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ABSTRACT

Thapa, Mandira. M.S.E.E., Department of Electrical Engineering, Wright State University, 2017.
Optimal Feature Selection for Spatial Histogram Classifiers.

Point set classification methods are used to identify targets described by a spatial collec-

tion of points, each represented by a set of attributes. Relative to traditional classification

methods based on fixed and ordered feature vectors, point setmethods require additional

robustness to obscured and missing features, thus necessitating a complex correspondence

process between testing and training data. The correspondence problem is efficiently solved

via spatial pyramid histograms and associated matching algorithms, however the storage

requirements and classification complexity grow linearly with the number of training data

points.

In this thesis, we develop optimal methods of identifying salient point-features that are

most discriminative in a given classification problem. We build upon a logistic regression

framework and incorporate a sparsifying prior to both prunenon-salient features and pre-

vent overfitting. We present results on synthetic data and measured data from a fingerprint

database where point-features are identified with minutia locations. We demonstrate that

by identifying salient minutia, the training database may be reduced by 94% without sac-

rificing fingerprint identification performance. Additionally, we demonstrate that the regu-

larization provided by saliency optimization provides improved robustness over traditional

pyramid histogram methods in the presence of point migration in noisy data.
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Introduction

1.1 Point-set Classification

It is a fundamental task among both humans and machines to search for patterns within

data. Indeed, the ability to remember and detect patterns, consciously and unconsciously,

has played a vital role in the evolution of human beings [22]. For example, in ancient

times well before the modern era of computing, people learned to identify edible plants

and predict celestial events. Presently, machine learningenables computers to learn and

classify patterns, and it is difficult to identify a field thathas not been impacted by this

technology—with applications ranging from entertainmentto understanding the natural

world through speech and image recognition [5, 18].

In this thesis we focus on a particular type of pattern recognition referred to as point-

set classification, where the objective is to identify targets based on a spatial collection of

points

Pt = {p1, . . . ,pNt
}, pi ∈ R

s, (1.1)

whereNt is the number of points observed within targett, ands is the number of attributes

of each point. Frequently,s = 2, and we have a collection of points in the 2D plane.
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Because points may be obscured or missing within an observation, the number of points

Nt in a testing sample may differ from a training example of the same class. One natural

measure of similarity between two point patternsP1 andP2 is the partial match score

[6, 10]

D(P1, P2) = max
π:P1→P2

∑

pi∈P1

d(pi, π(pi)), (1.2)

whereπ(pi) is a correspondence between the points ofP1 andP2, d() is an appropriate

similarity measure between points inRs, and the sum aggregates the similarity among all

matched pairs of points to formD. A test patternPtest may then be classified by identifying

the label of the training pattern whose match score is minimum among all training patterns.

While a typical classifierf maps a fixed-size feature vectorθ ∈ R
N to a label

f(θ) = ℓ, a point-set classifier must work with anunknown numberof feature-points

that areunordered. This is overcome by solving for the optimal partial correspondenceπ

between point-sets. However, because the complexity of this process is combinatoric in the

number of points, the computational complexity of evaluating the partial match score (1.2)

can be prohibitively large. In Chapter2 we present a computationally efficient method of

computing approximate partial match scores based on spatial pyramid histograms. First,

however, we review some sample applications based on point-set classification.

1.1.1 Applications of Point-set Classification

• Fingerprint Matching: Fingerprint matching is a common application of pattern recog-

nition, and point-set classification in particular. Every fingerprint has distinct features

calledminutia that make each fingerprint differ from every other. As illustrated in

Figure1.1, the locations of the minutia (red dots) may be collected as apoint-set.

In addition to the minutia(x, y) locations, an angular attribute (angle of magenta

2
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Figure 1.1: The locations (red dots) and angles (magenta lines) of the minutia of a finger-
print form a point-set which may be used to identify unlabledfingerprints found at crime
scenes.

line) that denotes the angle of terminating ridgelines may also be included with each

point. Using the associated point-sets, an unknown fingerprint may be compared to

a database of known fingerprints via partial match scoring.

The complete collection of a person’s fingerprints acquiredin an ideal environment

(e.g. police station fingerprinting) is called atenprint, whereas fingerprints collected

from a scene in non-ideal settings are referred to as latent fingerprints. Latent finger-

prints are typically “lifted” from objects in a scene and arefrequently distorted and

incomplete.

• Radar Image Recognition: As radar returns are not directly interpretable by humans, it

is not surprising that automated machine recognition systems were developed around

this field. In addition to early detection theory work comingfrom radar [20], recent

target identification methods based on point-set classification have also been devel-

oped for radar [8]. In this application, dominant locations of backscattered energy—

3



Figure 1.2: The collection of(x, y) locations of scattering centers (blue and green dots) in
a radar image forms a point-set which may be used to classify an unknown target. Here,
points were derived from a radar image of a Toyota Camry. Imagesource: [7], Figure 5.

referred to as scattering centers—are identified as a collection of points. In addition

to the scattering center locations, additional point-wiseattributes of the targets are

collected by the radar system. These include return polarization and amplitude, and

observation azimuth and elevation angles. Additionally, polarization and layover at-

tributes from2D images enable the extraction of3D point locations, yielding target

shape and size information [8].

As an example, Figure1.2 illustrates a 2D point-set corresponding to the scattering

center locations on a Toyota Camry. The blue points are derived from the base shape

of the Camry, which is highlighted with the red box, whereas the green points are

derived from the roof line which has been layed over in the same direction as the

radar [7].

