John-Stromberg Inequality for Certain Anisotropic BMO Spaces

Yingfeng Hu
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Physical Sciences and Mathematics Commons

Repository Citation
https://corescholar.libraries.wright.edu/etd_all/1947

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
John-Strömberg
Inequality for Certain Anisotropic BMO Spaces

A thesis submitted in partial fulfillment of
the requirements for the degree of
Master of Science

By
Yingfeng Hu
B.S., Ohio State University, 2014

2018
Wright State University
I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Yingfeng Hu ENTITLED The John-Strömberg inequality for certain anisotropic BMO Spaces BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science

Qingbo Huang, PHD
Thesis advisor

Ayse Sahin, PHD
Department Chair

Committee on Final Examination

Qingbo Huang, Ph.D.

Qun Li, Ph.D.

Steen Pedersen, Ph.D.

Barry Milligan, Ph.D.
Interim Dean of the Graduate School
ABSTRACT

In this paper, we establish the John-Strömberg inequality in certain anisotropic BMO spaces and apply the inequality to anisotropic Hölder continuous function spaces. To achieve this goal, we define the median value, BMO space and sharp maximal function first. Secondly we constructed a family of continuously expanding rectangles and give a Calderón–Zygmund type decomposition. By using these tools, we establish the John-Strömberg inequality. Finally, an application to anisotropic Hölder continuous function spaces is presented.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Preliminaries</td>
<td>2</td>
</tr>
<tr>
<td>III. The John-Strömberg Inequality</td>
<td>5</td>
</tr>
<tr>
<td>IV. Applications</td>
<td>12</td>
</tr>
<tr>
<td>Reference</td>
<td>15</td>
</tr>
</tbody>
</table>
The John-Strömberg Inequality for Certain Anisotropic BMO Spaces

Yingfeng Hu

May 24, 2018

§1 Introduction

The space $BMO(\mathbb{R}^n)$ consisting of all real-valued functions of bounded mean oscillation was introduced in [4]. Subsequently, $BMO(\mathbb{R}^n)$ space plays an important role in the study of harmonic analysis, function spaces, and partial differential equations. By [4], a function $f \in L^1_{loc}(\mathbb{R}^n)$ is in $BMO(\mathbb{R}^n)$ if
\[
\sup_Q \int_Q |f - f_Q| \, dx < \infty
\]
where the supremum is taken over all Euclidean cubes with edges parallel to coordinate axes and $f_Q = \frac{1}{|Q|} \int_Q f \, dx$ denotes the integral average of f over Q.

A deep characterization for measurable functions to be in $BMO(\mathbb{R}^n)$ using median values was given in [3] and [5]. Specifically, if there exist $0 < s < \frac{1}{2}$ and $M > 0$ such that for any cube Q
\[
\{|x \in Q : |f - m_f(Q)| > M\} \leq s |Q|
\]
then $f \in BMO(\mathbb{R}^n)$. Here $|Q|$ denotes the Lebesgue measure of Q and $m_f(Q)$ is the median value of f over Q (see Def 2.2). This result was extended in [6] from the setting of the Lebesgue measure and Euclidean cubes to general setting of doubling measures and metric balls but the result in [6] requires s to be sufficiently small. This John-Strömberg inequality was recently used in the study of the regularity of solutions of fully nonlinear elliptic equations (see [1]).

Our main purpose here is to extend the results in [3],[5] to the setting of the Lebesgue measure and certain families of special rectangles with $0 < s < \frac{1}{2}$.
The advantage of our result (Theorem 3.7 below) is that s needs not to be sufficiently small. Instead, it could be any positive number less than $\frac{1}{2}$. Some applications to anisotropic H"older continuous function spaces are also presented in §4.

§2 Preliminaries

Let $0 < s < \frac{1}{2}$ and $k = (k_1, k_2, ..., k_n) \in \mathbb{N}^n$. Denote $|k| = \sum_1^n k_i$.

Throughout this paper, all functions considered are Lebesgue measurable, real-valued, and finite almost everywhere.

