
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2017

SV-Means: A Fast One-Class Support Vector Machine-Based Level SV-Means: A Fast One-Class Support Vector Machine-Based Level

Set Estimator Set Estimator

Anne M. Pavy
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Pavy, Anne M., "SV-Means: A Fast One-Class Support Vector Machine-Based Level Set Estimator" (2017).
Browse all Theses and Dissertations. 1906.
https://corescholar.libraries.wright.edu/etd_all/1906

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1906?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

SV-MEANS: A FAST ONE-CLASS SUPPORT
VECTOR MACHINE-BASED LEVEL SET

ESTIMATOR

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

by

ANNE M. PAVY
B.S.E.E., Wright State University, 2007
M.S.E.G., Wright State University, 2009

2017
Wright State University

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

December 12, 2017

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SU-
PERVISION BY Anne M. Pavy ENTITLED SV-Means: A Fast One-Class Support Vector
Machine-Based Level Set Estimator BE ACCEPTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy

Brian D. Rigling, Ph.D.
Dissertation Director

Arnab K. Shaw, Ph.D.
Director, Electrical Engineering Ph.D. Program

Barry Milligan, Ph.D.
Interim Dean of the Graduate School

Committee on
Final Examination

Brian D. Rigling, Ph.D.

Fred D. Garber, Ph.D.

Kefu Xue, Ph.D.

Michael Bryant, Ph.D.

Randolph L. Moses, Ph.D.

ABSTRACT

Pavy, Anne M., Ph.D., Electrical Engineering Ph.D. Program, Department of Electrical
Engineering, Wright State University, 2017. SV-Means: A Fast One-Class Support Vector
Machine-Based Level Set Estimator.

In this dissertation, a novel algorithm, SV-Means, is developed motivated by the many

functions needed to perform radar waveform classification in an evolving, contested envi-

ronment. Important functions include the ability to: reject classes not in the library, provide

confidence in the classification decision, adapt the decision boundary on-the-fly, discover

new classes, and quickly add new classes to the library. The SV-Means approach addresses

these functions by providing a fast algorithm that can be used for anomaly detection, den-

sity estimation, open set classification, and clustering, within a Bayesian generative frame-

work. The SV-Means algorithm extends the quantile one-class support vector machine

(q-OCSVM) density estimation algorithm into a classification formulation with inspiration

from k-means and stochastic gradient descent principles. In addition, the algorithm can be

trained at least an order of magnitude faster than the q-OCSVM and other OCSVM algo-

rithms. SV-Means has been thoroughly tested with a phase-modulated radar waveform data

set, and several data sets from the University of California Irvine (UCI) machine learning

repository, in each application area except clustering. In clustering, a novel algorithm, SV-

Means Level Set Clustering, was formulated using the SV-Means algorithm as a first step to

determine the number of clusters per level set and distinguish overlapping clusters. Finally,

an end-to-end demonstration from training, to testing, to clustering, to adding a new class

to the library, was demonstrated using the SV-Means algorithm.

iii

Abbreviations and Symbols
List of Abbreviations

2-D 2-Dimensional
AD Anomaly Detection
ACF Autocorrelation Function
AUC Area Under Curve (area under ROC curve)
BW Bandwidth
C Classification
CwR Classification with Rejection
DE Density Estimation
EVT Extreme Value Theory
FN False Negative
FP False Positive
GD Gradient Descent
GSLS Golden Section Line Search
I-OCSVM Independent-OneClass Support Vector Machine
ID Identification
ISOMAP Isometric Mapping
KKT Karush-Kuhn-Tucker
LS Least Squares
MST Minimum Spanning Tree
OCSVM One-Class Support Vector Machine
OSR Open Set Recognition
PCA Principle Component Analysis
PI-SVM Probability of Inclusion Support Vector Machine
POS-SVM Probabilistic Open Space Support Vector Machine
q-OCSVM Quantile One Class Support Vector Machine
QP Quadratic Programming
RF Random Features
ROC Receiver Operating Characteristic
SGD Stochastic Gradient Descent
SMO Sequential Minimal Optimization
SNR Signal-to-Noise Ratio
SVC Support Vector Clustering
SVM Support Vector Machine
TN True Negative
TP True Positive
UB Upper Bound
W-SVM Weibull-calibrated Support Vector Machine

iv

List of Symbols

a(ej,u,r) Point along edge ej,u
Aej,u Set of equally spaced points a(ej,u,r) along ej,u
b̂ Bias term in binary SVM
b SV-Means outer index (number of initializations)
c Class number
C Soft-margin formulation SVM regularization term
d Number of dimensions (spectral coefficients)
dRF Number of random features
ej,u Edge in minimum spanning tree Sj
Ej Set of edges of longest length
Fj Set of points associated with each νj
F High-dimensional Hilbert space
gG(·) Decision function for minimum-volume set G
G Minimum-volume set
h Gaussian distribution sampled vector
i Data index
j Quantile index
kj Number of clusters at level set j
k(·) Kernel function
lej,u Length of edge ej,u
l̂j Mean of the edge lengths in minimum spanning tree Sj
m SV-Means inner index (number of ν values)
n Number of data points
nt Number of subtrees
o Quantile index
O(·) Order of operations
p Fj index, Fj,p is the pth index of Fj
P Number of pulses
Pr Probability density function
q Number of quantiles (minimum volume sets)
r Point index along edge in minimum spanning tree
R Radius of hypersphere
R Real number space
s Data point index
Sj Minimum spanning tree at level set j
T nt
j Set of disjoint subtrees Svj ∈ Sj
u Minimum spanning tree edge index
v Subtree index
w SVM direction vector
xi Data vector
xsv Data vector that is a support vector
x′ Test data vector

v

X Data matrix
yi Class label corresponding to xi in binary SVM
yj Cluster label for level set j
z Explicit data transformation map via random feature function
α Minimum volume density
β Lagrange multiplier
δ Normalized distance metric
Φ Implicit data transformation map via a kernel function
η Learning rate
λ Lagrange multiplier
ν Soft-margin formulation SVM regularization term
νo ν vector defining output quantiles
νt ν vector defining training quantiles
ρ OCSVM margin width parameter
ρj ρ corresponding to level set j
σj Standard deviation of edge lengths in minimum spanning tree Sj
σ2 Variance
Θ SNR range
ξ SVM slack variable
Ξ SNR range index

.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.2.1 SV-Means Algorithm . 2

1.2.1.1 Generative Bayesian Formulation 2

1.2.1.2 Accurate Boundary Definition 3

1.2.1.3 Fast Training . 3

1.2.2 SV-Means for Multiple Applications 3

1.2.2.1 Anomaly Detection . 4

1.2.2.2 Density Estimation . 4

1.2.2.3 Open Set Classification 4

1.2.2.4 SV-Means Level Set Clustering 5

1.2.3 Published/Submitted Papers Related to this Dissertation 5

1.3 Outline of Dissertation . 5

1.4 Notation . 6

2 Background 7

2.1 Literature Review . 7

2.1.1 One-Class Support Vector Machine 11

vii

2.1.2 Quantile One-Class Support Vector Machine 12

2.1.3 SVM Speed-Up . 14

2.1.4 Random Fourier Features . 16

2.2 SVM Algorithm Comparison . 16

2.3 Chapter Summary . 17

3 SV-Means Algorithm 19

3.1 Algorithm Motivation . 19

3.2 Convergence . 20

3.3 Algorithm Description . 22

3.4 Chapter Summary . 24

4 Applications 25

4.1 Anomaly Detection . 25

4.2 Density Estimation . 27

4.3 Open Set Classification . 28

4.3.1 SVM Confidence Scores . 30

4.4 Clustering . 32

4.4.1 SV-Means Level Set Clustering 33

4.5 Chapter Summary . 34

5 Experimental Results 37

5.1 Description of Data Sets . 37

5.1.1 2-D Data Sets . 38

5.1.2 UCI Machine Learning Repository Data Sets 38

5.1.3 Phase-modulated Radar Waveform Data Set 38

5.1.4 Data Preliminaries . 40

5.2 SV-Means Convergence and Quantile Estimation 40

5.3 SV-Means Algorithm Comparison Results 41

viii

5.3.1 SV-Means vs. Primal q-OCSVM 41

5.3.2 SV-Means vs. Dual q-OCSVM . 44

5.3.3 SV-Means vs. Anomaly Detection Algorithms 46

5.3.4 SV-Means vs. Density Estimation Algorithms 50

5.3.5 SV-Means vs. Open Set Algorithms 51

5.4 SV-Means Level Set Clustering . 53

5.5 End-to-End Demonstration . 54

5.6 Chapter Summary . 56

6 Closing Remarks 70

6.1 Summary of Contributions . 70

6.2 Expected Impact . 71

6.3 Future Research . 72

Bibliography 73

ix

List of Figures

2.1 Hard margin, binary support vector machine. 8

3.1 Illustration of SVM geometry. A Gaussian kernel maps points onto a hy-

persphere. (Figure based on depiction in [1].) 21

4.1 Pictured in Figure 4.1a is the SV-Means boundary for level set j in red, the

minimum spanning tree Sj constructed from X+
j in blue, an example of an

edge ej,1, the edge length lej,1 , the set of edges of longest length Ej , and

a set of equally spaced testing points Aej,1 = {aej,1,1, aej,1,2, aej,1,3, aej,1,4}

(rmax = 4) along ej,1 represented by black squares. Each point along ej,1 is

tested to see if it falls outside the SV-Means boundary. If any of the points

are outside of the boundary, the edge is removed. Pictured in Figure 4.1b

shows the removal of edge ej,1. The original minimum spanning tree Sj is

now split into two subtrees, T 2
j = {S1

j , S
2
j }. 35

x

5.1 SV-Means algorithm performed on the double moon 2-D data set where

all bmax = 10 initializations are shown in both subfigures. In 5.1a, all 10

initializations converge within mmax = 20 inner loop iterations. In 5.1b,

the figure illustrates all 10 boundaries corresponding to each initialization

with νo = 0.05. This demonstrates the non-convexity of the SV-Means

algorithm and, therefore, the need for multiple random initializations. The

best boundary, shown in red, confirms the criteria to pick a final w∗ and ρ∗

(lines 18-19 in Algorithm 1). 58

5.2 Double Gaussian data set density estimation is performed by the SV-Means

algorithm where νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0]. 59

5.3 Histogram of average counts for each quantile bin showing the model ac-

curacy for all 23 classes averaged. The lines show the bin counts corre-

sponding to νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0]. 59

5.4 The SV-Means, q-OCSVM, and I-OCSVM algorithms were trained to es-

timate α1 = 0.05, . . . , α19 = 0.95, or 19 total quantiles, for the distribution

using the largest class from each of the 15 UCI data sets desribed in Section

5.1.2. Figure 5.4a depicts α′ as a function of α averaged over all data sets,

and Figure 5.4b depicts the coverage ratio as a function of α averaged over

all data sets. 60

5.5 Comparison of multi-class open set classification algorithm F-measure

scores for 13 classes in 5.5a, and 3 classes in 5.5b over 3 folds. The open-

ness levels are tested by adding a subset of the remaining 10 and 20 classes,

respectively. 61

5.6 Comparison of multi-class open set classification algorithm F-measure

scores for 15 classes in 5.6a, and 3 classes in 5.6b over 3 folds. The open-

ness levels are tested by adding a subset of the remaining 11 and 23 classes,

respectively. 62

xi

5.7 SV-Means Level Set Clustering 2-D example - level set 1: In 5.7a, the

boundary corresponding to level set 1 (νo1 = 0.3) is shown in red. In 5.7b,

the minimum spanning tree is shown including 3 longest edges. Along the

longest edges, testing points are shown as 4 red squares. In 5.7c, the correct

cluster number for each point is shown in green and the cluster label given

to each point by the SV-Means Level Set Clustering algorithm is shown in

black. In 5.7d, the points are color-coded to which cluster they belong. . . 63

5.8 SV-Means Level Set Clustering 2-D example - level set 2: In 5.7a, the

boundary corresponding to level set 2 (νo2 = 0) is shown in red. In 5.7b,

the minimum spanning tree is shown including 1 long edges. Along the

longest edge, testing points are shown as 4 red squares. In 5.7c, the correct

cluster number for each point is shown in green and the cluster label given

to each point by the SV-Means Level Set Clustering algorithm is shown in

black. In 5.7d, the points are color-coded to which cluster they belong. At

level set 2, the overlapping clusters are not distinguishable. 64

5.9 End-to-end demonstration: 2-D Gaussian data set. A closed set example

(openness = 0) is given where two classes were used to train models using

SV-Means. A different realization of the two classes were used for testing

and the rejected points are highlighted in yellow in the top right figure. The

confusion matrix is given in the bottom right corner. 65

5.10 End-to-end demonstration: 2-D Gaussian data set. An open set example

(openness = 0.1) is given where the same two classes/models are used as

in Figure 5.9 except now the testing data includes a new class (picured

in blue in the top middle figure). The rejected points are highlighted in

yellow in the top right figure and the confusion matrix is given in the bottom

right corner. The rejected points are passed to a clustering algorithm block

shown in Figure 5.11. 66

xii

5.11 End-to-end demonstration: 2-D Gaussian data set. The rejected points from

Figure 5.10 are sent to the SV-Means Level Set Clustering algorithm where

one new cluster was determined (pictured in green in the top middle figure).

The new cluster is trained as a new class using the SV-Means algorithm and

the new class is added to the library (pictured in the bottom right figure). . . 67

5.12 End-to-end demonstration: 2-D Gaussian data set. The performance of the

open set experiment models (two known and one discovered via cluster-

ing) from Figure 5.11 is measured by comparing to the best-case-scenario

models (assuming all three classes were known at training). The best-case-

scenario models and corresponding confusion matrix are shown along the

top, and the open set experiment models and corresponding confusion ma-

trix are shown along the bottom. 68

5.13 End-to-end demonstration: phase-coded radar waveform data set. The per-

formance of the open set experiment models (seven known and three dis-

covered via clustering) from Figure 5.11 is measured by comparing to the

best-case-scenario models (assuming all ten classes were known at train-

ing). The best-case-scenario confusion matrix is shown in Figure 5.13a

and the open set experiment confusion matrix is shown in Figure 5.13b.

The R column represents the rejected class. 69

xiii

List of Tables

2.1 SVM Algorithm Comparison . 18

5.1 Phase modulation types, training pulse width ranges, and testing pulse

widths of the phase-modulated radar waveform data set. 39

5.2 Summary of ν-parameters for the primal q-OCSVM and SV-Means for

training (νt), output generation (νo), and testing thresholds (νq). 42

5.3 Probability of correct classification for all 24 classes (23 known and 1

unknown) and for just the unknown class with two boundary conditions

νq = 0.05 and νq = 0 and 1 SNR range, Testing at 0, 4, and 10 dB 43

5.4 Summary of ν-parameters for the dual q-OCSVM and SV-Means for train-

ing (νt), output (νo), and testing thresholds (νq). 44

5.5 Probability of correct classification for all 24 classes (23 known and 1 un-

known) and for just the unknown class, with two boundary conditions,

ν = 0.05 and ν = 0, and 11 SNR ranges, and testing at 0, 4, and 10

dB SNR . 45

5.6 Timing comparison of q-OCSVM variants (in seconds) 46

xiv

5.7 Average of 25 AUC results on UCI and radar waveform data using SV-

Means and OCSVM. The data sets were modified according to [2] using

the protocol where 75% of the normal class was randomly selected for

training, and the anomalous classes combined with the remaining 25% of

the normal class is used for testing. Each of the 25 tests consisted of a

different random selection from the normal class. 47

5.8 Timing comparison of open set algorithms (in seconds) 53

xv

Acknowledgments
I would like to thank my husband for his support and kindness during this process. In

addition, I would like to thank my family for cheering me on and my friends who never

gave up on me. Finally, I would like to thank my committee and my adviser, Brian Rigling,

for their invaluable guidance.

xvi

Chapter 1

Introduction

1.1 Motivation

Radar waveform classification is an important task within various systems and applications,

especially for future operations of cognitive radios and radars ([3], [4]). With increasing

spectrum density, real-time situational awareness is imperative to maintain effective opera-

tion [5]. Waveform classification presents several key challenges. First, due to the crowded

spectrum, waveform classification algorithms must operate in an open set framework [6]

which means it is unlikely that every waveform encountered will be in the training library.

Therefore, the ability to reject waveforms that are not in the library is critical to accurate

waveform classification. Second, in order to take action based on the classification deci-

sion, it is important for the classifier to provide a likelihood or confidence in its answer

to not only distinguish between known classes but to aid in rejection. Third, as the envi-

ronment changes or as new information is discovered, a generative Bayesian formulation is

needed to change the decision boundary on-the-fly as the prior information evolves. Fourth,

as testing data is rejected, a robust clustering technique is needed to determine how many

new classes are within the rejected data. Finally, timing is a significant factor. With the

spectrum changing rapidly, it is necessary to have the ability to train a new waveform class

1

on-the-fly with large amounts of data.

These important and difficult challenges served as motivation in the development of

a new fast algorithm, SV-Means, to address radar waveform classification for various ap-

plications: anomaly detection, density estimation, open set classification, and clustering.

However, the challenges related to radar waveform classification are not unique and apply

to several areas of research including network intrusion ([7], [8]), credit card fraud ([9],

[10]), and image processing ([11], [12]).

1.2 Contributions

In this effort, two overarching contributions are made: (1) the development of the novel

SV-Means algorithm and (2) the demonstration of SV-Means in several application areas.

Specific contributions within the algorithm development, and within each application area

are detailed below.

1.2.1 SV-Means Algorithm

A novel algorithm is developed, SV-Means, which was inspired by the quantile one-class

support vector machine (q-OCSVM) density estimation algorithm in [13]. The SV-Means

algorithm has several desirable properties that are considered to be significant contribu-

tions, specifically, a generative Bayesian formulation, an accurate boundary definition, and

a fast training capability.