• Derived Points and Computer Vision: The previous examples all had naturally occur-
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ring points within an image, however we may derive point features as the locations

where interesting non–point-like behavior occurs, for example, the locations of large

gradients or the locations of SIFT features. The derived locations of these features

may be collected into point-sets and used in classification.This approach has been

used to identify categories (e.g., office, street, forest) of natural scenes [19].

1.2 Optimal Feature Selection

1.2.1 Motivation

Feature selection is the process of eliminating redundant and irrelevant data while maintain-

ing the basic structural information of a model. In the context of point-set classification, we

consider individual points in a training set as features. Identifying the most salient points

required for classification and eliminating less salient points serves two purposes:

1. Reducing the size of the training database has the potential to dramatically accelerate

test-time classification rates as seen in, for e.g., the partial match score (1.2).

2. Eliminating extraneous training data serves to regularize the classifier and provides

robustness to limited and noisy data.

In Figure1.3, we present a simple example of redundant features in a point-set clas-

sification problem. Here the goal is detect whether points belong to the letter A or (an

upside down) V. Because all of the points of V are contained in A, these points are inca-

pable of distinguishing between the two letters. Thus, onlythe points within the horizontal

bar of A (highlighted by a green box) are expected to be salient to this classification task.

In realistic problems, patterns are not simply repeated among classes making salient point

identification more difficult. Increasing the number of classes also increases the complexity

5



Figure 1.3: Simple feature selection example for point-setclassification. In classifying
between the letters A and V, the points in V are completely redundant with those in A.
Only the horizontal points in A (green box) are expected to besalient for this task.

of the problem because points that are not useful for some pairs of classes may be useful for

others. In Chapter4 we revisit this example while demonstrating the application of our op-

timal feature selection algorithm. The following section provides a taxonomy of statistical

feature selection methods.

1.2.2 Approaches

For a given feature setF = {f1, . . . , fN}, the goal of feature selection is to select a subset

S ⊂ F for use in classification, whereS has been chosen based on some optimality criteria.

A least redundant subset ofF may be defined as the smallest subsetS0 = {s1, . . . , sn} such

6



that when any new featurer ∈ F is considered

P (S, r) = P (S). (1.3)

That is, the probability distribution ofS is equal to that of the probability distribution of

(S, r), meaning thatr is a complete derivative ofS. However, the least redundant subset is

not necessarily the best subset for classification.

Information theoretic measures are often used to evaluate afeature’s significance [13].

If θ ∈ {1, . . . , L} is an unknown class label, we may consider the information gain provided

by a setS of features

IG(θ|S) = H(θ)−H(θ|S). (1.4)

Here,H(θ) denotes the entropy ofθ

H(θ) = −
∑

i

p(θi) log(p(θi)), (1.5)

andH(θ|S) is the entropy of the class labelθ after observingS, as given below

H(θ|S) = −
∑

j

p(Sj)
∑

i

∑

i

p(θi|Sj) log(p(θi|Sj)). (1.6)

Using the information gainIG(θ|S), it is possible to evaluate and choose an optimal feature

setS which minimizes the classification uncertainty overθ. Whenθ andS are independent,

H(θ|S) = H(θ), and the information gain from feature setS is zero.

Generally, feature selection methods may be categorized into three types [13]: wrap-

per methods, filter methods, and embedded methods.Wrappermethods consider a global

cost criterion that is used to evaluate any subset of features; for example the information

gain (1.4), if we allowS to be any subset of features. Wrapper methods attempt to evaluate

7



the global cost over all possible subsets to identify the optimal selection. This process may

include brute-force enumeration or more intelligent search strategies.Filter methods eval-

uate and rank each feature independently, which can be significantly faster than searching

over all subsets. For linear feature dependency and ranking, correlation between a feature

fi and the classθ may be used. Information gain may be used in the filtering method if

the setS in (1.4) is restricted to a single featurefi at a time. After ranking all features, the

top n may be selected for use in classification. Finally,embeddedmethods combine the

processes of variable selection and model fitting into a single process that is performed at

the time of training.

As described in Chapter3, our approach to optimal point-feature selection is consid-

ered an embedded method.

1.3 Contributions and Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, background literature

of the thesis is given. Here, an overview of spatial pyramid histograms is provided, and

we present a computationally efficient approximation of thepartial match score called the

pyramid match kernel.

Our first major contributionis presented in Chapter 3, where we combine pyramid

histograms and logistic regression to produce a new point-set classifier with probabilistic

outputs—suitable for use in fusion applications. In this chapter we also present oursec-

ond major contribution, which is an embedded optimal feature selection strategy based

on a sparsifying prior for logistic regression weights. This strategy provides significant

compaction of point-set databases with minimal performance impact.

Our third major contributionis presented in Chapter 4 and includes a detailed applica-

8



tion and analysis of our new point-set methods to the problemof fingerprint identification.

Here, we use measured data provided jointly by NIST and the FBI. Finally, conclusions

and future work are provided in Chapter 5.
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Background

While optimal, the partial match score (1.2) is generally not used in practice due to its

computational complexity. In this chapter we review a popular approximation to the partial

match score called the pyramid match kernel, which is based on a point-set representation

called the spatial pyramid histogram.

2.1 Overview of Spatial Pyramid Histograms

The concept of the spatial pyramid histogram (PH) was first introduced by Grauman and

Darrell [11]. It is a multidimensional and multiresolution data structure that captures the

distribution of a set of spatial points. As illustrated by the example in Figure2.1, the PH is

a collection of multidimensional histograms of varying binsizes and numbers. The largest

level has the most bins and therefore has the highest resolution (Fig.2.1: Level 2 has4× 4

bins). At each subsequently smaller level, the number of bins in each dimension is halved.

