
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2017

Modifying Some Iterative Methods for Solving Quadratic Modifying Some Iterative Methods for Solving Quadratic

Eigenvalue Problems Eigenvalue Problems

Ali Hasan Ali
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Physical Sciences and Mathematics Commons

Repository Citation Repository Citation
Ali, Ali Hasan, "Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems" (2017).
Browse all Theses and Dissertations. 1869.
https://corescholar.libraries.wright.edu/etd_all/1869

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1869?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

MODIFYING SOME ITERATIVE METHODS
FOR SOLVING QUADRATIC EIGENVALUE

PROBLEMS

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

By

ALI HASAN ALI
B.Sc.Ed., University of Mosul, 2011

2017
Wright State University

WRIGHT STATE UNIVERSITY
GRADUATE SCHOOL

December 13, 2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Ali Hasan Ali ENTITLED Modifying Some Iterative Methods for Solving
Quadratic Eigenvalue Problems BE ACCEPTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF Master of Science.

Sara Pollock, Ph.D.
Thesis Director

Ayse Sahin, Ph.D.
Chair, Department of

Mathematics and Statistics

Committee on
Final Examination

Sara Pollock, Ph.D.

Yuqing Chen, Ph.D.

Weifu Fang, Ph.D.

Barry Milligan, Ph.D.
Interim Dean of the Graduate School

ABSTRACT

Ali, Ali Hasan. M.S. Department of Mathematics and Statistics, Wright State University, 2017.
Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.

In this thesis, we are investigating the solutions λ of a typical quadratic eigenvalue

problem (QEP). Indeed, solutions λ of a QEP of the formQ(λ) = λ2M+λD+S that satisfy

Q(λ) = 0, can be obtained iteratively and without linearizing the problem. However, many

iterative methods can only find some of the solutions λ. Therefore, we are going to modify a

method based on Newton iterations in order to find all of the solutions λ, that are known also

as the eigenvalues of the QEP. In addition, we will investigate how the proposed method

compares with standard iterative methods from the literature. Moreover, we will provide a

method for finding an upper bound for the number of the eigenvalues of the QEP, and apply

this in our method for the purpose of finding all solutions λ.

iii

List of Symbols and Acronyms
Introduction

QEP Quadratic Eigenvalue Problem
NLEP Nonlinear Eigenvalue Problem
MPP Matrix Polynomial Problem
SMPP Symmetric Matrix Polynomial Problem
MMPP Monic Matrix Polynomial Problem
NMMPP Nonmonic Matrix Polynomial Problem
SAMPP Self-Adjoint Matrix Polynomial Problem
GEP Generalized Eigenvalue Problem
SEP Standard Eigenvalue Problem

Literature Review

JD Jacobi-Davidson
SOAR Second Order Arnoldi Method
K Krylov Subspace
THQEP Tri-diagonal Hyperbolic Quadratic Eigenvalue Problem
EAI Ehrlich-Aberth Iteration

Methodology

NTI Newton Trace Iteration
NII Newton Inverse Iteration
NMM Newton Maehly Method
NMI Newton Maehly Iteration
C Newton Correction

iv

Contents

1 Introduction 1
1.1 Quadratic Eigenvalue Problem (QEP) . 1
1.2 Solving the QEP . 2

1.2.1 Linearization of QEPs . 3
1.2.2 Additional linearizations . 4

1.3 QEPs as nonlinear eigenvalue problems (NLEPs) 5

2 Literature Review 7
2.1 Benefit of iterative methods . 7
2.2 Types of iterative methods . 8
2.3 Jacobi-Davidson method . 8
2.4 The second order Arnoldi method (SOAR) 10
2.5 Methods for tri-diagonal hyperbolic QEPs (THQEPs) 12

2.5.1 Ehrlich-Aberth iteration (EAI) . 12
2.5.2 Durand-Kerner method . 13

3 Methodology 14
3.1 Properties of QEPs eigenvalues . 14
3.2 Determining the number of eigenvalues 16

3.2.1 Calculating the degree of polynomial determinants 17
3.3 QEP applications and real-life models . 21

3.3.1 The spring problem . 21
3.3.2 The bicycle problem . 22
3.3.3 The population of bilbies problem 23
3.3.4 QEPs with singular leading matrix 25

3.3.4.1 Problem 1 . 25
3.3.4.2 Problem 2 . 25

3.4 Numerical methods based on Newton iteration 26
3.4.1 Newton-trace iteration (NTI) . 27
3.4.2 Newton inverse iteration (NII) . 28
3.4.3 Newton Maehly method (NMM) 29

3.4.3.1 QEPs by NMM . 31

v

4 Results and Discussion 34
4.1 Overview . 34

4.1.1 Experimental environment . 34
4.2 Results . 35

4.2.1 The results of the spring problem 35
4.2.1.1 The eigenvalues . 35
4.2.1.2 The graph of the eigenvalues 36
4.2.1.3 The elapsed time . 36

4.2.2 The results of the bicycle problem 37
4.2.2.1 The eigenvalues . 37
4.2.2.2 The graph of the eigenvalues 37
4.2.2.3 The elapsed time . 38

4.2.3 The results of the bilby problem 38
4.2.3.1 The eigenvalues . 38
4.2.3.2 The graph of the eigenvalues 39
4.2.3.3 The elapsed time . 39

4.2.4 The results of the acoustic-modeling problem 1 40
4.2.4.1 The eigenvalues . 40
4.2.4.2 The graph of the eigenvalues 40
4.2.4.3 The elapsed time . 41

4.2.5 The results of the acoustic-modeling problem 2 41
4.2.5.1 The eigenvalues . 41
4.2.5.2 The graph of the eigenvalues 42
4.2.5.3 The elapsed time . 42

4.3 Discussion . 43
4.3.1 The accuracy . 43
4.3.2 The efficiency . 44

4.4 Conclusion and future work . 47

Bibliography 48

A Appendix 51
A.1 Newton-trace iteration (NTI) . 51
A.2 Newton inverse iteration (NII) . 52
A.3 The modified Newton Maehly method (NMM) 53
A.4 Newton correction . 54
A.5 Calculating the degree of polynomial determinants 55

vi

List of Figures

1.1 The classification of NLEPs and LEPs . 6

3.1 A damped mass-spring system of n degree 21
3.2 The steer and the lean angles in the bicycle problem 22
3.3 The Australian bilby . 23
3.4 Newton iteration technique . 29

4.1 The eigenvalues of the spring problem . 36
4.2 The eigenvalues of the bicycle problem 37
4.3 The eigenvalues of the bilby problem . 39
4.4 The eigenvalues of the acoustic-modeling problem 1 40
4.5 The eigenvalues of the acoustic-modeling problem 2 42
4.6 The efficiency of the methods for 10 different dimensions 45
4.7 The efficiency of the methods . 46
4.8 The efficiency of the methods in logarithmic scale 46

vii

List of Tables

3.1 The eigenvalues properties of the QEP Q(λ)v := (λ2M + λD + S)v = 0. . 14
3.2 The eigenvalues of the QEP (3.1). 15

4.1 The eigenvalues of the spring problem. 35
4.2 The elapsed time of the spring problem. 36
4.3 The eigenvalues of the bicycle problem. 37
4.4 The elapsed time of the bicycle problem. 38
4.5 The eigenvalues of the bilby problem. 38
4.6 The elapsed time of the bilby problem. 39
4.7 The eigenvalues of the acoustic-modeling problem 1. 40
4.8 The elapsed time of the acoustic-modeling problem 1. 41
4.9 The eigenvalues of the acoustic-modeling problem 2. 41
4.10 The elapsed time of the acoustic-modeling problem 2. 42
4.11 The accuracy of the bicycle problem. 43
4.12 The accuracy of the acoustic-modeling problem 1. 43
4.13 The elapsed time of the spring problem with 10 different sizes. 45

viii

List of Algorithms

2.1 Jacobi-Davidson for a QEP of the form λ2Q2 + λQ1 +Q0 = 0. 9
2.2 SOAR method for QEPs. 11

3.1 Calculating the degree of polynomial determinants. 18
3.2 Newton-trace algorithm. 27
3.3 Newton inverse iteration. 28
3.4 Modified NMM for finding all eigenvalues of a QEP. 33

ix

Acknowledgment
I would like to extend my thanks to Dr. Sara Pollock for advising my thesis with great

encouragement, patience, and insightful guidance. Words cannot express my gratitude for

what you have done for me including all the time and energy that you have dedicated

during three semesters. I am grateful to you for all the extra work you have done to make

this process painless. Thank you for always having a smile on your face!

Special thanks to the Higher Committee for Educational Development in Iraq (HCED)

for giving me the opportunity to complete my study abroad. In fact, my study would not

have been possible without the financial support of the HCED.

I would also like to say a special word of thanks to the committee members Dr. Yuqing

Chen and Dr. Weifu Fang for their time, expertise, and guidance throughout this thesis.

Also, I would like to take this opportunity to express my gratefulness to everyone in

the LEAP program at Wright State University for their wonderful ways of promoting and

improving my English skills and for the amazing and unforgettable activities and experi-

ences we had during my journey in learning English.

Finally, thanks to all my family and to all friends who supported me in this work and to

everyone I did not mention above. Your effort is still being acknowledged and remembered

here. Thanks a ton.

x

Dedication

This thesis is lovingly dedicated to my parents. Your support and prayers have sustained

me throughout my life.

xi

Introduction

1.1 Quadratic Eigenvalue Problem (QEP)

Quadratic eigenvalue problems (QEPs) arise in many applications, such as dynamic sys-

tems, building designs, and vibrating systems. Many other applications, such as perturba-

tion and dynamic analysis are described in [22]. QEPs are known by many different names,

like quadratic matrix polynomials, nonlinear eigenvalue problems, quadratic pencils, and

matrix pencils. These different names are used to describe a variety of similar problems.

However, the general name is the nonlinear eigenvalue problem that can be a QEP if we

have three matrices and one scalar λ of degree two at most. In addition, it is called a lin-

ear matrix pencil when we linearize the QEP to a general eigenvalue problem of the form

(A− λB)v = 0.

The standard QEP takes the form

Q(λ)v := (λ2M + λD + S)v = 0, (1.1)

where M (the mass matrix), D (the damping matrix), and S (the stiffness matrix) are n×n

matrices. Those matrices can have different meaning in other applications like the fluid

dynamic system and the vibrating system. The entire QEP can be completely solved by

finding the scalar λ ∈ C and some nonzero vectors v ∈ Cn satisfying (1.1). The scalar λ

is called the eigenvalue of the QEP, and the nonzero vector v is called the right eigenvector

1

of the QEP that corresponds to λ. In addition the nonzero eigenvector u ∈ Cn that satisfies

uQ(λ) = u(λ2M + λD + S) = 0, (1.2)

is called the left eigenvector that corresponds to λ.