Definition 2.1. For $r > 0$, $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, the k-rectangle with center x and edgelengths $r^{k_1}, r^{k_2}, ..., r^{k_n}$ is given by

$$R_r(x) = \{y \in \mathbb{R}^n : |y_i - x_i| \leq \frac{r^{k_i}}{2}, 1 \leq i \leq n\}.$$

The collection

$$\mathcal{R} = \{R_r(x) : x \in \mathbb{R}^n, r > 0\}$$

will represent the family of all such k-rectangles.

Definition 2.2. Let $f(x)$ be a measurable function in a bounded domain D. A median value $m_f(D)$ of f over D is defined by:

$$|\{x \in D : f(x) > m_f(D)\}| \leq \frac{1}{2}|D|$$

and

$$|\{x \in D : f(x) < m_f(D)\}| \leq \frac{1}{2}|D|.$$
choose

$$\inf \{N : \left| \{x \in D : f(x) > N\} \right| \leq \frac{1}{2} |D| \}$$

as the median value.

Proposition 2.4. For any real number C, $m_{f-C}(D) = m_f(D) - C$.

Lemma 2.5. For $f \in L^p(D)$ ($p > 0$)

$$\inf_{C \in \mathbb{R}} \int_D |f - C|^p dx \approx \int_D |f - m_f(D)|^p dx,$$

where $A \approx B$ means A/B is bounded between two positive constants.

Proof. Without loss of generality, assume that $m_f(D) = 0$. If $C > 0$, then $|f - C| = C - f \geq C$ on $\{f \leq 0\}$. Thus

$$\int_D |f - C|^p dx \geq \int_{\{f \leq 0\}} |f - C|^p dx \geq C^p \{f \leq 0\}.$$

Noting $m_f(D) = 0$, one obtains

$$|\{f \leq 0\}| = |D| - |\{f > 0\}| \geq |D| - \frac{1}{2} |D| = \frac{1}{2} |D|.$$

We concludes that

$$\int_D |f - C|^p dx \geq C^p |\{f \leq 0\}| \geq C^p \frac{1}{2} |D|.$$

Thus

$$2 \int_D |f - C|^p dx \geq C^p |D|.$$

Similarly, when $C \leq 0$, one can show

$$2 \int_D |f - C|^p dx \geq |C|^p |D|.$$
where C_p depends only on p. □

Proposition 2.6. Let $R \in \mathcal{R}$ and $C \in \mathbb{R}$. Then
\[
\inf \{ \alpha : \frac{|\{ x \in R : |f - C| > \alpha \}|}{|R|} \leq s \} \geq \frac{1}{2} \inf \{ \alpha : \frac{|\{ x \in R : |f - m_f(R)| > \alpha \}|}{|R|} \leq s \}.
\]

Proof. One can assume $m_f(R) = 0$. Let $\alpha > 0$ be such that
\[
|\{ x \in R : |f(x) - C| > \alpha \}| \leq s|R|.
\] (2.1)

First show
\[
0 = m_f(R) \in [C - \alpha, C + \alpha].
\]

If $m_f(R) > C + \alpha$, by definition of $m_f(R)$
\[
|\{ x \in R : f < m_f(R) \}| \leq \frac{1}{2}|R|.
\]

On the other hand
\[
|\{ x \in R : f < m_f(R) \}| \geq |\{ x \in R : f \leq C + \alpha \}|
= |R| - |\{ x \in R : f > C + \alpha \}|
\geq (1 - s)|R| > \frac{1}{2}|R|.
\]

That is a contradiction. Similarly, we can show $m_f(R) \geq C - \alpha$. Therefore
\[
C - \alpha \leq 0 \leq C + \alpha \quad \text{and} \quad |C| \leq \alpha.
\]

This results in
\[
\{ x \in R : |f(x)| > 2\alpha \} \subset \{ x \in R : |f(x) - C| > \alpha \}.
\] (2.2)

By (2.1) and (2.2), one concludes
\[
\frac{|\{ x \in R : |f - m_f(R)| > 2\alpha \}|}{|R|} \leq s.
\]
Therefore
\[\alpha = \frac{1}{2}(2\alpha) \geq \frac{1}{2} \inf \{ \beta : \frac{|\{ x \in R : |f - m_f(R)| > \beta \}|}{|R|} \leq s \}. \]

The following proposition follows from the Chebyshev inequality.