In the example, this yields a2× 2 bin array for Level1, and a1× 1 bin array for Level0.

The number of bins per dimension for levelℓ is 2ℓ, and if there ared dimensions, the total

number of bins in levelℓ is

bins= 2dℓ. (2.1)

10



The example in Figure2.1has points in two dimensions,d = 2.

When the number of bins are halved in going to smaller levels, the size of the bins are

doubled such that the total area covered does not change. In this way, foreach dimension,

two bins are combined into one larger bin covering the same area. This effects a halving of

the resolution for each subsequently smaller level withoutchanging the coverage area.

For a point-setPt = {p1, . . . ,pNt
}, pi ∈ R

d, the histogram counts for levelℓ are

denotedHℓ(Pt), as illustrated in the bottom row of Figure2.1. For anL-level PH, these

varying resolution histograms are collected as

H(Pt) = [H0(Pt), H1(Pt), ..., HL(Pt)]. (2.2)

As illustrated in Figure2.2, when the per-level histogram counts are organized verti-

cally, with the highest resolution (largest level number) counts on the bottom, the collection

resembles a pyramid—thus yielding the name spatial pyramidhistogram.

2.2 Pyramid Match Kernel

The Pyramid Match Kernel (PMK) [11] is a computationally efficient alternative to the

partial match score (1.2). Like the PMS, the PMK quantifies the similarity of two point-

sets in a way that solves the unknown correspondence problemand is robust to missing or

displaced points within either set. Rather than being a function of point-sets directly, the

PMK

K(H(P1), H(P2)) (2.3)

11



Level 0                                          Level 1                                           Level 2

2 1 2 2

2 0 2 2

1 1 1 1

1 1 1 2

5 8

4 5

22

H0                                           H1                                          H2

Figure 2.1: Example of spatial histograms. Top row: At each successive level, the number
of bins is doubled while the bin size is halved in each dimension. Dots indicate locations
of points in the point-set. Bottom row: Histogram counts for each level.

Figure 2.2: Organizing the multi-resolution histograms vertically yields a spatial pyramid
histogram.
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is a function of the pyramid histograms derived from given point-setsP1 andP2. As a

measure of similarity, the PMK is larger for point-sets thatare more alike.

The PMK is computed as

K(H(P1), H(P2)) =
L
∑

ℓ=0

wℓIℓ, (2.4)

where

Iℓ =
2dℓ
∑

i

min(H
(i)
ℓ (P1), H

(i)
ℓ (P2)) (2.5)

indicates the number of intersections betweenP1 andP2 among all2dℓ bins at levelℓ of the

histograms, andH(i)
ℓ (Pk) denotes the number of points counted in bini of pyramidPk at

levelℓ. For each celli, the intersection considers the number of points in common between

the two histograms, which is determined by the minimum countbetween the two point-

sets. From (2.4), the PMK is computed as a weighted sum of the number of intersections

observed at all of the levels.

The weights{wℓ} are parameters of the PMK and are generally chosen to reward

matches at finer resolutions more than coarse ones. This is because two points falling into

a finely resolved bin location is less likely to occur by chance and thus indicates a greater

similarity between two point sets. As the histograms go fromfine to coarse, more matches

(intersections) will naturally occur, so such matches are weighted lower in indicating simi-

larity. At the coarsest level (ℓ = 0), all the points in each point-set will be contained in the

single bin at the top of the pyramid histogram. Here,Iℓ reaches its maximum and is equal

to the minimum number of points betweenP1 andP2. Correspondingly,w0 should be the

lowest weight among all levels.

For proper proportion, any particular bin is geometricallybounded in terms ofL1

13



cost [12]. Hence, the maximum distance between two points sharing the same bin can not

exceed the sum of lengths of the bin’s sides. In going from fineto coarse scales, a common

weighting scheme [19] halves the weight each time the bin sizes double. We adopt the

following per-level weight assignment

wℓ =
1

2L−ℓ
, ℓ = 0, 1, . . . , L (2.6)

which follows this halving strategy.

The distribution of point-features will vary in different applications. Therefore, the

possible bin sizes and number of levelsL should be considered specifically for each ap-

plication. This concept is further illustrated in the context of fingerprint identification in

Chapter4.

2.2.1 Pyramid Match Kernel Example

In this section, we present a detailed example of evaluatingthe Pyramid Match Kernel

(PMK) between two point-sets. The specifics are presented inFigure2.3. The first column

represents the first pyramid histogram, and the second column represents the second pyra-

mid histogram. In the example, we consider a maximum ofL = 2 levels. By inspecting

Level 0, we see that the first point-set contains 21 points, while the second contains only

13 points. The count of the total number of points in a cell gives the bin value for that cell.

The third column in the figure shows the result of computing the intersection (2.5) be-

tween corresponding cells in the two histograms. We see thatthe intersection is computed

as the number of points in common between cells, i.e. it is minimum between associated

cells.

14



Figure 2.3: A detailed example of Pyramid Match Kernel evaluation between two pyramid
histograms withL = 2 maximum levels.

The level-dependent weights (2.6) and scores are given in the last two columns of

Figure2.3. Finally, the summation of the level-weighted scores yields the final PMK value.

As shown at the bottom of the figure, for this example the final PMK value was11.375.

