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ABSTRACT

Thapa, Mandira. M.S.E.E., Department of Electrical Engineering, WrigdteSJniversity, 2017.
Optimal Feature Selection for Spatial Histogram Classifiers

Point set classification methods are used to identify tardescribed by a spatial collec-
tion of points, each represented by a set of attributes. Reltt traditional classification
methods based on fixed and ordered feature vectors, poinmetbbds require additional
robustness to obscured and missing features, thus netegsd complex correspondence
process between testing and training data. The correspoageoblem is efficiently solved
via spatial pyramid histograms and associated matchingridigns, however the storage
requirements and classification complexity grow linearlthvthe number of training data

points.

In this thesis, we develop optimal methods of identifyingjesd point-features that are

most discriminative in a given classification problem. Wédupon a logistic regression

framework and incorporate a sparsifying prior to both prooe-salient features and pre-
vent overfitting. We present results on synthetic data amasomed data from a fingerprint
database where point-features are identified with minotations. We demonstrate that
by identifying salient minutia, the training database mayé&duced by 94% without sac-
rificing fingerprint identification performance. Additidhawe demonstrate that the regu-
larization provided by saliency optimization provides noyed robustness over traditional

pyramid histogram methods in the presence of point mignatiooisy data.
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Introduction

1.1 Point-set Classification

It is a fundamental task among both humans and machines tohstea patterns within
data. Indeed, the ability to remember and detect patteamsocously and unconsciously,
has played a vital role in the evolution of human beingg|.[ For example, in ancient
times well before the modern era of computing, people lehtnadentify edible plants
and predict celestial events. Presently, machine learanaples computers to learn and
classify patterns, and it is difficult to identify a field thiaés not been impacted by this
technology—with applications ranging from entertainmemunderstanding the natural

world through speech and image recognitibnlg].

In this thesis we focus on a particular type of pattern regagnreferred to as point-
set classification, where the objective is to identify tésdeased on a spatial collection of

points

Pt = {P1> cee 7PN,5}> D € RS? (11)

whereN, is the number of points observed within targeands is the number of attributes

of each point. Frequentl = 2, and we have a collection of points in the 2D plane.



Because points may be obscured or missing within an obsenyatie number of points
N, in a testing sample may differ from a training example of thms class. One natural
measure of similarity between two point patterAsand P, is the partial match score

[6, 10]

D(Py, P,) = max d(pi, m(p:)), (1.2)
m:P1—Ps
pi€EP)

wherer(p;) is a correspondence between the point’pfind P, d() is an appropriate
similarity measure between pointslitf, and the sum aggregates the similarity among all
matched pairs of points to forf. A test pattern?,.,; may then be classified by identifying

the label of the training pattern whose match score is mimramong all training patterns.

While a typical classifierf maps a fixed-size feature vectér ¢ R” to a label
f(8) = ¢, a point-set classifier must work with amknown numbebf feature-points
that areunordered This is overcome by solving for the optimal partial cor@sgencer
between point-sets. However, because the complexity ®ptinicess is combinatoric in the
number of points, the computational complexity of evalugthe partial match scoré.@Q)
can be prohibitively large. In Chapt@rwe present a computationally efficient method of
computing approximate partial match scores based on spgt@mid histograms. First,

however, we review some sample applications based on petralassification.

1.1.1 Applications of Point-set Classification

e Fingerprint Matching: Fingerprint matching is a common application of patterrogec
nition, and point-set classification in particular. Evengerprint has distinct features
calledminutiathat make each fingerprint differ from every other. As illagtd in
Figure 1.1, the locations of the minutia (red dots) may be collected psiat-set.

In addition to the minutigz, y) locations, an angular attribute (angle of magenta

2
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Figure 1.1: The locations (red dots) and angles (magerga)liof the minutia of a finger-
print form a point-set which may be used to identify unlabiederprints found at crime
scenes.

line) that denotes the angle of terminating ridgelines nisg be included with each
point. Using the associated point-sets, an unknown fingerpray be compared to

a database of known fingerprints via partial match scoring.

The complete collection of a person’s fingerprints acquinean ideal environment
(e.g. police station fingerprinting) is calledenprint whereas fingerprints collected
from a scene in non-ideal settings are referred to as lategerprints. Latent finger-
prints are typically “lifted” from objects in a scene and &mequently distorted and

incomplete.

e Radar Image Recognition: As radar returns are not directly interpretable by humans, i
is not surprising that automated machine recognition systeere developed around
this field. In addition to early detection theory work comiingm radar RQ], recent
target identification methods based on point-set clastditdave also been devel-

oped for radard]. In this application, dominant locations of backscattieeaergy—
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Figure 1.2: The collection dfz, y) locations of scattering centers (blue and green dots) in
a radar image forms a point-set which may be used to classifynanown target. Here,
points were derived from a radar image of a Toyota Camry. Insagece: ¥], Figure 5.
referred to as scattering centers—are identified as a tiolhecf points. In addition
to the scattering center locations, additional point-véateibutes of the targets are
collected by the radar system. These include return palémiz and amplitude, and
observation azimuth and elevation angles. Additionalbyapzation and layover at-
tributes from2D images enable the extractionD point locations, yielding target

shape and size informatioB][

As an example, Figur#.2illustrates a 2D point-set corresponding to the scattering
center locations on a Toyota Camry. The blue points are defreen the base shape
of the Camry, which is highlighted with the red box, whereas gheen points are
derived from the roof line which has been layed over in theesdinection as the

radar [7].