1.2.1.1 Generative Bayesian Formulation

Traditionally, support vector machines are discriminative classifiers. The SV-Means al-

gorithm transforms the support-vector machine-based problem into a generative Bayesian

formulation by modeling each class likelihood with multiple hierarchical boundaries accu-

rately delineating probability quantiles.

2

1.2.1.2 Accurate Boundary Definition

The SV-Means algorithm’s weight vector is estimated based on the importance of an ac-

curate boundary for classification rejection, which is accomplished by level set estimation

towards the extrema of the data. Typically, the outer boundary of the OCSVM is deter-

mined by a small amount of points, which could provide an unstable boundary in high

dimensions. The SV-Means outer-level set estimation provides a form of regularization for

a more accurate boundary.

1.2.1.3 Fast Training

The q-OCSVM density estimation algorithm is solved from the dual formulation with a

global convex optimization using a Gaussian kernel where extra parameters are needed to

optimize for each density level set. The SV-Means algorithm is solved from the primal

formulation using a non-convex, k-means inspired algorithm based on stochastic gradient

descent principles using random Fourier features to estimate the kernel. The SV-Means al-

gorithm, therefore, trains at least an order of magnitude faster in comparison to q-OCSVM,

and open set algorithms, as the number of training instances increase. Therefore, SV-Means

is compatible with on-line training approaches. In addition, the training time for SV-Means

does not increase as a function of the number of level sets as it does with the q-OCSVM

algorithm.

1.2.2 SV-Means for Multiple Applications

In addition to the algorithmic contributions which advanced the state-of-the-art in OCSVMs.

Contributions were made in applying this novel, improved algorithm to several important

functions central to waveform classification and other application areas: anomaly detec-

tion, distribution estimation, open set classification (with rejection), and clustering. The

SV-Means algorithm has been directly compared to state-of-the-art algorithms within each

3

application area, and has performed favorably, with the exception of the clustering algo-

rithm. The clustering algorithm (SV-Means Level Set Clustering) emerged near the end

of this research, and a comparison of this novel technique to other clustering algorithms

remains as future work.

1.2.2.1 Anomaly Detection

SV-Means provides an accurate boundary, as described in a previous contribution in Section

1.2.1.2, and therefore, is a highly effective algorithm for anomaly detection, especially in

higher dimensions. This is demonstrated in the experiments in Section 5.3.3.

1.2.2.2 Density Estimation

SV-Means, as mentioned previously, is inspired by the q-OCSVM density estimation algo-

rithm. The q-OCSVM optimizes over all level sets, and hence, compromises an accurate

boundary. SV-Means is able to focus on estimating the boundary level set and the remain-

ing level sets are found via line search. As mentioned in a previous contribution in Section

1.2.1.3, SV-Means is faster than the q-OCSVM algorithm by two orders of magnitude as

the number of training points and number of level sets increase.

1.2.2.3 Open Set Classification

SV-Means is novel in comparison to other open set algorithms in that it is the only algorithm

that exclusively uses OCSVMs. Use of OCSVMs was avoided formerly due to issues dis-

tinguishing between known classes, which the SV-Means algorithm solves by density level

set comparison. Another desirable property of the SV-Means algorithm is that each class

is trained separately, so a new class can be added without re-training the entire classifier.

For example, rejected samples can be retrained and then used by a clustering algorithm to

group points together to add new classes to the library on-the-fly.

4

1.2.2.4 SV-Means Level Set Clustering

A novel algorithm, SV-Means Level Set Clustering, was developed, inspired by the Sup-

port Vector Clustering algorithm in [14]. The SV-Means Level Set Clustering algorithm

provides multimodal level set boundaries that have a probabilistic meaning whereas the

Support Vector Clustering algorithm provides multimodal boundaries with only structural

meaning. The SV-Means Level Set Clustering algorithm is able to determine the number

of clusters per level set and is able to distinguish overlapping clusters. These additional

characteristics are not provided by the Support Vector Clustering algorithm.

1.2.3 Published/Submitted Papers Related to this Dissertation

A conference paper entitled “Phase-Modulated Radar Waveform Classification Using Quan-

tile One-Class SVMs” was published in the 2015 IEEE Radar Conference Proceedings

which provided the first step in transforming the q-OCSVM density algorithm into a clas-

sification formulation. A journal paper entitled “SV-Means: A Fast SVM-Based Level

Set Estimator for Phase-Modulated Radar Waveform Classification” was submitted to the

IEEE Journal of Selected Topics: Signal Processing for Machine Learning for Cognition

in Radio Communications and Radar. The journal paper details the novel SV-Means algo-

rithm and compares the algorithm to the primal and dual q-OCSVM, and several open set

algorithms.

1.3 Outline of Dissertation

In Chapter 2, a literature review is performed which surveys the binary SVM, one-class

SVM, quantile one-class SVM, and several techniques that have been used to accelerate

SVM-based algorithms. In Chapter 3, the SV-Means algorithm is described including its

motivation and convergence properties. In Chapter 4, several application areas are de-

scribed where SV-Means is a strong candidate for use: anomaly detection, density esti-

5

mation, open set classification, and clustering. In Chapter 5, experimentation results are

shown for several different experiments including: comparing the SV-Means algorithm to

existing algorithms in the application areas described in Chapter 4; an illustrative exam-

ple demonstrating the novel SV-Means Level Set Clustering algorithm; and an end-to-end

demonstration detailing training, testing, clustering, and adding new classes to the library

using the SV-Means algorithm. Finally, in Chapter 6, concluding remarks are provided

including recommendations for future work.

1.4 Notation

The following notational conventions are followed. Vectors are represented by lowercase

bold characters (e.g., x, w, ξ), scalars are denoted by lowercase characters (e.g., ξ), matri-

ces are given by capital letters (e.g., X), and an apostrophe on a character represents a test

point (e.g., x′). There are a few exceptions to these notations when denoting transforms

(e.g., Φ(·), z(·)). In addition, L denotes calculating the Lagrangian, P represents the Gaus-

sian distribution, and any capital letter with super- or sub-scripts represent sets (e.g, X+
j).

Minimum volume sets are denoted by G, the Gaussian kernel is denoted by k(·, ·), and the

decision functions are given by gGj
(·).

6

Chapter 2

Background

This chapter discusses several research areas that provide a background and basis for the

SV-Means algorithm developed in Chapter 3. In Section 2.1, a thorough literature review

was performed on several support vector machine variations. In Section 2.2, algorithms

discussed in the literature review are compared within an easy-to-view chart to highlight

key elements of support vector machine algorithms.

2.1 Literature Review

The support vector machine (SVM) is a prominent technique in machine learning first

developed by Vapnik [15]. The SVM finds a separating hyperplane between two sets of data

points with maximum margin. Let {xi|i = 1, . . . , n} be the training set of n vectors where

xi ∈ Rd and let yi ∈ {−1, 1} be the class label of each xi. Figure 2.1 depicts the binary

support vector machine. The equation for the separating hyperplane is 〈w,xi〉 + b̂ = 0

where w is the weight vector perpendicular to the hyperplane and b̂ is the bias. To find the

maximum margin, two parallel hyperplanes are found that touch the closest data from each

class. The closest data points are called support vectors (highlighted in yellow in Figure

7

Figure 2.1: Hard margin, binary support vector machine.

2.1). The two parallel hyperplanes are defined by

〈w,xi〉+ b̂ = −1

〈w,xi〉+ b̂ = 1

(2.1)

which gives a margin of 2
‖w‖ . The problem simply becomes maximizing the margin 2

‖w‖ ,

however, this is a non-convex problem. Instead, the equivalent problem of minimizing ‖w‖
2

is solved by substituting ‖w‖
2

2
as squaring is monotonic. The final optimization to find the

maximum margin is given by the primal formulation

min
w

1

2
||w||2

s.t. yi(〈w,xi〉+ b̂) ≥ 1, i ∈ [n]

(2.2)

where the contraints are formed using (2.1).

8

Equation (2.2) is used for separable data with a hard margin. For non-separable data,

soft margins were developed by Cortes and Vapnik [16] to allow training points within the

margin at a cost. This allows overlapping classes to develop an optimal boundary instead

of a boundary determined by a very small margin. The soft margin is obtained by relaxing

the constraint in (2.2) by adding slack variables ξi ≥ 0, i ∈ [n]. The updated optimization

problem with soft margins is given by

min
w

1

2
||w||2+C

n∑
i=1

ξ2i

s.t. yi(〈w,xi〉+ b̂) ≥ 1− ξi, ξi ≥ 0, i ∈ [n]

(2.3)

where C is a variable that helps control the size of the margin.

Equation (2.2) and (2.3) are used for linear classifiers. The SVM algorithm was ex-

tended as a non-linear classifier by the use of kernels by Boser, Bernhard, and Vapnik [17].

To show how kernels are implemented to achieve a non-linear boundary, the dual formu-

lation of the soft margin classifier is derived by taking the Lagrangian L(·) of the primal

formulation in Equation (2.3). The Lagrangian is given by

L(w, b, ξ, λ, β) =
1

2
‖w‖2 + C

n∑
i=1

ξi

−
n∑
i=1

λi(yi(〈w,xi〉+ b̂)− 1 + ξi)−
n∑
i=1

βiξi

(2.4)

with multipliers λi ≥ 0, βi ≥ 0. When the partial derivatives are set equal to zero with

respect to the primal variables w, b, and ξi, one obtains

w =
n∑
i=1

λiyixi (2.5a)

n∑
i=1

λiyi = 0 (2.5b)

βi = C − λi. (2.5c)

9

Combining (2.5) into (2.4), the dual program is given by

min
λi

1

2

n∑
i=1

n∑
s=1

λiλsyiys 〈xi,xs〉 −
n∑
i=1

λi

s.t. 0 ≤ λi ≤ C,
n∑
i=1

λiyi = 0

(2.6)

where the constraint 0 ≤ λi ≤ C was formed by realizing the constraint βi ≥ 0 produces a

new constraint on (2.5c) yielding C − λi ≥ 0 or λi ≤ C [18].

The decision function gG(x) = sign(〈w,x′〉 + b̂) determines if the testing point x′ is

in the positive or negative class. The decision function can be rewritten by substituting in

the equation for w (2.5a) which gives

gG(x) = sign(
n∑
i=1

λiyi 〈xi,x′〉+ b̂). (2.7)

and it is noted that the equation is based off of an inner product between two data points.

If the training data is non-linearly separable, the data may be transformed into a high-

dimensional (possibily infinite) data space where it is likely a linear hyperplane exists to

separate the data. The linear hyperplane formed in high-dimensional space is non-linear

in ambient space. Each xi is transformed via a map Φ : Rd → F where F is a high

dimensional Hilbert space generated by a positive-definite kernel k(xi,xs). The kernel

function represents an inner product in F through k(xi,xs) = 〈Φ(xi),Φ(xs)〉. The “kernel

trick” gives an implicit mapping of the data into F without having to calculate the high-

dimensional space itself. Therefore, the kernel replaces the inner product in (2.7) and

throughout the dual SVM derivation to provide a non-linear classifier.

The one-class support vector machine (OCSVM) algorithm was inspired by the bi-

nary support vector machine with soft margins in Equation (2.3). OCSVMs have two main

derivations developed by Tax and Duin [19] and Scholkopf [20]. In [19], instead of sep-

arating the data with a hyperplane, the data is surrounded by a hypersphere that acts as

10

its boundary. The volume of the hypersphere is optimized to handle outliers. In [20], the

data is separated from the origin by a hyperplane with maximum margin. This derivation is

commonly referred to as the ν-formulation as this parameter has an informative meaning.

The ν parameter is an upper bound on the fraction of outliers and a lower bound on the

fraction of support vectors. The Scholkopf derivation is formalized in the next section as

it is the basis for the quantile one-class support vector machine (q-OCSVM) which is the

basis for the SV-Means algorithm.

2.1.1 One-Class Support Vector Machine

In the one-class SVM classification problem based on the original Scholkopf formulation

[20], training points {xi|i = 1, . . . , n} where xi ∈ Rd are separated from the origin in fea-

ture space by a hyperplane and the distance from this hyperplane to the origin is maximized.

In this popular ν-SVM formulation [20], the algorithm finds a function gG that returns +1

in a region capturing “most” of the data points if xi ∈ G where G is a minimum-volume

set, and −1 elsewhere. Each xi is transformed via a map Φ : Rd → F where F is a

high dimensional Hilbert space generated by a positive-definite kernel k(x,x′). The kernel

function represents an inner product in F through k(x,x′) = 〈Φ(x),Φ(x′)〉. If the data

is non-separable, slack variables ξi allow for some points to be within the margin and the

parameter ν ∈ (0, 1) is the regularization parameter that sets an upper bound on the fraction

of these margin errors. The ν-SVM formulation is solved using the following optimization:

min
w,ξ,ρ

1

2
‖w‖2 − ρ+

1

νn

n∑
i=1

ξi

s.t. 〈w,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0, i ∈ [n],

(2.8)

where ρ ∈ [0, 1] controls the width of the margin, which is equal to ρ
‖w‖ . The sign of func-

tion gG(x′) = sgn(〈w,Φ(x′)〉−ρ) determines whether a point is in the positive or negative

set. The minimum volume set G(α), where α is the density desired, is approximated when

11

the OCSVM is solved for ν = 1− α [13].

2.1.2 Quantile One-Class Support Vector Machine

In [13], a quantile one-class SVM (q-OCSVM) algorithm was introduced that gives an

approach to estimate the distribution of the data. A sequence of quantiles is defined, 0 <

α1 < α2, . . . , < αq < 1, where q is the number of minimum-volume sets to approximate.

The q-OCSVM algorithm generalizes Equation (2.8) by approximating a set of minimum-

volume sets {G1, . . . , Gq} so that the hierarchy constraint Gi ⊆ Gj is satisfied for i < j.

The q-OCSVM algorithm [13] solves the following primal problem:

min
w,ξj ,ρj

q

2
‖w‖2 −

q∑
j=1

ρj +

q∑
j=1

1

νjn

n∑
i=1

ξj,i

s.t. 〈w,Φ(xi)〉 ≥ ρj − ξj,i, ξj,i ≥ 0, j ∈ [q], i ∈ [n]

(2.9)

where νj = 1 − αj . The program finds multiple, parallel half-space decision functions by

searching for a global minimum over the sum of q objective functions while the programs

share the same w. The q half-spaces in the solution are only different by their bias terms,

which makes them parallel to each other.

The derivation of the the q-OCSVM dual program is developed in [13], but is repeated

here as a reference for the new SV-Means algorithm. The Lagrangian of (2.9) is

L(w, ξ,ρ, λ, β) =
q

2
‖w‖2 −

q∑
j=1

ρj +

q∑
j=1

1

νjn

n∑
i=1

ξj,i

−
q∑
j=1

n∑
i=1

λj,i (〈w,Φ(xi)〉 − ρj + ξj,i)

−
q∑
j=1

n∑
i=1

βj,iξj,i (2.10)

with multipliers λj,i ≥ 0, βj,i ≥ 0. When the partial derivatives are set equal to zero with

12

respect to the primal variables w, ρj , and ξj , one obtains

w =
1

q

∑
j,i

λj,iΦ(xi) (2.11a)

∑
i

λj,i = 1 (2.11b)

0 ≤ λj,i ≤
1

nνj
, i ∈ [n], j ∈ [q]. (2.11c)

Combining (2.11) into (2.10), the dual program is given by

min
λ

1

2q

∑
j,r∈[q]

∑
i,s∈[n]

λj,iλr,sk(xi,xs) (2.12)

with constraints (2.11b) and (2.11c) and where the dot product (〈Φ(xi),Φ(xs)〉)F is com-

monly replaced with a kernel, k(xi, xs). The resulting decision function for the jth estimate

is

gGj
(x′) = sgn

(
1

q

∑
j,i

λj,ik(xi,x
′)− ρj

)
. (2.13)

The values for ρj , using the condition 1 < λj,i <
1
nνj

, are found from a point xsv by

ρj = 〈w,Φ(xsv)〉 =
1

q

∑
j,i

λj,ik(xi,xsv). (2.14)

This dual formulation for the one class SVM has significant advantages. It is de-

rived from the ν-SVM formulation, which supports calibrated quantiles as ν approximately

equals the fraction of support vectors and outliers ([21], [20]). And, the data only appears

in the formulation as inner products supporting the “kernel trick” to provide non-linear de-

cision boundaries. This formulation can be used to build a Bayesian probabilistic classifier

that provides confidence and detects outliers ([22], [23]). Unfortunately, the dual formu-

lation’s quadratic solver has a complexity that grows with the size of the data, and hence,

13

large data sets are not feasible especially for on-line scenarios.

In order to address these complexity issues, in recent years, randomized projections of

the data have been used to approximate kernel functions with great success across several

different algorithm types ([24], [25], [26], [27]) including OCSVMs [28]. We use these

Fourier random features, which give non-linear decision boundaries in linear formulations,

as a first step in a OCSVM level set quantile solver, SV-Means.

2.1.3 SVM Speed-Up

Unfortunately, SVM techniques are burdened by computational complexity as they are

solving a global convex quadratic programming problem and, in most cases, using a non-

linear kernel where the complexity is magnified as the number of training samples increase.

To compute the kernel for every training pair, it requires O(n2) computations and to solve

the QP problem, O(n3) computations are required where n is the number of data points

[29]. In the q-OCSVM case, additional optimization parameters are included to simultane-

ously solve for multiple hierarchal boundaries which also increases training time. For large

data sets, this complexity is a bottleneck and several ideas to address this complexity issue

have been formulated including: dimensionality reduction ([30], [31], [32]), decomposi-

tion ([33], [22]), primal formulations ([34], [35]), stochastic gradient descent and iterative

methods ([36], [37], [38], [39]), and randomization techniques ([40], [41], [28]). These

formulations are briefly discussed next.

