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Abstract 

Lee, Jeremy J.  M.S.R.C.E. , Department of Mechanical and Materials Engineering, Wright 
State University, 2018. “Fabrication and Characterizations of LAGP/PEO Composite 
Electrolytes for All Solid-State Lithium-Ion Batteries” 
 

With the rise of electric vehicles and increasing dependence on mobile 

electronics, the demands for lithium-ion batteries have followed in tandem for their 

high energy and power densities. However, traditional lithium-ion batteries consisting of 

liquid electrolytes have limited operating temperatures and are susceptible to ignition 

and subsequent fires. Recently, battery research has diverged into solid state chemistry 

to address the aforementioned issues. In this research, we systematically investigate a 

series of ceramic/polymer lithium-ion conducting composite electrolytes, i.e. 

Li1.4Al0.4Ge1.6(PO4)3 /lithiated polyethylene oxide (LAGP/PEO). Lithiated PEO was 

prepared with two different lithium salts, LiBF4 and LITFSI. The impacts of the LAGP on 

the electrical, thermal, and mechanical properties of the two lithiated PEO systems are 

assessed. When LAGP is homogenously distributed in PEO-LiTFSI films, ionic 

conductivities and thermal properties remain relatively uninhibited; the elastic modulus 

and ultimate strength increased up to 450% and 200%, respectively. When LAGP was 

added to PEO-LiBF4 films, it increased the elastic strength nearly 200% without 

compromising the ultimate strength and thermal properties, but at the sacrifice of ionic 
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conductivity. The ceramic/polymeric electrolytes have potential applications to flexible 

all solid state lithium-ion batteries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

v 
 

Table of Contents 

1 Introduction ........................................................................................................................... 1 

1.1 Operating Principle of Lithium Ion Battery ........................................................ 2 

1.2 Cathode Materials ............................................................................................... 4 

1.3 Anode Materials .................................................................................................. 7 

1.4 Limitations of Electrode Materials ...................................................................... 9 

1.5 Electrolytes in Lithium Ion Batteries ................................................................... 9 

1.5.1 Liquid Electrolytes ...................................................................................... 10 

1.5.2 Challenges That Liquid Electrolyte Faces in Li-ion Batteries .................... 13 

1.5.3 Polymer Electrolytes .................................................................................. 14 

1.5.4 Ceramic Electrolytes ................................................................................... 18 

1.5.5 Ceramic Composite Electrolytes ................................................................ 20 

1.6 Summary ............................................................................................................ 23 

1.7 Outline of this Thesis Research ......................................................................... 23 

2 Synthesis and Characterization of LAGP Powders ........................................................ 25 

2.1  Synthesis Process ............................................................................................... 25 

2.2 Structural Characteristics of LAGP .................................................................... 26 



  

vi 
 

2.3 Ionic Conduction Characteristics of the LAGP .................................................. 28 

2.4 Summary ............................................................................................................ 35 

3 Fabrication and Characterizations of LAGP/PEO/Li-salt  Composite Electrolyte 

Membranes .................................................................................................................................. 36 

3.1 LAGP/PEO/LiBF4 Composite Film Compositions .............................................. 36 

3.2 LAGP/PEO/LiTFSI Composite Film Compositions ............................................. 37 

3.3  Fabrication of LAGP/PEO/Li-salt Composite Electrolyte Membranes ............. 38 

3.4  Structural Characterization of the Composite Films ........................................ 40 

3.5  Thermal Characterizations of the Composite Films ......................................... 42 

3.6  Surface Morphological Imaging of the Composite Films ................................. 48 

3.7  Summary ............................................................................................................ 50 

4 Ionic Conduction of the Composite Films ....................................................................... 51 

4.1  EIS Results Using Stainless Steel Electrodes ..................................................... 51 

4.2  EIS Results Using Lithium Electrodes ................................................................ 55 

4.3  Ionic Conductivity Characteristics of the Composite Films .............................. 62 

4.3.1  Lithiated Polymer Ionic Conductivity ........................................................ 62 

4.3.2  With Addition of LAGP ............................................................................... 66 



  

vii 
 

4.4 Summary ............................................................................................................ 70 

5  Mechanical Characterization of the Composite Films .................................................. 72 

5.1 Experimental Aspects for Mechanical Testing ................................................. 73 

5.2 Stress-Strain Behavior of Pure PEO films .......................................................... 76 

5.3 Mechanical Characteristics of LAGP/PEO/LiBF4 Composite Films .................. 77 

5.4 Mechanical Characteristics of LAGP/PEO/LiTFSI Composite Films .................. 82 

5.5  Morphological Evolution of the Composite Films Upon Stretching ................ 83 

5.6 Accuracy of Equipment Used in Mechanical Testing ....................................... 88 

5.7 Processing Factors Affecting the Mechanical Properties ................................. 90 

5.7.1  Surface Morphology ................................................................................... 90 

5.7.2  Differences Between Front and Back of Films .......................................... 91 

5.7.3 Uncommon large ceramic particles ........................................................... 94 

5.7.4  Internal Ceramic Particle Size and Distribution ........................................ 94 

5.8  General Discussion ............................................................................................ 99 

5.9  Summary ............................................................................................................ 99 

6  Conclusion .......................................................................................................................... 101 

 

 



  

viii 
 

List of Figures 

Figure 1: A schematic of a lithium-ion battery made up of carbon anode and LiCoO2 

cathode [4] .......................................................................................................................... 3 

Figure 2: Illustration of crystal structure  (a )Layer-structured LiCoO2, (b) Spinel-

structured LiMn2O4, (c) Olivine-structured LiFePO4, (d) Tavorite Structure LiFeSO4F [1]. .. 7 

Figure 3: XRD spectra of LAGP synthesized in different laboratories (a) Li1.4Al0.4Ge1.6(PO4)3 

synthesized in our lab; (b) sintered at 1450oC and annealed at 650oC Li1.4Al0.4Ge1.6(PO4)3 

[90]; (c) Li1.5Al0.5Ge1.6(PO4)3 calcined at 700oC and sintered at 900oC [92] ....................... 27 

Figure 4: Cross-Sectional SEM Images of LAGP Pellets Calcined (a) at different 

temperatures for 6 hours; (b) at 850o Celsius for different times [93] ............................. 29 

Figure 5: A silver coated pellet with two copper electrodes for electrochemical 

impedance measurement. ................................................................................................ 30 

Figure 6: Electrochemical impedance spectra (Nyquist plots) of (a) sintered LAGP pellet at 

105o C. The inset shows the Randles equivalent circuit used to derive the resistance of 

LAGP electrolyte for conductivity calculation. .................................................................. 32 

Figure 7: Arrhenius plot, logarithm conductivity vs. reciprocal of temperature, of sintered 

LAGP pellet ........................................................................................................................ 33 

Figure 8: Impedance spectra of  (a) LATGP, (b) LAGP, and (c) LATTP obtained using two 

lithium electrodes at 20o Celsius[101] .............................................................................. 35 



  

ix 
 

Figure 9: Kapton Bruker Film Holder used for XRD measurement of the composite 

membrane ......................................................................................................................... 41 

Figure 10: XRD patterns of the  LAGP/PEO/LiTFSI series in comparison with LAGP 

powders and PEO. ............................................................................................................. 42 

Figure 11: DSC profiles obtained from (a) LAGP/PEO/LiBF4; (b) LAGP/PEO LiTFSI 

Composite Films ................................................................................................................ 43 

Figure 12: Selection of the onsite melting temperature for analysis (a) in LAGP/PEO/LiBF4 

composite system; (b) in LAGP/PEO/LiTFSI composite system ........................................ 45 

Figure 13: Melting temperature and onsite melting temperature as a function of LAGP 

content in (a) LAGP/PEO/LiBF4 series; (b) in LAGP/PEO/LiTFSI series. ............................ 47 

Figure 14: Top-view SEM images  showing the surface morphologies and LAGP 

distribution in the LiBF4 film series (a) PEO; (b) LAGP20; (c) LAGP30; (d) LAGP40; (e) 

LAGP50; (f) LAGP60 ........................................................................................................... 49 

Figure 15: Nyquist impedance plot of LAGP20/LiBF4 Composite obtained at (a)  25o 

Celsius (b) 80o Celsius using two stainless steel electrodes ............................................. 53 

Figure 16: Nyquist Plot of LAGP30/LiBF4 Composite Electrolytes of two different 

thickness, 127 microns and 415 microns, using stainless steel electrodes ...................... 54 

Figure 17: Arrhenius conductivity plot of LAGP/PEO/LiBF4 samples obtained using 

stainless steel. ................................................................................................................... 55 

Figure 18: A Schematic of Coin Cell Assembly For Electrochemical Characterization ..... 56 



  

x 
 

Figure 19: EIS of the LAGP20/LiBF4 film obtained at 35oC using an AC voltage of 100 mV 

and DC voltages ranging from 0 to 750 mV. ..................................................................... 57 

Figure 20: EIS of the LAGP20/LiBF4 film obtained  from 55o to 80o Celsius with no DC 

polarization ....................................................................................................................... 58 

Figure 21: EIS spectra of LAGP20/LiBF4 film at 80oC at the 2nd, 3rd, and 4th thermal cycles.

........................................................................................................................................... 59 

Figure 22: EIS spectra of LAGP20/LiBF4 film at 80 oC as a function of time ..................... 60 

Figure 23: EIS spectra of LAGP20/LiBF4 film at 45 oC at the 2nd, 3rd, and 4th thermal cycles.

........................................................................................................................................... 61 

Figure 24: Arrhenius Conductivity Plots of (a) PEO/LiBF4 (8:1) film; (b) PEO/LiTFSI (20:1) 

film; (c) PEO/LiBF4 (4.5:1) [109]; and (d) PEO/LiTFSI (20:1) film [108] ............................. 62 

Figure 25:Arrhenius Conductivity Plot Summary of (a) LAGP/LiBF4; (b) LAGP/LiTFSI PEO-

based Composite Films ..................................................................................................... 67 

Figure 26: An Engineering Drawing and Specs of ASTM Standard Used .......................... 74 

Figure 27: LAGP50/LiTFSI Composite Tensile Sample Punched From a D638V Die ......... 74 

Figure 28: Mitutoyo 293-185 micrometer ........................................................................ 75 

Figure 29: (a) the extensometer used to stretching LAGP/PEO/Li-salt Composite Film; (b) 

The LabVIEW GUI Used to Control The Tensiometer and Record Data ........................... 75 

Figure 30: Stress vs Strain Plot of 400,000 Molecular Weight PEO .................................. 76 



  

xi 
 

Figure 31: The stress-strain plots obtained from PEO/LiBF4 series with LAGP weight 

percent from 0% to 60%. (a) LAGP0, (b) LAGP20, (c) LAGP30, (d) LAGP40, (e) LAGP50, 

and (f) LAGP60. ................................................................................................................. 78 

Figure 32: Mechanical properties of the composite films as a function of LAGP weight 

percent in the LiBF4 series. (a) average Elastic modulus; (b) average ultimate strength; (c) 

statistic failure strain (the straight line is the instrumental limit) .................................... 81 

Figure 33:  The stress-strain plots obtained from PEO/LiTFSI series with LAGP weight 

percent from 0% to 60%. (a) LAGP0, (b) LAGP20, (c) LAGP50, and (d) LAGP60. .............. 83 

Figure 34: SEM images of PEO (left) and LAGP30/PEO/LiBF4. (a) PEO unstretched; (b) 

LAGP30 unstretched; (c) PEO stretched, top view; (d)  LAGP30 stretched, top view; (e) 

PEO stretched, side view after FIB cutting; (f) LAGO 30 stretched, top view with 

micropore .......................................................................................................................... 84 

Figure 35: Top-view SEM images of stretched LAGP0/PEO/LiBF4. (a) silver streak at the 

necking area; (b) micropore at the necking area; (c) increased micropore in the center 

area. .................................................................................................................................. 85 

Figure 36: Cross-section SEM images of LiBF4 series before (left) and after (right) tensile 

test  (a, b) LAGP20; (c, d) LAGP 30; (e, f) LAGP 60 tensile test ......................................... 87 

Figure 37: SEM image of the back side of a  LAGP20/PEOLiBF4 Film ............................... 90 

Figure 38: To-view SEM images of there exist spherulite structure in some specimens (a) 

LiBF4/PEO film;  (b) LAGP40/PEO/LiBF4 film; (c) LAGP60/PEO/LiBF4 Film........................ 92 



  

xii 
 

Figure 39: Top-view SEM images showing the morpholigical difference between the top 

side (left) and bottome side (right) of the LiBF4 series composite films ; (a, b) PEO; (c,d) 

LAGP20; (e,f) LAGP40 ........................................................................................................ 93 

Figure 40: A side-view SEM image showing an uncommon LAGP agglomerate in an area 

in the LAGP60/PEO/LiBF4 Film .......................................................................................... 94 

Figure 41: Stress-strain plots of LAGP50/PEO/LiTFSI films obtained from three different 

batch (followed same fabrication processing) ................................................................. 96 

Figure 42: Side—view SEM images of LAGP50/PEO/LiTFSI films before (left) and after 

(right) tensile stretching cut with the help of FIB. (a, b) batch1; (c, d) batch 3 ............... 97 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

xiii 
 

List of Tables 

Table 1: Ionic conductivities of 1 Molar Solution Salt in PC:DME .................................... 13 

Table 2: Ionic conductivities of inert fillers in composite electrolytes ............................. 21 

Table 3: Ionic conductivities of active fillers in composite electrolytes ........................... 22 

Table 4: Ionic conductivities and activation energy values of LAGP reported in 

literatures. ......................................................................................................................... 34 

Table 5: The amount of each component used to fabricate the LAGP/PEO/LiBF4 series 37 

Table 6: The amount of each component used to fabricate the LAGP/PEO/LiTFSI series 38 

 

 

 

 

 

 

 

 

 

 



  

xiv 
 

Acknowledgements 

I would like to thank all the people who helped me throughout my time spent 

towards completing my thesis at Wright State University. I’d like to thank my advisor, 

Dr. Hong Huang for her subject matter expertise, her help doing the FIB/SEM work, and 

lastly, for helping me throughout the manuscript writing. I would like to thank Dr. 

Michael Rottmayer for the opportunity to work on this project and providing guidance 

in this project. I would like to thank Dr. Thomas Howell for the hours he spent coaching 

me through the thesis project and providing mentorship. I would like to also thank all 

the other staff at Wright Patterson Air Force Base who spent the resources and time to 

aid me in my research: Dr. Padmakar Kichambare and Mr. Tom Jenkins for their lab 

assistance, and Dr. Bang Tsao for assisting me in equipment acquisitions. Lastly, I would 

like to thank my parents for their love and patience throughout this endeavor and their 

continued support for which I would have never been able to succeed.  

 



1 
 

1 Introduction 

As fossil fuels begin to deplete and the cost of extraction becomes less 

economically feasible, it is of increasing interest to migrate towards renewable energy 

sources. Renewable energy sources like wind, solar, and hydrogen are promising 

technologies to replace hydrocarbon fuels because their perpetual life cycles and their 

operating costs are independent of global market forces. However, a current limitation 

for widespread use of renewable energies is the ability to store it efficiently. Common 

commercial methods to store energy are electrochemical devices like batteries. 

There are two classes of batteries, primary and secondary. Primary batteries are 

often used in one-off applications such as medical devices. Secondary batteries are a 

class of batteries we often refer to as rechargeable batteries. The most commonly 

utilized secondary battery are lithium-ion batteries.  