1.2 Solving the QEP

Solving the QEP can be done by linearizing the entire problem, which is the simplest

approach and the classical way of solving QEPs. In addition, it can be solved by dealing

with the nonlinear system as we will see in the next chapters.

Linearizing the QEP of type (1.1) means we will deal with a 2n× 2n system. In other

words, the linearization of a QEP means doubling the entire problem to transform it into a

generalized eigenvalue problem (GEP) in order to deal with it linearly.

Consider the QEP of type (1.1), and let n = 8. This means, M,D, and S are 8 × 8

matrices. Therefore, the QEP (1.1) can be written in the form




0 I

−S −D






v1

v2


 = λ



I 0

0 M






v1

v2


 , (1.3)

where 0 denotes to the 8× 8 block of zeros, and I denotes to the 8× 8 identity block. It is

clear that (1.3) is a generalized eigenvalue problem of the form Av = λBv, where A and

B are 16 × 16 matrices. Therefore, the problem (1.3) can be solved either by transform-

ing it into a standard eigenvalue problem (A or B must be non-singular), or directly as a

generalized eigenvalue problem. In either case, high dimensional problems can be solved

numerically by an iterative method [24].

2

1.2.1 Linearization of QEPs

As we mentioned in section 1.2, the most common way for solving QEPs is the lineariza-

tion method, which is transforming the QEP into a linear eigenvalue problem. It is worth

mentioning that the representation (1.3) is not unique. In other words, we can reformulate

the representation (1.3) by the following approaches since each is equivalent to the problem

(A− λB)v = 0 .

Representation I :

This is basically from the formulation (1.3), which is the most common one.




0 I

−S −D






v

λv


 = λ



I 0

0 M






v

λv


 . (1.4)

Representation II :

This approach is gotten by multiplying the first row of (1.4) by D, and the second row by

-1, which is called also the symmetric formulation1.




0 S

S D






v

λv


 = λ



S 0

0 −M






v

λv


 . (1.5)

Representation III :

Another approach can be formulated by swapping the vectors vi in Equation (1.3).



I 0

0 −S






λv

v


 = λ




0 I

M D






λv

v


 . (1.6)

1Having a symmetric formulation can make the problem scaled appropriately to be solved by some special
methods instead of general methods[7].

3

Representation IV :

The representation III can be symmetrized by multiplying the first row by M .



M 0

0 −S






λv

v


 = λ




0 M

M D






λv

v


 . (1.7)

1.2.2 Additional linearizations

Representation V [22]:

This linearization is also equivalent to Equation (1.3), whereH1 is any non-singular matrix.




0 H1

−S −D






v

λv


 = λ



H1 0

0 M






v

λv


 . (1.8)

Representation VI [22]:

Another approach is equivalent to the formulation (1.3), where H2 is any non-singular

matrix. 

S 0

0 H2






v

λv


 = λ



−D −M

H2 0






v

λv


 . (1.9)

Representation VII [13]:

This linearization is valid if the matrix M is non-singular and well-conditioned. The idea

of this linearization is to assume that L0 = M−1S and L1 = M−1D, and we have I and

0 are the identity matrix and the null matrix respectively. The eigenvalues of the matrix C

below are the roots of the QEP (1.1).

C =




0 I

−L0 −L1


 . (1.10)

4

1.3 QEPs as nonlinear eigenvalue problems (NLEPs)

As mentioned earlier, QEPs are considered a class of NLEPs, where the unknowns are of

degree at most two. In a general NLEP, some nonlinear functions of λ such as cos(λ),

sin(λ), eλ, ln(λ), 3
√
λ, ...etc. can be placed instead of λ in Equation (1.1). In addition,

placing a higher degree term of the same pattern in Equation (1.1) will change the class

of the problem to a matrix polynomial problem (MPP) [13], which is more general than a

QEP. MPPs can be linearized by the mentioned approach in (1.10), but in generalized form

as shown below. Consider the MPP

M̄(λ)v = (λkMk + · · · · · ·+ λM1 +M0)v = 0, (1.11)

the roots of the MPP (1.11) are the eigenvalues of the matrix C below, where I and 0 are

the identity and the null matrices, and Li = M−1
k Mi, 0 ≤ i ≤ k.

C =




0 I 0 · · · 0

0 0 I · · · 0

...
... · · · ...

...

0 0 0 · · · I

−L0 −L1 −L2 · · · −Lk−1




. (1.12)

It is important to mention that (1.10) is a special case of (1.12) with k = 2. Furthermore,

the eigenvector that corresponds to the eigenvalue λ of this type of problem has a special

pattern, which is [
v λv λ2v · · · λk−1v

]T
. (1.13)

The matrix (Mk), which is called the leading matrix should be nonsingular and well condi-

tioned to follow this approach.

5

To illustrate the relation among QEPs and the other problems such as NLEP, MPP,

GEP, ...etc., we created this graph to demonstrate the classification structure.

Nonlinear Eigenvalue Problem (NLEP)

Matrix Polynomial Problem (MPP)Symmetric Matrix Polynomial
Problem (SMPP)

Monic Matrix Polynomial Problem
(MMPP)

Nonmonic Matrix Polynomial
Problem (NMMPP)

Self-Adjoint Matrix Polynomial
Problem (SAMPP)

Quadratic Eigenvalue Problem (QEP)

Generalized Eigenvalue Problem (GEP)

Standard Eigenvalue Problem (SEP)

This type of problem is a general form of the eigenproblems. For
example, let A0, A1, ...,Ak be n × n square matrices, and let f1(λ),
f2(λ),, fk(λ) be any nonlinear functions. The NLEP can be
formulated in this form below, or might be formulated differently.

fk(λ)Ak + · · ·+ f1(λ)A1 + A0 = 0.

This type of problem is a common case of the NLEP;
however, the functions fi(λ) should be in a certain form.
As an example of the MPP, let A0, A1, ...,Ak be n × n
matrices. The MPP would take the form

k∑
i=0

λiAi = A0 + λA1 + · · ·+ λkAk = 0.

This type of problem has the same formulation of the
regular MPP; however, the matrices A0, · · · , Ak are
symmetric matrices that allow the problem to be solved
by special methods.∑k

i=0
λiAi = A0 + λA1 + · · ·+ λkAk = 0.

The MPP is called monic when the leading matrix Ak

is nonsingular, so that we can write the MPP in this
form below

A0Ak
−1 + λA1Ak

−1 + · · ·+ λk = 0.

The MPP is called nonmonic when the leading matrix
Ak is singular. Therefore, we will not be able to
represent the MPP in the MMPP formulation.

The MMPP is called self-adjoint when the matrices Aj

are hermitian matrices (Aj = A∗
j).

The QEPs are special cases from MMPPs, NMMPPs, or
SAMPPs and that is when they contain three terms.
In addition, these QEPs will have their properties. The
QEP can be represented in this form

Q(λ)v = (λ2M + λD + S)v = 0.

The GEP can be derived from the QEP by linearization,

which doubles the dimension of the problem. Anyway,

this method is considered the most common way for

solving QEPs. The GEP is in the form

Av = λBv.

The SEP can be derived from the GEP if the matrix B
is nonsingular, and that is by multiplying both sides

of the GEP by B−1 from the right. The SEP takes the
form

Âv = λv.

Figure 1.1: The classification of the nonlinear and linear eigenproblems.

6

Literature Review

2.1 Benefit of iterative methods

Linearizing QEPs does not always work, and might lead to a singular matrix in the GEPs. In

other words, the singularity might appear in the linearized QEP as a result of certain choices

of the matrices M,D, and S in the original QEP. For instance, consider the example below.

Example 2.1. Let M =




8 6

4 3


, D =




2 −1

22 4


, and S =



−2 7

−9 11


. Transforming the

QEP of the form (1.1) into a GEP of the form (1.3) would give,




0 0 1 0

0 0 0 1

2 −7 −2 1

9 −11 −22 −4






v1

v2


 = λ




1 0 0 0

0 1 0 0

0 0 8 6

0 0 4 3






v1

v2




which is a GEP of the form Av = λBv, with a singular matrix B. Therefore, it is not

possible to transform it into a SEP by multiplying both sides by B−1. Consequently, we

have to use another way of solving the QEP, which is using the iterative methods.

7

2.2 Types of iterative methods

Solving the QEP by iterative methods can be done either by directly dealing with the three

matrices M,D, and S, or by transforming them into a GEP. Dealing with the QEP directly

without transforming the problem into a GEP will reduce the computational cost and the

time of getting the solution. In particular, avoiding the transformation will allow us to deal

with n × n dimension instead of 2n × 2n. However, most of the methods that deal with

QEPs directly are able to find only one eigenvalue at a time. In some cases, several of the

eigenvalues can be recovered, but not all of them. On the other hand, the iterative methods

that deal with GEPs are mostly able to recover all the eigenvalues of the QEPs that are

the same eigenvalues of the GEPs. In the coming sections, we will describe some of these

iterative methods.

2.3 Jacobi-Davidson method

The Jacobi-Davidson method is constructed to solve GEPs of the form Av = λBv. A sig-

nificant results have been achieved by applying this method on QEPs that are from acoustic

models [20]. The idea of this method is projecting QEPs onto some sub-spaces that have

low dimensions. In other words, we will have projected QEPs of reasonable dimensions

that can be solved by many methods after expanding the subspace by the correction equa-

tion of Jacobi-Davidson. Moreover, this method can be applied on MPPs of the form (1.11)

and no linearization will be needed [6]. The projected QEP in Jacobi-Davidson takes the

form

(θ2V ∗MV + θV ∗DV + V ∗SV)u = 0, (2.1)

where V is an n ×m orthonormal matrix, θ is the selected eigenvalue, and u is the eigen-

vector that is associated with θ. The algorithm of the Jacobi-Davidson method for QEPs is

given below.

8

Algorithm 2.1: Jacobi-Davidson for a QEP of the form λ2Q2 + λQ1 +Q0 = 0.

Input : V is an orthonormal matrix of n×m dimension.

1 for i=0, 1, 2 do

2 calculate Ri = QiV and Pi = V ∗Ri

3 end

4 while the convergence is not achieved, do

5 calculate the eigenvalue θ and the eigenvector u of (θ2P2 + θP1 + P0)u = 0.

6 pick an eigenvalue θ with its associated eigenvector u where ‖u‖2 = 1.

7 calculate s = V u, k = Ψ′(θ)s, h = Ψ(θ)s.