¢ Derived Points and Computer Vision: The previous examples all had naturally occur-



ring points within an image, however we may derive pointideas as the locations
where interesting non—point-like behavior occurs, foregke, the locations of large
gradients or the locations of SIFT features. The derivedtloos of these features
may be collected into point-sets and used in classificafidns approach has been

used to identify categories (e.g., office, street, forefstiadural sceneslp].

1.2 Optimal Feature Selection

1.2.1 Motivation

Feature selection is the process of eliminating redundahireelevant data while maintain-
ing the basic structural information of a model. In the cahté point-set classification, we
consider individual points in a training set as featuregntdying the most salient points

required for classification and eliminating less salienhfgoserves two purposes:

1. Reducing the size of the training database has the pdtentieamatically accelerate

test-time classification rates as seen in, for e.g., thegbanatch scorel.2).

2. Eliminating extraneous training data serves to regeeattie classifier and provides

robustness to limited and noisy data.

In Figure1.3 we present a simple example of redundant features in a-peirtlas-
sification problem. Here the goal is detect whether pointsragto the letter A or (an
upside down) V. Because all of the points of V are contained ith&se points are inca-
pable of distinguishing between the two letters. Thus, tméypoints within the horizontal
bar of A (highlighted by a green box) are expected to be dalcethis classification task.
In realistic problems, patterns are not simply repeatedrgnatasses making salient point

identification more difficult. Increasing the number of glas also increases the complexity
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Figure 1.3: Simple feature selection example for pointesas$sification. In classifying
between the letters A and V, the points in V are completelynednt with those in A.
Only the horizontal points in A (green box) are expected tsddent for this task.

of the problem because points that are not useful for some piclasses may be useful for

others. In Chaptet we revisit this example while demonstrating the applicatbour op-

timal feature selection algorithm. The following secticwydes a taxonomy of statistical

feature selection methods.

1.2.2 Approaches

For a given feature sét = {f1,..., fnv}, the goal of feature selection is to select a subset
S C F for use in classification, wherghas been chosen based on some optimality criteria.

A least redundant subset Bfmay be defined as the smallest suliget {si,...,s,} such

6



that when any new featurec F'is considered
P(S,r) = P(S). (1.3)

That is, the probability distribution of is equal to that of the probability distribution of
(S,r), meaning that is a complete derivative . However, the least redundant subset is

not necessarily the best subset for classification.

Information theoretic measures are often used to evaluatgare’s significancelf3).
If 0 € {1,..., L} isanunknown class label, we may consider the informatieamgravided
by a setS of features

IG(0]S) = H(6) — H(6]S). (1.4)

Here, H (6) denotes the entropy &f

Zp ) log(p (1.5)

andH (0|S) is the entropy of the class labghfter observing, as given below

HOIS) = = 3 0(5) 32 3 p(015) ox(p(015) (L6)

Using the information gainG(0|5), it is possible to evaluate and choose an optimal feature
setS which minimizes the classification uncertainty o@elWhend andsS are independent,

H(6]S) = H(0), and the information gain from feature sets zero.

Generally, feature selection methods may be categorizedhree types13]: wrap-
per methods, filter methods, and embedded methddappermethods consider a global
cost criterion that is used to evaluate any subset of fesitioe example the information

gain (L.4), if we allow S to be any subset of features. Wrapper methods attempt tcatgalu



the global cost over all possible subsets to identify thenogitselection. This process may
include brute-force enumeration or more intelligent skatcategiesFilter methods eval-

uate and rank each feature independently, which can bdisagmtly faster than searching
over all subsets. For linear feature dependency and rap&orgelation between a feature
f; and the clasg may be used. Information gain may be used in the filtering oteih

the setS in (1.4) is restricted to a single featurg at a time. After ranking all features, the
top n may be selected for use in classification. Finadlsnbeddednethods combine the
processes of variable selection and model fitting into alsipgocess that is performed at

the time of training.

As described in Chapte}; our approach to optimal point-feature selection is consid

ered an embedded method.

1.3 Contributions and Organization of the Thesis

The remainder of this thesis is organized as follows. In Givapt background literature
of the thesis is given. Here, an overview of spatial pyramsidgrams is provided, and
we present a computationally efficient approximation ofgihetial match score called the

pyramid match kernel.

Our first major contributionis presented in Chapter 3, where we combine pyramid
histograms and logistic regression to produce a new peintiassifier with probabilistic
outputs—suitable for use in fusion applications. In thiauter we also present osec-
ond major contribution which is an embedded optimal feature selection strateggda
on a sparsifying prior for logistic regression weights. S'ktrategy provides significant

compaction of point-set databases with minimal perforreampact.

Ourthird major contributionis presented in Chapter 4 and includes a detailed applica-



tion and analysis of our new point-set methods to the prolaefimgerprint identification.
Here, we use measured data provided jointly by NIST and the FB&lly, conclusions

and future work are provided in Chapter 5.



Background

While optimal, the partial match scoré.p) is generally not used in practice due to its
computational complexity. In this chapter we review a papapproximation to the partial
match score called the pyramid match kernel, which is baseslmint-set representation

called the spatial pyramid histogram.