What makes lithium ion attractive as a charge carrier and hence lithium-ion 

batteries is due to a number of reasons, giving it wide market potential ranging from 

consumer electronics to electric vehicles [1]. Lithium possesses a high theoretical energy 

density, large reduction potential, and is one of the lightest elements. In addition to the 

exceptional material properties of lithium, it is believed that there are largely untapped 

reservoirs of lithium sitting in the earth’s crust. In fact, if world economies had
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an optimistic annual GDP growth rate of 3%, it is  believed that total accumulated 

demand for lithium in 2100 will top out at around 20-30 megatons[2]. When exploiting 

lithium resources it is generally agreed upon that we would be within our carrying 

capacity with proper recycling and mining. The projected world supply of lithium is as 

much as 40 megatons, sufficient to put an estimated 12 billion electric vehicles on the 

road [3].  

1.1 Operating Principle of Lithium Ion Battery 

A traditional lithium ion battery is composed of four components: a cathode, 

anode, separator, and an electrolyte. The cathode material is typically a lithium 

transition metal oxide and the anode is a carbon-based material. The electrolyte is a 

lithium-ion conductor but electron insulator, which can be liquid, polymer or solid. 

Under some laboratory circumstance, a liquid electrolyte alone would be enough to 

prevent electrical shorting. In practical battery setting made up of liquid electrolyte, it is 

often necessary to utilize a separator. A separator functions as a permeable membrane 

of electrolyte, but as a physical barrier between the electrodes. 

In principle, the cathode and anode in lithium-ion batteries undergo redox 

reactions when a load is applied (discharging) or electricity is supplied externally to the 

battery (charging). A schematic can be seen in Figure 1. When a battery is being 

charged, the cathode is oxidized, i.e. valence electrons from the transition metal leave 

to the external circuit while lithium ions pass through the electrolyte into the anode. 

Specifically, as charge carriers exit the system, the lithium ions de-intercalate from the 
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cathode structure, diffuse inside the electrolyte, recombine with the free electrons at 

the anode interface, and intercalate into the anode structure. During discharge, the 

system operates in reverse, where when a load is applied, electrons leave the anode, 

lithium de-intercalates accordingly, and both components recombine inside the 

cathode.  

 

Figure 1: A schematic of a lithium-ion battery made up of carbon anode and LiCoO2 cathode [4] 

The reactions of the exemplar lithium-ion cell presented in Figure 1 redox reactions 

proceed in the following manner :  

Cathode: 𝐿𝑖𝐶𝑜𝑂2 ⇌ 𝐿𝑖(1−𝑥) 𝐶𝑜𝑂2 + 𝑥𝐿𝑖+ +  𝑥𝑒 – 

Anode: 𝐿𝑖𝑥𝐶6 ⇌ 𝑥𝐿𝑖+ + 𝐶6  +  𝑥𝑒 – 
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Net Reaction:  𝐿𝑖𝐶𝑜𝑂2 + 𝐶 ⇌ 𝐿𝑖(1−𝑥) 𝐶𝑜𝑂2 + 𝐿𝑖𝑥𝐶6 

1.2 Cathode Materials 

There are a variety of requirements for cathodes in lithium-ion batteries. The  

structure should offer a high specific capacity, high volumetric capacity, good capacity 

retention or coulombic efficiency, a high potential, and small volumetric changes upon 

lithium insertion/removal. Typically, cathodes are lithium transition metal oxides with a 

general chemical formula of LixMyXz where the M is a transition metal species and X is an 

anionic species.  

The theoretical specific energy capacity of an electrode can be calculated using a 

modified form of Faraday’s Law presented in the following equation[5, p. 429]: 

𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝑛𝐹

3.6∗𝑀𝑤𝑒𝑖𝑔ℎ𝑡
 [

𝑚𝐴ℎ

𝑔𝑟𝑎𝑚
]  

The variables Q, n, F, and Mweight correspond to the theoretical specific energy capacity, 

the number of electrons carried per ion, Faraday’s constant in Joules, and the molecular 

weight of electrode material, respectively.  

There have been many advances in lithium-ion battery cathode chemistry. The  

most notable contributions have been made by John Goodenough who developed the 

first commercially viable chemistry, lithium cobalt oxide(LiCoO2) in the 1980s[6]. While 

LiCoO2 has a high operating voltage and large theoretical specific energy capacity of 274 

mAh/g assuming all lithium could be extracted from the structure. Practically, only half 

of lithium can be extracted. With its large and non-linear volumetric expansion, if more 
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than half of the lithium was extracted, LiCoO2 irreversibly changes from a hexagonal 

structure to a monoclinic structure, which can affect its cycling performance[7]. In 

addition to mechanical breakdown of the cathode, LiCoO2 begins to release oxygen 

exothermically when operating above 250o Celsius, which can result in thermal 

runaway, cell expansion, and eventual fires. Also problematic, while LiCoO2 has a 

starting discharge potential of 4 Volts, it’s discharge plateau changes drastically with its 

state of charge (SOC), which means it requires additional circuitry like a buck-converter 

to deliver constant power. Technical issues aside, the cost of cobalt processing and 

limited supply could make it economically infeasible to manufacture LiCoO2 in the 

future[8].  

As a result of the performance, safety issues, and the supply bottleneck of 

LiCoO2, other cathode materials have been subsequently conceived, such as LiNiO2, 

LiMn2O4, and LiFePO4 to name a few. The aforementioned chemistries all have different 

dopants and crystal structures which can affect their discharge characteristics[1]. A few 

example cathode unit cells can be seen in Figure 2.  

The layer-structured LiNiO2 has a high energy density, large theoretical specific 

energy capacity, is cheaper than LiCoO2. But LiNiO2 is more thermally unstable than 

LiCoO2[9]. In addition, LiNiO2 cathodes have an issue with Ni2+ substituting with lithium 

sites during the de-intercalation process, effectively blocking lithium diffusion and 

inhibit performance [10].  
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Non-layered cathode structures such as olivine, spinel, and tavorite have very 

stable 3D lattice structures and as a result, have very low volumetric expansion during 

the intercalation/de-intercalation process. As a result of their small volume changes, 

cathodes such as LiFePO4 and LiMn2O4 with their olivine and spinel structures, have flat 

discharge plateaus [11], [12]. LiFePO4 is very environmentally friendly, has high cycle 

life, and has very little exothermic release during decomposition. LiMn2O4 has a high 

operating voltage, very little exothermic release during decomposition, and its less 

expensive to manufacture than LiCoO2. While many advanced cathode materials have 

been proposed, there are many caveats with each cathode material. For instance, 

LiFePO4 has a relatively low energy density[13], [14], while LiMn2O4 can undergo several 

phase changes during cycling, it has low temperature stability, and has a low energy 

density like LiFePO4[13], [15].  As with any material, the cathode used will depend on 

the applications’ requirements. 
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Figure 2: Illustration of crystal structure  (a )Layer-structured LiCoO2, (b) Spinel-structured LiMn2O4, (c) Olivine-

structured LiFePO4, (d) Tavorite Structure LiFeSO4F [1]. 

1.3 Anode Materials 

 The most typical intercalation anode utilized in industry and research is graphite 

based materials. Graphitic carbon has high electrical conductivity, is abundant, has low 

volumetric expansion during intercalation/de-intercalation, and has a low redox 

potential[16]–[18]. Additionally, graphite has a high theoretical energy density of 372 

mAh/g, which exceeds most typical cathodes’ gravimetric energy density.  
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Since the utilization of carbon, other anode materials have been studied such as 

Li4Ti5O12, silicon, germanium, and tin. Li4Ti5O12 is often referred to as a zero strain 

electrode because of its low volumetric change of 0.02% during lithium insertion and 

removal. This allows the material to be charged several thousand times without any 

mechanical degradation[19]–[22]. In addition to excellent cycle life, Li4Ti5O12 has a 

potential above 1 Volt which enables it to avoid the drastic capacity fade most lithium-

ion batteries experience from solid electrolyte interphase(SEI) formation[23, pp. 93–

166]. The disadvantages of using Li4Ti5O12 as an anode, is that it has a low energy density 

and because it possesses a large potential, it reduces the max operating voltage of a 

lithium-ion battery.  

Elements like silicon, germanium, and tin are often referred to as alloying 

electrodes because they tend to form compound phases with lithium rather than rely on 

Van Der Waals to store the material. The main benefit of using these different alloying 

materials as an anode is that they have much higher theoretical energy capacities than 

carbon[24]–[28]. Silicon, for example, has a theoretical gravimetric energy density of 

4200 mAh/g, even greater than lithium whose theoretical energy density of 3800 

mAh/g. Unfortunately, alloying materials have volumetric expansions of several 

hundred percent when complexed with lithium. Such anodes can start to pulverize and 

fracture during cycling.  
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1.4 Limitations of Electrode Materials 

With the exception of graphite based electrodes, most if not all electrode 

materials are not electronically conductive. Because of the low electronic conductivity 

of electrode materials, they must be blended with conductive media such as acetylene 

black or carbon nanotubes to facilitate electron exchange of the electrode 

materials[29]. By adding carbon to the lithium battery, it is effectively reducing the 

overall gravimetric energy density of the entire battery package because carbon additive 

does not contribute to the energy capacity but increases the weight of battery. Lastly, 

the electrode materials for most commercial batteries have gravimetric energy densities 

less than 300 mAh/g. Energy density of electrodes needs to be increased to seamlessly 

replace hydrocarbon fuels and commercialize electric vehicles successfully. 

1.5 Electrolytes in Lithium Ion Batteries 

In addition to high lithium ion conductivity, a critical requirement of the 

electrolyte is that it should have a high break down voltage or di-electric constant to 

accommodate the operating voltage of the electrode materials. To ensure there is no 

oxidation or reduction of the electrolyte, the redox energies of both the anode and 

cathode should not exceed the bandgap of electrolyte. By acknowledging the 

aforementioned limitation, the open circuit voltage of a secondary lithium battery is 

limited by the following relationship[4, p. 5]: 

𝑒𝑉𝑜𝑐 = 𝜇𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝜇𝑎𝑛𝑜𝑑𝑒 < 𝐸𝑔 
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1.5.1 Liquid Electrolytes 

Liquid electrolytes typically are composed of non-aqueous, aprotic, organic 

solvents, and lithium salts. The most commonly used aprotic solvents are dioxolane, 

ethylmethyl carbonate (EMC), ethylene carbonate (EC), diethyl carbonate (DEC), and 

propylene carbonate (PC). These solvents have a wide electrochemical window (0 to 6 

volts) against lithium[30, pp. 93–102], [31]. To completely dissociate lithium ions, the 

chosen solvent is preferable to have a dielectric constant >37 [32]. When lithium salts 

are not completely dissociated, it results in a lower number of charge carriers which can 

lead to an overall decrease in the ionic conductivity of the liquid electrolyte. Other 

solvents such as γ-butyrolactone have been proposed that meet the dielectric constant 

requirement, but have limited performance and stability[33]. While propylene 

carbonate is sometimes used as a solvent in liquid electrolytes, it is not a suitable choice 

for conventional lithium-ion battery packs. During the intercalation/de-intercalation 

process, propylene carbonate transports with lithium in-between the graphite layers, 

inadvertently exfoliating layers of carbon from the graphite, and subsequently results in 

large capacity loss[34], [35]. It is determined that ethylene carbonate is a preferable  

solvent in terms of electrochemical stability for lithium-ion battery packs that use 

carbon based anodes, as it is the only solvent that can facilitate reversible intercalation 

due to its formation of a passivating layer. Despite ethylene carbonate’s ability to 

solvate lithium ions and its reversibility, it is not practical to use the solvent by itself 

because its melting point is approximately 40o Celsius. At present, most liquid 

electrolytes are a blend of several solvents. Albeit the high melting point of ethylene 



  

11 
 

carbonate, it’s still used as the primary solvent or majority charge carrier in solvent 

blends. Because of their low temperature melting points and miscibility with ethylene 

carbonate, dimethyl-carbonate(DMC), diethyl-carbonate(DEC), and dioxolane are used 

for blending, but in a limited quantities.  The low boiling points and flash temperatures 

of the organic solvents effectively limit the operating temperature of the batteries. 

Various lithium salts, to be dissolved in the aprotic above solvents as the 

electrolyte, include LiPF6, LiClO4, LiAsF6, LiSO3CF3 (LiTF), LiBF4, and LiN(SO2CF3)2 (LiTFSI_. 

Lithium salts are typically kept in inert or non-aqueous environments because they are 

susceptible to hydrolysis in the presence of water. When the anions undergo hydrolysis, 

the reaction can proceed with the formation of HF gas and can inhibit the batteries’ 

performance[36]–[38].  

The mixture of solvents and salts typically yield ionic conductivities greater than 

10-3 S/cm. LiPF6, being one of the most conductive salts, having the ability to form a 

stable passivation layer with aluminum current collectors and graphite has made it a 

favorite for commercial battery packs[30, p. 8]. For most of the literature presented, 

LiPF6 is often used as the reference to determine if the novel or studied liquid 

electrolytes have desirable properties. LiClO4 yields electrolyte solutions with high ionic 

conductivities, but its suitability for commercial applications is thrown into question 

when acknowledging its potential hazards. LiClO4/dioxolane batteries can explode or 

catch on fire if overcharged, and there’s a high probability of explosion/puncture if the 

battery packs are impacted with a large force[39]. LiClO4 electrolytes can also explode at 

temperatures above 220o Celsius, a condition that can be easily achieved in 
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circumstances of thermal runaway or continuous exothermic decomposition[40]. In 

addition to its limited safety, while LiClO4 electrolyte solutions are stable against 

aluminum current collectors up to 4.5 volts, it readily oxidizes with stainless steel at 

around 3V and without passivation, which disqualifies it for use in coin cell batteries[41]. 

LiAsF6 is a lithium salt that has a higher moisture and thermal stability than LiPF6 and has 

one of the highest cycling efficiencies, but it is an incredibly toxic salt due to its ability to 

form arsenic byproducts[42]. LiSO3CF3 has a strong resistance to hydrolysis due to its C-F 

bond, but it has one of the lowest ionic conductivities of the aforementioned salts, and 

oxidizes with aluminum current collectors near 3 volts [30, p. 8], [43], [44]. LiBF4 is a salt 

that has a lower ionic conductivity than LiPF6, but as documented by thermogravimetric 

analysis results(TGA), it is much more resistant to hydrolysis and thermal 

decomposition[45]–[47]. An additional benefit of using LiBF4 is that it can create a 

passivation layer on aluminum foil which is stable at high voltages, whereas LiPF6’s 

passivation layer can break down at 5.6 volts[48]. As a result of its thermal and 

electrochemical properties, LiBF4 operates more efficiently than LiPF6 at high 

temperatures[49]. LiTFSI has a lower ionic conductivity than LiPF6, but it is much higher 

than LiBF4 and LiSO3CF3 [47]. In addition, LiTFSI has a remarkably high tolerance to 

hydrolysis because of the strong C-F bond; in open air it can be left out for days without 

degrading and its stable until at least 300o Celsius [46], [50]. However despite its high 

stability with air, when mixed in low concentrations with aprotic solvents, it has been 

observed to corrode aluminum foil at voltages as low as 3-3.5V, but the aforementioned 

corrosion observed with LiTFSI chemistries is not well understood [51], [52]. Despite 
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there being large amounts of literature that suggest LiTFSI is unstable against aluminum, 

there have been studies that propose stability can be achieved with a high molar 

concentrations of LiTFSI [53].  