15



2.3 Pre-processing Point Patterns

2.3.1 Local Neighborhood Selection

Before the existence of powerful computational tools, Fix and Hodges (1951) introduced

the nearest neighbors concept with various other contemporary relevant topics [2]. TheK-

nearest neighbors (KNN) algorithm [14] is one of the simplest machine learning algorithms

implemented for both regression and classification. In classification, it is based on a nearest

neighbor decision rule in which a classification input sample point is decided based on

previously classified training points. Hence, it is a memorybased algorithm.

Here, following [8], we use a KNN-like strategy to define local neighborhoods around

training points. For each pointp0 in a training pattern, we identify theK closest points in

the point-set based on the Euclidean distance betweenp0 and its neighbors

di = ‖pi − p0‖. (2.7)

In this way, a size-K neighborhood of points is established for all points withina

given class. Each of these neighborhoods will subsequentlybe represented by a pyramid

histogram after an orientation equalization to be described next.

2.3.2 Translation and Orientation

In point-set classification, it is desirable to have robustness to the orientation of observed

points. It is important to understand how data are obtained during the training and testing

phases and how these differences are accounted for during classification. In this work, we

assume that each point has an orientation attribute in addition to its spatial location, e.g.,

16



for two spatial dimensions a minimal representation of point pi would be

(xi, yi, θi), (2.8)

whereθi represents the orientation. Many applications have orientation attributes. For

example, in the fingerprint application described in Section 1.1.1, the minutia points have

natural orientations describing the angles of ridge-ending and bifurcation split angles. In

the radar application of Section1.1.1, the orientation angle represents the angle at which

the radar observes bright backscattered energy.

To develop robustness to differences in observation anglesbetween training and test-

ing, we follow [6] and transform each neighborhood ofK + 1 points into a new local

coordinate system. For a training pointpi, with features(xi, yi, θi), we translatepi and its

K neighbors such thatpi resides at the new origin and all(K + 1) points are rotated about

the new origin by−θi. Figure2.4presents an example forK = 4.

Since training and testing points are similarly clustered and framed in their own local

coordinate systems with orientation corrections, the point matching process becomes in-

variant to the actual observation angles during measurement, and by looking for matches

between small clusters of points, we achieve greater robustness to missing points.

In total, preprocessing consists of3 steps, foreachpointpi:

1. LocalK-neighborhood selection

2. Translation and rotation to center and orientpi

3. Pyramid histogram formation on the transformed cluster,Hi = H(pi)

We denote the resulting pyramid histogram for pointpi as∆i = H(pi), without explicitly

indicating the neighborhood selection and transformationsteps.
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Figure 2.4: The original query set is as shown on the left witha center point encircled and
a local origin. On the right, the four nearest neighbors are shown with the center point
coinciding at the new origin. Also, the original axes shiftsfrom X andY toX

′

andY
′

.

2.4 PMK Classifier

After the preprocessing steps described above, training data consists of a collection of

pyramid histograms and class labels

T = {(∆i, yi)}, i = 1, . . . , N (2.9)

whereN is the total number of points across all classes in the training data, andyi ∈

{1, . . . , C} denotes the class label for pyramid histogrami. For an unlabeled measurement

producing a test pyramid histogram∆0, current state-of-the art point-set classification [6]

assigns the label of the pyramid histogram in the training data with the greatest pyramid

match kernel. That is, the class estimateŷ0 of ∆0 is

ŷ0 = yn̂, (2.10)
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where

n̂ = arg max
n:1,...,N

K(∆0,∆n). (2.11)

In practice, each point from an unknown target will produce an pyramid histogram and

a class estimate. The collection of these estimates may be combined into a single point-

set estimate via a majority-vote procedure. In this thesis,we focus on feature selection

and optimal classification of a single pyramid histogram andnot the fusion problem. The

baseline against which we will compare our performance is the PMK classifier (2.10).
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Optimal Feature Selection

Although state-of-the-art, the PMK classifier has drawbacks in that both database size and

classification complexity grow linearly with the number of pointsN in the training dataset.

This complexity motivates us to identify and use only the most salient features—thereby

minimizing both of these costs. Further, by identifying andpruning less informative points,

we achieve robustness to potential outliers in the trainingset.

Our approach is based on logistic regression, which has the side benefit of producing

posterior class estimates. In the subsequent sections, we describe how logistic regression

and the PMK may be combined into a point-set classifier and howa sparsifying prior may

be used to identify salient features.

3.1 Multinomial Logistic Regression

A logistic regression model [16] employs the logistic function to predict the relationship

between a categorical dependent variabley and one or more independent variables, or

features. For a binary classification problemy ∈ {1, 2}, with a d-dimensional feature

vectorx,

P (y = 1|x) = σ(β0 + βTx), (3.1)
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Figure 3.1: Logistic regression example for a two class problem: blue vs. red circles. The
decision boundary is linear in the feature space.

where

σ(z) =
1

1 + exp(−z)
(3.2)

is known as the logistic function, whileβ0 andβ ∈ R
d are parameters learned from training

data. The complement probability may be shown [16] to be

P (y = 2|x) = 1− σ(β0 + βTx) (3.3)

= σ(−β0 − βTx) (3.4)

=
1

1 + exp(β0 + βTx)
. (3.5)

Logistic regression is a linear classifier as shown by the example in Figure3.1.