2.1 Overview of Spatial Pyramid Histograms

The concept of the spatial pyramid histogram (PH) was fitsbduced by Grauman and
Darrell [11]. It is a multidimensional and multiresolution data sturet that captures the
distribution of a set of spatial points. As illustrated bg #xample in Figur@.l, the PH is

a collection of multidimensional histograms of varying kimes and numbers. The largest
level has the most bins and therefore has the highest reso(fig. 2.1: Level 2 hast x 4
bins). At each subsequently smaller level, the number of lireach dimension is halved.
In the example, this yieldsZx 2 bin array for Levell, and al x 1 bin array for LeveD.
The number of bins per dimension for levdk 2¢, and if there arel dimensions, the total

number of bins in levef is

bins = 2%. (2.1)

10



The example in Figur@.1has points in two dimensiong,= 2.

When the number of bins are halved in going to smaller levieéssize of the bins are
doubled such that the total area covered does not changas Ilway, foreach dimensiaon
two bins are combined into one larger bin covering the sama. arhis effects a halving of

the resolution for each subsequently smaller level witlotyainging the coverage area.

For a point-set’, = {p;,...,pn,}, p: € RY, the histogram counts for levélare
denotedH,(F;), as illustrated in the bottom row of Figugl For anL-level PH, these

varying resolution histograms are collected as

H(-Pt) - [HO(Pt>7Hl(H)77HL(H)] (22)

As illustrated in Figure2.2, when the per-level histogram counts are organized verti-
cally, with the highest resolution (largest level numbents on the bottom, the collection

resembles a pyramid—thus yielding the name spatial pyréstdgram.

2.2 Pyramid Match Kernel

The Pyramid Match Kernel (PMK)1[l] is a computationally efficient alternative to the
partial match scorel(?). Like the PMS, the PMK quantifies the similarity of two paint
sets in a way that solves the unknown correspondence prabieis robust to missing or
displaced points within either set. Rather than being a fanaif point-sets directly, the

PMK

K(H(Py), H(P,)) (2.3)

11
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Figure 2.1: Example of spatial histograms. Top row: At eaditsessive level, the number
of bins is doubled while the bin size is halved in each dimamsDots indicate locations
of points in the point-set. Bottom row: Histogram counts facle level.

Figure 2.2: Organizing the multi-resolution histogramgtically yields a spatial pyramid
histogram.
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is a function of the pyramid histograms derived from givempsetsP, and P,. As a

measure of similarity, the PMK is larger for point-sets taggt more alike.

The PMK is computed as

K(H(Py),H(Py) =Y _w, (2.4)
=0
where
I =" min(H"(P), H(P,)) (2.5)

indicates the number of intersections betwé&gmand P, among alR% bins at level of the
histograms, and{f)(P,{) denotes the number of points counted in bof pyramid P, at
level /. For each cell, the intersection considers the number of points in comnatwéen
the two histograms, which is determined by the minimum cdettveen the two point-
sets. FromZ.4), the PMK is computed as a weighted sum of the number of iet&iens

observed at all of the levels.

The weights{w,} are parameters of the PMK and are generally chosen to reward
matches at finer resolutions more than coarse ones. Thisaabe two points falling into
a finely resolved bin location is less likely to occur by chalaad thus indicates a greater
similarity between two point sets. As the histograms go ffora to coarse, more matches
(intersections) will naturally occur, so such matches aggtted lower in indicating simi-
larity. At the coarsest level (= 0), all the points in each point-set will be contained in the
single bin at the top of the pyramid histogram. Hefeseaches its maximum and is equal
to the minimum number of points betweéh and P,. Correspondingly;uy should be the

lowest weight among all levels.

For proper proportion, any particular bin is geometricdltyunded in terms of.;

13



cost [L2]. Hence, the maximum distance between two points shar@gdime bin can not
exceed the sum of lengths of the bin’s sides. In going fromtbreoarse scales, a common
weighting schemel[9] halves the weight each time the bin sizes double. We ada@pt th
following per-level weight assignment

1

Wy =

=57 (=01...L (2.6)

which follows this halving strategy.

The distribution of point-features will vary in differenpglications. Therefore, the
possible bin sizes and number of levélshould be considered specifically for each ap-
plication. This concept is further illustrated in the codtef fingerprint identification in

Chapterd.

2.2.1 Pyramid Match Kernel Example

In this section, we present a detailed example of evaluatiegPyramid Match Kernel
(PMK) between two point-sets. The specifics are presentBgyure2.3. The first column
represents the first pyramid histogram, and the second cotapresents the second pyra-
mid histogram. In the example, we consider a maximuni 6 2 levels. By inspecting
Level 0, we see that the first point-set contains 21 pointslevthe second contains only

13 points. The count of the total number of points in a celégithe bin value for that cell.

The third column in the figure shows the result of computirggititersectionZ.5) be-
tween corresponding cells in the two histograms. We sedlikanhtersection is computed
as the number of points in common between cells, i.e. it iSrmm between associated

cells.

14
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Figure 2.3: A detailed example of Pyramid Match Kernel esabn between two pyramid
histograms withl, = 2 maximum levels.

The level-dependent weight2.6) and scores are given in the last two columns of
Figure2.3. Finally, the summation of the level-weighted scores yaele final PMK value.

As shown at the bottom of the figure, for this example the fildKRsalue was11.375.
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2.3 Pre-processing Point Patterns

2.3.1 Local Neighborhood Selection

Before the existence of powerful computational tools, Fig &odges (1951) introduced
the nearest neighbors concept with various other conteampoelevant topicsd]. The K-
nearest neighbors (KNN) algorithrh4] is one of the simplest machine learning algorithms
implemented for both regression and classification. Insti@ation, it is based on a nearest
neighbor decision rule in which a classification input samnpbint is decided based on

previously classified training points. Hence, it is a memuaged algorithm.

