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Abstract 

 

Scheiman, Kevin S.  M.S. Department of Physics, Wright State University, 2018.  A 

Parallel Spectral Method Approach to Model Plasma Instabilities.  

 

The study of solar-terrestrial plasma is concerned with processes in magnetospheric, 

ionospheric, and cosmic-ray physics involving different particle species and even particles 

of different energy within a single species.  Instabilities in space plasmas and the earth’s 

atmosphere are driven by a multitude of free energy sources such as velocity shear, gravity, 

temperature anisotropy, electron, and, ion beams and currents.  Microinstabilities such as 

Rayleigh-Taylor and Kelvin-Helmholtz instabilities are important for the understanding of 

plasma dynamics in presence of magnetic field and velocity shear. 

 

Modeling these turbulences is a computationally demanding processes; requiring large 

memory and suffer from excessively long runtimes.  Previous works have successfully 

modeled the linear and nonlinear growth phases of Rayleigh-Taylor and Kelvin-Helmholtz 

type instabilities in ionospheric plasmas using finite difference methods.  The approach 

here uses a two-fluid theoretical ion-electron model by solving two-fluid equations using 

iterative procedure keeping only second order terms.  It includes the equation of motion 

for ions and electrons, the continuity equations for both species, and the assumption that 

the electric drift and gravitational drift are of the same order.  
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The effort of this work is to focus on developing a new pseudo-spectral, highly-

parallelizable numerical approach to achieve maximal computational speedup and 

efficiency.  Domain decomposition along with Message Passing Interface (MPI) 

functionality was implemented for use of multiple processor distributed memory 

computing. The global perspective of using Fourier Transforms not only adds to the 

accuracy of the differentiation process but also limits memory calling when performing 

calculations.  An original method for calculating the Laplacian for a periodic function was 

developed that obtained a maximum speedup of 2.98 when run on 16 processors, with a 

theoretical max of 3.63.  Using this method as a backbone for parallelizing the RT-KH 

solution, the final program achieved a speedup of 1.70 when calculating only first order 

terms, and 1.43 when calculating up to second order.   
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Chapter 1 

Introduction 

Plasmas in general make up most of matter in the universe.  As a result, there are many 

different categories of plasmas, ranging from solar, to interstellar, to atmospheric.  A sub-

branch of space plasma is the Earth’s ionosphere – the region of Earth’s atmosphere that is 

ionized.   

 

The abundance of plasma in vast region around the earth has a great influence on 

communications: both surface based and surface-to-space.  As a result, the understanding 

of the physics principles of this plasma is a topic of constant study.  Since experimental 

setups for plasmas are costly endeavors, computational approaches are a far more common 

means of analyzing plasma behavior.  However, programs capable of such simulations tend 

to be rather cumbersome due to the sheer volume of calculations being performed and large 

variation in spatial and temporal scale of plasma processes.  A concerted effort has been 

made to optimize the process beyond simple limitations to memory storage.  The need for 

a faster, more accurate means of modelling is discussed in the present work.   
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1.1 Ionospheric Plasmas 

 

Earth’s ionosphere – ranging from 80 km (50 miles) to 800 km (500 miles) – is an 

atmospheric region encapsulating a large volume of space around the earth and within the 

magnetosphere.  The reason for this special categorization is that this region is highly 

populated by electrically charged particles.  Light from the Sun – specifically ultraviolet 

and high x-rays – bombards Earth’s upper atmosphere and excites electrons to leave their 

accompanying atom, resulting in an ionized gas called a plasma.   

 

The concentrations of plasmas vary throughout the ionosphere, being separated between 

the D, E, and F layers, with respect to altitude.  Each layer has different concentrations of 

electrons due to the elements present within it: heaviest being the lowest.  These layers lie 

in the already familiar atmospheric layers, as shown in Figure 1.1, but are not strictly 

defined as their altitudes change throughout the day and between seasons.  Since the Sun 

is a primary contributor to this excitation, the characteristics of the ionosphere change from 

day to night.  During the night, cosmic rays ionize the ionosphere far less strongly than the 

Sun during the day, so it is less charged [1].   

 

At heights of 80km (50 miles), in the thermosphere, the atmosphere is thin and electrons 

can exist for short period before being captured by a positive ion, however, number of 

electrons in this region is sufficient to effect radio communications.  The D region (50-90 

km) of the ionosphere, due to low level of ionization is quite different from that of weakly 

collisional or collisionless plasmas.  The D-layer is produced by the hydrogen Lyman-

alpha line at 121.5 nm and hard X-rays.  
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The Mesosphere (45-85 km) and lower Thermosphere constitutes the E-layer (90-120 km) 

formed by photoionization of molecular oxygen by radiation in the 100-150mn range and 

by soft X-rays of 1-10nm.  The ion composition of the E-layer is mostly O2
+ and NO+ ions.  

The F-layer of the ionosphere ranging from approximately 120-500km is largest region of 

ionized atmosphere produced by photoionization of atomic oxygen by extreme UV 

radiation in the 10-100nm range.  

 

Plasmas, unlike other gases, can conduct electric charges and are susceptible to magnetic 

fields.  Due to this conduction property, plasmas are highly susceptible to Thomson 

scattering, where the free electrons emit radiation of the same frequency as that of the 

incident wave.  The direction of the scattered signal is determined by the angle of the 

electron’s rotatory motion about its axis (i.e. its spin) [2].  Radio signals and other forms 

of communication use ionosphere to reflect electromagnetic waves off the charged particles 

in the ionosphere to extend signals beyond the visible curvature of the Earth.    

Fig. 1.1.  Earth’s atmosphere layers, including the ionosphere.  The ionosphere can be divided 

into three regions – D, E, and F – distinguished by the density in the region [3].   
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1.2 Rayleigh-Taylor & Kelvin-Helmholtz Instabilities 

 

In fluid mechanics, Rayleigh-Taylor and Kelvin-Helmholtz (RT-KH) instabilities are 

associated with layers of fluid with a discontinuous change in tangential velocity and/or 

density across an interface. In hydrodynamics, RT instabilities can be observed when a 

heavier fluid is suspended above a lighter one under the influence of gravity, as shown in 

Figure 1.2.1. This class of instability accounts, for example, for the over-turning of fluid 

and also accounts for buckling of interfaces subject to shear motions. A common example 

is water suspended above oil.  Such a system is naturally unstable (so long as no magnetic 

fields are present), as due to gravity or acceleration, the lighter fluid (oil) will rise and 

penetrate through the heavier (water).  If a magnetic field is present, then the system can 

be stabilized along its direction, although perpendicular perturbations are still unstable [4].   

 

KH instabilities are the exact opposite to RT in that they occur parallel to the boundary 

plane between the two mediums.  This occurs when one or both of the fluids experiences 

motion parallel to the other.  If one begins with a small perturbation upwards, the flow 

above the perturbation begins to speed up in order for the same amount of medium to pass 

Fig. 1.2.1.  Basic example of Rayleigh-Taylor type instability, with 

arrows showcasing the direction of motion of the perturbations. 
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through while the flow below slows down since there’s more space.  This is similar to the 

Bernoulli effect creating lift for an airfoil.  As a result, the perturbations grow and are swept 

along by the flow, resulting in curls, shown in Figure 1.2.2.  Wind blowing across a lake is 

an obvious example, as the velocity of the wind parallel to the water’s surface creates a 

rippling effect in the water – or, in the case of the ocean, waves.   

 

 

For plasmas, in absence of magnetic field, the shear velocity – which is proportional to the 

velocity differences between the mediums – always results in KH instabilities.  However, 

the presence of a magnetic field and its direction has different effects on plasmas depending 

on whether it is fully or partially ionized.  In particular, partially ionized plasmas – such as 

those found in Earth’s ionosphere – still experience instabilities when the magnetic field is 

applied along the flow direction [4].  

  

Fig. 1.2.2.  Basic example of Kelvin-Helmholtz type instability.  The left image shows the initial 

perturbations and the right image shows the eventual evolution of the system.     
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1.3 Turbulence Equations 

 

The RT-KH instabilities examined here are governed by two primary equations relating 

the charge density and electric potential of the plasma with respect to time.  They are used 

to study the evolution of very low frequency 𝜔/𝜔𝑐𝑖 ≪ 1 electrostatic waves (low in 

relation to the plasma’s cyclotron frequency 𝜔𝑐𝑖) and can be seen as a negatively charged 

electron fluid moving against a positively charged ion background.  For their derivation, a 

slab of plasma in an equilibrium state was first assumed (shown in Figure 1.3), where the 

ion and electron charge densities were initially inhomogeneous.  The slab can be thought 

of as being an equatorial plane around the Earth so that Earth’s magnetic field is 

perpendicular to the plane of interest and homogenous, ensuing that RT phenomenon are 

not suppressed, as shown in Figure 1.3.   

The electric field, 𝐸0, and number densities of ions, 𝑛𝑖0, and electrons, 𝑛𝑒0, were 

inhomogeneous at initial equilibrium, with the density gradients in the opposite direction 

of the gravitational acceleration.  The velocity profile of the fluid, 𝑉0, is set within the slab 

to be perpendicular to the gravitational pull and represents the shear strength between the 

ion and electron fluids.   

 

Fig. 1.3.  Equilibrium geometry used in deriving equations of motion. 
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Collisional effects and the inertia of electrons are neglected (assuming the electron mass is 

approximately zero).  The equations of motion for the ions and electrons becomes: 

 

𝑚𝑖𝑛𝑖 [
𝜕𝑉𝑖

𝜕𝑡
+ (𝑽𝑖 ⋅ ∇)𝑽𝑖] = 𝑒𝑍𝑛𝑖 [𝑬 +

1

𝑐
(𝑽𝑖 × 𝑩)] − 𝑇𝑖∇𝑛𝑖 − ∇ ⋅ 𝚷 + 𝑚𝑖𝑛𝑖𝒈 

(1.3.1) 

 

0 = −𝑒𝑛𝑒 [𝑬 +
1

𝑐
(𝑽𝑒 × 𝑩)] − 𝑇𝑒∇𝑛𝑒 

(1.3.2) 

 

Where 𝑉𝑖 and 𝑉𝑒 are the ion and electron velocities, 𝑇𝑖 and 𝑇𝑒 are the ion and electron 

temperatures, and 𝑛𝑖 and 𝑛𝑒 are the ion and electron charge densities, respectively.  The 

two systems must also satisfy their continuity equations: 

 

𝜕𝑛𝑖

𝜕𝑡
+ ∇ ⋅ (𝑛𝑖𝑽𝑖) = 0 

(1.3.3) 

 

𝜕𝑛𝑒

𝜕𝑡
+ ∇ ⋅ (𝑛𝑒𝑽𝑒) = 0 

(1.3.4) 

 

Where the electron charge density is given by 𝑛𝑒 = 𝑍𝑛𝑖 for ion charge 𝑍.  Overall charge 

neutrality for the system will also be assumed: 

 

𝑱 = 𝑍𝑒𝑛𝑖𝑽𝑖 − 𝑒𝑛𝑒𝑽𝑒 (1.3.5) 
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The electric drift and gravitational drift will also be assumed to be of the same order.  The 

final time dependent equations are then derived using collinear theory, where the final state 

of the system is given by the sum of the initial state and the perturbation.   

