 

al., 2014; Pattakos et al., 2012). Simonet et al. (2008) developed a validated score 

predicting risk of discharge to a post-acute care facility for general medicine patients, 

both on admission (Day 1) and day 3 of hospital stay. While their study had fewer than 

400 patients, most likely due to its prospective nature, 3 out of 5 of significant factors in 

their Day 1 model were similar to our findings: age, number of diagnoses, and admission 

source. Unlike the present study, they did not find historical health utilization factors (i.e., 

hospital and ED visits in the past 3 months) to be independent predictors. In further 

contrast, they used an aggregate comorbidity index (Charlson’s index), not found to 

predict discharge disposition, while we used the more granular set of 31 Elixhauser’s 

comorbidities, 3 of which were part of the final adjusted model.  

In terms of the diagnoses found in this study to be significant with non-home 

discharge, many were consistent with what clinicians would expect among very ill 

patients who would likely need post-acute care in a nursing, rehabilitation or specialized 

facility, such as metastatic cancer, paralysis, and psychoses. Conversely, the factors that 

seemed to be protective, i.e., predictive of a discharge to home, for example having a 
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diagnosis of hypertension, either complicated or uncomplicated, may simply be an 

indicator of the absence of more serious or complicated diagnoses.  

Lowering the threshold, or cut-point, in the prediction model allows for increased 

sensitivity at the expense of decreased specificity. The implications of these trade-offs are 

worth considering further. For instance, while an increase in sensitivity would predict 

accurately at admission a larger proportion of non-home patients, a number of these 

would also be false positives (predicting a non-home location when actually the patient 

goes home). This may be due to the evolving clinical and functional status information 

along with other factors (e.g., patient/family choice, patient’s social network, availability 

of beds at post-acute care settings, etc.) during the patient’s stay. On all those false 

positive cases, the care provider team would have begun planning for a non-home 

discharge on Day 1 and continue their effort until such time as it becomes apparent that 

the patient may in fact be able to realize a discharge to home. This process induces over-

utilization of scarce resources, including expert discharge planning and physical therapy 

consultations. In general, however, our sense is that most clinicians and case managers 

would favor being surprised by a patient going home rather than being surprised by a 

patient requiring discharge to a rehabilitation or skilled nursing facility, as planning for 

the latter normally requires a longer lead time.  

In practice, our tool could be used by the patient’s care team at admission to 

classify the patient as a potential non-home discharge. This information would provide an 

early indicator to the patient and the care team at the beginning phase of the patient’s stay 

when clinical information is sparse, and before other clinical bedside data and functional 

status assessments have been collected. Having this “early warning” would facilitate 
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discharge planning, as the discharge coordinator could initiate discussion with the patient 

soon after admission regarding the potential for placement in a facility and begin 

evaluating alternatives. It is worth noting that the purpose of such an early-warning 

system is to help the care team to anticipate the potential workload of discharge planning, 

to promote and enhance communication between providers and the patient, and to 

expedite overall care coordination associated with non-home discharges, and not to 

identify an optimal discharge within those 24 hours upon admission. 

Our study findings must be viewed in the context of several limitations. First, 

although we accessed rich clinical data from the corporate data warehouse, this data 

source does not include a number of measures that may be important in determining 

discharge disposition, such as the patients’ activities of daily living, income level, or level 

of social support. We used the number of diagnoses as a proxy for the acuity of the 

patient’s condition. Likewise, the marital status of the patient may serve as a proxy for 

social support. Second, in determining the primary diagnosis and number of diagnoses for 

a patient admission, the recorded discharge diagnoses associated with that admission 

were used. At this facility, the primary diagnosis at admission is routinely transcribed as 

the discharge diagnosis; however, this approach may have resulted in our using some 

diagnoses that were not actually known at the time of admission. Because discharge 

diagnosis by definition is not available on admission, the model and scoring system use 

as a proxy the active diagnosis identified on admission. Third, although we could not 

identify the eventual disposition (home or non-home) of 129 patients transferred to 

another VA medical center, we classified them as “non-home,” as the eventual 

disposition was not germane to the disposition outcome of the index hospitalization. 
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Finally, to develop and validate our early-warning approach, we focused on a specific 

Veteran patient cohort (general medicine) at one VA facility; while the findings may be 

generalizable to many similarly sized tertiary care VA medical centers, the tool may have 

broader applicability in a wide range of hospital settings. 

Our study is both confirmatory and exploratory. We confirm previous research 

conducted on non-Veteran populations and other medical conditions that it is possible to 

develop a model to predict discharge disposition at admission using readily available 

factors. We explored the significance of several historical clinical and health services 

factors, many of which were independent predictors, two of which were part of the final 

adjusted model. We then developed a validated predictive score; future study should 

consider implementing this score in actual clinical practice. 
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2.5 Appendix: A Score for Non-Home Discharge Determination within 

24 Hours of Admission to General Medicine 

Was patient admitted from a VA Nursing Home Care Unit (NHCU)?      

  If YES, patient should be treated as a non-home discharge  

  If NO, use score below: 

 
Factors predicting non-home discharge Points  

How old is the patient?  __________ 

56 or younger 1  

57 to 70 2  

71 to 84 3  

85 or older 4  

Does the patient’s current primary diagnosis fall into one of the 

following categories? 
 

__________ 

Diseases of the nervous system  2  

Neoplasms 3  

Diseases of the musculoskeletal system and connective tissue 3  

 How many active diagnoses are being addressed on admission?  __________ 

5 or fewer 1  

6 to 10 3  

11 to 14 6  

15 or more 8  

If the patient was discharged from the hospital within the last 12 

months was the primary diagnosis “external causes of injury and 

supplemental classification” (E and V ICD-9 codes)? 

4 

__________ 

If the patient was discharged from the hospital within the last 12 

months, were they discharged to one of the following? 
 

__________ 

Community hospital 1  

VA nursing home care unit  1  

VA medical center 5  

Does the patient currently exhibit the comorbidity of “other 

neurological disorders” (ELX 9)?  
2 

__________ 

   

Subtotal A (sum up the points for the predictive factors)  __________ 

 

Factors predicting discharge to home (protective factors)    

Is the patient female? 1 __________ 

When the patient was last admitted, did the primary diagnosis fall 

under the category of “diseases of the circulatory system”? 
3 __________ 

Does the patient currently exhibit one of the following 

comorbidities? 
 

 

Hypertension, Uncomplicated (ELX 6) 3 __________ 

Hypertension, Complicated (ELX 7) 6 __________ 

   

Subtotal B (sum up the points for the protective factors)  __________ 

 

  −  =  

 Subtotal A − Subtotal B = Final Score 
   

If Final Score is 5 or greater,  

the patient is more likely to be discharged to a non-home location. 
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3 THE n-BY-T TARGET DISCHARGE STRATEGY FOR 

INPATIENT UNITS* 

3.1 Background 

Healthcare in the US is a complex, multi-step, multi-setting process. In 2013 the 

national health expenditures amounted to $2.9 trillion, or 17.5% of the US GDP, and of 

this 32.1% was attributable to hospital care (CDC, 2015a). Despite these expenses, 

quality of care seems to be on a downward trend; from 2003 to 2009, the mean waiting 

time of patients in the emergency department (ED) increased 25%, from 46.5 minutes to 

58.1 minutes (Hing & Bhuiya, 2012).  

This is not merely an isolated symptom of EDs; they are highly connected to 

inpatient hospitals, with over half of inpatient admissions in the US in 2009 originating in 

the ED (Weiss et al., 2014). Because crowding and boarding in the ED and other units 

upstream from inpatient units, such as Post-Anesthesia Care Unit  and Surgical Intensive 

Care Unit , have been shown to negatively affect quality of care, patient safety, and 

patient satisfaction, reductions in these barriers would likely reap benefits to both patients 

and providers (Crawford et al., 2014; Bernstein et al., 2009; Liu et al., 2009; McCarthy et 

al., 2009; Pines et al., 2009). 

Studies have suggested that improving inpatient bed availability by balancing 

inpatient discharges with admissions can alleviate, if not eliminate entirely, upstream 

boarding and crowding (Powell et al., 2012; Wong et al, 2010; ACEP, 2009; M. 

* Parikh, P. J., Ballester, N., Bertsch, K., Kong, N., & Pook, N. (2017). The n-by-T target discharge strategy for 

inpatient units. Medical Decision Making, 37(5), 534-543. 



34 

 

Vermeulen et al., 2009; Kravet et al., 2007; Yancer et al., 2006; Forster et al., 2003). 

According to one study, 1 in 4 inpatients could have been discharged earlier than they 

were (Srivastava et al., 2009). With over  35.1 million inpatient discharges in the U.S. in 

2010 (CDC, 2015b), it is critical to understand key factors such as patient condition and 

necessary care, anticipated length of stay, patient needs upon discharge, and where the 

patient will go upon discharge during inpatient discharge planning (Shepperd et al., 

2013). When a smooth coordination of the inpatient discharge process fails to take place, 

it delays inpatient bed release, which delays the transfer to inpatient beds for newly 

admitted patients from various upstream units.  

Recently, timing the inpatient discharges to reduce ED boarding of admitted 

patients by shifting the discharge distribution curve has been suggested (Powell et al., 

2012). Although such an approach seems attractive, very little has been suggested in the 

literature as to how this can be achieved. Anecdotally, some hospitals have employed 

their own strategies to improve inpatient discharge processing, such as incentivizing 

physicians to finish their discharge orders earlier in the morning, and even adding 

overtime or temporary staff during the latter part of the day to help execute planned 

discharges. But there is lack of clear evidence suggesting the benefits of such strategies. 

We contend that the complexity of the inpatient discharge process within a unit, 

and variances across units in a single hospital, render it difficult to devise a generic, 

optimal, strategy. In lieu of this, it is possible to develop targets that the care providers in 

the inpatient unit could aim for each day to realize substantial improvements. To this 

extent, we propose a novel n-by-T target strategy, which suggests discharging n patients 

(deemed ready for discharge on a given day) by the Tth hour of the day. For instance, 1-
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by-10 means that one inpatient should be discharged by 10 a.m., while 2-by-12 means 

that two patients should be discharged by 12 noon. This strategy suggests that if the order 

writing times by the physician are advanced and discharge process length is reduced, then 

the inpatient unit could achieve the target of discharging a predetermined number of n 

patients by the Tth hour. The goal is to achieve an improved synchronization of the 

availability of inpatient beds with the demand of inpatient beds from upstream units to 

smooth patient flow throughout the hospital. Our motivation to devise such a strategy 

came from preliminary studies which suggested that reducing discharge process time by 

unit-allowed maximum of 25% and advancing order writing times by a maximum of 3 

hours, independently, resulted in benefits of 8% and 9.1%, respectively, only if 

implemented unit-wide, across all to-be-discharged patients. Given the difficulty of 

implementing such strategies at the unit under other process and staffing constraints, the 

hospital staff preferred the proposed n-by-T strategy, that required reducing both 

discharge process times and advancing order writing times (a hybrid strategy) for only a 

fraction of discharge-ready patients, while not imposing excessive work on the nursing 

staff during the morning.  

Our focus in this study is addressing the following research questions:  to what 

extent does the n-by-T target strategy advance the discharge completion times and reduce 

upstream boarding? How sensitive are these benefits to the inpatient unit’s occupancy 

rate? What benefits and challenges might be experienced during a pilot implementation?  

3.2 Methods 

Our study was conducted in two phases. Phase I dealt with understanding and 

representing the current discharge process in the unit via a simulation model in order to 
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evaluate various n-by-T strategies over varying occupancy rates. Phase II dealt with 

conducting a pilot implementation (based on our findings in Phase I) in a live inpatient 

unit.   

3.2.1 Setting 

We focused on an inpatient trauma unit at Kettering Medical Center (KMC), the 

flagship hospital in the Kettering Health Network – a faith-based hospital network in the 

Midwest U.S. KMC was founded in 1964 and currently houses 386 inpatient beds. The 

hospital has nearly 50,000 emergency visits and over 20,000 inpatient admissions 

annually. The facility has previously been recognized by the U.S. News and World 

Report as one of the best regional hospitals and by Truven Health Analytics as a top 100 

hospital nationwide. Our research focused on one unit of the hospital: a 21-bed inpatient 

trauma unit, which completed 1,789 inpatient discharges during 2013.  This study was 

approved by KMC’s Institutional Review Board. 

3.2.2 Data Collection  

We used two modes of data collection at the unit: job shadowing to map the 

current process, and retrospective, de-identified, patient data from the hospital’s 

electronic health record (i.e., Epic) to understand system inputs and outcomes. A 

collective of over thirty hours were spent in job shadowing the unit nurses to map the 

steps followed by them when discharging a patient, starting from the physician writing 

the discharge order all the way to the nurses physically transferring the patient out of the 

inpatient room. The retrospective data from Epic included time-stamps for order writing 

and discharge completion for each of the 1,789 discharged inpatients. We were also 
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provided time-stamps for bed requests from upstream units for each day in 2013. 

Descriptive statistics were used to identify the distributions for the model inputs.  

3.2.3 Outcomes of Interest  

We focused on four measures, two time-based and two capacity-based. The two 

time-based measures were 1) mean discharge completion time, measured as the mean 

time of day when patients  are physically discharged from the inpatient room, and 2) 

mean boarding time of upstream patients, measured as the difference of when the bed 

request was placed and when the patient actually occupied the inpatient room (including 

variable transportation times). For this inpatient unit, the upstream units included the ED, 

Surgery, Medical/Surgical Intensive Care Unit (MSICU), Surgical Intensive Care Unit 

(SICU), Clinical Decision Unit (CDU), Coronary Care Unit (CCU), Cardiac, Dialysis, 

and Other (in order of frequency). The two capacity-based measures were related to an 

increase in the annual availability of 1) inpatient bed hours (due to possible advancement 

in the mean completion time) and 2) upstream bed hours (due to possible reduction in 

mean boarding times).  

3.2.4 Phase 1: Modeling Current and n-by-T Discharge Strategies 

At a micro level, each unit handles their discharges slightly differently given the 

patient cohort and acuity, physician rounding patterns, staffing levels (e.g., nurse, social 

worker, case manager), disposition locations, and bed capacity. The unit staff ensures that 

all the vital elements of the discharge plan are completed to achieve a timely discharge: 

e.g., discharge orders, patient education, medication reconciliation, instructions to patient, 

physical/occupational therapy, insurance approvals, availability at disposition location, 
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and transportation. The room then must be cleaned by the hospital cleaning staff, only 

after which it becomes available in the electronic health system (i.e., EPIC) to allow the 

transfer of a patient (at an upstream unit with an outstanding bed request) into this room 

at this unit. 

Based on our observational study and preliminary analysis of the data, we realized 

that, at a macro level, the overall discharge process can be aggregated into 4 temporal 

events; 1) time of day when discharge order is written by the physician, 2) length of time 

to accomplish all discharge processes (starting from a written order until patient is 

physically transferred out of the room), 3) time of day when the bed request is placed for 

a patient in the upstream unit, and 4) time of day this patient enters the empty room. The 

length of time to clean the bed after a discharge and the length of time to transport a new 

patient into the room are two secondary, but also important, elements. This allowed us to 

develop an aggregate process map depicting the patient flow that was used in developing 

a discrete-event simulation model (see Figure 3-1). An aggregate approach was also 

deemed most appropriate by the hospital staff in order to identify and evaluate a generic 

strategy with the potential of implementation across other inpatient units at this hospital.  

The simulation model was designed to emulate a typical 24-hr day-of-discharge 

process (midnight to midnight) with multiple discharges based on the unit-specific data. 