The extension toC classes is referred to as multinomial logistic regression and is
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represented as below [14]

p(y = 1|x) =
exp(β10 + βT

1 x)
∑

k exp(βk0 + βT
k x)

p(y = 2|x) =
exp(β20 + βT

2 x)
∑

k exp(βk0 + βT
k x)

...

p(y = C|x) =
exp(βC0 + βT

Cx)
∑

k exp(βk0 + βT
k x)

. (3.6)

The parametersθ = {β10, β1, . . . , βM0, βM} in the model may be learned using training

data, and we writep(y|x, θ) to explicitly indicate the dependence of the classifier on these

parameters. After an estimateθ̂ of θ is obtained, we may classify a new feature vectorxtest

using maximum a posteriori (MAP) classification as

ŷ = arg max
y:1,...,C

p(y|xtest, θ̂). (3.7)

To learn the parameters, a set of training data

(xi, yi), i = 1, . . . , N (3.8)

is used. Here, the{xi} are d-dimensional feature vectors andyi ∈ {1, . . . ,M} is the

class label for samplei. Assuming the training data consists of independent samples, the

likelihood of the data is formed as

L(θ) =
N
∏

i=1

p(yi|xi, θ) (3.9)
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and, using (3.6), the log-likelihood as

ℓ(θ) =
N
∑

i=1

log p(yi|xi, θ) (3.10)

=
N
∑

i=1

(βyi0 + βT
yi
xi)−

N
∑

i=1

log

(

C
∑

m=1

eβm0+βT
mxi

)

. (3.11)

Maximum likelihood parameters are found from the training data as

θ̂ = argmax
θ

ℓ(θ). (3.12)

The optimization (3.12) may be efficiently performed using coordinate descent and aquadratic

approximation to the log-likelihood considering one classat a time [15].

3.2 Logistic Regression for Point-set Classification

Logistic regression can not be directly applied to point-set classification because the num-

ber of points in measured imagery is variable and, like most classification methods, logis-

tic regression requires a fixed-length feature vector. In this section we describe how the

pyramid match kernel may be combined with multinomial logistic regression to solve this

problem.

Instead of developing and using a fixed-dimensional featurespace, we utilize a memory-

based classifier that compares a new collection of points to all points seen in the training

set. This is similar to theK-nearest neighbor algorithm and the PMK classifier described

above. Similar to the PMK classifier, we will use the pyramid match kernel as a measure

of similarity between pyramid histograms. However, ratherthan adopting the label of the

training element with the largest PMK value, we utilize a weighted combination of kernel
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scores across the entire saved training set. This provides robustness to potential outliers in

the training set and enables us to evaluate the contributionof particular points among the

training data.

Specifically, we utilize a kernel-based classifier that replaces the features in traditional

logistic regression with PMK scores computed between a pyramid histogram under test and

the full training database. Following the pre-processing steps described in Section2.3, we

have a collection of training pyramid histograms and their associated class labels

(∆i, yi), i = 1, . . . , N. (3.13)

For an unlabeled pyramid histogram under test,∆0, we compute weighted logistic regres-

sion scores with respect to every element in the training setusing the PMK. Thekth score

is computed as

zk = βk0 +
N
∑

n=1

βkiK(∆0,∆i), k = 1, . . . , C (3.14)

whereK(∆i,∆j) denotes the PMK (2.4) between pyramidsi andj; andC is the total num-

ber of classes. With kernel-derived scores replacing feature-based scores, the multinomial

logistic regression posterior probabilities (3.6) take the form

p(y = 1|∆0) =
exp(z1)

∑C

k=1 exp(zk)

p(y = 2|∆0) =
exp(z2)

∑C

k=1 exp(zk)

...

p(y = C|∆0) =
exp(zC)

∑C

k=1 exp(zk)
. (3.15)
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In (3.14), βk0 represents the scalar intercept for classk, while {βki}
N
i=1 represent the

weights for classk against allN elements in the training set. In total, there areC + CN

parameters that need to be learned using the training data (3.13). After computation of the

kernel distances between all pyramid histograms in the training data, theβ parameters may

be learned using maximum likelihood identically to the non-kernel-based form in (3.12).

3.3 Feature Selection

One advantage of the logistic regression classifier is that the weights (β’s) may be used to

identify important points in the training data. From (3.14), we see that if|βki| is large, then

∆i (corresponding to pointi in the training data) plays a relatively large role in determining

the classification scorezk. Thus, points with large coefficients may be considered more

salient than points with small coefficients.

Taking this concept further, we can change our learning algorithm to generally assume

that a point is not salient unless the data strongly supportsotherwise. This belief can

be incorporated through the use of a prior distribution on the coefficients and switching

from maximum likelihood estimation (as in Eq. (3.12)) to maximum a posteriori (MAP)

estimation. In order to encourage feature (point) reduction, we choose a prior that favors

coefficient values of zero—indicating that the feature is non-salient. Such a prior is often

termed a sparsifying prior because the resulting estimatedcoefficients are generally sparse:

having only a few non-zero elements. A common sparsifying prior [3] is the Laplace

distribution

p(β) =
λ

2
e−λ|β|. (3.16)

Figure3.2 illustrates the Laplace prior for two different values ofλ. It is seen that a
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Figure 3.2: The Laplace prior distribution for two different regularization parameter (λ)
values.

large value ofλ (solid red curve) places the majority of its probability mass near zero, while

a small value ofλ (dashed blue curve) increases the probability of non-zero values. Thus,

coefficients obtained using a largeλ value tend to be exactly zero or somewhere around

zero, while using smallλ values decreases sparsity.

For each classk, we may combine the (non-intercept) coefficients into a coefficient

vector

βk = [βk1, . . . , βkN ]
T (3.17)
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and impose the Laplace prior on each element independently

p(βk) =
N
∏

i=1

p(βki) (3.18)

=

(

λ

2

)N

e−λ
∑

i
|βki| (3.19)

=

(

λ

2

)N

e−λ||βk||1 , (3.20)

where|| · ||1 denotes the vectorℓ1 norm.