 

𝜕∆𝛿𝜑

𝜕𝑡
+ [𝑉0 + 𝜌𝑖

2𝜔𝑐𝑖𝜅𝑛 −
𝑔

𝜔𝑐𝑖
−

𝜌𝑖
2

2
(𝑉0

′′ + 𝜅𝑛𝑉0
′′)]

𝜕∆𝛿𝜑

𝜕𝑦
− (𝑉0

′′ + 𝜅𝑛𝑉0
′)

𝜕𝛿𝜑

𝜕𝑦

−
𝜔𝑐𝑖𝐵0𝑧

𝑛𝑖0𝑐
𝜌𝑖

2
𝑔

𝜔𝑐𝑖

𝜕∆𝛿𝑛

𝜕𝑦
+

𝜔𝑐𝑖𝐵0𝑧

𝑛𝑖0𝑐
(

𝑔

𝜔𝑐𝑖
− 𝜌𝑖

2𝑉0
′′)

𝜕𝛿𝑛

𝜕𝑦

−
𝜔𝑐𝑖𝐵0𝑧

𝑛𝑖0𝑐
𝜌𝑖

2𝑉0
′

𝜕2𝛿𝑛

𝜕𝑥𝜕𝑦

= −
𝑐

𝐵0𝑧

{𝛿𝜑, ∆𝛿𝜑} +
𝜌𝑖

2𝜔𝑐𝑖

𝑛𝑖0
∇ ⋅ {∇𝛿𝜑, 𝛿𝑛} 

 

 

 

 

(1.3.6) 

  

𝜕𝛿𝑛

𝜕𝑡
+ 𝑉0

𝜕𝛿𝑛

𝜕𝑦
−

𝑛0𝑐

𝐵0𝑧
𝜅𝑛

𝜕𝛿𝜑

𝜕𝑦
=

𝑐

𝐵0𝑧

{𝛿𝑛, 𝛿𝜑} 

 

(1.3.7) 

 

Here, 𝛿𝜑 and 𝛿𝑛 are the electric potential and charge density perturbations (respectively) 

to the initial equilibrium state of the system.  The dimensionless form of these equations is 

then obtained after normalizing and using a simple variable substitution: 

 

𝜕∆𝛿𝜑

𝜕𝑡
+ [𝑉0 + 𝜏𝑖𝜅𝑛 − 𝜈𝑔 −

𝜏𝑖

2
(𝑉0

′′ + 𝜅𝑛𝑉0
′′)]

𝜕∆𝛿𝜑

𝜕𝑦
− (𝑉0

′′ + 𝜅𝑛𝑉0
′)

𝜕𝛿𝜑

𝜕𝑦

− 𝜏𝑖𝑔
𝜕∆𝛿𝑛

𝜕𝑦
+ (𝜈𝑔 − 𝜏𝑖𝑉0

′′)
𝜕𝛿𝑛

𝜕𝑦
− 𝜏𝑖𝑉0

′
𝜕2𝛿𝑛

𝜕𝑥𝜕𝑦

= −{𝛿𝜑, ∆𝛿𝜑} + 𝜏𝑖∇ ⋅ {∇𝛿𝜑, 𝛿𝑛} 

 

 

(1.3.8) 
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𝜕𝛿𝑛

𝜕𝑡
+ 𝑉0

𝜕𝛿𝑛

𝜕𝑦
− 𝜅𝑛

𝜕𝛿𝜑

𝜕𝑦
= {𝛿𝑛, 𝛿𝜑} + 𝐷∇2𝛿𝑛 

 

(1.3.9) 

 

The ion gravitational drift, 𝜈𝑔 (which is assumed to be of the same order as the gravitational 

drift, 𝑔, and electric drift), the shear velocity 𝑉0, the plasma density scale length 𝜅𝑛, and 𝜏𝑖 

(given by 𝜌𝑖
2𝜔𝑐𝑖 for the ion cyclotron frequency 𝜔𝑐𝑖 and ion mass density 𝜌𝑖) are all 

constants with respect to time.  𝑉0 can – and in nonuniform cases will – vary spatially along 

the 𝑥-direction but be constant along the 𝑦-direction, as shown in Figure 1.3.   

 

For the purpose of generalization, the dimensionless equations 1.3.8 and 1.3.9 will be used 

for simulations and further analysis.  It is obvious to note that they are a pair of coupled 

differential equations.  They are also written so as to separate the linear (with respect to a 

variable to the first power) and nonlinear (with respect to a variable to the second power) 

components to the left and right-hand sides of the equations, respectively.  The separation 

of terms allows for calculations of solutions only with linear terms (linear approximation), 

ignoring the non-linear terms.  It may be noted that the 
𝜕2𝜌

𝜕𝑥𝜕𝑦
 term is second order in nature, 

but because of its outlying coefficient dependent on the shear velocity (or namely its 𝑥-

derivative) and its job in coupling the equations, it is considered a mandate to be calculated 

even when excluding the other non-linear terms.   

 

An important feature to note for Equation 1.3.8 is the recurrence of potential’s Laplacian, 

∆𝛿𝜑, which is also known as the vorticity.  Vorticity is typically a vector quantity 

describing the rotation along the edges of RT instabilities, but here it is a scalar quantity.  
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Although this is how the system is evolved in time, in application, the vorticity itself is 

largely an uninterested factor.  The electric potential, charge density, and electric field are 

the three most common parameters sought after.  Charge density is provided from equation 

1.3.9, but the potential and electric field must be solved for: 

 

∆𝛿𝜑 = ∇2𝛿𝜑 =
𝜕2𝛿𝜑

𝜕𝑥2
+

𝜕2𝛿𝜑

𝜕𝑦2
 

(1.3.10) 

 

𝑬 = −𝛁𝛿𝜑 = −
𝜕𝛿𝜑

𝜕𝑥
𝒙̂ −

𝜕𝛿𝜑

𝜕𝑦
𝒚̂ 

 

(1.3.11) 

 

Both 1.3.10 and 1.3.11 are given for a two-dimensional space.  Equation 1.3.10 is strictly 

Poisson’s equation, solving for 𝛿𝜑.  The electric field’s vector components (Equation 

1.3.11) and magnitude are then easily obtained from the potential using 1.3.10.    
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Chapter 2 

Computational Differentiation 

 

Most physical processes are governed either by ordinary or partial differential equations. 

Solving ODEs or PDEs equations is an essential part of solving even the simplest time 

dependent computer simulations.  Their abundance in physical problems has produced 

many different techniques to obtain a solution.  From fast executable equations to spot-on 

transformations, the routes these processes take is important to consider in higher level 

programming to ensure efficient memory allocation, runtimes, and solution accuracies.  

Here, two vastly different approaches to solving differential equations numerically will be 

examined: the widespread and simplistic finite difference method, and the highly precise 

spectral method. 

 

The discussion of all finite difference methods is one that has been the subject of countless 

books and research topics in of themselves, and so a brief description of their application 

process will be given.  Their accuracy and performance compared to spectral differentiation 

will be the primary focus of this chapter.   
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2.1 Finite Difference Method 

 

The main concept in any finite difference method is largely explained by the name itself: 

using a finite basis to solve differential equations through the use of difference equations.  

These equations are relatively simple in nature, including basic algebraic operations 

dependent on functional values.  The discrete values become a subject of intense analysis 

regarding accuracy and executable runtimes in programming.  Computers, although 

capable of thousands upon millions of calculations per second, are still finite machines, 

and so performing perfect differentiation on a function thought of as being smooth and 

continuous will always result in an approximation of the solution.  Even the best finite 

difference techniques will still have an inherent amount of error since they do not take into 

account the entire function in their calculations.  The reason behind this is in their means 

of turning the derivative into a difference expression.   

 

There are several different ways to produce finite difference equations, but the most 

common is by using a Taylor series expansion.  Expanding the desired function into a 

Taylor series, solving for the appropriate derivative, and making a general approximation 

to remove excess terms gives a solution that consists of only values of the original function.  

However, since the Taylor series itself is an infinite sum, further discretization errors occur 

due to computational limits [5].   

 

The use of the Taylor series also brings up the subject of accuracy.  Expanding the series 

using more and more terms naturally results in a better approximation to the original 

function.  As a result, simple operations (such as derivatives) tend to have multiple finite 
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difference equations for varying degrees of accuracy.  Some finite difference equations are 

shown in Table 2.1 as examples. 

 

Table 2.1.  Various examples of finite difference equations.  The subscripts 

denote indexed values of the function’s grid-space based off position 𝑖.  The 

distance between two points are a constant value,  |𝑓𝑖 − 𝑓𝑖+1| = ℎ [6]. 

Operation Finite Difference Expression Error 

 

 

𝑑𝑓(𝑥)

𝑑𝑥
 

𝑓𝑖+1 − 𝑓𝑖

ℎ
 

 

O(ℎ) 

𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
 

 

O(ℎ2) 

−𝑓𝑖+2 + 8𝑓𝑖+1 − 8𝑓𝑖−1 + 𝑓𝑖−2

12ℎ
 

 

O(ℎ4) 

 

 

𝑑2𝑓(𝑥)

𝑑𝑥2
 

𝑓𝑖+2 − 2𝑓𝑖+1 + 𝑓𝑖

ℎ2
 

 

O(ℎ2) 

𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

ℎ2
 

 

O(ℎ2) 

−𝑓𝑖+2 + 16𝑓𝑖+1 − 30𝑓𝑖 + 16𝑓𝑖−1 − 𝑓𝑖−2

ℎ
 

 

O(ℎ4) 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
 

1

4ℎ2 (𝑓𝑖+1,𝑖+1 − 𝑓𝑖+1,𝑖−1 − 𝑓𝑖−1,𝑖+1 + 𝑓𝑖−1,𝑖+1) 

 

O(ℎ2) 

 
 

∇2𝑓(𝑥, 𝑦) 

1

12ℎ2
(−60𝑓𝑖,𝑖 + 16(𝑓𝑖+1,𝑖 + 𝑓𝑖,𝑖+1 + 𝑓𝑖−1,𝑖 + 𝑓𝑖,𝑖−1)

− (𝑓𝑖+2,𝑖 + 𝑓𝑖,𝑖+2 + 𝑓𝑖−2,𝑖 + 𝑓𝑖,𝑖−2)) 

 

O(ℎ4) 

 

This idea of using more terms for better results not only is applicable to the equation itself, 

but also to the function.  Computationally, the discrete points of a function are most easily 

thought of as lying on a uniform grid, regardless of dimensionality (1D, 2D, or 3D).  So, 

the more points defined within the function, the better its resolution.  Using a uniform grid-

space with relatively few points while applying a finite difference scheme to it will give 

poor numerical results.   
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Whereas the grid-space is an attribute that can be fiddled with to provide the best balance 

between performance and accuracy, any lone finite difference method completely lacks the 

ability to compute at least one border of its space.  Since any given point in the grid-space, 

𝑖, is dependent on at least one of its neighbors, 𝑖 ± 1, the very edge(s) of the space is a 

fundamental flaw due to lack of points.  Therefore, even though the higher accurate 

expressions will give better results, it will simultaneously increase the point width (the 

width in respect to grid points; not necessarily actual numerical values of the function) of 

the non-calculatable border.  This is shown in Figure 2.1.1 for a basic sine function and 

using the O(ℎ) and O(ℎ4) equations for the first derivative in Table 2.1.     

 

The greatest hinderance this border inaccessibility causes is in relation to boundary 

conditions.  If a very specific set of boundaries need to be maintained, then the finite 

difference method will be hard to use effectively as it can never truly reach the very edge 

of the grid-space.  As the number of points in the function’s domain is increased (thereby 

decreasing ∆𝑥, or ℎ), the valid region of numerical results from a finite difference scheme 

will continually approach the boundaries, but at an exponentially decreasing rate (i.e. a 

diminishing return).  There comes a point when adding more points to the grid-space makes 

a negligible difference in the accuracy of the method used.  An example of this effect is 

shown in Figure 2.1.2 for the same sample sine function used previously.  
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Fig. 2.1.1.  Two finite difference methods for calculating 
𝑑

𝑑𝑥
sin(𝑥).  Whereas the O(ℎ) 

scheme is less accurate for the bulk of the function, it gives more values on the given domain.  

As seen with the O(ℎ4) equation, two points bordering the edge of the grid-space are unable 

to be calculated unless another method is used.  Increasing the overall number of points 

increased the valid domain of the O(ℎ4) equation from 1.369 → 4.887 to 0.6614 → 5.622, 

corresponding to a valid domain increase of 4.1% per additional point.  
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Although this is fine in theory, computationally it becomes cumbersome and inefficient.  

Adding more points equally increases the amount of storage necessary to run the program., 

which becomes severally detrimental for algorithms that are already computationally and 

memory intensive. 