A table summarizing all the ionic conductivities of the previously mentioned salts 

as a 1 molar solution in PC:DME are in Table 1[47]: 

Table 1: Ionic conductivities of 1 Molar Solution Salt in PC:DME  

Salt Ionic Conductivity (10-3 S/cm) 

LiTF 6.12 

LiBF4 9.46 

LiTFSI 12.6 

LiClO4 13.5 

LiAsF6 14.8 

LiPF6 15.3 
 

Other liquid electrolytes have been proposed such as ionic liquids, which are 

salts that have melting points well below STP conditions, but this subject matter is 

beyond the scope of this work. 

1.5.2 Challenges That Liquid Electrolyte Faces in Li-ion Batteries 

 While lithium-ion batteries have higher energy density than most conventional 

energy storage devices, they still have many hurdles to overcome. Lithium batteries use 

volatile hydrocarbon solvents, which pose a real-world risk to consumers. An example of 

the risks that lithium-ion batteries can pose is when on January 16, 2013 all Boeing 787 

Dreamliner airplanes were grounded when two of them caught on fire due to lithium-

ion battery pack failures [54].  



  

14 
 

The cycling life of commercially available lithium-ion batteries is another big 

issue. Most lithium ion batteries can only be cycled a few hundred times. The reason for 

the drastic capacity fade of these lithium ion batteries is due to the passivation layer or 

solid electrolyte interface (SEI) that forms on the electrodes. While SEI is instrumental in 

maintaining the shelf life of lithium-ion batteries, its continuous formation can be the 

cause of battery failure. Metal halides can form from the redox reactions and cause a 

drop in the Coulombic efficiency. Alkali halides consume lithium ions which results in a 

decrease in the number of charge carriers available to intercalate the electrodes. Most 

worry-some about these alkali halides is that they have typically have a breakdown 

voltage higher than the electrolyte, therefore, the formation of these halides increase 

the internal resistance of the battery and create irreversible capacity loss [55].  

The utilization of aprotic-containing electrolyte is a potential safety hazard. The 

formation of these continuous passivation layers is another problem with liquid 

electrolytes. The research and development of electrolyte materials alternative to the 

traditional liquid electrolyte will be essential for the future of lithium-ion batteries. 

1.5.3 Polymer Electrolytes 

There are three polymer systems typically encountered in electrochemistry: gel, 

dry-polymer, and polymer-in-salt systems. Lithium salts that are typically blended with 

polymer electrolytes are LiTFSI, LiTF, LiClO4, and LiPF6. Gel polymer electrolytes are 

usually polymer electrolytes that have been enhanced with a solvent (like PEG, 

carbonate solvents, ionic liquids) or solid plasticizers like succinonitrile. Dry-polymer 
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electrolytes are typically polymer systems that have lithium salts dissolved in 

concentrations lower than 50 weight percent. Polymer-in-salt systems are polymer 

electrolytes with a composition of lithium salt in excess of 50 weight percent. 

Gel polymer electrolytes typically use poly-methyl-methacrylate (PMMA), 

polyvinyl-chloride (PVC), polyacrylonitrile (PAN), polyvinylidene-fluoride (PVDF),  or 

polyvinylidene-fluoride-hexafluoropropylene (PVDF-HFP) as the host polymer. While a 

gel electrolyte utilizes a polymer host, its ion conduction is dominated by the swollen 

gelled phase or liquid phase of the electrolyte[56]. Despite gel electrolytes mirroring 

liquid electrolytes’ conduction mechanism, their conductivity is usually limited between 

10-3 - 10-4 S/cm [57], [58]. While gel electrolytes may impart some additional flexibility 

to lithium ion batteries, it still employs a liquid solvent or liquid polymer which is still 

problematic. Due to the presence of hydrocarbon fluids, the risk of fire and drastic 

capacity fade seen in traditional batteries is left largely unaddressed. 

A low glass transition temperature is essential for dry polymer electrolytes to 

have good flexibility and adhesion. It is not only important for having good mechanical 

properties, but essential for having reasonable ionic conductivities at ambient 

temperatures. Based on the past numerous studies it is widely understood that ion 

conduction occur predominantly in the amorphous region through large-chain 

segmental motion [59]–[61]. According to free-volume theory, when the polymer is 

below the glass transition temperature, the free-volume shrinks and the ions become 

localized in highly-ordered polymer chains, a state which results in a crystalline-like 

phase and low ionic conductivity [62, pp. 381–384]. As lithium salt addition increases, 
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the crystallinity of the host polymer decreases until it reaches a level of percolation. In 

the percolation region, the excess salts begin complexing with the host polymer in large 

concentrations, causing the polymer to stiffen and segmental motion of the polymer to 

be inhibited. 

Most commercially available polymers do not have a glass transition 

temperature lower than 25o Celsius. Studies of commercial polymers have been typically 

limited to polyethylene oxide(PEO) and PVDF copolymers. PVDF copolymers have a 

higher solvation capability than PEO, but are often seldom used due to their large 

interfacial resistances and tendency to de-fluorinate when being cycled in the presence 

of lithium[63]. PEO has a long history in the polymer, electrochemistry, medical, and 

pharmaceutical fields, which is why it’s often used as a reference when studying new 

solid state electrolytes or developing solid state batteries. PEO conducts ions through 

segmental motion. PEO moves lithium ions through intra-chain ion hopping (nearest 

solvation site) and inter-grain (chain to chain helix) hopping of its ether oxygens. As 

many as 4 - 6 oxygens can be bonded to the cation at a given time[64], [65]. However, a 

consequence of having these lithium ions solvate through the ether oxygens is that they 

tend to act as transient cross-linking sites, a mechanism which can stiffen the polymer 

and lower the ionic conductivity of the polymer. Accordingly, most salt-in-polymer 

systems are not composed of more than 30 weight percent in lithium salts.  

Methods typically used to evaluate whether a polymer has been blended with 

too much lithium salt is to measure the glass transition temperature, the crystallinity, or 

if its vibrational state has changed. Techniques like Differential Scanning Calorimetry 
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(DSC) can be used to determine not only the glass transition temperature, but also to 

determine if the polymer’s crystallinity has changed; a property which can be quantified 

by a shift in its enthalpy of fusion[66]. An alternative and more analytical technique that 

can be used to determine the change in crystallinity is Wide-Angle X-Ray Diffraction 

(WAXD) [66]. Another commonly used method for determining proper polymer/salt 

blending ratios is the measurement of the system’s vibrational state using Fourier 

Transform Infrared Spectroscopy (FTIR).   

The draw-back of using these salt-in polymer dry electrolytes is that they are 

often limited to ionic conductivities of 10-5 – 10-6 S/cm at room temperature and 

therefore have limited performance at ambient temperatures[67]. Because of the low 

ionic conductivity of polymer electrolytes, ways to increase the ionic conductivity have 

been continuously explored. One direction that has been extensively studied is to 

increase the lithium transport number [68]. The creation of a polymer electrolyte with a 

lithium transport number of 1 yields a system called a single-ion conducting polymer, a 

system where the anion is largely immobilized [69]. With the anions’ steric effects 

hindered, it is believed that the cation would have increased mobility and therefore, 

higher ionic conductivity. Most research has been dedicated to crosslinking the anion to 

the polymer backbone in an effort to achieve single-ion conductors. Research in the 

single-ion polymer conductors is beyond the scope of this work.  

The polymer-in-salt systems were first proposed by Angell’s group and have 

shown to yield systems with ionic conductivities greater than 10-4 S/cm using PAN at 

room temperature[70]. In contrast with salt-in polymer electrolytes, the conduction 
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mechanism is believed to be different because of the systems’ high cationic transport 

number and high ionic conductivity despite detection of large ion aggregates [67], [71]. 

Further evidence of the systems’ different conduction mechanism is that the 

electrolytes have no abrupt change in ionic conductivity when operating below the glass 

transition temperature[72]. It has been proposed that its conduction is intrinsically 

liquid-like, where it is believed that the salt aggregates coordinate with all of the 

polymer’s solvation sites, allowing for excess ions to migrate largely uninhibited.  

1.5.4 Ceramic Electrolytes 

Ceramic electrolytes are a promising class of solid state electrolytes because of 

their high ionic conductivities, absence of organic material, and are single-ion 

conductors [73]. Chemistries typically used for ceramic electrolytes are sulfides, oxides, 

phosphates, and have been reported to have ionic conductivities between 10-2 – 10-3 

S/cm. With the absence of solvents, the risk of thermal runaway and subsequent fires is 

completely eliminated, this allows for high temperature operation.  

For ceramic electrolytes, ion conduction is facilitated by the movement of point 

defects in the material. The continuous movement of point defects can be created 

through thermal excitation or an application of an electric field. The benefit of how 

ceramic electrolytes conduct, is that as single-ion conductors, concentration polarization 

at the electrodes’ surface is largely mitigated. When there is concentration polarization, 

a battery’s performance can be degraded under sustained operation. In traditional 

binary-electrolytes, the lithium anions can aggregate in the electrolyte or at the 



  

19 
 

electrodes’ surface and create a blocking effect. As a result of the blocking from 

concentration polarization, the impedance can drastically increase, operating potential 

can decrease, and the discharge currents of a battery can alternate[74]. There are many 

different compositions of ceramics proposed, but they will not be discussed here; the 

merits and properties of LAGP are discussed later in the proceeding sections. 

 Despite the high ionic conductivity of ceramic electrolytes, there are drawbacks 

to using them in batteries. Ceramic electrolytes must be sintered into sheets which limit 

their configuration for commercial applications and prevent flexibility. In addition to the 

limited configuration, ceramics are brittle materials that can begin to fracture from 

thermal or mechanical shock. Many of the ceramic electrolytes tested have a fracture 

toughness of less than 1 MPa-m0.5 [75]. Examples of oxide, sulfide and phosphate 

electrolyte materials fracture toughness being tested are LLZO, LPS, and Li1.2 Zr1.9 

Sr0.1(PO4)3 respectively. LLZO has a fracture toughness of 0.86 MPa-m0.5, LPS has a 

fracture toughness of 0.23 MPa-m0.5, and Li1.2 Zr1.9 Sr0.1(PO4)3 has a fracture toughness of 

0.37 MPa-m0.5 [76]–[78]. A consequence of these porous and brittle materials is that 

they are unable to suppress the formation of lithium dendrites, a problem which can 

result in electrical shorts and self-discharge. Another challenge for ceramic electrolytes 

is being able to maintain good interfacial contact. Many electrodes have a reasonable 

amount of expansion and contraction during cycling, typical graphite electrodes can 

have a volumetric expansion as much as 12% [18]. This cyclic volume change of the 

electrodes can result in surface delamination of the electrolyte, which has limited 
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adhesive properties. Unfortunately, as a result of the physical limitations ceramic 

electrolytes have, they have very limited commercial applications. 

1.5.5 Ceramic Composite Electrolytes 

 Ceramic electrolytes have high ionic conductivity at ambient temperatures, but 

they can fracture easily and have poor interfacial properties. Polymer electrolytes have 

low ionic conductivities, but under the right circumstances, can maintain a good 

interface with electrodes and can suppress lithium dendrites better than ceramic 

electrolytes. Individually, neither the polymer or ceramic electrolytes have the 

necessary properties to be commercially viable; both class of materials have their 

benefits and drawbacks. By combining both materials, researchers have looked for 

solutions that can transcend their individual constituents. As of recent memory, 

composite electrolytes have been explored to achieve electrolytes that are safer, 

flexible, and have high cycling efficiency.  

There are currently two class of ceramic composite electrolytes researched, 

electrolytes that are blended active and inert ceramic fillers. Ceramic electrolytes, such 

as LLZO, LPS, LATP, and LAGP, are used as active fillers in polymer electrolytes. Some of 

the most commonly studied inert ceramic fillers are TiO2, Al2O3, SiO2, and BaTiO3. Inert 

ceramic fillers, as the name suggests, are unable to conduct lithium ions.  

Before there were super conducting ceramic electrolytes, most studies of 

ceramic composite electrolytes were dedicated to studying the effect these inert oxides 

had on polymers. For polymer electrolytes that were blended with inert filler at low 
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concentrations, the conductivity was reported to almost always increase. The increase 

in polymers’ ionic conductivity has been attributed to the oxides inhibiting the 

crystallization of the polymers to create more amorphous conduction sites. The ability 

of the ceramic to inhibit crystallization is not only dependent on the material used, but 

the size of the particle. Nanometer sized particles are required to affect the 

crystallization[79]. In addition to requiring nanometer size particles, if too much of the 

inert filler is added to the polymer electrolytes, it begins decreasing the ionic 

conductivity because of its insulator-like properties. A table summarizing a few different 

published literatures on inert fillers at 25oC can be seen in Table 2. 

Table 2: Ionic conductivities of inert fillers in composite electrolytes 

Filler Wt% Filler Polymer Salt Polymer σ (S/cm)  Composite σ (S/cm) Author 

BaTiO3 15 PEO/PVDF LiClO4 .68 x 10-4 1.2 x 10-4 Kim[80] 

TiO2 1.5 P(EO-EC) LiCF3SO3 3.2 x 10-5 5.1 x 10-5 Kwak[81] 

SiO2 8 

8 

PEO 

PEO 

LiClO4 

LiTFSI 

9.7 x 10-7 

1.5 x 10-5 

9.5 x 10-5 

8.2 x 10-5 

Mustarelli 

[82] 

Al2O3 20 PEO LiTF 1.0 x 10-6 8.64 x 10-5 Pumchusak 

[83] 

 

 While the contribution of conductivity from inert ceramic fillers is generally 

understood, the increase in conductivity for active fillers lacks a concrete narrative. As 

with inert fillers, an increase in conductivity is believed to be partly attributed to the 

increase in amorphous polymer content. The second contribution of conductivity of the 

active fillers is believed to be a contribution from the lithium that occupies the lattice 

structure of the fillers. The active filler is believed to not only act as an increase in 

charge carriers, but as sites that increase the mobility of lithium ions by acting as 
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additional solvation sites. There have been numerous studies that report adding high 

proportions of active filler content can increase the conductivity, but there have also 

been a few studies that report an increase in conductivity can only be achieved with 

small additions of ceramic filler. Up to date, there is not an agreement of how much the 

conductivity can increase with active fillers. For instance, LAGP/PEO composite 

electrolytes are reported to have an increase in conductivity by as many as two 

magnitudes at 25 oC by Kim’s group, but less than a quarter magnitude increase in ionic 

conductivity at 60 oC by Xu’s group [84], [85]. Xu’s group also tried using LGPS as the 

active filler, the group could only increase the conductivity using up to 10 wt% of 

material. Xu’s group found that at 1, 5, and 10 wt% the conductivity of the lithated 

polymer went up, but the highest was achieved using 1 wt%. Increasing the ceramics  

more than 1% began to reduce the ionic conductivity [86]. Another challenge with these 

active fillers is that researchers often have difficulty achieving the nanoparticle size 

required to lower the polymers’ crystallinity. A table summarizing a few different 

composite electrolytes utilizing active material can be found in Table 3. 

Table 3: Ionic conductivities of active fillers in composite electrolytes 

Filler Wt% Filler Polymer Salt Polymer σ (S/cm) Composite σ (S/cm) Author 

LAGP 70 PEO LiClO4 6.3 x 10-7 (25 oC) 1.0 x 10-5 (25 oC) Kim[84] 

LAGP 20 PEO LiTFSI 4.29 x 10-4 (60 oC) 6.76 x 10-4 (60 oC) Xu[85] 

LATP 

(nano) 

10 PEO LiClO4 ~8 x 10-6 (20 oC) 5.97 x 10-5 (20 oC) Kieffer[87] 

LGPS 1 PEO LiTFSI 6.16 x 10-6 (25 oC) 1.18 x 10-5(25 oC) Xu[86] 

LLZO 52.5 PEO LiClO4 ~4 x 10-6 (55 oC) 4.42 x 10-4 (55 oC) Lee[88] 

LLZTO 10 PEO LiTFSI ~5 x 10-6 (25 oC) 1.15 x 10-4 (25 oC) Fan[89] 
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1.6 Summary 

 Traditional lithium-ion batteries are limited by their gravimetric energy density, 

safety, and long term performance. The most commercially used electrolyte in lithium-

ion batteries are liquid electrolytes that are typically composed of carbonate solvents. 

