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ABSTRACT 

 

 

Johnson, Marie. MS, Department of Biological Sciences, Wright State University, 2018. 

Demography and dendrochronology of a disjunct population of eastern hemlock in 

southwestern Ohio. 

 

 

Edge and isolated plant populations provide information about the resilience and the most 

basic resource needs of a species. Plant demography examines changes in population size 

and structure over time. An isolated, disjunct eastern hemlock population in Clifton 

Gorge State Nature Preserve, Yellow Springs, Ohio consists of two distinct 

subpopulations each with different environmental characteristics, reproductive capacities, 

and health ratings. Both subpopulations at Clifton Gorge were found to exhibit significant 

decreases in average annual ring width through time. Linear regression modeling 

determined that average annual growing season precipitation and temperature were the 

strongest predictors of these growth trends. A comparative hemlock population at 

Cantwell Cliffs, Rockbridge, Ohio within the contiguous range of the species displayed 

environmental characteristics more typical of hemlock-dominated stands and slight 

increases in average annual ring width through time, suggesting that the contiguous site is 

more favorable for eastern hemlock performance.
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I. INTRODUCTION 

Obtaining baseline information about plant populations is important for tracking, 

understanding, and predicting plant responses to environmental change and biotic stress 

(Eschtruth et al., 2006). Demographic information is especially valuable for populations 

at the edge of their natural range, as edge populations are often first affected by the 

progression of biotic and abiotic disturbances such as invasive pests and climate change 

(Brown et al., 1996). Given the relative inhospitality of the edges of a range relative to 

the center of the range, populations at the edge likely have access to fewer resources and 

less favorable weather conditions, making them more susceptible to disturbance (Brown 

et al., 1996). Isolation and inbreeding contribute to increased genetic uniformity and have 

negative implications for resistance and resilience in the event of invasive species 

introduction or disturbance. Alternatively, isolated populations might prove to be useful 

sources of unique genetics in conservation efforts. Edge plant populations in the Ohio 

region are commonly glacial relicts, surviving pockets of a once larger, more widespread 

population (Braun, 1928). In some cases, receding glaciers created topographic features 

that still provide protected microclimates for a species that had previously relied on the 

microclimate of the glacier itself. Investigating which environmental factors allow edge 

populations to survive might provide insight into the adaptability and resilience of a 

species. The possible presence of rare alleles within isolated populations also warrants 

study based on the ability of findings to aid in understanding the genetics of the species.   
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Eastern hemlock (Tsuga canadensis (L.) Carriere) is a long-lived, evergreen 

member of the pine family (Myers et al., 2015). These trees are commonly found in the 

Appalachian forests of North America, but isolated populations at the edges of their 

native range are fairly abundant (Myers et al., 2015). Due to its widespread ecological 

impacts, eastern hemlock is considered a foundational species (Myers et al., 2015; 

Quimby, 1996). Eastern hemlock acidifies soil, reduces temperature with its extremely 

dense canopy, and modifies the humidity of the understory creating a unique 

microenvironment that acts as a filter in determining which species can colonize hemlock 

stands (Finzi et al., 1998; Myers et al., 2015). Hemlocks typically populate the sloped 

areas along streams and exhibit reduced annual ring widths when exposed to increased 

temperature or reduced moisture (Kessell, 1979; Avery, 1940). In most cases, hemlock 

stands include very few other tree species (Hessl and Pederson, 2013). Colonization of 

the understory by saplings and herbaceous plant species is sparse, leaving the forest floor 

nearly bare except for a thick, slow-decomposing layer of needles. These trees, while 

possibly limiting land biodiversity, contribute to stream health and aquatic biodiversity 

(Hessl and Pederson, 2013; Ellison et al., 2005). Due to the narrow regeneration niche of 

eastern hemlock, seedling establishment and subsequent recruitment into larger size 

classes may occur only at very low levels (Rooney and Waller, 1998; Rooney et al., 

2000). However, seed recruitment and seedling establishment is most successful in areas 

where the forest floor is largely covered in thin needle leaf litter rather than any depth of 

broad-leaved litter or some combination of the two litter types (Rooney et al., 2000). 

Seedlings also occur more often than expected on rotting wood with the opposite finding 

for tip-up mounds and the forest floor (Rooney and Waller, 1998). This level of 
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specificity in preferred establishment conditions may contribute to difficulty in hemlock 

reproduction, especially at sites where one or more of the ideal conditions are even 

periodically absent.   