Proposition 2.7. If \(M^p \geq \int_R |f - C|^p dx \), then for any \(\lambda > MS^{-\frac{1}{p}} \)
\[|\{ x \in R : |f - C| > \lambda \}| \leq s|R|. \]

We now give the definition of \(BMO_{s,\mathcal{R}}(R_0) \) (anisotropic BMO space) and the sharp maximal function.

Definition 2.8. Let \(R_0 \in \mathcal{R} \) and \(0 < s < \frac{1}{2} \), a measurable function \(f \) is in \(BMO_{s,\mathcal{R}}(R_0) \) if there exists \(M \geq 0 \) such that
\[|\{ x \in R : |f - m_f(R)| > M \}| \leq s|R| \]
for any \(R = R_r(x_0) \subset R_0 \).

Definition 2.9. For \(f \in BMO_{s,\mathcal{R}}(R_0) \), define
\[M_{s,\mathcal{R},R_0}^# f(x) = \sup_{R_0 \supseteq R \ni x} \inf \{ \lambda : \frac{|\{ y \in R : |f - m_f(R)| > \lambda \}|}{|R|} \leq s \}, \]
where the supremum is taken over all \(k \)-rectangles \(R \subset R_0 \) containing \(x \).

By definition, we have
\[|\{ x \in R : |f(x) - m_f(R)| > \inf_{y \in R} M_{s,\mathcal{R},R_0}^# f(y) \}| \leq s|R|, \text{ for } R \subset R_0. \quad (2.3) \]

\section{3 The John-Strömberg inequality}

In this section, our goal is to establish the John-Strömberg inequality (Theorem 3.7) for \(BMO_{s,\mathcal{R}}(R_0) \). To achieve, we need to construct a family of
continuously expanding special k-rectangles, use $M^\#_{s,R,R_0} f$ to estimate median values, and give a Calderón–Zygmund type decomposition in terms of median values and $M^\#_{s,R,R_0} f$. Then we use these tools to prove Theorem 3.7.

Lemma 3.1. Let $R = R_r(x_0) \subset R_0$ and $R_\epsilon \subset R_0$ be k-subrectangles such that

$$R_{(1-\epsilon)r}(x_0) \subset R_\epsilon \subset R_{(1+\epsilon)r}(x_0).$$

Then there exists ϵ_0 dependent only on $s, |k|$ such that if $\epsilon \leq \epsilon_0$, then

$$|m_f(R) - m_f(R_\epsilon)| \leq \inf_{y \in R} M^\#_{s,R,R_0} f(y).$$

Proof. By (2.3) and $s < \frac{1}{2}$, we have for $\epsilon \leq \epsilon_0$

$$|\{x \in R_\epsilon : |f(x) - m_f(R)| > \inf_{y \in R} M^\#_{s,R,R_0} f(y)\}|$$

$$\leq \left|\{x \in R_\epsilon \cap R : |f(x) - m_f(R)| > \inf_{y \in R} M^\#_{s,R,R_0} f(y)\}\right| + |R_\epsilon - R|$$

$$\leq s|R| + [(1 + \epsilon)^{|k|} - 1]|R|$$

$$\leq \frac{s + (1 + \epsilon)^{|k|} - 1}{(1 - \epsilon)^{|k|}} |R_\epsilon| < \frac{1}{2} |R_\epsilon|.$$
Obviously \(R_{\theta} \) has edgelengths \(r_{\theta}^{k_1}, \ldots, r_{\theta}^{k_n} \) and the Lebesgue measure
\[
|R_{\theta}| = r_{\theta}^{\lfloor k \rfloor}.
\]