The use of carbonate solvents and a number of the electrodes is that they are risk as 

imminent fire hazards. The fact remains, however, liquid electrolytes have high 

susceptibility to fires and can form a continuous passivation layer, which can result in 

the formation of alkali halides. The formation of a continuous passivation layer can lead 

to degraded performance and promote capacity fade. 

1.7 Outline of this Thesis Research 

Looking towards the future, solid state electrolytes have been proposed to 

rectify the issues that liquid electrolytes present. After reviewing the merits of polymer 

and ceramic electrolytes and the missing properties to meet modern requirements, this 

research is to systematically investigate a series of ceramic/polymer lithium-ion 

conducting composite electrolytes for potential application to all solid state lithium-ion 

batteries. The materials selected for study is the  Li1.4Al0.4Ge1.6(PO4)3 /lithiated 

polyethylene oxide (LAGP/PEO) with two different lithium salts, LiBF4 and LITFSI.  

 In chapter 2, the synthesis and characterizations of LAGP was described. Utilizing 

x-ray diffraction (XRD), the purity of the LAGP is verified by comparing its spectra to 

reference literature. In addition, the conductivity of the synthesized LAGP as constituent 

powder and as a sintered ceramic pellet are determined using electrochemical 
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impedance spectroscopy (EIS). The conductivity and activation energy of the sintered 

and unsintered LAGP are compared against literature and the difference was discussed.   

 In chapter 3, the fabrication details, structural, morphological and thermal 

properties of LAGP/lithiated composite films are elaborated in details. Upon successful 

synthesis of the LAGP composite films, a select number of films are selected for XRD 

characterizations to determine the influence LAGP on the crystal structure of the 

lithiated polymer. Using differential scanning calorimetry (DSC), the thermal properties, 

i.e. melting temperature range of each film and composite film is determined. The 

morphological characteristics of the LiBF4 composite films are discussed.  

 In chapter 4, the ionic conductivities in the temperature range of 25oC to 80oC of 

the LAGP composite films are systematically determined and analyzed. The impacts of 

adding LAGP and the difference between LiBF4 series and LiTFSI series in terms of 

conductivities and conduction activation energies are discussed.    

 In chapter 5, the mechanical properties of the LAGP composite films are 

determined. The impacts of lithium-salt and LAGP on the film mechanical properties in 

terms of elastic modulus, ultimate strength, and failure strain are  systematically 

investigated. The correlation between the ceramic particle size as well as distribution 

and the mechanical properties are also discussed. 

 In chapter 6, the merits of LAGP as a filler material are discussed. The effect of 

LAGP has on lithiated polymers’ thermal, electrical, and mechanical properties are 

weighed. Areas that require further investigation are also discussed. 
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2 Synthesis and Characterization of LAGP Powders 

2.1  Synthesis Process 

ACS grade lithium carbonate (Li2CO3), aluminum hydroxide (Al(OH)3), and 

ammonium dihydrogen phosphate (NH4H2PO4) were purchased from Sigma Aldrich; ACS 

grade germanium oxide (GeO2) was purchased from Alfa Aesar. All chemicals were used 

without further purification or treatment. Solid reaction method was used to synthesize 

Li1.4Al0.4Ge1.6(PO4)3 (LAGP) in 5 gram batches using the following stoichiometric ratios: 

0.7𝐿𝑖2𝐶𝑂3 + 1.6𝐺𝑒𝑂2 + 0.4𝐴𝐿(𝑂𝐻)3 + 3𝑁𝐻4𝐻2𝑃𝑂4 → 𝐿𝑖1.4𝐴𝑙0.4𝐺𝑒1.6(𝑃𝑂4)3 

In a dry room, the reactants were mixed in an Agate mortar for 15 minutes. The 

mixture was then transferred to a borosilicate glass bottle and mixed on a ball mill 

without grinding media for at least 2 hours. The mixture was heated at two different 

conditions towards yielding the desired LAGP. The first heating treatment is to 

decompose any water, ammonia gas, and to ensure no side reactions happen during the 

formation of the oxide material. The mixture was transferred to a zirconia crucible and 

heated in a furnace at 600o C for 6 hours in air at a rate of 1o Celsius per minute. The 

cooling rate was set at 3o Celsius per minute. Upon completion of the first heating cycle, 

the mixture was milled in a high energy shaker mill for 3 hours. The milled material was 

subsequently transferred back to the zirconia crucible and fired at 900o C for 24 hours in 



  

26 
 

air. The temperature was raised slowly at a rate of 2oC/min and cooled at a rate of 

3oC/min.  

2.2 Structural Characteristics of LAGP 

The as-prepared LAGP powders product was milled in an Agate mortar for 15 

minutes before structural characterizations. X-ray diffraction spectroscopy (XRD) was 

used to determine the phase and purity of the material. The x-ray diffractometer used is 

Bruker XRD D8 with a Cu Kα radiation tube and 1 mm slit. The scan range was set from 

10o  to 90 o with a step size of 0.01o and a step scan of 1 second. During the 

measurement, the specimen was continuously rotated at 1.5 times per minute until the 

measurement was completed. The operating voltage is 40 kV and current is 40 mA. 

The representative x-ray diffraction spectrum of the LAGPs is shown in Figure 

3(a). Compared Figures 3 (b) and (c) , the positions of all the major peaks of the 

synthesized LAGP correspond well with the reference spectra of which our composition 

is derived [90]. The small peak at 26o corresponds to the trace of GeO2 impurity [91].  
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(a) 

 
(b) 

 
(c) 

Figure 3: XRD spectra of LAGP synthesized in different laboratories (a) Li1.4Al0.4Ge1.6(PO4)3 synthesized in our lab; (b) 

sintered at 1450oC and annealed at 650oC Li1.4Al0.4Ge1.6(PO4)3 [90]; (c) Li1.5Al0.5Ge1.6(PO4)3 calcined at 700oC and 

sintered at 900oC [92] 
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2.3 Ionic Conduction Characteristics of the LAGP  

To determine the ionic conductivities of the LAGP products, the powders were 

pressed into pellets. Using a 13 mm pellet die set and without binder, the LAGP powders 

were pressed into pellets at a pressure of approximately 12,000 psi and kept under the 

constant pressure for 2 minutes.  

Pellets were placed in the furnace at a temperature of 850o Celsius and ramped 

slowly at a rate of 0.5o C per minute and held isothermally for 12 hours. The sintered 

pellets were then carefully cooled down to room temperature at a rate of 1o Celsius per 

minute to prevent any cracks that may form due to thermal shock. The sintering 

parameters followed the previous work done by Kichambare and Kumar at the Air Force 

Research Laboratory.  

Kotobuki et al [93] reported that sintering temperatures above 850oC not only 

yielded lower bulk ionic conductivities, but also resulted in large voids due to the 

reduction in volume that is accompanied by its crystallization. In addition to sintering 

temperature, sintering time was also found to be critical to void formation and ionic 

conductivity.  Figure 4 (a) and (b) present a series SEM images showing the 

morphological changes with the sintering temperature and time. In agreement with 

Kichambare’s results, Kotobuki found that sintering LAGP at 850o Celsius for 12 hours 

yielded the most optimal results on grain structure and ionic conductivity. 
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(a) 

 
(b) 

Figure 4: Cross-Sectional SEM Images of LAGP Pellets Calcined (a) at different temperatures for 6 hours; (b) at 850o 

Celsius for different times [93] 
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Electrochemical impedance spectroscopy (EIS) was used to derive resistances of 

LAGP pellets, from which ionic conductivities of LAGP pellets are determined. Sintered 

pellets were coated with silver paint (from Ted Pella) to function as working and 

blocking electrodes. Copper tapes were then attached to each Ag electrodes to wire the 

electricity out to the Gamry Potentiostat system. The samples were allowed to dry in 

the dry room for a day and then annealed at 105o Celsius for 2 hours to remove any 

residual solvent in silver paint. An image of a coated pellet ready for EIS is show in 

Figure 5.   

 

Figure 5: A silver coated pellet with two copper electrodes for electrochemical impedance measurement. 

The electrochemical impedance spectra of the LAGP pellets were obtained on 

Gamry Potentiostat Reference 600 with an AC amplitude of 100 mV in the frequency 

range of 1MHz to 1Hz and a sampling frequency of 50 points per decade. The 
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impedance spectra were recorded in the temperature range of 25 oC to 105 oC at an 

interval of 10 oC.  The temperature was controlled in an automatic oven with presetting 

temperatures. The EIS measurement was started from high temperature to low 

temperature. The sample was held at the setting temperature for 1 hour prior to testing 

to ensure thermal equilibrium. 

 Representative EIS plots of a sintered pellets at the preset temperature are 

shown in Figure 6. Bulk resistance values were determined using a Randles equivalent 

circuit (see the inset) modified with a constant phase element. 

From the LAGP electrolyte resistance values, conductivities were computed 

based on the pellet dimensions (thickness and base area of the pellet). At 25o Celsius the 

conductivity of our sintered LAGP was determined to be 1.72 x 10-4 S/cm. Unlike other 

researchers, it was difficult to develop an equivalent circuit model that could separate 

bulk and grain conductivity from the acquired EIS plots. The value obtained at room 

temperature is close to many published total conductivity values. The conductivities in 

the experimental temperature range closely match the total conductivities reported in 

literatures.   
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Figure 6: Electrochemical impedance spectra (Nyquist plots) of (a) sintered LAGP pellet at 105o C. The inset shows the 

Randles equivalent circuit used to derive the resistance of LAGP electrolyte for conductivity calculation. 

The activation energy of the sintered LAGP pellet was calculated from the 

conductivity vs temperature plot shown in Figure 7, using a modified form of the 

Arrhenius equation [94, p. 192], 

𝜎 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇;    𝐿𝑜𝑔10(𝜎) = −

𝐸𝑎

2.3𝑅𝑇
 

where the slope of the log  vs. 1/T plot is equal to −
𝐸𝑎

2.3𝑅
 and R is equal to the gas 

constant 8.314 kJ/mol. The activation energy was calculated to be 27.5 kJ/mol, which is 

in close agreement with the activation energies reported as 28-30 kJ/mol.  

Table 4 lists reported values of LAGP in terms of bulk conductivity, grain 

boundary conductivity, total conductivity and activation energies. The total ionic 

conductivity values are mostly in the order of magnitude of 10-4 S/cm at room 

temperatures [91], [93], [95]–[97]. The activation energy values varied from 28  to 45 
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kJ/mol, where the conductivity is found to be irrelevant to its variation. In addition to 

variations of LAGP in terms of composition, purity and crystallinity, measurement 

conditions resulting from facilities conducted at different laboratories will also introduce 

a certain range of errors.   

 

Figure 7: Arrhenius plot, logarithm conductivity vs. reciprocal of temperature, of sintered LAGP pellet 

Leo was the first to report the performance of the LAGP composition we use, but 

the conductivities reported by Leo were determined using lithium electrodes[98]. It is 

now known however, that LAGP has a low electrochemical window against lithium, 

therefore it is inappropriate to determine lithium ion conductivity in LAGP using lithium 

foil as electrodes. It has been reported that LAGP has a redox window of -0.4 Volts to 

0.6 Volts by Feng [99] and a window of −0.5 Volts to 0.7 Volts by Chen[100]. 

Experimental evidence of LAGP’s instability against lithium is that its impedance 

increases substantially with time (a few hours) upon being in contact with lithium. The 

reported Nyquist plot can be seen in Figure 8 [101]. As a consequence, lower 
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conductivity values were reported, e.g. 1.3x10-4 S/cm at 60 oC[98] and 3.8x10-5 S/cm at 

40 oC[90]. 

Table 4: Ionic conductivities and activation energy values of LAGP reported in literatures.  

Bulk 

Conductivity 

(S/cm) @25oC 

Grain Boundary 

Conductivity 

(S/cm) @25oC 

Total 

Conductivity 

(S/cm) @25oC 

Activation 

Energy 

(kJ/mol) 

Author 

N/A N/A 1.03 x 10-4 44.38 Kichambare [95] 

7.94 x 10-5 N/A 10-4 31.84 Arbi[96] 

9.5 x 10-4 N/A 1.8 x 10-4 N/A Kotobuki[93] 

N/A N/A 1.9 x 10-4 39.56 Kang[91] 

3.64 x 10-4 4.68 x 10-3 3.38x 10-4 30.57 Chi[97] 

1.18 x 10-3  N/A 7.25 x10-4 29.91 Wen[102] 

N/A N/A 4.23 x10-3 28.95 Kumar [103]  

1.75 x10-3 4.3 x 10-3 1.22 x10-3 31.1 Zhang[104] 
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Figure 8: Impedance spectra of  (a) LATGP, (b) LAGP, and (c) LATTP obtained using two lithium electrodes at 20o 

Celsius[101] 

2.4 Summary  

 Using solid state reaction, Li1.4Al0.4Ge1.6(PO4)3 (LAGP) powders were synthesized 

at 600o C for 6 hours following by 900o C for 24 hours in air at controlled at a slow 

ramping rate. With the help of XRD, the crystal structure and purity of the as-prepared 

LAGP was verified. Using EIS, the lithium ion conductivities was determined in the 

temperature range of 25 oC to 105 oC. Some LAGP powders were pressed into pellets 

and sintered at 850o Celsius for 12 hours. The sintered LAGP pellets’ conductivity was 

determined to be 1.72 x 10-4 S/cm at 25 oC.  The activation energies for the sintered 

pellet is 27.5 kJ/mol. The activation energy and conductivity of the sintered LAGP pellet 

falls within the range of reported values seen in literature. 
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3 Fabrication and Characterizations of LAGP/PEO/Li-salt  

Composite Electrolyte Membranes 

3.1 LAGP/PEO/LiBF4 Composite Film Compositions 

Most dry polymer electrolytes often use LiTFSI, LiTF, LiClO4, or LiPF6 as their 

lithium salt. After a preliminary literature review, it was determined that LiBF4 is not a 

well characterized salt in polymer electrolytes, let alone PEO. In particular, there has 

been little to none in terms of the number of studies that has utilized LiBF4 salt in LAGP 

composite films. Lastly, LiBF4 has been known to have excellent high capacity retention, 

low charge transfer resistance, and low voltage hysteresis gain in carbonate solvents at 

temperatures as low as -30o Celsius when compared against LiPF6 salt [105]. LiBF4 has 

one of the highest ionic conductivities in liquid electrolytes.  The aforementioned 

material properties and lack of studies led us to believe that this salt was fertile territory 

to be explored for use in our composite electrolytes.  