8 if (‖h‖2 < ε), λ = θ, x = s, then

9 STOP

10 else

11 calculate r ⊥ s from


I −

k s∗

s∗ k


Ψ(θ)(I − s s∗)r = −h

12 orthogonalize r against V , b =
r

‖r‖2
13 end

14 for i=0, 1, 2 do

15 calculate ωi = Qib

16 Mi =



Pi V ∗ωi

b∗Ri b∗ωi


 , Ri =

[
Ri ωi

]

17 end

18 expand V =

[
V b

]

19 end

9

2.4 The second order Arnoldi method (SOAR)

The main advantage of this method is dealing with large-scale QEPs by producing an or-

thonormal basis. This generated basis is based on a generalized Krylov subspace that is

induced by two matrices K1 and K2 and a nonzero vector s. In general, the Krylov sub-

space method is highly beneficial when we deal with large-scale matrices approximately

[1]. Indeed, most of the methods that are based on Krylov subspace are very efficient in

generating orthonormal bases. The Arnoldi method and all other methods that are based on

Krylov subspaces of the first order cannot be applied directly on QEPs. In fact, we need to

go through two further steps before applying those methods. The first step is transforming

the QEP into a GEP. The second step is reducing the GEP to a SEP where we assume that

the leading matrix M in the QEP is non-singular. The disadvantage in these methods is the

dimension is doubled in the first step. In contrast, the method of Jacobi-Davidson in section

2.3 does not need to go through the two mentioned steps. Instead, it deals directly with the

QEP by projecting it to a low-dimensional projected problem [1]. The Krylov subspace is

based on a square matrix K and a nonzero vector s, and it is defined as

K(K; s) = span{s,Ks,K2s, . . . ,Kq−1s}, (2.2)

where K ∈ Rn×n, and s ∈ Rn is called the starting vector. Moreover, the second order

Krylov subspace is defined as

K(K1, K2; s) = span{r0, r1 . . . , rq−1}, (2.3)

where r0 = s, r1 = K1s, ri = K1ri−1 +K2ri−2, K1, K2 ∈ Rn×n, and s ∈ Rn.

To avoid the steps of transforming the QEP into a SEP, we need to have a second or-

der Krylov subspace as well as the orthogonal projection technique of Rayleigh Ritz which

allows us to apply the SOAR directly on the QEPs. The algorithm of the improved SOAR

10

method with deflation is given below. More SOAR algorithms are available in [1].

Algorithm 2.2: SOAR method for QEPs.

1 y1 = s/ ‖s‖2
2 x1 = 0

3 for j=1, 2. . . . , n do

4 r = K1yj +K2xj

5 h = yj

6 for i=1, 2, . . . , j do

7 bij = yTi r

8 r := r − yibij
9 h := h− xibij

10 end

11 bj+1 j = ‖r‖2
12 if bj+1 j = 0 then

13 if h ∈ span{xi | i : yi = 0, 1 ≤ i ≤ j} then

14 STOP

15 else % deflation

16 reset bj+1 j = 1

17 yj+1 = 0

18 xj+1 = h

19 end

20 else % regular case

21 yj+1 = r/bj+1 j

22 xj+1 = h/bj+1 j

23 end

24 end

11

2.5 Methods for tri-diagonal hyperbolic QEPs (THQEPs)

The tri-diagonal QEP is a special type of QEP of the form (1.1). In this type of QEP, the

three matrices M,D, and S are tri-diagonal. The QEP (1.1) is called hyperbolic if the

matrix M is positive definite and

(v∗Dv)2 > 4(v∗Mv)(v∗Sv). (2.4)

If the matrices M,D, and S in (1.1) are tri-diagonal and symmetric, M is positive

definite, and (2.4) holds, then we call (1.1) a tri-diagonal hyperbolic QEP (THQEP) [17].

The two methods below focus on this type of QEP.

2.5.1 Ehrlich-Aberth iteration (EAI)

The method of Ehrlich-Aberth was first developed in 1967 by Louis W. Ehrlich and Oliver

Aberth for finding zeros of regular polynomials. Later, many attempts have been made to

modify this method in order to work on different classes of polynomials such as QEPs and

NLEPs. In fact, a great modification was done by Dario A. Bini, and Vanni Noferini in [5].

They were able to make the method of EAI able to deal not only with THQEP, but also with

NLEPs with significant accuracy and efficiency. However, their method is way technical,

so we are going to illustrate here the one that deals with only THQEPs.

The Ehrlich-Aberth iteration takes an initial approximation u(0) ∈ C2n and creates a

sequence u(k) ∈ C2n that will eventually approach the eigenvalue of the THQEP. The form

of the EAI for THQEP is given by

u
(m+1)
k = u

(m)
k −

N
(
u
(m)
k

)

1−N
(
u
(m)
k

) 2n∑
i=1
i 6=k

1

u
(m)
k − u(m)

i

(2.5)

12

for i = 1, . . . , 2n. In addition, there is another formulation of EAI in the style of Gauss-

Seidel that will result in giving a cubic convergence rate and also is slightly faster than (2.5)

[5]. This formulation is given by

u
(m+1)
k = u

(m)
k −

N
(
f(u

(m)
k)

)

1−N
(
f(u

(m)
k)

)


k−1∑
i=1

1

u
(m)
k − u(m+1)

i

+
2n∑

i=k+1

1

u
(m)
k − u(m)

i




, (2.6)

whereN (u) = f(u)/f ′(u) is called the Newton correction, and f(λ) =det(Q(λ)) is called

the scalar polynomial.

2.5.2 Durand-Kerner method

This method is similar to the EAI method in the way of approaching a single eigenvalue.

More specifically, the Durand-Kerner method generates a sequence u(k) ∈ C2n that will

eventually converge to the eigenvalue of the THQEP. However, the scalar polynomials of

this method and the EAI method are not the same. The equation of this method has different

formulation1 from EAI method and it is given by

u
(m+1)
k = u

(m)
k −

g(u
(m)
k)

2n∏
i=1
i 6=k

(u
(m)
k − u(m)

i)

, (2.7)

with the scalar polynomial

g(λ) =
1

det(M)
det(Q(λ)). (2.8)

1More formulations, such as Jacobi style and Gauss-Seidel style for better and faster convergence are
available in [17].

13

Methodology

3.1 Properties of QEPs eigenvalues

Determining the number and the properties of the problem’s eigenvalues, is very important

to increase the efficiency of the related iterative methods. For instance, the number of the

finite eigenvalues of the QEP (1.1) is at most 2n. In other words, for certain choice of

the matrices M,D, and S we might get less than 2n eigenvalues for the entire problem.

Therefore, doing 2n computations by using methods that can find only one eigenvalue at

each time is not a good idea. On the other hand, if the leading matrix M is singular, we

will surely get some infinite eigenvalues. The table below illustrates some situations of

different choices for the matrices M,D, and S [22].

Table 3.1: The eigenvalues properties of the QEP Q(λ)v := (λ2M + λD + S)v = 0.

Matrices Eigenvalues
The leading matrix M is non-singular The number of finite eigenvalues = 2n

The leading matrix M is singular The number of finite eigenvalues < 2n
M = M∗ and is positive definite, The real part of the eigenvalues ≤ 0

D,S are positive semi-definite and Hermitian

The matrices M,D, and S are real or Hermitian Real eigenvalues or come in the form (λ, λ̄)

M,D are positive definite and symmetric, All the eigenvalues are real and negative,
S is positive semi-definite and symmetric, and there is a gap between the half largest
min{(v∗Dv)2 − 4(v∗Mv)(v∗Sv)} > 0 and the half smallest eigenvalues
M = M∗ and is positive definite, All the eigenvalues are pure imaginary,

D = −D∗, or come in the form (λ,−λ̄)
S = S∗

M,S are positive definite, symmetric, and real, All the eigenvalues are pure imaginary
D = −DT

14

Example 3.1. Consider the QEP

Q(λ) = λ2M + λD + S = 0, (3.1)

where the matrices M , D, and S are given as follows

M =




2 0 0

0 1 0

0 0 4



, D =




0 1 1

−1 0 1

−1 −1 0



, S =




1 2 2

2 −1 2

2 2 1



.

It is clear that the matrices above have the following properties

• The matrix M is nonsingular, positive definite, and Hermitian (M = M∗).

• The matrix D is equal to its own negative conjugate transpose (D = −D∗).

• The matrix S is Hermitian (S = S∗).

Therefore, we expect to get six finite eigenvalues that are pure imaginary or have the form

(λ,−λ̄) as mentioned in Table 3.1. In fact, some of the eigenvalues of the QEP (3.1) are

pure imaginary and some are in the form (λ,−λ̄) as shown in Table 3.2.

Table 3.2: The eigenvalues of the QEP (3.1).

λ −λ̄ or − λ
0.0000 + 1.6055i −0.0000− 1.6055i
0.5731 + 0.0000i −0.5731 + 0.0000i
1.2745 + 0.0000i −1.2745 + 0.0000i

15

3.2 Determining the number of eigenvalues

The number of a QEP’s eigenvalues can be determined if we know the degree of the poly-

nomial in the QEP’s determinant. Calculating the numerical determinants can be done by

applying many mathematical methods. Some of these methods are valid to be applied on

the symbolic determinant. However, the determinants that contain polynomials as compo-

nents have some different issues to deal with. More specifically, we are dealing here with

components that contain both numeric and symbolic entries. The determinant can contain

different combinations of numerical and symbolic entries. In other words, it can contain

polynomials of variant degrees, constants, and zeros. The matrix below is an example of a

matrix of polynomials.

C =




x2 − 26 x2 − 3x −3x · · · 5

4x 7x3 − 4x2 + 2 43 · · · x− 3

...
...

... · · · ...

−x3 0 x− 4 · · · x3 − 5

−x+ 2 x2 + 2 x4 + 3x · · · x5




. (3.2)

The methods of finding the determinant of the matrix above differ in terms of effi-

ciency and complexity. Many studies have been done in order to get a simple and fast way

of calculating these types of determinants. Expanding these types of determinants can be

done by the interpolation technique [8], which is finding the degree of every term, then

finding their coefficients. In addition, it can be expanded by the regular way of determinant

calculation that requires a high computational cost compared with the previous mentioned

method. However, the regular way of finding the determinant can be applied directly and

done easily if we have some zero components in certain positions in the original matrix.

16

3.2.1 Calculating the degree of polynomial determinants

As mentioned in section 3.2, the degree of a polynomial is a good indication of the num-

ber of roots, or the eigenvalues when we deal with QEPs. The method of calculating the

degree of a polynomial determinant we are presenting here can be applied on any n × n

determinant. In addition, determinants with multivariate components can be calculated by

this method each variable separately. In other words, the method can provide the degree of

each variable in the polynomial determinant. It is worth mentioning that this method does

not always give the exact degree of the polynomial determinant. Sometimes it only gives

an upper bound of the exact degree [19].

The first step in this method is transforming the symbolic matrix we have to a nu-

merical matrix by placing the variable degree in place of the component that has the same

position in the matrix.