Here, following B], we use a KNN-like strategy to define local neighborhoodsiad
training points. For each poipt in a training pattern, we identify th& closest points in

the point-set based on the Euclidean distance betygand its neighbors

di = [lp: — pol|- 2.7)

In this way, a sizeK neighborhood of points is established for all points within
given class. Each of these neighborhoods will subsequeethgepresented by a pyramid

histogram after an orientation equalization to be desdriiext.

2.3.2 Translation and Orientation

In point-set classification, it is desirable to have robasgto the orientation of observed
points. It is important to understand how data are obtaingohd the training and testing
phases and how these differences are accounted for duassjfatation. In this work, we

assume that each point has an orientation attribute iniaddi its spatial location, e.g.,

16



for two spatial dimensions a minimal representation of ppjwould be

(i, Yi, 0:), (2.8)

wheref; represents the orientation. Many applications have atent attributes. For
example, in the fingerprint application described in Sectid..], the minutia points have
natural orientations describing the angles of ridge-emaind bifurcation split angles. In
the radar application of Sectidn1.1, the orientation angle represents the angle at which

the radar observes bright backscattered energy.

To develop robustness to differences in observation afgdygeen training and test-
ing, we follow [6] and transform each neighborhood &f + 1 points into a new local
coordinate system. For a training pojnt with featuredz;, v;, 0;), we translate; and its
K neighbors such thai; resides at the new origin and &K + 1) points are rotated about

the new origin by—6;. Figure2.4 presents an example féf = 4.

Since training and testing points are similarly clustened framed in their own local
coordinate systems with orientation corrections, the fpwiatching process becomes in-
variant to the actual observation angles during measurgraed by looking for matches

between small clusters of points, we achieve greater robastto missing points.
In total, preprocessing consistséteps, foreachpoint p;:
1. Local K-neighborhood selection
2. Translation and rotation to center and orignt
3. Pyramid histogram formation on the transformed clusier= H (p;)

We denote the resulting pyramid histogram for pginasA; = H(p;), without explicitly

indicating the neighborhood selection and transformadteps.

17



Figure 2.4: The original query set is as shown on the left witienter point encircled and
a local origin. On the right, the four nearest neighbors &@ve with the center point
coinciding at the new origin. Also, the original axes shiftam X andY to X' andY”.

2.4 PMK Classifier

After the preprocessing steps described above, trainitg clansists of a collection of

pyramid histograms and class labels

where N is the total number of points across all classes in the trginiata, and;;, €
{1,...,C} denotes the class label for pyramid histograrRor an unlabeled measurement
producing a test pyramid histografxy, current state-of-the art point-set classificatiéh [
assigns the label of the pyramid histogram in the trainintg dath the greatest pyramid

match kernel. That is, the class estimggef A, is

Yo = Yn, (2.10)
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where

n = arg max K(Ag, Ay). (2.11)

In practice, each point from an unknown target will produe@wramid histogram and
a class estimate. The collection of these estimates mayreined into a single point-
set estimate via a majority-vote procedure. In this thesesfocus on feature selection
and optimal classification of a single pyramid histogram aadthe fusion problem. The

baseline against which we will compare our performancea™MK classifier 2.10).
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Optimal Feature Selection

Although state-of-the-art, the PMK classifier has drawlsaokhat both database size and
classification complexity grow linearly with the number @fipts NV in the training dataset.
This complexity motivates us to identify and use only the nsadient features—thereby
minimizing both of these costs. Further, by identifying g@mdning less informative points,

we achieve robustness to potential outliers in the traisitg

Our approach is based on logistic regression, which hasdeebenefit of producing
posterior class estimates. In the subsequent sectionsesegilde how logistic regression
and the PMK may be combined into a point-set classifier anddeparsifying prior may

be used to identify salient features.

3.1 Multinomial Logistic Regression

A logistic regression modellp] employs the logistic function to predict the relationship
between a categorical dependent variapland one or more independent variables, or
features. For a binary classification problgme {1,2}, with a d-dimensional feature

vectorz,

P(y =1lz) = o(Bo + 8" 2), (3.1)
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Feature 2

Feature 1

Figure 3.1: Logistic regression example for a two class jerob blue vs. red circles. The
decision boundary is linear in the feature space.

where

1

o(z) = 1+ exp(—2)

(3.2)

is known as the logistic function, whil&, ands € R? are parameters learned from training

data. The complement probability may be show# ffo be

Ply=2z)=1-0(f+ " x) (3.3)
= o(—fo — fx) (3.4)
- ! (3.5)

1+ exp(fo + fTx)

Logistic regression is a linear classifier as shown by thengkain Figure3.1

The extension ta@’ classes is referred to as multinomial logistic regressiot ia
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represented as beloi4]

exp(Bio + O] )

ply = 1z) =

>k exp(Bro + By @)
exp(B20 + 53 x)
P =20 = 5 el + L)
exp(Boo + Blx)
=Cl|x) = : 3.6
p(y = C|z) S~ exp(ro + 1) (3.6)
The parameter8 = {10, f1,- - -, Bmo, Bu} in the model may be learned using training

data, and we write(y|z, 0) to explicitly indicate the dependence of the classifier @séh
parameters. After an estimat®f 6 is obtained, we may classify a new feature veatoy;

using maximum a posteriori (MAP) classification as

g = arg max_ p(y|Tiest, é) (3.7)
y:1,...,C

.....