Since \(a_i \geq 0 \), it is easy to see \(R_{\theta_1} \subset R_{\theta_2} \) for \(0 \leq \theta_1 < \theta_2 \leq 1 \). So \(\{R_{\theta}\} \) continuously expands from \(R_0 \) to \(R_1 \). \(\Box \)

Lemma 3.3. Let \(R_1 \) and \(R_2 \) be in \(\mathcal{R} \) such that \(R_1 \subset R_2 \subset R_0 \) and \(|R_2| \leq 2^j|R_1| \). Then
\[
|m_f(R_1) - m_f(R_2)| \leq 6j \inf_{y \in R_1} M^\#_{s, R, R_0, f}(y).
\]

Proof. It suffice to prove the lemma for \(j = 1 \). Let
\[
A = \inf_{y \in R_1} M^\#_{s, R, R_0, f}(y).
\]

Proceed with a contradiction. Assume
\[
|m_f(R_1) - m_f(R_2)| > 6A. \tag{3.1}
\]

By Lemma 3.2, let \(\{R_t\}_{t \in [1,2]} \) be a family of \(k \)-rectangles continuously expanding from \(R_1 \) to \(R_2 \). Set
\[
t^* = \sup\{t : 1 \leq t \leq 2, |m_f(R_t) - m_f(R_1)| \leq 3A\}.
\]

By Lemma 3.1 and (3.1), \(t^* \in (1, 2) \). We now claim
\[
2A < |m_f(R_{t^*}) - m_f(R_1)| \leq 4A. \tag{3.2}
\]

Let \(t_l \to (t^*)^- \) such that \(|m_f(R_{t_l}) - m_f(R_1)| \leq 3A \). On one hand, for large \(l \),
\[
|m_f(R_{t^*}) - m_f(R_1)| \leq |m_f(R_{t^*}) - m_f(R_{t_l})| + |m_f(R_{t_l}) - m_f(R_1)|
\]
\[
\leq A + 3A = 4A.
\]

On the other hand, if \(|m_f(R_{t^*}) - m_f(R_1)| \leq 2A \), then
\[
|m_f(R_{t^*+\epsilon}) - m_f(R_1)| \leq |m_f(R_{t^*+\epsilon}) - m_f(R_{t^*})| + |m_f(R_{t^*}) - m_f(R_1)|
\]
\[
\leq A + 2A = 3A,
\]

7
which contradicts with the definition of t^\ast. By assumption (3.1) and claim (3.2),
\[|m_f(R_{t^\ast}) - m_f(R_1)| > 2A \]
and
\[|m_f(R_{t^\ast}) - m_f(R_2)| \geq |m_f(R_1) - m_f(R_2)| - |m_f(R_{t^\ast}) - m_f(R_1)| \]
\[> 6A - 4A = 2A. \]

We conclude that
\[\{ y \in R_1 : |f(y) - m_f(R_1)| \leq A \}, \]
\[\{ y \in R_2 : |f(y) - m_f(R_2)| \leq A \}, \]
\[\{ y \in R_{t^\ast} : |f(y) - m_f(R_{t^\ast})| \leq A \} \]
are pairwise disjoint. Therefore
\[|\{ y \in R_2 : |f(y) - m_f(R_2)| > A \}| \]
\[\geq |\{ y \in R_1 : |f(y) - m_f(R_1)| \leq A \}| + |\{ y \in R_{t^\ast} : |f(y) - m_f(R_{t^\ast})| \leq A \}|. \]

It implies from (2.3)
\[s|R_2| \geq (1 - s)|R_1| + (1 - s)|R_{t^\ast}| \]
\[\geq 2(1 - s)|R_1|, \]
which contradicts with $s < \frac{1}{2}$. \hfill \Box