Dimensionality reduction techniques, or pre-processing the data before performing the

classification or optimization method, helps address scalability. A few examples of this ap-

proach are principle components analysis (PCA) [30], ISOMAP [31], and neural networks

[32]. These approaches reduce the effective number of features but potentially at the cost

of classification performance. They are important and can aid in reducing computation,

but they do not specifically address the key limitation of the dual formulation of the SVM,

which is that the QP solution scales predominantly with the number of data points not the

14

number of features. On the other hand, these techniques could prove more useful in the

primal formulation which scales predominately with the number of features.

Decomposition methods, including sequential minimal optimization (SMO) [33], breaks

the problem into workable subsets. Along the same vein, in [22], the phase-modulated radar

waveform data was broken up into smaller overlapping chunks to have manageable class

sizes while covering the variability of the data set. Primal formulations are popular with

their implementation of non-linear kernels, which is normally handled with the dual for-

mulation [34]. For primal formulations in [34] and [35], the QP problem is avoided with

Newton’s method by using a quadratic loss function. Other fast methods to solve SVM

formulations are stochastic gradient descent and iterative methods ([36], [37], [38], [39]).

However, if non-linear decision boundaries are desired, these methods still, however, must

use SVM dual formulation and the kernel matrix, which scales poorly with large data sets.

In [28], the authors applied random features [40] to the anomaly detection problem

using a OCSVM linear solver inspired by Rahimi and Recht [41]. The randomized pro-

jection of the data allows the use of primal linear formulations for significant speed-up in

optimization, often two orders of magnitude faster than their dual formulation counterpart.

SV-Means addresses this complexity issue by reformulating the primal q-OCSVM

problem into a non-convex optimization utilizing stochastic gradient descent and k-means

principles. This formulation is unique as the weights are iteratively updated by taking the

mean of the support vectors and outliers of the class. The support vectors and outliers are

determined by a line search along the based on ν or the percentage of training instances.

When the optimization is complete, a final weight vector is given and an additional line

search is used to find the density level sets. In addition, the SV-Means algorithm is at least

an order of magnitude faster than q-OCSVM as the number of training instances increase.

15

2.1.4 Random Fourier Features

Algorithms that use the kernel matrix, as in (2.12), incur larger computational and storage

costs as the number of points increase. A kernel generates an implicit lifting of the data

Φ : Rd → F where F is a high-dimensional Hilbert inner product space that is applied

to all pairs of data points. In [40], the authors propose an explicit mapping of the data

z : Rd → RdRF to a low-dimensional Euclidean inner product space using a randomized

Fourier feature map. The inner product between a pair of transformed points approximates

the kernel, k(xi,xs) = Φ(xi)
ᵀΦ(xs) ≈ z(xi)

ᵀz(xs), where

z(xi) =

√
2σ2

dRF



sin(hᵀ
1xi)

cos(hᵀ
1xi)

...

sin(hᵀ
dRF /2

xi)

cos(hᵀ
dRF /2

xi)


, hu

iid∼ P (h), (2.15)

P (·) is the Gaussian distribution, σ is the kernel bandwidth, and hu is (d × 1) where u =

1, . . . dRF . This positive-valued Fourier transformation was proved superior in [42] for the

Gaussian kernel. In the SV-Means algorithm (and the primal q-OCSVM solved with QP in

Section 5), the data set X = [x1 . . .xn], (d × n), is transformed via z(X) in (2.15) where

z(·) is applied to each column of X , (dRF × n).

In Chapter 3, Φ(xi) is used to describe and relate the theory behind the algorithm. In

order to perform the SV-Means algorithm, Φ(xi) is replaced with z(xi). When referring to

the the transformed data matrix, z(X), the shorthand Z is used.

2.2 SVM Algorithm Comparison

Some of the aforementioned papers are categorized in Table 2.1. This SVM overview table

compares each algorithm by listing key elements of SVM algorithms including their formu-

16

lation (closed or open), function (Classification (C), Classification with rejection (CwR),

Anomaly Detection (AD), and Distribution Estimation (DE)), the number of classes, the

objective function used (dual or primal), the parameterization used (C or ν), the type of

transform (kernel, Random Features (RF), Principle Component Analysis (PCA), etc.), the

loss function (Hinge, Quadratic, etc.), and the solver (Quadratic Programing (QP), iterative

techniques, etc.). SV-Means is the only approach that is able to tackle all the functions

listed, in an open set environment, while employing acceleration techniques including ran-

dom features for kernel estimation and a unique fast solver, as described in Chapter 3.

2.3 Chapter Summary

In this chapter, a literature review was provided, highlighting topics including the one-class

support vector machine, quantile one-class support vector machine, several algorithms de-

veloped to accelerate the support vector machine, and random Fourier features. All of these

topics aided in the development of the novel SV-Means algorithm discussed in Chapter 3.

17

Ta
bl

e
2.

1:
SV

M
A

lg
or

ith
m

C
om

pa
ri

so
n

Fo
rm

-u
la

tio
n

Fu
nc

tio
n

#
of

cl
as

se
s

O
bj

ec
tiv

e
Fu

nc
tio

n
Pa

ra
-m

et
er

Tr
an

sf
or

m
L

os
s

Fu
nc

tio
n

So
lv

er
C

ha
pe

lle
[3

4]
C

lo
se

d
C

2
Pr

im
al

C
K

er
ne

l
Q

ua
dr

at
ic

N
ew

to
n

G
la

ze
r[

13
]

C
lo

se
d

D
E

1
D

ua
l

ν
K

er
ne

l
H

in
ge

Q
P

T
ho

m
as

[4
3]

C
lo

se
d

D
E

1
D

ua
l

ν
K

er
ne

l
H

in
ge

M
ul

t.
du

al
so

lu
tio

ns
w

ith
di

ff
er

en
tB

W
s

L
iu

[2
3]

C
lo

se
d

C
,D

E
1

D
ua

l
ν

K
er

ne
l

H
in

ge
O

C
SV

M
-b

as
ed

B
ay

es
ia

n
E

rf
an

i[
28

]
C

lo
se

d
A

D
1

Pr
im

al
C

R
F

H
in

ge
L

in
ea

r[
41

]
W

an
g

[3
5]

C
lo

se
d

A
D

1
Pr

im
al

C
K

er
ne

l
H

ub
er

N
ew

to
n

N
av

ia
-V

az
qu

ez
[3

6]
C

lo
se

d
C

2
Pr

im
al

C
PC

A
H

in
ge

W
ei

gh
te

d
L

S
G

om
ez

-V
er

de
jo

[3
7]

C
lo

se
d

A
D

1
D

ua
l

C
K

er
ne

l
H

in
ge

O
nl

in
e

It
er

at
iv

e
R

e-
W

ei
gh

te
d

L
S

K
iv

in
en

[3
8]

C
lo

se
d

A
D

1
Pr

im
al

ν
K

er
ne

l
H

in
ge

O
nl

in
e

St
oc

ha
st

ic
G

D
Sh

al
ev

-S
hw

ar
tz

[3
9]

C
lo

se
d

C
2

Pr
im

al
C

K
er

ne
l

H
in

ge
St

oc
ha

st
ic

Su
b-

G
D

Pa
vy

[t
hi

s
di

ss
er

ta
tio

n]
O

pe
n

C
w

R
,A

D
,D

E
1

Pr
im

al
ν

R
F

H
in

ge
SV

-M
ea

ns

18

Chapter 3

SV-Means Algorithm

In this Chapter, the SV-Means algorithm is developed by expanding the q-OCSVM den-

sity estimation algorithm into a non-linear classification formulation using random Fourier

features for kernel estimation and the primal objective function. SV-Means solves the op-

timization problem by using a non-convex, k-means inspired approach based on stochastic

gradient descent principles. A detailed algorithm description is provided here, including

insights into its convergence properties.

3.1 Algorithm Motivation

The development of the SV-Means algorithm is motivated by the fact that the SVM formu-

lation is convex and that the inequality constraints are affine. In this case, strong duality

(when the primal optimal objective and the dual optimal objective are equal) holds and

Slater’s conditions are met [44]. Given these restrictions and the fact that the objective

function and constraints are differentiable, the Karush-Kuhn-Tucker (KKT) conditions are

necessary and sufficient for an optimal solution [44].

It is observed that the KKT conditions in (2.11) can be reached by defining λj,i = 1
nνj

and redefining the summation of all Φ(xi) for i = 1 . . . n in (2.11a) to a summation over

only the Φ(xi) points associated with νj . The set of points, Fj , associated with each νj is

19

determined by calculating a ρj via a line search along the projection 〈w,Φ(X)〉 until bnνje

points are outside the separating hyperplane where b·e represents the nearest integer. The

set of points associated with each νj is defined as Fj = {Φ(xi) ∈ Φ(X) : 〈w,Φ(xi)〉 −

ρj ≤ 0, i = 1 . . . n} where |Fj|= bnνje and Fj,p references the pth point in set Fj with

p = 1 . . . |Fj|. These points satisfy the constraints in (2.9) and correspond to the ξi on the

origin side of the separating hyperplane as depicted in Figure 3.1. Using the definitions of

λj,i and the set of points associated with each νj , equation (2.11a) is rewritten as

w =
1

q

q∑
j=1

1

|Fj|

|Fj |∑
p=1

Fj,p (3.1)

and it is noted that Fj is a function of the previous w. Iteratively, w is solved jointly over

multiple ν values. Hence, to satisfy (3.1), the w’s of each iteration are combined in a

scheduled fashion using a learning rate as in [45]. This combination of calculating a mean

of selected points and then calculating a new set of points associated with the new mean is

a version of the k-means algorithm with k = 1, hence, the name SV-Means.

3.2 Convergence

Next the specifics of the solver are explained. K-means can be solved by stochastic gra-

dient descent [46] and provably converges to a local optimum [47]. Using stochastic gra-

dient descent principles, it has been shown that the stochastic k-means algorithm globally

converges to a local optimum at an O(1/mmax) rate (where mmax is the number of it-

erations) with high probability even under the difficult conditions of the non-convex and

non-differentiable k-means objective [45]. The iterative procedure in the SV-Means algo-

rithm to optimize the q-OCSVM is a variant of the stochastic gradient k-means solution.

Solving the OCSVM in this way essentially provides a slight relaxation of the objective

so that the problem is no longer convex. This relaxation is mitigated in the SV-Means al-

20

𝐰

𝜌/ 𝐰

Non SVs

Outliers

(𝜌 − 𝜉𝑖)/ 𝐰 𝜉𝑖/ 𝐰

Gaussian kernel maps
to hypersphere

Separating Hyperplane

R

axis

axis

Support Vector

Figure 3.1: Illustration of SVM geometry. A Gaussian kernel maps points onto a hyper-
sphere. (Figure based on depiction in [1].)

gorithm similar to other k-means solvers by seeding the algorithm with multiple starting

points and then selecting the best solution. Although the solution is non-convex, the ex-

periments in Section 5.3.2 show that this novel solution gives comparable performance to

the dual q-OCSVM (modified to perform classification) whose formulation is convex, and

sometimes better performance than the dual q-OCSVM due to the improved boundary. The

k-means formulation developed here provides a significant speed-up compared to quadratic

solvers.

21

3.3 Algorithm Description

Again, it is noted that we are using the random Fourier feature transform described in

Section 2.1.4, z(xi), as an approximation to Φ(xi) for the SV-Means algorithm. The first

step of the algorithm (Algorithm 1) is to initialize parameters bmax, mmax, νtmin, νtmax, and

νo. The algorithm is initialized bmax times by randomly choosing points from the training

data, forming an algorithm outer loop. The core of the SV-Means algorithm is within the

inner loop (lines 5-14) where the parameter mmax is the number of inner loop iterations.

It is important to distinguish between the ν values used to train, denoted by νt, which are

randomly drawn from the uniform distribution bounded by νtmin and νtmax (line 6), where

the superscript t is again used to denote training. The ν values included in νo are used

to calculate the final ρb output (corresponding to the final quantiles desired) of each outer

loop intialization (line 16), hence, the superscript o, where νo = [νo1 , ν
o
2 , . . . , ν

o
q]. For all

the experiments in this dissertation, bmax = 10 and mmax = 20. For the experimentation in

Sections 5.2 and 5.3.4, νtmin = 0 and νtmax = 1, were used for distribution estimation. For

the radar waveform results in Sections 5.3.1, 5.3.2, and 5.3.5, νtmin = 0 and νtmax = 0.05,

were used to estimate the OCSVM boundary for improved rejection capability.

A line-by-line descripion of the algorithm is as follows. A random training sample is

chosen as the first estimate of the weight vector, w. Throughout the algorithm execution,

after an estimate of the weight vector is determined, the vector is normalized as we are only

interested in the direction. The estimate of w is optimized via an iterative k-means stochas-

tic gradient inspired approach where random νtm values are chosen between νtmin and νtmax

to ensure a joint optimization of multiple quantiles. This process begins with a random νtm

draw (line 6) which is used to compute ρ in a golden section line search gs(·, ·) (line 7).

The line search is performed along the projection wᵀZ and the distance ρ is found when

nνtm of the points are outliers or support vectors (outside or on the boundary). These points

are formalized as the set Z− and the estimated weight vector wm is computed by taking

their mean (denoted by 〈·〉) (line 9). Next, an iterative stochastic gradient descent approach

22

Algorithm 1: SV-Means
1 initialize: bmax, mmax, νtmin, νtmax, and νo

2 for b := 1 to bmax do Random start
3 w = zt, zt ∈ Z : t ∼ U(1, n)
4 w = w/||w||2
5 for m := 1 to mmax do Estimate w
6 νtm = ν̂m, ν̂m ∼ U(νtmin, ν

t
max)

7 ρ = gs(wᵀZ, νtm)
8 Z− = {zi ∈ Z : wᵀzi − ρ ≤ 0, i = 1 . . . n}
9 wm = 〈Z−〉

10 wm = wm/||wm||2
11 η = 1/m
12 w = (1− η)w + ηwm

13 w = w/||w||2
14 end
15 wb = w
16 ρb = gs(wᵀ

bZ,ν
o)

17 end
18 w∗ = wb corresponding to ρb with max(

∑q
j=1 ρb)

19 ρ∗ = ρb with max(
∑q

j=1 ρb)

is applied with a step size that gradually decreases the contribution of the estimated wm.

After mmax iterations, a weight vector wb is found and ρb = [ρ1, ρ2, . . . , ρq] is calculated

via golden section line search using the final wb and νo.

After repeating this process bmax times, bmax wbs have been calculated. The optimal

w∗ is chosen by selecting the wb with the maximum sum of ρb. This criteria was chosen

as the primal q-OCSVM objective function minimizes the negative sum of ρj terms (2.9)

(line 18). Finally, ρ∗ denotes the ρb with maximum sum.

Note that the number of quantiles that are calculated for output adds minimal com-

putation to the algorithm as it requires a single line search. This minimal computational

increase is contrasted with algorithms based on quadratic programming, where there is a

significant increase in computation with increasing predicted quantiles (see Section 5.3.2).

23

3.4 Chapter Summary

In this Chapter, the SV-Means algorithm was formalized in Algorithm 1 with a detailed

line-by-line description. SV-Means provides a one-class support vector machine-based

level set estimator that provides a generative Bayesian formulation, accurate boundary def-

inition, and fast training. These unique features allow the algorithm to be used to address

several application areas that are described in the next Chapter.

24

Chapter 4

Applications

In this chapter, several applications are explored: anomaly detection, density estimation,

open set classification, and clustering. Within each research area, current SVM-based al-

gorithms are discussed and compared to the SV-Means algorithm described in Chapter 3.

Typically these algorithms are characterized as supervised, semi-supervised, and unsuper-

vised. Supervised algorithms build models from training data that is completely labeled.

Definitions of semi-supervised algorithms are different across applications. In classifica-

tion, semi-supervised algorithm models are built from a combination of labeled and unla-

beled data. In semi-supervised anomaly detection, labeled data is used to model the normal

class, and test data that does not fit the model is classified as anomalous. In this work, we

adopt the anomaly detection definition of semi-supervised learning. Finally, unsupervised

algorithms train with unlabled data. We focus on semi-supervised algorithms except for in

Section 4.4 which concentrates on unsupervised algorithms for clustering.

4.1 Anomaly Detection

In anomaly detection, data points are categorized as anomalous (or outliers) if they belong

to classes that were not seen in training. Semi-supervised anomaly detection algorithms

use labeled training data to provide a model for the normal class. Testing data is declared

25

anomalous if it is unlike the trained model. Global and local anomalies are characterized

with respect to the entire data set or direct neighborhood, respectfully [48]. In general,

a local anomaly may not be detected when using a global technique. Anomalies are also

characterized as point (data point is anomalous with respect to the rest of the data), contex-

tual (data point is anomalous in a specific context, but not otherwise), or collective (group

of similar data is anomalous with respect to the entire data set) [49]. Only point anomalies

are considered in this paper.

In [49], anomaly detection algorithms are described as nearest neighbor-based ([50],

[51], [52]), clustering-based ([53], [54], [55]), statistical ([56], [57], [58]), information

theoretic ([59], [60], [61]), spectral ([62], [63], [64]), and classifier-based ([65], [28], [66],

[67]). In this work, we are interested in classifier-based anomaly detection. In closed set

classification, labeled training data is used to optimize a classifier or model and testing data

is classified as one of the trained classes. Classification-based anomaly detection develops

models for labeled data, and testing data is classified either as normal or as an anomaly.

Anomaly detection classification formulations are either one-class or multi-class. In one-

class frameworks, the training data is from one class label and any testing data outside the

model boundary is considered an anomaly. In multi-class frameworks, the training data

is from multiple normal class labels and there is a classifier for each class to distinguish

between normal classes. Testing data is considered an anomaly if it is not classified as a

normal class. Multi-classification anomaly detection is similar to open set classification,

described in Section 4.3, except that anomaly detection is referred to as rejection.