To learn the parameters, a set of training data
is used. Here, théz;} are d-dimensional feature vectors angd € {1,..., M} is the

class label for samplé Assuming the training data consists of independent santile

likelihood of the data is formed as

L(9) = Hp(yilxi, 0) (3.9)
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and, using 8.6), the log-likelihood as

N
00) = > logp(yile:0) (3.10)

N c
(Bys0 + ﬁyTxl) - Z log (Z eﬁT"OJrﬁ?Tn’“) . (3.11)
i=1 m=1

] =

=1

Maximum likelihood parameters are found from the trainiagedas
6 = arg meaxﬁ(Q). (3.12)

The optimization 8.12 may be efficiently performed using coordinate descent andhdratic

approximation to the log-likelihood considering one clasa time [L5].

3.2 Logistic Regression for Point-set Classification

Logistic regression can not be directly applied to poiritesassification because the num-
ber of points in measured imagery is variable and, like miastsification methods, logis-
tic regression requires a fixed-length feature vector. is skction we describe how the
pyramid match kernel may be combined with multinomial ltigisegression to solve this

problem.

Instead of developing and using a fixed-dimensional feapaee, we utilize a memory-
based classifier that compares a new collection of pointfl fmants seen in the training
set. This is similar to thé({-nearest neighbor algorithm and the PMK classifier desdribe
above. Similar to the PMK classifier, we will use the pyramidtalm kernel as a measure
of similarity between pyramid histograms. However, ratiemn adopting the label of the

training element with the largest PMK value, we utilize agfded combination of kernel
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scores across the entire saved training set. This provadesiness to potential outliers in
the training set and enables us to evaluate the contribofiparticular points among the

training data.

Specifically, we utilize a kernel-based classifier thataepst the features in traditional
logistic regression with PMK scores computed between ampigtaistogram under test and
the full training database. Following the pre-processiegs described in Sectiéh3, we

have a collection of training pyramid histograms and thesogiated class labels

For an unlabeled pyramid histogram under tést, we compute weighted logistic regres-
sion scores with respect to every element in the trainingsieg the PMK. Théth score

is computed as

N
Z=PBo+ Y Bk (Do A), k=1,....C (3.14)
whereK (A;, A;) denotes the PMK2A.4) between pyramidsand;; andC is the total num-
ber of classes. With kernel-derived scores replacing fedtased scores, the multinomial

logistic regression posterior probabiliti€x §) take the form

Ay - ()
Py =1]Ap) = ST ()
p(y _ Z\AO) _ eXP( 2)
1 exp(2y)
ply = ClAg) = M. (3.15)

>t exp(z1)
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In (3.14), B represents the scalar intercept for classvhile {3, }¥, represent the
weights for clasg against allV elements in the training set. In total, there &re- CN
parameters that need to be learned using the training 84t3.(After computation of the
kernel distances between all pyramid histograms in theitrgidata, thes parameters may

be learned using maximum likelihood identically to the na@mnel-based form in3(12).

3.3 Feature Selection

One advantage of the logistic regression classifier is tlateights §’s) may be used to
identify important points in the training data. Fro114), we see that if3;| is large, then

A; (corresponding to pointin the training data) plays a relatively large role in detiing

the classification score,. Thus, points with large coefficients may be considered more

salient than points with small coefficients.

Taking this concept further, we can change our learningrdhga to generally assume
that a point is not salient unless the data strongly suppahserwise. This belief can
be incorporated through the use of a prior distribution @ ¢befficients and switching
from maximum likelihood estimation (as in E®.(2) to maximum a posteriori (MAP)
estimation. In order to encourage feature (point) redac¢tiee choose a prior that favors
coefficient values of zero—indicating that the feature is-8alient. Such a prior is often
termed a sparsifying prior because the resulting estimaietficients are generally sparse:
having only a few non-zero elements. A common sparsifyingrdi3] is the Laplace

distribution

p(B) = ge‘”ﬁ. (3.16)

Figure 3.2illustrates the Laplace prior for two different values)oflt is seen that a
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Figure 3.2: The Laplace prior distribution for two diffetenegularization parameten)
values.

large value of\ (solid red curve) places the majority of its probability magar zero, while
a small value of\ (dashed blue curve) increases the probability of non-zeheeg. Thus,
coefficients obtained using a largevalue tend to be exactly zero or somewhere around

zero, while using small values decreases sparsity.

For each clas&, we may combine the (non-intercept) coefficients into afomeht

vector

Br = [Bri, - - -, Ben]” (3.17)
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and impose the Laplace prior on each element independently

N

p(Bk) = Hp Bri) (3.18)

=1

DO | >

N
) e 2 [Pl (3.19)

N
(_) e Mkl (3.20)

Il
VR

>~

\)

where|| - ||; denotes the vectdi norm.

Letting; = [K(Ai, A1), ..., K(A;, Ay)]" denote the vector of PMK values evalu-
ated between featureand all features in the training sé€t the kernelized logistic regres-

sion likelihood is

L(T|0) = Hp vil i, 0) (3.21)
+ i
. H exp ﬁylo 6 7) (322)
i=1 m 1 €XP BmO + 5m'72)
Combining this with the prior ol = [By0, 81, - - ., Bco, Bc]?,
C
0) =11 p(Bm), (3.23)
m=1
the posterior over the parameters is

p(OIT) o L(T|0)p(6). (3.24)

We then apply the logarithm to the posterjg¥|7") and discard terms that do not
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depend or#. After substituting 8.22 and @3.24), we obtain

N

N C C
(0) = (Byo+ Byv) — Y log (Z ﬁﬁw) 2> 1Bulh (3.25)
=1 m=1 m=1

i=1

as the final objective to be minimized. This yields
f = arg mgLXE(Q) (3.26)

as the MAP estimate for the optimal logistic regression patars.