Lemma 3.4. (Calderón–Zygmund decomposition) Let $R \subset R_0$ be a k-rectangle, $\xi \geq 0$, and $\beta > 0$ such that $|m_f(R)| \leq \xi$, and $\{ y \in R : M_{\mu, R, R_0}^\# f(y) \leq \beta \} \neq \emptyset$. Then there exists a collection $\{ R_i \}$ of nonoverlapping k-subrectangles of R such that
\[R_i \notin \{ y \in R : M_{\mu, R, R_0}^\# f(y) > \beta \} \]
and
\[\xi < |m_f(R_i)| \leq \xi + 6|k|\beta. \]

In addition,
\[|f(x)| \leq \xi, \text{ a.e. } x \in R \setminus \left[\{ y \in R : M_{\mu, R, R_0}^\# f(y) > \beta \} \cup \bigcup_i R_i \right]. \]
Proof. Divide R into $2^{[k]}k$-subrectangles $\{R_i\}$ each with edgelengths $(\frac{\xi}{2})^{k_1}, \ldots, (\frac{\xi}{2})^{k_n}$. Each R_i must satisfy one of the following

(i) $R_i \subset \{ y \in R : M_{s,R,R_0}^\# f(y) > \beta \}$.

(ii) $R_i \not\subset \{ y \in R : M_{s,R,R_0}^\# f(y) > \beta \}$ and $|m_f(R_i)| > \xi$.

(iii) $R_i \not\subset \{ y \in R : M_{s,R,R_0}^\# f(y) > \beta \}$ and $|m_f(R_i)| \leq \xi$.

For case (i), we do nothing further with R_i. For case (ii), by Lemma 3.3, $\xi < |m_f(R_i)| \leq |m_f(R)| + |m_f(R) - m_f(R_i)| \leq \xi + 6|k|\beta$.

For case (iii), we divide R_i and repeat this process again. Therefore, we obtain a collection $\{R_i\}$. Finally, by the Lemma 3.5 below, $|f(x)| \leq \xi$ a.e. in R.

Lemma 3.5. Let E be a measurable set. Assume that for any $x \in E$, there exist k-rectangles $\{R_{r_j} = R_{r_j}(x_j)\}$ such that $x \in R_{r_j}, r_j \to 0$ and $|m_f(R_{r_j})| \leq \xi$. Then $|f(x)| \leq \xi$ a.e. in E.

Proof. It suffices to prove

$$|E_\epsilon| = \left| \{ x \in E : f(x) > \xi + \epsilon \} \right| = 0, \ \forall \epsilon > 0. \quad (3.3)$$

Assume (3.3) does not hold. By the Lebesgue differentiation theorem (see [2])

$$\frac{|R_{r_j} \cap \{ y \in E : f(y) > \xi + \epsilon \}|}{|R_{r_j}|} \to 1, \quad x \in E_\epsilon - \mathcal{N},$$

where \mathcal{N} is a null set. Therefore, for any $x \in E_\epsilon - \mathcal{N}$, and associated $R_{r_j} \ni x$ with $r_j \to 0$ and $|m_f(R_{r_j})| \leq \xi$, we have

$$\left| \{ y \in R_{r_j} : f(y) > \xi + \epsilon \} \right| > \frac{|R_{r_j}|}{2}, \quad \text{as } j \to \infty$$

It implies

$$m_f(R_{r_j}) > \xi + \epsilon.$$

It contradicts with $|m_f(R_{r_j})| \leq \xi$. Hence $E_\epsilon - \mathcal{N} = \emptyset$ and $|E_\epsilon| = 0$. \qed

We next give distribution function estimates.
Lemma 3.6. Let $R \subset R_0$ be a k-rectangle. Then there exists constants $C_1, C_2 > 0$ dependent only on s and $|k|$ such that for $\alpha, \gamma > 0$,

$$|\{x \in R : |f(x) - m_f(R)| > \alpha\}| \leq C_1 e^{-C_2 \frac{\gamma}{2}} |R| + |\{x \in R : M_{s,R,R_0}^# f(x) > \gamma\}|.$$