Each patient who was to be discharged on a given day was assigned a specific time of 

day by when their discharge order would be written by the physician and the subsequent 

amount of time that is required to accomplish the discharge process before discharging 

the patient. Once the discharge process was complete, and after the time to clean the 

room had elapsed, the inpatient bed was made available for boarding patients in the 
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upstream units. These patients continued to arrive, starting midnight, and demand 

inpatient beds based on a non-stationary Poisson arrival rate per hour of day. They were 

held in a queue (to emulate boarding) until an inpatient bed was available, at which point, 

after some delay for transportation to the unit, the first waiting patient from the queue 

seized the bed.  

 

Figure 3-1: Conceptual Diagram of the Simulation Model 

To model a specific n-by-T strategy, we modified the validated simulation model 

such that the flow of the first n patients (among those who are to be discharged that day) 

was altered, and those patients were simply assigned a discharge completion time (hour 

of day) with a triangular distribution; e.g., if T = 10 a.m., then Triangular(8, 9, 10) hr, and 

if T = 12 noon, then Triangular(9, 10.5, 12) hr. By changing the number of extra beds 

available at midnight to model the occupancy rate of the unit (e.g., 85% occupancy 

means approximately 18 of 21 beds occupied; i.e., 3 extra beds available at the start of 
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the day), we were able to evaluate the impact of the variants of n-by-T on completion and 

boarding times under different levels of unit occupancy.  

We used AnyLogic v7.2 (The AnyLogic Company, St. Petersburg, Russian 

Federation) to develop the discrete-event simulation model. The model was validated 

individually via face validation by the research team and KMC personnel, and via 

external validation by statistically comparing if the simulated values reasonably matched 

KMC’s data (Eddy et al., 2012). 

3.2.5 Phase 2: Pilot Implementation at the Unit 

The promising results derived from the simulation of the n-by-T strategy in Phase 

1 (discussed in the Results section 3.3) encouraged the hospital to implement a pilot of 

one of the variants, the 2-by-12 strategy, in their trauma unit. The pilot period was 

between June and December of 2014. This pilot was meant to identify requirements for a 

structured implementation study to be conducted later. Essentially, the unit nurse tried to 

work with her nursing staff in order to identify 2 patients at the beginning of their shift 

(usually 7 a.m.) and make an effort to get the attending surgeons to sign off on the 

discharge orders immediately. That would leave them 2-3 hours to finish the discharge 

processes relevant to those 2 patients in an effort to discharge them by 12 p.m. (noon). 

This was not possible every day owing to several reasons (discussed later in the 

Discussion section 0). We were provided with the implementation data for analysis by the 

unit staff. Statistical tests were used to compare the actual outcome measures for the days 

on which the target strategy was successfully implemented with those prior to the 

implementation period (Jan-May, 2014). 
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3.3 Results 

3.3.1 Phase 1: Modeling the Current System 

We first analyzed the current discharge process at the trauma unit. We were 

provided with 1789 unique patient records for the year 2013, out of which 1604 records 

had all the relevant data elements for our study. Figure 3-2 displays the following two 

phenomena: 1) for patients who are discharged on a given day, the corresponding 

distribution of order writing times and inpatient discharge times by hour of day, and 2) 

the arrival rate of inpatient bed requests from upstream units. Note that writing of 

discharge orders starts in the morning and often leads into the afternoon, a trend that is 

likely to exist in many trauma or surgical units. Consequently, the beds also get released 

throughout the day; the discharge completion time at this unit occurred during late 

afternoon (mean, 16.2 hr; median, 16.27 hr). The resulting mean boarding for upstream 

patients arriving throughout the day was calculated from the actual data as 2.41 hr 

(median, 1.63; s.d., 2.16). We also noticed that the discharge process length distribution 

was not identical throughout the day and depended heavily on when the physician wrote 

the discharge order; long for mornings and short for later than 3 p.m. Considering the 

schedules before and after 7 a.m. (shift change), the transportation time from the 

upstream unit to the inpatient unit was modeled as TRI(0.25,1.5,6.0) and 

TRI(0.25,0.75,4.0) hrs, respectively. The simulation model, which used inputs based on 

the actual data at the trauma unit (Table 3-1) to emulate the current system, was able to 

capture the complex dynamics of the inpatient unit reasonably well based on discharge 

completion and boarding time statistics (Table 3-2).  
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Figure 3-2: Discharge Process at the Trauma Unit in 2013 

 

Table 3-1: Summary of the Data Used in the Model 

Model Input Distribution 

Number of patients to be discharged (per 

day) 
Poisson(4.39) 

Time discharge orders placed (hour of day) Normal(13.26, 2.68) 

Discharge process length  

before noon (hours) 

between noon and 3 p.m. (hours) 

after 3 p.m. (hours) 

 

Weibull(4.64, 1.88) 

Weibull(3.03, 1.97) 

Weibull(2.07, 1.88) 

Bed cleanup duration (hours) Normal(1.51, 0.12) 

Arrival of bed requests from upstream units Non-stationary Poisson process; avg 4.39 

Baseline occupancy rate 85% (18 of 21 beds) 
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Table 3-2: Validation of the Simulation Model against Actual Data from the Trauma Unit 

Outcome Measure 

Trauma Unit 

KHN  (Actual) 

Data 
Simulation 

Discharge 

Completion 

Time 

N (Patients/Days) 1604/365 4417/1000 

Mean (hr) 16.198 16.163 

Median (hr) 16.27 16.27 

Std Deviation (hr) 2.34 2.52 

Skewness -0.23 -0.23 

95% CI on Mean (hr) [16.08,16.31] [16.09,16.24] 

Boarding 

Time 

N (Patients/Days) 1604/365 4268/1000 

Mean (hr) 2.41 2.35 

Median (hr) 1.63 1.86 

Std Deviation (hr) 2.16 1.82 

Skewness 2.07 2.14 

95% CI on Mean (hr) [2.30,2.52] [2.29,2.40] 

 

3.3.2 Phase 1: Modeling the Effects of n-by-T 

We next captured the distributions of discharge completion time generated by 

several specific instances of the n-by-T strategy using the validated simulation model 

(Figure 3-3). Note that n patients were guaranteed to be discharged prior to the set time 

each day, essentially resulting in a different distribution for these patients compared to 

the rest. This is evident from the switch in discharge completion time distribution from 

unimodal (as observed in the current unit) to bimodal. Notice that the peaks in the 

distributions for when n=1 and n=2 are different, and that only a marginal change was 

observed when T changed for a given n. That is, the mean completion times for cases 

when n=1 and n=2 (10 a.m. ≤ T ≤ noon) were in the ranges 14.5914.82 hr and 

13.0313.48 hr, respectively; an advancement of 1.381.61 hr and 2.723.17 hr when 

compared to the mean of 16.2 hr for the current strategy. Figure 3-4 depicts this in terms 
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of hours advanced in the mean discharge completion times. The mean boarding times 

were around 2.13 hr and 2.04 hr, a reduction of 11.6% and 15.4%, respectively, over the 

current strategy (mean of 2.41 hr). While these benefits were reasonably high, they 

remained relatively unaltered irrespective of the value of T (between 10 a.m. and noon) 

because the mean discharge completion times changed very little during this time-frame.  

 

Figure 3-3: The Bimodal Distribution of Discharge Completion Times for Various n-by-T 

Strategies 
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Figure 3-4: Effect of n and T on Advancement in Mean Discharge Completion Time 

We also estimated an increase in annual inpatient bed hours due to advancement 

in the mean discharge completion time. Based on the annual 1789 discharges per year at 

this unit, the 1-by-T strategies (10 a.m. ≤ T ≤ noon) suggested an increase in 2469-2880 

inpatient bed hours annually (corresponding to the advancement in the mean discharge 

completion times); this number increased to 48665671 bed hours with 2-by-T strategies. 

The corresponding increases in the upstream bed hours were nearly 500-662 hours 

annually for these two sets of strategies. 

3.3.3 Phase 1: Modeling the Robustness of n-by-T to Occupancy Rate 

While the above results corresponded to the unit’s mean occupancy rate of 85%, 

the unit managers indicated that it varied throughout the year with some weeks nearing 

100%. We, therefore, evaluated how occupancy rate of the unit would impact the 

performance of the n-by-T strategy (in particular, the 2-by-T of specific interest to the 

unit). Intuitively, changes in the occupancy rate (availability of empty beds at midnight) 
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directly affect the rate at which new bed requests occupy empty inpatient beds (hence, 

boarding time) and does not affect the inpatient process to discharge patients (and thus 

mean discharge completion time) for a given n-by-T strategy. Table 3-3 shows the 

changes in the boarding times for occupancy rates ranging between 80% and 100%, for 

both 2-by-10 and 2-by-12 strategies. While 2-by-12 already would offer over 12% in 

boarding time reduction compared to the current system at 85% occupancy, this relative 

reduction would double (26.1%) during days (or weeks) when the unit experiences 100% 

occupancy; the corresponding upstream bed hours increased from 519 to 3238 hours. 

Table 3-3: Reduction in Boarding Times Via 2-by-T Strategies for Various Occupancy Rates 

Outcome 

Occupancy Rate 

100% 95% 90% 85% 80% 
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Mean 

boarding 

time (hr) 

6.91 4.94 5.10 4.42 3.16 3.25 3.03 2.40 2.44 2.34 2.04 2.05 2.02 1.89 1.90 

% 

reduction 
--- 28.5% 26.1% --- 28.5% 25.4% --- 20.8% 19.4% --- 12.8% 12.4% --- 6.3% 6.0% 

Increase 

in annual 

upstream 

bed hours 

--- 3524 3238 --- 2254 2093 --- 1127 1055 --- 536 519 --- 232 214 

 

3.3.4 Phase 2: Analysis of Pilot Implementation 

The above findings encouraged the hospital to conduct a pilot implementation of 

the 2-by-12 strategy in the same trauma unit during June-Dec 2014. Figure 3-5 indicates 

that the total weekly discharges by noon collected from the hospital’s electronic health 

record increased by 2.4 discharges/week during the pilot when compared to the pre-
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implementation phase (152 days). A deeper analysis of the pilot data revealed that the 

unit experienced 2-by-12 only 12.67% of the total days (27 out of 213 days). Table 3-4 

summarizes the outcomes for only those 27 days of successful pilot implementation 

compared to the pre-implementation outcomes. The distribution of the discharge 

completion times was found to be significantly different than that realized during the pre-

implementation stage (p-value < 0.0001; Kolmogorov-Smirnov test); the strategy 

advanced the mean discharge completion time by nearly 2 hours per patient. Further, 

mean boarding time was also found to be significantly lower (p-value = 0.0269; 

Kolmogorov-Smirnov test); the strategy reduced boarding time by nearly 15%.  

 

Figure 3-5: Total Weekly Discharges by Noon during the Pre- and Pilot-Implementation at the 

Trauma Unit in 2014 (Note: dotted line indicates mean of the weekly discharges during pre- and 

pilot-implementation) 
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Table 3-4: Comparison of Outcomes from Pre-Implementation and Pilot Study 

  N Mean (S.D.) 
95% CI on 

Mean 

Median 

(IQR) 

p-value  

(K-S Test) 

Discharge 

Completion Hour of 

Day (of inpatients) 

Pre 746 16.30 (2.38) [16.13,16.47] 16.44 (3.25) ----- 

Pilot 178 14.32 (3.48) [13.81, 14.84] 14.68 (5.09) < 0.0001 

Boarding Time in 

Hours (of upstream 

patients) 

Pre 719 2.36 (2.21) [2.19, 2.52] 1.58 (2.03) ----- 

Pilot 138 2.01 (2.35) [1.62, 2.41] 1.28 (1.15) 0.0269 

 

3.4 Discussion 

With inpatient flow pathways greatly impacting hospital operations and 

unnecessary delays, care coordination between intra-organizational operations and units 

becomes critical. In particular, the daily discharge of inpatients, a multi-step process, 

requires strong coordination among care providers in the unit (e.g., physicians, nurses, 

social workers, and case managers) and supporting processes and technology, while 

accounting for patient-specific factors, with implications on care quality, safety, and cost 

(Anthony et al., 2005; Farris et al., 2010). We noticed through job shadowing at a trauma 

unit that physician order writing times and discharge process durations were largely 

responsible for delays at that unit. Althought literature suggested that discharge timing of 

inpatients affects upstream boarding, no known approaches were available to suggest 

how best to advance the discharges. To this extent, we proposed a novel n-by-T target 

strategy that care providers could aim for every day, resulting in both advancing of 

dischage completion times and reducing boarding times. In particular, the 2-by-10 and 2-

by-12 strategies were of special interest to this hospital. These strategies were considered 

during a pilot implementation, which confirmed the benefits (mean discharge time 
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advanced by 2 hours and boarding reduced by 14.5%). Clearly, a target strategy such as 

the n-by-T provides a clear and easy guidance to the care providers in order to execute 

prompt release of inpatient beds for patients waiting upstream.  

Our findings corroborate with previous research that focuses on inpatient 

discharge planning. In particular, we noticed a strong relationship between rising hospital 

occupancy and increasing ED length of stay (Forster et al., 2003). We noticed that as the 

trauma unit became busier (i.e., occupancy rate increased), the benefits from the n-by-T 

strategy became more prominent (ranging from 6-28%). During a 100% occupancy rate, 

no empty beds would be available in the inpatient unit for the first few bed requests that 

arrived between midnight and mid-morning (say 9 a.m.), causing them to accrue 

significant boarding. For less than 100% rates, there would always be one or more empty 

beds, minimizing boarding of the first few bed requests. We further confirmed previous 

observations that shifting the discharge distribution curve earlier in the day could mitigate 

ED boarding (Powell et al., 2012; Ozen et al., 2014). The resulting bimodal distribution 

of the discharge times, which is intuitive, caused the mean distribution time to shift 

towards the early part of the day (often by over 2 hours). The benefits of the n-by-T 

strategy on increasing the capacity-based measures (i.e., availability of inpatient and 

upstream bed hours) are worth noting. An increase in the number of inpatient bed hours 

can be significant, as these high-in-demand and expensive beds would now be available 

to schedule additional patients (e.g., electives or transfers). Similarly, an increase in the 

bed hours at upstream units (e.g., ED, ICU, PACU) means patients in those units no 

longer occupy such beds for unnecessarily long time. This means a reduction in waiting 

or crowding at these units. In some sense, the proposed n-by-T target discharge strategies 
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allow for prompt release of medically-ready patients, making way for sicker patients in 

the upstream waiting. 

The pilot confirmed findings of the simulation model in terms of both advancing 

discharges and reducing boarding times. The nursing manager noticed that while the 2-

by-12 target strategy helped, to some degree, avoid a rush in the afternoon to execute 

planned discharges, it also gave her the ability to better schedule her nurses during the 

day, potentially avoiding costly overtimes. We also noticed that during pre-

implementation only 4.16% of all patients were discharged by 12 noon based on the 

actual data from the unit; it increased to 29.78% for 2-by-12, clearly indicating the impact 

of these target strategies.  

Although the benefits were clear, the challenges during implementation could not 

be overlooked. First, identifying the two patients to be discharged earlier in the day could 

be challenging. This unit ran a daily nursing huddle, so the nurses knew for the most part 

who were likely to be discharged the following day and what activities would be 

involved. However, recording this diligently every day and helping the involved nurse to 

coordinate with the physician, social worker, consulting physician, and other support 

services the following morning could be challenging. We noticed that timely completion 

on behalf of the consulting physician was especially challenging. Second, the disposition 

type could lead to difficulties in the inpatient emptying the bed in a timely manner (e.g., 

delays from family member to pick up the inpatient, or unexpected delays from insurance 

company on pre-certifications). Finally, nurses in the unit expressed a desire for 

continuous feedback that would enable them to evaluate their performance each day in 

light of the target and show improvements over the original unit. Provision of appropriate 
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training and education to all providers in the unit, along with an appropriate system to 

continuously monitor the status of the unit, would help mitigate some of these problems 

and increase daily compliance to a specific n-by-T strategy for consistent benefits. 