C =




3t3 −4t 5 2t

−t2 6t3 22 8t2

11t2 9 t2 32t4

−3t 5t 3 7t2



−→ N =




3 1 0 1

2 3 0 2

2 0 2 4

1 1 0 2



. (3.3)

After getting the numerical matrix N , we start re-indexing the n×n matrix by assign-

ing a new representation N0 with indices running from 0 to n− 1. That is, the component

N(1, 1) will be the component N0(0, 0). Next, we form the matrix N1, which is one less

column and row than N0, and so on until we reach the 1 × 1 matrix Nn−1 which is the

initial degree of the polynomial determinant. The last step is unwinding the initial degree

when the original matrix dimension is more than 2× 2. A detailed explanation is provided

in Algorithm 3.1.

17

Algorithm 3.1: Calculating the degree of polynomial determinants.

Input : C is a symbolic matrix of n× n dimension.

1 Transform the symbolic matrix C to a numerical matrix N

2 Set N0 = N , where N0 is indexed from 0 to n− 1

3 if n = 1 then

4 set the MaxDegree = N0(0, 0)

5 STOP

6 end

7 if n = 2 then

8 set the MaxDegree N1 = max
(
N0(1, 1) +N0(0, 0), N0(1, 0) +N0(0, 1)

)

9 STOP

10 end

11 for i=1:n-1 do

12 for j=1:n-1 do

13 Nk(i, j) = max
(
Nk−1(i, j) +Nk−1(0, 0), Nk−1(i, 0) +Nk−1(0, j)

)

14 end

15 end

16 MaxDegree = Nn−1

17 for i=1:n-2 do

18 MaxDegree = MaxDegree− i ∗Nn−2−i(0, 0)

19 end

20 Nn−1 = MaxDegree

Output: Nn−1 is the maximum degree.

18

Example 3.2. Consider the symbolic matrix C and its numerical matrix N in (3.3). Apply-

ing Algorithm 3.1 would give:

N0 =




3 1 0 1

2 3 0 2

2 0 2 4

1 1 0 2




−→ N1 =




max(3 + 3, 2 + 1) max(0 + 3, 2 + 0) max(2 + 3, 2 + 1)

max(0 + 3, 2 + 1) max(2 + 3, 2 + 0) max(4 + 3, 2 + 1)

max(1 + 3, 1 + 1) max(0 + 3, 1 + 0) max(2 + 3, 1 + 1)




N1 =




6 3 5

3 5 7

4 3 5



−→ N2 =




max(5 + 6, 3 + 3) max(7 + 6, 3 + 5)

max(3 + 6, 4 + 3) max(5 + 6, 4 + 5)




N2 =




11 13

9 11


 −→ N3 = max

(
11 + 11, 9 + 13

)
−→ N3 = 22

Now, MaxDegree = N3 −N1(1, 1)− 2N0(1, 1) = 22− 6− 2× 3 = 10 . This tells

us that the degree of the polynomial should not be more than 10. In fact, the polynomial

degree is exactly 10 as shown below.

∣∣∣∣C
∣∣∣∣ = −1602t10 + 7560t8 − 1118t7 − 7966t6 − 7030t5 − 2735t4 + 1134t3 − 1188t2

.

To illustrate how this method works with more than one variable, we consider the

three variable matrix that is shown in Example 3.3.

19

Example 3.3. Let C =




x+ y xz x− 1 y2

x3 + yz 2z2 x 22x2

x2 + 2x− 1 2xy 0 1− z3

y − z −3 x2 − 9 x+ y3 − z2




.

Applying Algorithm 3.1 on the three variables x, y, and z would give:

Solving for x −→




1 1 1 0

3 0 1 2

2 1 0 0

0 0 2 1




−→




4 4 3

3 3 2

1 3 2



−→




7 6

7 6


 −→ 13 −→ 7 .

Solving for y −→




1 0 0 2

1 0 0 0

0 1 0 0

1 0 0 3




−→




1 1 3

2 1 2

1 1 4



−→




3 5

2 5


 −→ 8 −→ 5 .

Solving for z −→




0 1 0 0

1 2 0 0

0 0 0 3

1 0 0 2




−→




2 1 1

1 0 3

2 1 2



−→




2 5

3 4


 −→ 8 −→ 6 .

Calculating the exact determinant1 of C would give:

−22x7z + · · ·+ 2x2y5z − 2x2y5 − 2xy5z + · · ·+ 2xz6 − 2z6 +

1The exact determinant was found by using (GNU Octave) [9].

20

https://www.gnu.org/software/octave/

3.3 QEP applications and real-life models

A great deal of work collecting NLEP models has been done in [4]. The authors were able

to collect more than 50 models of real-life problems. In addition, more than 40 of those

problems are QEPs. The purpose of mentioning these models is going to be discussed in

detail in the next chapter, in what those models are used to test the methods of solving

QEPs. Here are some notable examples of models using QEPs.

3.3.1 The spring problem

The illustrated graph in Figure 3.1 represents a connected system of damped masses and

springs. In this system, m1 to mn are the masses that are joined together by dampers with

constants d1 to dn−1 and springs with constants s1 to sn−1. In addition, the dampers τ1 to

τn and the springs κ1 to κn connect the masses m1 to mn to the ground.

Figure 3.1: A damped mass-spring system of degree n [21].

21

The QEP in this system is the differential equation of second order that governs the

system’s vibration. The differential equation of this system is defined as

M
d2

dt2
v +D

d

dt
v + Sv = 0, (3.4)

where the n× n mass matrix M , damping matrix D, and the stiffness matrix S as given in

[4] are:

M =




1

1

. . .

1



, D =




30 −10

−10
.
. −10

−10 30



, S =




15 −5

−5
.
. −5

−5 15



.

3.3.2 The bicycle problem

The motion of the steer and the lean angles δ and φ, of a bicycle, can be represented

together as a second order differential equation with the coefficients M as the mass matrix,

D = uD0 as the damping matrix, and S = gS1 + u2S2 as the stiffness matrix.

Figure 3.2: The steer and the lean angles in the bicycle problem [15].

22

The equation of the bicycle model can be written as

λ2Mv + λuD0v + (gS1 + u2S2)v = f, (3.5)

where v = [φ, δ]T and f = [Tφ, Tδ]
T are time-dependent quantities, u is the forward speed,

and g is the gravitational acceleration. In addition, the values of the coefficient matrices are

given in [4] as:

M =



−794.1195 1889.4323

−25.5012 58.4775


 , D =




0 169.332

−4.2517 8.427


 , S =




80.8172 2.3194

2.3194 0.2978


 .

3.3.3 The population of bilbies problem

A QEP arises in a quasi-birth-death model for the population of the bilby, which is an

endangered animal that is shown in Figure 3.3. In this problem, (i, j) is considered as the

state, where i indicates the population, and j − 1 takes the values 0 to 4 and indicates the

number of the previous bad seasons. For example, j = 1 means the previous season was

not a bad season. In addition, g indicates the probability of having a good season, uj and

dj are the probabilities of the population increasing and decreasing, respectively.

Figure 3.3: The Australian bilby.

23

Define kj by kj = 1− uj − dj , and define the matrix C by

C(g, z) =




gz1 (1− g)z1 0 0 0

gz2 0 (1− g)z2 0 0

gz3 0 0 (1− g)z3 0

gz4 0 0 0 (1− g)z4

gz5 0 0 0 (1− g)z5




,

then the corresponding matrices M,D, and S of the QEP of this model can be written as

M = vH2
T , D = vH1

T − I, S = vH0
T ,

where

H0 = C(g, u), H1 = C(g, k), H2 = C(g, d).

Taking the same values as in [3], gives

M =




0.1 0.04 0.025 0.01 0

0.4 0 0 0 0

0 0.16 0 0 0

0 0 0.1 0 0

0 0 0 0.04 0




, D =




−1 0.01 0.02 0.01 0

0 −1 0 0 0

0 0.04 −1 0 0

0 0 0.08 −1 0

0 0 0 0.04 −1




,

S =




0 0.05 0.055 0.08 0.1

0 0 0 0 0

0 0.2 0 0 0

0 0 0.22 0 0

0 0 0 0.32 0.4




.

24

3.3.4 QEPs with singular leading matrix

In the following two acoustic-modeling problems from [22], the 3 × 3 leading matrices

are singular. Therefore, from Table 3.1 we will have less than 6 finite eigenvalues in each

problem.

3.3.4.1 Problem 1

Q(λ)v = (λ2M + λD + S)v = 0, (3.6)

where

M =




1 0 0

0 1 0

0 0 0



, D =




−2 0 1

0 0 0

0 0 0



, S =




1 0 0

0 −1 0

0 0 1



.

3.3.4.2 Problem 2

Q(λ)v = (λ2M + λD + S)v = 0, (3.7)

where

M =




0 6 0

0 6 0

0 0 1



, D =




1 −6 0

2 −7 0

0 0 0



, S =




1 0 0

0 1 0

0 0 1



.

25

3.4 Numerical methods based on Newton iteration

Newton iteration methods play an important role in solving nonlinear problems numeri-

cally. In addition, they provide accurate and efficient approximations most of the time.

Unlike the mentioned methods in Chapter 2, Newton methods need an initial guess at the

beginning. This initial guess is very important in determining the efficiency and the con-

vergence properties of the solution.

Suppose that we have the polynomial P (λ) = 0, and the initial guess for the root λ is

λ(0), then the Newton iteration method for finding the solution λ is given as

λ(i+1) = λ(i) − P (λ(i))

P ′(λ(i))
, i = 0, 1, (3.8)

Many methods from [23] based on Equation (3.8) have been modified in [11] in order

to make them deal with NLEPs and QEPs. However, the modified methods cannot find all

the solutions λ, or the eigenvalues of QEPs. These methods also differ in terms of accuracy

and efficiency as we will see in the next chapter. Before we start listing Newton methods,

it is important to mention that Equation (3.9) below is equivalent to Equation (1.1).

Q(λ)v =




λ2m11 + λd11 + s11 λ2m1n + λd1n + s1n

λ2m21 + λd21 + s21 λ2m2n + λd2n + s2n
...

λ2mn1 + λdn1 + sn1 λ2mnn + λdnn + snn



v = 0 (3.9)

Q(λ) is called the polynomial matrix of the QEP, P (λ) = det(Q(λ)) is the scalar polyno-

mial of the QEP.

26

3.4.1 Newton-trace iteration (NTI)

Since the polynomial matrix Q(λ) in (3.9) has only three types of components, and those

components are differentiable functions of λ, then we will have

P ′(λ) = P (λ) trace
(
Q−1(λ)Q′(λ)

)
. (3.10)

Therefore, according to Theorem 5.1 in [12], Equation (3.8) can be rewritten as

λ(i+1) = λ(i) − 1

trace
(
Q−1(λ(i))Q′(λ(i))

) , i = 0, 1, (3.11)

Equation (3.11) is called Newton-trace iteration (NTI), and the algorithm is given as:

Algorithm 3.2: Newton-trace algorithm [12].