Although there are several classification-based anomaly detection algorithms (neural

network-based [65], Bayesian networks-based [66], rule-based [67]), we are interested in

one-class support vector machine (OCSVM) based anomaly detection to compare to the

SV-Means algorithm. In [28], an OCSVM, based off a linear formulation in [41], is used

for anomaly detection where random features are used for training acceleration and as a

way to handle high-dimensional data without maintaining large amounts of data. How-

26

ever, in our experimentation, it was found that random features did not provide accurate

boundaries for high-dimensional data. SV-Means is able to handle high-dimensional data

by optimizing over multiple density level sets to provide accurate boundaries for anomaly

detection, and its performance is comparable to the classic one-class SVM formulation as

shown in Section 5.3.3.

4.2 Density Estimation

In density estimation, there are several types of methods, e.g., parametric, semi-parametric,

and non-parametric. Parametric methods assume the distribution of the data is known (e.g.,

a Gaussian distribution), but the parameters of the distribution are not known and, therefore,

need to be estimated. Two examples of parameter estimation techniques are maximum like-

lihood estimation and Bayesian estimation [68]. Semi-parametric methods do not assume

a specific model for the underlying distribution but assume the model comes from a para-

metric family of distributions. For example, a mixture model is a semi-parametric method

and the parameters from the mixture model are estimated [69]. In non-parametric methods,

the density is estimated directly from the data without assuming a particular form of the

underlying distribution. Examples of non-parametric methods include histograms ([70],

[71]), kernel density estimation ([72], [73]) and support vector machines ([74], [75]).

Histograms are popular for their ease of use as the data is split into intervals or bins,

and the data within those bins are counted. However, histograms start to fall apart with

high-dimensional data sets due to the large number of bins, the relatively small amount of

data in high-dimensions, and the computational complexity [76].

Kernel density estimation is a technique where a kernel is placed on each data point

and then the kernels are summed for the final density estimation solution. Kernel density

estimation is widely used but is not effective in high dimensions [77]. To be more effective

in high dimensions, density estimation is relaxed and a minimum volume set approximation

27

is computed [78]. minimum volume sets determine the minimum volume or closed set

containing a specified probability mass. Since the volume is minimized, type 1 error is

controlled at the specified level, and type 2 errors are minimized, making the resulting

boundaries useful for applications such as anomaly detection [79].

Support vector machines (SVMs) are proven to be powerful level set estimators [80].

However, they do not provide multiple hierarchical level sets to characterize the distribution

further. In [13], the q-OCSVM estimates multiple hierarchical level sets by optimizing over

a single weight vector. With a single weight vector, the hierarchical level sets are simply a

resultant of a change in bias.

The SV-Means algorithm is inspired by q-OCSVM density estimation as shown in

Chapter 3. For density estimation, SV-Means borrows the idea of optimizing over a sin-

gle weight vector from the q-OCSVM algorithm but is significantly different in how the

optimization is solved. The q-OCSVM is solved using a kernel and quadratic programing

whereas SV-Means uses random Fourier features and a stochastic gradient descent k-means

technique. The SV-Means optimization technique is not only faster for large data sets and

more hierarchical boundaries (SV-Means determines final hierarchical boundaries by a sim-

ple line search performed on the optimal weight vector), but also provides a more accurate

outer boundary.

4.3 Open Set Classification

An open set classification problem is developed under the assumption that there is incom-

plete knowledge of all waveforms present at training time. In most machine learning al-

gorithms, closed set assumptions are used when a set of target classes are trained and then

the algorithm tested with these same classes. The closed set formulation poses an issue

when testing a new sample (unseen in training), as it is classified as the most likely trained

class. In radar waveform classification, it is highly likely to detect a signal not in the al-

28

gorithm library so the open set classification problem is a good fit to reject these unknown

waveforms. In [6], Scheirer formalized the open set problem calling it, open set recogni-

tion (OSR), and several other algorithms followed under this definition. The openness of a

classification problem is defined in [6] as

openness = 1−

√
2× |training classes|

|testing classes|+|target classes|
(4.1)

where |·| represents the number of instances in that set. When the classification problem is

closed, openness is zero.

The first algorithm derived under the open set definition is the one-vs-set machine [6]

which uses the separating hyperplane provided by a binary SVM and adds an additional

parallel hyperplane on the other side of the data. If a testing point lies in between the slab

(the area between the two parallel hyperplanes), it is labeled as the known class, and if it

lies outside the slab, it is rejected for that class. In [81], the Weibull-calibrated SVM (W-

SVM) was developed which uses a two-stage algorithm. The first stage includes a OCSVM

fitted with a Weibull cumulative distribution function to provide a posterior estimate for a

testing point. The Weibull distribution choice is based on extreme value theory (EVT). If

the posterior estimate is less than a specified threshold, the testing point is rejected in the

first stage; and if it is greater, the testing point is passed to a one-vs-all SVM in the second

stage. The probabilities calculated in the second stage are also based on EVT.

In [82], the PI-SVM algorithm is developed where PI is shorthand for the unnormal-

ized probability of inclusion. The algorithm starts with a one-vs-all binary SVM and then

followed with fitting EVT distributions from positive training samples. Using this method-

ology, they are able to calculate an unnormalized posterior probability estimate for each

class for a testing point. In [83], the probabilistic open space SVM or POS-SVM is formu-

lated. The POS-SVM is also based on a one-vs-all binary SVM where a validation set is

used to optimize individual class thresholds using Platt’s method for posterior probability

29

estimation.

Note that the W-SVM used an OCSVM as part of their formulation. OCSVMs are

a natural fit for the open set problem as they provide models for just the in-class data.

However, these open set algorithms have avoided exclusively using OCSVMs because they

have cited their inability to provide good generalization and separation between known

classes. To help distinguish between known classes, binary SVMs are used in open set

algorithms. In the SV-Means algorithm, this issue is tackled by estimating OCSVMs with

hierarchical level sets for each class. If a testing point falls within the innermost level

set of Class A and the outermost level set of Class B, Class A is chosen. If a testing

point falls in the same level set for Class A and Class B, a normalized distance metric is

calculated to decide a final class. More details on the calculation of confidence scores for

each classification decision are provided in the next Section.

4.3.1 SVM Confidence Scores

It was briefly discussed how each open set algorithm was formulated and, except for the

one-vs-set machine, how their data scores were turned into probabilities used for threshold-

ing their final decisions. There were two posterior estimation techniques discussed: Platt’s

method and extreme value theory (EVT). In Platt’s method [33], sometimes called Platt’s

calibration or scaling, a sigmoid function is used to estimate posteriors from SVM data

scores. This approach is used in LIBSVM [84], a popular SVM software package, as well

as in the open set POS-SVM described above. EVT models the extreme values of a score

distribution as a reverse Weibull if the data is bounded from above, and as a Weibull if

the data is bounded from below [85]. EVT is used by the W-SVM and PI-SVM open set

algorithms.

Another technique to calculate the posterior involves first generating the likelihood by

performing density estimation for each known class. OCSVMs can be used for estimation

of distributions or minimum volume sets (equivalently density level sets [86]). In [87], it

30

is shown that the OCSVM is a consistent estimator of density level sets, and the solution

provides an estimate of the tail of the density. In traditional SVMs, the half space boundary

is calculated by achieving the maximum margin to the nearest training points or support

vectors. Using a small set of data to determine the boundary limits the effectiveness of

OCSVMs in high dimensions, as larger data sets more effectively span this space [19].

In [13], the q-OCSVM estimates multiple level sets to represent the distribution un-

derlying the OCSVM. The q-OCSVM has an important property which includes estimating

density level sets by optimizing over a single weight vector. This allows the density level

set boundaries to be parallel to each other as they are only different with respect to their

bias terms. The SV-Means algorithm extends the q-OCSVM by formulating this density

estimation problem into a classification technique. Traditional SVMs are discriminative

classifiers, but SV-Means is a generative classifier as it provides a non-parametric probabil-

ity estimate for each test sample according to which density level set contains the sample.

The SV-Means algorithm borrows the idea of estimating density level sets using a single

weight vector from the q-OCSVM, but the weight vector is estimated based on the im-

portance of classification rejection by estimating level sets near the extrema of the data

set, which provides a more accurate boundary. Other density estimation techniques are

described in [43] and [23].

The improved boundaries given by the SV-Means algorithm are also adaptable as the

prior information changes. In discriminative algorithms, the posterior is calculated directly,

and in generative algorithms, like SV-Means, the posterior is calculated via Bayes Rule.

The calculated posteriors, however, are unnormalized as not all the classes are known at

training. The unnormalized posterior is popular in computer vision and is also used in the

PI-SVM algorithm ([88], [82]). A generative algorithm is more suitable for radar waveform

classification since the prior probabilities of the known classes can change rapidly during a

mission and the Bayesian formulation allows for adapting decision boundaries on-the-fly.

Priors are normally set with domain knowledge, but in the case of the experiments in this

31

dissertation, the priors are equal.

4.4 Clustering

Clustering separates data into similar groups by following a set of criteria. Several popular

clustering algorithms are described as hierarchical ([89], [90], [91]), centroid-based [92],

and density estimation-based [93]. One clustering algorithm of recent interest is a non-

parametric method, support vector clustering (SVC), which has the ability to generate clus-

ter boundaries with arbitrary shapes [14]. SVC is a multi-resolutional approach which uses

a hypershere-based support vector machine by varying C (helps controls margin width),

Gaussian kernel width, and a constraint on the number of support vectors. Using this ap-

proach, clusters are formed with the enclosed boundaries. However, cluster membership

cannot be determined from the boundaries alone. To determine cluster membership, a geo-

metric approach is used where the line between two points is tested. If the points along the

line fall outside of a boundary, the two points must belong in two different clusters. The

lines between each pair of points are defined by an adjacency matrix which induces a graph.

Instead of testing every pair of points, the overall testing is reduced to testing adjacencies

with support vectors.

As described, the SVC method contains two main processes: (1) finding the enclosed

boundaries and (2) assigning cluster membership. Several studies have been performed to

improve how the cluster membership algorithm is solved as it is a computationally expen-

sive process. Cluster membership improvement methods include: proximity graphs using

a Delaunay diagram, minimum spanning trees (MST), or k-nearest neighbor ([94], [95],

[96]); cell growing [97]; and cone cluster labeling [98].

All of these techniques use the approach in the seminal paper [14] to form the ini-

tial cluster boundaries, but as discussed, kernel based methods solved by quadratic pro-

gramming do not scale well with large data sets. A few papers tackle ways to handle the

32

complexity of the support vector machine boundaries including chunking [99] and using

ensembles [100]. In [101], the initial cluster boundary step is replaced by a hyperplane

method based on a primal stochastic gradient descent (SGD) framework. Their use of SGD

certainly speeds up the optimization, but the algorithm is still using a kernel which grows

in computational complexity with the number of data samples.

4.4.1 SV-Means Level Set Clustering

We develop a novel clustering method using the SV-Means algorithm (Algorithm 1) for

replacing the initial step of finding the enclosed boundaries. The new clustering algorithm,

SV-Means Level Set Clustering, is shown in Algorithm 2. In the SVC algorithm [14],

two parameters must be optimized in order to find the multi-resolutional levels to solit for

closely spaced clusters. In the SV-Means Level Set Clustering algorithm, a similar effect

is achieved by examining clusters at different level sets with the added benefit that these

level set boundaries are hierarchical and have a probabilistic interpretation. With SVC, the

boundaries have no constraints and, therefore, are arbitrary. In [101], a primal formulation

with stochastic gradient descent principles is employed, but the use of the kernel requires

the use of a budget algorithm to handle the size of the data. The SV-Means Level Set

Clustering algorithm, in contrast, uses random features to approximate the kernel and can

therefore handle large data set sizes.

In the SV-Means Level Set Clustering Algorithm in Algorithm 2, level set clustering

is accomplished by performing the SV-Means algorithm with νo = [νo1 , . . . , ν
o
q], which will

return an optimum w and ρ = [ρ1, . . . , ρq] with j = 1 . . . q (line 2). Cluster membership is

determined for each level set by using only the set of points Z+
j corresponding to that level

set (line 5). A minimum spanning tree Sj is performed on X+
j (the points corresponding

to the transformed points Z+
j) and the average l̂j , and standard deviation σj , of all edge

lengths are calculated. The set of longest edges, Ej , is determined by testing if each edge’s

length is greater than (l̂j + σj) (line 9) [102]. In a similar fashion to the SVC algorithm,

33

rmax equally spaced testing points, a(ej,u,r), along the edges in Ej , are examined (line 12).

If one of the testing points along the edge is outside the boundary, the initial pair of nodes

forming that edge are considered to be in different classes and the edge is removed (line

15). A set T nt
j of disjoint subtrees Svj are created by removing the edge (line 17). The

number of clusters kj are determined by the cardinality of the set T nt
j . The labels yj for

nodes in T nt
j (points in X+

j) are determined via depth first search [103]. The output of the

SV-Means Level Set Clustering algorithm is the number of clusters kj , and labels yj , for

each level set. A visual representation of some of the clustering terminology is provided in

Figure 4.1.

The SV-Means Level Set Clustering algorithm shows promising results as shown in

Section 5.4 but it has not been fully tested and characterized. However, the algorithm

provides a baseline for future extensions of this work.

4.5 Chapter Summary

In this chapter, SVM-based anomaly detection, density estimation, open set classification,

and clustering techniques were described. The SV-Means algorithm is a viable candidate

for all of these applications as it provides an accurate boundary, a confidence score, and a

generative framework. Experimentation comparing the SV-Means algorithm against exist-

ing techniques in each application area is shown in Sections 5.3.3-5.3.5, and an example

demonstrating the clustering algorithm is shown in Section 5.4.

34

(a)

(b)

Figure 4.1: Pictured in Figure 4.1a is the SV-Means boundary for level set j in red, the
minimum spanning tree Sj constructed from X+

j in blue, an example of an edge ej,1, the
edge length lej,1 , the set of edges of longest length Ej , and a set of equally spaced testing
points Aej,1 = {aej,1,1, aej,1,2, aej,1,3, aej,1,4} (rmax = 4) along ej,1 represented by black
squares. Each point along ej,1 is tested to see if it falls outside the SV-Means boundary. If
any of the points are outside of the boundary, the edge is removed. Pictured in Figure 4.1b
shows the removal of edge ej,1. The original minimum spanning tree Sj is now split into
two subtrees, T 2

j = {S1
j , S

2
j }.

35

Algorithm 2: SV-Means Level Set Clustering
Step One: Estimate a support function

1 Z = z(X), Transform X via (2.15)
2 Perform SV-Means in Algorithm 1 on Z with bmax = 10, mmax = 20, νtmin = 0,
νtmax = 0.05, νo = [νo1 , . . . , ν

o
q], return w, ρ = [ρ1, . . . , ρq] where j = 1, . . . , q

Step Two: Assign cluster membership at each level set
Let X+

j be the points corresponding to Z+
j from Z in level set j

Let Sj be the minimum spanning tree constructed from X+
j

Let T nt
j be the set of disjoint subtrees Svj ∈ Sj where v = 1, . . . , nt and nt is the

number of subtrees
Let ej,u be an edge in Sj where u = 1, . . . , umax and umax is the number of edges
Let lej,u be the length of ej,u
Let l̂j be the mean of the edge lengths in Sj
Let σj be the standard deviation of the edge lengths in Sj
Let Ej be the set of edges in Sj of longest length
Let Aej,u be a set of equally spaced points a(ej,u,r) along ej,u where r = 1, . . . , rmax
and rmax is the number of points

3 Initialize: nt = 1, rmax
4 for j = 1 : q do Estimate clusters for each level set
5 Find X+

j , the points corresponding to
Z+
j = {zi ∈ Z : wᵀzi − ρj > 0, i = 1, . . . , n}

6 Form minimum spanning tree Sj from X+
j via [104]

7 l̂j = 1
umax

∑umax

u=1 lej,u

8 σj =
√

1
umax

∑umax

u=1 (lej,u − l̂j)2

9 Ej = {ej,u ∈ Sj : lej,u > l̂j + σj, u = 1, . . . , umax}
10 T nc

j = Sj
11 foreach ej,u ∈ Ej do
12 Determine set Aej,u of equally spaced points a(ej,u,r) along ej,u
13 foreach a(ej,u,r) ∈ Aej,u do
14 if wᵀz(a(ej,u,r))− ρj < 0 then
15 Remove ej,u from Sj
16 nt = nt + 1
17 T nt

j = ∪nt
v=1S

v
j

18 break
19 end
20 end
21 end

Output: T nt
j = {S1

j , . . . , S
nt
j } for level set j

22 end
Output: T nt = {S1, . . . , Snt} for every level set

23 kj = |T nt
j |, number of clusters for level set j

24 Determine labels yj for nodes in T nt
j (points in X+

j) via depth first search [103]

36

Chapter 5

Experimental Results

In this Chapter, several experiments were performed to test the capability and flexibility

of the novel SV-Means algorithm. Before the results are shown, a Section is dedicated

to detailing the data sets used for each experiment. The first experiment includes a brief

visual representation of the convergence properties and quantile estimation. The second

set of experiments includes an extensive comparison of the SV-Means algorithm to the

primal q-OCSVM, dual q-OCSVM, anomaly detection algorithms, density estimation al-

gorithms, and open set classification algorithms. The third experiment includes a visual

representation of the SV-Means Level Set Clustering algorithm by clustering at two level

sets. The fourth experiment includes an end-to-end demonstration from training, to testing,

to clustering, to adding a new class to the library using the SV-Means algorithm.