Further, during high unit occupancy, even though literature suggests that individuals tend 

to speed up their processing, the possible necessity of additional staffing and the resulting 

cost implications should be considered carefully against the benefits of implementing this 

target strategy. The low compliance rate during the pilot can also be attributed to the fact 

that the pilot was conducted in a semi-structured manner, with little involvement from 

our engineering team. Given the low compliance rate during the pilot, we conducted post-

hoc analysis by incorporating a compliance factor in our model. This factor randomly 

determined if a given day (in the simulation run of 1000 days) would be n-by-T 

compliant or not. Although not shown, we found that as the compliance rate decreased 

from 100% to 0%, the benefits (in terms of boarding time reduction and completion time 

advancement) of the proposed n-by-T strategy (in particular, 2-by-10 and 2-by-12) 

decreased nearly linearly. Both these measures approached values corresponding to the 

current system at 0% compliance. 

Our research study design and findings, however, must be viewed in light of the 

following limitations. First, we assumed an average day for our modeling purposes. 

However, our model can easily incorporate trends and seasonalities corresponding to a 

specific day of the week, week of the month, or even month of the year. Second, we 

assumed that newly admitted patients will be transferred to the inpatient trauma unit 

using a first-come-first-serve queuing discpline. However, this may not be the case if 

certain patients may have to be fast-tracked to the inpatient beds. Third, the limited data 
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did not allow us to incorporate and subsequently evaluate the effects of the support 

service processes. Fourth, the unavailability of daily occupancy rates did not aid us in 

establishing 1) if the number of patients to be disharged on a given day was correlated to 

the unit’s occupancy rate, or 2) if the discharge process times were truly dependent on the 

time-of-day or based on another system state (current load or congestion). Fifth, we 

assumed in the model that all other medically-ready patients to be discharged on a given 

day, but not part of the n-by-T strategy, will continue to experience processes and times 

similar to the current system. Finally, we focused on a trauma unit, a specialized inpatient 

unit at the hospital. The generalizability of our findings would need to be evaluated 

across both medical and surgical units across geographically disparate hospitals.  

Our study was both confirmatory and exploratory. We confirmed previous 

findings that the completion time of inpatient discharges has an impact on the boarding of 

patients being admitted from upstream units. We explored the impact of the proposed n-

by-T strategy as a clear target for providers in the unit to better plan and execute daily 

discharges. This strategy, in some sense, is  a combination of early order writing and 

shorter discharge process times on a select set of  patients in an effort to release inpatient 

beds earlier in the day. This was shown through our experiments and via a pilot 

implementation to mitigate upstream boarding. Other perceived benefits of the pilot, but 

not recorded and quantified, included reduction in discharge delays and improved bed 

utilization at both upstream and inpatient units.  
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4 EVALUATING THE GENERALIZABILITY OF AN APPROACH 

TO IMPROVE THE INPATIENT DAY-OF-DISCHARGE 

PROCESS* 

4.1 Introduction 

Emergency departments (EDs) in the US are becoming increasingly common as 

general access points for acute care admissions. Consequently, ED boarding (patients 

waiting in the ED for inpatient beds) and crowding are becoming more apparent and 

impactful problems. Several studies have suggested that improving the inpatient 

discharge process to better balance discharges with admissions can alleviate ED capacity 

issues (M. Vermeulen et al., 2009; Kravet et al., 2007, Yancer et al., 2006). 

As demonstrated in Figure 4-1, on a typical day in an inpatient unit, requests for 

beds in the unit arrive from multiple upstream sources. Most beds in the unit are occupied 

by inpatients; thus, in order for an incoming bed request to be fulfilled, a discharge must 

occur to free up an inpatient bed. The unit will typically have a few patients already 

identified to be discharged on this day (referred to as the day-of-discharge). For each of 

these patients, multiple processes must be completed, such as a discharge order 

placement by their physician, discharge instructions communication, and medications 

fulfillment. Upon completion of the discharge, the bed and room must be cleaned by 

hospital environmental services before the bed can be occupied by an incoming patient. 

Thus, it is apparent that discharge efficiency is critical, not only for patients to be 

*Ballester, N., Parikh, P. J., & Peck, J. (2017). Evaluating the generalizability of an approach to improve the inpatient 

day-of-discharge process. In K. Coperich, E. Cudney, & H. Nembhard (Eds.), Proceedings of the 2017 Industrial and 

Systems Engineering Research Conference. Pittsburgh, PA: Institute of Industrial and Systems Engineers. 
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discharged but also for patients waiting in upstream units.

 

Figure 4-1: Schematic of an Inpatient Discharge Process 

A few studies exist that examine analytical methods to evaluate inpatient 

discharge strategies and their potential effects on inpatient units and upstream patient 

boarding. Wong et al. (2010) built a system dynamics simulation model which suggested 

that smoothing out inpatient discharges over the course of a week reduces the number of 

ED beds occupied by general internal medicine inpatients and also reduces ED length of 

stay (LOS). Powell et al. (2012) used a simplified spreadsheet-based daily model and 

demonstrated that better timing of discharges should substantially reduce admitted patient 

boarding (across ED, elective surgery, and ICU transfers). Ozen et al. (2014) constructed 

a hospital-wide simulation model and found that prioritizing discharges in units with 

longer admission queues offered the most reduction in patients waiting to be admitted, 

rather than focusing on earlier discharges across all units. Matis et al. (2015) developed 

an optimization model, along with a proposed discharge process redesign, to determine 

an optimal discharge target time for each patient on a unit, given both patient and system 

centric constraints. Parikh et al. (2017) recently proposed a novel day-of-discharge 
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strategy, n-by-T, as a target for inpatient units to advance discharge completion times and 

reduce upstream boarding. This strategy was initially tested using a simulation model and 

later pilot at a trauma inpatient unit at a local hospital in the Midwest US. 

In this paper, we address the following questions: (i) Could a recently proposed 

model for the inpatient discharge process be generalized to units at other hospitals? and 

(ii) Would the n-by-T strategy offer similar benefits at those units? We consider a 

Neurology inpatient unit at a hospital in the Northeast US to address the above questions. 

We first briefly summarize the general (conceptual) model (presented in Parikh et al. 

(2017)) to capture the relationship between inpatient discharges and upstream patient 

boarding (Section 4.2), following by a discussion of its application at this Neurology unit 

and the evaluation of the n-by-T strategy (Sections 4.3 and 4.4). 

4.2 A General Model for the Day-of-Discharge Process 

Although the typical day on an inpatient unit is quite complex, the processes 

associated with discharges for that day and the corresponding new admissions can be 

viewed, in the general sense, as two separate streams (discharge ready patients and bed 

request arrivals), linked by the resource of inpatient beds, as demonstrated in Figure 4-2.  
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Figure 4-2: Schematic of the General Model 

The first stream, the number of patients (entities) to be discharged (block 1A), 

depends on the unit’s daily discharge rate. These patients when discharged at the end of 

the day will empty the beds they are currently occupying. Depending on the occupancy 

rate in the unit, it may be important to make available additional empty beds at the start 

of the day; 0 if 100% occupancy. In a typical unit, discharge-ready patients wait until 

their discharge order is placed (block 1B), after which they are delayed for some 

discharge process length (block 1C). After this, the patients are discharged (block 1D) 

releasing the beds they had occupied, which would need cleaning before the bed becomes 

available (block 1E). 

The second stream, the patients requesting a bed, are generated throughout the 

day based on the unit-specific arrival process (block 2A). These requests enter a queue of 

beds (block 2B). Once a bed becomes available, a requesting patient in the queue (based 

on FIFO or priority) would experience a transportation delay (block 2C) before reaching 

the room and occupying the empty bed (block 2D). 

This general model requires inputs for the following: (i) number of discharges per 

day (block 1A); (ii) discharge order placement times (block 1B); (iii) discharge process 
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lengths (block 1C); (iv) bed cleanup delays (block 1E); (v) bed request arrival times 

(block 2A); (vi) transport to unit delays (block 2C). The outputs of the model are (i) 

discharge completion times of day (block 1D); (ii) upstream patient boarding times 

(difference between block 2A and block 2D). Note that the boarding time includes 

transportation delay, often the way a unit records it; the true boarding (waiting time) 

would exclude this transportation delay. 

This general model makes several assumptions: all processes associated with the 

discharge are combined into one delay; discharge order placement is used as a proxy for 

discharge initiation; the model delays for bed cleanup and for transport incorporate both 

the time spent waiting for these services to arrive and the actual service time. However, 

as shown by Parikh et al. (2017) and as we show below, these assumptions appear 

reasonable to capture the critical dynamics in the unit. We embedded this general model 

in a simulation framework in AnyLogic v7.2. 

4.3 Application of the General Model to a Neurology Unit 

We now discuss the application of this general model to the Neurology unit in the 

Northeast US to obtain evidence of the generalizability of it beyond the Trauma unit in 

Midwest US. The key differences observed in the Neurology unit (vs. Trauma) are as 

follows: (i) there are 26 inpatient beds (vs. 21) with an average discharge time of day of 2 

p.m. (vs. 4 p.m.); (ii) the average upstream boarding was 3.53 hr (vs 2.41 hr) and the rate 

of discharges was 3.57 patients/day (vs 4.91). So clearly, besides patient populations, the 

values of the system variables are disparate.   

The above data for the Neurology unit was obtained after 30 hours in job 

shadowing unit nurses and obtaining a year’s worth of retrospective data for all patients 
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discharged from the unit in 2015. For these patients, we obtained four date-time stamps 

from the electronic health records: (i) bed request placed; (ii) in room time; (iii) discharge 

order placed; and (iv) discharge completion time. Although these four time stamps were 

specific to the same patient encounter, we considered the arrival data independently of 

the discharge data in our analysis and subsequent model.  

For each patient, we considered the bed request and in room times for only the 

first time the patient arrived on the unit; if the patient was temporarily transferred to other 

units throughout their course of treatment and then returned to the Neurology unit, we did 

not use the bed request and in room times when they returned to the unit, as we were 

modeling only new incoming demand for unit capacity. We only considered records for 

patients who were eventually discharged out of the hospital from the Neurology unit. We 

excluded records with missing values and records with chronologically inconsistent data 

(in room time occurring before bed request placed, or discharge completed before order 

placed). Because we modeled only the day of patient’s discharge, the length of stay was 

not considered. Additionally, we only considered records for patients who arrived in the 

room the same day their bed request was placed and patients who were discharged the 

same day their discharge order was written. Figure 4-3 summarizes the bed request 

arrivals, discharge order placements, and discharge completion times from this final 

dataset, by hour of day over 1303 records. 
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Figure 4-3: Bed Requests and Discharges at the Neurology Unit in 2015 

From the four time stamps provided in the dataset, we derived input distributions 

for the model for the following four inputs: (i) number of patients discharged per day; (ii) 

discharge order writing time of day; (iii) discharge process length (the difference between 

discharge order placed and discharge complete); (iv) bed request arrival time of day. 

Unfortunately, we were unable to obtain any data directly for bed cleanup times; for 

these, we relied upon expert estimates and simulation model feedback. Likewise, for 

transportation to the unit times, we had only sparse, incomplete data, so we relied upon a 

combination of this data and simulation model validation feedback to derive appropriate 

distributions. Because of the difficulty in quantifying the unit’s daily occupancy rate due 

to ongoing room renovations and temporary bed unavailability, we assumed 1 extra 

empty bed at the start of a day.  

Table 4-1 summarizes the final input distributions corresponding to the Neurology 

unit. We observed multiple instances of non-stationary processes (by time of day) at this 
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unit. Such processes were often longer (larger means, longer tails) the earlier they 

occurred in the day, indicating perhaps that units are typically busier in the mornings 

catching up with work accumulated from overnight, or else there is less of a focus on 

discharges in the morning. 

Table 4-1: Model Inputs Derived from the Neurology Unit Data in 2015 

Model Input Distribution 

Number of patients to be discharged (per day) Poisson(3.57) 

Time discharge orders placed (hour of day) 

Normal 2 Mixture:  

Normal(8.27,0.99); probability 0.19 

Normal(12.32,2.66); probability 0.81 

Discharge process length  

before 10 a.m. (hours) 

between 10 a.m. and 4 p.m. (hours) 

after 4 p.m. (hours) 

 

Weibull(3.998,1.75) 

Weibull(2.21,1.52) 

Weibull(1.24,1.73) 

Bed cleanup duration (hours) Normal(1.51, 0.12) 

Arrival of bed requests from upstream units 
Non-stationary Poisson process (rate 

varies by hour of day); daily avg 3.57 

Transportation to unit length 

before 7 a.m. (hours) 

between 7 a.m. and 7 p.m. (hours) 

after 7 p.m. (hours) 

 

Triangular(0.34,0.86,1.7) 

Triangular(0.16,1.49,4.46) 

Triangular(0.16,0.83,2.15) 

Number of empty extra beds at start of day Constant = 1 

 

We averaged our simulation findings over 1,000 replications (of a 24-hour day-of-

discharge on the unit). For validation, we compared the simulation outputs against the 

unit’s actual data: on the inpatient discharge side, discharge completion time of day; on 

the upstream bed request side, patient boarding time (length). As shown in Table 4-2, our 

simulation model output reasonably matched our retrospective unit data for both 

validation measures, across multiple statistical measures.  
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Table 4-2: Model Validation against Data from the Neurology Unit 

Outcome Measure Actual Data Simulation 

Discharge 

Completion 

Time of Day 

N (Patients/Days) 1303/365 3608/1000 

Mean (hr) 13.99 14.01 

Median (hr) 13.92 13.90 

Std Deviation (hr) 2.54 2.75 

Skewness 0.27 0.09 

95% CI on Mean (hr) [13.85,14.13] [13.92,14.10] 

Boarding 

Time 

N (Patients/Days) 1303/365 3500/1000 

Mean (hr) 3.53 3.74 

Median (hr) 2.60 2.58 

Std Deviation (hr) 2.90 3.36 

Skewness 1.84 1.76 

95% CI on Mean (hr) [3.37,3.69] [3.63,3.85] 

 

Clearly, the general model (summarized in Section 4.2) seems to fairly accurately 

model the Neurology unit’s day-of-discharge process. This is now the second, distinct, 

unit where such a general model was validated, the first being the Trauma Unit (Parikh et 

al., 2017). The two successful validations of the general model across differing units 

indicate that, while a unit-specific model can capture detailed dynamics, the majority of 

the inpatient unit admission and discharge process dynamics may be common across 

units and could be modeled in a unit-independent framework to generalize findings. 

4.4 Generalizability of the n-by-T Target Discharge Strategy 

The second research question was if the previously proposed n-by-T target 

inpatient discharge strategy (Parikh et al., 2017) would benefit the Neurology unit as 

well. Essentially, the n-by-T strategy proposes a target number of patients, n, to be 

discharged from the unit by a target time of day, T. These n patients are to be selected by 

the unit from among the patients already identified as ready to be discharged on this 
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particular day. In a sense, this strategy is a hybrid of two separate strategies considered 

earlier; advancement in discharge order writing time and reduction in discharge process 

length. The key benefit of the n-by-T strategy is that it offers the advantage of requiring 

order writing advancement and discharge process length reduction efforts for only a 

fraction of discharge-ready patients on a given day. This potentially avoids excessive 

workload on unit staff in the morning (working on all discharge-ready patients vs. a 

fraction of them), while still achieving the goal of better synchronization between 

discharges (bed availability) and upstream bed request arrivals (bed demand) via earlier 

discharges. 