 

The simplistic algebraic nature of finite difference methods also poses another hindrance: 

execution time.  Although the implementation will be finished in 𝑂(𝑛) operations, 

computers must look up each value for the equation individually.  Despite the points being 

relatively local to one another in the grids-space, to a computer each value of the function 

holds its own space in memory that must be read from to proceed with calculations.  This 

constant calling in memory – looking up the function value at a specific point – may seem 

Fig. 2.1.2.  The effect of adding more points to a uniform grid-space.  As more points are 

added, the valid range of the O(ℎ)4 finite difference method for 
𝑑

𝑑𝑥
sin(𝑥) increases, but the 

increase each additional point provides decreases exponentially.  The values plotted here are 

accumulative, showcasing the per-point percent increase from each successive grid-space 

expansion – from 10 to 20, 20 to 30, 30 to 40, and so on.    
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innocent enough but hinders the program’s performance.  Multiple points in memory must 

be drawn for calculating just one point of the derivative.  Since finite difference equations 

are most commonly used in loops (calculating the derivative of every point of the function 

across the grid-space), programs performing thousands of high-precision calculations 

experience longer execution times than what might be expected because of this continual 

memory communication.   
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2.2  Spectral Differentiation Method 

 

Whereas finite difference methods are seen from a local perspective (requiring sets of 

smaller subsets around distinct points), spectral methods of differentiation take on a global 

approach to generating solutions.  The most common implementation is using the Fourier 

Transform, converting the entire function from real space to frequency space to make 

differentiation far simpler.  Taking the derivative of a function in real space is rather 

complicated (as shown with the finite difference method), but in frequency space (or k-

space), differentiation can be done by simply multiplying by a constant.  The value of this 

constant determines what operation is being performed on the function – whether 

differentiation or integration.  This is identical to the 𝑂(𝑛) operations of finite difference 

methods but is far more advantageous as there is very limited memory calling – something 

that finite difference methods lack.  Table 2.2 shows the k-space coefficients that would be 

used to calculate the first or second derivative of a function [8]. 

 

Table 2.2.  Frequency space algorithms for spectral differentiation.  The Fourier Transform of the 

dataset, 𝑌𝑘, is first obtained for 0 ≤ 𝑘 < 𝑁 total discrete points, spanning length 𝐿.  The value of 𝑘 

along the domain determines the coefficient to multiply 𝑌𝑘 by.  𝑌𝑘 is then brought back by an inverse 

Fourier Transform to obtain the derivative [8]. 

𝑘 < 𝑁/2 𝑘 = 𝑁/2 𝑘 > 𝑁/2 

1st Derivative Coefficients 

𝑌𝑘 = 𝑌𝑘 ⋅ 2𝜋𝑖/𝐿 𝑌𝑘 = 0 𝑌𝑘 = 𝑌𝑘 ⋅ 2𝜋𝑖(𝑘 − 𝑁)/𝐿 

2nd Derivative Coefficients 

𝑌𝑘 = −𝑌𝑘 ⋅ (2𝜋𝑘/𝐿)2 𝑌𝑘 = −𝑌𝑘 ⋅ (2𝜋𝑘/𝐿)2 𝑌𝑘 = −𝑌𝑘 ⋅ (2𝜋𝑖(𝑘 − 𝑁)/𝐿)2 
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Since the spectral method uses the entire function for determining a solution, they are 

extremely accurate.  It’s not uncommon for spectral methods to achieve an accuracy of ten 

digits where finite difference schemes would get only reach two or three [7].  Figure 2.2.3 

shows a simple example of the accuracy variances between spectral and finite difference 

methods, where for a basic sine function the spectral method of differentiation yields far 

more accurate results. 

 

Although all the work done in k-space is straightforward, the process of getting there is 

subject of concern.  The most common means of doing so is through the use of the Fast 

Fig. 2.2.3.  The error associated with a sine function from 0 to 2𝜋 when using a 

spectral method (bottom) and a O(ℎ4) finite difference method (top) from Table 2.1.  

Double variables were used, which have a maximum of 17 digits.  The highest errors 

for the spectral method are seen near the beginning and end of the function, which 

is attributed to the Fourier transform’s attempt at matching the boundary points.  The 

other error is primarily a result of machine precision.  As discussed in Section 2.1, 

the end points using a FDM are likely going to be invalid due to the lack of adjacent 

function values. 
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Fourier Transform (FFT), which many data processing libraries already have included 

within their basic function calls.  The FFT provides a simple and reliable means of 

implementing a rather complicated procedure.  One of the most proliferated FFT libraries 

is FFTW – aptly named the Fastest Fourier Transform in the West – which even hosts its 

own parallel methods to further increase its performance.  However, even with being highly 

optimized for performance, spectral differentiation can still take far longer than using finite 

difference methods specifically because of the forward and backward transformations into 

k-space. 

 

The forward and backward transformations are the most computationally intensive part, 

but once in k-space the transformed function can be easily manipulated multiple times and 

brought back into real space at different points to give the solutions of several different 

operations all with just one forward transform.  This technique is called an out-of-place 

transform as the transformed data is allocated to new memory and then manipulated.  The 

original function can still be used elsewhere without hinderance.  In-place transforms can 

also be done though in case memory is limited, where the transformed values overwrite the 

original function.  This ability to overwrite in memory is another feature that finite 

difference methods fail at since they must be able to pull from memory any value of the 

original function’s values.  Despite these improvements, spectral differentiation can still 

take far longer than using finite difference methods specifically because of the forward and 

backward transformations into k-space. 
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Figure 2.2.4 shows how for relatively small domains (consisting of less than 1024𝑛 points 

for 𝑛 dimensions) spectral differentiation is almost identical to finite difference methods 

(runtimes varying by milliseconds).  As the grid size is increased, both methods experience 

growth, with finite difference being a largely linear increase and spectral being slightly 

exponential.  Both methods experience a sudden jump in runtimes between grid sizes of 

81922 and 90002 which could use more analysis as to the cause.  It is therefore important 

to consider and find the perfect balance between performance and accuracy when choosing 

between spectral or finite difference methods. 

 

The biggest and most apparent problem with spectral methods is obvious for anyone with 

knowledge of Fourier Transforms: periodic domains.  If the function being operated upon 

is not periodic and the range being analyzed does not lie on one full period, the Fourier 

Transform will have artifacts due to the discontinuities at the endpoints.  However, there 

Fig. 2.2.4.  CPU time for finite difference and spectral method of calculating the first 

𝑥-derivative of sin(𝑥 + 𝑦) on a periodic square grid with side lengths ranging from 

64 to 16384 (2𝑛 for 6 ≤ 𝑛 ≤ 14 with additional points chosen for continuity).   
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are methods that enable the use of Fourier Transforms on non-periodic functions.  The 

Chebyshev interpolation is one of the most common and can still be done by using FFTs, 

so long as the function is still continuous and smooth [8].  
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Chapter 3 

Parallel Computing 

 

The understanding of basic programming techniques is a necessity when wanting to 

generate complex mathematical or physical simulations.  The most generic and well-known 

method of doing so is simple serial programming: writing a program that will execute one 

line at a time until it is finished.  As computational models have evolved, these basic serial 

approaches have become impractical due to incredibly long runtimes.  As a result, 

researches and programmers alike transitioned to using multiple computers to work on one 

problem at the same time.  The effort eventually led computing industries such as Intel to 

create systems that ran on multiple processors instead of just one [9].   

 

The fundamental idea of parallel computing is simple: break apart the serial program and 

distribute the workload amongst several other processors.  With each processor working 

on a different part of the program simultaneously, computation times decrease 

substantially.  Of course, the largest detriment to parallel processing involves its complex 

nature, requiring extra hardware and specialized software to run smoothly.  However, the 

necessity for increased computational power has continued to outweigh the cost of 

specialized equipment.   
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One of the key subtitles in parallelized programming is memory allocation.  In most cases, 

working on parallelizing a program will only be done if the program is performing 

complicated calculations, or more typically, handling large amounts of data.  Small 

programs that already run in fractions of a second will not see much performance increase.  

For larger programs though, the sheer amount of data may be too much for any one 

processor to hold at a time, hence the inherent need to divide the problem into multiple 

chunks.  As a result, for programs dealing with large amounts of data it is important to 

dynamically allocate the memory in the heap – the global memory storage.  Otherwise, the 

program may fail entirely due to overloading (or overflowing) the stack – the statically 

allocated local memory space – which is inherently smaller than the heap.    

 

Due to the intricate mathematical terms in simulating RT-KH instabilities in the 

ionosphere, the usual easy transition from a serial to parallel implementation proved rather 

cumbersome.  The need for a basic understanding of parallel processing is therefore a 

necessity before one approaches analysis of the final program, which is outlined here. 

 

The machine used for the performance statistics in this chapter and subsequent was a single 

64-bit computer consisting of two Intel Xeon E5-2620 v2 processors, each operating at 

2.10 GHz.  The machine had 64 GB RAM (8 x 8GB DDR3) operating at a maximum of 

1333 MT/s with a 15 MB cache.  With two sockets on the motherboard, each supporting 

two, six core processors, and each core having dual thread capabilities, the system has a 

total of 24 CPUs.  Every program was run up to a minimum of 16 processors. 
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3.1  Amdahl’s Law – Speedup & Efficiency 

 

In basic terms, the main purpose of parallelizing any program is to decrease its runtime.  

This idea is simple enough, but depending on the situation, the actual improvement is not 

always so blatantly obvious as just looking at how long it took the program to run.  Other 

factors may be hindering – or facilitating – its performance, and so different tools must be 

used to analyze the program.  In parallel processing, these tools are known as the speedup 

and efficiency.   

 

The speedup 𝑆 of a program is a ratio between its serial and parallel execution times, given 

that both are measured in the same units: 

 

𝑆(𝑛) =
𝑇(1)

𝑇(𝑛)
 

 

(3.1.1) 

 

The function 𝑇(𝑛) represents the amount of time it takes for a program to run on 𝑛 

processors.  Therefore, 𝑇(1) is the same as running the program in a serial fashion (with 

one processor performing all calculations).  Generally, 𝑇(1) > 𝑇(2) > 𝑇(3) > ⋯ >

𝑇(𝑛), and so the speedup will always be a quantity greater than one and increasing with 

increasing number of processors.  In theory, 𝑇(𝑛) = 𝑇(1)/𝑛, so the runtime is cut 

proportional to the number of processors.  Of course, the result of (3.1) assuming this 

perfect scenario is simply a linear relationship between the number of processors and 

speedup [10].   
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This brings forth the second tool of analysis: efficiency.  Suppose the perfectly ideal 

parallel execution time 𝑇(𝑛) = 𝑇(1)/𝑛 is observed, and so the number of processors is 

equivalent to the speedup of the program.  In this case, each processor is being used to its 

fullest extent.  In other words, the program is very efficient at doing work; no other factors 

are limiting the execution time and so maximum speedup is achieved.  Numerically, the 

efficiency can be described as: 

 

𝐸(𝑛) =
𝑆(𝑛)

𝑛
 

 

(3.1.2) 

 

Where again, 𝑆(𝑛) is the speedup and 𝑛 is the number of processors.  So, in a perfect world, 

the efficiency of all parallel programs would be equal to one no matter how many 

processors were used.  However, the real world does not always produce this perfect 

product [11].   

 

To demonstrate, consider a very simple parallel program that will perform a total of 1010 

additions, distributed amongst 𝑛 processors.  Each processor will then do 1010/𝑛 number 

of calculations.  An example pseudo-code in C that each processor will run is shown below: 
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Since this is a largely parallel code (i.e. there is little serial portion to this program), a 

perfectly linear speedup and a constant efficiency of one is expected.  However, this is not 

exactly the case.  First, the runtime plot of Figure 3.1.1 shows that the time it takes the 

program to run with multiple processors does indeed decrease.  As the number of 

processors is increased though, the runtime seems to approach an asymptotic minimum of 

one second, showcasing that there is a diminishing return.  This is expected, since in theory 

the serial execution time is simply being divided by the number of processors.  As the 

processor count goes past ten, the experimental and theoretical runtimes begin to vary.  