Proof. One can assume $\{x \in R : M_{s,R,R_0}^# f(x) \leq \gamma\} \neq \emptyset$. Applying Lemma 3.4 to $f - m_f(R)$ and R with $\beta = \gamma$, and $\xi = 2\gamma$. We obtain nonoverlapping k-subrectangles $\{R_j\}$ such that

$$R_j \not\subset \{y \in R : M_{s,R,R_0}^# f(y) > \gamma\},$$

$$2\gamma < |m_f(R_j) - m_f(R)| \leq (2 + 6|k|)\gamma,$$

$$|f(x) - m_f(R)| \leq 2\gamma, \text{ a.e } x \in R \setminus \left(\bigcup_j R_j \cup \{y \in R : M_{s,R,R_0}^# f(y) > \gamma\} \right).$$

It implies for $\alpha > (2 + 6|k|)\gamma$ except a null set

$$\{y \in R : |f(y) - m_f(R)| > \alpha\}$$

$$\subset \bigcup_j \{y \in R_j : |f(y) - m_f(R_j)| > \alpha\} \cup \{y \in R : M_{s,R,R_0}^# f(y) > \gamma\}$$

$$\subset \bigcup_j \{y \in R_j : |f(y) - m_f(R_j)| > \alpha - (2 + 6|k|)\gamma\}$$

$$\cup \{y \in R : M_{s,R,R_0}^# f(y) > \gamma\}.$$

We now estimate $\sum_j |R_j|$. Since $|m_f(R_j) - m_f(R)| > 2\gamma$,

$$\{x \in R : |f(x) - m_f(R)| \leq \gamma\} \cap \{x \in R_j : |f(x) - m_f(R_j)| \leq \gamma\} = \emptyset.$$

Therefore

$$\bigcup_j \{x \in R_j : |f(x) - m_f(R_j)| \leq \gamma\} \subset \{x \in R : |f(x) - m_f(R)| > \gamma\}.$$

By (2.3), it results in

$$\sum_j (1 - s)|R_j| \leq s|R|$$

and

$$\sum_j |R_j| \leq \frac{s}{1 - s}|R|.$$
For $\alpha > 2(2 + 6|k|)\gamma$, relabel R_j as R_{j_1} and repeat this procedure with R_{j_1}. Then we can obtain nonoverlapping k-rectangles $\{R_{j_1, j_2}\}$ such that

$$\{x \in R_{j_1} : |f(x) - m_f(R_{j_1})| > \alpha - (2 + 6|k|)\gamma\} \subset \bigcup_{j_2} \{x \in R_{j_1, j_2} : |f(x) - m_f(R_{j_1, j_2})| > \alpha - 2(2 + 6|k|)\gamma\}$$

$$\bigcup \{y \in R : M_{s, R, R_0}^# f(y) > \gamma\}$$

and

$$\sum_{j_2} |R_{j_1, j_2}| \leq \frac{s}{1 - s} |R_{j_1}|.$$ \hspace{1cm} (3.4)

By repeating this procedure l times, we proceed to obtain for $\alpha > l(2 + 6|k|)\gamma$

$$\{x \in R : |f(x) - m_f(R)| > \alpha\} \subset \bigcup_{j_1 \ldots j_l} \{x \in R_{j_1 \ldots j_l} : |f(x) - m_f(R_{j_1 \ldots j_l})| > \alpha - l(2 + 6|k|)\gamma\}$$

$$\bigcup \{x \in R : M_{s, R, R_0}^# f(y) > \gamma\}$$

and

$$\sum_{j_1 \ldots j_l} |R_{j_1 \ldots j_l}| \leq \left(\frac{s}{1 - s}\right)^l |R|.$$ \hspace{1cm} (3.4)

If $\alpha > (2 + 6|k|)\gamma$, there exists $l \geq 1$ such that $l(2 + 6|k|)\gamma < \alpha \leq (l + 1)(2 + 6|k|)\gamma$. Therefore by (3.4),

$$|\{x \in R : |f(x) - m_f(R)| > \alpha\}| \leq \left(\frac{s}{1 - s}\right)^l |R| + |\{x \in R : M_{s, R, R_0}^# f(y) > \gamma\}| \leq C_1 e^{-C_2 \frac{s}{1-s}} |R| + |\{x \in R : M_{s, R, R_0}^# f(x) > \gamma\}|.$$

Lemma 3.6 is proved. \hfill \square

The following John-Strömberg inequality is the main result in this paper.