Hemlock woolly adelgid (Adelges tsugae; HWA) is an invasive, sap-sucking 

insect that was accidentally introduced from Japan to the United States in the 1950s 

(Vose et al., 2013). Since its introduction, HWA has spread to 18 states within the range 

of eastern hemlock (Vose et al., 2013). As an aphid-like nymph, HWA either crawls from 

natal tree to a new host tree or is dispersed by wind or mechanical transport, where it then 

attaches at the base of the needles and begins feeding on sugar and nutrients from the 

network of transport tissue (Vose et al., 2013). Once attached, the insects lose mobility 

and continue to feed until they secrete a waxy capsule where they will eventually lay their 

eggs and die (Vose et al., 2013). HWA attacks eastern hemlock trees of all sizes and ages, 

killing adult trees and halting stand reproduction (Vose et al., 2013). Because eastern 

hemlock trees in the United States did not evolve alongside HWA, the trees lack effective 

defense mechanisms, resulting in very high tree mortality rates (Vose et al., 2013). 

Despite high rates of HWA-induced mortality, resistant hemlock individuals do exist and 

may provide information about how to better combat this invasive pest (Caswell et al., 

2008; Ingwell and Preisser, 2011).  

We conducted a demographic study of the isolated eastern hemlock population at 

Clifton Gorge State Nature Preserve, Yellow Springs, Ohio. Baseline information about 

population density, age frequency distribution, growth rate, and reproductive capacity 

was collected to determine the status of and predict future threats to the population. 

Dendrochronological analyses were conducted to assess annual ring width through time 
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to determine what factors predict these trends and how these trends might impact the 

future success of the population. Our findings might become useful for a comparative 

study looking at other isolated populations along the edge of the range of eastern hemlock 

in Ohio and elsewhere. A thorough survey for hemlock woolly adelgid provided insight 

into the infestation status of the population and might, in combination with demographic, 

environmental, and dendrochronological observations, help to conserve a local population 

by providing the foundation for the formulation and implementation of a hemlock 

management plan at Clifton Gorge. 
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II. METHODS 

STUDY AREA AND SITES 

 

The primary study site located near the village of Clifton (Greene County, Ohio) 

follows the Little Miami River from the 268-acre Clifton Gorge State Nature Preserve 

(N39º 48.010', W83º 50.143') to the 752-acre John Bryan State Park. Here the river drains 

down the escarpment between the underlying Silurian geologic plain and the adjoining 

Ordovician plain. The flow of the river from the younger, more resistant Silurian rock to 

the older, less resistant Ordovician rock allows for the rapid erosion of the Ordovician 

bedrock and the formation of the most salient feature of the site, the gorge itself. Closest 

to the surface in the Silurian layer is Ceaderville dolomite (50 ft of depth), with 

Springfield (7ft) and Euphemia dolomite (7ft) beneath. These are the rock layers that 

form the shaded, north-facing cliffs of the gorge and allow for the relatively humid, 

“refrigerated” gorge microclimate. Beneath the dolomite layers are softer rock layers: 

Osgood shale (35 feet), Brassfield limestone (35 ft), and Elkhorn shale (15 ft) (Carmen, 

1946; John Bryan State Park Trail Map, 2017). The cutting of the river through the 

Osgood shale with relatively little resistance and greater speed compared to the dolomite 

layers results in a hollowing out of the gorge at the Osgood layer. This hallowing leads to 

the detachment (slumping) of large dolomite blocks from the gorge walls. These blocks 

are frequent and of varying sizes throughout the gorge portion of the study site, with 

Steamboat Rock being the most prominent example (Haneberg-Diggs and Waid, 2018; 
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John Bryan State Park Trail Map, 2017). As the river continues to flow toward John 

Bryan, it cuts deeper into the softer rock layers, allowing for the widening of the gorge 

and the softening of the valley slope before reaching the more resistant Brassfield 

limestone layer, which results in a narrow and steep valley within the broader one. The 

gorge at the end of the study site is wide and much more gently sloped, as it has eroded 

through the limestone layer and into the older rock below.   

 The steep walls of the gorge even in the broader passes provide the shade and 

shelter necessary for maintaining a cooler, more humid microclimate within the 

continental climate of the surrounding area. It is within this microclimate that two distinct 

subpopulations of the study species, eastern hemlock (Tsuga canadensis), can survive 

despite being approximately 50 miles outside of their native range. The Clifton Gorge 

hemlock subpopulation consists of approximately 110 individuals found mostly on the 

Southeast, permit-access side of the river between The Falls and Blue Hole (John Bryan 

State Park Trail Map, 2017). The second subpopulation of about 22 individuals exists 

downriver in John Bryan along the public-access trail behind the shelter in the lower 

picnic area. This group of trees progresses toward the bank of the river on the Northwest 

side. The site is characterized by shallow, rocky soils, extreme slopes in places, and 

variable leaf litter depths. 