5.1 Description of Data Sets

A variety of data sets were used to test the SV-Means algorithm against the primal and

dual q-OCSVM (with classification capability) along with anomaly detection, density es-

timation, and open set algorithms. A few two-dimensional (2-D) data sets were used to

visualize SV-Means convergence, SV-Means density estimation, SV-Means clustering, and

an end-to-end demonstration.

37

5.1.1 2-D Data Sets

For the convergence and quantile estimation experiments in Section 5.2, two common 2-D

data sets ([105], [43]) were tested using the SV-Means algorithm: double moon and double

Gaussian. Both feature sets have n = 1000 training examples and d = 2 features. For the

clustering and end-to-end demonstration, three separate Gaussians were used for each of

the 3 classes with n = 1000 and d = 2 for each class.

5.1.2 UCI Machine Learning Repository Data Sets

Several data sets from the University of California Irvine (UCI) machine learning reposi-

tory [106] are used for testing. For anomaly detection results, the following 24 data sets

were used: abalone, balance scale, blood transfusion, breast cancer wisconsin, cmc, ecoli,

glass, haberman, hayes-roth, ionosphere, iris, letter recognition, libras, magic, page blocks,

parkinsons, pima indians diabetes, poker, spambase, tae, tic-tac-toe, wine, yeast, and zoo.

For the density estimation results, the following 15 data sets were used: abalone, balance

scale, blood transfusion, breast cancer wisconsin, cmc, haberman, ionosphere, letter recog-

nition, magic, page blocks, pima indians diabetes, poker, spambase, tic-tac-toe, and yeast.

For the open set results, the letter recognition data set was used.

5.1.3 Phase-modulated Radar Waveform Data Set

The phase-modulated radar waveform data in [107] and [22] was also used. The training

data,X , described in Table 5.1, was generated for every combination of class (c), number of

pulses averaged (p), and SNR range (Θ) using the ACF-based features formulated in [107].

The autocorrelation function (ACF)-based feature set is used to handle nuisance parameters

(e.g., waveform alignment, varying pulse widths, unknown amplitudes, and SNR). The

feature set is found via the autocorrelation of the pulse, followed by a Fourier transform

of the log intensity. This feature set is similar to Mel frequency cepstral coefficients in the

38

speech recognition community. Exact details of the feature set are given in [107], which

also describes how averaging over multiple pulses improves performance.

Table 5.1: Phase modulation types, training pulse width ranges, and testing pulse widths of
the phase-modulated radar waveform data set.

c Modulation Code Training Testing
Type Length τ (µsec) τ (µsec)

1 Barker 7 [0.875, 7] 1.75
2 Barker 11 [1.375, 11] 2.75
3 Barker 13 [1.625, 13] 3.25
4 Combined Barker 16 [1, 8] 2
5 Combined Barker 49 [3.08, 21.1] 6.13
6 Combined Barker 169 [10.58, 84.6] 21.1
7 Max. Length Pseudo Random 15 [1, 4.5] 1.5
8 Max. Length Pseudo Random 31 [0.235, 10.5] 1.5
9 Max. Length Pseudo Random 63 [4.221, 18.9] 6.3

10 Min. Peak Sidelobe 7 [1.05, 4.2] 1.4
11 Min. Peak Sidelobe 25 [1.25, 10] 2.5
12 Min. Peak Sidelobe 48 [2.4, 19.2] 4.8
13 T1 NA [2, 16] 4
14 T2 NA [1.5, 12] 3
15 T3 NA [1, 8] 2
16 Polyphase Barker 7 [0.875, 7] 1.75
17 Polyphase Barker 20 [1, 8] 2
18 Polyphase Barker 40 [2, 16] 4
19 P1 NA [5, 20] 10
20 P2 NA [3.2, 25.6] 6.4
21 P3 NA [3.2, 25.6] 6.4
22 P4 NA [5, 20] 10
23 Minimum Shift Key 63 [2, 18.9] 4

For the following experiments, the training data (Table 5.1) consisted of c = 23 differ-

ent classes with SNR ranging from Θ ∈ {[−12, 12]}, number of pulses averaged p = 20,

number of data points n = 11000, and number of features d = 10. FOr our experiments,

the pulse widths were uniformly sampled from the intervals given in the fifth column of

Table 5.1.

39

5.1.4 Data Preliminaries

For the primal q-OCSVM and SV-Means, the data sets described in Section 5.1 are first nor-

malized and then transformed from d features to dRF random features using z(X) where

dRF = 2000 (2.15). The transformation includes selecting σ to define the Gaussian dis-

tribution. The σ parameter is calculated via quantiles of random distances in the training

data, which is a technique used in [108].

5.2 SV-Means Convergence and Quantile Estimation

In this section, the convergence and quantile estimation of the SV-Means algorithm is ex-

plored via illustrative examples. The 2-D double moon and double Gaussian data set de-

scribed in Section 5.1.1 are used to facilitate the visualization, and hence, understanding

of the boundaries and quantiles. The double moon data set is shown in Figure 5.1 where

νtmin = 0 and νmax = 1 for density estimation, and νo = 0.05, which captures 95% of

the data. Note that all bmax = 10 initializations of the SV-Means algorithm are shown

both on the convergence plot and on the two-dimensional boundary plot. As seen in Figure

5.1b, although all 10 initializations converged, the best initialization clearly defined a better

boundary (in red) than the other initializations which often connected the two moons. This

also confirms that the criteria to pick a final w∗ (i.e., choose the wb whose corresponding

ρb has the minimum sum) is effective. This example also illustrates the non-convex nature

of the SV-Means algorithm, motivating the need for the multiple random initializations,

and also demonstrating that mmax = 20 inner loop iterations are enough for SV-Means to

converge as shown in Figure 5.1a. The same number of outer and inner loop iterations are

used for all experiments performed.

The second data set used is the double Gaussian, shown in Figure 5.2, where νo =

[0.8, 0.6, 0.4, 0.2, 0.05, 0]. Both Figure 5.1 and 5.2 provide qualitative insight into the

nature of the SV-Means quantile estimation properties.

40

5.3 SV-Means Algorithm Comparison Results

In this Section, the SV-Means algorithm is compared to the primal and dual form of the q-

OCSVM extended for classification. The primal experiment directly compares SV-Means

with the primal form of the q-OCSVM using random Fourier features for kernel estimation.

The dual experiment tests the legitimacy of substituting a kernel estimation technique by

comparing SV-Means to the dual form of the q-OCSVM using a traditional Gaussian ker-

nel. Finally SV-Means is compared to algorithms within each application area: anomaly

detection, density estimation, and open set classification.

5.3.1 SV-Means vs. Primal q-OCSVM

The SV-Means algorithm performance is compared to the primal q-OCSVM algorithm

also using the radar waveform data described in Section 5.1.3. Three versions of the primal

q-OCSVM (with added classification capability) are trained and are distinguished by the

νo values used. The SV-Means algorithm is trained to accurately estimate the OCSVM

boundary for better rejection capability with νtmin = 0 and νtmax = 0.05. The ν-parameters

used for each experiment are shown in Table 5.2. The table highlights that the SV-Means

algorithm uses different values of νt to train than values of νo used to compute the final or

output ρ by performing a line search on the optimal w.

The test data for this experiment used the pulse widths given in the fifth column of

Table 5.1. The algorithms are tested at three SNRs: 0, 4, and 10 dB. To use the SV-

Means and primal OCSVM as classifiers, the test data must be transformed with the same

random Fourier feature transform, z(·), used in training. Each individual classifier consists

of q = 2, 5 or 6 hierarchical quantiles that provide a natural probability distribution. For

example, for q > 1, if a test point falls within the first quantile (the innermost quantile),

the likelihood that the test point belongs to that class is high. The class chosen is either the

unknown class, which is outside the boundaries for all classifiers, or the class that provides

41

Table 5.2: Summary of ν-parameters for the primal q-OCSVM and SV-Means for training
(νt), output generation (νo), and testing thresholds (νq).

Algorithm Train, νt Output, νo Test, νq

Primal
q-OCSVM

2 νo
[0.05, 0] [0.05, 0]

0.05

0

Primal
q-OCSVM

5 νo

[0.8, 0.6, 0.4, 0.2, 0.05] [0.8, 0.6, 0.4, 0.2, 0.05] 0.05

[0.8, 0.6, 0.4, 0.2, 0] [0.8, 0.6, 0.4, 0.2, 0] 0

SV-Means ∼ U (0, 0.05) [0.8, 0.6, 0.4, 0.2, 0.05, 0]
0.05

0

the highest unnormalized posterior score. The likelihood score is computed at the quantile

level unless the signal lies in the same quantile for two or more classes. In such a case,

a normalized distance metric is computed to resolve the “ties” at the quantile level. The

normalized distance metric is computed as follows:

δ(x′) =
gGj

(xsvj)− gGj
(x′)

gGj
(xsvj)− gGj−1

(xsvj−1
)

(5.1)

where gGj
(·) = z(xi)w − ρj , and xsvj is the point corresponding to the support vector on

the jth quantile boundary. This metric effectively interpolates within a quantile region to

more accurately compare distance values. The class with the smallest normalized distance

is chosen.

The testing results for each algorithm, νo variation, and testing SNR are generated

with 23 different classes determined by rotating the unknown class by leaving one class out

for each experiment. The probability of correct classification for the 24 class problem (23

known and 1 unknown) at 0 dB, 4 dB, and 10 dB for the testing data set are reported in

Table 5.3 for all algorithms. The probability of correct classification of all 24 classes and

of just the unknown class are reported for both testing thresholds of νq = 0.05 and νq =

0. The result tables show that the SV-Means algorithm achieves similar and sometimes

42

better results than the primal q-OCSVM quadratic programming formulations. While each

primal q-OCSVM excels in either overall classification (denoted 24 classes in Table 5.3) or

classification rejection (denoted unknown class in Table 5.3), SV-Means excels in both.

As mentioned before in this Section, there were a variety of sets of νo values used. Ini-

tially, νo was chosen to only contain νo values that spanned the whole distribution. It was

then discovered, in the case of the primal q-OCSVM where νo = [0.8, 0.6, 0.4, 0.2, 0]

(denoted “Primal q-OCSVM - 5 νo and νq = 0” in Table 5.3), that the unknown class

performance drops. This result motivated additional testing to more accurately model the

boundary. Therefore, the set νo = [0.05, 0] (denoted “Primal q-OCSVM - 2 νo” in Ta-

ble 5.3) was considered and this improved the probability of correct classification for the

unknown class. In addition, the algorithms used two different testing thresholds corre-

sponding to νq = 0.05 and νq = 0 in order to highlight the importance of where to draw the

threshold to balance overall classification performance versus unknown class sensitivity.

Table 5.3: Probability of correct classification for all 24 classes (23 known and 1 unknown)
and for just the unknown class with two boundary conditions νq = 0.05 and νq = 0 and 1
SNR range, Testing at 0, 4, and 10 dB

0dB SNR 24 classes Unknown class
Algorithm νq = 0.05 νq = 0 νq = 0.05 νq = 0

Primal q-OCSVM - 2 νo 0.8831 0.8836 0.9067 0.7469
Primal q-OCSVM - 5 νo 0.9453 0.9764 0.8987 0.6385

SV-Means 0.9452 0.9735 0.9119 0.7269

4 dB SNR 24 classes Unknown class
Algorithm νq = 0.05 νq = 0 νq = 0.05 νq = 0

Primal q-OCSVM - 2 νo 0.9076 0.9026 0.9306 0.7882
Primal q-OCSVM - 5 νo 0.9429 0.9812 0.9055 0.6977

SV-Means 0.9605 0.9845 0.9409 0.7725

10 dB SNR 24 classes Unknown class
Algorithm νq = 0.05 νq = 0 νq = 0.05 νq = 0

Primal q-OCSVM - 2 νo 0.9283 0.9562 0.9834 0.8547
Primal q-OCSVM - 5 νo 0.9092 0.9832 0.9660 0.7580

SV-Means 0.9426 0.9898 0.9970 0.8540

43

5.3.2 SV-Means vs. Dual q-OCSVM

In the previous Section, it was shown that the primal q-OCSVM and SV-Means were com-

parable. However, both of these algorithm formulations use random Fourier features as an

approximation to the kernel. Testing was performed to compare the primal q-OCSVM and

SV-Means algorithms to the dual q-OCSVM which uses a traditional kernel. In [22], due to

the complexity of the dual q-OCSVM algorithm, the data was broken up into smaller over-

lapping chunks (i.e., small SNR ranges) for training, and the same strategy is used here.

The phase-modulated radar waveform parameters described in Section 5.1.3 are used, but

now the data is broken up into 11 over-lapping SNR ranges: Θ ∈{[−12,−8], [−10,−6],

[−8,−4], [−6,−2], [−4, 0], [−2, 2], [0, 4], [2, 6], [4, 8], [6, 10], [8, 12]} with n = 1000 in-

stances of each class in each SNR range.

Two versions of the dual q-OCSVM are trained with the 11 SNR ranges and are de-

scribed in Table 5.4. The primal q-OCSVM and SV-Means algorithm use the same νo

variations as the previous experimentation given a single SNR range (described in Table

5.2). The same testing data and leave-one-out test strategy is used. Again, the probability

of correct classification for the 24 class problem (23 known and 1 unknown) at 0 dB, 4 dB,

and 10 dB for the testing data set is reported in Table 5.5 for all algorithms. These results

show that using random Fourier features is a powerful substitute to a traditional kernel, as

the performance results between the primal q-OCSVM, SV-Means, and the dual q-OCSVM

are comparable.

Table 5.4: Summary of ν-parameters for the dual q-OCSVM and SV-Means for training
(νt), output (νo), and testing thresholds (νq).

Algorithm Train, νt Output, νo Test, νq

Dual
q-OCSVM

5 νo

[0.8, 0.6, 0.4, 0.2, 0.05] [0.8, 0.6, 0.4, 0.2, 0.05] 0.05

[0.8, 0.6, 0.4, 0.2, 0] [0.8, 0.6, 0.4, 0.2, 0] 0

The 3 algorithms (SV-Means, Primal q-OCSVM, Dual q-OCSVM) are timed for sev-

44

Table 5.5: Probability of correct classification for all 24 classes (23 known and 1 unknown)
and for just the unknown class, with two boundary conditions, ν = 0.05 and ν = 0, and 11
SNR ranges, and testing at 0, 4, and 10 dB SNR

0 dB SNR 24 classes Unknown class
Algorithm νq = 0.05 νq = 0 νq = 0.05 νq = 0

Dual q-OCSVM - 5 νo 0.9164 0.9685 0.8984 0.7994
Primal q-OCSVM - 2 νo 0.8643 0.8932 0.8969 0.8520
Primal q-OCSVM - 5 νo 0.9186 0.9706 0.8800 0.6609

SV-Means 0.9356 0.9713 0.8886 0.8257

4 dB SNR 24 classes Unknown class
Algorithm νq = 0.05 νq = 0 νq = 0.05 νq = 0

Dual q-OCSVM - 5 νo 0.9295 0.9740 0.9248 0.8287
Primal q-OCSVM - 2 νo 0.8950 0.9092 0.9322 0.8962
Primal q-OCSVM - 5 νo 0.9315 0.9781 0.9041 0.6972

SV-Means 0.9528 0.9792 0.9408 0.8686

10 dB SNR 24 classes Unknown class
Algorithm νq = 0.05 νq = 0 νq = 0.05 νq = 0

Dual q-OCSVM - 5 νo 0.9440 0.9779 0.9746 0.8734
Primal q-OCSVM - 2 νo 0.9276 0.9487 0.9693 0.9501
Primal q-OCSVM - 5 νo 0.9377 0.9816 0.9441 0.7537

SV-Means 0.9664 0.9866 0.9697 0.9276

45

eral different groupings and values of νo on one class of n = 11000 for |Θ| = 1, and

n = 1000 for |Θ| = 11. For the primal formulations, the single class had size dRF × n and

the dual formulations had size d×n. The timing was measured using an Alienware (32 GB

RAM, i7-7700HQ CPU@2.8 GHz) laptop with MATLAB 2017a and is recorded in Table

5.6 in seconds. It is shown that SV-Means is faster by two orders of magnitude when es-

timating multiple density level sets and for large training set sizes. The primal q-OCSVM

timing using five νo values is shown for the larger SNR range, but the dual q-OCSVM is

only shown up to two νo values, which illustrates the timing complexity for large amounts

of data.

Table 5.6: Timing comparison of q-OCSVM variants (in seconds)

|Θ|
SV-Means
bmax = 10
mmax = 20

Primal
q-OCSVM

2 νo

Primal
q-OCSVM

5 νo

Dual
q-OCSVM

1 νo

Dual
q-OCSVM

2 νo

11 0.33 28.24 92.94 0.55 3.28
1 2.93 402.98 1674.07 738.10 3389.67

These experiments demonstrate that the SV-Means algorithm is able to extend the

q-OCSVM density estimation algorithm in a powerful classification formulation with the

following properties: distribution estimation for posterior calculation and distinction be-

tween known classes; rejection capability; and reduced computation speed. These illustra-

tive experiments lead into a comparison of the SV-Means algorithm against other open set

algorithms.

5.3.3 SV-Means vs. Anomaly Detection Algorithms

In this Section, the SV-Means algorithm is compared to the one-class support vector ma-

chine for anomaly detection. For experimentation, the 24 UCI data sets described in Section

5.1.2 are used as well as the radar waveform data described in Section 5.1.3. For each UCI

data set, the class with the most data samples is chosen as the normal class (followed from

[2]). For the radar waveform data, Class 8 from Table 5.1 is chosen as the normal class.

46

The remaining classes in each data set are used as anomalous data points. The data protocol

for these experiments is to use 75% of the normal class randomly selected as training data

and the remaining 25% is used for testing along with the defined anomalous classes. The

SV-Means algorithm and the one-class support vector machine are compared to an upper

bound (UB), which is a best case scenario if all of the data was known with a binary sup-

port vector machine. The upper bound provides intuition into how difficult the data is to

separate.