This feature can be analyzed better by looking at the speedup and efficiency.   

 

 

 

 

Program 3.1. 
1. int main (int argc, char* argv[]) { 
2.   int procID, numProcs; 
3.   double calcs = 1e10, counter, sum, i; 
4.   // . . . Initialize all processors and start runtime clock . . . 
5.   for (i = 0; i < calcs/numProcs; i++) { 
6.    counter = counter + 1; 
7.   } 
8.   MPI_Reduce(&counter, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD); 
9.   // . . . Output runtime . . . 
10. } The MPI_Reduce function works to collect and reduce values from all processors down 

to a single value on the receiving processor.  In this case, it is summing together all the 

“counter” variables from all processors and outputting the results to processor 0.  Also 

note that double variables were used since 1010 exceeds the maximum int size in C.  This 

code can also be easily modified to run for any number of processors instead of for just 

numProcs that evenly divides calcs.   
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Note that the speedup does appear to be perfectly linear if when the number of processors 

is relatively low – again below ten.  This is a good sign as it shows the program is highly 

efficient when dividing amongst only a few processors (the point when largest reduction 

in runtimes should and do occur).  As more than ten processors begin being used, the linear 

trend falls off, and the efficiency of the program begins to diminish.  This effect is described 

in Amdahl’s Law.   

 

𝑆(𝑛) =
1

1 − 𝑝 + 𝑝/𝑛
 

 

(3.1.3) 

 

This relation gives a new representation of the speedup, now completely independent of 

runtimes.  Here, 𝑝 is the percentage of the program that has be parallelized [12].   

 

 

 

Figure 3.1.1.  Runtime, speedup, and efficiency of Program 3.1 on a 2.1 GHz, 24 CPU 

(parallel threads) Linux system.  Error bars show the standard deviation of three different 

trials for each 𝑛 number of processors (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 32, and 

42).  The program was run in serial every time to ensure that parallel runs were compared 

with their own serial runs (i.e. the program would run in serial and then immediately run in 

parallel, after recording and resetting the runtime clock).  The reason for this is the same 

reason as to why there are such large error bars: the machine was not running only Program 

3.1 at the time.  Various background processes were running simultaneously, resulting in 

varying execution times depending on the intensity of the other background tasks.  The 

Amdahl’s Law curve fit for speedup was achieved using Matlab’s curve fitting tool, varying 

the value of 𝑝 and obtaining a final 𝑅2 = 0.9502. 
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Why does the variable 𝑝 matter?  The speedup of a program is limited by its least 

parallelized component.  In other words, any serial part of the program will immediately 

hinder the overall speedup that can be achieved because that part cannot be run in parallel, 

shown in Figure 3.1.2.  Therefore, according to the curve fitting, Program 3.1 is 97.93% 

parallelized.  

 

So what accounts for that missing 2.07% of parallelization?  First, it should be noted that 

speedup examinations are typically done under very controlled circumstances.  The 

machine’s background processes and hidden operations are stripped to the bare minimum 

to ensure the most accurate runtime of the program itself.  Since the Linux machine used 

was not setup for this ideal set of testing, there are some inconsistencies.   

 

Figure 3.1.2.  Amdahl’s Law for different percentages of parallelization of a given program.  

As 𝑝 approaches 100%, the speedup will become more linear.   
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Although it is difficult to see visually, the serial runtimes are not equivalent for each run.  

To help minimize the error associated with hidden background processes on the machine, 

each execution of the program (for each 𝑛 number of processors) actually involved running 

the same method twice back-to-back: once serially and once in parallel for 𝑛 processors.  

This way each 𝑛 processor runtime was compared with its own serial runtime at that instant 

(or close to it), ensuring that no random background process started to chug up processing 

power half way through testing all values of 𝑛.  This was done three different times and 

then averaged to give a good representation of the program’s runtime.  So, in theory, the 

execution of the program with 𝑛 = 1 should output two identical runtimes since it’s just 

performing two back-to-back serial operations.  However, this is not the case, as shown in 

Table 3.1.1: 

 

Table 3.1.1.  Sample runtime values (in seconds) for Program 3.1 when running on one processor. 

Serial Runtime  Parallel Runtime (𝒏 = 𝟏) Speedup 

14.043807 13.954585 1.006393741 

15.452439 14.097064 1.096145907 

16.725916 16.714468 1.000684916 

Averages 

15.40738733 14.922039 1.034408188 

 

With only one processor, the speedup should be simply 1.0.  The slight variance means that 

even in the immediate back-to-back execution of the program there is some discrepancy in 

execution time.  This can could be attributed to random machine background operations or 

to the MPI functions.  Although in this example all the parallel 𝑛 = 1 runtimes are faster 
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than their serial counterparts, it will be shown later (in Chapter 3.4) that this is not 

necessarily always true. 

 

In this case, the averaged measured speedup is off by a factor of 0.9677 (with a maximum 

of 0.9993 and minimum of 0.9123) from the theoretical speedup of 1.0 (an error of 

3.4408%).  Therefore, when executing with 𝑛 processors, the serial runtime will not be a 

perfect representation of the parallel 𝑛 processor’s runtime for 𝑛 = 1.  As a result, speedups 

and efficiencies will experience offsets.  More importantly, the percent of parallelization 𝑝 

will not be accurate since the serial runtimes are not perfectly comparable.  To counter this 

problem, a new variable will be introduced to Amdahl’s Law: 

 

𝑆(𝑛) =
𝑎

1 − 𝑝 + 𝑝/𝑛
 

 

(3.1.4) 

 

Where the value of 𝑎 is directly related to the factored offset experience in the serial, 

𝑇𝑠𝑒𝑟𝑖𝑎𝑙, and parallel 𝑛 = 1, 𝑇(1), runtimes.  Again, in theory (and in highly controlled 

practice) 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 should be identical to 𝑇(1), but because the machine still had unknown 

operations being performed in the background, the values are different.  Since 𝑎 > 1 would 

mean it’d be possible to achieve a speedup greater than a 1:1 (linear) ratio, it must be 

mandated that 𝑎 ≤ 1, which is given by the following expression: 

 

𝑎 = 1 − |1 −
𝑇𝑠𝑒𝑟𝑖𝑎𝑙

𝑇(1)
| 

 

(3.1.5) 
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If 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 > 𝑇(1), meaning that the serial execution is slower than the 𝑛 = 1 parallel 

execution (resulting in a speedup greater than 1.0), then 3.1.5 simplifies to just: 

 

𝑎 =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙

𝑇(1)
 

 

(3.1.6) 

 

If 𝑇𝑠𝑒𝑟𝑖𝑎𝑙 < 𝑇(1), meaning that the serial execution is faster than the 𝑛 = 1 parallel 

execution (resulting in a speedup less than 1.0), then 3.1.5 ensures that the scaling factor 

does not violate Amdahl’s Law.  If 𝑎 = 1, then the serial and parallel 𝑛 = 1 runtimes will 

be identical, which is identical to the theoretical outcome.   

 

The value of 𝑎 can be thought of as a normalization factor, ensuring that the serial and 

parallel 𝑛 = 1 runtimes are identical, thereby aiding in finding a more accurate 𝑝 value.  In 

our example, Program 3.1, an average factor offset of 0.9667 was experienced for the 

speedup, meaning that if Equation 3.1.4 were fitted to the experimental speedup data, it 

should be seen that 𝑎 ≈ 0.9667:  

 

Table 3.1.2.  Fit data for the speedup of Program 3.1. 

𝒑  𝒂 𝑹𝟐 

0.9793 ± 0.0041 1 0.9502 

0.9812 ± 0.0039 0.9667364 0.9502 

0.9802 ± 0.0107 0.9838 ± 0.1734 0.9503 

 

The values shown in Table 3.1.2 were achieved from using Matlab’s curve fitting tool.  

Since Program 3.1 is already simplistic and largely parallelized, there isn’t much of an 
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improvement to be seen here between 𝑎 = 1 and 𝑎 = 0.9667.  If 𝑎 is allowed to be varied 

to achieve the best fit possible, 𝑅2 = 0.9503 is achieved for 𝑎 = 0.9838.  This is slightly 

off from our experimental averaged offset of 0.9667, but still lies in the 

maximum/minimum bounds of 0.9123 to 0.9993.  The final parallelization percentage can 

then be best approximated as 98.02%, which is only a small increase from the initial fit 

using Equation 3.1.3.  This gives a maximum speedup of around 49.68, which would occur 

for 𝑛 > 106.  This is of course a ridiculous and non-real-world scenario, but it does exhibit 

how even a highly parallelized program reaches an asymptotic maximum speedup rather 

than the idealized linear increase. 

 

The missing 1.98% can be attributed to both the small amount of serial code (such as the 

recording of time) and the communication time between processors.  Up until now it has 

been assumed that the processors can send and receive data instantaneously, which is not 

the case.  Although communication is fast, it is still finite, meaning that there is serial time 

spent transferring data between processors.  This is hidden from our view in the 

MPI_Reduce function, which both collects and sums all the parts together.  It is obvious 

that inter-processor communication occurs at some point, and that a summation occurs at 

some point, but the ordering or actual means of doing so is unknown. 

 

There are forms of Amdahl’s Law that account for things such as communication times 

and other serial processes, but experimentally it is difficult to measure these durations on 

a machine not under strict controls simply because of their small values [10].   
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3.2  Message Passing Interface 

 

Since the hardware specifications for parallel supercomputers vary so tremendously, the 

key similarity between applications lie in their means of programming.  Parallel computing 

can be done in a wide array of languages (C, Python, Java, Fortran, etc.) but does require 

a different thought process than standard serial codes.   Many languages have their own 

built in parallel processing methods, but they may not be fully fleshed out, have few 

function calls, or their inner workings are hidden from the user behind magic curtains 

(something that becomes troublesome for complicated and delicate data structures and 

manipulations).  As a result, often it is simpler to default to one of the most widely used 

parallel programming libraries to get the job done: Message Passing Interface (MPI).   

 

The very first release of MPI was in 1994, and since then the library has expanded 

considerably, all the way up to a third standard release in 2012, with the latest edits in 2015.  

Since it is largely considered the standard in message passing libraries (replacing many of 

its ancestors), its diversity has continued to improve, giving it the customizability wanted 

by higher level programmers while maintaining relatively a basic structure.  Since the 

library is so vast, this section will focus on the techniques necessary for understanding 

codes presented later. 

 

MPI is fundamentally based on two means of message passing between multi-processor 

machines: sending and receiving.  These communications can happen from strictly one 

processor to another (point-to-point communication), or from one processor to multiple 
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(collective communication).  As a result, the entire structure of MPI can be broken down 

once two functions are understood: MPI_Send and MPI_Recv.   

 

As their names suggest, MPI_Send is responsible for sending data away from a specific 

processor and MPI_Recv receives the data on another.  Therefore, it is not enough for one 

processor to simply send information; the target processor must also receive the 

information.  The sender will wait until the target has received the data (i.e. a successfully 

completed communication) before continuing any further in the program, and likewise the 

target will wait until it has received its data.  This can often be a source of frustration where 

a program simply sits at one point, endlessly waiting for a receive (or send) that is never 

fully completed.  This point-to-point communication style can be thought of as two-step 

procedure, shown in Fig. 3.2.1.   

 

 

The arguments of both the MPI_Send and MPI_Recv functions are practically identical 

except that one needs to know where it is sending the data to (MPI_Send) and the other 

needs to know where the data is coming from (MPI_Recv).  Full detail of the function calls 

will not be discussed here as they are unnecessary in the context of theory and can be easily 

found in MPI documentation (www.open-mpi.org).   