Letting γi = [K(∆i,∆1), . . . , K(∆i,∆N)]
T denote the vector of PMK values evalu-

ated between featurei and all features in the training setT , the kernelized logistic regres-

sion likelihood is

L(T |θ) =
N
∏

i=1

p(yi|γi, θ) (3.21)

=
N
∏

i=1

exp(βyi0 + βT
yi
γi)

∑C

m=1 exp(βm0 + βT
mγi)

. (3.22)

Combining this with the prior onθ = [β10, β1, . . . , βC0, βC ]
T ,

p(θ) =
C
∏

m=1

p(βm), (3.23)

the posterior over the parameters is

p(θ|T ) ∝ L(T |θ)p(θ). (3.24)

We then apply the logarithm to the posteriorp(θ|T ) and discard terms that do not
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depend onθ. After substituting (3.22) and (3.24), we obtain

ℓ(θ) =
N
∑

i=1

(βyi0 + βT
yi
γi)−

N
∑

i=1

log

(

C
∑

m=1

eβm0+βT
mγi

)

− λ

C
∑

m=1

||βm||1 (3.25)

as the final objective to be minimized. This yields

θ̂ = argmax
θ

ℓ(θ) (3.26)

as the MAP estimate for the optimal logistic regression parameters.

The last term in (3.25) is theℓ1 penalty that penalizes non-zero coefficients and pro-

motes sparsity. This is also referred to as the Least Absolute Shrinkage and Selector Op-

erator (LASSO) penalty as used in LASSO-type regression problems[14]. In [25], the

equivalency between LASSO regression and Laplacian priorsis explored in more detail.

There are a number of sparsity-based algorithms discussed in, e.g., [26] [17] [1] [15]

[4] [23] capable of optimizing penalized objectives similar to (3.25). A cyclic coordinate

descent algorithm based on a regularizaton path is described in [15]. We used a particu-

lar implementation of this method, referred to as GLMNET [24], to optimize (3.25) and

produce the results presented in Chapter4.

As noted earlier, when particular coefficients are zero, associated points do not enter

into the logistic regression scores used in classification.Therefore, after optimizing the

weights (3.26) using GLMNET, if weightβki = 0, then feature (pyramid histogram)i can

be excluded when computing the logistic regression score for classk. However, because

the posterior over all classesk ∈ {1, . . . , C} must be computed before a most likely class

can be identified, eliminating a point is only useful if it is eliminated fromall class posterior

calculations. Otherwise, the point cannot be removed from the training database. This may
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be expressed by constraining groups of parameters to simultaneously be zero:

βki = 0 =⇒ βkj = 0, ∀j ∈ {1, . . . , N}. (3.27)

This constraint is referred to as group sparsity and is enforced in GLMNET using the option

‘grouped’.

Following a group sparse solution to minimizing (3.25), all featuresi whereβki = 0,

for any k, may be eliminated from the database used at test time. In Chapter 4 we ex-

plore how many points may be removed from the database without impacting classification

performance.

3.4 Sparsity Selection

In the objective function (3.25), the variableλ ≥ 0 is referred to as the regularization pa-

rameter. This parameter controls the severity of the penalty applied to non-sparse solutions,

and as illustrated in Figure3.2, large values ofλ produce sparser solutions than small values

of λ. Forλ = 0 there is no penalty, and we obtain a non-sparse estimate equivalent to the

maximum likelihood solution. Accordingly, the value ofλ controls the tradeoff between

database reduction (sparse solutions) and classification performance. Properly selectingλ

is an important component in the overall process of selecting the most salient points.

Cross-validation [27] is a method to choose the regularization parameterλ such that it

minimizes an estimate of the prediction error. An ideal scenario would have ample amounts

of training and testing data. However, when data is limited,cross validation may be applied

to divide the original data into multiple training and testing sets. We employK-fold cross-

validation which splits data intoK groups. First,K − 1 groups are used to train the pa-

rameters, while remaining held-out group is used as a testing set to evaluate the prediction
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Figure 3.3: Cross validation curve used to determine the optimal value for the regularization
parameterλ in the fingerprint ID application described in Section4.2. The left vertical line
indicates the optimalλ-value.

error. The procedure is repeatedK times, holding out a different set each time. The results

are combined to form an estimate of the prediction error as a function ofλ. Finally, the

optimal regularization parameter is chosen as the one that minimizes the cross-validation

prediction error estimate. In our work, we used10-fold cross validation to determineλ. A

sample cross-validation curve is illustrated in Figure3.3 for the fingerprint ID application

considered in the next chapter.
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Results and Analysis

4.1 Character Recognition Example

Previously, in Chapter 1, we considered a simple character recognition example between

the letters “A” and “V” to provide intuition about the optimal selection of point features. In

this section, we present the results of applying our optimalfeature selection process to this

problem.

During the training process, our model should generalize such that salient behavior

associated with the data is captured. When the learned model is too simple, we experience

underfitting characterized by high bias and low variance. Overly complex models fit the

data too well and learn noise within the data as well [21]. These two undesired training

phenomenon yield poor performance.

As described in Section3.4, we utilize the sparsity parameterλ to control regulariza-

tion and set this value using cross validation. Initially, we trained the both “A” and “V”

classes without any regularization(λ = 0). As expected, the algorithm selects all of the

data without giving any further idea on usefulness of data points among the two characters.

This is illustrated by the top row of plots in Figure4.1.