Based on FTIR studies, it was found that for PEO with an EO:Li molar ratio of 8: 1 

yields the most conducting polymer films[106]. Keeping the molar proportions of the 

salt and polymer constant, a series of composite films were fabricated in sequentially 

increasing weight proportions of LAGP relative to PEO. The amount of each component 

used in the composite membrane is listed in Table 5. 
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Table 5: The amount of each component used to fabricate the LAGP/PEO/LiBF4 series 

Composition LAGP(g) PEO(g) LiBF4(g) Moles PEO Moles Li EO:Li Ratio 

PEO 0 0.75 0.200 0.01704 0.00213 7.9876 

LAGP-20 0.15 0.6 0.160 0.01363 0.00171 7.9876 

LAGP-30 0.225 0.525 0.140 0.01193 0.00149 7.9876 

LAGP-40 0.3 0.45 0.120 0.01022 0.00128 7.9876 

LAGP-50 0.375 0.375 0.100 0.00852 0.00107 7.9876 

LAGP-60 0.5625 0.375 0.100 0.00852 0.00107 7.9876 

 

3.2 LAGP/PEO/LiTFSI Composite Film Compositions 

For comparison, LiTFSI-based composite films were also fabricated and 

characterized. LiTFSI/PEO polymer electrolyte system has been studied previously. 

Hence, it can serve as a reference to gain in sight in the impacts of Li-salt in polymer 

electrolyte system. Moreover, there is no extensive research on LAGP/PEO/LiTFSI 

composite electrolytes, and there is no any report in such system with LAGP in the 

weigh percentage of 20 - 60%. In this study, we will  systematically investigate 

LAGP/PEO/LiTFSI system and compare with LAGP/PEO/LiBF4 system . 

 Literature and researchers suggest that the optimal molar ratio for PEO and 

LiTFSI is a 10:1 ratio for highest conductivity [107].  However, our experimental results 

showed that a free-standing polymer film could not be fabricated at this composition at 

room temperature. Accordingly, a molar ratio of polymer to lithium was adjusted 20:1. 

As with the LiBF4 composite films, the molar proportions of the salt and polymer were 

held constant. A series of composite films were fabricated in sequentially increasing 
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weight proportions of LAGP relative to PEO.  The amount of each component used in the 

composite membrane is listed in Table 6. 

Table 6: The amount of each component used to fabricate the LAGP/PEO/LiTFSI series                    

Composition LAGP(g) PEO(g) LiTFSI(g) Moles  PEO Moles Li EO:Li Ratio 

PEO 0.0000 0.7500 0.2440 0.0170 0.0008 20.0465 

LAGP-20 0.1500 0.6000 0.1952 0.0136 0.0007 20.0465 

LAGP-30 0.2250 0.5250 0.1708 0.0119 0.0006 20.0465 

LAGP-50 0.3750 0.3750 0.1220 0.0085 0.0004 20.0465 

LAGP-60 0.5625 0.3750 0.1220 0.0085 0.0004 20.0465 

 

3.3  Fabrication of LAGP/PEO/Li-salt Composite Electrolyte Membranes 

 Anhydrous acetonitrile, polyethylene oxide (molecular weight of 400,000 ), 

lithium tetrafluorborate (LiBF4), and lithium bis(trifluormethanesulf)imide (LiTFSI) were 

purchased from Sigma Aldrich. All chemicals are ACS grade and used without further 

purification. All chemicals were opened and used in conditions where the relative 

humidity was less than 1%. The acetonitrile was opened in a dry room and stored in a 

sealed polyethylene bag inside a dry room. LiBF4, LiTFSI, and PEO were opened and 

stored in an argon filled glove-box. 

For the use in composite polymer electrolyte membranes, the as-synthesized 

LAGP powders, as described in the previous section, were further milled in a high energy 

shaker mill until the average particle size was submicron. Particle size was determined 

by SEM. Some agglomerates in the micron range were observed. 
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 In the dry room, 15 mL of acetonitrile is measured using a graduated cylinder 

and poured into a borosilicate glass bottle. An appropriate amount of LAGP is added to 

acetonitrile. The suspension solution is subsequently sonicated for an hour using an 

average power of 4-5 J/s to break up LAGP agglomerates and to facilitate the dispersion 

of the LAGP. With the solution cooled and the bottle sealed, it is transferred to the 

argon filled glove-box. At room temperature, pre-weighed lithium salt was added while 

the solution was continuously stirred. After the salt was dissolved, the solution 

temperature was raised to 50oC and pre-weighed PEO was added to the solution and 

sealed. The solution was allowed to stir at medium speed 500-600 RPM for 4 days and 

the solution was cast on the 5th day in a Teflon dish.  

When casting the solution to the Teflon dish, care needs to be taken to ensure 

the solution overcomes any surface tension and to eliminate the formation of air 

bubbles. Afterwards, there are three drying stages throughout the membrane 

fabrication procedure.   

In the first stage of drying, the solution was placed in a close to zero flow 

(quiescent) environment with a pressure of 1 kPa (in the antechamber of the glove-box) 

until the viscosity reached approximately 1000 cp. Several preliminary viscosity tests 

were performed to determine the time required to reach the necessary viscosity. The 

solution was re-agitated in regularly timed intervals to make sure the film stayed a 

uniform thickness. After the solution reached the desired viscosity, the solution was no 

longer re-agitated.  
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The second stage of drying was to allow slow crystallization of the polymer and 

evaporation of the solvent to yield a homogenous film. During this stage, the Teflon dish 

containing the viscous solution was stored inside the antechamber at a sealing pressure 

of 1 KPa for 4 hours.  

The third and final stage was to dry the membrane in the glove-box under 

circulating argon. At this stage, the drying time for LiBF4 films is 24 hours before film 

removal and storing. The drying time for LiTFSI films is 72- 84 hrs in total. After 24-36 

hours, the film was removed from the Teflon dish, laid on their front side and allowed to 

dry an additional 48 hours before taken out of glove box for bagging. 

The as-fabricated LAGP/PEO/Li-salt composite membranes were stored in 

vacuum bags and sealed with a hot press. All films were stored in the glove-box and in 

darkness prior to use. Separate films for mechanical testing were made and stored at 

least two weeks prior to testing. 

3.4  Structural Characterization of the Composite Films 

 A selected number of composite films were studied using XRD to see the 

potential influence of LAGP on the crystallographic structure of PEO films. To reduce the 

possibility of the lithiated polymers being complexed or broken down by the moisture 

from ambient air, samples were encapsulated in a special Bruker made holder. The 

analyzed samples were placed on a zero-diffraction plate and sealed with a Kapton film 

and thermoplastic gasket. A image of the specimen holder can be seen in Figure 9.  
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Figure 9: Kapton Bruker Film Holder used for XRD measurement of the composite membrane 

 Using a Cu Kα radiation tube, 0.6 mm slit, and solar diffraction grating,  samples 

were analyzed from 10o to 80 o with a step size of 0.01o and a step scan of 1 second. The 

specimen on a platform was continuously rotated 1.5 times per minute until the 

measurement was completed. The constant rotation of the films during measurement 

helps eliminate any bias that may arise from surface defects in a process that is similar 

to a raster. The operating voltage is 40 kV and current is 40 mA.  

The X-ray diffraction data was processed using MATLAB and piecewise Robust 

Local Regression was performed in order to establish a baseline for which the data could 

be normalized. After data was normalized, application factors were calculated by taking 

the ratio of the largest detected peak and smallest detected peak so that that they could 

be plotted on the same intensity scale.  

Figure 10 presents the XRD spectra of LAGP/PEO/LiTFSI series with LAGP content 

of 20wt%, 30wt%, 50 wt%, and 60 wt% in comparison with LAGP powders and PEO. 
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From results, it appears that the addition of LAGP had no significant effect on the 

crystallinity of PEO because no peak broadening was observed. 

 

Figure 10: XRD patterns of the  LAGP/PEO/LiTFSI series in comparison with LAGP powders and PEO. 

3.5  Thermal Characterizations of the Composite Films 

To understand the thermal properties and stabilities, the composite films were 

subjected to Differential Scanning Calorimetry (DSC) analysis. The composite films were 

punched and loaded in special hermetically sealed Al pans in a dry room. Punched 

samples were an average weight of 5 to 15 mg. The DSC spectra were recorded using TA 

Instruments DSC 2010 from room temperature to 200o Celsius at a rate of 5o/min.  

DSC results for LiBF4 and LiTFSI composite films can be seen in Figure 11 (a) and 

(b) respectively. For the LiBF4 composite films it appears that there is no change in the 
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melting temperature as LAGP content increases; a similar assessment can be made of 

the LiTFSI composite films. 

(a)  

(b)  

Figure 11: DSC profiles obtained from (a) LAGP/PEO/LiBF4; (b) LAGP/PEO LiTFSI Composite Films 

Using TA Instruments Universal Analysis software, the melting temperature 

range of each composition was determined. The method used to determine the starting 
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melting temperature was onset point method. Onset point temperature analysis 

determines the value by using the baseline reference and the tangential line of when 

enthalpy changes are detected, choosing the coordinate at which both lines would 

intercept if they approached infinity. To determine what the final melting temperature 

was in the different compositions, simple max peak analysis was used. When a material 

is undergoing a phase change, its temperature will not change until the phase 

transformation is complete. When the phase change is completed, the temperature will 

begin to increase again; this is where the final monomer should have changed from a 

solid to a fluid. Most polymers have a Weibull distribution of molecular weights and 

accordingly, the polymers will have a bin range for their melting temperature.  

Two representative DSC thermographs of an LAGP20/PEO/LiBF4 and 

LAGP20/PEO/LiTFSI composite electrolyte being processed to determine their melting 

temperatures can be seen in Figure 12 (a) and (b), respectively. For the LiBF4 series, the 

baseline used is a horizontal line. For the LiTFSI series there was no flat baseline to 

reference; this may be due to the fact that the true onset melting temperature is very 

close to STP conditions. Hence, the data points before an abrupt change in the slope of 

the plot was used as the baseline.  
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(a) 

 

(b) 

Figure 12: Selection of the onsite melting temperature for analysis (a) in LAGP/PEO/LiBF4 composite system; (b) in 

LAGP/PEO/LiTFSI composite system 
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 A summary of the melting temperatures as a function of LAGP content for the 

LiBF4 and LiTFSI series can be seen in Figure 13 (a) and (b), respectively. For both salt 

compositions, adding lithium salt into polymer decreases the melting temperature. The 

melting temperature of lithiated polymers remained relatively unaffected by the 

addition of LAGP. The average melting temperature range for LiBF4 films is 53.67o – 

60.23o Celsius. The average melting temperature range for the LiTFSI films is 45.52o – 

56.46o Celsius. 

The relatively stable melting temperature might be attributed to the particle size 

used to create the composites. It has been reported that the crystallinity of polymers 

can only be affected by the ceramic particles of several hundred to tens of nanometers. 

As seen in the XRD scans carried out on the LiBF4 composite films, there was no 

observable broadening of polymer peaks to indicate a crystallinity decrease. Without a 

change in the crystallinity or the use of a plasticizer, the temperature at which a 

polymer should undergo a liquid transition should remain relatively unchanged. 
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(a)  

(b)  

Figure 13: Melting temperature and onsite melting temperature as a function of LAGP content in (a) LAGP/PEO/LiBF4 

series; (b) in LAGP/PEO/LiTFSI series.  
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3.6  Surface Morphological Imaging of the Composite Films 

To visualize the particle size and distribution in the composite films, scanning 

electron microscopic analysis was performed. Some imaging was performed on JEOL 

SEM, and the specimens were coated with a few nm thick gold to dissipate the charges. 

Majority of the top-view and cross-view imaging was performed on FEI Lyra SEM/FIB 

duel-beam system. For top view imaging, there is no any coating on specimen. For FIB 

processing to facilitate cross-view imaging, the films were coated tens of nanometer Ir 

or Au as conductive layers.   

The following images (Figure 14) present top view of as-prepared LiBF4 film 

series. LAGP particles cover/embedded in PEO matrix can be seen on the surface in the 

composite films. More LAGP particles can be seen upon increasing LAGP content. It is 

also noted that most LAGP particles are in sub-micrometer scale with some 

agglomerates as large as 3 micrometers, although BET calculations suggests particle size 

of 1-3 micrometer. More SEM images will be presented and discussed in chapter 5 to 

correlate with the mechanical properties of the films.      
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 14: Top-view SEM images  showing the surface morphologies and LAGP distribution in the LiBF4 film series 

(a) PEO; (b) LAGP20; (c) LAGP30; (d) LAGP40; (e) LAGP50; (f) LAGP60 
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3.7  Summary 

 LAGP/PEO/Li-salt composite free-standing films were successfully fabricated 

using two different salts, i.e. LiTFSI and LiBF4 with LAGP content in the range of 20-60 

wt%, which have not been reported publicly. A 20:1 and 8:1 monomer to salt ratio were 

used for LiTFSI and LiBF4 series, respectively.  

Based on XRD and DSC results there appears to be no significant change in the 

crystallinity of the host polymers with increased LAGP addition. The consequence of 

having no change in the amorphous content of the lithiated polymers is that the 

conduction through the polymer should be relatively the same. 

For both salt compositions, adding lithium salt increased the melting 

temperature of PEO. In LiBF4 series, the proportions of LAGP has slightly reduced the 

melting temperatures of the lithiated polymers; while in LiTFSI series, the proportions of 

LAGP has slightly increased the melting temperatures of the lithiated polymers. The 

average melting temperature range for LiBF4 films is 53.67o – 60.23o Celsius. The 

average melting temperature range for the LiTFSI films is 45.52o – 56.46o Celsius. LiTFSI 

has a greater plasticizing effect on PEO than the LiBF4 salt.  

Top-view micrographs of the as-prepared composite films showing LAGP fine 

particles relatively homogeneously distributed throughout PEO matrix. The size of LAGP 

particles are in the range of submicron to a few micrometers.    
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4 Ionic Conduction of the Composite Films 

4.1  EIS Results Using Stainless Steel Electrodes 

  Preliminary studies and literature review were performed prior to 

deciding what materials would be used as the blocking electrodes for the polymer 

electrolyte composites to perform electrochemical impedance spectroscopy (EIS). LAGP 

composites studied by other groups utilized stainless steel as their blocking electrodes 

by means of compression fixture or coin cell batteries. The benefit of using a material 

such as stainless steel is that it is an inert material and as a result, can simplify the 

analysis of the electrolyte. Ideally, the only characteristics that should be detected are 

ohmic impedance from electrolyte.  

Practically, in heterogeneous electrochemical systems, equipment inductance, 

contact resistance, electrolyte conduction, double layer charging, and charge transfer 

resistance can be detected by EIS. Without performing other in-situ experiments, 

information collected by EIS can be complex. For instance, by placing an electrolyte 

between two current collectors, the system can give rise to a double-layer charging and 

electrode/interface polarization in addition to electrolyte conduction. When the 

interface impedance exceeds the bulk electrolyte impedance and the characteristics 

frequency overlaps, the electrolyte impedance information can be completely 

overshadowed.  
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In this study, LAGP20, LAGP30, and LAGP70 - LiBF4 films were tested against 

stainless steel electrodes. The EIS spectra obtained from the LAGP20 films at 25o C and 

80o C can be seen in Figure 15 (a) and (b). The intercept at the high frequencies usually 

associated with the total resistance from electrolyte. However, as seen in Figure 15 (a), 

at 25 oC, the high interface impedance up to 100 kohm overshadowed the electrolyte 

impedance which should be in the kohm range. When the temperature increased above 

the melting point of the polymer, e.g. 80o C, the high frequency intercept becomes 

visible and the electrolyte resistance can be readily determined, which is 108 ohm.  