 

Fig. 3.2.1.  Processor 0 calls the MPI_Send function with the intent of sending out data to 

processor 1.  Once this is called, processor 0 sits and waits until processor 1 calls the 

MPI_Recv function for the specific data that processor 0 sent.   
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Although MPI_Send and MPI_Recv can be combined in numerous ways to perform larger 

communication schemes, it is often far easier to implement one collective communication 

instead of several point-to-point transfers.  Doing so not only simplifies the code itself but 

also improves performance as these MPI functions have be optimized to minimize 

communication time between processors [13].   

 

 

Two of the most obvious forms of collective communication would be sending/receiving 

one piece of information to/from all processors.  This is known as broadcasting and 

gathering.  Instead of every single processor spending time initializing and defining the 

same variable over and over (a rather inefficient procedure), one processor can do the work 

and then send it to all the others, shown in Fig. 3.2.2.  This idea of having a host or master 

processor is a fundamental principle in parallel programming.  Have one processor (the 

master) that initializes and broadcasts the information to the working processors, who then 

perform all calculations, and then gather the final results back on the master processor.   

 

Fig. 3.2.2.  A collective broadcasting maneuver (to the right) as compared to multiple point-

to-point communications (on the left) for three processors.  Note that here, processor 0 is 

not only initializing but also performs work, hence in the point-to-point fashion it does not 

communicate with itself.  In the collective format though, it does, simply telling itself to 

keep a copy of the data in addition to sending it to all other processors. 



38 
 

Since the whole point of parallel processing is to reduce runtimes though, broadcasting 

may seem a bit counterintuitive.  If the master initialized the original array, broadcasted it, 

and then had each processor calculate the new array, the same exact operation will be 

repeated for every processor, resulting in zero decomposition of the problem.  Each 

processor should instead calculate the new values of only part of the array.  This can still 

do this with a broadcast maneuver, but every processor now has the entire original array 

when it only needs its part of the array – again, very inefficient.  Gathering the results from 

all the processors wouldn’t be very straightforward since each processor has both updated 

and non-updated array values.   

 

A far more effective process would be to send only parts of the array to all the processors, 

have them manipulate the parts, and then gather all the parts back.  This can be done 

through a few loops and using send/receive commands, but luckily MPI has its own built 

in tools to do exactly this process: MPI_Scatter, shown in Figure 3.2.3.   

 

 

 

 

 

Fig. 3.2.3.  An example of MPI_Scatter and MPI_Gather for three processors.  The square 

blocks represent parts of an array that are either distributed or gathered chronologically.   
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Since MPI_Scatter and MPI_Gather are exact reversal operations, they are often used in 

tandem in parallel processing: scattering that data, performing work on the data, and then 

gathering the data.  As a result, the MPI_Gather function combines all the elements into a 

collective array.  The elements can also be gathered into a single value without the use of 

an addition loop by using other specialized functions such as MPI_Reduce, which was used 

in the previous section in Program 3.1.   
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3.3  FFTW-MPI Functionality 

 

The accepted norm of MPI has made it not only useful for parallel computing itself but has 

also allowed it to evolve and be merged into other programming libraries that require 

specific techniques to be successfully implemented.  FFTW is one of these many libraries 

(briefly mentioned in in Chapter 2.2), offering a simpler solution to the problem of 

parallelizing Fourier Transforms.  This makes processes such as spectral differentiation far 

easier to manage in program development.  Whereas finite difference method is simple to 

implement in a parallel scheme by just making sure each processor has the necessary points 

to fill its equation, spectral methods have restrictions that make it harder to grasp in certain 

instances.   

 

A common and logical means of dividing up a two-dimensional grid with 𝑛𝑥 × 𝑛𝑦 number 

of points amongst processors is similar to a basic coordinate axis:  four quadrants whose 

origin lies at the center of the grid space, but not necessarily at the origin point for the 

distribution.  Although this is easy for conceptual understanding, it is far from the simplest 

means of implementation.  This method of domain decomposition limits the performance 

of the program due to the basic four processor distribution and causes issues with spectral 

methods.  

 

The top left quadrant of the equally divided four-quadrant system will have data ranging 

from 0 →
𝑛𝑥

2
 along the x-axis and from 0 →

𝑛𝑦

2
 along the y-axis.  In any serial code, this is 

can be done through a simplistic nested for-loop, ranging from the appropriate bounds 
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listed above.  This chunk could be stored in an entirely new array and then sent to the 

appropriate processor, but in doing so the memory usage of the program is increased: one 

array containing the full grid and at least one other array that holds the to-be-distributed 

grid chunk (that placeholder array would then be updated for each quadrant of the grid 

before being sent off to its appropriate processor).  In an ideal situation, the initial grid 

should be directly distributed to all processors without having to allocate more memory.  

However, using MPI commands such as send, receive, or scatter cannot accomplish such 

a task by themselves as there is no way to identify the start or end of a specific row in the 

array to send.  Calling such a function with the intent of sending a chunk with data size of 

𝑛𝑥

2
×

𝑛𝑦

2
 will result in sending a distribution that is actually of dimension 𝑛𝑥 ×

𝑛𝑦

4
 from the 

perspective of the entire grid layout. 

 

Figure 3.6 shows the visual outcome of the master processor calling a function such as 

MPI_Send with the intention of sending a square quadrant of data to any desired 

“destination” processor.  The starting 𝑥 and 𝑦 points of the grid are defined as (0,0) in this 

case, and the size of the data wanting to be sent is 
𝑛𝑥

2
⋅

𝑛𝑦

2
.   

 

There are specific datatypes native to MPI that can be constructed to procedurally create 

quadrant layouts like the one above – such as MPI subarrays – but in the case of spectral 

differentiation it is a moot point.  As noted previously, spectral differentiation tackles the 

problem with a global approach, requiring an entire range of the dataset to be used.  This 

means that for each processor to perform a spectral method on its chunk of the data, that 
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chunk must be a continuous region that spans at least one entire dimension of the original 

whole grid.  Therefore, dividing processors amongst quadrants of the grid in the above 

manner will not work for spectral methods since only half of the entire 𝑥 range and half of 

the entire 𝑦 range is used.  Finite difference methods are still appropriate, but just require 

a few additional row/columns to ensure that their boundary calculations can reach the 

borders of the designated grid chunks.   

 

It may be noted though that the continuity requirement of the spectral method is not 

violated in the second (right) distribution shown in Figure 3.3.  So instead of separating the 

grid out into quadrants it can be separated by entire rows.  Each processor will then have 

continuous horizontal chunks of the data and discontinuous vertical chunks. 

 

This solves the problem for performing a simple 1D FFT of a 2D function, but what about 

a 2D or higher spatial dimensional FFT?  In the above approach, a straightforward 2D FFT 

performed by each processor would result in invalid values since there is not a full sample 

Fig. 3.3.  An example of the outcome of calling a command such as MPI_Send.  The left grid 

layout is the desired way to separate the grid, but because there is no way to define the 

breaking point along the x-direction, the data sent is actually a continuous row of values that 

loops around to the beginning until the specific size has been met, shown on the right. 
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of all 𝑦 values.  The only way to perform such an operation is if the entire grid is known 

for the processor.  For a 3D grid-space this approach works just fine.  However, this is 

entirely nonsensical for parallelizing a 2D space as each processor would simply be 

performing the same calculation.   

 

One possible solution is to have the master process perform the 2D Fourier transform first 

and then distribute the k-space grid amongst all processors.  After each processor is finished 

with its manipulation, the k-space grid is then brought back to the master, who then 

transforms the grid back to real space.  An analogous process would be used for performing 

a 3D FFT on a 3D space.  This is an entirely valid tactic, but it is preferred in parallel 

computing that communication between the master and slave processes is limited to only 

scattering the initial grid and gathering the results.  This is done to limit the overall 

communication time between processors, which is critical for simulations involving time 

evolution where multiple iterations of the same calculation will occur.  

 

If communication back to the master is necessary to obtain the solution, then any operations 

performed by the master should be significantly less intensive than anything done by the 

processors.  Doing so ensures that the workload is most effectively distributed, and that the 

majority of the program is parallelized (i.e. a higher 𝑝 value), resulting in better speedup 

from Amdahl’s Law.  In this case, the master would be performing a 2D Fourier transform 

over the entire grid whereas the slaves would be performing a simple multiplication on 

only parts of the grid – the exact opposite of effective workload distribution.   
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The other option to solving these problems is using FFTW’s built in MPI functionality.  

Here, the inner workings are kept hidden from the user and put into a nicely wrapped 

package of a function that not only performs the Fourier Transform but also distributes the 

results to all desired processors.  In the end, the transformed (k-space) data is distributed 

amongst all the processors [14].  Which comes first: the FFT or the distribution?  According 

to FFTW documentation, a multi-dimensional parallel FFT is performed in the following 

manner:  

 

In the MPI version of FFTW, we assume that a multi-dimensional array is 

distributed across the rows (the first dimension) of the data. To perform the FFT of 

this data, each processor first transforms all the dimensions of the data that are 

completely local to it (e.g. the rows). Then, the processors have to perform a 

transpose of the data in order to get the remaining dimension (the columns) local to 

a processor. This dimension is then Fourier transformed, and the data is (optionally) 

transposed back to its original order [15].  

 

As explained further in the documentation, the problem with such a method becomes the 

transposing of the data.  However, the language is still rather ambiguous as to which data 

is being transposed: the k-space data or the original.  Chapter 3.4 makes an attempt to 

mimic this above process and gives another solution to the 2D FFT problem by considering 

the Laplacian.    
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3.4 The Laplacian – An Example MPI FFTW Program 

 

One of the most complicated terms in the dimensionless RT-KH equations is the vorticity, 

seeing as it is found from the Laplacian of the electric potential.  The repeated use of it in 

Equation 1.3.8 makes it a useful starting point in parallelization and serves as an excellent 

example in the introduction to parallel computing, especially for spectral methods of 

differentiation.  In the case of calculating the 2D Laplacian (Equation 3.4.1), several 

difficulties arise that must be dealt with in unique ways.   

 

∆= ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 

 

(3.4.1) 

 

The easiest implementation would be to perform a straightforward 2D FFT of the 2D space 

and then manipulate the k-space elements, as described by Johnson [8].  As previously 

discussed in Section 3.3, the problem then becomes parallelizing a 2D Fourier Transform 

on a 2D dataset.  In the spirit of avoiding the mystical hidden processes of FFTW’s built 

in MPI functions, the only other means of implementation is through 1D differentiation for 

each processor.  Luckily the Laplacian is an operation that can be separated into a series of 

single dimensional problems.  Each 1D problem can then be distributed amongst the 

processors, combined, and then sent back to the master for the solution.   

 

The process of row distribution described in Section 3.3 already solves half of our 2D 

problem: the 
𝜕2

𝜕𝑥2 contribution.  Each processor can perform a 1D Fourier transform on each 

of its rows (i.e. each row in its chunk), multiply by a constant, and then transform back.  
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The y-component becomes slightly trickier.  In order to ensure each processor receives a 

continuous column of data from using MPI functions, the initial grid must be transposed 

so that the columns are now rows.  The process for the 𝑥 derivative then becomes identical 

for the 𝑦 derivative. 

 

After manipulations, each processor then has the 
𝜕2

𝜕𝑥2
 and 

𝜕2

𝜕𝑦2
 terms for two chunks of the 

grid.  However, it only has the Laplacian for a square of size 
𝑛𝑥

# 𝑃𝑟𝑜𝑐𝑠
×

𝑛𝑦

# 𝑃𝑟𝑜𝑐𝑠
.  The reason 

for this is because of the transpose for the 𝑦-component.  The chunks used for the 𝑥 and 𝑦 

derivatives do not line up, as they fundamentally can’t due to the continuity necessity.  If 

a processor were to have the Laplacian for its whole row-based chunk, then it would also 

have to have every column of the grid.  This would mean that each processor would be 

calculating the 
𝜕2

𝜕𝑦2 term for the entire grid even though it really only needs it for the rows 

it was given. 