The bottom row of plots in Figure4.1 depicts a large value ofλ which removes too

many points from the training data and underfits the data. Themiddle row of plots in
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Figure 4.1: Optimal point selection example. When the regularization parameterλ is too
small (upper row) too many points are selected; and whenλ is too large, salient points are
omitted (bottom row). The optimal value (middle row), determined by cross-validation,
balances this trade-off and selects only the most discriminative points. Selected points are
denoted by green asterisks.

Figure4.1represents the optimal level of regularization as determined by cross validation.

As hypothesized in the Introduction, the bar of the letter “A” is selected, however certain

other points are also selected. In the letter “V” these points are adjacent to where the A-bar

would have been. From this, we conclude that the algorithm islooking for edge diagonals

and an absence of the “bar” to identify the letter “V”.

For this example, we conducted a noiseless simulation to empirically evaluate the

probability of correct classification (PCC). Using all of the features (λ = 0), we obtained

PCC=76.67%, and while using only sparsely identified features(optimalλ) we obtained

PCC=73.33%. This demonstrates our algorithm’s capability ofidentifying the most salient

features. In the following section, we apply our algorithm to noisy measured data from a

fingerprint ID application.
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4.2 Fingerprint Recognition Data

4.2.1 NIST SD 27 Database

The NIST SD 27 database [9] was developed by the National Institute of Standards and

Technology (NIST) in coordination with the Federal Bureau ofInvestigation (FBI). It con-

tains gray scale fingerprint images and their correspondingcharacteristic point features data

called minutia. An example image is shown in Figure4.2. There are 258 latent fingerprints

from the crime scenes together with their matching tenprintimages. For each finger, there

are different sets of minutiae. One of the sets contains all the minutiae coordinates on the

latent; another contains all the minutiae points from its tenprint while there is another set

with all common minutiae between these latent and tenprint sets.

Since the latent minutiae were collected from a real-world scene, they have the poorest

quality and generally only contain a subset of minutiae of a corresponding tenprint. Based

on the quality of the image, all the fingerprint sets have beenfurther categorized into good,

bad and ugly directories with good being the best quality.

All the fingerprints are composed of two basic focal points inthe form of loops and/or

whorls that help to distinguish each minutia set. These focal points are called core with a

loop and delta for the one with a whorl. These minutia attributes in the fingerprint are also

termed as ridge ending and ridge bifurcation. To find a match,we desire to match these

points from a latent minutia with a database formed from tenprints.

Each minutia is represented in terms of its location and orientation in the image. All

the images in our database are of size800 × 768 pixels, where each pixel represents0.01

millimeters in both the ANSI/NIST standard and the FBI EFTS [9]. For positioning the

origin, the bottom left of the image is considered its originin the ANSI/NIST standard,

while FBI/IAFBIS has its origin at the top left of the image. Dueto this discrepancy,
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Figure 4.2: A typical “tenprint” image from the NIST SD 27 fingerprint database. Major
detected minutia (red circles) and associated orientations (magenta lines) of the fingerprint
are shown.

the X-coordinates are the same for both standards, while there is a linear inversion of the

Y-coordinates.

4.2.2 Bin Size Determination

In order to compute the pyramid histograms described in Section 2.1for the minutia points

in the fingerprint database, we need to establish the bin sizes at the lowest level of the

pyramid histogram. The bin sizes at the upper levels are a function of the lowest level. The

smallest bin size controls a tradeoff between faithfully capturing low-level patterns and

providing high-level clustering that is robust to missing and occluded points.

To determine the bin sizes, we computed 1D histograms of theX andY distances

from every training point and its five nearest neighbors. These histograms are shown in

Figure4.3. Since the vast majority of points fall within±5mm of one another, we chose
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Figure 4.3: Histograms of nearest-neighbor distances determine the bin sizes used while
generating pyramid histograms.

the smallest bin size such that the 2D spatial histogram areacovers this10mm× 10mm

area.

4.3 Fingerprint Experiments and Results

In this section, we report the results from several classification experiments that were car-

ried with the NIST SD 27 database. For the training data, we used tenprint data taken in

a controlled environment; and for testing data we used field-measured fingerprints labeled

as “good.” We used the good data to establish a performance baseline. From this point, we

can artificially introduce additional noise and obscurations in a controlled manor to further

evaluate performance. In all cases below, we use the probability of correct classification

(PCC) as the performance metric. As a benchmark, we will often compare to the PMK

classifier (Section2.4) which utilizes the full set of training data. We refer to this as the
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Figure 4.4: Time required to compute pyramid histograms forthe entire training database
versus maximum number of levels,L. Large values ofL require excessively long compu-
tation times.

“full” data benchmark.

However, before evaluating feature selection performance, we use the fingerprint dataset

to explore two implementation parameters of pyramid histograms: the number of levels (L)

and the local neighborhood size (K).

4.3.1 Number of Pyramid Histogram Levels

Increasing the maximum number of Pyramid Histogram levels,L, increases the resolu-

tion at the bottom level of the pyramid histogram and improves the granularity of partial

matches. The tradeoff of increasingL, however, is the computational cost required to com-

pute the 2D histograms at a larger number of levels. Further,this complexity is not linear

in L because, from (2.1), the number of bins increases by a factor of2d for each additional

level. Hered is the dimensionality of the points. For the fingerprint application, we have
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Figure 4.5: Performance of the PMK classifier as a function ofthe maximum number of
pyramid histogram levels,L.

d = 2 and expect a 4-fold increase in complexity for each additional level.

In Figure4.4, we report the time required to compute the pyramid histograms for all

307 points in the full training data. The figure considers a maximum number of levels

ranging fromL = 2 to L = 5, and the exponential time increase is readily apparent. Fur-

ther, while we don’t report values here, storage requirements and test-time computational

complexity would increase similarly withL.