The last term in3.25 is the/; penalty that penalizes non-zero coefficients and pro-
motes sparsity. This is also referred to as the Least Abs@&btinkage and Selector Op-
erator (LASSO) penalty as used in LASSO-type regressioblenosfL4]. In [25], the

equivalency between LASSO regression and Laplacian pgasplored in more detalil.

There are a number of sparsity-based algorithms discussedi, P6] [17] [1] [15]
[4] [23] capable of optimizing penalized objectives similar 826). A cyclic coordinate
descent algorithm based on a regularizaton path is desdciibf5]. We used a particu-
lar implementation of this method, referred to as GLMNEH][ to optimize 3.25 and

produce the results presented in Chagter

As noted earlier, when particular coefficients are zerop@aged points do not enter
into the logistic regression scores used in classificatibnerefore, after optimizing the
weights 8.26) using GLMNET, if weightg,; = 0, then feature (pyramid histogramgan
be excluded when computing the logistic regression scareléssk. However, because
the posterior over all classésc {1, ...,C} must be computed before a most likely class
can be identified, eliminating a point is only useful if it isl@nated fromall class posterior

calculations. Otherwise, the point cannot be removed flwriraining database. This may
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be expressed by constraining groups of parameters to sinadusly be zero:

This constraint is referred to as group sparsity and is eefbin GLMNET using the option

‘grouped’.

Following a group sparse solution to minimizing 25, all features wheregy; = 0,
for any k£, may be eliminated from the database used at test time. Int€@hame ex-
plore how many points may be removed from the database witimpacting classification

performance.

3.4 Sparsity Selection

In the objective function3.25), the variable\ > 0 is referred to as the regularization pa-
rameter. This parameter controls the severity of the pgaalblied to non-sparse solutions,
and as illustrated in Figui@ 2, large values ok produce sparser solutions than small values
of A\. For A\ = 0 there is no penalty, and we obtain a non-sparse estimateadeyti to the
maximum likelihood solution. Accordingly, the value afcontrols the tradeoff between
database reduction (sparse solutions) and classificatidarmance. Properly selecting

is an important component in the overall process of selgt¢hie most salient points.

Cross-validationZ7] is a method to choose the regularization paramesarch that it
minimizes an estimate of the prediction error. An ideal scenwould have ample amounts
of training and testing data. However, when data is limitedss validation may be applied
to divide the original data into multiple training and testisets. We employ -fold cross-
validation which splits data inté& groups. First/X — 1 groups are used to train the pa-

rameters, while remaining held-out group is used as a tgpséhto evaluate the prediction
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Figure 3.3: Cross validation curve used to determine themgptralue for the regularization
parameten in the fingerprint ID application described in Sectib2. The left vertical line
indicates the optimal-value.

error. The procedure is repeat&dtimes, holding out a different set each time. The results
are combined to form an estimate of the prediction error amation of \. Finally, the
optimal regularization parameter is chosen as the one thamimes the cross-validation
prediction error estimate. In our work, we usedfold cross validation to determine A
sample cross-validation curve is illustrated in Fig@r&for the fingerprint ID application

considered in the next chapter.
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Results and Analysis

4.1 Character Recognition Example

Previously, in Chapter 1, we considered a simple charactegration example between
the letters “A” and “V” to provide intuition about the optirhselection of point features. In
this section, we present the results of applying our optieeture selection process to this

problem.

During the training process, our model should generalizd sbat salient behavior
associated with the data is captured. When the learned nstiel simple, we experience
underfitting characterized by high bias and low varianceer@vwomplex models fit the
data too well and learn noise within the data as w2l]|[ These two undesired training

phenomenon yield poor performance.

As described in SectioB.4, we utilize the sparsity parametgito control regulariza-
tion and set this value using cross validation. Initiallye wained the both “A’ and “V”
classes without any regularizatioh = 0). As expected, the algorithm selects all of the
data without giving any further idea on usefulness of datatp@mong the two characters.

This is illustrated by the top row of plots in Figudel

The bottom row of plots in Figurd.1 depicts a large value of which removes too

many points from the training data and underfits the data. mluele row of plots in
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Figure 4.1: Optimal point selection example. When the reggdtion parametea is too
small (upper row) too many points are selected; and whentoo large, salient points are
omitted (bottom row). The optimal value (middle row), det@red by cross-validation,
balances this trade-off and selects only the most discétivi@ points. Selected points are
denoted by green asterisks.

Figure4.lrepresents the optimal level of regularization as detegthlvy cross validation.
As hypothesized in the Introduction, the bar of the lettet if\selected, however certain
other points are also selected. In the letter “V” these paané adjacent to where the A-bar

would have been. From this, we conclude that the algorithlmoking for edge diagonals

and an absence of the “bar” to identify the letter “V”.