Another EIS experiment using the composite membranes of different thicknesses 

vindicated further the occurrence of the overlapping between electrolyte impedance 

and interface polarization impedance at low temperatures. In this experiment, two 

stainless steel coin cells were fabricated using the same LAGP30/PEO/LiBF4 electrolyte 

but different number of layers. The thicknesses of the two electrolytes are 415 microns 

and 127 microns, respectively. Both films were annealed at 80o Celsius for 1 hour prior 

to cooling down to 25o Celsius for 1 hour. After measurements were taken, both coin 

cells were de-crimped to confirm that the multilayers of electrolyte were indeed melted 

to form one continuous layer. As seen in Figure 16, despite being more than 3 times 

thicker than the 127 micron electrolyte, the first non-zero intercepts in Nyquist plot of 

the 415 micron thick electrolyte only differed by a fraction of the 127 micron 

electrolyte. The impedance value does not reflect linear relationship with the electrolyte 

thickness indicated that the values from the semicircle originated both from electrolyte 

and interface impedances.  
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(a)  

(b)  

Figure 15: Nyquist impedance plot of LAGP20/LiBF4 Composite obtained at (a)  25o Celsius (b) 80o Celsius using two 

stainless steel electrodes 
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Figure 16: Nyquist Plot of LAGP30/LiBF4 Composite Electrolytes of two different thickness, 127 microns and 415 

microns, using stainless steel electrodes 

Although the spectra can be fitted using equivalent circuit, from which the 

electrolyte resistance and conductivity can be derived, relatively large errors may be 

resulted. A summary of the conductivities of LAGP/PEO/LiBF4 films tested using stainless 

steel electrodes is presented in Figure 17. The results carried out from these 

experiments were not fruitful or accurate when compared against literature[84]. It is 

submitted that stainless steel is not an ideal choice of electrode to ascertain the 

impedance of the studied composite electrolyte systems, especially at temperature 

below the polymer melting point. 
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Figure 17: Arrhenius conductivity plot of LAGP/PEO/LiBF4 samples obtained using stainless steel. 

4.2  EIS Results Using Lithium Electrodes 

In addition to stainless steel, different electrode/substrates such as aluminum, 

copper, gold, silver, and lithium were assessed to see if the electrolyte impedance could 

be de-coupled from the interfacial impedance. Silver, gold, and lithium yielded results 

that were sufficient for decoupling at room temperature, which is due to the better 

interfacial contact with the electrolyte film. Either gold or silver, to be used as blocking 

electrodes, needs to be sputtered or pasted onto the electrolyte. When annealing 

samples above the melting point of the polymer, samples began to irreversibly short-

circuit. Therefore, lithium foil was chosen to characterize ionic conduction of the 

composite films.  

Lithium is stable against lithiated PEO from at least 0 to 4.25 Volts and PEO may 

serve as a buffer layer between the LAGP and lithium foil [44], [85], [108]. In this study, 
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3/4” electrolyte samples were assembled in an argon filled glove box between two 5/8” 

lithium foils in a CR2032 coin cell configuration shown in Figure 18. 

 

Figure 18: A Schematic of Coin Cell Assembly For Electrochemical Characterization 

For the LiBF4 films, samples were annealed at 80o C for 1 hour prior to cooling 

them, EIS measurements were taken after each new temperature was reached and held 

isothermally for at least 1 hour using an AC voltage of 100 mV with or without DC 

polarization. In some samples, thermal treatment was conducted to investigate the 

stability of the composite electrolyte against lithium foils.  
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EIS carried out on the LAGP20/LiBF4 film at 35oC using an AC voltage of 100 mV 

and DC voltages ranging from 0 to 750 mV are shown in Figure 19. Compare with the 

spectra obtained using stainless steel electrodes, the EIS spectra using lithium foils 

become well separated two semicircles corresponding interfacial polarization 

impedance and ionic conducting impedance in the electrolyte. Moreover, the interface 

impedance reduces to a few thousand ohms, which is two orders of magnitude lower 

than using stainless steel electrodes.  Further, the influence of the dc polarization of the 

EIS was studied.  As DC voltage increased from 0V to 700mV, it is clear that resistance 

from the low frequency semicircle reduces, confirming it originates from the electrode 

kinetic polarization. By contrast, the resistance in the high frequency semicircle does not 

change with the polarization voltage, confirming its originating from electrolyte.   

 

Figure 19: EIS of the LAGP20/LiBF4 film obtained at 35oC using an AC voltage of 100 mV and DC voltages ranging from 

0 to 750 mV. 
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The impedance spectra observed at temperatures between 55 and 80 oC are 

presented in Figure 20. It is seen that both electrolyte resistance and interface 

polarization resistance rapidly reduce with increasing the temperatures. The electrolyte 

impedance semicircle become incomplete with the fast ionic movement and hence high 

frequencies. The electrolyte resistances were taken from the intercept/minimum points 

for conductivity calculation.     

 

Figure 20: EIS of the LAGP20/LiBF4 film obtained  from 55o to 80o Celsius with no DC polarization 

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900

Z
"

Z'

LAGP20/LIBF4/PEO Impedance At 55C

0

20

40

60

80

100

0 50 100 150 200 250 300

Z
"

Z'

LAGP20/LIBF4/PEO Impedance at 65C

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

Z
"

Z'

LAGP20/LIBF4/PEO Impedance At 80C



  

59 
 

To investigate the stability of the electrolytes towards lithium electrodes and 

thermal treatment, the sample was cycled between 25 oC and 80 oC. Figure 21 shows 

the EIS spectra recorded at 80 oC at the second, third and fourth thermal cycles.  The 

impedance remains relatively unchanged at the high frequency intercept, confirming 

the stability of electrolyte against thermal cycles. Also the electrolyte passing through 

the melting temperature, the shape and dimension remain unchanged. The low 

frequency semicircle increased about 30% confirming occurrence of some reactions 

between the electrolyte and lithium at the interface, which may result from the 

instability of LAGP towards lithium.   

 

Figure 21: EIS spectra of LAGP20/LiBF4 film at 80oC at the 2nd, 3rd, and 4th thermal cycles. 
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hours. A few select samples were measured at 45o Celsius months after the initial time 

study.  It is seen that the impedance continuously increased over the extended periods 

of time. This phenomenon was observed in all the LiBF4 films containing different LAGP 

compositions. In the later discussion, the values obtained at  45oC 20 hour was used for 

conductivity calculations for all the different compositions. An LAGP20/LiBF4 film with a 

time study of the impedance can be seen in Figure 22.  

 

Figure 22: EIS spectra of LAGP20/LiBF4 film at 80 oC as a function of time 
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cycles between 25 and 80 oC. As seen in Figure 23, the resistance decreases from 
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to melt and PEO are in the transition from semi-amorphous state to viscous phase, 

which may take time to reach equilibrium.  

 

Figure 23: EIS spectra of LAGP20/LiBF4 film at 45 oC at the 2nd, 3rd, and 4th thermal cycles. 
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4.3  Ionic Conductivity Characteristics of the Composite Films 

4.3.1  Lithiated Polymer Ionic Conductivity 

   

(a)                                                                          (b) 

 

(c)                                                                          (d) 

Figure 24: Arrhenius Conductivity Plots of (a) PEO/LiBF4 (8:1) film; (b) PEO/LiTFSI (20:1) film; (c) PEO/LiBF4 (4.5:1) 

[109]; and (d) PEO/LiTFSI (20:1) film [108] 
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Figure 24 (a) and (b) present the conductivity as a function of temperature, in 

Arrhenius plot, obtained from PEO/LiBF4 and PEO/LiTFSI, respectively. Apparently, the 

conductivity values at each temperature and the changing trend of conductivity with 

temperature are slightly different between the two systems. PEO/LiTFSI conductivities 

are consistently higher than PEO/LiBF4. For instance, the conductivities at 25oC are 

1.2x10-6 S/cm and 3.83x10-6 S/cm, and values at 80 oC are 2.66x10-4 S/cm and 6x10-4 

S/cm for LiBF4 film and LiTFSI film, respectively.  

Figure 24 (c) and (d) show the public results of the two systems. When 

comparing with Figure 24 (d) in which LiTFSi/PEO also using a 20:1 EO:Li molar ratio, our 

conductivities is in close agreement with literature [110]. In Figure 24 (c), the LiBF4/PEO 

system used a 4.5: 1 molar ratio of EO:Li yielding a ionic conductivity of 1-2 x 10-6 S/cm 

[107], which corroborate well with our conductivity values although the EO: Li is 

different from ours. 

In consideration of lithium ion concentration, large anions can easily dissociate in 

the PEO matrix and set off free lithium cations. Hence, the bulkier the anion of the 

lithium salt, the higher is the ionic conductivity. The radii of BF4
− and TFSI− are reported 

0.24, and 0.326 nm, respectively. It is reported that LiTFSI’s anion has one of the lowest 

ionic association strengths; in stark contrast with LiBF4 which has a higher relative ionic 

association strength, as demonstrated in glyme and acetonitrile [111]–[113]. The 

melting point of PEO/LiTFSI is lowered than that of PEO/LiBF4, indicating a high salt 

dissociation level owing to the presence of a strong electron withdrawing group 
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(NSO2CF3). Higher concentration of effective mobile lithium ion contribute to the higher 

conductivities in LiTFSI/PEO electrolyte.   

In PEO matrix, Li+ lithium ions are mostly coordinated by the ether oxygen atoms 

on a segmental PEO chain due to the high donor number of EO. It is well accepted that 

lithium ions transport via intrachain or interchain hopping with the processes of 

breaking/forming lithium–oxygen (Li–O) bonds. The long-range displacement of lithium 

ions is the result of the gradual replacement of the ligands for the solvation of Li as well 

as the continuous segmental rearrangement. Therefore, in consideration of mobility, 

effective lithium ion transport mobility in the PEO relies on the local relaxation and 

segmental motion of the PEO. On the one hand, addition of a Li salt to PEO can reduce 

the crystallinity of PEO. An anion with a well delocalized negative charge and low 

basicity is preferred for improving the ion conductivity. The high flexible TFSI group in 

LiTFSI can act as plasticizer in PEO, which significantly reduce the crystallinity of PEO, 

resulting in high mobility of lithium ion and hence conductivities compared with LiBF4 in 

PEO.  

In Figure 24 (a) and (b) it is also seen that as the temperature increases, the 

activation energies are changed occurring in the vicinity of the melting temperature 

which are marked in the figure. The transition occurs at lower temperature in 

PEO/LiTFSI films. The LiTFSI films closely follows Vogel-Tamman-Fulcher (VTF) trend but 

the LiBF4 film exhibits two Arrhenius behavior with a clear transition temperature.  At 

low temperatures (below the melting point), LiBF4/PEO has an activation energy of 

91.32 kJ/mol and LiTFSI/PEO activation energy is 117.8 kJ/mol. At high temperatures 
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(above the melting point), the activation energies are reduced to 16.22 kJ/mol and 

25.96 kJ/mol for LiBF4/PEO and LiTFSI/PEO, respectively. 

At temperatures lower than melting point, the higher degree of crystallinity of 

PEO leads to lower ionic conductivities and higher activation energy. The prominent 

lithium ion transport occurs in the amorphous phase of PEO which is dominant at 

temperature above melting temperature. The difference in observed behavior in LiBF4 

and LiTFSI films can be attributed to the different crystallinity degree at low 

temperatures and their different melting temperatures as well as crystalline to 

amorphous phase transformation kinetics. In LiBF4 films high crystallinity of PEO at low 

temperatures corresponds to lower conductivities and higher activation energy. The 

narrower melting window (between starting to maximum melting point determined by 

DSC) in LiBF4 film suggests rapid and close to instantaneous phase transformation. As a 

consequence, distinguished transition point can be detected from crystalline conduction 

regime to amorphous conduction regime. LiTFSI/PEO exhibits plasticized system which 

follows the VTF trend with no clear transition between the two regimes.  



  

66 
 

4.3.2  With Addition of LAGP 

Figure 25 (a) and (b) present Arrhenius plots of LAGP/PEO/LiBF4 and 

LAGP/PEO/LiTFSI composite films of different LAGP content. It is seen that with 

increasing proportion of weight percent ceramic the ionic conductivities of the 

composite films decrease for both Li-salt systems. The LiTFSI films have a marginal 

decrease in ionic conductivity throughout the experimental temperature range with the 

ceramic addition. In comparison, the ionic conductivities of LiBF4 composite films 

reduced dramatically with LAGP content increasing from 20wt% to 60 wt%. At low 

temperature regime the reduction is 1-2 magnitudes but at high temperature regime 

the reduction is less than one magnitude.   The activation energies are estimated in the 

two different temperature regime. Activation energy is 98-124kJ/mol at low 

temperatures and 27-35 kJ/mol at high temperatures, which is close to the electrolyte 

with no LAGP addition.  
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(a)  

(b)  

Figure 25:Arrhenius Conductivity Plot Summary of (a) LAGP/LiBF4; (b) LAGP/LiTFSI PEO-based Composite Films 
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In general, the ceramic fillers are classified into two categories: active and inert. 

The active fillers refer to those intrinsic lithium ion conductors which include Li3N, 

Li7La3Zr2O12 , LAGP, and Li1.0GeP2S12 (LGPS) .  The inert fillers refer to those having no 

lithium ion conduction in bulk like Al2O3, SiO2, MgO, TiO2 etc.  In all cases, the particle 

size, amount, and the characteristics of fillers are the key factors to alter the  

electrochemical properties of the polymer electrolytes.  

It has been constantly reported the addition of a ceramic filler into the PEO-

based electrolyte can improve the ionic conductivity. It is generally believed with the 

addition of ceramic filler, whether active or inert, the amorphous phase of PEO is 

increased and the recrystallization of PEO is also hindered. In terms of active fillers, 

there is faster lithium ion transport in the filler than in the PEO, a phenomenon which 

can contribute to improved conductivity. When utilizing inert fillers, those with nano-

sized with appropriate surface groups and limited weight percentage can increase the 

conductivities.  The enhancement is attributed to  interactions among the surface 

groups of the ceramic particles, polymer segments, and the lithium salt anions in terms 

of percolation behavior when using nano-TiO2 or Lewis acid –base interaction when 

using Al2O3 or SiO2. 

Zhao et al incorporated into PEO matrix using four LAGPs with different particle 

sizes. The results showed that LAGP in the weight percent of 10 wt% to 25 wt% all have 

higher conductivities compared to PEO-only electrolyte, among which 20wt% 1μm-LAGP 

exhibits the maximum conductivity and 58% increase[85]. The improvement was 

attributed to two reasons. Firstly, LAGP suppress polymer crystallization evidenced by 
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the reduction of both glass transition temperature and melting temperature. Secondly, 

LAGP has a high conductivity (> 10-4 S/cm) proving more mobile lithium ions and extra 

lithium ion transport pathways at the LAGP particle inside and surface. 

The particle size of LAGP is in submicron to micrometer range. Adding 20-60 wt%  

low-conductive relatively large LAGP will have the following negative impacts on lithium 

ion transport in PEO. As mentioned before, adding ceramic filler into PEO can not only 

reduce the crystallinity of PEO, but it also reduces the segmental motion of polymer 

chains unless its passing over the melting temperature [79]. This is the possible reason 

for the larger conductivity decrease at the low temperatures than high temperatures. 

Secondly, adding ceramic filler will affect the net volume portion of PEO. In this 

research, 20 - 60 wt% of LAGP was added into PEO, resulting in up to 50 % of PEO 

volume reduction. The less conductive LAGP cannot provide any pathway through the 

LAGP bulk.  Thirdly, although the LAGP particle size is milled down a few hundred 

nanometers, it appears insufficient to provide percolated pathways at the interphase 

between the fillers and the polymer. Previous studies suggest that the percolation 

enhancement usually occur with the particle size of the inert filler no more than a few 

tens of nanometers. LAGP has less effectiveness to enhance than Al2O3 and SiO2 

nanoparticles because LAGP used is submicron to micron sized, rendering less interfacial 

region.  The LAGP60/LIBF4 film conductivity at low temperature regime suggests that 

the conductivity is dominant by the loose grain interface. Fourthly, the main polymer 

chain dynamics governing the ionic transport is not significantly affected when filler 

particles do not interact directly with polymer chains. Since LiFTSI/PEO is more facile for 
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lithium transport than LiBF4/PEO, as discussed in the previous section, addition of filler 

has less impact in LiFTSI/PEO. 