Input : n× n polynomial matrix Q(λ), initial guess λ(0), iterations number k .

1 Calculate Q′(λ)

2 for i=1:k do

3 LU decomposition for Q(λ(i))

4 if
abs
(n∏
j=1

ujj

)

‖Q(λ(i))‖F
< ε then

5 STOP

6 end

7 Solve LX = Q′(λ(i)) for X

8 Solve UY = X for Y

9 λ(i+1) = λ(i) −
1

trace(Y)

10 end

Output: eigenvalue λ.

27

3.4.2 Newton inverse iteration (NII)

The Newton inverse iteration can be applied directly to the QEPs, without need to compute

the scalar polynomial det(Q(λ)). A unit-normalized vector v is needed in this method

to initialize the eigenvector approximation. In addition, a nonzero vector u is needed to

initialize the iteration for λ(i+1) as shown in (3.12)

λ(i+1) = λ(i) −
uTv(i)

uTv(i+1)
. (3.12)

The choice of the vector u can affect the convergence properties of the eigenvalue

λ, and there are various ways as discussed in [11] to choose the vector u. Moreover, the

normalization of the vector v is very important to prevent any numerical underflow or over-

flow. The steps of this method are shown in Algorithm 3.3 below.

Algorithm 3.3: Newton inverse iteration [11].

Input : polynomial matrix Q(λ), initial guess λ(0), iterations number k, initial

normalized vector v(0), nonzero vector u .

1 for i=1:k do

2 if
∥∥Q(λ(i))v(i)

∥∥
2
< ε then

3 STOP

4 end

5 Solve Q(λ(i))v(i+1) = Q′(λ(i))v(i) for v(i+1)

6 λ(i+1) = λ(i) −
uTv(i)

uTv(i+1)

7 Normalize v(i+1) =
v(i+1)

‖v(i+1)‖2
8 end

Output: eigenvalue λ.

28

3.4.3 Newton Maehly method (NMM)

Approaching a root of a polynomial P (λ) from a specific point can be done by drawing

a tangent from an initial point P1 through the graph until touching the X axis at the point

X2. Next, starting from the point X2 that we ended up in and going back to the point P2 in

the graph again as shown in Figure 3.4. Repeating the first step by drawing another tangent

from P2 to X3, and the second step by going back again to the graph until we have a very

small difference between two of the previous mentioned iterations [16].

Figure 3.4: Newton iteration technique.

Mathematically, the mentioned steps can be interpreted as:

P (λ1) = (λ1 − λ2)P ′(λ1), (3.13)

or

λ2 = λ1 −
P (λ)

P ′(λ)
, (3.14)

which is the Newton iteration mentioned previously in Equation (3.8).

29

Using Equation (3.14) will result in finding only one root depending on the chosen

initial value λ(0). Therefore, a significant modification has been done in [2] in order to find

all the roots of a given polynomial. To illustrate the idea of NMM in [2], we consider a

polynomial of three roots α1, α2, and α3. Let

P3(λ) = (λ− α1)(λ− α2)(λ− α3). (3.15)

Differentiating (3.15) would give

P ′3(λ) = (λ− α1)(λ− α2) + (λ− α1)(λ− α3) + (λ− α2)(λ− α3). (3.16)

The fraction P ′3(λ)
P3(λ)

becomes

P ′3(λ)

P3(λ)
=

(λ− α1)(λ− α2) + (λ− α1)(λ− α3) + (λ− α2)(λ− α3)

(λ− α1)(λ− α2)(λ− α3)
, (3.17)

⇒
P ′3(λ)

P3(λ)
=

1

(λ− α1)
+

1

(λ− α2)
+

1

(λ− α3)
=

3∑

j=1

1

(λ− αj)
, (3.18)

and Equation (3.8) can be rewritten as

λ(i+1) = λ(i) −
1

P ′(λ(i))

P (λ(i))

= λ(i) −
1

k∑
j=1

1

(λ(i) − αj)

, i = 0, 1, (3.19)

To avoid evaluating the recomputed roots, the modified formula by Maehly [2] that is given

below is used.

λ(i+1) = λ(i) −
Pn−k(λ

(i))

P ′n−k(λ(i))
, (3.20)

30

where

Pn−k(λ) =
Pn(λ)

(λ− α1)(λ− α2) (λ− αk)
, (3.21)

and the derivative P ′n−k(λ) is

P ′n−k(λ) =
P ′n(λ)

(λ− α1) . . . (λ− αk)
−

Pn(λ)

(λ− α1) . . . (λ− αk)
k∑

j=1

1

(λ− αj)
. (3.22)

Therefore, Equation (3.20) can be rewritten as

λ(i+1) = λ(i) −
1

P ′(λ(i))

P (λ(i))
−

k∑
j=1

1

(λ(i) − αj)

. (3.23)

Equation (3.23) is called Newton Maehly iteration (NMI), which finds a new root and

suppresses all the computed roots. In other words, computing a new root with an implicit

deflation of the evaluated roots.

3.4.3.1 QEPs by NMM

NMM can be used to evaluate QEPs by evaluating the determinant of the matrix in Equation

(3.9) without explicitly computing the scalar polynomial. The Newton correction P (λ)
P ′(λ)

is needed in order to progress the iteration of finding every root. To avoid the overflow

of evaluating the determinants P (λ) = det(Q(λ)) and P ′(λ) = det(Q′(λ)) for a given λ

during the calculation, it is better to use Gaussian elimination and initialize σ := log(P (λ))

to compute the Newton correction P (λ)
P ′(λ)

as follows.

Deriving log(P (λ))

σ′ :=
d

dλ
log(P (λ)) =

P ′(λ)

P (λ)
. (3.24)

31

Equation (3.24) is equivalent to the inverse of the Newton correction P (λ)
P ′(λ)

. Therefore, it is

better to update the steps of evaluating the determinant as below [10].

σ = σ + log(qii) (3.25)

instead of

P (λ) = P (λ)× qii, (3.26)

or even better to compute

σ′ = σ′ +
q′ii
qii
, (3.27)

where qii and q′ii are the diagonal entries of Q(λ) and Q′(λ) respectively.

Finally, it is important to mention that finding all the eigenvalues of a QEP by NMM

requires knowing the degree of the scalar polynomial P (λ). Therefore, we use Algorithm

3.1 in Section 3.2 to calculate the degree of P (λ). More details about the method of New-

ton Maehly are provided in Algorithm 3.4.

32

Algorithm 3.4: Modified NMM for finding all eigenvalues of a QEP.

Input : polynomial matrix Q(λ).

1 Calculate Q′(λ)

2 Calculate n, the degree of the scalar polynomial P (λ) using Algorithm 3.1

3 for i=1:n do

4 Initialize, λ the initial guess, C Newton correction, and ε tolerance

5 while abs (C) > ε do

6 Calculate the correction C = Pn(λ)
P ′n(λ)

using Gaussian elimination and

evaluating determinants using the updating in Equation (3.27)

7 if i > 1 then % suppression after finding the first eigenvalue

8 S =
i−1∑
j=1

1

(λ− αj)
9 end

10 λnew = λ−
C

1− C S
11 end

12 α(i) = λnew

13 end

Output: all eigenvalues λ.

33

Results and Discussion

4.1 Overview

In this chapter, we are going to use MATLAB® to test and compare the numerical methods

that are based on the Newton iteration in Section 3.4. In addition, we will implement some

of the standard methods from Chapter 2 and compare them with the modified Newton

Maehly method that is described in Algorithm 3.4. Moreover, we will use the commands

eig1 and polyeig2 from MATLAB® and compare them with the mentioned iterative methods

to check the accuracy and the efficiency. The real life problems from Section 3.3 as well as

some other problems will be tested in these experiments.

4.1.1 Experimental environment

The coming implementations and results have been performed using MATLAB® R2017a

(Version 9.2). In addition, all the experiments have been done on a computer with 4GB

RAM, CPU Intel® Core™ i5-6300U 2.50GHz, and 64-bit Widows operating system.

1eig: gives the eigenvalues of a certain SEP or GEP. More information in [14], page 2877.
2polyeig: gives the eigenvalues of a certain QEP or MMP. More information in [14], page 9408.

34

4.2 Results

In this section, the eigenvalues of the problems from Section 3.3 are shown in tables using

the commands polyeig and eig from MATLAB® in the first and second columns respec-

tively. The third column contains the eigenvalues using the modified NMM as explained in

Algorithm 3.4. The fourth and fifth columns are the eigenvalues using JD and SOAR meth-

ods from the literature in Chapter 2. The last column is the symbolic solution that gives

an exact or a very accurate approximation using MATLAB®. Moreover, the graph of the

eigenvalues and the elapsed time that each method needed to compute all the eigenvalues

are provided as well.

4.2.1 The results of the spring problem

4.2.1.1 The eigenvalues

We considered the spring problem 3.3.1 with 8× 8 matrices. In this problem, we have only

real eigenvalues that are shown in Table 4.1.

Table 4.1: The eigenvalues of the spring problem.
polyeig eig Modified NMM JD method SOAR method Symbolic

-48.2886210448492 -48.2886210448493 -48.2886210448492 -48.2886210448492 -48.2886210448493 -48.2886210448492

-44.8152474632154 -44.8152474632154 -44.8152474632154 -44.8152474632154 -44.8152474632154 -44.8152474632154

-39.4935886896179 -39.4935886896180 -39.4935886896179 -39.4935886896179 -39.4935886896179 -39.4935886896179

-32.9652630150776 -32.9652630150777 -32.9652630150776 -32.9652630150776 -32.9652630150776 -32.9652630150776

-26.0172391485077 -26.0172391485076 -26.0172391485076 -26.0172391485076 -26.0172391485076 -26.0172391485076

-19.4868329805051 -19.4868329805051 -19.4868329805051 -19.4868329805051 -19.4868329805051 -19.4868329805051

-14.1608106130703 -14.1608106130703 -14.1608106130703 -14.1608106130703 -14.1608106130702 -14.1608106130702

-10.6815934709485 -10.6815934709485 -10.6815934709485 -10.6815934709485 -10.6815934709485 -10.6815934709485

-0.524554113333373 -0.524554113333373 -0.524554113333373 -0.524554113333373 -0.524554113333373 -0.524554113333373

-0.518300524550191 -0.518300524550193 -0.518300524550191 -0.518300524550191 -0.518300524550191 -0.518300524550191

-0.513167019494862 -0.513167019494863 -0.513167019494862 -0.513167019494862 -0.513167019494862 -0.513167019494862

-0.509797298153810 -0.509797298153811 -0.509797298153810 -0.509797298153811 -0.509797298153811 -0.509797298153810

-0.507700538260968 -0.507700538260969 -0.507700538260968 -0.507700538260969 -0.507700538260969 -0.507700538260968

-0.506411310382072 -0.506411310382072 -0.506411310382072 -0.506411310382071 -0.506411310382072 -0.506411310382072

-0.505641399164193 -0.505641399164194 -0.505641399164193 -0.505641399164193 -0.505641399164193 -0.505641399164193

-0.505231370868922 -0.505231370868923 -0.505231370868922 -0.505231370868923 -0.505231370868923 -0.505231370868922

35

4.2.1.2 The graph of the eigenvalues

Figure 4.1 shows the real eigenvalues of the spring problem 3.3.1.