For this example, we conducted a noiseless simulation taremalyy evaluate the
probability of correct classification (PCC). Using all of treafures X = 0), we obtained
PCC=76.67%, and while using only sparsely identified feat(wptmal \) we obtained
PCC=73.33%. This demonstrates our algorithm’s capabilitgerfitifying the most salient
features. In the following section, we apply our algorithmmbisy measured data from a

fingerprint ID application.
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4.2 Fingerprint Recognition Data

4.2.1 NIST SD 27 Database

The NIST SD 27 databas®][was developed by the National Institute of Standards and
Technology (NIST) in coordination with the Federal Bureaunekstigation (FBI). It con-
tains gray scale fingerprintimages and their corresporchagacteristic point features data
called minutia. An example image is shown in Figdr2 There are 258 latent fingerprints
from the crime scenes together with their matching tenpmiges. For each finger, there
are different sets of minutiae. One of the sets containdalhtinutiae coordinates on the
latent; another contains all the minutiae points from itgptant while there is another set

with all common minutiae between these latent and tenpeitst s

Since the latent minutiae were collected from a real-warkhe, they have the poorest
guality and generally only contain a subset of minutiae abesponding tenprint. Based
on the quality of the image, all the fingerprint sets have begher categorized into good,

bad and ugly directories with good being the best quality.

All the fingerprints are composed of two basic focal pointsmform of loops and/or
whorls that help to distinguish each minutia set. Theselfpognts are called core with a
loop and delta for the one with a whorl. These minutia attebun the fingerprint are also
termed as ridge ending and ridge bifurcation. To find a matehdesire to match these

points from a latent minutia with a database formed from tieng

Each minutia is represented in terms of its location andheaieon in the image. All
the images in our database are of si9é x 768 pixels, where each pixel represents1
millimeters in both the ANSI/NIST standard and the FBI EFB§ [For positioning the
origin, the bottom left of the image is considered its origirthe ANSI/NIST standard,

while FBI/IAFBIS has its origin at the top left of the image. Dtethis discrepancy,
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Figure 4.2: A typical “tenprint” image from the NIST SD 27 fixgprint database. Major
detected minutia (red circles) and associated orienta{imagenta lines) of the fingerprint
are shown.

the X-coordinates are the same for both standards, white itke linear inversion of the

Y-coordinates.

4.2.2 Bin Size Determination

In order to compute the pyramid histograms described ini@e2t1 for the minutia points
in the fingerprint database, we need to establish the birs siz¢he lowest level of the
pyramid histogram. The bin sizes at the upper levels arectifumof the lowest level. The
smallest bin size controls a tradeoff between faithfullptoaing low-level patterns and

providing high-level clustering that is robust to missinglaccluded points.

To determine the bin sizes, we computed 1D histograms ofxtrend Y distances
from every training point and its five nearest neighbors. sehieistograms are shown in

Figure4.3. Since the vast majority of points fall withift5 mm of one another, we chose
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Figure 4.3. Histograms of nearest-neighbor distancegmeéte the bin sizes used while
generating pyramid histograms.
the smallest bin size such that the 2D spatial histogram @eers thislOmm x 10mm

area.

4.3 Fingerprint Experiments and Results

In this section, we report the results from several clasgific experiments that were car-
ried with the NIST SD 27 database. For the training data, veel isnprint data taken in
a controlled environment; and for testing data we used fisddsured fingerprints labeled
as “good.” We used the good data to establish a performarssiba. From this point, we
can artificially introduce additional noise and obscunagion a controlled manor to further
evaluate performance. In all cases below, we use the pidipaddi correct classification
(PCC) as the performance metric. As a benchmark, we will oftenpare to the PMK

classifier (Sectior2.4) which utilizes the full set of training data. We refer toglas the
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Figure 4.4: Time required to compute pyramid histogramgHerentire training database
versus maximum number of levels, Large values of. require excessively long compu-
tation times.

“full” data benchmark.

However, before evaluating feature selection performaneaise the fingerprint dataset
to explore two implementation parameters of pyramid histots: the number of levelg §

and the local neighborhood siz&}.

4.3.1 Number of Pyramid Histogram Levels

Increasing the maximum number of Pyramid Histogram leve|sincreases the resolu-
tion at the bottom level of the pyramid histogram and impeothee granularity of partial
matches. The tradeoff of increasinghowever, is the computational cost required to com-
pute the 2D histograms at a larger number of levels. Furthisrcomplexity is not linear

in L because, from2(1), the number of bins increases by a factobfor each additional

level. Hered is the dimensionality of the points. For the fingerprint aggtion, we have
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Figure 4.5: Performance of the PMK classifier as a functiothefmaximum number of
pyramid histogram leveld,.

d = 2 and expect a 4-fold increase in complexity for each addititevel.

In Figure4.4, we report the time required to compute the pyramid histogréor all
307 points in the full training data. The figure considers aimam number of levels
ranging fromL = 2 to L = 5, and the exponential time increase is readily apparent. Fur
ther, while we don’t report values here, storage requirémand test-time computational

complexity would increase similarly with.

Given the dramatic increase in complexity with we next evaluated the resulting
benefit afforded by largek values. Using the benchmark PMK classifier (Secfiof), in
Figure4.5we report PCC vsL. Somewhat surprisingly, for the fingerprint data under con-
sideration, we do not observe any performance increase/witlie believe this is because
the minutia are roughly uniformly distributed aid= 2 provides sufficient resolution for
each minutia point to reside in its own bin at the lowest leyed such, we usé, = 2 for

the remainder of our experiments.