Fig. 3.4.1.  Master processor 0 initializes and distributes (scatters) the original grid to all 

processors (in this case, the master is also performing calculations).  Columns are scattered 

after transposing the original grid.  Each processor then calculates  
𝜕2

𝜕𝑥2 and 
𝜕2

𝜕𝑦2 for its chunk.  

However, they only have the 2D Laplacian for a small portion of their entire chunk: where 

the rows and columns overlap.   

Scatter 
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By this point, all calculations are finished and everything needed for the Laplacian is 

obtained, but just not collected correctly.  As shown in Figure 3.4.1, each processor has 

pieces that are required for the other processors to know the full Laplacian of their 

horizontally row-distributed chunk.  It should be noted that in this approach, the complete 

Laplacian (i.e. both the 
𝜕2

𝜕𝑥2 and 
𝜕2

𝜕𝑦2 terms) for each continuous row is the goal for each 

processor.  The columns are the information needed to be communicated.  This can be 

reversed where processors work to achieve complete columns and communicate row 

information.  

 

This introduces the third problem of collecting the distributed data.  There are two 

immediate solutions to this: inter-processor communication and master-gathering.  Either 

each processor communicates with every other processor to obtain all of its missing pieces, 

or each processor communicates back to the master, which then single handedly combines 

all the elements.   

 

As stated previously, in parallel processing it is usually best that the master process needs 

only to initially send and finally gather the components to and from all processors without 

having to perform any calculations that are in excess of the working processors.  Therefore, 

inter-processor communication seems the way to go.  In order for this to be achieved for 

the Laplacian, each processor must communicate with all others to scatter and gather the 

missing blocks necessary for said processor to have the Laplacian of its horizontal chunk.  

This is shown visually in Figure 3.4.2.   
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Fig. 3.4.2.  Each processor must communicate with all other processors in order to obtain the 

Laplacian for its row-chunk.  This color-coded image shows which blocks must be either sent 

or gathered to specific processors.  In this case, row-oriented blocks are received and column-

oriented blocks are sent (the dashed lines represent orientation).  So the top middle red block 

of Processor 0 will be received from Processor 1, hence why Processor 1’s top middle block 

is sent to Processor 0.  Any blocks not color coded do not require any extra communication. 

Fig. 3.4.3.  A master-gathering method (top) vs. inter-processor method (bottom) of 

communication.  The color circular nodes represent key points in the program.  Colored lines 

for a specific processor represent when that processor is doing work (slave processors only 

perform work once they have data received from the master).  Colored lines connecting 

between processors represent communications from that processor.  Time simulations are a 

common application, hence the dashed block representing the area where a time-loop would 

occur.   
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This method, although does limit communication to the master, also inherently has a 

tremendous amount of communication between processors.  This communication time 

must be taken into account especially for programs that involve time simulations where 

looping over this communication phase can result in unexpectedly large runtimes.   

 

Due to the universal sending and receiving from all 𝑛 processors, the inter-processor 

method (the bottom visualization in Figure 3.4.3) results in 𝑛2 communications per time 

iteration.  With the additional master requirements at the start and end, any program 

implementing this method would have a total of 2𝑛 + 𝑛2𝑡 communications for 𝑛 number 

of processors and 𝑡 number of time-loop iterations.  Keep in mind that a self-

communication is still considered a communication (the distribution phase, although 

starting on processor 0, results in three communications between 0, 1, and 2).  The master-

gather approach (the top visualization in Figure 3.4.3) is substantially less intensive, 

resulting in a mere 2𝑛 communications per time iteration, and a grand total of 2𝑛𝑡 

communications for the entire program.  Therefore, in respect to communication times, the 

master-gather approach is far superior.   

 

Based off this same argument, one could say that a simple serial program is thereby the 

fastest as it has no communication between different processors at all.  Of course this isn’t 

the case since one processor is performing all the work, but it brings up a good point in: Is 

it truly better to minimize communication when the result is an increased workload on a 

single processor?  In most cases no, since the time spent sending data is far less than the 

time computing.  However, in this case a simple addition of components is being performed 
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while drastically reducing our communication time from O(n2) to O(n).  So for the purpose 

of simplicity and minimizing communication, the master-gather implementation will be 

focused on.   

 

To begin analysis on the program’s performance, the speedup will be analyzed first.  As 

already discussed in Chapter 3.1, since the machine used for testing was not under precise 

controls, the 𝑎 coefficient for Equation 3.1.4 must first be found, which can be done from 

the serial and parallel 𝑛 = 1 runtimes of the program:  

 

Table 3.4.1.  Sample discrepancies in runtime values (in seconds) for the master-gather MPI 

approach to the Laplacian solution when running on one processor. 

Serial Runtime  Parallel Runtime (𝒏 = 𝟏) Speedup 

10.944555 14.467633 0.756485529 

10.921053 13.267305 0.823155343 

9.155819 12.307454 0.743924698 

Averages 

10.34047567 13.347464 0.774521857 

 

Table 3.4.1 gives the results of the three trial executions for 𝑛 = 1 processors.  Using 3.1.5, 

the normalization factor is determined to be 𝑎 = 0.7088, with a maximum and minimum 

value of 0.6558 and 0.7852.  Using Matlab’s curve fitting tool for 3.1.4, the best fit is 

achieved for when 𝑎 = 0.7052, which is only a 0.5092% difference from the expected 

value.     
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Table 3.4.2.  Fit data for the speedup of the Laplacian master-gather 

program. 

𝒑  𝒂 𝑹𝟐 

0.6704 ± 0.08385 1 0.8977 

0.8043 ± 0.02145 0.7088 0.9852 

0.8059 ± 0.0845 0.7052 ± 0.1855 0.9853 

 

The master-gather approach’s parallelization of 80.59% is fairly reputable, considering 

how the process still requires communication to the master for each time iteration.  This 

means that, as designed, the FFT manipulations performed on the distributed data is far 

more expensive in execution time than the final combination done on the master process.  

As can be seen in Figure 3.4.4, the runtime of the parallel program is always higher than 

the theoretical but follows a similar trend.  The reason for this is because of the 𝑛 = 1 

runtime offsets, previously explained in Chapter 3.1.  Here, the offset is more substantial 

due to the increased complexity of the program. 

 

However, despite the high parallelization of the program, the 3.1.4 speedup trendline 

(shown in Figure 3.4.4) using the best fit values for 𝑎 and 𝑝 reaches a horizontal asymptote 

of around only 3.63 when taken out to 𝑛~104.  This can be attributed to the efficiency of 

the program, which in fact never achieves a perfect 1.0 and experiences an exponential 

decrease.  Therefore, in theory there could be far better methods of parallelizing the 

solution to the Laplacian. 
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If parallelization is simply ignored and the serial 2D FFT method described by Johnson is 

used, that the master-gather parallel method is far superior in runtime even for only a single 

processor, shown in Figure 3.4.5.  This implies that the forward and backward process of 

taking a 2D FFT is more costly than repeated use of 1D FFTs along each dimension on the 

same dataset.  Further examination of this phenomena could be performed to confirm or 

deny this claim, in addition to extending the case to a 3-dimensional space.   

Figure 3.4.4.  Runtime, speedup, and efficiency of the master-gather MPI solution to solving 

the Laplacian using MPI on a 2.1 GHz, 24 CPU (parallel threads) Linux system.  Error bars 

show the standard deviation of three different trials for each 𝑛 number of processors (1, 2, 

4, 8, and 16).  The program was run in serial every time to ensure that parallel runs were 

compared with their own serial runs.   

 

Figure 3.4.5.  Runtime of the master-gather solution to solving the Laplacian as compared 

to a strictly serial 2D FFT with no parallelization.  The pink “theoretical” line shows the 

best possible runtime improvement for the serial code based off the serial runtime.  Error 

bars show the standard deviation of three different trials for each 𝑛 number of processors (1, 

2, 4, 8, and 16).  The program was run in serial every time to ensure that parallel runs were 

compared with their own serial runs.   
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The theoretical runtime of the serial 2D FFT solution also brings up an interesting point on 

the parallelization of the current solution.  For relatively low number of processors, the 

master-gather method continues to surpass the expected best-case scenario for the serial 

2D FFT’s parallelization runtime.  However, as the number of processors surpasses four, 

the theoretical runtimes become faster, meaning that there could be a more effective routine 

for parallelizing a 2D FFT other than the master-gather approach.   

 

A serial 2D approach to the Laplacian problem is obviously not the most efficient means 

of execution, and because of the problem’s complexity, surely there are other methods to 

solve it.  So how about using a 2D parallelized method, such as FFTW’s built in parallel 

2D FFT?  Here, instead of having to break the problem into x-components and y-

components, the entire 2D grid can be considered and equally divided amongst the number 

of processors available.  This is possible thanks to the hidden inner-workings of FFTW’s 

MPI protocols, which allows the user to treat the program as being classically parallelized: 

each processor has a chunk of the grid of size 𝑛𝑥 ×
𝑛𝑦

# 𝑃𝑟𝑜𝑐𝑠
  starting at a local 𝑦0 point.  The 

performance analysis of this method can be seen in Figure 3.4.6.   

 

Beforehand, it should be noted that when analyzing the speedup and efficiency of the 2D 

FFT method, the parallel 𝑛 > 1 executions were compared simply with its 𝑛 = 1 

execution.  This is not the same approach used for the 1D FFT (master-gather) solution 

because the actual means of how the parallelized 2D FFT performs its transformations is 

unknown.  It is therefore also unknown if it is proper to compare its parallel runtimes to 
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the non-parallelized 2D FFT or some other serial method.  As a result, both the speedup 

and efficiency have an ideal value of 1.0 for 𝑛 = 1 processors.  This creates a non-smooth 

relation when examining the speedup and efficiency for comparing 𝑛 = 1 to 𝑛 = 3 

processors.   
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Due to this approach, the idealized 1.0 speedup and efficiency for 𝑛 = 1 should result with 

𝑎 = 1 when fitting 3.1.4 to the data.  However, because the runtimes will inevitably still 

experience noise, it is expected for this value to vary by small degrees.  Table 3.4.3 

showcases how letting 𝑎 vary to achieve the best fit (which occurs for 𝑎 = 0.9592) changes 

the final parallelization percentage (𝑝) and 𝑅2 by very little, which is expected since the 

initial 𝑛 = 1 value is set to be the idealized standard.   

Table 3.4.3.  Fit data for the speedup of the Laplacian using 

FFTW’s built in MPI functionality. 

𝒑  𝒂 𝑹𝟐 

0.8989 ± 0.0176 1 0.9854 

0.9066 ± 0.0668 0.9592 ± 0.33275 0.9862 

 

Figure 3.4.6.  Runtime, speedup, and efficiency of the master-gather solution to solving the 

Laplacian using 1D FFTs MPI compared to using FFTW’s built in MPI functionality to 

implement a 2D FFT on a 2.1 GHz, 24 CPU (parallel threads) system.  Error bars show the 

standard deviation of three different trials for each 𝑛 number of processors (1, 2, 4, 8, and 

16).  The 2D FFT was compared to its own serial runtimes, resulting in the ideal speedup 

and efficiency values of 1.0 for 𝑛 = 1. 
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Using the best fit values for 𝑎 and 𝑝, the speedup maximizes at round 10.26 for 𝑛~105.  

This is substantially higher than the 1D FFT approach (almost by a factor of three), 

implying that FFTW’s MPI functions are a far better solution.  The efficiency also yields 

a similar conclusion.  However, when looking strictly at runtimes, the pattern shifts.  For a 

low number of processors (𝑛 < 4), the 1D master-gather approach has an execution time 

remarkably lower than its 2D FFTW-MPI counterpart.  The average runtimes are 

practically identical when running on four processors: 5.878 and 6.042 seconds for the 1D 

and 2D approaches, respectively.  It can also be seen between Figure 3.4.5 and 3.4.6 how 

the runtimes of FFTW’s 2D FFT matches the theoretical best runtime of the strictly serial 

2D FFT slightly better than the master-gather approach.   

 

This key difference showcases that FFTW’s MPI solution is better designed to achieve 

maximum speedup than the master-gather approach presented here.  This way systems 

running on numerous processors (i.e. 𝑛 > 4) obtain the fastest runtimes possible.  