Figure 4.1: The eigenvalues of the spring problem.

4.2.1.3 The elapsed time

Table 4.2 shows the elapsed time of each method using the tic toc command in MATLAB®.

Table 4.2: The elapsed time of the spring problem.

Method Elapsed time (second)

polyeig 0.000516102140634

eig 0.000169025502338

Modified NMM 0.292592752744408

JD method 0.231284323048761

SOAR method 0.10914534634228

Symbolic 2.04444057892055

36

4.2.2 The results of the bicycle problem

4.2.2.1 The eigenvalues

We considered the same matrices that are mentioned in the bicycle problem 3.3.2. In this

problem, we have real and complex eigenvalues.

Table 4.3: The eigenvalues of the bicycle problem.
polyeig eig Modified NMM JD method SOAR method Symbolic

-3.09728782115114

+ 0.00000000000000i

-3.09728782115086

+ 0.00000000000000i

-3.09728782115081

- 6.94197596594490e-29i

-3.09728782115084

+ 1.27553265615061e-15i

-3.09728782115078

- 9.67773252890883e-21i

-3.09728782115081

+ 0.00000000000000i

-0.0710186656720219

+ 0.00000000000000i

-0.0710186656720246

+ 0.00000000000000i

-0.0710186656720231

- 1.33487886937879e-25i

-0.0710186656720285

+ 1.52075556671689e-15i

-0.0710186656720225

- 4.06960560614274e-17i

-0.0710186656720231

+ 0.00000000000000i

-0.0377667384512559

- 0.217415070367874i

-0.0377667384512537

- 0.217415070367873i

-0.0377667384512544

- 0.217415070367873i

-0.0377667384512546

- 0.217415070367873i

-0.0377667384512556

- 0.217415070367872i

-0.0377667384512545

- 0.217415070367873i

-0.0377667384512559

+ 0.217415070367874i

-0.0377667384512537

+ 0.217415070367873i

-0.0377667384512546

+ 0.217415070367873i

-0.0377667384512560

+ 0.217415070367839i

-0.0377667384512564

+ 0.217415070367874i

-0.0377667384512545

+ 0.217415070367873i

4.2.2.2 The graph of the eigenvalues

Figure 4.2: The eigenvalues of the bicycle problem.

37

4.2.2.3 The elapsed time

Table 4.4: The elapsed time of the bicycle problem.

Method Elapsed time (second)

polyeig 0.000718358384937

eig 0.000252717741360

Modified NMM 0.002534557099851

JD method 0.214376603588428

SOAR method 0.069751129640099

Symbolic 0.617959698084350

4.2.3 The results of the bilby problem

4.2.3.1 The eigenvalues

We considered the same matrices that are mentioned in the bilby problem 3.3.3. In this

problem, we have real, zero, complex, and infinite eigenvalues.

Table 4.5: The eigenvalues of the bilby problem.
polyeig eig Modified NMM JD method SOAR method Symbolic

-19.2093356780573

+ 0.00000000000000i

-19.2093356780572

+ 0.00000000000000i

-19.2093356780573

+ 3.94430452610506e-31i

-19.2093356780573

- 3.60211353777817e-15i

-19.2093356780572

- 1.97959084074126e-14i
-19.2093356780573

-6.26221095987339

- 12.0847655599571i

-6.26221095987339

- 12.0847655599571i

-6.26221095987338

- 12.0847655599571i

-6.26221095987340

- 12.0847655599571i

-6.26221095987338

- 12.0847655599572i

-6.26221095987338

- 12.0847655599571i

-6.26221095987339

+ 12.0847655599571i

-6.26221095987339

+ 12.0847655599571i

-6.26221095987338

+ 12.0847655599571i

-6.26221095987338

+ 12.0847655599571i

-6.26221095987338

+ 12.0847655599572i

-6.26221095987338

+ 12.0847655599571i

-8.04828785593925e-08

+ 0.00000000000000i

-8.96777373388142e-08

+ 0.00000000000000i

-6.78216289760305e-15

- 8.04640630034406e-16i

-8.57744797910509e-08

+ 6.45412745371875e-11i

-6.04903210180670e-08

- 2.21328706211966e-08i
0

-2.47433749573842e-17

+ 0.00000000000000i

0.00000000000000

+ 0.00000000000000i

3.49464019031050e-15

+ 1.31690313126443e-16i

1.46152804072020e-16

+ 7.40600115646023e-18i

-4.42278532088848e-17

- 5.46836154223283e-17i
0

8.04901750288605e-08

+ 0.00000000000000i

8.96867600970848e-08

+ 0.00000000000000i

9.70397148346409e-15

- 1.22000045018037e-16i

8.57827457694782e-08

- 6.45537911025004e-11i

6.04939571947770e-08

+ 2.21358875368946e-08i
0

0.000890079219420621

+ 0.00000000000000i

0.000890079217694443

+ 0.00000000000000i

0.000890079226717209

- 7.08586316108145e-19i

0.000890079218451498

+ 1.21723555731509e-14i

0.000890079223081409

- 3.01708389710887e-12i
0.000890079226717208

0.405995438967173

+ 0.00000000000000i

0.405995438967173

+ 0.00000000000000i

0.405995438967173

- 1.54074395550979e-33i

0.405995438967173

+ 4.28581579171165e-16i

0.405995438967173

- 6.35767522722572e-17i
0.405995438967173

4.27687207961013

+ 0.00000000000000i

4.27687207961013

+ 0.00000000000000i

4.27687207961013

- 2.11904447449192e-24i

4.27687207961013

+ 4.03955008677683e-16i

4.27687207961013

- 2.47055975940458e-17i
4.27687207961013

∞ ∞ ∞ ∞ ∞ ∞

38

4.2.3.2 The graph of the eigenvalues

Figure 4.3: The eigenvalues of the bilby problem.

4.2.3.3 The elapsed time

Table 4.6: The elapsed time of the bilby problem.

Method Elapsed time (second)

polyeig 0.000495076598911509

eig 0.000151794747245336

Modified NMM 0.0210491847801561

JD method 0.560473386278247

SOAR method 0.088906979358376

Symbolic 1.13579361165652

39

4.2.4 The results of the acoustic-modeling problem 1

4.2.4.1 The eigenvalues

We considered the same matrices that are mentioned in the first acoustic-modeling problem

3.3.4.1. In this problem, we have real and infinite eigenvalues.

Table 4.7: The eigenvalues of the acoustic-modeling problem 1.
polyeig eig Modified NMM JD method SOAR method Symbolic

-1.00000000000000

+ 0.00000000000000i

-1.00000000000000

+ 0.00000000000000i

-1.00000000000000

+ 0.00000000000000i

-1.00000000112532

+ 0.000000000000000i

-1.00000000000000

+ 0.00000000000000i
-1

0.999999989049928

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

0.999999999274104

+ 2.74880930903236e-25i

1.00000000121028

+ 0.00000000000000i

0.999997392033132

+ 0.00000000000000i
1

1.00000000000000

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

1.00000000000000

- 7.56884830468748e-09i

1.00000001703073

+ 0.00000000000000i

1.00000130398344

- 2.25858357700408e-06i
1

1.00000001095007

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

1.00000000000000

+ 7.70476461097103e-09i

0.999999982969270

+ 0.00000000000000i

1.00000130398344

+ 2.25858357700408e-06i
1

−∞ −∞ −∞ −∞ −∞ −∞

∞ ∞ ∞ ∞ ∞ ∞

4.2.4.2 The graph of the eigenvalues

Figure 4.4: The eigenvalues of the acoustic-modeling problem 1.

40

4.2.4.3 The elapsed time

Table 4.8: The elapsed time of the acoustic-modeling problem 1.

Method Elapsed time (second)

polyeig 0.000164922941601689

eig 4.34871438054205e-05

Modified NMM 0.00187692153688489

JD method 0.542664243967800

SOAR method 0.0747092720334178

Symbolic 0.611516298243037

4.2.5 The results of the acoustic-modeling problem 2

4.2.5.1 The eigenvalues

We considered the same matrices that are mentioned in the second acoustic-modeling prob-

lem 3.3.4.2. In this problem, we have real, pure imaginary, and infinite eigenvalues.

Table 4.9: The eigenvalues of the acoustic-modeling problem 2.
polyeig eig Modified NMM JD method SOAR method Symbolic

0.00000000000000

- 1.00000000000000i

0.00000000000000

- 1.00000000000000i

0.00000000000000

- 1.00000000000000i

0.00000000000000

- 1.00000000000000i

0.00000000000000

- 1.00000000000000i
-1i

0.00000000000000

+ 1.00000000000000i

0.00000000000000

+ 1.00000000000000i

0.00000000000000

+ 1.00000000000000i

0.00000000000000

+ 1.00000000000000i

0.00000000000000

+ 1.00000000000000i
+ 1i

0.333333333333336

+ 0.00000000000000i

0.333333333333333

+ 0.00000000000000i

0.333333333333333

+ 1.97302823776934e-42i

0.333333333333331

+ 3.36469448676242e-17i

0.333333333333330

+ 2.18068397039413e-16i
1/3

0.499999999999995

+ 0.00000000000000i

0.500000000000002

+ 0.00000000000000i

0.500000000000000

+ 5.17689969051289e-31i

0.500000000000004

- 7.19677987715788e-18i

0.500000000000003

+ 4.44522679167366e-16i
1/2

1.00000000000000

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

1.00000000000000

- 1.92693779236989e-18i

1.00000000000000

+ 2.14685988811526e-16i
1

∞ ∞ ∞ ∞ ∞ ∞

41

4.2.5.2 The graph of the eigenvalues

Figure 4.5: The eigenvalues of the acoustic-modeling problem 2.

4.2.5.3 The elapsed time

Table 4.10: The elapsed time of the acoustic-modeling problem 2.

Method Elapsed time (second)

polyeig 0.000407343419615

eig 0.000109599860841

Modified NMM 0.0021634854043197

JD method 0.406944814814511

SOAR method 0.072359325243631

Symbolic 0.673750913845404

42

4.3 Discussion

4.3.1 The accuracy

The accuracy of the modified NMM depends on a given convergence tolerance that is tested

after every iteration. For a given stopping criterion we used in this method, the results

were slightly more accurate than the command of MATLAB® and the methods from the

literature. In fact, there is not that notable big difference between the modified NMM and

the other methods in most of the QEPs that we solved; however, the modified NMM has

a slightly better accuracy in the problems with singular leading matrices as well as the

bicycle problem 3.3.2.