Given the dramatic increase in complexity withL, we next evaluated the resulting

benefit afforded by largerL values. Using the benchmark PMK classifier (Section2.4), in

Figure4.5we report PCC vs.L. Somewhat surprisingly, for the fingerprint data under con-

sideration, we do not observe any performance increase withL. We believe this is because

the minutia are roughly uniformly distributed andL = 2 provides sufficient resolution for

each minutia point to reside in its own bin at the lowest level. As such, we useL = 2 for

the remainder of our experiments.
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Figure 4.6: Classification performance versus local neighborhood size,K.

4.3.2 Local Neighborhood Size

A second implementation choice is the sizeK of the local neighborhoods (see Sec.2.3.1)

that are used to form pyramid histograms. IncreasingK decreases the probability that

a random collection of points will match a true point-set, however asK increases more

points are likely to share histogram bins, thus decreasing the uniqueness of a quantized

histogram representation. We also note that for small datasets it may be impossible to use

very large values ofK as there simply may not be that many points in the global data.

In Figure4.6, usingL = 2 maximum levels, we plot PCC versus theK for the PMK

classifier and our sparse logistic regression classifier. For this fingerprint data, and both

classifiers, neighborhood sizes less thanK = 7 seem appropriate. For subsequent experi-

ments, we useK = 5 local neighbors.
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Figure 4.7: The proposed sparsity-based optimal feature selection algorithm reduces the
full dataset by 94%, from 307 pyramid histograms to 19 pyramid histograms identified as
being salient.

4.3.3 Optimal Feature Selection

In this section, we evaluate the size of the optimal feature set selected by our algorithm and

present the corresponding classification performance. Ourgoal is to compare the perfor-

mance of our sparse feature set to that obtained using the full dataset. As depicted by the

bar graph in Figure4.7, the original “full” dataset contained 307 features. The number of

salient features, identified by our algorithm as the non-zero coefficients obtained after cross

validation, was only 19. This represents a 94% decrease in the database size.

The corresponding classification performance is reported in Figure4.8. Here we see

that the baseline max kernel classifier (Section2.4) that uses all of the data has a PCC of

only 57%. Our non-sparse logistic regression method, whichalso uses all of the training

data, has a PCC of 83%. This improvement is due, in part, to the fact that the logistic

regression classifier makes its decision as a weighted combination of information in the
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Figure 4.8: Classification performance of the proposed logistic regression methods (full
and sparse) and the baseline max-Kernel classifier of Section 2.4. While using 94% fewer
features, the proposed sparse method outperforms the baseline which uses all of the training
data.

entire training set and is less susceptable to outlier noiseaffecting single elements in the

training data. Finally, our sparse classifier, which uses only 6% of the total training data,

achieves a PCC of 69%. This is better than the baseline full data classifier, but not as good

our own full data classifier.

4.3.4 Robustness to Limited Training Data

The training data used above was derived from high-quality tenprint images taken in a

controlled environment. However, often such complete training is unavailable and we are

obliged to classify with only partially data. To evaluate performance under these condi-

tions, we randomly excluded points from the training set andplotted performance versus

the percentage of features retained. Figure4.9 illustrates the expected result that all al-

gorithms experience degraded performance as training datais decreased. However, our
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Figure 4.9: Percentage of correct classification versus training data retained. The proposed
logistic regression methods (full and sparse) decay more gracefully in the presence of lim-
ited training data.

proposed logistic regression based methods degrade much more gracefully. For example,

while decreasing the number of training features by 30%, theproposed methods only suf-

fer a PCC degradation of approximately 5%. For the same reduction in features, the PMK

classifier has a performance reduction of approximately 15%.

4.3.5 Performance in Noise

Finally, we evaluate the performance of our algorithm in noise. For this experiment, we

trained our classifiers using the original tenprint data. However, for the testing data, we

added independent Gaussian noise to the minutia locations in order to shift them from their

true locations. In Figure4.10we present these results as a function of the standard deviation

of the additive noise. We observe that, in general, the noisehas a significant impact on

classification performance, however the proposed sparse method is slightly more robust to
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Figure 4.10: Percentage of correct classification versus standard deviation of minutia dis-
placement. The proposed sparse method exhibits slightly more robustness to noise.

these minutia shifts.
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Conclusions
The crowning glory of the modern era depends on a broad range of innovations, from

the basic tools to the most recent advancements in engineering where most of the smart

gadgets stand. There is a desire to optimally process data to understand its characteristics

more efficiently and accurately and to extract the most information possible. In this thesis,

we designed an optimal feature selection algorithm for point-set classification based on

efficient use of spatial pyramid histograms. Our algorithm identifies the most salient point

features for use in a given classification problem which serves to reduce the complexity and

increase the robustness of subsequent classification tasks.

We applied our algorithm to the NIST SD 27 database of fingerprints and demonstrated

that only 6% of the original minutia point-features were salient. Using only the small

salient dataset, we achieved classification performance superior to the current state-of-the-

art method based pyramid match kernel maximization. The regularization and data-usage

aspects of our classifier also yielded favorable robustness properties to noise and limited

training data.

Finally, the logistic regression framework used in this thesis provides posterior probabilities

for class memberships. In future work, this soft output may be used for fusion with other

information sources. In particular, this work only considered classifying a single point

and its local neighborhood. In practice, an object to be classified contains many point-

like neighborhoods whose solutions may be fused to yield performance greater than the

individual results reported in this thesis.
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