However, if the intent of the user is to use only a few processors – simply because of 

hardware restrictions or to minimize communication time – then the master-gather 

approach will actually run in a shorter timeframe.   

 

Since there are certain attributes of both the solutions presented here that make each 

superior, it could be inferred that an even better solution to a problem such as the 2D FFT 

(and thereby the Laplacian) may exist:  one that maximizes speedup and efficiency while 

simultaneously achieving the lowest runtimes possible.   
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Chapter 4 

Plasma RT-KH Program 

 

With the understanding of the fundamental mechanics of spectral methods and parallel 

computing, discussion on the actual program for simulating Rayleigh-Taylor and Kelvin-

Helmholtz instabilities in ionospheric plasmas can begin.   

 

Although the methods used here for calculations and achieving speedup are new 

techniques, the basic structure of the simulation is something that has already been done 

before.  David V. Rose, I. Paraschiv, and T. C. Genoni from Voss Scientific developed a 

serial approach to evolving Equations 1.3.8 and 1.3.9 in time on a periodic domain using 

finite difference methods for differentiation.  Their program is therefore incapable of 

running on multiple processors, meaning its performance is limited strictly by the fastest 

processor of the machine.  The basic structure of the serial code was used as a guideline in 

the steps for time evolution and will also be used for comparison as to simulation accuracy 

and runtime of the parallelized solution.   
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4.1 Outline & Methods 

 

When simulating Equations 1.3.8 and 1.3.9, a generic step method was used to make small 

discrete steps forward in time.  To further increase the accuracy of time evolution, the 

iterations were separated into two parts.  Generally known as a predictor-corrector method, 

a half-time step is first taken to aide in the “prediction” of the full-time step.  The updated 

values from the predictor step are then used to calculate the final “corrected” values for the 

full-time step.  The time step for the predictor part must always be half that of the full-time 

step, but the full time-step can be adjusted to account for rapidly or slowly changing 

functions.  Although the program developed at Voss Scientific is capable of dynamic time-

stepping, the program made here was kept simpler and uses a constant, linear time 

evolution.   

 

Since the time stepping in of itself is rather trivial, focus will instead be shifted on the 

outline of the computations involved within each time step.  Due to the nature of spectral 

differentiation with MPI as discussed previously, the program can be thought of in a series 

of steps determined by the inter-processor communication, which varies depending on 

what terms of 1.3.8 and 1.3.9 are calculated.   
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Due to the 
𝜕2𝜌

𝜕𝑥𝜕𝑦
 and ∆𝜌 terms in 1.3.8, even the nonlinear procedure requires a dual stage 

scatter/gather approach, shown in Figure 4.1.  The mixed derivative requires the 𝑦 

derivative to be calculated first and then the 𝑥 derivative taken subsequently after.  The 

Laplacian 𝜌 term follows the same method outline in Chapter 3.4.  As a result, any 

simulation ignoring the nonlinear terms (specifically on the right-hand-side of 1.3.8 and 

1.3.9) will have a total of 15𝑛𝑡 calculations per time step, 𝑡, for 𝑛 number of processors 

(i.e. 15𝑛𝑡 for each half-time step in the predictor-corrector method).  If the nonlinear terms 

are wanted to be calculated, then the communications increase to 21𝑛𝑡.   

 

If one pays close attention it can be seen during the nonlinear calculations (the third “\_/” 

formation on the bottom of Figure 4.1) that even though only four values are being 

Figure 4.1.  Communication maps for the RT-KH plasma simulation program.  The top 

image showcases the communications necessary when dealing with only the linear terms of 

Equation 1.2.1 and 1.2.2.  The bottom image shows the communications need when non-

linear terms are also calculated.   
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calculated (resulting in four FFTs), five values are being gathered.  The fifth is the 
𝜕𝜌

𝜕𝑥
 term, 

calculated in the first processor manipulation, and is an artifact of the functions used to 

calculate the derivatives.  This could easily be edited to reduce the number of FFTs 

performed by the linear method (which still calculates this 
𝜕𝜌

𝜕𝑥
 but does nothing with it, 

resulting in 6 FFTs and only five gathers). 
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4.2 Performance 

 

Since the RT-KH MPI implementation varies depending on whether nonlinear terms are 

included or not, it is important to consider both possibilities when analyzing performance.  

Another key attribute that will greatly affect the speedup and runtime of the program that 

is not explicitly outlined is writing the data to a file.  The optimization of this process was 

not attempted, and so any file saving done by the program is an inherently serial process 

that will greatly hinder the performance of the program.  Therefore, to analyze strictly the 

methods for calculations, it will be assumed that no output files are created to obtain the 

best representation of the program’s numerical performance.   

 

Figure 4.2.1 showcases the runtime, speedup, and efficiency of the MPI RT-KH program 

when excluding and including nonlinear terms.  Similar to FFTW’s MPI speedup tests, the 

parallel 𝑛 > 1 executions were compared simply with the 𝑛 = 1 execution, again resulting 

in an ideal speedup of 1.0 for 𝑛 = 1. 
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When dealing with just linear terms, a maximum speedup of 1.70 is achieved for 𝑛 = 8 

processors.  For 𝑛 = 16, the speedup drops to 1.43.  The reason for this decrease is the 

balance between load distributions.  Although fewer FFTs are being calculated per 

processor, there is more time spent communicating and distributing the data.  Due to this 

change in an already small speedup, the best fit possible when including 𝑛 = 16 gives a 

Figure 4.2.1.  Runtime, speedup, and efficiency of the MPI RT-KH program for 5000 time 

steps.  Error bars show the standard deviation of three different trials for each 𝑛 number of 

processors (1, 2, 4, 8, and 16).  
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maximum theoretical speedup of 1.69 for 𝑛~103 processors (hence the relatively low 𝑅2, 

shown in Table 4.2.1).  Although this maximum does agree with the maximum speedup 

achieved experimentally, it occurs at 𝑛 = 8.  So despite the relative poorness of the fit, the 

maximum does match what is actually achieved.  Excluding the 𝑛 = 16 term does give far 

better fits for Amdahl’s Law (up to 𝑅2 = 0.9771), but also portrays the data in a biased 

fashion.   

 

Table 4.2.1.  Fit data for the speedup the MPI RT-KH program 

when calculating only the linear terms of 1.2.1 and 1.2.2. 

𝒑  𝒂 𝑹𝟐 

0.4257 ± 0.1194 1 0.6442 

0.353 ± 0.38903 1.099 ± 0.4643 0.6977 

 

When looking at the performance of the program when calculating the nonlinear terms, the 

drastic increase in runtime is immediately noticable – over double that when they are 

excluded.  The efficiencies are almost identical though, showcasing that workload 

distribution remains relatively consistent despite calculating new terms.  For the speedup, 

a maximum occurs for 𝑛 = 8 once again, but with a slightly decreased value of 1.46.  When 

fitted with Amdahl’s Law, the appropriate 𝑎 = 1 is once again achieved (shown in Table 

4.2.2) just like with the linear terms.  Despite the goodness of fit, the theoretical maximum 

speedup of 1.43 occurs for 𝑛~103, which is again a very similar result to the linear term 

test.  The parallelization percentages are reasonably close to one another as well, with a 

percent error of 15.57%.   
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Table 4.2.2.  Fit data for the speedup the MPI RT-KH program 

when including the nonlinear terms of 1.2.1 and 1.2.2. 

𝒑  𝒂 𝑹𝟐 

0.3028 ± 0.1301 1 0.6016 

0.302 ± 0.40765 1.001 ± 0.4114 0.6016 

 

When compared to strictly the runtimes of the RT-KH program at Voss Scientific, the 

results vary depending on whether or not the nonlinear terms are calculated, as shown in 

Figure 4.2.2.  Although more in depth analysis could be made, a general assumption would 

be that the finite difference method is largely faster than spectral methods.  Neither of the 

MPI runs come close to matching the theoretical parallel runtimes of the Voss program, 

but they do perform better when computing the nonlinear terms.   

 

 

 

 

  

Figure 4.2.2.  Runtimes of the MPI RT-KH program compared with the program 

developed at Voss Scientific for 5000 time steps.   
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4.3 Simulation Accuracy & Brief Analysis 

 

It is important to first examine and validate the proper effects of the linear and nonlinear 

terms of 1.3.8 and 1.3.9 under the influence of a default shear velocity profile, shown in 

Figure 4.3.1.  Strictly periodic functions were used to ensure that the FFTs could 

differentiate appropriately.  The initial density and potential were made identical and the 

simulation was run up to 10000 time steps.  Figures 4.3.2 and 4.3.3 show the evolution of 

such a system created by the MPI RT-KH program.  The program by Voss Scientific 

produces identical results, showcasing that the methods used here are accurate for the linear 

terms in 1.3.8 and 1.3.9.   

Including the nonlinear terms in calculations also produces results that match those created 

by Voss Scientific.  As expected, the values do not vary much from the linear term 

simulation, as shown in Figure 4.3.4.  Similar to adding the second order terms of a Taylor 

series, the additional terms here should not have any large effects on the distributions. 

Figure 4.3.1.  Default shear velocity profile. 
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As noticeable in all the images, the plasma density and potentials rapidly stray from their 

initial distributions to form horizontal band structures.  The channels of negative (blue) and 

positive (red) polarity are generally called “streamers” and can be viewed as negative 

electron charge distributions moving against a positive ion background.  An initial 

Figure 4.3.2.  Plasma charge density evolution using with the default velocity profile for 

only linear terms.  Snapshots taken for time steps at 0, 2500, 5000, 7500, and 10000.   

Figure 4.3.3.  Electric potential evolution with the default velocity profile for only linear 

terms.  Snapshots taken for time steps at 0, 2500, 5000, 7500, and 10000.   



68 
 

perturbation of free electrons (i.e. negative charge density) is necessary to achieve the 

streamer-like distributions.  The evolution of streamers is dependent on an ambient electric 

field (provided by the potential gradient) to accelerate the free electrons within the plasma.  

The positive channels propagate along the electric field so long as an external source of 

electrons is present (provided by background ionization or due to incident photons), and 

the negative streamers propagate against the electric field due to the acceleration of 

electrons [16].   

 

Figure 4.3.4.  Sample values of plasma charge density (top) and potential (bottom) after 

5000 time steps.  The left images include only linear terms from 1.3.8 and 1.3.9, where 

as the right images include both linear and nonlinear terms.  Slight variances occur near 

the midpoint of the 𝑥-axis, making the bands more uniform when including nonlinear 

terms.   
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The streamers shown here are classified as the linear phase of the instability’s evolution.  

As time progresses, the streamers dissipate as the transition from linear to nonlinear stages 

take place as zonal flows and vortex structures appear.  Research done by Sotnikov at the 

Air Force Research Laboratory showcases the nonlinear features and will not be discussed 

in depth here due to anomalies discussed in Chapter 4.4 [2].   

 

Figure 4.3.5.  Plasma charge density evolution using with the default velocity profile for 

only linear terms without the presence of ion drift, 𝜈𝑔 = 0.  Snapshots taken for time 

steps at 0, 2500, 5000, and 7500.  Notice the final distributions begin to form zonal flows 

dependent on the shear velocity profile, typical of the nonlinear instability phase. 
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One way to make the nonlinear stages occur sooner in the evolution is to decrease the ion 

cyclotron frequency (𝜔𝑐𝑖 in Equation 1.3.6) or correspondingly the gravitational drift speed 

of the ions (𝜈𝑔 in Equation 1.3.8).  This technique is not useful for exact results as it will 

violate the 𝜔/𝜔𝑐𝑖 ≪ 1 condition for Equations 1.3.8 and 1.3.9.  It does, however, give a 

basic form as to the nonlinear phase, shown in Figures 4.3.5 and 4.3.6.   