4.4 Summary 

 Preliminary studies of LAGP films were carried using stainless steel electrodes 

according to literatures. Despite using similar characterization methods, the EIS results 

for LAGP composite films could not be replicated. Upon further studying of 

characterization methods, it was determined that conductivity values calculated can 

fluctuate widely depending on the interface of the electrolyte and electrodes.  

Lithium electrodes were chosen to use as the redox potential of PEO is greater 

than 4 volts and EIS studies can properly distinguish the conduction impedance of the 

electrolyte from the electrode interface impedance. With the help of polarization and 

time interface studies it was determined that the high-frequency semi-circle in the 

Nyquist plot represents the bulk resistance of the electrolyte.  

When comparing the lithiated PEO, i.e. consisting of either LiBF4 or LiTFSI, the 

conductivity values are in agreement with literatures. When LAGP is added to the 

lithiated polymers, the conductivities of LiBF4 films drastically decrease. For the LiTFSI 

films that were blended with LAGP powder, the ionic conductivity decreases in a 

downward trend but substantially less than LiBF4 composite films.  

Ideally, conductivity of PEO electrolyte can be increased with compositing with 

highly conductive LAGP. Although the amorphous phase is increased, the large portion 

of the volume is occupied by ceramic filler which could not provide fast transport 
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pathways due to the large grain size.  It is suggested that sintered LAGP and or nano 

conductive LAGP should be utilized in the future.    
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5  Mechanical Characterization of the Composite Films 

Mechanical testing of electrolyte films is still relatively new territory in the Li-ion 

battery field. Up to date, there is no extensive report of the mechanical properties of 

polymer electrolytes and composite electrolyte. 

In the sparse reported works, there are a variety of testing conditions and 

equipment used.  Without agreed testing procedures or standards, the confirmation of 

elastic moduli, yield strength, or ultimate strength can be rather difficult, especially 

when there is limited data available. Further, testing details such as strain rate, 

geometry of the samples, as well as the environmental conditions were seldomly 

reported. For instance, we found that moisture has significant impact on the mechanical 

properties of the LiTFSI-based films.  Ideally, different strain rates will have the same 

measured elastic moduli, but the ultimate strengths and strain to failure can invariably 

change [62, pp. 564–567]. Just as important to choose a set of typical strain rates, it is 

necessary to testing several batches of the same composition to ensure values reported 

are accurate and reproducible.  

 In this study, the mechanical properties of the series composite membranes 

were performed in a well-controlled environment and consistent parameters for 

comparison. The composite films were stored for at least two weeks in an argon filled 
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glove-box prior to testing.  All samples were punched out and tested in a dry-room that 

regularly maintained a moisture level below 100ppm by weight or below 0.8% relative 

humidity. The dry room temperature was maintained at 21o Celsius. All samples were 

stretched at a rate of 0.1 mm/s or 1.05% strain/s and measured at a rate of 15 Hz. 

For this study, ceramic compositions used for LiBF4/PEO films was 20 – 60 weight 

percent. Two batches of LAGP30 and LAGP60 were made to ensure results were 

repeatable. Ceramic compositions used for LiTFSI/PEO films was 20, 30, 50, and 60 

weight percent. Two batches of LAGP20 and three batches of LAGP50 were synthesized 

to see if the compositions were stable. 

5.1 Experimental Aspects for Mechanical Testing  
 

Films prepared for mechanical testing were punched with a ASTM D638V die, an 

engineering drawing can be seen in Figure 26. A sample image of a pristinely punched 

D638V LAGP50/LiTFSI tensile sample is shown in Figure 27 (a). Samples were punched in 

a way that the gage length was a constant thickness, but due to the orientation of the  

casting dishes, the samples get sequentially thinner with each new sample. An image of 

a punched film with thickness indicator bars can be seen in Figure 27 (b). 

The thickness of the punched films was measured using a Mitutoyo 293-185 

micrometer (see Figure 28). The micrometer has a calibrated accuracy of 1 micron and a 

flatness of 300 nanometers.  Samples used in testing had an average thickness of 58-75 

microns depending on the area punched and the composition. Any samples with a 
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deviation of more than 5 microns across the length of the gage length was not used in 

experiments. 

 

Figure 26: An Engineering Drawing and Specs of ASTM Standard Used 

  

Figure 27: LAGP50/LiTFSI Composite Tensile Sample Punched From a D638V Die 

The tensiometer used to stretch the polymer films was a custom translation 

stage purchased from Bruker. A NIST calibrated 2.5 pound MDB load cell purchased 

from Transducer Techniques. The equipment and software used to collect data was an 

NI PXI-1052, NI PXI-8360, NI SC-2345, NI- SCC-SG24, M Series PXI-6251 DAQ card, and 

LabVIEW.  An image of the LabVIEW GUI used and a composite film under stretching in 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiNq6iftqbaAhXQ3FMKHaNMC5IQjRx6BAgAEAU&url=https://www.researchgate.net/figure/ASTM-dog-bone-punch-D-638-V-and-the-dimensions_fig2_236924185&psig=AOvVaw3DBZpyITpW-3T9hgl1EsVg&ust=1523130713357493
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the tensiometer can be seen in Figures 29 (a) and Figure (b). It need to mention the 

system has the maximum strain range of 550%.  

 

Figure 28: Mitutoyo 293-185 micrometer 

 (a)  

(b)  

Figure 29: (a) the extensometer used to stretching LAGP/PEO/Li-salt Composite Film; (b) The LabVIEW GUI Used to 

Control The Tensiometer and Record Data  
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5.2 Stress-Strain Behavior of Pure PEO films 

 As a reference data, mechanical tests was carried out on unlithiated PEO films. A 

stress vs strain plot of the solution cast PEO films can be seen in Figure 30. The average 

elastic moduli was calculated 332.5 MPa from the three samples used. For instance, spin 

cast and compressed PEO pellet of unknown molecular weight)  had elastic moduli 

values between 290-300 MPa using atomic force microscopy(AFM) [114], [115]. Because 

the authors did not provide the information of the molecular weight, it is difficult to say 

if the mechanical properties can be accurately compared to our results. It is well known 

that mechanical properties of polymers are affected by molecular weight[62, pp. 557–

607], [116]–[118]. Lee, using the fluorescent decay of a photo-isomerizing dye [102], 

determined the elastic moduli of 323 MPa for the spin cast PEO films with 600,000 

molecular weight. The moduli values reported by Lee is close to the values that we 

calculated. The ultimate strength of PEO was determined 13.7 MPa. All PEO has a strain 

over 550% at the experimental condition. 

 

Figure 30: Stress vs Strain Plot of 400,000 Molecular Weight PEO 
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5.3 Mechanical Characteristics of LAGP/PEO/LiBF4 Composite Films 

 The stress-strain plots obtained from PEO/LiBF4 with and without LAGP, i.e. 

LAGP0, LAGP20, LAGP30, LAGP40, LAGP50, and LAGP60, composite films can be seen in 

Figure 31 (a-f). Please note at least six specimens from the same batch were tested at 

each composition.   

Seen from Figure 31, the ultimate strength is reduced from 13.7MPa to 12.2 MPa with 

the addition of LiBF4 into PEO. With increasing proportions of LAGP, the ultimate 

strength of the composite films remains relatively unchanged up to LAGP 50 wt%.  For 

LAGP50 and LAGP60 films, the ultimate strength slightly of many specimens reduced 

with the minimum value of 10MPa. The strain to failure drastically decreases. For 

LAGP20 and LAGP30, the failure strain is 450% or higher. For LAGP40, the failure strain 

is reduced to the range of 241-462%. When the LAGP content is raised to 50wt% and 

60wt%, the failure strain decreased dramatically to 26-73% and 14-27%. All values 

obtained from different samples with same or different batch were analyzed 

quantitatively in detail, which will be discussed in the following.   
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(a) 

 

(b) 

 

(c) 

  

(d) 

 

(e) 
 

(f) 

Figure 31: The stress-strain plots obtained from PEO/LiBF4 series with LAGP weight percent from 0% to 60%. (a) 

LAGP0, (b) LAGP20, (c) LAGP30, (d) LAGP40, (e) LAGP50, and (f) LAGP60. 
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Figure 32(a) presents the change in the average elastic moduli as a function of 

weight percent content of LAGP. The addition of LiBF4 salt initially causes a drop in both 

the elastic moduli and ultimate strength of PEO. The elastic modulus changes from 

332.5 MPa to 230.6 MPa. The benefit of adding LAGP filler is seen that the elastic 

modulus continuous increased with the amount of LAGP weight percent, which is close 

to a linear relationship. For LAGP60/LiBF4 films, the average elastic moduli is 472.7 MPa, 

which is over 200% of the electrolyte film with no ceramic filler.   

Figure 32(b) present the change in the average ultimate strength as a function of 

weight percent content of LAGP. Apparently, the average ultimate strength of PEO 

remains relatively unchanged, within the instrumental error, at the value of 12 MPa 

with LAGP addition up to 50wt%. At LAGP 60wt% the average ultimate strength is 

reduced to 11.3MPa. Further adding of LAGP beyond 60 wt% should be done with 

caution, which may lead to continuously/dramatic reduce in terms of the ultimate 

strength.    

With the increased addition of LAGP to LiBF4 films, the probability for failure 

under elongation increases and the amount of strain to failure decreases. Figure 32(c) 

present the change in the failure strain as a function of weight percent content of LAGP, 

in which the reference line at on the y-axis of the plot represents the strain limits of the 

instrument. Within the instrumental limit of 550% elongation, failure begins to observe 

with LAGP30 films, but only 3 out of 13 samples fails. However, as the LAGP composition 

reaches 40 weight percent or higher, all samples break. For LAGP40 samples the average 

elongation to break was over 300 percent. Samples that were composed of more than 
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40 percent LAGP had a large decrease in the amount of strain that it could endure 

before breaking. LAGP50 and LAGP60 samples all broke in less than an average of 70 

percent strain. LAGP60 samples broke after only being elongated as little as 30 percent. 

Experimentally, in this study were unsuccessfully at achieving free standing composite 

films with LAGP over 70wt% in the PEO/LiBF4 series.    
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 (a)  

(b)  

(c)  

Figure 32: Mechanical properties of the composite films as a function of LAGP weight percent in the LiBF4 series. (a) 

average Elastic modulus; (b) average ultimate strength; (c) statistic failure strain (the straight line is the instrumental 

limit)    
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5.4 Mechanical Characteristics of LAGP/PEO/LiTFSI Composite Films 

For the LiTFSI series, the stress-strain plots of LAGP0, LAGP20, LAGP50, and 

LAGP60 composite films can be seen in Figure 33 (a-d). Addition of LiTFSI into PEO has 

reduced the ultimate strength from 13.7MPa to less than 2MPa and the elastic moduli 

decreased from 332.5 MPa to 23.2 MPa, consistently confirming the plasticizer effect of 

LiTFSI.   

Again, with any addition of LAGP, the elastic moduli increases. The average 

elastic moduli for LAGP0, LAGP20, LAGP50 and LAGP60 films are 23.2MPa, 71.4MPa, 

101.6MPa, and  103.4MPa, respectively. The elastic modulus increases rapidly with the 

addition of filler, over 400% improvement when the LAGP is 50-60wt%. 

All the composite films with LAGP also have lower ultimate strength than pure 

PEO but close or slightly higher than PEO/LiTFSI film. It is also noticed that ultimate 

strength values of the composite films fluctuate in the range of 1.5 - 4.5MPa. The 

average ultimate strengths for LAGP0, LAGP20, LAGP50 and LAGP60 films are 1.98MPa, 

3.43MPa, 3.07MPa, and 2.30MPa. It appears than more LAGP will reduce the ultimate 

strength.   

The failure strain gradually decreases upon the addition of LAGP.  The strain to 

failure drastically decreases, similar to LiBF4 series. For LAGP20 and LAGP30, the failure 

strain is 350% or higher. When the LAGP content is raised to 50wt% and 60wt%, the 

failure strain decreased to 50-120% and 14-25%, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 33:  The stress-strain plots obtained from PEO/LiTFSI series with LAGP weight percent from 0% to 60%. (a) 

LAGP0, (b) LAGP20, (c) LAGP50, and (d) LAGP60. 

5.5  Morphological Evolution of the Composite Films Upon Stretching  

Figure 34 present a series images showing the morphological evolution from top 

view. For the LAGP less than 40wt%, the composite films exhibit deformation similar to 

the polymer matrix. Stretching of polymer along the tensile direction can be visualized. 

Further increasing the elongation, micropores form both on the surface and inside of 

the films. The pore size and density gradually increased forming crazing structure, i.e. 
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interconnected array of micropores bridged by the polymer fibers. The bridges will 

further elongate under the stress until break resulting large cracks until the fracture.     

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 34: SEM images of PEO (left) and LAGP30/PEO/LiBF4. (a) PEO unstretched; (b) LAGP30 unstretched; (c) PEO 

stretched, top view; (d)  LAGP30 stretched, top view; (e) PEO stretched, side view after FIB cutting; (f) LAGO 30 

stretched, top view with micropore 
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(a)  

(b)  

(c)  

Figure 35: Top-view SEM images of stretched LAGP0/PEO/LiBF4. (a) silver streak at the necking area; (b) micropore 

at the necking area; (c) increased micropore in the center area.  
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When the LAGP composition increased to 50wt%, no clear polymer stretching 

and crazing features were observed. Instead, the “silver streaks’ initially appear (see 

Figure 35 (a), within which many micropores (see Figure 35 (b))  form instantly. 

Increasing the elongation results in rapid pore growth, crack propagation (Figure 35 (c)) 

and eventual fracture, exhibiting more brittle behavior.  

It is also noticed that in the similar necking region after stretching test,  the 

amount of microvoids and the size were very different. In LAGP 20 -40, there are smaller 

and less amounts of microvoids. Cracks may occur along the interface between ceramic 

and polymer matrix as well as at the polymer phase. In LAGP 50-60 almost all cracks 

occurs at the interface, and debonding of ceramic phase from polymer matrix were 

obvious.  