Figure 4-4 displays the expected effect of several specific instances of the n-by-T 

strategy on discharge completion times at the Neurology unit. The bimodal nature of the 

distribution of discharge completion times results from the n patients discharged earlier in 

the day, and the rest are discharged per the current process, though at a reduced volume. 

Note that while the distributions for n=1 and n=2 are different, there is only a marginal 

change when T changes for a given n, indicating that the number of patients is the critical 

factor to be decided when selecting a variant of n-by-T for the unit, rather than the time of 

day by which to discharge these patients. 
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Figure 4-4: Discharge Completion Times for Various n-by-T Strategies 

We quantified the estimated benefits of implementing the n-by-T strategy at the 

Neurology unit using four measures. For upstream patients, we calculated the percent 

reduction in average boarding time per patient; correspondingly, we calculated the 

estimated increase in upstream unit capacity in the form of annual upstream bed hours 

(based on 1303 discharges). For inpatient discharges, we calculated the percent 

advancement in average discharge completion time of day per patient; likewise, we 

calculated the corresponding estimated increase in inpatient unit capacity in the form of 

annual inpatient bed hours. These results are summarized in Table 4-3. The numbers 

displayed are the averages of 10 simulation runs of 1,000 replications each. 
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Table 4-3: Predicted Outcomes of n-by-T at the Neurology Unit 

 

% Reduction in 

Average Boarding 

Time per Patient 

Increase in Annual 

Upstream Bed 

Hours 

% Advancement in 

Average Discharge 

Completion Time of 

Day per Patient 

Increase in Annual 

Inpatient Bed 

Hours 

n=1 n=2 n=1 n=2 n=1 n=2 n=1 n=2 

T=10 7.59% 13.57% 349 624 9.58% 18.31% 1747 3338 

T=11 7.46% 12.70% 343 584 8.53% 16.38% 1555 2987 

T=12 5.60% 11.63% 258 535 7.55% 14.75% 1377 2688 

 

It is apparent that, while all combinations of n and T experimented in our study 

offer improvements over the current system across all four metrics, n has much more of 

an effect than does T. Additionally, the most aggressive strategy, 2-by-10, results in the 

largest improvements in all four areas; intuitively, this is to be expected. 

These conclusions were also found in the study at the Trauma unit (Parikh et al., 

2017).  The expected benefits due to n-by-T were larger at the Trauma unit, however 

~11% for the 1-by-T strategies and ~15% for the 2-by-T strategies. This is possibly due to 

the higher patient volumes at the Trauma unit and/or their later peak discharge time of 

day.  That study also identified several potential difficulties to successful implementation 

of n-by-T, such as identification of the n patients, timely completion by the consulting 

physician, disposition-specific complications, and the need for feedback, education, and 

sustainment. Such considerations would be vital if such a target strategy were to be 

implemented at the Neurology unit. 

4.5 Discussion and Conclusion 

The main contribution of this study was to obtain evidence of the generalizability 

of a proposed model for the inpatient day-of-discharge process. To do this, we considered 
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a Neurology unit at a large hospital system in the Northeast US. Despite the differences 

between the units in the initial study and this current study (e.g., trauma vs neurology, 

geographical location, system parameters), we were able to successfully validate the 

general model at the Neurology unit as well by only altering the input distributions 

specific to the unit, without any change in the model’s logic. This provides evidence that 

the model is robust and generalizable, as demonstrated across two different units in two 

different hospitals; however, we recommend further studies to verify this claim.  

We also observed that the n-by-T target strategy would provide similar benefits to 

this Neurology unit as well. Although the expected boarding time reductions were not as 

large for this unit (e.g., for 2-by-noon, it was over 11% vs. 15% at the Trauma unit), the 

general conclusions remained the same: all combinations of n and T offer improvements 

over the current system across four different metrics, with more aggressive strategies 

offering the most improvements, and with n having a much larger effect on the expected 

benefits than T. This suggests that n-by-T may be an effective discharge target strategy 

for any unit in any hospital; again, further research at other units is recommended to truly 

generalize the benefits of this target strategy. 

Future research in this area should consider the inclusion of the differences among 

the discharge-ready patients based on the underlying effort required by the unit staff to 

discharge them on that day, disposition location, and capacity limitations at care 

transition locations.   
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5 SEQUENCING DAILY PATIENT WORKLOAD FOR AN 

ANCILLARY SERVICE PROVIDER* 

5.1 Introduction 

Recent research suggests that an effective way to increase the efficiency of 

hospital patient flow is by better synchronizing inpatient discharges with upstream 

admissions (M. Vermeulen et al., 2009; Kravet et al., 2007; Yancer et al., 2006).  

Inefficient discharge planning can result in discharge delays that increase length of stay 

and contribute to upstream patient boarding and crowding, especially in the emergency 

department (ED).  

Discharge planning in an inpatient setting involves a care team of individuals 

from various clinical services. Physicians and nurses are primarily involved with the 

clinical aspects of a patient’s care, diagnosing health problems and determining treatment 

plans; therapists bridge the clinical and logistical gap, directing the patient’s functional 

rehabilitation; and care management coordinates the logistics of the patient’s payment 

and discharge. Table 5-1 summarizes the main decision points in discharge planning and 

the responsibilities of each service at those points which span from clinical to logistical.  

The discharge planners in therapy and care management, commonly known as 

support or ancillary services, are critical but often constrained resources. Often there is 

just one full-time Physical Therapist (PT) and one Occupational Therapist (OT), one 

Registered Nurse (RN) and one Social Worker (SW) care manager assigned to an entire 
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inpatient unit (IU) (with over 30 beds in the units observed during this study). This may 

cause bottlenecks in planning and executing a discharge, as these care providers are 

responsible for all patients on the unit, but they cannot only prioritize discharges at the 

expense of the other patients.  

Table 5-1: Discharge Decision-Making 

 Physicians/ 

Nurses 

Therapy (Physical, 

Occupational) 

Care Management/ 

Social Work 

When  Is the patient clinically 

ready for discharge (from 

the perspective of their 

primary diagnosis)? 

Is the patient ready for 

discharge (from the 

perspective of their 

activities of daily living 

and recovery of 

functionality)? 

When is the patient’s 

family available for 

pickup?  

When is a transportation 

service available for 

pickup? 

When does the destination 

facility have availability? 

Where Can the patient go home, 

pending therapy 

evaluation? 

Should the patient go home 

or does s/he require 

rehabilitation care, whether 

via a facility or home 

services? 

Which facilities/locations 

does the patient prefer? 

Which facilities will take 

the patient’s insurance? 

Which facilities have 

availability? 

How What medication does the 

patient need?  

What is the patient’s 

follow-up plan of 

treatment? 

What equipment does the 

patient need? 

What level of support can 

the patient’s family and 

friends provide? 

How will the patient get 

transported to his/her 

destination? 

How will the patient pay 

for the care s/he needs? 

 

 

Despite the critical importance of therapists and care managers in discharge 

planning, they have received little attention from healthcare researchers. The vast 

majority of literature in discharge planning adopts either a unit or hospital perspective, or 

the viewpoint of the clinical providers, mainly physicians and nurses. Yet the decisions 

Clinical 

 

Logistical 
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facing ancillary service providers on a day to day basis are no simple matter. For 

instance, consider a typical day on an inpatient unit for one ancillary service provider 

(ASP), as illustrated in Figure 5-1. 

 

Figure 5-1: A Day on an Inpatient Unit for an Ancillary Service Provider (ASP) 

Daily, an ASP has a set of patients to see, which may be categorized into three 

groups: 

• Group D: Discharge-ready patients whose treatment is complete and discharge 

plans have been finalized.  
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• Group A: Newly admitted patients that have not yet been seen by the ASP either 

because they recently arrived on the unit and/or because orders for this ancillary 

service were recently placed.  

• Group R: Recurring patients currently in treatment in the IU who will continue to 

be seen on a daily basis. 

These three groups of patients have different characteristics and are associated 

with objectives that are often competing from the ASP’s perspective. For Group D, the 

ASP would want to ensure that these patients are discharged in a timely manner to satisfy 

bed requests for patients waiting in upstream units. Additionally, some of these patients 

may have cutoff times if they are discharged to a non-home facility (often 3 p.m.). If the 

discharge processes are not accomplished by then, this patient would spend an additional, 

unnecessary night at the unit. Other activities such as attending physician’s discharge 

order, laboratory tests/consults, and post-discharge care plan discussion by the RN are 

part of the overall discharge process of Group D patients.  

For Group A (new patients), the inpatient unit may have policies that require the 

ASP to see a newly-admitted patient within a specified time (typically 24-48 hours) upon 

their admission to the unit. These patients require initial evaluation and assessment by the 

ASP. For Group R (the recurring patients), the ASP would have to see some of them 

early in the day if specific aspects of daily treatment of the patient’s care depend upon the 

ASP’s input or initiation (e.g., occupational therapists must fit spinal injury patients for a 

brace before they can move and begin physical therapy). The time required for these 

patients is variable (10 minutes to an hour as observed by the authors). 
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Each morning the ASP is faced with the following question: how should I 

prioritize these patients so that everyone is seen today and all discharges are 

accomplished in a timely fashion? The ASP’s objective is to complete discharges (Group 

D) in a timely fashion while meeting the constraints of initial evaluation windows (Group 

A), avoiding care delays (Group R), and meeting discharge cutoffs (Group D). Figure 5-2 

shows a potential scenario and associated possible solution (assuming a typical 8 a.m. 

start time to see patients, after completion of 7-8 a.m. patient hand overs, nursing 

huddles, and other administrative or educational duties). 

 

Figure 5-2: A Potential Workload Day for an Ancillary Service Provider 

In this sequence, the ASP first sees a new patient (Group A), followed by a 

recurring patient (Group R), and finally a discharge patient (Group D), and repeats this 

cycle until all patients are seen. The choice of the group and a specific patient within it 

must be made in a way that satisfies temporal constraints. For instance, if the first 

discharge patient, d1, is destined for a long-term care facility with an admission cutoff of 

3 p.m., placing that patient earlier in the sequence would ensure meeting the cutoff; if the 

second discharge patient, d2, is a home discharge with no associated cutoff time, then 

placing the patient later in the sequence would suffice. Likewise, the first newly admitted 

patient, a1, and the second recurring patient, r2, may have constraints (initial evaluation 

a1, a2  r1, r2, r3  d1, d2  

Group A Group R Group D 

tθ=8 a.m. 

Example Sequence: a1 r2 d1 a2 r1 d2 r3 
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window for a1, care requirements for r2) that prevent them from being placed any later 

than they are in the sequence. 

While the above illustration provides a feasible sequence for the ASP across these 

7 patients, it is not easy to derive an optimal sequence in a real setting across 20+ patients 

(a typical ASP patient workload observed by the authors). Clearly, balancing an ASP’s 

workload in a way that maximizes discharge efficiency, while meeting requirements due 

to logistics of care and hospital policies, is no simple matter. To address this challenging 

and practical issue faced by ancillary service providers, we pose the following question: 

How to derive an optimal sequence of patients on a daily basis for an ancillary service 

provider assigned to an inpatient unit such that upstream patient boarding is minimized 

while adhering to care provision and transition constraints? 

The remainder of this paper is organized as follows. After reviewing the relevant 

literature, both in healthcare and operations research, in Section 5.2, we present our 

modeling approach to a typical workday for an ASP on an inpatient unit and a scenario-

specific MIP formulation in Section 5.3. Section 5.4 discusses the use of our model in a 

scenario sampling based optimization approach and presents a simulated-annealing 

method for practical strategy derivation in an applied setting. Section 5.5 presents our 

experimental evaluation of our approach and comparison to other potential strategies. 

Section 5.6 concludes the paper and provides recommendations for future research. 
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5.2 Relevant Literature 

5.2.1 Sequencing/Scheduling in Healthcare 

The authors were unable to identify research specifically addressing sequencing 

daily patient workload for an ASP on an IU. However, sequencing and scheduling 

problems are not new to healthcare as a whole. We here summarize some of the more 

recent and relevant contributions. 

In the inpatient setting, several studies consider the scheduling of patient 

appointments. Paulussen et al. (2006) develop an agent-based approach to inter-unit 

patient scheduling in hospitals. Chien et al. (2008) examine scheduling physical therapy 

rehabilitation operations, modeling their problem as a hybrid (job) shop scheduling 

problem and solving it with a genetic algorithm, benchmarking their solution with an 

MIP model.  

Another area of interest is diagnostic resource capacity allocation. Patrick et al. 

(2008) examine the scheduling of patients with different priorities for a diagnostic 

resource (CT scanner). They model this scheduling problem as a Markov decision 

process and solve the equivalent linear program through approximate dynamic 

programming. More recently, Geng and Xie (2016) expand on this problem and propose 

a finite-horizon Markov decision process to determine optimal patient scheduling for 

such a diagnostic facility. I. Vermeulen et al. (2009) present an approach to optimization 

of resource calendars, using computer experiments to simulate different scheduling 

approaches for allocating CT-scan capacity to different patient groups. 

Existing research also considers the staffing problem for various care providers in 

IUs and EDs. Jones and Evans (2008) develop an agent-based simulation model to 
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evaluate the impact of various ED physician staffing schedule configurations on patient 

waiting time. Ogulata et al. (2008) propose a hierarchical mathematical model, tested on 

real data, to generate weekly staff schedules for a physiotherapy service in a hospital. 

This model selects patients for physiotherapy, assigns them among the available 

physiotherapists, and then schedules them throughout the day for each physiotherapist. 

Topaloglu and Selim (2010) present an application of fuzzy set theory to solve the nurse 

scheduling problem (generating individual schedules for nurses that consist of workdays 

and days off over a planning period spanning a number of weeks).  

Surgical suite efficiency is another area in which scheduling of patients, staff, and 

capacity is crucial, and operating room (OR) scheduling is well studied in the literature. 

Cardoen et al. (1010) provide an extensive survey of research and methods for improving 

OR planning and scheduling. More recently, Mancilla and Storer (2013) propose a 

decomposition based approach to solve the stochastic sequencing of surgeries for a 

surgeon shared across two parallel operating rooms. 

Multiple studies exist that focus on outpatient appointment scheduling. Guo et al. 

(2004) use discrete-event simulation to examine several scheduling rules to improve 

appointment scheduling in an outpatient clinic. Rohleder et al. (2011) use discrete-event 

simulation to evaluate alternative staffing levels and patient scheduling rules for an 

outpatient orthopedic clinic. Zeng et al. (2010) examine the outpatient scheduling 

problem with overbooking for patients with different no-show probabilities to maximize 

expected profit, including revenue from patients and costs associated with patient waiting 

times and physician overtime. They examine the properties of the objective function and 
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optimal schedules, propose a local search algorithm and two sequential scheduling 

procedures, and perform numerical experiments to derive managerial insights. 

The work closest to our research would be that of Ogulata et al. (2008), with the 

following key differences. First, they consider the allocation of patients among multiple 

providers in a physiotherapy service; we focus on a single, generic ancillary service 

provider on a single unit. Second, they do not consider upstream effects, rather seek to 

maximize the number of patients seen, equally distribute workload among providers, and 

minimize patient time waiting on the providers; we account for systemic effects by 

considering upstream boarding time. Third, they consider patients as a single group 

weighted by individual priorities for physiotherapy; we consider different types of 

patients such as newly admitted, in treatment, and to-be-discharged. Finally, they 

consider a deterministic setting; we consider a stochastic one. 