37



100 — : : : x x
\ — — Sparse
\ PMK

95 \ 1
C \
S \
S oo \ 1
= \
8 \
S 85t \ 1
8 \
= \
S \
o 80 [ \ 7
& \
(@)]
8 \
S 75F \ 8
o -
0] -
o T = — -

70 T —— ]

65 1 1 1 1 1 1 1

4 6 8 10 12 14 16 18 20

Number of nearest neighbors

Figure 4.6: Classification performance versus local neidintad size K.

4.3.2 Local Neighborhood Size

A second implementation choice is the sieof the local neighborhoods (see S2c3.J)
that are used to form pyramid histograms. Increadihglecreases the probability that
a random collection of points will match a true point-setwbger ask’ increases more
points are likely to share histogram bins, thus decreasieguniqueness of a quantized
histogram representation. We also note that for small detalsmay be impossible to use

very large values ok’ as there simply may not be that many points in the global data.

In Figure4.6, usingL = 2 maximum levels, we plot PCC versus thefor the PMK
classifier and our sparse logistic regression classifier.ttis fingerprint data, and both
classifiers, neighborhood sizes less tlian= 7 seem appropriate. For subsequent experi-

ments, we usé’ = 5 local neighbors.
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Figure 4.7: The proposed sparsity-based optimal featdeetgen algorithm reduces the
full dataset by 94%, from 307 pyramid histograms to 19 pychhistograms identified as
being salient.

4.3.3 Optimal Feature Selection

In this section, we evaluate the size of the optimal featetsalected by our algorithm and
present the corresponding classification performance.g0Oal is to compare the perfor-
mance of our sparse feature set to that obtained using theafisiset. As depicted by the
bar graph in Figurd.7, the original “full” dataset contained 307 features. Thenber of

salient features, identified by our algorithm as the nom-zeefficients obtained after cross

validation, was only 19. This represents a 94% decreaseidatabase size.

The corresponding classification performance is reporidegure4.8. Here we see
that the baseline max kernel classifier (Secof) that uses all of the data has a PCC of
only 57%. Our non-sparse logistic regression method, walst uses all of the training
data, has a PCC of 83%. This improvement is due, in part, toabiethat the logistic

regression classifier makes its decision as a weighted catibn of information in the
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Figure 4.8: Classification performance of the proposed timgiegression methods (full
and sparse) and the baseline max-Kernel classifier of 2o While using 94% fewer
features, the proposed sparse method outperforms thereastich uses all of the training
data.

entire training set and is less susceptable to outlier raffeeting single elements in the
training data. Finally, our sparse classifier, which usdg 6% of the total training data,
achieves a PCC of 69%. This is better than the baseline fudldassifier, but not as good

our own full data classifier.

4.3.4 Robustness to Limited Training Data

The training data used above was derived from high-quadityptint images taken in a
controlled environment. However, often such completeningl is unavailable and we are
obliged to classify with only partially data. To evaluatefpemance under these condi-
tions, we randomly excluded points from the training set plodted performance versus
the percentage of features retained. Figli@illustrates the expected result that all al-

gorithms experience degraded performance as trainingislatecreased. However, our
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Figure 4.9: Percentage of correct classification versusitigagdata retained. The proposed
logistic regression methods (full and sparse) decay maeedully in the presence of lim-
ited training data.

proposed logistic regression based methods degrade muehgraxefully. For example,
while decreasing the number of training features by 30%ptbposed methods only suf-

fer a PCC degradation of approximately 5%. For the same riedluict features, the PMK

classifier has a performance reduction of approximately.15%

4.3.5 Performance in Noise

Finally, we evaluate the performance of our algorithm inseoiFor this experiment, we
trained our classifiers using the original tenprint datawkeleer, for the testing data, we
added independent Gaussian noise to the minutia locatiarsler to shift them from their
true locations. In Figuré.10we present these results as a function of the standard meviat
of the additive noise. We observe that, in general, the nogsea significant impact on

classification performance, however the proposed spartgohes slightly more robust to

41



Percentage Correct classfication
al [¢)] [o)]
o ] o

N
(&3]

»
o

35 1 1 1 1 1
0 0.5 1 15 2 2.5 3

Standard Deviation of Minutia Displacement (mm)

Figure 4.10: Percentage of correct classification versaargdsird deviation of minutia dis-
placement. The proposed sparse method exhibits slighthg nadustness to noise.

these minutia shifts.

42



Conclusions

The crowning glory of the modern era depends on a broad range of innovations, from
the basic tools to the most recent advancements in engineering where most of the smart
gadgets stand. There is a desire to optimally process data to understand its characteristics
more efficiently and accurately and to extract the most information possible. In this thesis,
we designed an optimal feature selection algorithm for point-set classification based on
efficient use of spatial pyramid histograms. Our algorithm identifies the most salient point
features for use in a given classification problem which serves to reduce the complexity and
increase the robustness of subsequent classification tasks.

We applied our algorithm to the NIST SD 27 database of fingerprints and demonstrated
that only 6% of the original minutia point-features were salient. Using only the small
salient dataset, we achieved classification performance superior to the current state-of-the-
art method based pyramid match kernel maximization. The regularization and data-usage
aspects of our classifier also yielded favorable robustness properties to noise and limited
training data.

Finally, the logistic regression framework used in this thesis provides posterior probabilities
for class memberships. In future work, this soft output may be used for fusion with other
information sources. In particular, this work only considered classifying a single point
and its local neighborhood. In practice, an object to be classified contains many point-
like neighborhoods whose solutions may be fused to yield performance greater than the

individual results reported in this thesis.
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