In Table 5.7, the average of 25 AUC (area under receiver operating characteristic

(ROC) curve) results are reported for each algorithm and for three different γ’s. The first γ

used is 1
d

where d is the number of features, which is the default setting for the popular LIB-

SVM support vector machine solver [84]. The second and third γ are calculated via [108]

(described in Section 5.1.4) using fine and course gamma settings, respectively. Several

gammas are used to show the importance of gamma selection. The SV-Means algorithm is

trained for better rejection capability with νtmin = 0, νtmax = 0.05, and νo = 0.

Table 5.7: Average of 25 AUC results on UCI and radar waveform data using SV-Means
and OCSVM. The data sets were modified according to [2] using the protocol where 75%
of the normal class was randomly selected for training, and the anomalous classes com-
bined with the remaining 25% of the normal class is used for testing. Each of the 25 tests
consisted of a different random selection from the normal class.

Data Sets Examples Features UB OCSVM SV-Means γ

abalone 4,177 8

0.5426 0.6462 0.6178 0.1111

0.6472 0.6496 0.6411 0.5780

0.5900 0.6457 0.6386 0.03722

balance-scale 625 4

1 0.8303 0.8608 0.2500

0.9998 0.8324 0.8366 0.3622

0.9988 0.8268 0.9417 0.1073

blood-transfusion 748 4

0.7964 0.4990 0.5059 0.2500

0.7901 0.4981 0.5603 0.0614

0.7762 0.4975 0.5448 0.0094

47

Table 5.7 Continued

Data Sets Examples Features UB OCSVM SV-Means γ

breast-cancer-

wisconsin
569 31

0.9989 0.9641 0.8442 0.0323

0.9998 0.9613 0.9679 0.5878

0.9998 0.9632 0.9627 0.2247

cmc 1,473 9

0.7469 0.4506 0.4468 0.1111

0.7934 0.4361 0.4939 0.8750

0.7742 0.4464 0.4710 0.2881

ecoli 336 7

1 0.9740 0.9715 0.1429

1 0.9760 0.9717 0.1282

1 0.9759 0.9638 0.0405

glass 214 7

0.8421 0.5721 0.6680 0.1111

0.8684 0.5788 0.6471 0.2410

0.8266 0.5681 0.6672 0.0304

haberman 306 3

0.8246 0.5427 0.4420 0.3333

0.8183 0.5399 0.4648 0.1210

0.7938 0.5384 0.5763 0.0217

hayes-roth 132 4

0.9731 0.8818 0.9028 0.2500

0.9615 0.8886 0.8915 0.4644

0.9731 0.8754 0.8949 0.1656

ionosphere 351 33

0.9798 0.9175 0.8572 0.0303

1 0.9750 0.9562 1.3664

0.9971 0.9384 0.9748 0.1834

iris 150 4

1 0.9804 0.9854 0.2500

1 0.9802 0.9829 0.1644

0.9967 0.9795 0.9815 0.0418

letter-recognition 20,000 16

0.9857 0.8712 0.9888 0.0625

0.9994 0.9105 0.9035 0.6384

0.9929 0.8778 0.9708 0.1510

48

Table 5.7 Continued

Data Sets Examples Features UB OCSVM SV-Means γ

libras 360 90

1 0.7530 0.5427 0.0111

0.9990 0.8747 0.7695 7.2724

1 0.9292 0.8776 2.0438

magic 19,020 10

0.8833 0.7036 0.6706 0.1000

0.8920 0.7049 0.6290 0.1440

0.8538 0.7016 0.7859 0.03603

page-blocks 5,473 10

0.9728 0.9190 0.9432 0.1000

0.9589 0.9190 0.9520 0.0546

0.9386 0.9190 0.9380 0.0090

parkinsons 195 22

0.9752 0.7510 0.7406 0.0455

0.9820 0.7231 0.7569 0.6016

0.9797 0.7347 0.7662 0.2194

pima-indians-diabetes 768 8

0.8835 0.6888 0.6637 0.1250

0.8837 0.6896 0.6480 0.2099

0.8807 0.6881 0.6660 0.0606

poker 25,010 10

0.6363 0.4978 0.5108 0.1000

0.6480 0.5039 0.4989 1.1555

0.6400 0.5007 0.5000 0.6451

radar-waveform 253,000 20

0.9976 0.9843 0.9263 0.0500

0.9982 0.9822 0.9787 0.2022

0.9977 0.9840 0.9540 0.0382

spambase 4,601 57

0.9497 0.7186 0.7620 0.0175

0.9639 0.7177 0.7077 0.1587

0.9533 0.7184 0.7424 0.0424

tae 151 5

0.8846 0.3681 0.5411 0.2000

0.8677 0.4297 0.4412 0.6721

0.8692 0.3587 0.5613 0.1062

49

Table 5.7 Continued

Data Sets Examples Features UB OCSVM SV-Means γ

tic-tac-toe 958 9

0.9991 0.6722 0.5056 0.0556

1 1 0.7508 4

1 1 0.7924 2.1649

wine 178 13

1 0.9316 0.9335 0.0769

1 0.9352 0.9185 0.5165

1 0.9329 0.9263 0.2329

yeast 1,484 8

0.7916 0.6878 0.6606 0.1250

0.7803 0.6876 0.6711 0.0831

0.7445 0.6875 0.6990 0.0251

zoo 101 16

1 0.9825 0.8921 0.0625

1 0.9890 0.9947 1.0783

1 0.9926 0.9935 0.5036

The results show that the SV-Means algorithm is a suitable replacement for the one-

class support vector machine for anomaly detection. One point of note is the results for the

tic-tac-toe data set. The SV-Means algorithm produces a low AUC score. This is a result

of the tic-tac-toe data set being deterministic, i.e., the values of the data are either 0 or 1.

The SV-Means algorithm is a density estimation technique and does not perform as well

with deterministic data in lower-dimensional space as it does with non-deterministic data.

Experiments were performed with dRF = 50, 000 random features and the AUC results for

the SV-Means algorithm subsequently raised to 0.94.

5.3.4 SV-Means vs. Density Estimation Algorithms

The performance of the SV-Means algorithm for density estimation is evaluated with νtmin =

0, νtmax = 1, and νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0] using the radar waveform data de-

scribed in Section 5.1.3. The accuracy of the model for likelihood prediction is verified by

generating new data consistent with the training data, but with different noise and phase

50

realizations. An example of the accuracy of the quantile bin counts are shown in Figure 5.3

where each bin contains the averaged counts of all 23 classes combined. The number of

training instances in each bin should correspond to α = 1 − ν. For example, for ν = 0.8

bin, 20% of the training data should be contained within the quantile boundary.

Another experiment (repeated from [13]) was performed using the 16 UCI data sets

described in Section 5.1.2. For each data set, 100 randomly selected points were chosen

from the class with the largest amount of points for training. The remaining points from that

class were used for testing. The SV-Means algorithm was compared to the q-OCSVM [13]

and I-OCSVM (independent OCSVM) estimating level sets at α1 = 0.05, . . . , α19 = 0.95

for 19 total quantiles. I-OCSVM is simply calculating an independent single OCSVM

boundary for each quantile. The accuracy of the level sets are determined by the coverage

ratio (CR) where CR = α′

α
; a perfect CR equals 1. The parameter α′ is the number of

testing points, and α is the number of expected testing points (αn) within the level set. In

Figure 5.4a, α′ is plotted against α averaged for all 16 data sets in a bar graph for each

technique at each of the 19 level sets. In Figure 5.4b, α is plotted against the coverage ratio

averaged over all 16 data sets. The SV-Means algorithm proves to be an accurate density

estimation technique outperforming the q-OCSVM and I-OCSVM algorithms in coverage

ratio for almost all level sets.

5.3.5 SV-Means vs. Open Set Algorithms

The open set algorithms mentioned in Section 4.3 (one-vs-Set Machine, W-SVM, PI-SVM,

POS-SVM) and the SV-Means algorithm are compared using the phase-coded radar wave-

form set for Section 5.1.3. In order to compare the algorithms in a reasonable amount of

time, the training data (with n = 11000 and Θ ∈ {[−12, 12]}) was split 50/50 for training

and testing with the comparison of open set algorithms relying on LIBSVM [84] to opti-

mize their SVM formulations. For each algorithm, a 5-fold cross-validation procedure was

performed to find the optimum parameter values of C and γ. The SV-Means algorithm

51

used the ν-parameters specified in Table 5.2. The algorithms were compared using varying

degrees of openness defined in (4.1). The first experiment, in Figure 5.5a, used the first 13

classes defined in Table 5.1 as known classes in training and testing with 3 folds to obtain

error bars. The varied openness levels are evaluated by adding subsets of the remaining 10

classes for testing. The second experiment in Figure 5.5b used the first 3 classes defined in

Table 5.1 as known classes and a subset of the remaining 20 classes for testing.

The algorithms are compared using F-measure, which was proposed in [6] as a good

statistic for comparing open set algorithm performance. F-measure is defined as

F-measure = 2× Precision× Recall
Precision + Recall

(5.2)

where Recall = TP
TP+FN

and Precision = TP
TP+FP

and TP , TN , FP , FN are defined as true

positive, true negative, false positive, and false negative, respectively. A rejected sample

that is from an unknown class is treated as a true negative, or if from a known class, as a

false negative.

The two experiments show that when the problem is more “closed”, the binary-SVM

based algorithms perform well, but as the problem becomes more “open”, the performance

of existing algorithms drop. In Figure 5.5a, the POS-SVM algorithm follows the one-vs-

All SVM performance curve. W-SVM and SV-Means, algorithms based on OCSVMs,

are shown to give the best performance via high F-measure. In Table 5.8, the algorithms

are timed on an HP (94.5 GB Intel(R) Xeon(R) CPU E5640@2.67GHz) computer with

MATLAB 2017a. However, the comparison of open set algorithms is acheived via LIB-

SVM which is written in C++, and SV-Means is purely in MATLAB. The timing includes

training every class, whereas the previous timing in Table 5.6 trained a single class for

comparison. It is shown that SV-Means is faster than W-SVM, PI-SVM, and one-vs-Set

Machine (even though SV-Means is written in MATLAB). SV-Means is also shown to be

faster than POS-SVM as the number of training examples and classes grow.

52

Table 5.8: Timing comparison of open set algorithms (in seconds)

of training
classes

SV-
Means

POS-
SVM

W-
SVM

PI-
SVM

One-vs-Set
Machine

3 6.57 1.34 66.63 25.93 17.18
13 29.30 57.33 269.23 223.13 125.47

5.4 SV-Means Level Set Clustering

An illustrative example is given for the SV-Means Level Set Clustering algorithm described

in Section 4.4 with two level sets. A 2-D data set is used to visualize the clustering process.

The data consists of three separate Gaussians for each of the three classes, with n = 1000

and d = 2 for each class in a matrix X (2× 3000).

Within SV-Means Level Set Clustering (Algorithm 2), the data X is first transformed

via random features to form Z (line 1). The SV-Means algorithm is performed on the

matrix Z with bmax = 10, mmax = 20, νtmin = 0, νtmax = 0.05, and νo = [0.3, 0] (line 2).

The vector νo defines the level sets and clustering is performed at each level set. In Figure

5.7a, the three Gaussian classes are illustrated with the boundary corresponding to level set

1 (νo1 = 0.3) shown in red. In Figure 5.7b, the minimum spanning tree is shown determined

by the level set 1 points in ambient space (line 2). Also pictured in this Figure are the three

longest edges, ej,u, in set Ej , and along each edge are the set of rmax = 4 points (red

squares) in set Aej,u . For each longest edge, each point in Aej,u is tested using the SV-

Means model corresponding to level set 1. If any of the points in Aej,u are outside of this

model, the edge is removed and a separate tree is formed (line 17). The upper right corner

Gaussian has a longest edge pictured, but it is not removed as the points along that edge

were all within the SV-Means model. In this example, two edges were removed forming

three separate trees. The points are associated via depth first search for each cluster. In

Figure 5.7c, the green lines show the true class label and the black line shows the SV-

Means Level Set Clustering label. In Figure 5.7d, the points are plotted by color to show

three distinct classes.

53

For level set 2 (νo2 = 0), the SV-Means boundary is shown in Figure 5.8a. The points

corresponding to level set 2 include almost all of the points in X . However, to reduce the

number of points used in the minimum spanning tree, only the points within the model and

not in level set 1, are used as shown in Figure 5.8b. The same procedure is followed as

when performing the level set 1 clustering. The final clusters for level set 1 are shown in

Figure 5.8d. In Figure 5.8c, the green line shows the true class, while the black line shows

the classes assigned by the SV-Means Level Set Clustering algorithm. At level set 2, only

two clusters are found as two of the classes are overlapping.

The SV-Means Level Set Clustering algorithm illustrative example visually demon-

strates how the algorithm works. The algorithm provides an informative way to cluster

data at different level sets which gives the number of clusters, kj , at each level set and

provides a way to separate overlapping clusters. The level set boundaries also provide in-

sight as they refer to probabilities rather than purely structure. The SV-Means Level Set

Clustering algorithm is used in the final end-to-end demonstration in the next Section.

5.5 End-to-End Demonstration

Finally, an end-to-end demonstration is performed showing the capability and flexibility of

the SV-Means algorithm. As in Section 5.4, which visually demonstrated the SV-Means

Level Set Clustering algorithm, the three Gaussian 2-D data set is used to illustrate the

end-to-end process of training, testing, clustering, and adding new classes to the library.

At each step, the SV-Means algorithm is used. After the visual end-to-end demonstration,

the radar waveform data set is used and only the final confusion matrices are shown for

comparison.

For the 2-D Gaussian data set, there are three experiments for comparison. The first

experiment provides a closed set example where the two upper right Gaussians (from the

three Gaussian 2-D data set) are used to train, and a new realization of these two classes

54

are used in the testing data (openness = 0). In Figure 5.9, the training data is shown in

the upper left corner in black and each class is provided with a model using SV-Means

with six hierarchical boundaries corresponding to νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0], as

shown in the bottom left figure. The testing data in blue is shown in the top middle figure

and the testing points that were rejected are shown in the top right figure by blue squares.

The confusion matrix on the bottom right shows the results from the closed set experiment

with an additional column, designated by R, for the rejected samples. The yellow boxes

around several parts of the overall figure signify the data that was rejected and that could

be passed on to clustering. In this case, clustering was not performed on the seven rejected

data points.

The second experiment uses the models from the two upper right Gaussians and adds

the bottom left Gaussian class as an unknown class into the testing data (openness = 0.1).

The first experiment’s diagram flow is used in the second experiment and is shown in Figure

5.10. The top middle figure shows the additional class added to the testing data in blue.

Using the models from the first experiment, the rejected data is pictured in the top right

figure by blue squares. In this experiment, the rejected data is passed onto the SV-Means

Level Set Clustering algorithm and is shown in the top left figure in Figure 5.11. The

SV-Means Level Set Clustering algorithm is performed with only one level set (SV-Means

with νo = 0.2) and only one cluster was found, shown with green points in the top middle

figure. The green points corresponding to the single cluster are then passed to the SV-

Means algorithm with νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0] to create a model for the class

and the six red boundaries are shown as well in the top middle figure. Finally, the new class

is added to the library, as shown in the bottom right figure.

The third experiment provides a best-case-scenario baseline where all three Gaussian

classes are known and their models are shown in the top left figure in Figure 5.12. The

best-case-scenario baseline models are compared to the models found from the second

experiment (two classes were known, one was discovered through clustering and added to

55

the library) and are shown in the bottom left figure. The testing data is shown in blue in

the top middle figure. The best-case-scenario confusion matrix is shown on the top right

and the second experiment confusion matrix is shown on the bottom right. The confusion

matrices show favorable results for adding a new class to the library using SV-Means for

training, clustering, and adding a new class to the library, even for overlapping clusters.

For the radar waveform data, only the final confusion matrices are shown in Figure

5.13 as the data is 20-dimensional. The first ten phase-coded radar waveforms are used

from Table 5.1. In the best-case-scenario experiment, all ten waveforms are known for

training. In the open set comparison experiment, the first seven waveform classes were

known in training and the remaining three classes were brought in at testing. The rejected

points were sent to the SV-Means Level Set Clustering algorithm where one level set was

used (SV-Means with νo = 0.2) and three clusters were found. The three clusters were

added to the library using SV-Means with νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0]. The

best-case-scenario confusion matrix is shown in Figure 5.13a and the open set comparison

experiment (seven known and three unknown classes) is shown in Figure 5.13b. The con-

fusion matrices are covered with yellow boxes highlighting the three classes to the library.

The results show that SV-Means is a powerful and flexible algorithm that is able to train,

cluster, and quickly add classes into to the library.

5.6 Chapter Summary

In this Chapter, several sets of experiments were performed to explore the capability and

flexibility of the novel SV-Means algorithm using several different data sets. The first set

of experimentation demonstrates the convergence properties of the SV-Means algorithm

and demonstrates quantile estimation. The next large set of experimentation compares the

SV-Means algorithm to the q-OCSVM algorithm modified to perform classification (pri-

mal and dual) and several applications: anomaly detection, density estimation, and open set

56

classification. The SV-Means Level Set Clustering algorithm is then visually demonstrated

to show the capability to determine clusters at different level sets and distinguish overlap-

ping clusters. Finally, an end-to-end demonstration is shown from training, to testing, to

clustering, to adding new classes to the library using the SV-Means algorithm at each step.

57

0 2 4 6 8 10 12 14 16 18 20

m (iteration number)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<
w

* ,w
b
>

(a)

0 5 10 15 20 25 30
x

1

2

4

6

8

10

12

14

16

18

20

22

x 2

(b)

Figure 5.1: SV-Means algorithm performed on the double moon 2-D data set where all
bmax = 10 initializations are shown in both subfigures. In 5.1a, all 10 initializations
converge within mmax = 20 inner loop iterations. In 5.1b, the figure illustrates all 10
boundaries corresponding to each initialization with νo = 0.05. This demonstrates the
non-convexity of the SV-Means algorithm and, therefore, the need for multiple random ini-
tializations. The best boundary, shown in red, confirms the criteria to pick a final w∗ and
ρ∗ (lines 18-19 in Algorithm 1).