  

GENERAL SAMPLING  

 

Initial interest in the eastern hemlocks at Clifton Gorge stemmed from their brief 

mention on the Clifton Gorge website and from personal observation of the largest 
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individuals from across the river by several members of the Wright State University 

faculty during recreational hikes (Ohio Division of Natural Areas & Preserves, 2018). A 

preliminary scouting mission to locate hemlocks on the research-only side of the Gorge 

was conducted in September 2016, during which most individuals were found. Additional 

previously undocumented individuals were discovered and added to the data set 

throughout the course of the study. Apart from small seedlings clustered on the floodplain 

at the gorge floor, all individuals were tagged. 

Trees were identified and tagged using numbered aluminum disks secured with 

nails for larger trees and flagging tape for the smallest seedlings and saplings. Data was 

recorded on a data sheet with a row for each tree and included: tree tag number, rough 

location relative to the nearest documented hemlock or some landmark, diameter at breast 

height (DBH), presence or absence of cones, presence or absence of HWA infestation, 

environmental characteristics (e.g. rough description of degree of slope, leaf litter 

thickness, proximity to the river, rockiness of the substrate, and any other relevant 

observations), tree condition (e.g. condition of needles, absence of branches, relative 

degree of epicormic sprouting, overall appearance, and any other relevant observations), 

and the date. No DBH was taken for small seedlings with DBH less than two centimeters, 

and all such individuals were grouped into their own size class. Binoculars were utilized 

to determine whether individuals were cone-bearing and to check the upper canopy for 

dieback. The HWA infestation status of each tree was determined according to the 

protocol outlined by the Forest Health Technology Enterprise (Costa and Onken, 2006), 

which calls for the visual inspection of the two lowest tree branches for the presence of 

HWA individuals. From trees with a DBH greater than 10 cm, a core was taken for 
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dendrochronological analysis. Tree health, site slope, and thickness of leaf litter were 

each assigned post hoc to categories ranging from one to three, with one representing the 

lowest score and three representing the highest score. For categorization of slope: 1 = flat 

or nearly flat; 2 = slight to intermediate slope; 3 = steep slope to cliff edge. For 

categorization of leaf litter depth: 1 = thin leaf litter with most to half of the ground 

exposed; 2 = more than half of the ground covered, thin accumulation over most or all of 

the ground; 3 = moderate to thick coverage. For health categorization: 1 = poor health, 

missing branches, excessive epicormic branching, canopy dieback; 2 = intermediate 

health, only one to two indicators of decreased health; 3 = very healthy with little to no 

indication of health issues. 

 

COMPARATIVE SITE SAMPLING – CANTWELL CLIFFS, ROCKBRIDGE, OHIO 

 

The comparative study site is located toward the Northern boundary of Hocking 

Hills in Southeast Ohio’s Hocking County approximately 80 miles from the disjunct site 

at Clifton Gorge. The Cantwell Cliffs site, which is accessible via pull-off parking along 

OH-374 (39°31’38.1” N, 82°34’22.2” W), lies within the Cantwell Cliffs portion of 

Hocking Hills State Park. Climate here is continental. The site is characterized by a 

stream in a deep valley with steeply sloped sides and large sandstone slump blocks at the 

top. Most areas are covered in thick mixed deciduous and coniferous leaf litter (Cantwell 

Cliffs, 2018). 

 The Cantwell Cliffs sampling method followed the general sampling method apart 

from sample selection and tag installation. On November 10, 2018, 35 individuals were 
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selected in a haphazard fashion such that the size distribution of the sampled population 

subset was roughly reflective of the whole population. Tagging of trees was not necessary 

for the purposes of dendrochronological comparison.  

 

SAMPLING, PROCESSING, AND ANALYSIS OF TREE CORES 

 

Cores were taken from trees with DBH greater than 10 cm using a 20-inch Haglof 

3-thread increment borer (4.3 mm diameter). If possible, cores were taken at breast height 

through the entire diameter of the tree. If large individuals had diameters too great for a 

core of the entire diameter, efforts were made to avoid reaction wood on the trunk side 

where the borer would penetrate. This was not always possible, however, depending on 

whether the desired side of the trunk was safely accessible. The borer was cleaned and 

lubricated with WD-40 Multipurpose Lubricant before and after each use to prevent 

jamming and twisting of the core. Each core was loaded into a labeled 10.5 inch 

Aardvark brand paper straw (5.8 mm diameter) for transport and subsequent drying. 