5.2.2 Operations Research Applications 

If we view the ASP as a machine and the patients to be seen on a given day as 

jobs, then the ASP patient sequencing problem is conceptually similar to the single 

machine sequencing problem with three key characteristics: (i) an objective (upstream 

patient boarding) which is not standard; (ii) multiple job groups (three groups of 

patients); and (iii) stochastic processing times (group-dependent). 

Our problem contains different groups of jobs (patients). Scheduling problems 

with multiple types of jobs (typically referred to as job classes) on the same machine 

have been addressed in the literature. Potts (1991) proposes algorithms for minimizing 

completion times in a single-machine, multiple job class setting. Webster et al. (1998) 

develop a genetic algorithm to minimize lateness and earliness in the same setting (single 
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machine, multiple job classes). However, the interest in these problems arises from the 

fact that a penalty is incurred when switching between different classes of jobs in the 

sequence; a whole branch of research dedicated to scheduling under setups exists, see 

Allahverdi et al. (2008) for details. In contrast, in our problem, the different job groups 

drive the objective function and constraints, and determine the stochastic distributions of 

the processing times, rather than incurring setups in the sequence. Consequently, we 

avoid referring to our job categories as classes, and instead refer to them as groups. 

Stochastic sequencing problems are less studied than their deterministic 

counterparts, and vary in the solution methods. Researchers such as Sarin et al. (1991) 

and Zhou and Cai (1997) develop optimal sequencing rules for specific objectives for the 

stochastic single-machine problems. Van Oyen et al. (1999) follow a similar approach for 

a more complicated setting of the single-machine problem with due dates and job classes. 

The ASP’s patient sequencing problem has the following stochastic variables: (i) 

the processing time required of the ASP for each patient; (ii) the time required by the rest 

of the unit to fully complete a discharge; (iii) the arrival times of bed requests to the unit 

throughout the day. Note that while the number of patients to be seen in a given day is 

stochastic from day to day; it is known to the ASP at the start of the shift with a fair 

amount of certainty, which is the focus of our study. 

5.3 An Optimization Model for ASP Sequencing 

5.3.1 Characterizing a Typical ASP’s Workday 

We take a static-list single-machine sequencing approach to characterizing a 

typical workday of the ASP. We model all ASP-specific tasks associated with each 
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patient as one single processing time for that patient. Once the ASP begins to see 

patients, the ASP continues to process patients in the specified order until all those on the 

list have been seen. We approach the ASP as a limited (bottleneck) resource on the unit 

and assume that other services adjust to the ASP’s schedule so that there is no blocking 

for the ASP in fulfilling the sequence for the day. We assume that the patients to be seen 

today are all known in advance at the start of the ASP’s shift and no new patients are 

added throughout the day. This is reasonable, as newly admitted patients arriving to the 

unit throughout the day typically need to be seen within 24 hours, so they could be 

considered as newly-arrived patients on the next day. We assume processing times are 

independent of each other and of the sequence. We model the initial evaluation windows 

for Group A patients and care needs of Group R patients as hard due dates by which they 

must be processed by the ASP, although these may be more flexible in practice.  

Group D patients are not only processed by the ASP, but also require additional 

interactions with other care providers as part of their overall discharge process. We model 

this overall discharge process for each patient, excluding the ASP’s contribution, as a 

single process on the day-of-discharge, calculated from midnight. In reality, this process 

is composed of various steps executed by different elements of the care team, along with 

periods of inactivity and patient waiting. Our approach is necessitated by the variability 

in this process, the paucity of data, and the fact that there is little to no standardization in 

the order in which these subprocesses occur. Discharges are processed in parallel by the 

unit; however, the ASP must see each one individually at some point before the patient 

can be discharged from the unit and the bed made available. We assume that it is 

reasonable for the ASP – the bottleneck service – to preempt the rest of the discharge 
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process at any time (i.e., there are no precedence constraints between these two 

processes). Our approach to modeling a discharge can be visualized in Figure 5-3. 

 

Figure 5-3: Modeling Convention for the Inpatient Discharge Process 

As discussed previously, patients discharged to facilities have cutoff times by 

which they must be discharged to a facility or spend an extra night in the hospital. We 

model these as due dates by which the entire discharge must be completed, both the ASP-

specific process and the remaining unit discharge process. To avoid confusion, we refer 

to these as discharge cutoff times rather than discharge due dates. 

In building our model, we make the assumption that there are no empty beds in 

the unit (100% occupancy), as we only model the bed requests that depend upon 

discharges. Patients arriving to a unit with empty beds will experience no unit-dependent 

boarding time. For this reason, we also assume an equal number of bed requests and 

discharges. If the number of discharges is greater, the extra discharges will not affect the 

boarding time objective; if the number of bed requests is greater, the excess bed requests 

will never be fulfilled no matter what sequence is chosen. 

5.3.2 A Scenario-Specific MIP Model 

As indicated in Section 5.2.2, the ASP’s patient sequencing problem is stochastic 

in nature. A scenario corresponds to the system state characterized by three random 
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variates jointly drawn from the ASP processing time, discharge processing time, and bed 

request arrival time distributions, respectively. For ease of understanding, we now present 

the scenario-specific non-linear MIP model for optimal sequencing of patients with the 

objective of minimizing boarding time of upstream patients. Table 5-2 and Table 5-3 

summarize the notations used in the model. 

Table 5-2: Table of Notation 

Parameter Description 

𝑁 Set of patients to be seen by the ASP; 𝑖, 𝑗, 𝑘 ∈ 𝑁 

𝐷 ⊆ 𝑁 Set of patients to be discharged today; 𝑑, 𝑑′ ∈ 𝐷 

𝐵 Set of upstream bed requests; |𝐵| = |𝐷|;  𝑏 ∈ 𝐵  

𝑡0 
Start time of the first patient by the ASP (shift start after nursing huddle 

and/or rounds) 

𝑝𝑖 Processing time for patient i with the ASP 

𝑢𝑖 Due date for patient i to be seen (processed) by the ASP  

𝜌𝑑 
 Discharge processing time for patient d (sum of all processes required by 

providers other than the ASP for a discharge to be completed) 

𝛿𝑑 Discharge due date for patient d  

𝛼𝑏 Arrival time of upstream bed request b (presorted in nondecreasing order) 

 

Table 5-3: Table of Decision Variables 

Decision 

Variable 
Description 

𝑥𝑖𝑗 
Linear ordering variable; 

{
1 if patient 𝑖 precedes patient 𝑗 in the  sequence
0 otherwise

 

𝐶𝑖 Completion time of patient i by the ASP 

𝛺𝑑 Discharge completion time of patient t  

𝛺𝑑′
′  Sorted list of discharge completion times (sorted in nondecreasing order) 

𝛽𝑏 Boarding time of upstream bed request b 

𝑦𝑑′𝑑 List sorting variable; {
1 if 𝛺𝑑 is used as 𝛺𝑑′

′  

0 otherwise
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Several MIP formulations for a single-machine sequencing problem exist; see 

Keha et al. (2009). We chose a linear ordering variable formulation for this problem 

based on its performance as demonstrated by Keha et al. (2009) and on the fact that we 

did not want to over-specify the final sequence for an ASP by using a time-indexed 

formulation. A simple ordering of patients would be more intuitive to an ASP and easier 

to implement. 

Our objective is to minimize total upstream boarding time:  

min
 

𝐵𝑇 = ∑ 𝛽𝑏𝑏∈𝐵  (1)  

subject to: 

𝐶𝑖 = 𝑡0 + ∑ 𝑝𝑗𝑥𝑗𝑖𝑗∈𝑁
𝑗≠𝑖

+ 𝑝𝑖      ∀𝑖 ∈ 𝑁 (2) 

𝛺𝑑 = max{𝑝𝑑 + 𝜌𝑑 , 𝐶𝑑}      ∀𝑑 ∈ 𝐷 (3) 

𝐶𝑖 ≤ 𝑢𝑖       ∀𝑖 ∈ 𝑁 (4) 

𝛺𝑑 ≤ 𝛿𝑑       ∀𝑑 ∈ 𝐷 (5) 

𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1      1 ≤ 𝑖 < 𝑗 ≤ |𝑁| (6) 

𝑥𝑖𝑗 + 𝑥𝑗𝑘 + 𝑥𝑘𝑖 ≤ 2      𝑖, 𝑗, 𝑘 ∈ 𝑁 and 𝑖 ≠ 𝑗 ≠ 𝑘 (7) 

𝑥𝑖𝑗 ∈ {0,1}     ∀𝑖, 𝑗 ∈ 𝑁 (8) 

Constraints (2), (4), and (6)-(8) are standard single machine sequencing 

constraints for a linear ordering variable formulation, while Constraints (3) and (5) 

govern the additional processes required for a discharge patient. Constraint (2) defines 

the completion time of each patient by the ASP. Constraint (3) defines the discharge 

completion time for a patient in the discharge group. Constraint (4) enforces due dates for 

the patients to be seen by the ASP. Constraint (5) enforces discharge cutoff times 

(discharge completion due dates) for Group D patients. Constraint (6) is the set of 
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conflict constraints, ensuring that either patient i is processed before patient j or patient j 

is processed before patient i; it also ensures that every patient is sequenced. Constraint (7) 

is the set of transitivity constraints, ensuring a linear order between three patients in the 

sequence. Constraint (8) is the set of binary decision constraints on the linear ordering 

variables. 

The following constraints capture the system-wide impact of the proposed 

inpatient discharge planning model: 

βb = max{Ωd′
′ − αb ,0 | d′ = u}      ∀b ∈ B, ∀d′ ∈ D (9) 

Ωd′
′ = ∑ Ωd ∗ yd′dd∈D       ∀d′ ∈ D (10) 

Ωd′
′ ≥ Ωd′−1

′       d′ = 2, … , D (11) 

∑ yd′dd∈D = 1      ∀d′ ∈ D (12) 

∑ yd′dd′∈D = 1      ∀d ∈ D (13) 

yd′d ∈ {0,1}      ∀d′, d ∈ D (14) 

Constraints (9)-(14) govern the assignment of upstream bed requests to beds 

emptied by discharge-ready patients. Constraint (9) defines the boarding time for each 

upstream bed request, assuming a FIFO assignment of requests to inpatient beds. For this 

constraint to correctly calculate the boarding time, a sorted list of discharge completion 

times (sorted in nondecreasing order) is required. Constraints (10)-(14) define this sorted 

list of discharge completion times. 

Notice the nonlinear constraints (3), (9), and (10). While (3) and (9) can be easily 

linearized using standard techniques, we introduce a new decision variable, 𝑧𝑑′𝑑, and 

replace the quadratic Constraint (10) with Constraint (10′). To achieve equivalence, we 

further add Constraints (15) and (16). Note that in Constraint (15), we introduce M as the 
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upper limit of the discharge completion times; in our problem, this is 24, since all 

discharges must be completed by the end of the day. 

Ωd′
′ = ∑ zd′dd∈D       ∀d′ ∈ D (10′) 

zd′d ≥ Ωd − M(1 − yd′d)      ∀d′, d ∈ D (15) 

zd′d ≥ 0      ∀d′, d ∈ D (16) 

5.4 Solution Approach and Strategy Derivation 

5.4.1 Practical Considerations in Solving the Stochastic ASP Sequencing Problem 

While a sophisticated stochastic programming algorithm could be developed to 

solve the underlying sequencing optimization problem under uncertainty, this would 

likely not be used in practice due to constraints on the solution time (e.g., a provider 

would prefer solutions in a matter of seconds) and integration with hospital legacy 

systems. In addition, our experience working with the hospital units suggests that care 

providers prefer solutions that are easy to understand and remember, and are consistent 

from day to day. Thus, deriving a single decision rule from an optimization model that is 

easy to understand and promising to all the scenarios results in a higher likelihood of 

implementation. In some sense, we can refer to such schedules as robust to deviations 

from all possible scenarios (i.e., realizations of the uncertainties). We, therefore, propose 

a meta-heuristic approach to solve this problem that uses the fact that the scenario-

specific deterministic model can be solved quickly using a commercial solver (e.g., 

CPLEX v12.7).  

We first refer to the system configuration via four attributes that define the ASP’s 

workload on a given day: (i) the total number of patients; (ii) the percent of patients in 
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each of the three patient groups (D, A, R); (iii) the percent of patients in Groups A and R 

with due dates; and (iv) the percent of patients in Group D with discharge cutoffs. Each 

of these would usually be known by the ASP at the start of the shift with a fair amount of 

certainty. For a specific system configuration, we generate a large set S of scenarios 

which are potential realizations of the stochastic variables (i.e., ASP processing times, 

discharge processing times, and bed request arrival times). For each scenario sS, we 

solve the MIP model optimally using CPLEX, which provides an optimal sequence for 

that specific scenario. These scenario-specific optimal sequences are in terms of jobs, 

e.g., {4,2,5,8,3,10,1,6,7,9}, which can be translated more meaningfully to the ASP as 

{A,D,A,R,D,R,D,A,R,R}, where Group D = jobs 1-3, Group A = jobs 4-6, and Group R 

= jobs 7-10.  

It is quite possible that each scenario may result in a different sequence of patients 

than the others for the same system configuration. We, therefore, develop an approach to 

analyze all of the scenario-specific optimal sequences for a given configuration in order 

to derive a single strategy that addresses the system constraints and clinician preferences. 

This derived strategy will also be able to further guide the ASP on the following: which 

specific patients in the D, A, and R groups should be sequenced in the positions assigned 

to their group? Which group positions should be given to patients with due dates? Should 

the patients be sorted within their groups, and if so, how?     

5.4.2 Strategy Derivation 

We propose a Simulated Annealing (SA) algorithm to derive a single strategy for 

a given configuration such that it is promising to all the scenario-specific MIPs. SA is a 

proven approach for such a combinatorial problem (Lin et al., 2009; Loukil et al., 2007; 
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Eglese, 1990). SA improves upon an existing feasible sequence by swapping jobs across 

positions. To measure the performance of any strategy, we consider its difference on the 

boarding time from the optimal strategy derived for each specific scenario. We then 

define our primary performance metric to be the average of the differences over all the 

scenarios.  In summary, we seek to minimize the average resultant deviation from the 

scenario-specific optimal boarding time, i.e.,  

 

min
 

1

|𝑆|
∑ |𝐵𝑇𝑠

𝑆𝐴 − 𝐵𝑇𝑠
𝑀𝐼𝑃|𝑠∈𝑆 , (17) 

 

where 𝐵𝑇𝑠
𝑆𝐴 is the boarding time resulting from the application of the single SA-derived 

strategy in scenario s and 𝐵𝑇𝑠
𝑀𝐼𝑃 is the optimal boarding time found via solving the MIP 

specific to scenario s.  

To ensure the ease of implementation of our strategy, we consider three decision 

points in the proposed SA and construct the solution accordingly: (i) which patient group 

to assign to which position; (ii) within each patient group, where to assign the patients 

with due dates (or discharge cutoffs if a discharge); and (iii) how to sort the patients 

within each group by expected processing time (or total discharge processing time, 

comprising the ASP processing time plus the remaining unit discharge processing, for 

discharges).  