Table 4.11: The accuracy of the bicycle problem.
polyeig eig Modified NMM JD method SOAR method Exact

-3.09728782115114

+ 0.00000000000000i

-3.09728782115086

+ 0.00000000000000i

-3.09728782115081

- 6.94197596594490e-29i

-3.09728782115084

+ 1.27553265615061e-15i

-3.09728782115078

- 9.67773252890883e-21i

-3.09728782115081

+ 0.00000000000000i

-0.0710186656720219

+ 0.00000000000000i

-0.0710186656720246

+ 0.00000000000000i

-0.0710186656720231

- 1.33487886937879e-25i

-0.0710186656720285

+ 1.52075556671689e-15i

-0.0710186656720225

- 4.06960560614274e-17i

-0.0710186656720231

+ 0.00000000000000i

-0.0377667384512559

- 0.217415070367874i

-0.0377667384512537

- 0.217415070367873i

-0.0377667384512544

- 0.217415070367873i

-0.0377667384512546

- 0.217415070367873i

-0.0377667384512556

- 0.217415070367872i

-0.0377667384512545

- 0.217415070367873i

-0.0377667384512559

+ 0.217415070367874i

-0.0377667384512537

+ 0.217415070367873i

-0.0377667384512546

+ 0.217415070367873i

-0.0377667384512560

+ 0.217415070367839i

-0.0377667384512564

+ 0.217415070367874i

-0.0377667384512545

+ 0.217415070367873i

Table 4.12: The accuracy of the acoustic-modeling problem 1.
polyeig eig Modified NMM JD method SOAR method Exact

-1.00000000000000

+ 0.00000000000000i

-1.00000000000000

+ 0.00000000000000i

-1.00000000000000

+ 0.00000000000000i

-1.00000000112532

+ 0.000000000000000i

-1.00000000000000

+ 0.00000000000000i
-1

0.999999989049928

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

0.999999999274104

+ 2.74880930903236e-25i

1.00000000121028

+ 0.00000000000000i

0.999997392033132

+ 0.00000000000000i
1

1.00000000000000

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

1.00000000000000

- 7.56884830468748e-09i

1.00000001703073

+ 0.00000000000000i

1.00000130398344

- 2.25858357700408e-06i
1

1.00000001095007

+ 0.00000000000000i

1.00000000000000

+ 0.00000000000000i

1.00000000000000

+ 7.70476461097103e-09i

0.999999982969270

+ 0.00000000000000i

1.00000130398344

+ 2.25858357700408e-06i
1

−∞ −∞ −∞ −∞ −∞ −∞

∞ ∞ ∞ ∞ ∞ ∞

43

4.3.2 The efficiency

Based on the elapsed time tables in Section 4.2, the modified NMM performs faster than

Jacobi-Davidson method in all the problems of dimension less than 8 × 8, and faster than

SOAR method in all the problems of dimension less than 7×7, and obviously, the symbolic

method is the slowest in every problem. On the other hand, the modified NMM starts to

perform slower than the other iterative methods when the dimension of the matrices gets

bigger than 6 × 6 for the QEPs with non-singular leading matrices, and 10 × 10 for the

QEPs with singular leading matrices.

In Jacobi-Davidson method, there are two stopping criteria. The first criterion is the

convergence tolerance, and the second one is the number of iterations. The number of

iterations is considered as a criterion when the method fails to determine the eigenvalue

depending on the given convergence tolerance. In other words, the criterion of the iteration

number is considered when the problem contains infinite roots. This issue is avoided in the

modified NMM because we ignore calculating the infinite roots by giving the number of

the finite eigenvalues at the beginning of the algorithm.

The efficiency of the iterative methods in MATLAB® can be affected by many issues

that might happen to the computer during the experiment. In addition, choosing a random

initial guess in every iteration using the command rand3 can also affect the efficiency of the

algorithm. Consequently, repeating the experiment might lead to ending up with different

elapsed time for the small QEPs. Therefore, for more reliable results, the way of computing

the elapsed time of all the problems in this thesis was by doing every experiment for fifty

times and taking the average of the entire elapsed time. Table 4.13 and Figure 4.6 show the

elapsed time of the spring problem 3.3.1 with 10 different dimensions.

3rand: gives a random number between 0 and 1. More information in [14], page 10187.

44

Table 4.13: The elapsed time of the spring problem with 10 different sizes.

Size

Method
polyeig eig Modified NMM JD method SOAR method Symbolic

2× 2 0.000443 7.96e-05 0.00229 0.203611 0.072749 0.598963

3× 3 0.000458 9.93e-05 0.00431 0.208553 0.074351 0.836125

4× 4 0.000471 0.000122 0.009631 0.223261 0.079641 1.053089

5× 5 0.000485 0.00013 0.021504 0.227067 0.085794 1.314622

6× 6 0.00049 0.000133 0.049482 0.228645 0.097949 1.649801

7× 7 0.000499 0.000149 0.111957 0.229063 0.103299 2.00808

8× 8 0.000516 0.000169 0.292593 0.231284 0.109145 2.044441

9× 9 0.000518 0.000215 0.366352 0.240307 0.116326 2.482973

10× 10 0.000523 0.000241 0.417741 0.24454 0.125054 2.595643

11× 11 0.000538 0.000242 0.492477 0.251765 0.127997 2.932986

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9 10 11

polyeig eig Modified NMM JD method SOAR method Symbolic

Figure 4.6: The efficiency of the methods for 10 different dimensions. The x-axis repre-
sents the dimension of the matrices, and the y-axis represents the elapsed time.

45

Figures 4.7 and 4.8 show the elapsed time of the spring problem 3.3.1 up to dimension

of 40 × 40 in regular scale and logarithmic scale respectively. The x-axis represents the

dimension of the matrices, and the y-axis represents the elapsed time.

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

polyeig

eig

Modified NMM

JD method

SOAR method

Symbolic

Figure 4.7: The efficiency of the methods.

0.00001

0.0001

0.001

0.01

0.1

1

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

polyeig eig Modified NMM JD method SOAR method Symbolic

Figure 4.8: The efficiency of the methods in logarithmic scale.

46

4.4 Conclusion and future work

QEPs can be solved by using NMM that was originally structured to find zeros of scalar

polynomials. The implicit deflation can be applied on NMM in order to find all the so-

lutions λ of any QEP after determining the number of the eigenvalues. The advantage of

using NMM is to deal directly with the QEP without linearizing the problem to a GEP.

Consequently, in solving QEPs, one does not need to worry about the singularity of the

leading matrix of the QEP. In addition, determining the number of the eigenvalues using

Algorithm 3.1 will save the time of calculating the infinite eigenvalues in case we have a

singular leading matrix. Moreover, NMM is an efficient method when we deal with small

and singular matrices; however, the method starts to get slower when we deal with high

dimensional matrices.

We suggest a similar modification on the Newton methods that are mentioned in Sec-

tion 3.4 and in [11] to improve the efficiency. In Section 3.4, the three methods that are

based on Newton iteration perform differently in terms of efficiency when we hold the same

tolerance for some problems. For example, in the bicycle problem 3.3.2, NMM is slightly

faster than NTI, whereas NII performs significantly the slowest. In fact, NII needed 48

iterations to converge to one of the eigenvalues of Problem 3.3.2, while NMM and NTI

converged to the same eigenvalue with 9 and 10 iterations respectively. On the other hand,

the three methods performed almost the same with 10 iterations for both NMM and NTI,

and 9 iterations for NII to converge to one of the eigenvalues of the bilby problem 3.3.3. In

addition, we suggest working on more general problems since NMM can deal with MPP

and NLEP as long as the functions that are placed instead of λ in a QEP are differentiable.

Finally, we suggest doing these modifications in more controlled environment or enhancing

the MATLAB® issues that we mentioned earlier in Section 4.3.2.

47

Bibliography

[1] Zhaojun Bai and Yangfeng Su. Soar: A second-order arnoldi method for the solution

of the quadratic eigenvalue problem. SIAM Journal on Matrix Analysis and Applica-

tions, 26(3):640–659, 2005.

[2] F. L. Bauer and J. Stoer. Algorithm 105: Newton maehly. Commun. ACM, 5(7):387–

388, July 1962.

[3] NG Bean, L Bright, Guy Latouche, CEM Pearce, PK Pollett, and Peter G Taylor. The

quasi-stationary behavior of quasi-birth-and-death processes. The Annals of Applied

Probability, pages 134–155, 1997.

[4] Timo Betcke, Nicholas J Higham, Volker Mehrmann, Christian Schröder, and

Françoise Tisseur. Nlevp: A collection of nonlinear eigenvalue problems. ACM

Transactions on Mathematical Software (TOMS), 39(2):7, 2013.

[5] Dario A Bini and Vanni Noferini. Solving polynomial eigenvalue problems by means

of the ehrlich–aberth method. Linear Algebra and its Applications, 439(4):1130–

1149, 2013.

[6] Philippe G Ciarlet and Jacques-Louis Lions. Handbook of numerical analysis, vol-

ume 8. Gulf Professional Publishing, 1990.

48

[7] Timothy F. Walsh David M. Day. Quadratic eigenvalue problems. Sandia Report,

SAND2007-2072, 2007.

[8] Brent M Dingle. Symbolic determinants: Calculating the degree. Technical report,

unpublished–Tech Report Anticipated, 2004.

[9] John W. Eaton, David Bateman, Søren Hauberg, and Rik Wehbring. GNU Octave

version 4.2.1 manual: a high-level interactive language for numerical computations,

2017.

[10] Walter Gander. Zeros of determinants of λ-matrices. PAMM, 8(1):10811–10814,

2008.

[11] Stefan Güttel and Françoise Tisseur. The nonlinear eigenvalue problem. Acta Numer-

ica, 26:1–94, 2017.

[12] Peter Lancaster. Lambda-matrices and vibrating systems. Courier Corporation, 2002.

[13] Dinesh Manocha. Solving systems of polynomial equations. IEEE Computer Graph-

ics and Applications, 14(2):46–55, 1994.

[14] MATLAB. MATLAB: the language of technical computing: MATLAB function refer-

ence. MathWorks, Inc., Natick, Massachusetts, 2000.

[15] Jaap P Meijaard, Jim M Papadopoulos, Andy Ruina, and Arend L Schwab. Lin-

earized dynamics equations for the balance and steer of a bicycle: a benchmark and

review. In Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, volume 463, pages 1955–1982. The Royal Society, 2007.

[16] H.P. Moser. Newton maehly. http://www.mosismath.com/

NewtonMaehly/NewtonMaehly.html, 2010.