58

-2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

12

Figure 5.2: Double Gaussian data set density estimation is performed by the SV-Means
algorithm where νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0].

0.8 0.6 0.4 0.2 0.05 0

quantile bin

0

2000

4000

6000

8000

10000

12000

av
er

ag
e

co
un

ts

Figure 5.3: Histogram of average counts for each quantile bin showing the model ac-
curacy for all 23 classes averaged. The lines show the bin counts corresponding to
νo = [0.8, 0.6, 0.4, 0.2, 0.05, 0].

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

,
'

SV-Means
I-OCSVM
q-OCSVM

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
,

0

0.2

0.4

0.6

0.8

1

co
ve

ra
ge

 r
at

io
 (

C
R

)

SV-Means
I-OCSVM
q-OCSVM

(b)

Figure 5.4: The SV-Means, q-OCSVM, and I-OCSVM algorithms were trained to estimate
α1 = 0.05, . . . , α19 = 0.95, or 19 total quantiles, for the distribution using the largest class
from each of the 15 UCI data sets desribed in Section 5.1.2. Figure 5.4a depicts α′ as a
function of α averaged over all data sets, and Figure 5.4b depicts the coverage ratio as a
function of α averaged over all data sets.

60

0 0.05 0.1 0.15
Openness

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-m

ea
su

re

SVMeans
POS-SVM
WSVM
PI-SVM
1vsSet
SVM 1vsAll

(a)

0 0.1 0.2 0.3 0.4 0.5
Openness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

SVMeans
POS-SVM
WSVM
PI-SVM
1vsSet
SVM 1vsAll

(b)

Figure 5.5: Comparison of multi-class open set classification algorithm F-measure scores
for 13 classes in 5.5a, and 3 classes in 5.5b over 3 folds. The openness levels are tested by
adding a subset of the remaining 10 and 20 classes, respectively.

61

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Openness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

SVMeans
POS-SVM
WSVM
PI-SVM
1vsSet
SVM 1vsAll

(a)

0 0.1 0.2 0.3 0.4 0.5
Openness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-m

ea
su

re

SVMeans
POS-SVM
WSVM
PI-SVM
1vsSet
SVM 1vsAll

(b)

Figure 5.6: Comparison of multi-class open set classification algorithm F-measure scores
for 15 classes in 5.6a, and 3 classes in 5.6b over 3 folds. The openness levels are tested by
adding a subset of the remaining 11 and 23 classes, respectively.

62

8 10 12 14 16 18 20 22
x

1

8

10

12

14

16

18

20

22

x
2

(a)

6 8 10 12 14 16 18 20 22 24
x

1

8

10

12

14

16

18

20

22

24

x
2

(b)

0 500 1000 1500 2000 2500
x in Level Set 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

k

(c)

8 10 12 14 16 18 20 22
x

1

8

10

12

14

16

18

20

22

x
2

(d)

Figure 5.7: SV-Means Level Set Clustering 2-D example - level set 1: In 5.7a, the boundary
corresponding to level set 1 (νo1 = 0.3) is shown in red. In 5.7b, the minimum spanning tree
is shown including 3 longest edges. Along the longest edges, testing points are shown as
4 red squares. In 5.7c, the correct cluster number for each point is shown in green and the
cluster label given to each point by the SV-Means Level Set Clustering algorithm is shown
in black. In 5.7d, the points are color-coded to which cluster they belong.

63

6 8 10 12 14 16 18 20 22 24
x

1

6

8

10

12

14

16

18

20

22

24

x
2

(a)

5 10 15 20 25
x

1

5

10

15

20

25

x
2

(b)

0 100 200 300 400 500 600 700
x in Level Set 2

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

k

(c)

6 8 10 12 14 16 18 20 22 24
x

1

6

8

10

12

14

16

18

20

22

24

x
2

(d)

Figure 5.8: SV-Means Level Set Clustering 2-D example - level set 2: In 5.7a, the boundary
corresponding to level set 2 (νo2 = 0) is shown in red. In 5.7b, the minimum spanning tree
is shown including 1 long edges. Along the longest edge, testing points are shown as 4
red squares. In 5.7c, the correct cluster number for each point is shown in green and the
cluster label given to each point by the SV-Means Level Set Clustering algorithm is shown
in black. In 5.7d, the points are color-coded to which cluster they belong. At level set 2,
the overlapping clusters are not distinguishable.

64

Fi
gu

re
5.

9:
E

nd
-t

o-
en

d
de

m
on

st
ra

tio
n:

2-
D

G
au

ss
ia

n
da

ta
se

t.
A

cl
os

ed
se

te
xa

m
pl

e
(o

pe
nn

es
s

=
0)

is
gi

ve
n

w
he

re
tw

o
cl

as
se

s
w

er
e

us
ed

to
tr

ai
n

m
od

el
s

us
in

g
SV

-M
ea

ns
.

A
di

ff
er

en
tr

ea
liz

at
io

n
of

th
e

tw
o

cl
as

se
s

w
er

e
us

ed
fo

r
te

st
in

g
an

d
th

e
re

je
ct

ed
po

in
ts

ar
e

hi
gh

lig
ht

ed
in

ye
llo

w
in

th
e

to
p

ri
gh

tfi
gu

re
.T

he
co

nf
us

io
n

m
at

ri
x

is
gi

ve
n

in
th

e
bo

tto
m

ri
gh

tc
or

ne
r.

65

Fi
gu

re
5.

10
:

E
nd

-t
o-

en
d

de
m

on
st

ra
tio

n:
2-

D
G

au
ss

ia
n

da
ta

se
t.

A
n

op
en

se
te

xa
m

pl
e

(o
pe

nn
es

s
=

0.
1)

is
gi

ve
n

w
he

re
th

e
sa

m
e

tw
o

cl
as

se
s/

m
od

el
s

ar
e

us
ed

as
in

Fi
gu

re
5.

9
ex

ce
pt

no
w

th
e

te
st

in
g

da
ta

in
cl

ud
es

a
ne

w
cl

as
s

(p
ic

ur
ed

in
bl

ue
in

th
e

to
p

m
id

dl
e

fig
ur

e)
.T

he
re

je
ct

ed
po

in
ts

ar
e

hi
gh

lig
ht

ed
in

ye
llo

w
in

th
e

to
p

ri
gh

tfi
gu

re
an

d
th

e
co

nf
us

io
n

m
at

ri
x

is
gi

ve
n

in
th

e
bo

tto
m

ri
gh

tc
or

ne
r.

T
he

re
je

ct
ed

po
in

ts
ar

e
pa

ss
ed

to
a

cl
us

te
ri

ng
al

go
ri

th
m

bl
oc

k
sh

ow
n

in
Fi

gu
re

5.
11

.

66

Fi
gu

re
5.

11
:E

nd
-t

o-
en

d
de

m
on

st
ra

tio
n:

2-
D

G
au

ss
ia

n
da

ta
se

t.
T

he
re

je
ct

ed
po

in
ts

fr
om

Fi
gu

re
5.

10
ar

e
se

nt
to

th
e

SV
-M

ea
ns

L
ev

el
Se

t
C

lu
st

er
in

g
al

go
ri

th
m

w
he

re
on

e
ne

w
cl

us
te

rw
as

de
te

rm
in

ed
(p

ic
tu

re
d

in
gr

ee
n

in
th

e
to

p
m

id
dl

e
fig

ur
e)

.T
he

ne
w

cl
us

te
ri

s
tr

ai
ne

d
as

a
ne

w
cl

as
s

us
in

g
th

e
SV

-M
ea

ns
al

go
ri

th
m

an
d

th
e

ne
w

cl
as

s
is

ad
de

d
to

th
e

lib
ra

ry
(p

ic
tu

re
d

in
th

e
bo

tto
m

ri
gh

tfi
gu

re
).

67

Fi
gu

re
5.

12
:

E
nd

-t
o-

en
d

de
m

on
st

ra
tio

n:
2-

D
G

au
ss

ia
n

da
ta

se
t.

T
he

pe
rf

or
m

an
ce

of
th

e
op

en
se

te
xp

er
im

en
tm

od
el

s
(t

w
o

kn
ow

n
an

d
on

e
di

sc
ov

er
ed

vi
a

cl
us

te
ri

ng
)f

ro
m

Fi
gu

re
5.

11
is

m
ea

su
re

d
by

co
m

pa
ri

ng
to

th
e

be
st

-c
as

e-
sc

en
ar

io
m

od
el

s
(a

ss
um

in
g

al
lt

hr
ee

cl
as

se
s

w
er

e
kn

ow
n

at
tr

ai
ni

ng
).

T
he

be
st

-c
as

e-
sc

en
ar

io
m

od
el

s
an

d
co

rr
es

po
nd

in
g

co
nf

us
io

n
m

at
ri

x
ar

e
sh

ow
n

al
on

g
th

e
to

p,
an

d
th

e
op

en
se

t
ex

pe
ri

m
en

tm
od

el
s

an
d

co
rr

es
po

nd
in

g
co

nf
us

io
n

m
at

ri
x

ar
e

sh
ow

n
al

on
g

th
e

bo
tto

m
.

68

(a)

(b)

Figure 5.13: End-to-end demonstration: phase-coded radar waveform data set. The perfor-
mance of the open set experiment models (seven known and three discovered via clustering)
from Figure 5.11 is measured by comparing to the best-case-scenario models (assuming all
ten classes were known at training). The best-case-scenario confusion matrix is shown in
Figure 5.13a and the open set experiment confusion matrix is shown in Figure 5.13b. The
R column represents the rejected class.

69

Chapter 6

Closing Remarks

In this dissertation, the SV-Means algorithm is developed and has been proven to be a

capable and flexible algorithm as shown in the extensive experimentation in the previous

Chapter. In this Chapter, a summary of contributions, expected impacts, and recommended

future research is discussed.

6.1 Summary of Contributions

This dissertation includes two overarching contributions: (1) the development of SV-Means

algorithm and (2) demonstration of the SV-Means algorithm applied to several different

applications. Within the SV-Means algorithm development, there are three main contribu-

tions: a generative Bayesian formulation, an accurate boundary definition, and fast training.

The SV-Means algorithm transforms a one-class support vector machine-based problem

from a traditionally discriminative algorithm into a generative algorithm by modeling each

class likelihood with multiple hierarchical boundaries accurately delineating probability

quantiles. The SV-Means algorithm provides an accurate boundary by estimating multiple

level sets near the extrema of the data. The SV-Means algorithm provides fast training by

solving the primal formulation using a non-convex, k-means inspired algorithm based on

stochastic gradient descent principles using random Fourier features to estimate the kernel.

70

The second overarching contribution is demonstration of the SV-Means algorithm ap-

plied to several different application areas. There are four contributions attributed to the

application areas explored with the SV-Means algorithm: anomaly detection, density esti-

mation, open set classification, and clustering. In anomaly detection, the accurate boundary

definition provided by SV-Means showed improved results in high dimensions. In density

estimation, the SV-Means algorithm provides a more accurate outer boundary compared

to the q-OCSVM which optimizes over equal level sets over the entire distribution. The

SV-Means algorithm also executes significantly faster as the number of training data points

and level sets increase. In open set classification, the SV-Means algorithm is the only algo-

rithm that uses OCSVMs exclusively as compared to algorithms that include binary SVMs

to distinguish between known classes. The SV-Means algorithm is a strong candidate for

open set classification as the problem becomes more open, and SV-Means runs significantly

faster than other open set algorithms. In clustering, a novel algorithm, SV-Means Level Set

Clustering, was developed using SV-Means to determine the number of clusters at different

level sets and to provide a way to distinguish between overlapping clusters.

The SV-Means algorithm has some additional desirable properties. Since each wave-

form class is trained separately, the addition of new waveforms to the library does not

require the retraining of the other waveform classes. The SV-Means classification algo-

rithm is an attractive adaptive classification framework for use with any feature extraction

approach including deep learning architectures.

6.2 Expected Impact

The SV-Means algorithm provides several advantages over a typical hyperplane OCSVM

(and q-OCSVM) that makes it a viable choice for anomaly detection, density estimation,

open set classification, and clustering. These advantages make it possible to use the SV-

means algorithm as the processing engine for an end-to-end adaptive classification system

71

in operational time frames as illustrated in Chapter 5.5. The simplicity and speed of the

algorithm allows new classes to be added to the library without retraining the entire library,

and these library additions can be made quickly for large data sets. These attributes will

have a significant impact on any area where the environment is constantly evolving and

the classes in the training set are only a small subset of the classes in the real world (e.g.,

waveform classification).

6.3 Future Research

Future work will pursue using deep learning architectures for adaptive waveform feature

design since it is believed that the SV-Means algorithm’s ability to work with large data

sets will be compatible with the large data sets used to train deep learning algorithms.

Also, research in deep learning networks, due to their very long training times, is continu-

ally improving stochastic gradient descent techniques and applying these techniques to the

SV-Means algorithm could provide an even faster algorithm. In addition, the SV-Means al-

gorithm has complete control over the number of support vectors and outliers as it is based

on the ν-OCSVM formulation. Fitting an EVT model to these boundary points, like the

W-SVM and PI-SVM open set algorithms, could provide even stronger results. Finally, the

SV-Means Level Set Clustering algorithm is a novel algorithm with promising results, but

portions of the algorithm could be further tested and optimized, in particular, the second

major step of the algorithm, i.e., cluster membership.

72

Bibliography

[1] G. Cohen, M. Hilario, and C. Pellegrini, One-Class Support Vector Machines

with a Conformal Kernel. A Case Study in Handling Class Imbalance. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 850–858. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-27868-9 93

[2] K. Noto, C. Brodley, and D. Slonim, “Frac: a feature-modeling approach

for semi-supervised and unsupervised anomaly detection,” Data Mining and

Knowledge Discovery, vol. 25, no. 1, pp. 109–133, Jul 2012. [Online]. Available:

https://doi.org/10.1007/s10618-011-0234-x

[3] J. Lunden and V. Koivunen, “Automatic radar waveform recognition,” Selected Top-

ics in Signal Processing, IEEE Journal of, vol. 1, no. 1, pp. 124–136, 2007.

[4] M. T. Mushtaq, F. A. Butt, and A. Malik, “An overview of spectrum sensing in

cognitive radar systems,” in 2014 IEEE Microwaves, Radar and Remote Sensing

Symposium (MRRS), Sept 2014, pp. 115–118.

[5] F. Gini, A. D. Maio, and L. Patton, Eds., Waveform Design and Diversity for Ad-

vanced Radar Systems, ser. Radar, Sonar & Navigation. Institution of Engi-

neering and Technology, 2012.

73

[6] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open

set recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 7, pp. 1757–1772, July 2013.

[7] W. Eskin, E.; Lee and S. S., “Mmodeli system call for intrusion detection using

dynamic window sizes,” in Proceedings of DARPA Information Survivability Con-

ference and Exposition (DISCEX), 2001.

[8] N. Wu and J. Zhang, “Factor analysis based anomaly detection,” in IEEE Systems,

Man and Cybernetics SocietyInformation Assurance Workshop, 2003., June 2003,

pp. 108–115.

[9] R. J. Bolton, D. J. Hand, and D. J. H, “Unsupervised profiling methods for fraud

detection,” in Proc. Credit Scoring and Credit Control VII, 2001, pp. 5–7.

[10] R. Brause, T. Langsdorf, and M. Hepp, “Neural data mining for credit card

fraud detection,” in Proceedings of the 11th IEEE International Conference

on Tools with Artificial Intelligence, ser. ICTAI ’99. Washington, DC,

USA: IEEE Computer Society, 1999, pp. 103–. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=850950.853684

[11] M. Davy and S. Godsill, “Detection of abrupt spectral changes using support vector

machines an application to audio signal segmentation,” in 2002 IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol. 2, May 2002, pp. II–

1313–II–1316.

[12] B. Scarth G.; McIntyre, M.; Wowk and R. Somorjai, “Detection of novelty in func-

tional images using fuzzy clustering,” in Proceedings of the 3rd Meeting of the In-

ternational Society for Magnetic Resonance in Medicine, 1995, p. 238.

74

[13] A. Glazer, M. Lindenbaum, and S. Markovitch, “q-ocsvm: A q-quantile estimator

for high-dimensional distributions,” in Advances in Neural Information Processing

Systems, 2013, pp. 503–511.

[14] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support vector clustering,”

Journal of Machine Learning Research, vol. 2, pp. 125–137, 2001.

[15] A. Vapnik, V.; Lerner, “Recognition of patterns with the help of generalized por-

traits,” Avtomat. i Telemath, vol. 24, no. 6, pp. 774–780, 1963.

[16] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[17] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, ser. COLT ’92. New York, NY, USA: ACM, 1992, pp. 144–152.

[Online]. Available: http://doi.acm.org/10.1145/130385.130401

[18] R. Khardon, “Deriving support vector machines: Optimizing functions under con-

strants,” Lecture Notes: Advanced Topics in Machine Learning, April 2008.

[19] D. M. J. Tax and R. P. W. Duin, “Support vector domain description,” Pattern Recog-

nition Letters, vol. 20, pp. 1191–1199, 1999.

[20] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Esti-

mating the support of a high-dimensional distribution,” Neural computation, vol. 13,

no. 7, pp. 1443–1471, 2001.

[21] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support

vector method for novelty detection,” in Proceedings of the 12th International Con-

ference on Neural Information Processing Systems, ser. NIPS’99. Cambridge, MA,

USA: MIT Press, 1999, pp. 582–588.