An illustration of our solution representation is demonstrated in the following 

potential strategy: {R1, A1, R1, D1, D2, D1, A2, R2, A2, R2, 1,1,3,2,3,1}. The first ten spots 

in the solution representation correspond to positions in the sequence. Each position is 

assigned to one of the three patient groups, D, A, or R, further subdivided into patients 

with due dates or discharge cutoffs, denoted by the subscript 1, and those without due 
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dates or cutoffs, denoted by the subscript 2. Essentially, there are six subgroups of 

patients which may be assigned to the positions in the sequence. The initial solution has 

the correct number of positions allocated to each subgroup for the system configuration 

in question. The SA algorithm is then employed to decide which positions to assign to 

which subgroup by swapping patients between positions. 

The last six spots in the solution representation correspond to sorting for each of 

the six patient subgroups described previously. When the chosen strategy is applied, the 

patients within each group must be sorted in some order. We introduce six flags at the 

end of the solution representation, each of which is for the D1, D2, A1, A2, R1, and R2 

subgroups, respectively. The first two flags can take on a value between 1 and 5, dictating 

a sorting operation by the shortest expected total discharge processing time, longest 

expected total discharge processing time, shortest expected ASP processing time, longest 

expected ASP processing time, or randomly (no sorting), respectively. The last four flags 

can take on values between 1 and 3, dictating a sorting operation by the shortest expected 

ASP processing time, longest expected ASP processing time, or randomly (no sorting), 

respectively. 

A neighborhood is then defined as a combination of two decisions, a positional 

swap and the sorting choice. The neighborhood of the positional portion of the solution 

representation is defined as a random swap between two patients in different subgroups. 

We only consider swapping between patients in different subgroups and not patients 

within the same subgroup (thus, a D1 can be swapped with any D2 but not with another 

D1). The within-subgroup ordering of patients is accounted for by the sorting technique 

applied to each subgroup. The neighborhood of the sorting portion of the solution 
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representation is defined as a random choice of a value for each of the six sorting 

variables. 

Once a potential solution in the neighborhood of the current solution has been 

generated, it is then evaluated and compared to the current solution in terms of the 

average deviation as shown in Equation (17). However, there is no guarantee that a 

potential strategy will always maintain feasibility in terms of meeting due dates and 

discharge cutoffs (e.g., subgroups D1, A1, and R1). Thus, we calculate post-hoc, for a 

strategy, two additional performance criteria across all scenarios:  the average numbers of 

violations of (i) due dates and (ii) discharge cutoffs. If the strategy results in any 

infeasibilities (i.e., violates the constraints in some scenario-specific instances) based on 

these two criteria, it is rejected; if it is feasible, then it is accepted (i) always if it is 

strictly better than the current strategy, (ii) with 50% probability if it is equal to the 

current strategy, or (iii) based on the standard SA acceptance probability (based on the 

Boltzmann distribution) if it is worse (Eglese, 1990).   

The initial temperature chosen for our SA was 1.0, with a constant proportional 

decrease rate of 0.9. The stopping criterion for the SA was two-fold: (i) minimum 

temperature or (ii) number of non-improving moves. We modified our SA to save all the 

equally best solutions it found. Our SA was coded in Python v3.5.  

5.5 Experimental Evaluation of Our Approach 

5.5.1 Experimental Framework and Data 

For our experimental evaluation, we focused on the ancillary service responsible 

for care management in the inpatient setting given their logistical role in executing 
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discharges. However, our approach is generic for ancillary services responsible for other 

tasks in an inpatient setting. To this extent, we collected 1,303 de-identified patient 

records for 2015 from one of the IUs at a large teaching hospital in the Northeast US. We 

also interviewed 10 RN and SW care managers across 5 IUs (renal, neurology, oncology, 

cardiovascular, and advanced inpatient medicine) at this hospital. See Section 5.7 for a 

summary of these interviews. Based on the responses from our interviews, we derived the 

factor levels as indicated in Table 5-4. The combinations of these factors and levels result 

in a total of 24 different configurations. 

Table 5-4: Design Framework for System Configurations 

Factor Description Levels Level Details 

N Number of  patients 
L 

H 

Low (10) 

High (20) 

DAR 
Percent of patients in the  

three groups 

B 

DH 

DL 

Balanced (30%, 30%, 40%) 

Discharge heavy (50%, 20%, 30%) 

Discharge Light (10%, 40%, 50%) 

DD 
Percent of patients in groups 

A and R with due dates 

MH 

ML 

Morning Heavy (40%) 

Morning Light (20%) 

DC 
Percent of patients in group 

D with discharge cutoffs 

NHH 

NHL 

Non-Home Heavy (60%) 

Non-Home Light (15%) 

 

In Table 5-4, we consider two levels of the number of patients (N), i.e., 10 (L) and 

20 (H), to be seen by the ASP on a given day. These may represent two different 

providers on the same unit (SWs typically have fewer patients than RNs due to the 

complexity of their cases), or ASPs from the same service on different IUs, or two 

different days for the same provider on the same unit. The second factor (DAR) controls 

the distribution of the patients across the three patient groups D, A, and R. The first level, 

B (where D=A=30% and R=40% of the patients), suggests a reasonably similar number 

of patients in each group; DH and DL consider situations when there are more and fewer 
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discharge patients, respectively. The third factor (DD) controls the percent of Group A 

and R patients with due dates of 12 noon (the rest have no due dates), representing the 

real challenge faced by care managers that may need to see the patients in the morning, 

competing with their usual focus on discharges first. We consider 40% (MH) of both A 

and R patients to be seen by noon as a particularly busy morning; 20% (ML) would be a 

lighter morning. The last factor represents the percent of Group D patients with a 

discharge cutoff of 3 p.m., based on the typical time when a patient being discharged to a 

facility (long-term care, nursing home, etc.) would need to leave the hospital in order to 

ensure transportation and admission to the downstream facility; 60% (NHH) suggests a 

day or a unit with a large proportion of these non-home discharges, while 15% (NHL) 

suggests a day or a unit with more home discharges. 

For each one of the 24 system configurations, there are three stochastic elements 

specifying the scenarios: ASP processing time for each patient, discharge process time 

for the discharges, and bed request arrival times. For ease of comparison across scenarios 

for a given configuration, we estimated the expected bed request times, where B is the set 

of bed requests times, |𝐵| =  |𝐷| ensuring that the total number of bed requests is the 

same as the number of discharges. The arrival times were generated ahead of time 

according to the following algorithm:  

(1) For a given system configuration (for which |𝐷| is known), draw |𝐵| random arrival 

times from a Normal 3-mixture distribution; this distribution best fit the 2015 

dataset (p<0.05) with the lowest AIC value (see Section 5.8.1). 

(2) Sort these times in nondecreasing order. 

(3) Repeat steps (1) and (2) 1,000 times. 
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(4) Find the average arrival time for each of the |𝐵| positions across the 1,000 

replications. 

Table 5-5 summarizes the expected bed request times derived from the above approach. 

Table 5-5: Expected Bed Request Arrival Times of Day 

N DAR |𝐵| Expected Arrival Times (24-hour notation) 

L B 3 (9.24, 13.65, 17.23) 

L DH 5 (7.33, 11.29, 13.67, 15.8, 18.5) 

L DL 1 (13.53) 

H B 6 (6.69, 10.72, 12.87, 14.46, 16.43, 19.04) 

H DH 10 (4.67, 8.57, 10.97, 12.27, 13.2, 14.09, 15.11, 16.35, 17.97, 20.1) 

H DL 2 (10.78, 16.09) 

 

The remaining two stochastic elements, ASP processing times and discharge 

processing times, were generated for each scenario according to prespecified 

distributions. Data collected in interviews of ASPs for the ASP processing times were not 

enough to generate statistically significant curve fits; instead, the data provided likely 

averages and upper and lower bounds for these times. For this reason, we assumed group- 

and configuration-specific Triangular(a,b,c) distributions, where a, b, and c were derived 

from these interviews. For the discharge process times (in hours), we used a Triangular(8, 

13.99, 20) distribution from the 2015 dataset. See Section 5.8.2 and Section 5.8.3 for 

further details. 

We generated 1,000 scenarios for each of the 24 system configurations. When 

generating these scenarios, we ensured that the total ASP time required across all patients 

(sum of the processing times) was within 7.5 hours (excluding morning rounds/huddle 

and other administrative tasks from a typical 9-hr workday). Solving the scenario-specific 

MIP model in each of these 24,000 scenarios required approximately 1.5 hours. 
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5.5.2 SA Solutions 

We first evaluated the performance of the SA-derived strategy for each of the 24 

configurations. Although the objective of the SA was to minimize the average deviation 

of boarding time (in hours) for each scenario from the optimal solution of the scenario-

specific MIP model, we used additional statistics such as standard deviation, median, and 

interquartile range (IQR). Table 5-6 summarizes these quantities across the 24 

configurations. As an example, Figure 5-4 illustrates the distribution of the sample 

deviations across 1,000 scenarios for a specific configuration #5 (i.e., L/B/MH/NHH). 

The algorithm took roughly 20-30 minutes to solve the smaller patient cases, and 1-3 

hours for most of the larger cases. The larger DH cases, being the most constrained, took 

the longest to converge, between 3.5 and 6.8 hours.  
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Table 5-6: Robustness of the SA Strategies across All Scenarios (Hrs) 

 Configuration Mean Std. Dev. Median IQR 

1 L/DH/MH/NHH 0.36 0.61 0.00 0.56 

2 L/DH/MH/NHL 0.25 0.47 0.00 0.31 

3 L/DH/ML/NHH 0.22 0.49 0.00 0.19 

4 L/DH/ML/NHL 0.13 0.32 0.00 0.00 

5 L/B/MH/NHH 0.44 0.62 0.07 0.72 

6 L/B/MH/NHL 0.23 0.46 0.00 0.20 

7 L/B/ML/NHH 0.20 0.42 0.00 0.14 

8 L/B/ML/NHL 0.00 0.00 0.00 0.00 

9 L/DL/MH/NHH 0.00 0.00 0.00 0.00 

10 L/DL/MH/NHL 0.00 0.00 0.00 0.00 

11 L/DL/ML/NHH 0.00 0.00 0.00 0.00 

12 L/DL/ML/NHL 0.00 0.00 0.00 0.00 

13 H/DH/MH/NHH 0.26 0.50 0.00 0.30 

14 H/DH/MH/NHL 0.11 0.30 0.00 0.00 

15 H/DH/ML/NHH 0.08 0.26 0.00 0.00 

16 H/DH/ML/NHL 0.05 0.19 0.00 0.00 

17 H/B/MH/NHH 0.15 0.32 0.00 0.09 

18 H/B/MH/NHL 0.20 0.40 0.00 0.20 

19 H/B/ML/NHH 0.04 0.14 0.00 0.00 

20 H/B/ML/NHL 0.03 0.13 0.00 0.00 

21 H/DL/MH/NHH 0.27 0.43 0.00 0.52 

22 H/DL/MH/NHL 0.15 0.30 0.00 0.04 

23 H/DL/ML/NHH 0.04 0.15 0.00 0.00 

24 H/DL/ML/NHL 0.00 0.00 0.00 0.00 

 

 

Figure 5-4: Distribution of Sample Deviation from Optimal for Configuration 5 
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Notice in Table 5-6 that the mean deviation across all the configurations was 0.13 

hrs (7.8 minutes). The corresponding medians were 0 minutes, which suggests that the 

derived strategies frequently achieved optimal boarding time. Figure 5-4 illustrates that 

even in the case with the worst deviation from optimal (Configuration #5), the SA-

derived strategy for this configuration resulted in less than 18-minute deviation from 

optimal in 60% of the scenarios. The reason that in a few scenarios the SA-derived 

strategies performed worse was likely due to the unique features inherent in those 

scenarios. Naturally, such occurrences were more frequent in more constrained cases, 

such as DH, MH, and MHH. These findings led us to believe that the SA-derived 

strategies were of good quality. With this evidence, we further analyzed the structure of 

the SA-derived strategies across all configurations to see if they could be grouped into 

broader categories.  

For many configurations, SA found several alternate best solutions (with the same 

objective value). This was because of multiple orderings within the A1, R1, A2, and R2 

subgroups. That is, while the discharge patients, D1 and D2, were usually tightly 

constrained to specific positions, the A1 and R1 patients were usually grouped together in 

early positions in any order, and the A2 and R2 patients were almost always grouped 

together in the last positions in any order. For example, for Configuration 5, {R1, A1, R1, 

D1, D2, D1, A2, R2, A2, R2}, {R1, R1, A1, D1, D2, D1, R2, A2, R2, A2 }, and { A1, R1, R1, 

D1, D2, D1, A2, R2, R2, A2} all resulted in equally best solutions.  

Further, across all configurations, if there were more than one patient in the D1 or 

D2 subgroup, that subgroup was sorted by the shortest expected total discharge 

processing time. We did not notice any sorting in the A and R subgroups. 
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The above observations allowed for the 24 strategies, one each for the 24 

configurations, to be further aggregated into 5 groups, as illustrated in Table 5-7. 

Table 5-7: Strategies from Simulated Annealing 

  Sequence Position 

 

Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

5 L/B/MH/NHH                     

          6 L/B/MH/NHL                     

  

KEY 

   7 L/B/ML/NHH                     

   

 = D1 

 

 

 9 L/DL/MH/NHH                     

   

 = D2 

 

 

 10 L/DL/MH/NHL                     

   

 = A1, R1 

 

 

 11 L/DL/ML/NHH                     

   

 = A2, R2 

 

 

 12 L/DL/ML/NHL                     

          21 H/DL/MH/NHH                                         

22 H/DL/MH/NHL                                         

                      1 L/DH/MH/NHH                     

          2 L/DH/MH/NHL                     

          3 L/DH/ML/NHH                     

          4 L/DH/ML/NHL                     

          8 L/B/ML/NHL                     

          18 H/B/MH/NHL                                         

23 H/DL/ML/NHH                                         

24 H/DL/ML/NHL                                         

                      13 H/DH/MH/NHH                                         

17 H/B/MH/NHH                                         

19 H/B/ML/NHH                                         

20 H/B/ML/NHL                                         

                      14 H/DH/MH/NHL                                         

                      15 H/DH/ML/NHH                                         

16 H/DH/ML/NHL                                         

 

Notice the priority shift of patients in D1 and D2 subgroups towards the front of 

the sequence as the number of discharges increased across configurations (either as a 

factor of the number of patients or as a factor of the percentage of discharges). In general, 

this correlates with the problem complexity. With more patients, there are more 
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possibilities for sequencing. With more discharges relative to the other groups, there are 

more possibilities to prioritize discharges without violating due date constraints for A and 

R patients. Intuitively, prioritizing more discharges earlier in the sequence, when 

possible, is preferred in order to minimize the boarding time of upstream patients. 

However, the ordering within discharges of D1 and D2 subgroups was specific to the 

different configurations. That is, while the positioning of discharges relative to A and R 

patients followed similar patterns in the 5 broader groups, the discharge positions 

allocated to D1 and D2 patients specifically were dependent on the number of discharges 

and whether that configuration was NHH or NHL. 