Theorem 3.7. If $f \in BMO_{s, R}(R_0)$ with $M_{s, R, R_0}^# f \leq M$, then there exist constants C_3 and C_4 dependent only on s and $|k|$ such that

$$\int_{R_0} e^{C_3 \frac{|f - m_f(R_0)|}{M}} dx \leq C_4.$$ \hspace{1cm} 11
Proof. Chosse $C_3 < C_2$ where C_2 is the constant in Lemma 3.6. By the Fubini theorem and Lemma 3.6 with $\gamma = M$, we have

$$\int_{R_0} e^{C_3 \frac{|f - m_f(R_0)|}{M}} dx - 1 = \int_{R_0} dx \int_0^\infty \frac{|f - m_f(R_0)|}{M} C_3 e^{C_3 \lambda} d\lambda = C_3 \int_0^\infty \frac{e^{C_3 \lambda}}{M} \chi\{|\frac{|f - m_f(R_0)|}{M} > \lambda\} dx = C_3 \int_0^\infty \frac{e^{C_3 \lambda}}{M} \chi\{|x \in R_0 : \frac{|f - m_f(R_0)|}{M} > \lambda\} dx \leq C_3 \int_0^\infty \frac{e^{C_3 \lambda}}{M} e^{-C_2 \lambda} |R_0| d\lambda = C_4,$$

where χ_E denotes the characteristic function of E. The proof is completed. \Box

§4 Applications

We apply Theorem 3.7 to give some characterizations of anisotropic Hölder continuous functions.

Definition 4.1. for $x = (x_1, ... x_n), y = (y_1, ... y_n) \in \mathbb{R}^n$, define

$$d(x, y) = \max_{1 \leq i \leq n} (2|x_i - y_i|)^\delta.$$

Note $(a + b)^\delta \leq a^\delta + b^\delta$ for $a, b \geq 0$, $0 < \delta \leq 1$. It is easy to verify $d(x, y)$ is a distance in \mathbb{R}^n. Moreover, $R_r(x_0) = \overline{B}_d(x_0, r)$ is the close ball centered at x_0 with radius r with respect to the distance d.

Theorem 4.2. Let f be a measurable function on R_0. Assume there exist $M > 0$ and $0 < \alpha \leq 1$ such that for any k-rectangle $R_r = R_r(z) \subset R_0$

$$\{|x \in R_r : |f - m_f(R_r)| > Mr^\alpha\} \leq s|R_r|.$$

Then $f \in C^\alpha_d(R_0)$. More precisely

$$|f(x) - f(y)| \leq CMd^\alpha(x, y), \quad \forall x, y \in R_0.$$

12
Proof. Let \(R_{r_1} = R_{r_1}(z_1) \subset R_0 \) be a \(k \)-rectangle. To apply the John-Strömberg inequality to \(R_{r_1} \), we note that

\[
M^\#_{s,R,R_{r_1}} f(x) = \sup_{x \in R \subset R_{r_1}} \inf \{ \lambda : | \{ y \in R : | f - m_f(R) | > \lambda \} | \leq s | R | \} \leq Mr_1^\alpha.
\]

Therefore by Theorem 3.7

\[
\int_{R_{r_1}} e^{\frac{|f - m_f(R_{r_1})|}{Mr_1^\alpha}} dx \leq C_4.
\]

Since \(x \leq e^x \) for all \(x > 0 \), it yields

\[
\int_{R_{r_1}} | f - f_{R_r} | dx \leq C_5 Mr_1^\alpha.
\]