75

[22] A. M. Pavy and B. D. Rigling, “Phase modulated radar waveform classification using

quantile one-class svms,” in 2015 IEEE Radar Conference (RadarCon), May 2015,

pp. 0745–0750.

[23] Q. Liu, “Efficient radar emitters scheme recognition based on a novel svm algo-

rithm,” in Advanced Engineering Forum, vol. 4. Trans Tech Publ, 2012, pp. 232–

237.

[24] R. Chitta, R. Jin, and A. K. Jain, “Efficient kernel clustering using random fourier

features,” in Proceedings of the 2012 IEEE 12th International Conference on Data

Mining, ser. ICDM ’12. Washington, DC, USA: IEEE Computer Society, 2012,

pp. 161–170. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2012.61

[25] E. G. Bazavan, F. Li, and C. Sminchisescu, “Fourier kernel learning.” in ECCV (2),

ser. Lecture Notes in Computer Science, A. W. Fitzgibbon, S. Lazebnik, P. Perona,

Y. Sato, and C. Schmid, Eds., vol. 7573. Springer, 2012, pp. 459–473.

[26] R. Brault, F. d’Alché-Buc, and M. Heinonen, “Random fourier features for

operator-valued kernels,” CoRR, vol. abs/1605.02536, 2016. [Online]. Available:

http://arxiv.org/abs/1605.02536

[27] L. Deng, M. Hasegawa-Johnson, and X. He, “Random features for kernel deep

convex network.” IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), May 2013. [Online]. Available: https://www.microsoft.com/

en-us/research/publication/random-features-for-kernel-deep-convex-network/

[28] S. Erfani, M. Baktashmotlagh, S. Rajasegarar, S. Karunasekera, and C. Leckie,

“R1svm: a randomised nonlinear approach to large-scale anomaly detection,” in

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

76

[29] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of svms for very

large scale problems,” Neural Comput., vol. 14, no. 5, pp. 1105–1114, May 2002.

[Online]. Available: http://dx.doi.org/10.1162/089976602753633402

[30] I. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.

[31] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework

for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, p. 2319, 2000.

[32] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural

networks,” Science, vol. 313, no. 5786, pp. 504 – 507, 2006.

[33] J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods,” in Advances in Large Margin Classifiers. MIT

Press, 1999, pp. 61–74.

[34] O. Chapelle, “Training a support vector machine in the primal,” Neural computation,

vol. 19, no. 5, pp. 1155–1178, 2007.

[35] L. Wang and Y. Yang, “Training one-class support vector machines in the pri-

mal space,” in Electronic Computer Technology, 2009 International Conference on.

IEEE, 2009, pp. 157–160.

[36] A. Navia-Vazquez, F. Perez-Cruz, A. Artes-Rodriguez, and A. R. Figueiras-Vidal,

“Weighted least squares training of support vector classifiers leading to compact

and adaptive schemes,” IEEE Transactions on Neural Networks, vol. 12, no. 5, pp.

1047–1059, Sep 2001.

[37] V. Gomez-Verdejo, J. Arenas-Garcia, M. Lazaro-Gredilla, and . Navia-Vazquez,

“Adaptive one-class support vector machine,” IEEE Transactions on Signal Pro-

cessing, vol. 59, no. 6, pp. 2975–2981, June 2011.

77

[38] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with kernels,” IEEE

Transactions on Signal Processing, vol. 52, no. 8, pp. 2165–2176, Aug 2004.

[39] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal estimated

sub-gradient solver for svm,” Mathematical Programming, vol. 127, no. 1, pp. 3–30,

2011.

[40] A. Rahimi, B. Recht et al., “Random features for large-scale kernel machines.” in

NIPS, vol. 3, no. 4, 2007, p. 5.

[41] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: Replacing min-

imization with randomization in learning,” in Advances in Neural Information Pro-

cessing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. Cur-

ran Associates, Inc., 2009, pp. 1313–1320.

[42] D. J. Sutherland and J. G. Schneider, “On the error of random fourier features,”

CoRR, vol. abs/1506.02785, 2015.

[43] A. Thomas, V. Feuillard, and A. Gramfort, “Calibration of one-class svm for mv set

estimation,” in Data Science and Advanced Analytics (DSAA), 2015. 36678 2015.

IEEE International Conference on. IEEE, 2015, pp. 1–9.

[44] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

[45] C. Tang and C. Monteleoni, “Convergence rate of stochastic k-means,” in Proceed-

ings of the 20th International Conference on Artificial Intelligence and Statistics,

ser. Proceedings of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.

Fort Lauderdale, FL, USA: PMLR, 20–22 Apr 2017, pp. 1495–1503.

78

[46] L. Bottou, “On-line learning in neural networks,” D. Saad, Ed. New York, NY,

USA: Cambridge University Press, 1998, ch. On-line Learning and Stochastic Ap-

proximations, pp. 9–42.

[47] L. Bottou and Y. Bengio, “Convergence properties of the k-means algorithms,” in

Advances in Neural Information Processing Systems 7. MIT Press, 1995, pp. 585–

592.

[48] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data.” PloS one, vol. 11 4, p. e0152173, 2016.

[49] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009. [Online]. Available:

http://doi.acm.org/10.1145/1541880.1541882

[50] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying

density-based local outliers,” SIGMOD Rec., vol. 29, no. 2, pp. 93–104, May 2000.

[Online]. Available: http://doi.acm.org/10.1145/335191.335388

[51] J. Tang, Z. Chen, A. W.-C. Fu, and D. W.-L. Cheung, “Enhancing effectiveness of

outlier detections for low density patterns,” in Proceedings of the 6th Pacific-Asia

Conference on Advances in Knowledge Discovery and Data Mining, ser. PAKDD

’02. London, UK, UK: Springer-Verlag, 2002, pp. 535–548. [Online]. Available:

http://dl.acm.org/citation.cfm?id=646420.693665

[52] M. Wu and C. Jermaine, “Outlier detection by sampling with accuracy guarantees,”

in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’06. New York, NY, USA: ACM, 2006, pp.

767–772. [Online]. Available: http://doi.acm.org/10.1145/1150402.1150501

[53] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters a density-based algorithm for discovering clusters in large

79

spatial databases with noise,” in Proceedings of the Second International Conference

on Knowledge Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, pp.

226–231. [Online]. Available: http://dl.acm.org/citation.cfm?id=3001460.3001507

[54] T. Kohonen, M. R. Schroeder, and T. S. Huang, Eds., Self-Organizing Maps, 3rd ed.

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2001.

[55] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,” Pattern

Recognition Letters, vol. 24, no. 9, pp. 1641 – 1650, 2003. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167865503000035

[56] N. Ye and Q. Chen, “An anomaly detection technique based on a chi-square statistic

for detecting intrusions into information systems,” Quality and Reliability Engineer-

ing International, vol. 17, no. 2, pp. 105–112, 3 2001.

[57] P. Galeano, D. Pea, and R. S. Tsay, “Outlier detection in multivariate time series via

projection pursuit,” Universidad Carlos III de Madrid. Departamento de Estadstica,

DES - Working Papers. Statistics and Econometrics. WS, 2004. [Online]. Available:

https://EconPapers.repec.org/RePEc:cte:wsrepe:ws044211

[58] D. Agarwal, “Detecting anomalies in cross-classified streams: a bayesian approach,”

Knowledge and Information Systems, vol. 11, no. 1, pp. 29–44, Jan 2007. [Online].

Available: https://doi.org/10.1007/s10115-006-0036-4

[59] S. Ando, “Clustering needles in a haystack: An information theoretic analysis of

minority and outlier detection,” in Seventh IEEE International Conference on Data

Mining (ICDM 2007), Oct 2007, pp. 13–22.

[60] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in Proceedings of

the Ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ser. KDD ’03. New York, NY, USA: ACM, 2003, pp. 631–636.

[Online]. Available: http://doi.acm.org/10.1145/956750.956831

80

[61] S. Lin and D. E. Brown, An Outlier-based Data Association Method For Linking

Criminal Incidents, pp. 326–330. [Online]. Available: http://epubs.siam.org/doi/

abs/10.1137/1.9781611972733.39

[62] H. Dutta, C. Giannella, K. D. Borne, and H. Kargupta, “Distributed top-k

outlier detection from astronomy catalogs using the demac system.” in SDM.

SIAM, 2007, pp. 473–478. [Online]. Available: http://dblp.uni-trier.de/db/conf/

sdm/sdm2007.html#DuttaGBK07

[63] T. IDÉ and H. KASHIMA, “Eigenspace-based anomaly detection in computer

systems,” in Proceedings of the Tenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’04. New York, NY,

USA: ACM, 2004, pp. 440–449. [Online]. Available: http://doi.acm.org/10.1145/

1014052.1014102

[64] M. ling Shyu, S. ching Chen, K. Sarinnapakorn, and L. Chang, “A novel anomaly

detection scheme based on principal component classifier,” in in Proceedings of the

IEEE Foundations and New Directions of Data Mining Workshop, in conjunction

with the Third IEEE International Conference on Data Mining (ICDM03, 2003, pp.

172–179.

[65] S. Hawkins, H. He, G. J. Williams, and R. A. Baxter, “Outlier detection

using replicator neural networks,” in Proceedings of the 4th International

Conference on Data Warehousing and Knowledge Discovery, ser. DaWaK 2000.

London, UK, UK: Springer-Verlag, 2002, pp. 170–180. [Online]. Available:

http://dl.acm.org/citation.cfm?id=646111.679466

[66] D. Janakiram, V. A. Reddy, and A. V. U. P. Kumar, “Outlier detection in wireless

sensor networks using bayesian belief networks,” in 2006 1st International Confer-

ence on Communication Systems Software Middleware, 2006, pp. 1–6.

81

[67] G. Tandon and P. K. Chan, “Weighting versus pruning in rule validation for

detecting network and host anomalies,” in Proceedings of the 13th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ser. KDD

’07. New York, NY, USA: ACM, 2007, pp. 697–706. [Online]. Available:

http://doi.acm.org/10.1145/1281192.1281267

[68] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Up-

per Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[69] L. Bordes, C. Delmas, and P. Vandekerkhove, “Semiparametric estimation of a

two-component mixture model where one component is known,” Scandinavian

Journal of Statistics, vol. 33, no. 4, pp. 733–752, 2006. [Online]. Available:

http://dx.doi.org/10.1111/j.1467-9469.2006.00515.x

[70] “X. contributions to the mathematical theory of evolution.—ii. skew variation in

homogeneous material,” Philosophical Transactions of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, vol. 186, pp. 343–414, 1895.

[Online]. Available: http://rsta.royalsocietypublishing.org/content/186/343

[71] C. Pana, S. Severi, and G. T. F. de Abreu, “An adaptive approach to non-parametric

estimation of dynamic probability density functions,” in 2016 13th Workshop on

Positioning, Navigation and Communications (WPNC), Oct 2016, pp. 1–4.

[72] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”

Ann. Math. Statist., vol. 27, no. 3, pp. 832–837, 09 1956. [Online]. Available:

https://doi.org/10.1214/aoms/1177728190

[73] Y.-C. Chen, “A Tutorial on Kernel Density Estimation and Recent Advances,” ArXiv

e-prints, Apr. 2017.

[74] J. Weston, A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk, C. Watkins, and

R. Holloway, “Support vector density estimation,” 1999.

82

[75] V. Vapnik and S. Mukherjee, “Support vector method for multivariate density esti-

mation,” Advances in Neural Information Processing Systems, pp. 659–665, 2000.

[76] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi, “Approximating

multi-dimensional aggregate range queries over real attributes,” SIGMOD

Rec., vol. 29, no. 2, pp. 463–474, May 2000. [Online]. Available: http:

//doi.acm.org/10.1145/335191.335448

[77] D. W. Scott and S. R. Sain, “9 - multidimensional density estimation,” in Data

Mining and Data Visualization, ser. Handbook of Statistics, C. Rao, E. Wegman, and

J. Solka, Eds. Elsevier, 2005, vol. 24, no. Supplement C, pp. 229 – 261. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0169716104240093

[78] A. Glazer, M. Lindenbaum, and S. Markovitch, “Learning high-density regions for a

generalized kolmogorov-smirnov test in high-dimensional data,” in Proceedings of

The 26th Conference on Neural Information Processing Systems (NIPS-2012), Lake

Tahoe, Nevada, 2012. [Online]. Available: http://www.cs.technion.ac.il/∼shaulm/

papers/pdf/Glazer-Lindenbum-Markovitch-NIPS2012.pdf

[79] C. Park, J. Z. Huang, and Y. Ding, “A computable plug-in estimator of minimum

volume sets for novelty detection,” Operations Research, vol. 58, no. 5, pp.

1469–1480, 2010. [Online]. Available: https://EconPapers.repec.org/RePEc:inm:

oropre:v:58:y:2010:i:5:p:1469-1480

[80] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press,

2001.

[81] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recog-

nition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,

no. 11, pp. 2317–2324, Nov 2014.

83

[82] L. P. Jain, W. J. Scheirer, and T. E. Boult, Multi-class Open Set Recognition Using

Probability of Inclusion. Cham: Springer International Publishing, 2014, pp.

393–409. [Online]. Available: https://doi.org/10.1007/978-3-319-10578-9 26

[83] M. D. Scherreik and B. D. Rigling, “Open set recognition for automatic target clas-

sification with rejection,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 52, no. 2, pp. 632–642, April 2016.

[84] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011,

software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[85] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and Applications.

Imperial College Press, 2000. [Online]. Available: https://books.google.com/books?

id=b40P\ o3yXuUC

[86] W. Polonik, “Minimum volume sets and generalized quantile processes,” Stochastic

Processes and their Applications, vol. 69, no. 1, pp. 1 – 24, 1997. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0304414997000288

[87] R. Vert and J.-P. Vert, “Consistency and convergence rates of one-class svms and

related algorithms,” J. Mach. Learn. Res., vol. 7, pp. 817–854, Dec. 2006. [Online].

Available: http://dl.acm.org/citation.cfm?id=1248547.1248576

[88] A. Jepson and R. Mann, “Qualitative probabilities for image interpretation,” in Pro-

ceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2,

1999, pp. 1123–1130 vol.2.

[89] D. Mllner, “Modern hierarchical, agglomerative clustering algorithms,” CoRR, vol.

abs/1109.2378, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/

corr1109.html#abs-1109-2378

84

[90] A. Gordon, “A review of hierarchical classification,” vol. 150, pp. 119–137, 01 1987.

[91] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: An

overview, ii,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, August 2017, article ID: WIDM1219. [Online]. Available: http:

//eprints.hud.ac.uk/id/eprint/32552/

[92] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and

A. Y. Wu, “An efficient k-means clustering algorithm: analysis and implementation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp.

881–892, Jul 2002.

[93] H.-P. Kriegel, P. Krger, J. Sander, and A. Zimek, “Density-based clustering,” Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 3,

pp. 231–240, 2011. [Online]. Available: http://dx.doi.org/10.1002/widm.30

[94] V. Estivill-castro and I. Lee, “Amoeba: Hierarchical clustering based on spatial prox-

imity using delaunay diagram,” in in Proceedings of the 9th International Sympo-

sium on Spatial Data Handling, 2000, pp. 7–26.

[95] J. Yang, V. Estivill-Castro, and S. K. Chalup, “Support vector clustering through

proximity graph modelling,” in Neural Information Processing, 2002. ICONIP ’02.

Proceedings of the 9th International Conference on, vol. 2, Nov 2002, pp. 898–903

vol.2.

[96] V. Estivill-Castro, I. Lee, and A. T. Murray, Criteria on Proximity Graphs

for Boundary Extraction and Spatial Clustering. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 348–357. [Online]. Available: https://doi.org/10.1007/

3-540-45357-1 37

85

[97] J.-H. Chiang and P.-Y. Hao, “A new kernel-based fuzzy clustering approach: support

vector clustering with cell growing,” IEEE Transactions on Fuzzy Systems, vol. 11,

no. 4, pp. 518–527, Aug 2003.

[98] S.-H. Lee and K. M. Daniels, Cone Cluster Labeling for Support Vector Clustering,

2006, pp. 484–488. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.

9781611972764.45

[99] T. Ban and S. Abe, “Spatially chunking support vector clustering algorithm,”

in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat.

No.04CH37541), vol. 1, July 2004, p. 418.

[100] C. L. F. Z. W.J. Puma-Villanueva, G.B. Bezerra, “Improving support vector cluster-

ing with ensembles,” in Proc. Int’l Joint Conf. Neural Networks, 2005.

[101] T. Pham, T. Le, and H. Dang, “Scalable support vector clustering using budget,”

CoRR, vol. abs/1709.06444, 2017. [Online]. Available: http://arxiv.org/abs/1709.

06444

[102] O. Grygorash, Y. Zhou, and Z. Jorgensen, “Minimum spanning tree based clustering

algorithms,” in 2006 18th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’06), Nov 2006, pp. 73–81.

[103] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM JOURNAL ON

COMPUTING, vol. 1, no. 2, 1972.

[104] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell Sys-

tem Technical Journal, vol. 36, no. 6, pp. 1389–1401, Nov 1957.

[105] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle

River, NJ, USA: Prentice Hall PTR, 1998.

86

[106] M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:

http://archive.ics.uci.edu/ml

[107] B. D. Rigling and C. Roush, “Acf-based classification of phase modulated wave-

forms,” in 2010 IEEE Radar Conference, May 2010, pp. 287–291.

[108] B. Caputo, K. Sim, F. Furesjo, and A. Smola, “Appearance-based object recognition

using svms: Which kernel should i use?” in Proc of NIPS workshop on Statistical

methods for computational experiments in visual processing and computer vision,

Whistler, vol. 2002, 2002.

87

	SV-Means: A Fast One-Class Support Vector Machine-Based Level Set Estimator
	Repository Citation

	tmp.1540384927.pdf.Z47nv