5.5.3 Strategy Comparisons 

While SA was able to find high-quality strategies for all 24 configurations, and 

these high-quality strategies could be grouped into 5 overarching SA-derived strategies, 

we wanted to compare them with single strategies that could be applied across allthe 24 

configurations. Such single strategies may be even easier to understand, remember, and 

implement from day to day in practice. We, therefore, considered 6 other strategies for 

comparison with the 5 SA-derived strategies, as listed in Table 5-8.   
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Table 5-8: Alternate Strategies 

Strategy Details 

P1 A and R patients with due dates first, then discharges with cutoffs, then the rest of 

discharges, then the rest of A and R patients; within each discharge subgroup, sort by 

the shortest expected total discharge processing time 

P2 A and R patients with due dates first, then discharges, sorted by the shortest expected 

total discharge processing time (regardless of cutoffs or not), then the rest of A and R 

patients 

P3 Discharges with cutoffs first, then discharges without cutoffs, then newly arrived 

patients with due dates, then newly arrived patients without due dates, then recurring 

patients with due dates, then recurring patients without due dates 

P4 One discharge first (non-home if non-home-heavy day, home if not), then A and R 

patients with due dates, then discharges with cutoffs, then the rest of discharges, then 

the rest of A and R patients; within each discharge subgroup, sort by the shortest total 

expected discharge processing time 

P5 “Earliest Due Date”; A and R patients first (12 noon due date), then non-home 

discharges (15 p.m. discharge cutoff), then rest of patients in any order 

P6 “Shortest Processing Time”; sort all patients, regardless of subgroup, by the shortest 

expected ASP processing time 

 

The first two strategies were derived from our knowledge of the problem and 

observation of the patterns that emerged across the SA sequences. We aggregated the SA 

strategies into two simpler ones, P1 and P2. Both these strategies placed A1 and R1 

patients in the first spots in the sequence in any order, followed by discharges, followed 

by the A2 and R2 patients in any order. However, in P1, all D1 patients were placed before 

the D2 patients; each discharge subgroup was sorted by the shortest expected total 

discharge processing time. In P2 discharges were simply sorted according to the shortest 

expected total discharge processing time. None of the other groups were sorted by any 

pattern.  

The third strategy, P3, was derived from our interviews with the ASPs, who often 

preferred to focus on discharges first, then newly arrived patients, then recurring patients. 

Patients within each group were sorted only by due dates or discharge cutoffs. The fourth 
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strategy, P4, was proposed in a different study (Parikh et al., 2017;  Ballester et al., 2017). 

The last two strategies, P5 and P6, were adaptations of proven sequencing rules from the 

deterministic machine sequencing literature (i.e., earliest due date, EDD, and shortest 

processing time, SPT); we wanted to examine their generalizability to our problem. 

The 6 alternate strategies and the 5 SA grouped-strategies (collectively referred to 

as PSA) were compared across their corresponding average deviations from the optimal 

boarding time (see  Figure 5-5).  

For P1, because A1 and R1 patients were always placed before any D patients, the 

boarding time gap was much worse than PSA’s gap in problem instances where PSA 

sequenced some discharges before A1 and R1 (all but 9 configurations). Additionally, 

because P1 always placed D1 before D2 patients, it performed worse than PSA in 

configurations with higher percentages of non-home patients. In such configurations, PSA 

could intersperse the positions of the two groups and thereby place more of the expected 

shorter discharges earlier while still being constrained by the discharge subgroups. 

However, P1’s prioritization of A1 and R1 before D1 before all other patients allowed it to 

always maintain feasibility in both due dates and cutoffs. 

P2 relaxed the second limitation of P1 (always prioritizing D1 before D2) and 

simply sorted discharges by the shortest expected total discharge processing time, 

ignoring the discharge subgroups entirely. Thus, it performed much better than P1, and in 

small problem instances (Configurations 1-12) it typically outperformed PSA, since PSA 

was still limited by the assignment of discharge subgroups to specific positions. 

However, this aspect of P2 led to discharge cutoff violations in 9 configurations, since 

there is no guarantee that D1 patients will meet their cutoffs in P2. Additionally, because 
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P2 still placed all A1 and R1 patients before any discharges like P1, it performed worse 

than PSA in most large problem instances (Configurations 13-24). Like P1, this 

prioritization did guarantee that P2 did not violate due dates. 

Despite the fact that P3 placed all discharges first, it consistently performed 

poorly. This is due to the fact that this strategy did not sort discharges at all, illustrating 

the necessity of some sorting mechanism for discharges. Nonetheless, in situations with 

lower numbers of discharges, it performed close to or better than PSA, as the sorting is not 

as critical when there are only 1 or 2 discharges. This focus on discharges first naturally 

ensured that P3 did not violate cutoffs. Conversely, this resulted in P3 having the most due 

date violations; it always missed some due dates for the other patients.  

P4 was structurally similar to P1, with the only difference being that it always 

placed one discharge before the A1 and R1 patients. This allowed it to outperform P1 in all 

configurations. However, like P1, it was still limited to placing all D1 before D2 patients 

when processing discharges after the A1 and R1 patients. While this guaranteed that it did 

not violate discharge cutoffs, it prevented P4 from outperforming PSA in cases with larger 

numbers of discharges. However, in configurations with smaller numbers of discharges 

P4 performed very close to PSA, and in several of these cases it outperformed PSA. These 

were typically configurations when PSA did not place any discharges before the A1 and R1 

patients in order to maintain due date constraints. In all 9 configurations where PSA did 

not sequence any discharges first, P4 violated due dates. This further illustrates the 

tradeoff between prioritizing discharges and meeting due dates for A and R patients. 

The machine sequencing rules, P5 and P6, performed the worst on the boarding 

time measure across all configurations. For P5, this was because: discharges were not 
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placed before A1 and R1 patients, all D1 were placed before D2 patients, and discharges 

were not sorted. P6 represents a myopic view of the ASP when sorting the patients based 

solely on the ASP’s processing time with each, which leads to poor performance. P5 did 

not violate due dates or discharge cutoffs (i.e., this is the nature of EDD), while P6 

violated both due dates and discharge cutoffs. Thus, for ease of display we do not include 

them in Figure 5-5. 

 

Figure 5-5: Strategy Comparison on Average Boarding Time Increase from Optimal 

= configuration with discharge cutoff violations for P2 

= configuration with due date violations for P4 

Figure 5-5 shows that PSA performed much better than all other strategies on the 

average deviation in boarding time, while meeting due dates and discharge cutoffs. 

Similarly, P1, which was also constrained by discharge subgroups, did not violate due 

dates and cutoffs, but failed to outperform PSA in boarding time because of the placement 
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of D1 patients before D2 patients; in PSA these positions can be interchanged. Since P2 

was not constrained by discharge subgroups, it outperformed PSA in boarding time in 

small problem instances (i.e., Configurations 1-12) and it did not violate due dates. 

However, it could not guarantee feasibility in meeting discharge cutoffs. Additionally, 

due to the fact that A1 and R1 patients were always placed before any discharges, P2 

performed worse than PSA in large problem instances (i.e., Configurations 13-24).  P3 

occasionally outperformed PSA due to its focus on discharges first, but in general P3 failed 

to perform well because D1 patients were always placed before D2 patients and neither 

discharge subgroup was sorted. The discharge-focused nature of P3 caused it to 

consistently violate due dates, although it did not violate discharge cutoffs. By placing 

one discharge first, P4 outperformed P1 and sometimes PSA, but at the cost of due date 

violations. P5 and P6 had the worst boarding time gaps. P5 consistently maintained 

feasibility. P6 rarely maintained feasibility in due dates or discharge cutoffs.  Table 5-9 

summarizes the performance of these strategies across all 24 configurations. 

Table 5-9: Strategy Comparison (Summary across All 24 Configurations) 

Strategy 
Mean Deviation from 

Optimal (Hrs) 

Mean # Due Date 

Violations 

Mean # Cutoff 

Violations 

PSA 0.134 0 0 

P1 0.440 0 0 

P2 0.127 0 0.017 

P3 0.510 2.522 0 

P4 0.306 0.125 0 

P5 1.655 0 0 

P6 3.054 0.765 0.494 

 

Note that one of these strategies (i.e., P2) may appear to perform better than the 

SA-derived strategies, but at the cost of occasional violations in discharge cutoffs. 
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Although occasional, their impact could be quite severe; e.g., missing a discharge cutoff 

by a few minutes could result in missing the last shuttle to a long term care facility, 

causing an unnecessary overnight stay at the unit. P4 was the next closest contender to 

PSA, but resulted in over double the mean deviation of PSA and occasionally violated due 

dates. Nonetheless, this might be more acceptable than P2 to an ASP who desires a single 

strategy for any situation and with the latitude to prioritize discharges at some tolerable 

expense to other patients. P1, at triple the mean deviation of PSA, was the next best 

strategy that was always feasible. 

5.6 Conclusions 

In this work, we examined a real problem faced by ancillary service healthcare 

providers (ASPs) serving an inpatient unit. An ASP plays an important logistical role in 

discharge planning. As a limited resource on inpatient units, ASPs can significantly affect 

the flow of patients on the unit and the hospital overall. However, the ASP must balance 

a focus on discharges with the needs of the other patients that must be seen every day. 

This necessitates efficient sequencing of the ASP’s patient workload. In order to be 

useful, such a sequence would need to be simple enough to understand, remember, and 

implement every day but also robust to the daily variability in healthcare. 

To address this problem, we proposed a framework that combined mathematical 

modeling, scenario sampling, and meta-heuristics to derive implementable strategies. 

Real data and interviews with ASPs at a large teaching hospital led to the derivation of 5 

strategies, specific to a set of configurations. These strategies not only resulted in the 

least deviation from optimal boarding time but also avoided violating any constraints. 

Single-strategy approaches may perform almost as well as SA-derived strategies, but they 
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may occasionally violate due dates or cutoffs, with varying degrees of implications, e.g., 

violating the hospital 24-hour window of seeing a newly-arrived patient, delaying the 

activities of other providers for a recurring patient, or potential overnight stays if a cutoff 

is missed for a discharge-ready patient. Thus, such strategies trade feasibility for ease-of-

implementation. 

Broader insights we derived in this study suggest: (i)  having a focus on newly-

arrived and recurring patients with due dates first, then discharges, then the rest of the 

patients; (ii) increasing prioritization of discharges over patients with due dates as the 

proportion of discharges and/or the total number of patients increases; and (iii)  ASPs 

maintaining a systemic prioritization of discharges by total expected discharge processing 

time, rather than a myopic prioritization based only on the ASP’s workload. 

Future work in this area could focus on relaxing some of the modeling 

assumptions and assessing the potential generalizability of our approach. For instance, 

our model could be extended to account for blocking of the ASP by other services, 

unexpected new patients/interruptions, and/or ASP compliance rate to the suggested 

sequence. Evaluating our approach using data from a different unit or hospital will 

evaluate generalizability and applicability of our findings across inpatient units. 
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5.7 Appendix A: Summary of Care Manager Interviews 

Table 5-10: Interview Characteristics and System Estimates 

Interview # Unit/Service Care 

Manager 

Category 

Unit Size 

(Beds) 

Patients 

per day 

(range) 

Discharges 

per day 

(range) 

New evals 

per day 

(range) 

1 Renal RN 35 14 18 4 7,9 4 7,9 

2 Neuro SW 24-9 10 15 2 5,6 2 5,6 

3 Oncology SW 40 8  1 2 1  

4 AIM RN 29 13 18 2 8 4 5 

5 Oncology RN 40 15 20 1 5 5 6 

6 AIM SW 29 8 10 3 4 2 4 

7 Neuro RN 24-9 18  1 7 1 7 

8 Renal SW 35 10 12 2 3 3 4 

9 Cardio RN 40 24  4 5 4 5 

10 Cardio SW 40 13  1 2 2 3 

 

Table 5-11: ASP Process Time Estimates 

 Processing Time Estimates (in minutes unless otherwise noted) 

Interview # Discharges New Evals Recurring 

1          

2 15 20 2 hrs 15 20 30-45  35-40 1 hr 

3 30 2 hr 3 hr 30 45 60 20 30 60 

4 30 1.5 hrs 2 hrs 10 15-20 30 10 25 60 

5 20 45 2 hrs 15 30 60 10 30 45 

6 0.5 hrs 1.5 2.5 20 30 45 15 20-30 60 

7 10 30-45 60 5 15 45-60 10 20 30 

8 30 1 hr 2-3 hrs 30 30 50 10 30 1 hr 

9 45-60  2 hrs  1 hr  15-20 30 45 

10 15 1 hr 2 hrs 30 45 60 15 1 hr 2.5 hrs 
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Table 5-12: ASP Process Time Distribution Estimates 

 Processing Time Percentage Estimates (distribution across min, mid, max) 

Interview # Discharges New Evals Recurring 

1      10%   25% 

2 30% 30% 40%   10-15%   2-3/day 

3 2/day  1/week 15% 15% 70% 10% 50% 40% 

4 25% 50% 25% 20% 60% 20% 50% 25% 25% 

5 50%  3/week  60% 3/week 25% 50% 25% 

6 10% 60% 30%  60-70%  5-10%  5-10% 

7      1/week    

8 25% 25% 50%       

9 30%  60%    30%  40% 

10  25% 30% 40% 30% <10%  35% 15 

 

Table 5-13: Typical Patient Prioritization Followed 

Interview # Prioritization 

1 Discharges--Evals--Recurring 

2 Discharges--Pressing Problems--Evals--Everyone Else 

3 Discharges--Social Needs (20% Recurring)--Evals--Rest of Recurring 

4 Discharges--75% Evals--Recurring--Rest Evals 

5 Discharges--Observations (5% Recurring)--Evals--Rest of Recurring 

6 Actively dying (5% of time)--Discharges--Evals--Recurring 

7 Discharges--Evals--Recurring 

8 Discharges (Rehab before home)--Evals--Recurring 

9 Discharges--Evals--Recurring (Home Health first) 

10 Discharges--Evals--Rest 
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Table 5-14: Typical Due Dates and Cutoffs 

Interview # Discharge Cutoffs New Evals Policy Due Dates 

1 Not very frequent Try to see same 

day 

Dialysis patients--

can only see before 

or after dialysis, but 

they can go for 

dialysis at any time 

2 Shuttle runs till 9; some facilities have 

cutoffs but not many 

Within 24 hrs of 

patient arrival  

3 Discharge prep wrapped up by 4 pm; 6 

pm pretty late to leave 

Within 24 hrs 

 

4 Don't really find cutoffs for facilities; 

some rural facilities have 3 pm, 4 pm 

cutoffs (5-10%); tertiary care, so 

sometimes discharge 2-3 hrs away, 

can't have patient leave at 3-4 pm and 

not arrive at facility till 6 or 7 pm, 

usually work with facility to make 

happen next day at 10 am 

Within 24 hrs 

 

5 Typically before 6 pm Within 24 hrs  

6 Facilities need all paperwork, 

authorizations by 3 pm (70% of time)--

elder care, lot of dementia patients 

Within 24 hrs 

 

7 To facilities not after 3 pm or 5 pm--

60-40 non-home to home ratio 

Within 24 hrs 

 

8 Some facilities set limits; 4 pm 

standard (standalone, smaller facilities 

--40%; larger facilities will work with 

unit, but still want patients by 5 pm) 

Within 24 hrs 

 

9 Try by 3 pm (11 am - 1 pm) Within 24 hrs  

10 Rehab discharges should be by 4 pm Within 24 hrs 
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Table 5-15: Start of Day and Other Notes 

Interview # Start of Day Other Notes 

1 Ancillary dept rounds 

every day 

Another group of patients: new to me but transfer from 

another unit so d/c plan made and ready to go already 

2   

3   

4 9 am start (7:15 come in, 

organize; 8 am nursing 

huddle) 

Some initial assessments/discharges same day (people 

came in over weekend) 

5 Break in morning for 10 

am rounds 

Specialty unit; lot of variability across patients 

6 7:30 am review charts; 

rounds 8:30-9; come 

back and divvy up 

patients with RN 

Following 13-15 patients per day--don't see all on daily 

basis 

7 Sit in nursing huddle at 

8 am 

 

8 Chart review for 30 

mins, then rounds for 

30-45 mins 

15 patients on caseload--don’t see all on daily basis. 

Long stay patients--complex socially; nurse CMs don't 

see often; different relationship with these patients. 