Using the feature of the FIB, cross-section morphology within selected 

composite films were investigated. Figure 36 (a-f) show the SEM images of uncoated 

LiBF4 composite films before and after tensile test. For the stretched samples, most 

cutting and imaging was taken in the vicinity of gage center area. It can be seen from 

the progression of images, that as the LAGP addition increases, the volume of the 

polymer matrix decrease. For LAGP60, there exist intrinsic internal micropores and large 

agglomerations. After stretching, the portion (number and size) of micropores increased 

significantly with increasing LAGP content. Most pores are formed in the vicinity of 

ceramic/polymer interface.    
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 36: Cross-section SEM images of LiBF4 series before (left) and after (right) tensile test  (a, b) LAGP20; (c, d) 

LAGP 30; (e, f) LAGP 60 tensile test   
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5.6 Accuracy of Equipment Used in Mechanical Testing 

The load cell used was a full bridge strain gauge calibrated for tension. To 

increase the sensitivity of the signal generated, the SCC-SG24 was used to amplify the 

signal 100 times its normal output, changing the max output voltage of the load cell 

from 20 mV to 2 volts; the nominal gain error is 1% of the measured output. The DAQ 

card utilizes a 16 bit ADC and a 1.92 mV reference was utilized when actively collecting 

data on a -10/10 volt scale. Depending on how much load is applied to the load cell the 

accuracy of the output will vary. In principle at 2.5 lbs. the measured signal should 

generate an output voltage of 2 volts where if the load applied is only 1.25 lbs. the 

measured signal will generate 1 volt. Using a 16 bit DAQ with a full range 10 volt scale 

reduces the number of bits to 15 or 32768 data points of resolution; what this translates 

to is 3.05 mV of resolution or that data can only be resolved in these intervals. Between 

the two different lithium salt film series the lowest average strength of each sample was 

0.4 Newtons and 2.7 Newtons. Approximately 0.8 Volts of excitation are produced for 

every 4.445 Newtons of applied load. The detected voltage for samples with a load of 

0.4 Newtons produces 0.072 Volts and the sample with 2.7 Newtons of load produces 

0.486 Volts of excitation.  Resolving the average resolution error of each film series 

yields: 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐿𝐼𝑇𝐹𝑆𝐼 =
0.00305

0.072
𝑋100 = 4.236% 𝑅𝑂 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐿𝐼𝐵𝐹4 =
0.00305

0.486
𝑋100 = 0.6275% 𝑅𝑂 
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It should be noted that the accuracy of the voltage readings is much higher than 

the resolution of the instruments, therefore it can be resolved that the uncertainty of 

the measurements will only come from the resolution, gain error of the amplifiers, and 

the uncertainties corresponding to the load cell. Uncertainties that would rise from the 

load cell are non-linearity, hysteresis, non-repeatability, and the effects of temperature 

drift, all of which would arise from operating in values that did not match calibration 

conditions. The uncertainty of non-linearity, hysteresis, and non-repeatability of the 

load cell is 0.05% of the readout(RO). Drift in measurement due to temperature is 5ppm 

of the RO per o Fahrenheit; a offset error of 7.2o Fahrenheit was used. The overall 

uncertainty can be determined using the following equation where the units are non-

dimensionalized into percentages [119]: 

UC = √U𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 + U𝐺𝑎𝑖𝑛

2 + (U 𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
2 + U𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠

2 + U𝑁𝑜𝑛𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦
2 + U𝑇𝑒𝑚𝑝

2 (T(oF))) 

𝑈𝐶 = √𝑈𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 + 12 + 3(. 052 ) + (. 005 ∗ 𝑇(𝑜𝐹))2 

Using the aforementioned formula, it can be approximated that the uncertainty 

of the LiTFSI composite films and LiBF4 composite films is 4.35% and 1.18% respectively. 

In conclusion, it can be said that while that the accuracy of the measurements maybe 

significantly higher, it can only be said with confidence that the samples are 95.65% and 

98.82% accurate respectively. If a measurement setup with a higher degree of certainty 

is used, the results may differ significantly when reproducing the experiment.  
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5.7 Processing Factors Affecting the Mechanical Properties  

As discussed in the previous section, the uncertainty of the LiTFSI composite 

films and LiBF4 composite films is 4.35% and 1.18%. It is, therefore, believed that any 

variation great than 5% results from the difference in specimens originated from the 

film morphological defects and the distribution of the ceramic filler. In order to identify 

these factors, a series SEM images are analyzed from both top view and side-view.   

5.7.1  Surface Morphology 

In this study, all the films were casted in a Teflon dish machined in-house. The 

roughness of the Teflon dish base will unavoidable transfer the bottom face, (side that it 

was cast on) of any casted films. As seen in Figure 37, a representative SEM image 

showing the grove pattern of the Teflon dish base introduced anisotropic surface 

morphology on the composite electrolyte film.  At the moment without additional 

experiments, it is difficult to quantitatively predict how much influence these grove ring 

morphology has on the mechanical properties of the films.  

 

Figure 37: SEM image of the back side of a  LAGP20/PEOLiBF4 Film 
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As the films were process in the quiescent environment, spherulite structure will 

form. Figure 38 (a-c) present the SEM images showing the existence of spherulite in the 

LiBF4 film with and with LAGP.  The average spherulite size is approximately 10-20 

microns. It is generally accepted that spherulite size can play an important role on the 

mechanical strength of the films. The smaller the spherulites, the larger the elastic 

moduli and yield strength is [120]. Under further observation, it can be seen that the 

cracks begin at where these spherulites connect upon elongation.  

5.7.2  Differences Between Front and Back of Films 

In this study, the films were casted in Teflon dish. Hence solvent can only escape 

from the top surface.   This processing can result the different morphology between the 

top and the bottom. On the other hand, it is occasionally observed that there are less 

ceramic particles on the top surface than those on the bottom side, especially there are 

many LAGP large agglomerate in the composite films. The large ceramic agglomerates 

usually descended faster than the solvent evaporation rate according to the established 

Stoke’s Equation. The phenomenon is more prominent at the early stage of solvent 

evaporation when the solution is less viscous. When the precipitation occurs, the top 

surface would be much different from the bottom surface, in correlation with the 

distribution of the ceramic agglomerates. More agglomerates would concentrated on 

the bottom side with non-uniform distribution. Figure 39 (a-f) present some 

representative imaging showing the difference. Top side is relatively smooth while the 

bottom side constantly contains some micropores formed either during the film 

formation or the peeling process, independent of the presence of LAGP.   
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(a)  

(b)  

(c)  

Figure 38: To-view SEM images of there exist spherulite structure in some specimens (a) LiBF4/PEO film;  (b) 

LAGP40/PEO/LiBF4 film; (c) LAGP60/PEO/LiBF4 Film 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 39: Top-view SEM images showing the morpholigical difference between the top side (left) and bottome side 

(right) of the LiBF4 series composite films ; (a, b) PEO; (c,d) LAGP20; (e,f) LAGP40   
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5.7.3 Uncommon large ceramic particles 

In some composite films, it was observed large agglomerated LAGP particles. 

Figure 40 shows an uncommon large LAGP agglomerate up to 30 micrometer occupying 

in the composite film. The size is almost the same is film thickness which was subjected 

to mechanical tests. It is no doubt the large particle size of LAGP can create a weak point 

leading to earlier fracture and failure, contributing the low ultimate strength and failure 

strain values.  

 

Figure 40: A side-view SEM image showing an uncommon LAGP agglomerate in an area in the LAGP60/PEO/LiBF4 Film 

5.7.4  Internal Ceramic Particle Size and Distribution  

As seen the Figure 31 and Figure 33, there is a distribution of elastic moduli, 

ultimate strength and failure strain for composite films of each LAGP composition.  The 
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variation is much larger in terms of ultimate strength and failure strain. Further, the 

variation is much larger in LITFSI film series.   

For instance, in LAGP50/PEO/LiTFSI films, three different batch (followed same 

fabrication processing) of samples were tested (see Figure 41). In batch 1, the ultimate 

strength is in the range of 2.5-3.5 MPa and the failure strain is 50-120%. In batch 3, the 

ultimate strength is 1.7 to 1.9MPa and the failure strain  is from 200 to the 550%. In 

batch 2, the ultimate strength 1.2 to 4.2 MPa and the failure strain is 50 -120%, but 

some specimens did not fail at the strain of 550%.  Mechanical performances from 

samples in batch 2 lie between batch 1 and 3, suggesting some areas are like those in 

batch 1 where other areas are close to those in batch 3.    
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Figure 41: Stress-strain plots of LAGP50/PEO/LiTFSI films obtained from three different batch (followed same 

fabrication processing)  
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It is hypothesized that the dramatic variation in the LAGP50/PEO/LiTFSI films 

originated from the different LAGP sizes and distribution. Therefore, the LAGPF films 

obtained from batch1 and batch 3 were subsequently analyzed with the help of FIB and 

SEM. Figure 42 (a-d) show the SEM images before and after tensile test.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 42: Side—view SEM images of LAGP50/PEO/LiTFSI films before (left) and after (right) tensile stretching cut 

with the help of FIB. (a, b) batch1; (c, d) batch 3 
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Seen in Figure 42, samples in batch 1 has fine ceramic fillers homogenously 

distributed throughout the films. Upon tensile stretching, micropores are also uniformly 

formed throughout the films and no de-bonded ceramic fillers are observed (see Figure 

42 (b)). The fine ceramic grains and homogeneity of the composite films are attributed 

to the higher ultimate strength and elastic moduli but lower strain due to the 

compositing effect.  

In contrast, samples in batch 3 has large variety of ceramic size and 

inhomogeneous distribution. Seen in Figure 42(c), on the left side there are more fine 

particles uniformly distributed. However, on the right side in the image, there are many 

up to 5 micrometer sized ceramic agglomerates and in the vicinity there are some areas 

with less or no ceramic fillers.  After stretching, the large micropores are concentrated 

in ceramic-poor areas next to the agglomerate-rich areas, and the ceramic-poor areas 

becomes much thinner indicating where the stress is concentrated. Further, it can be 

seen a few debonded large ceramic fillers next to the micropores (see Figure 42(d)). 

Consequently, those polymer matrix areas with no or much less ceramic filler contribute 

to the mechanical behavior similar to bare polymer matrix which is weaker but more 

ductile  than composite. Mechanical performances from samples in batch 2 lie between 

batch 1 and 3, suggesting some areas are homogeneous like those in batch 1 where 

other areas are less homogeneous and accumulate with many large ceramic 

agglomerates close to those in batch 3.    
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5.8  General Discussion 

There are many factors contributing to the mechanical testing results of polymer 

and ceramic/polymer composite electrolytes. Excluding any processing faults like the 

container roughness for casting and rapid evaporation of solvent upon drying, the 

intrinsic parameters related with size and shape of ceramic nanoparticles, 

ceramic/polymer phase composition, dispersion of nanoparticles, are key important.  

A better bonding between the polymer matrix and the reinforcing phase resulted 

in a higher elastic modulus and a higher strength. A large number of interface between 

polymer and ceramic filler will be beneficial. Hence, well-dispersed nanoceramics in 

polymer composite will provide increased the elastic modulus and ultimate strength. 

The inhomogeneity induced by conventional (or micron) particle/agglomerates filled 

composites need to be minimized or eliminated. 

5.9  Summary 

Pure PEO with molecular weight of 400,000 has an elastic module 332MPa and 

ultimate strength of 13.7MPa. Addition of lithium salts significantly reduces elastic 

modulus and ultimate strength. For the PEO/LiBF4 films in which EO to Li ratio is 8:1, 

elastic modulus is reduced to 230.6 MPa and ultimate strength to 12.2MPa. In the 

PEO/LiTFSI films with EO to Li ratio of 20:1, elastic modulus is significantly decreased to 

23.2 MPa and ultimate strength to 2 MPa, confirming the plasticizer effect of TFSI 

anions. 
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When LAGP is added to PEO/Li-salt films, whether LiBF4 or LiTFSI, there is an 

upward increase in the elastic moduli. When adding as much as 60 weight percent of 

LAGP to LiBF4/PEO films the elastic moduli increases as much as 200 percent. If LAGP is 

homogenously distributed into LiTFSI/PEO films, it can increase the elastic moduli by as 

much as 450 percent. For the LiBF4 composite series, the ultimate strength of the 

composite films remains relatively unchanged up to LAGP 50 wt%.  For LAGP60 films, 

the ultimate strength slightly reduced. For LiTFSI composite series, the ultimate strength 

increased to nearly 200 percent. With the increased addition of LAGP, the probability for 

failure under elongation increases and the amount of strain to failure decreases. With 

LAGP 60wt%, the failure strain is reduced to 15-50wt% depending on the lithium-salt 

system and particle distribution uniformity.  

Consistent improvement in elastic modulus and ultimate strength is achieved in 

the composite films when the fine LAGP particles are homogenously distributed in the 

polymer matrix. In this study, it is constantly observe LAGP agglomerates in the 

composite films with LAGP composition great than 50wt%. The phenomenon becomes 

more evident in the LiTFSI series, resulting in non-uniform distribution and hence 

reduced mechanical properties. Care must be taken in the present casting procedure 

without further modification.



101 
 

6  Conclusion

This research is to systematically investigate a series of ceramic/polymer lithium-

ion conducting composite electrolytes for potential application to all solid state lithium-

ion batteries. The materials selected for study is the Li1.4Al0.4Ge1.6(PO4)3 /lithiated 

polyethylene oxide (LAGP/PEO) with two different lithium salts, LiBF4 and LITFSI.  

A comprehensive review of literature of traditional and novel electrolytes was 

conducted and summarized. Based on the past work done, LAGP was synthesized using 

a solid solution reaction. The crystallinity of the as-synthesized LAGP purity was verified 

with XRD measurements. The ionic conductivity of sintered LAGP pellets was 1.72 x 10-4 

S/cm and the conduction activation energy was 29 kJ/mol which is in line with most of 

the reported values.  

Free-standing composite PEO/LAGP/Li-salt electrolytes were fabricated using the 

casting approach. The processing was optimized in consideration of solvation, casting, 

and evaporation. The selected component include 400,000 molecular weight PEO and 

two different lithium salts, i.e. LiBF4 and LiTFSI. For LiBF4 composite films with EO:Li (in 

LiBF4) ratio of 8:1 and 0 – 60 weight percent compositions of LAGP were fabricated. For 

LiTFSI composite films with EO:Li (in LiTFSI) ratio of 20:1 and 0, 20, 30, 50, and 60 weight 

percent compositions of LAGP were fabricated.  
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For electrochemical characterization, it was determined that stainless steel and 

was inappropriate due to the large interface impedance overlapping/overshadowing the 

electrolyte conduction information. With the help of symmetric cells using lithium foils, 

reliable conductivities of the composite electrolyte films were determined in the 

temperature range of 25oC to 80oC. When LAGP is added to the PEO/LiBF4 films, 

conductivity drastically decreases. For the LAGP/PEO/LiTFSI electrolyte films, the ionic 

conductivity decreases in a downward trend, but substantially less than LiBF4 composite 

films. It is suggested that nano conductive LAGP should be utilized in the future.    

Lastly, mechanical testing was carried out on the compositions using a novel 

testing system low humidity conditions at a constant strain rate of 1.05%. The elastic 

moduli, ultimate strength, and failure strain of the composite electrolyte films were 

systematically investigated. The LAGP/PEO/LiBF4 composite films increased elastic 

moduli as much as 200 percent without any decrease in ultimate strength. For LiTFSI 

films, when the LAGP was homogenously distributed LiTFSI/PEO films, it can increase 

the elastic moduli by as much as 450 percent and the ultimate strength nearly 200 

percent. With the increased addition of LAGP, the probability for failure under 

elongation increases and the amount of strain to failure decreases. With LAGP 60wt%, 

the failure strain is reduced to 15-50wt% depending on the lithium-salt system and 

particle distribution uniformity.  

When LAGP is not homogenously distributed, the mechanical properties can 

fluctuate widely and ultimate strength is lowered. It is more challenging to maintain a 

homogenous distribution in the PEO/LiTFSI based films. Care much be taken in the 
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present casting procedure without further modification such as the use of another 

additive or surfactant.  

Based on results found in our experiments, we may have discovered the nature 

of LAGP in regard to its influence on ionic conductivity. In appropriate composite 

composition, LAGP fillers can enhance the elastic modulus and ultimate strength of  

electrolyte membrane without sacrificing the strain-to failure, suitable to free-standing 

fabrication and flexible batteries.  The electrochemical performance and thermal 

properties of the composite membranes are affected but not significantly when 

appropriate component is selected for the composite membranes. The aforementioned 

findings suggest that of the LAGP/lithiated composite electrolytes have potential 

applications to flexible all solid-state lithium-ion batteries. 
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