49

http://www.mosismath.com/NewtonMaehly/NewtonMaehly.html
http://www.mosismath.com/NewtonMaehly/NewtonMaehly.html

[17] Bor Plestenjak. Numerical methods for the tridiagonal hyperbolic quadratic eigen-

value problem. SIAM Journal on Matrix Analysis and Applications, 28(4):1157–1172,

2006.

[18] Jiang Qian and Wen-Wei Lin. A numerical method for quadratic eigenvalue problems

of gyroscopic systems. Journal of sound and vibration, 306(1):284–296, 2007.

[19] XIAOLIN QIN, ZHI SUN, TUO LENG, and YONG FENG. Computing the de-

terminant of a matrix with polynomial entries by approximation. arXiv preprint

arXiv:1408.5879, 2014.

[20] Gerard LG Sleijpen, Albert GL Booten, Diederik R Fokkema, and Henk A Van der

Vorst. Jacobi-davidson type methods for generalized eigenproblems and polynomial

eigenproblems. BIT Numerical Mathematics, 36(3):595–633, 1996.

[21] Françoise Tisseur. Backward error and condition of polynomial eigenvalue problems.

Linear Algebra and its Applications, 309(1-3):339–361, 2000.

[22] Françoise Tisseur and Karl Meerbergen. The quadratic eigenvalue problem. SIAM

review, 43(2):235–286, 2001.

[23] J. H. Wilkinson. The algebraic eigenvalue problem. Clarendon Press, Oxford, 1965.

[24] Ping Zhang. Iterative methods for computing eigenvalues and exponentials of large

matrices, 2009.

50

Appendix

A.1 Newton-trace iteration (NTI)

1 clc;clear;close all;

2 % Newton trace iteration computes one eigenvalue of a QEP.

3 % NTI requires: (Tolerance, iterations number, initial guess

4 % polynomial matrix Q(lambda) and Q'(lambda)).

5 % Ali Hasan Ali Wright State University December 2017

6 eps=input('eps='); % Tolerance (10ˆ(-8))

7 ite_num = input('ite_num='); %Number of iterations (25)

8 int_guss = input('int_guss='); % Initial guess (real+imaginary)

9 Q=input('Q='); % The polynomial matrix

10 Q_prime=diff(Q); % Calculating Q'

11 Q=inline(Q); Q_prime= inline(Q_prime);

12 for i = 0:ite_num

13 [Lt,Ut]=lu(Q(int_guss)); % LU decomposition for Q

14 Accc=diag(Ut); Acc=prod(Accc); Ac=abs(Acc);

15 Bc=norm(Q(int_guss),'fro');

16 if Ac/Bc<eps % The stopping criterion

17 break

18 end

19 X=Lt\Q_prime(int_guss); %Solve LX=Q for X

20 Y=Ut\X; %Solve UY=X for Y

21 int_guss=int_guss-1/trace(Y); %Updating the eigenvalue

22 end

23 The_eigenvalue = int_guss %The required eigenvalue

51

A.2 Newton inverse iteration (NII)

1 clc;clear;close all;

2 % Newton inverse iteration computes one eigenvalue of a QEP.

3 % NII requires:

4 % (Tolerance, iterations number, initial guess,

5 % initial normalized vector, non-zero vector,

6 % polynomial matrix Q(lambda) and Q'(lambda)).

7 % Ali Hasan Ali Wright State University December 2017

8 eps=input('eps='); % Tolerance (10ˆ(-8))

9 ite_num = input('ite_num='); %Number of iterations (25)

10 int_guss = input('int_guss='); % Initial guess (real+imaginary)

11 Q=input('Q='); % The polynomial matrix

12 Q_prime=diff(Q); % Calculating Q'

13 Q=inline(Q);

14 Q_prime= inline(Q_prime);

15 v = input('v=');

16 u = input('u='); %non_zero vector

17 v = v/norm(v); %Normalizing the vector v

18 for i = 0:ite_num

19 if norm(Q(int_guss)*v)<eps % The stopping criterion

20 break

21 end

22 nv = Q(int_guss)\Q_prime(int_guss)*v; %Solve Qnv=Q'v for nv

23 Ac=u'*v;

24 Bc=u'*nv;

25 int_guss=int_guss-Ac/Bc; %Updating the eigenvalue

26 v = nv/norm(nv); %Normalizing the new vector v

27 end

28 The_eigenvalue=int_guss %The required eigenvalue

52

A.3 The modified Newton Maehly method (NMM)

1 clc;clear;close all;

2 % Modified Newton Maehlycoputes all eigenvalues of a QEP.

3 % Modified NMM requires:

4 % (Tolerance, initial guess, initial Newton correction

5 % Number of eigenvalues, polynomial matrix Q(lambda), Q'(lambda)).

6 % Ali Hasan Ali Wright State University December 2017

7 Q=input('Q='); % The polynomial matrix

8 Q_prime=diff(Q); % Calculating Q'

9 Q=inline(Q); Q_prime= inline(Q_prime);

10 Q1=Q; Q1_prime=Q_prime;

11 d=input('Number_of_eigenvalues='); %Number of eigenvalues ...

(Algorithm 3.1)

12 eps=input('eps='); % Tolerance (10ˆ(-8))

13 for n=1:d %This loop for the eigenvalues of the entire problem

14 t = rand*1i; %Initial complex random number for t

15 CC = 1; %Initilizing the correction of the newton iterration

16 while abs(CC)>eps % The stopping criterion

17 Q=Q1(t);

18 Q_prime=Q1_prime(t);

19 CC = correction(Q,Q_prime); % Calculating the newton

20 % correction with an external

21 % function

22 g = 0;

23 if n>1 % Suppression after finding the first eigenvalue

24 g = sum(1./(t-root(1:n-1)));

25 end

26 t = t-CC/(1-CC*g); % Updating the eigenvalue

27 end

28 root(n) = t;

29 end

30 [root'] %The required eigenvalues

53

A.4 Newton correction

1 % The external function correction.m to calculate the Newton ...

orrection

2 % The Newton correction= P_n(lambda)/P'_n(lambda)

3 % Ali Hasan Ali Wright State University December 2017

4 function CCs = correction(Q,Q_prime)

5 k = length(Q);

6 Cs = 0;

7 for n = 1:k

8 [CM,KM]= max(abs(Q(n:k,n)));

9 if CM == 0

10 CCs = 0;

11 return

12 end

13 KM = KM+n-1;

14 if KM 6= n

15 h = Q(n,:); Q(n,:) = Q(KM,:); Q(KM,:) = h;

16 h = Q_prime(KM,:); Q_prime(KM,:) = Q_prime(n,:);

17 Q_prime(n,:) = h;

18 end

19 Cs = Cs+Q_prime(n,n)/Q(n,n);

20 % Gaussian elimination with the modification in equation (3.27)

21 Q_prime(n+1:k,n)=(Q_prime(n+1:k,n)*Q(n,n)- Q_prime(n,n) ...

*Q(n+1:k,n))/Q(n,n)ˆ2;

22 Q(n+1:k,n)=Q(n+1:k,n)/Q(n,n);

23 Q_prime(n+1:k,n+1:k)=Q_prime(n+1:k,n+1:k)- Q_prime(n+1:k,n) ...

*Q(n,n+1:k)-Q(n+1:k,n)*Q_prime(n,n+1:k);

24 Q(n+1:k,n+1:k)=Q(n+1:k,n+1:k)-Q(n+1:k,n)*Q(n,n+1:k);

25 end

26 CCs = 1/Cs;

54

A.5 Calculating the degree of polynomial determinants

1 clc;clear;close all;

2 % The number of the eigenvalues of a QEP can be determined

3 % if we know the degree of the scalar polynomial det(Q(lambda))

4 % This Matlab code, computes the degree of det(Q(lambda))

5 % without dealing with the determinant symbolicly

6 % This code requires only a polynomial matrix Q(lambda).

7 % Ali Hasan Ali Wright State University December 2017

8 Q=input('Q='); n=length(Q);

9 % Transforming the symbolic matrix to a numerical matrix

10 for i=1:n

11 for j=1:n

12 Nx(i,j)=feval(symengine, 'degree', Q(i,j), x);

13 end

14 end

15 NumMat=Nx; Un=zeros(n,1); Un(1,1)=NumMat(1,1);

16 if n==1 % Starting to reduce the main numerical matrix

17 Deg=Nx(1,1);

18 elseif n==2

19 Deg=max(Nx(2,2)+Nx(1,1),Nx(2,1)+Nx(1,2));

20 else

21 for k=1:n-1

22 for i=1:n-k

23 for j=1:n-k

24 Nx1(i,j)=max(Nx(i+1,j+1)+Nx(1,1),Nx(i+1,1) +Nx(1,j+1));

25 end

26 end

27 Nx=Nx1; Un(k+1)=Nx1(1,1); Nx; Nx1=0;

28 end

29 Deg=Nx;

30 for s=1:n-2

31 Deg=Deg-s*Un(n-1-s); % Unwinding the initial degree

32 end; end

55

	Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems
	Repository Citation

	Abstract
	Introduction
	Quadratic Eigenvalue Problem (QEP)
	Solving the QEP
	Linearization of QEPs
	Additional linearizations

	QEPs as nonlinear eigenvalue problems (NLEPs)

	Literature Review
	Benefit of iterative methods
	Types of iterative methods
	Jacobi-Davidson method
	The second order Arnoldi method (SOAR)
	Methods for tri-diagonal hyperbolic QEPs (THQEPs)
	Ehrlich-Aberth iteration (EAI)
	Durand-Kerner method

	Methodology
	Properties of QEPs eigenvalues
	Determining the number of eigenvalues
	Calculating the degree of polynomial determinants

	QEP applications and real-life models
	The spring problem
	The bicycle problem
	The population of bilbies problem
	QEPs with singular leading matrix
	Problem 1
	Problem 2

	Numerical methods based on Newton iteration
	Newton-trace iteration (NTI)
	Newton inverse iteration (NII)
	Newton Maehly method (NMM)
	QEPs by NMM

	Results and Discussion
	Overview
	Experimental environment

	Results
	The results of the spring problem
	The eigenvalues
	The graph of the eigenvalues
	The elapsed time

	The results of the bicycle problem
	The eigenvalues
	The graph of the eigenvalues
	The elapsed time

	The results of the bilby problem
	The eigenvalues
	The graph of the eigenvalues
	The elapsed time

	The results of the acoustic-modeling problem 1
	The eigenvalues
	The graph of the eigenvalues
	The elapsed time

	The results of the acoustic-modeling problem 2
	The eigenvalues
	The graph of the eigenvalues
	The elapsed time

	Discussion
	The accuracy
	The efficiency

	Conclusion and future work

	Bibliography
	Appendix
	Newton-trace iteration (NTI)
	Newton inverse iteration (NII)
	The modified Newton Maehly method (NMM)
	Newton correction
	Calculating the degree of polynomial determinants