Note should be written on patient at least every 5 days. 

2 pm is high discharge time due to physician patterns. 

About 5 hrs per day total across more complex patients 

(50% of patients). 

9 No rounds or nursing 

huddle on floor; go 

through list in morning 

with other RN and SW 

CM on floor 

Sometimes overlap and cover other units if someone 

calls in sick. 

On weekends, cover 4 floors; prioritize discharges (not 

time for other patients). 

10  Patients on 3 units: 2 on same floor (CICU and R9), 

one on another (R7); go back and forth between units; 

nowhere to work on R9/CICU, so R7 is home base.  

Not many discharges (more complex patients, so longer 

stays); if any, usually from R9 or R7.  

New evals usuallly in CICU or R7. 

CICU patients very sick, so wait for family to be 

around before going to see; sick and will be here a 

while, so don't think appropriate to bother them right 

away. Will put note in, but may not see patient right 

away. 

 

  



105 

 

5.8 Appendix B: Data Generation Methodology 

5.8.1 Data for Bed Request Times 

Based on the retrospective 2015 dataset from the inpatient unit, bed request 

arrival times can be modeled according to the following Normal 3 mixture distribution: 

Normal(2.212, 1.506) with probability 0.11; Normal(13.096, 3.369) with probability 

0.67, Normal(19.333, 1.989) with probability 0.22.  The statistics of the bed requests are 

displayed in Figure 5-6. 

 

Figure 5-6: Statistics of the Bed Request Arrival Times at the Unit in 2015 

5.8.2 Method of Generating ASP Process Times 

Based on our interviews with the ASPs, we derived the relationships among the 

average processing times for the 3 patient groups as shown in Table 5-16. 
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Table 5-16: Summary of ASP Process Times from Care Management Interviews 

Patient Group Mean Min Max 

D --- 0.4*�̅� 2*�̅� 

A 0.5*�̅� 0.6*�̅� 1.5*�̅� 

R 0.5*�̅� 0.4*�̅� 2*�̅� 

 

In the model, we assume the ASP day length to be 7.5 hours (a 9-hour day minus 

1 hour in the morning for nursing huddle and/or rounds, followed by 0.5-hour discussion 

with the other care manager on the unit to divide the patients appropriately between 

themselves). 

We then have the following formula: 

|𝐷| ∗ �̅� + |𝐴| ∗ �̅� + |𝑅| ∗ �̅� = 7.5 

The size of D, A, and R (|𝐷|, |𝐴|, |𝑅|) are determined by the experimental design. The 

group means, however, are not prespecified in order to ensure feasibility of the various 

configurations. Thus, we have one equation with 3 unknowns. However, from Table 5-16, 

we have the following: 

�̅� = 0.5 ∗ �̅� 

�̅� = �̅� 

Now we have a system of three unknowns in three equations. For any given 

|𝐷|, |𝐴|, and |𝑅|, then, we can solve for the group means (�̅�, �̅�, �̅�). 

Once �̅�, �̅�, and �̅� are determined for a system configuration, we draw the process 

times for each group from a triangular distribution specific to that group. The upper and 

lower limits of each triangular distribution are determined from �̅�, �̅�, and �̅� according to 

the relationships specified in Table 5-16. The mode of each distribution is calculated from 

the property of a triangular that mean =
min +max+mode

3
.  



107 

 

Once all times are drawn for a day, we scale them equally so that the total ASP 

processing time across all patients is equal to the prespecified day length of 7.5 hours. In 

scaling each process time, we ensure that it does not exceed the max or the min of its 

triangular distribution. 

5.8.3 Method of Generating Discharge Process Times 

Based on the retrospective 2015 dataset from the inpatient unit, we calculated the 

characteristics of the discharge completion times at the unit displayed in Figure 5-7. 

 

Figure 5-7: Statistics of the Inpatient Discharge Completion Time of Day at the Unit in 2015 

The discharge processing time in our model is defined as the total time to 

complete the discharge of the patient, from midnight until the patient leaves the unit. This 

includes all processing and waiting, regardless of source. Discharge completion times can 

be used as a proxy for this discharge processing in our model. However, the discharge 

processing in our model is defined as being separate from the ASP processing time. We 

were unable to obtain any data on the contribution of the ASP to the total discharge 
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completion time. Thus, we assume that the mean of the completion times is shifted by the 

mean of the ASP process time for discharge patients in our model.  

We also want to ensure both realism and feasibility of the generated scenarios. 

We address the realism by preventing any discharges from occurring before 8 am (start of 

day on unit, after nursing huddle/rounds). We address feasibility by preventing any 

discharges from occurring after the end of the day (midnight, hour 24). Based on the 

above distribution, we further refined this end-of-day concept and limited the discharges 

from occurring beyond 8 pm (hour 20), resulting in a more symmetrical distribution. 

To achieve these goals, we assume that the discharge processing time in our 

model follows a triangular distribution with minimum of 8, mean of 13.989 (mean of 

discharge completion times) minus the assigned mean ASP processing time of the 

discharge patients (derived according to the formula in the preceding section), and 

maximum of 20 minus the assigned maximum of the ASP processing time of the 

discharge patients. The mode for this triangular can then be derived. 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 ~ 𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(8, 3(13.989 − �̅�) − (8 + 20 − 2�̅�), 20 − 2�̅�) 

For non-home discharge patients, after ASP processing time has been assigned, a 

feasibility check is made to ensure that their minimum possible discharge completion 

time (ASP process time plus discharge process time) is less than the non-home cutoff of 3 

pm (15 hours). If it exceeds 15, then the discharge process time is redrawn for that patient 

until the minimum discharge completion time is below 15. 
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6 CONCLUSIONS 

6.1 Summary 

The quality of the US healthcare industry does not correlate with the high costs of 

healthcare in the US relative to other developed countries. Systems engineering, tested 

and proven in other industries such as manufacturing and distribution, has great potential 

in addressing key medical decision making and logistical problems along the US 

healthcare continuum. In this research, we focused on the challenges faced at acute care 

hospitals (ACH). Care at an ACH is intensive, the challenges are complex, and 

implications on patient safety and healthcare costs are severe. Within ACHs, the inpatient 

units (IUs) are the primary methods of care delivery; logistical inefficiencies here have 

significant consequences for the rest of the hospital.   

While a patient’s care in an IU spans multiple decision points over time, the final 

discharge is a highly critical logistical point. Inefficient or poorly executed discharge 

planning affects not only the care of the patient in question, but also the care providers, 

the rest of the IU, other upstream units, the emergency department, and potentially other 

hospitals and external facilities. With this in mind, we employed systems engineering 

principles to three key challenges in discharge planning: 

(1) Disposition determination/discharge initiation: How can non-home discharges be 

identified, soon after admission, in order to initiate early planning and avoid potential 

delays?  
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(2) Day-of-discharge unit target strategies: What target strategies for inpatient discharge 

effectively reduce upstream patient boarding? 

(3) Care provider patient prioritization: How should patients be sequenced for an 

ancillary service provider to minimize upstream patient boarding while satisfying 

current patient needs? 

In this dissertation we addressed these three research areas, which formed the 

three contributions of this work.  

6.1.1 Disposition Prediction (Contribution 1) 

Non-home discharges, e.g., patients discharged to rehab, nursing homes, or long-

term-care facilities, typically require more resources and planning than home discharges, 

due to the increased clinical and logistical complexity of such cases. Thus, accurate early 

identification of a patient as a future non-home discharge would allow for the planning to 

be initiated sooner in the patient’s stay and potentially reduce the risk of unnecessary 

delays (impacting length of stay). We proposed an approach that would first identify the 

key factors available within 24 hours of admission that predict discharge disposition and 

then a method to convert that into an easy-to-understand and use scoring tool for the 

inpatient staff. We developed this using retrospective data from Boston VA medical 

center. Accordingly, we developed a multivariable logistic regression model to first 

identify key demographic, clinical, and historical factors associated with increased 

likelihood of non-home discharge for a general medicine patient. These factors included 

several aspects of a patient’s care history often used by providers in practice. Our final 

model performed quite well on both training and testing datasets (AUC = 0.75 and 0.74, 

respectively). We then developed a scoring tool that used standardized coefficients and 
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an optimization approach to identify scores associated with each significant factor. This 

tool was 84% correlated with our logistic regression model probabilities, and at an 

appropriate threshold value it achieved 82% sensitivity and 48% specificity on the testing 

dataset. We implemented this score in a sheet-based questionnaire-type tool for use in 

practice.  

In practice, our tool would provide an early warning to differentiate the eventual 

home discharges (typically requiring less logistical planning) from the non-home 

(typically requiring days of planning), allowing for appropriate discharge planning to be 

initiated from Day 1 of the patient’s stay. Care managers could begin to compile lists of 

external facilities, initiate discussion with the patients and their families, and contact 

insurance companies. Therapists could begin developing rehabilitation plans accordingly 

with the patients, or work with them to avoid such an outcome. In the case of false 

positives, the result would be an unnecessary increase in effort on the part of the care 

providers; however, our experience is that the benefit of avoiding costly potential 

discharge delays generally outweighs this.   

6.1.2 Unit Target Strategies for Daily Inpatient Discharges (Contribution 2) 

Better synchronization of inpatient discharges with upstream patient arrivals can 

greatly increase hospital flow and bed utilization and decrease patient boarding and 

diversion to other hospitals. To address this issue, we proposed an approach to model the 

inpatient day-of-discharge and its effects on upstream patient boarding, and a generic 

target strategy (n-by-T) that can be used by any unit to increase early discharges and 

mitigate upstream boarding. In a study with a trauma unit at Kettering Medical Center, 

Dayton, OH, we developed a discrete-event simulation which predicted up to 2-hour 
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earlier shift in average discharge time and corresponding 15% reduction in upstream 

boarding; these results were corroborated by a pilot of our target strategy at the unit. Our 

approach and results were verified, through a simulation study, for a neurology unit at 

Maine Medical Center, Portland, ME; further such evaluations at other units and hospitals 

will help generalize the applicability and benefits of our proposed n-by-T strategy. 

Our proposed n-by-T strategy provides inpatient units with a fairly 

straightforward goal: discharge n patients by the Tth hour. The individual units can 

develop procedures to achieve this target in a manner that best suits their dynamics, 

patient population, and practices. Since this target strategy only applies to a small number 

of discharges, it would also be easier to implement than other strategies (e.g., ‘discharge 

by noon’) that typically require a major change in practice for all discharges (such as 

having physicians write all discharge orders earlier in the morning, or decreasing the 

discharge process length). While any new long-term policy would require buy-in from 

the unit and some cultural change, our strategy could easily be combined with ongoing 

lean improvements and initiated as a key performance indicator for the unit.   

6.1.3 Daily Patient Sequencing for Ancillary Service Providers (Contribution 3) 

Some members of an inpatient discharge decision-making team are typically 

labeled as ancillary, such as care management or therapy, but they play important roles in 

determining and executing the logistical concerns associated with the discharge. Such 

providers, on a daily basis, must try to prioritize discharges in order to improve unit bed 

flow and reduce upstream patient boarding without neglecting the needs of the other 

patients they are responsible for. Ad hoc approaches to sequence the patient workflow 

often lead to missed due-dates and increased upstream boarding times. To address this 
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challenge, we developed a model of a typical workload day for a general ancillary service 

provider (ASP) assigned to an inpatient unit and proposed an approach to generate patient 

sequencing strategies to assist these providers in meeting these goals. We constructed a 

scenario-specific MIP model and employed this model in a sampling based optimization 

approach paired with a simulated annealing meta-heuristic to derive practical, 

implementable, and understandable strategies that are robust to system variability. An 

experimental evaluation of our approach in collaboration with Maine Medical Center, 

Portland, ME, suggested several possible near-optimal strategies (average 13% deviation 

from optimal) for a variety of system configurations considered in our design. Other 

simpler strategies sometimes used in practice were compared to ours and could only 

perform better at the cost of constraint violations. 

From a practical standpoint, we provide several key insights to ASPs, such as the 

importance of a system-level view when sequencing discharges for the day. We also 

provide general strategies that are easy to understand and implement; they take the form 

of rules that an ASP can follow in practice. These strategies do not require any 

calculations or integration with hospital legacy systems. We also offer a comparison with 

other strategies that ASPs may use and the trade-offs involved with each.  

6.2 Future Work 

6.2.1 Enhancements to the Early-Warning Tool 

In this study, we were limited in our access to data and were unable to include 

several factors such as a patient’s marital status, level of social support, and activities of 

daily living. Future work should include these and other relevant factors for which data 
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could be collected. We also used the billed diagnosis at discharge as a proxy for the 

admitting diagnosis; future work may use actual admitting diagnosis if available for a 

more accurate representation of the clinical condition of the patient. 

Another extension of our work would be to consider other classification 

approaches. While we used logistic regression due to its applicability to our problem and 

acceptance in medical practice, other more complex classification schemes such as 

discriminant analysis, support vector machine, or decision trees may outperform logistic 

regression on our problem. A future study could use these approaches on our dataset and 

compare their predictive performance to that of our regression model.  

We classified patients into two broad categories: home or non-home. Future work 

could consider predicting discharge dispositions in more detail (home: home or home 

with home health care; non-home: nursing home, transfer to another hospital, 

rehabilitation center). In this case, other classification methods that are better suited to 

multinomial responses should be considered.  

In practice, our score would need to be prospectively validated before it could be 

implemented. A pilot at this general medicine unit, and other units and hospitals, may 

help generalize our findings. 

6.2.2 Refinements to the n-by-T Strategy 

Several extensions could be made to our model of a typical day-of-discharge on 

an inpatient unit. Such extensions could consider the effects of patient discharge 

disposition on discharge processing time, or could differentiate by day of week, week of 

month, or month of year. Future work could also incorporate more accurate data for some 
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of the factors we had to estimate, such as room cleanup time and delay for transportation 

services. 

A natural progression of our study would be a direct comparison to the common 

practice of ‘discharge by noon,’ which aims for all discharges for the day to be completed 

by noon. It has been argued in the literature and practice that this strategy is overly 

aggressive, and that quantitative evidence is lacking to understand its actual impact at the 

unit and on upstream boarding. Our approach is well suited to examining such a strategy, 

and n-by-T may provide a more feasible alternative. 

While we have begun to examine the generalizability of our model and strategy, it 

still remains a two-hospital study. In order to truly evaluate the generalizability, future 

work should consider other units and other hospitals. 

6.2.3 Extensions to the ASP Patient Sequencing Problem 

Several assumptions in our proposed model for ASP sequencing could be relaxed. 

For example, our model could include potential blocking of the ASP by other services 

that may result in waiting times before the ASP sees a patient in the optimal sequence. 

Alternatively, a compliance factor could be added to our model to evaluate the effect of 

ASP conformity to the optimal sequence. Other considerations include the following: 

extensions to multi-ASP and/or multi-unit systems; treatment of patient needs as multiple 

objectives rather than hard constraints; dynamic ASP decision-making throughout the day 

with the addition of new patients over the day; separate modeling of in-room and out-of-

room ASP tasks; and consideration of different unit occupancy rates. The generalizability 

of our results to other services, units, and hospitals are also worth investigating. 
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In order to evaluate the practical usefulness of our work, a pilot would be 

required. In such a pilot, several practical considerations would need to be taken into 

account, such as identification of the ASPs, classification of the patients into the defined 

categories, selection of strategies for days not conforming directly to any of the 

configurations we considered, provision for situations when the suggested sequence 

could not be followed due to system constraints, and feedback on the success of the 

strategies. Long-term support and buy-in from the unit in assisting the ASP to adhere to 

the daily sequence would be necessary. 
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