Next for \(R_r \subset R_0 \) and \(R_2 \) (a dyadic sub \(k \)-rectangle of \(R_r \)),

\[
| f_r - f_{R_2} | \leq \int_{R_2} | f - f_0 | dx \leq \frac{|R_r|}{|R_2|} \int_{R_r} | f - f_{R_r} | dx \leq 2^{k\alpha} C_5 Mr_1^\alpha.
\]

Similarly

\[
| f_{R_r(x_0)} - f_{R_2(x_0)} | \leq 2^{k\alpha} C_5 Mr_1^\alpha \text{ for } R_r(x_0) \subset R_0.
\]

Let \(R' \subset \subset R_0 \). For suitable small \(r \) and \(l > m \geq 1 \),

\[
| f_{R_r(x)} - f_{R_2(x)} | \leq \sum_{j=m}^{l-1} 2^{k\alpha} C_5 M(r2^{-j})^\alpha \leq CM(r2^{-m})^\alpha. \quad (4.1)
\]

So \(\{ f_{R_r(x)} \} \) is uniformly convergent. By the Lebesgue differentiation theorem, \(f(x) \) is continuous in \(R_0 \).

For \(x \in R_r \), consider dyadic \(k \)-subrectangles \(\{ R_{r_2^{-i}} \} \) such that \(x \in R_{r_2^{-i}} \), for any \(i \). Similar to (4.1), we have

\[
| f_{r_2^{-i}} - f_{R_{r_2^{-i}}} | \leq CM(r2^{-i})^\alpha \text{ for } l > i \geq 0.
\]

Choosing \(i = 0 \) and letting \(l \to \infty \), we obtain

\[
| f_{R_r} - f(x) | \leq CMr^\alpha, \quad \forall x \in R_r.
\]
It implies that

\[|f(x) - f(y)| \leq 2CMr^\alpha \text{ for } x, y \in R_r. \quad (4.2) \]

Finally, given \(x, y \in R_0 \), set \(r = \max_{1 \leq i \leq n} |y_i - x_i|^{\frac{1}{2}} \). Construct a \(k \)-rectangle \(R_r \) satisfying \(x, y \in R_r \subset R_0 \) as follows. Since \(|x_i - y_i| \leq r^k \) by the definition of \(r \), one can find \([a_i, b_i]\) such that \(x_i, y_i \in [a_i, b_i] \) and \(b_i - a_i = r^k \). Let \(R_r = \prod_{i=1}^n [a_i, b_i] \). Obviously, \(x, y \in R_r \subset R_0 \). Therefore, from (4.2), \(|f(x) - f(y)| \leq 2CMr^\alpha \leq 2CMd^\alpha(x, y) \).

\[\square \]

As an application of Theorem 4.2, we are ready to give the following characterization of parabolic Hölder continuous functions.

Consider the parabolic cylinders

\[P_0 = \{(x, t) \in \mathbb{R}^{n+1} : |t - t_0| \leq \frac{r_0^2}{2}, |x_i - x_0| \leq \frac{1}{2}r_0, 1 \leq i \leq n\} \]

and

\[P_r(x_1, t_1) = Q_r(x_1) \times [t_1 - \frac{r^2}{2}, t_1 + \frac{r^2}{2}], \]

where \(Q_r(x_1) \) is the Euclidean cube centered at \(x_1 \) with edgelength \(r \).

We have the following.

Corollary 4.3. Let \(f \) be a measurable function. Assume there exist \(M > 0 \) and \(0 < \alpha \leq 1 \) such that

\[|\{x \in P_r : |f - m_f(P_r)| > Mr^\alpha\}| \leq s|P_r| \]

for all \(P_r = P_r(x_1, t_1) \subset P_0 \). Then \(f \in C^{\alpha, \frac{\alpha}{2}}(P_0) \) and

\[|f(x, t) - f(y, \tau)| \leq CM(|x - y| + |t - \tau|^{\frac{\alpha}{2}})^\alpha, \text{ for } (x, t), (y, \tau) \in P_0. \]
References