 

 

  

Figure 4.3.6.  Electric potential evolution using with the default velocity profile for only 

linear terms without the presence of ion drift, 𝜈𝑔 = 0.  Snapshots taken for time steps at 

0, 2500, 5000, and 7500.  Notice the final distributions begin to form zonal flows 

dependent on the shear velocity profile, typical of the nonlinear instability phase. 
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4.4 The Spectral Anomaly 

 

As demonstrated in Chapter 4.3, the simulations produced by the MPI RT-KH program are 

agreeable to the ones produced at Voss Scientific.  However, this is only true for relatively 

few time steps for low shear velocity magnitudes.  Not yet visible in the densities and 

potentials shown in Chapter 4.3 lies a phenomenon that is both unexpected (as it does not 

occur with the program developed by Voss Scientific) and completely destructive to the 

simulation itself.   

 

As the simulation is allowed to progress forward, an anomaly repeatedly occurs at the 

minimum of the shear velocity – so in the case of the first shear velocity in Figure 4.3.1, it 

occurs for all 𝑦 at 𝑥 ≈ 42 with an 𝑥 with arbitrary width.  This anomaly – shown in Figure 

4.4.1 – grows in intensity (rapidly approaching infinity) but not spatially, until it 

completely dominates the function.  If the minimum of the shear velocity is moved, the 

anomaly moves with it.   

 

Numerous attempts to debug this problem have been attempted and with little success.  The 

localization of the anomaly suggests an immediate problem with the derivative of the shear 

velocity (i.e. where the derivative is zero).  This would explain the exponential growth of 

error if there was a divide-by-zero occurrence.  It does not explain, though, why the 

anomaly is not apparent at the maximum of the shear velocity.  The maximum too has a 

derivative of zero and should experience a similar issue, but it does not.  The anomaly is 

only ever strictly at the minimum.  The derivatives of the shear velocity (both first and 
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second, which are used throughout the vorticity time evolution) were analyzed for errors 

and they were indeed calculated correctly using spectral differentiation.   

It was briefly considered that the location of the artifact was a pure coincidence due to the 

separation of the grid-space when implementing MPI methods.  If improper send/receive 

commands were being used, then the anomaly could be easily explained and solved by 

ensuring that data was properly transferred between processors.  This turned out not to be 

the case, as running with a single processor and even removing all MPI functionality 

produced the same anomaly.   

Figure 4.4.1.  Time evolution of the plasma density RT-KH simulation with the same 

initial conditions as in Figure XXX.  As the number of time steps surpasses 10000 

(shown here for 11100, 11700, 12300, and 12900), an anomaly at the minimum of the 

shear velocity begins to develop and dominate the function.  The same anomaly occurs 

for the electric potential. 
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The idea was also proposed that perhaps the anomaly only occurred at the minimum of the 

velocity because that was the first zero derivative point to be reached when indexing the 

array, arguing that the maximum too would cause the error, but it was just failed to be 

reached when indexing the array.  If the first zero derivative (and the first error) occurred 

at the point 𝑛0 lying within the bounds 0 < 𝑛0 < 𝑛𝑥, and the points were indexed 

sequentially from 0 to 𝑛𝑥, then it could be a possibility that any values after the 𝑛0 (so 

lying in the 𝑛0 < 𝑛𝑥 region) could simply not be calculated if the operation was terminated 

prematurely.  This proposal of course does not explain why the anomaly has a definite 

width, but was disproven nonetheless by both indexing the array backwards (from 𝑛𝑥 to 0) 

and by testing a simple sine wave shear velocity where the maximum was traversed first 

before the minimum.  In both instances, the anomaly occurred only at the minimum of the 

function.   

 

One solution may come to mind to simply introduce a shear velocity that does not have a 

single minimum, but only a maximum, such as a Gaussian distribution (or bell-shaped 

curve).  Ensuring that the function reaches approximately zero at the boundaries of the grid 

so that spectral methods don’t immediately fail (i.e. making the function periodic) is a 

simple enough task.  Yet implementing the Gaussian velocity produces symmetric 

anomalies along both boundaries of the grid, where the velocity reaches its lowest values, 

displayed in Figure 4.4.2.   
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With the velocity fully analyzed, attention then shifted to the vorticity and density function 

themselves.  If the velocity wasn’t the problem, then something that uses the velocity must 

Figure 4.4.2.  Time evolution of the plasma RT-KH simulation when given a bell-shaped 

(Gaussian) shear velocity, shown in the top figure.  As the number of time steps surpasses 

17,000 (shown here for 17400, 18000, 18600, and 19200), the anomaly can be seen to 

develop everywhere but the middle of the 𝑥 grid space, where the shear velocity is 

approximately zero.  The same anomaly occurs for the electric potential. 
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be causing the issue.  If all terms involving the shear velocity were removed (set to zero), 

then the functions evolved without incident.  To further explore the issue, Equation 1.3.9 

was first decoupled from 1.3.8 by removing the 𝜑 dependency.  This way, if the problem 

lied in the vorticity time evolution then it would stay localized to the vorticity; the density 

should evolve without incident.  This is indeed what happens, implying that a term in 1.3.8 

was the culprit.   

 

Removing the dependency of each variable one a time, term by term, 
𝜕∆𝜑

𝜕𝑦
 was localized to 

be the issue.  In the wishful thinking that it was merely the method of taking the derivative 

of the Laplacian that was the problem, 
𝜕∆𝜑

𝜕𝑦
 was replaced by 

𝜕∆𝑛

𝜕𝑦
, which is already used in 

1.3.8 and derived in the exact same fashion.  Alas, this replacement saw no anomaly occur, 

meaning that the issue was not in the derivative methods but in the vorticity itself.   

 

The source of the anomaly was therefore localized to the first, four-term coefficient of 1.3.8 

and the vorticity’s 𝑦-derivative.  In other words, solving the differential equation shown 

below: 

 

𝜕∆𝜑

𝑑𝑡
+ (𝑉0 + 𝜏𝑖𝜅𝜌 − 𝜈𝑔 −

𝜏𝑖

2
(𝑉0

′′ + 𝜅𝜌𝑉0
′))

𝜕∆𝜑

𝑑𝑦
= 0 

 

(4.4.1) 

 

Removing individual 𝑉0, 𝑉0
′, or 𝑉0

′′ dependency still resulted in various anomalies 

occurring, outline in Table 4.4.  Interestingly, removing all velocity dependent terms (so 
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keeping only the 𝜏𝑖𝜅𝜌 − 𝜈𝑔 coefficient) also results in anomalies, even though this is a 

fairly simple PDE to solve.   

 

Table 4.4.  Anomaly descriptions when manually setting shear velocity components and 

evolving 4.4.1 in time.  The vorticity varied only in the 𝑦-direction (− sin(2𝜋𝑦/𝑛𝑦)).  

Anomaly directions are given when viewed from a standard 𝑛𝑥 × 𝑛𝑦 plot (𝑥-axis 

horizontal and 𝑦-axis vertical).  All anomalies occurred after roughly 10,000 steps.   

𝑽𝟎 𝑽𝟎
′  𝑽𝟎

′′ Anomaly Description 

0 Nonzero Nonzero “Thin” Periodic Diagonals Across Grid  ⋰ 

0 0 Nonzero “Thick” Periodic Horizontals Across Grid ⋯ 

0 Nonzero 0 “Thin” Periodic Diagonals Across Grid  ⋰ 

0 0 0 “Thick” Periodic Horizontals Across Grid ⋯ 

Nonzero 0 Nonzero 𝑉0 Minimum Localized Vertical ⋮ 

Nonzero 0 0 𝑉0 Minimum Localized Vertical ⋮ 

Nonzero Nonzero 0 𝑉0 Minimum Localized Vertical ⋮ 

Nonzero Nonzero Nonzero 𝑉0 Minimum Localized Vertical ⋮ 

 

Due to its simplicity, it’s easy to delve into the triple-zero case a little deeper.  If the 

vorticity is only dependent on 𝑥, then its 𝑦-derivative will be zero.  In this case the 𝑦-

derivative should be nonzero, so it can be assumed that the vorticity is only dependent on 

𝑦.  Since the vorticity is determined by the Laplacian of the potential, then the potential is 

also only dependent on 𝑦.  Setting the initial potential at 𝑡 = 0 to be a simple sine function, 

sin(𝑦), the initial vorticity becomes − sin(𝑦).  Solving 4.4.1 by hand then becomes trivial, 

giving a simple oscillating sine wave with respect to time:   
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∆𝜑 = sin (𝑦 + 𝑡(𝜈𝑔 − 𝜏𝑖𝜅𝜌)) 
 

(4.4.2) 

 

If 4.4.1 is simulated with respect to time given 𝑉0 = 𝑉0
′ = 𝑉0

′′ = 0, the exact result given 

by Equation 4.4.2 is initially observed: an oscillating sine wave in the 𝑦-direction.  

However, as time progresses the anomaly returns, spanning all values of 𝑦 and oscillating 

in time; exactly what Table 4.4 tells us.  Yet 4.4.2 has no point of failure in its evolution, 

regardless of what variables are chosen, and the other differential equations do not exhibit 

this same phenomenon when allowed to evolve on their own.   

 

So what else could be the source of this anomaly?  Going back to Figure 2.3, a new feature 

may be noticed that wasn’t beforehand: the periodicity of the error in spectral methods.  

Although this is indeed largely machine precision, it’s clear that at the end points the error 

is the highest, but there are also two points relating to the relative extrema of the function 

that also experience high errors.  In particular, this error is unquestionably highest (when 

ignoring end points) at the function’s minimum value, regardless of the order of the 

derivative (in the case of Figure 2.2.3, the test function was a sine wave with a minimum 

of −1 at 3𝜋/2 ≈ 4.71).  Sequential use of the spectral method for differentiating will only 

result in the accumulation of machine errors, until eventually the noise dominates the 

function.  Since the maximum noise seems to occur specifically at the minimum of the 

function and does have definite width, it would explain why all the anomalies also appear 

at the shear velocity’s minimum.  The rapid increase of the anomaly is characteristic of an 

accumulative error, also supportive of this theory.   
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Why then does the error only occur when solving for the vorticity?  Considering the 

outlying coefficient is the only one that includes all three velocity terms (𝑉0, 𝑉0
′, and 𝑉0

′′), 

this term would naturally have the highest error at the velocity minimum since the velocity 

derivatives were also found using spectral methods.  However, this does not explain the 

inability of the spectral method in solving simplistic PDEs that produce solutions such as 

4.4.2.  A different time-stepping algorithm may be needed instead of the predictor-corrector 

method, or there may be some other error associated with solving time dependent 

differential equations.  Further effort could be made to validate or disprove these claims, 

or to simply further understand the origin of the spectral noise and the anomaly itself.   
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Chapter 5 

Conclusion 

The previous work done by the programmers at Voss Scientific provided an excellent 

ground basis for modeling RT-KH instabilities in ionospheric plasmas.  Their program, 

although capable of proper simulations, did leave room for optimization. 

 

The conversion from finite basis methods to spectral differentiation posed some difficulties 

when calculating terms such as the Laplacian.  The solution that was finally used 

minimized computational runtimes and achieved a maximum theoretical speedup of 3.63.  

This was substantially lower than the built in MPI functionality of FFTW, which could 

theoretically reach a max speedup of 10.26, but still had faster runtimes for four or fewer 

processors.  This implies that an even faster method of calculating the Laplacian of a 2D 

function could be created that both minimizes runtime while giving maximum speedup.   

 

The MPI RT-KH program was then largely built around the fundamental core structure of 

the custom Laplacian solution.  The final program achieved a maximum speedup of 1.40 

when ignoring the nonlinear components of its equations, but eventually failed as the 

simulation progressed forward in time.  This failure was due to an anomaly that occurred 

at the minimum of the shear velocity.  The error was traced to the 𝑦-derivative of the 

vorticity.  Solving the PDE through spectral differentiation appeared to be the issue.  The 

high machine error at the function’s minimum accumulated to the point of dominating the 
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entire output.  This behavior is not fully understood, and further analysis should be done to 

examine the source of the spectral error.   
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