Cores were dried on a bench in an air-conditioned laboratory for no fewer than five days 

before mounting. Wood glue was used to adhere dried core pieces to labeled ¼ inch by ¾ 

inch pine screen molding, cut to length. Clear adhesive tape was used to temporarily bind 

the cores to the bases while the glue dried (no fewer than three days). Upon removal of 

the tape, cores were sanded by hand using sand paper of increasing grit: 180, 220, 320. 

The width of each growth ring for each prepared core was visualized with an Olympus 

Tokyo dissecting microscope, measured with Mitutoyo Absolute Digimatic Caliper 

Series-500 (0.01 mm resolution) calipers, and recorded for cross-comparison. Cores with 
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missing segments, poorly-aligned pieces, or extremely small or blurred rings such that 

accurate measurements could not be taken were omitted from analysis.  

 

SEED BOX CONSTRUCTION AND PLACEMENT  

 

Ten seed collection boxes were constructed according to the protocol outlined by 

Herman (1963). Each box had dimensions of 63.5 by 30.48 by 7.62 centimeters with an 

effective catch area of 626.75 square centimeters and consisted of two stacked frames 

held together with one 60.96-centimeter bungee cord at each 30.48 centimeter end. Both 

top and bottom pieces were framed with finger-joint trim board (2.54 cm by 5.08 cm) and 

6d hot-galvanized steel box nails. The exterior of the top frame was covered with 3-mesh 

galvanized hardware cloth secured with ¾ inch hot-galvanized poultry net staples. The 

collecting layer itself was secured to the top of the bottom frame with T50 ¼ inch crown 

galvanized steel staples from a T50 staple gun. This layer, consisting of New York Wire 

FCS9579-M fiberglass solar screen (25 by 12 inches), was sandwiched between the two 

frames to form the middle layer. T50 staple gun staples were also used to attach 18-mesh 

aluminum screen to the bottom-most layer of the bottom frame. The resolving layers, 

from top to bottom, of the completed boxes were galvanized hardware cloth, fiberglass 

solar screen, and aluminum screen, with the aluminum screen in direct contact with the 

forest substrate.  

Box placement was determined based on proximity to cone-bearing individuals, 

logistics of box monitoring and retrieval, and clear line of possible seed dispersal. An 

effort was also made to place boxes at comparable points both on the cliff edge and on 
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the floor of the gorge. Each box was anchored by nearby rocks or branches with as little 

interference with effective catch area as possible. Boxes were placed on October 24, 2017 

and remained in the field until March 19, 2018. Boxes were checked for obstructive leaf 

litter on October 31, November 7, 17, and 28, and December 20, 2017. Leaf litter 

accumulation was minimal on all checkup visits and boxes were left largely undisturbed 

for the remainder of the collection period.  

 At the time of retrieval on March 19, 2018, the coordinates of each box were 

recorded with either a Garmin Oregon 400t GPS unit or the Google Maps app on a 

Galaxy S6 smartphone depending on the ability of the Garmin unit to connect to satellites 

at a given location. The top frame of each box was removed to reveal the solar screen 

collecting layer. The screen was detached from the bottom frame, carefully folded to 

prevent spilling of the seed and cone samples, and placed in a labeled Ziploc bag for 

transport. In the laboratory, the contents of each Ziploc bag were placed on their own 

labeled plastic lunch tray and allowed to dry until April 5, 2018. After drying, the 

contents of each box were sifted through using scoopula and forceps. For each tray of box 

contents, eastern hemlock cones were separated and their seeds removed and put into a 

labeled 15 mL conical tube. Loose hemlock seeds were collected from the remaining 

sample and placed into a separate tube. All seeds were removed from the storage tube and 

observed under an Olympus Tokyo dissecting microscope to confirm accurate 

identification and seed counts. In summary, seed box samples were processed and 

separated into two components per box: one conical tube of seeds from within cones (if 

cones were present in the sample) and one conical tube of loose seeds. 
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CUTTINGS PROTOCOL 

 

Fifteen-centimeter branch cuttings were collected from 10 healthy eastern 

hemlock individuals at each of 11 sites in Ohio and Indiana: Yellow Springs – a 

Pennsylvania native transplanted to private property (OH), Clifton Gorge State Nature 

Preserve (OH), private land in Hocking Hills (OH), Clifty Falls State Park (IN), Yellow 

Birch Ravine Nature Preserve (IN), Hemlock Cliffs National Park (IN), Turkey Run State 

Park (IN), Shades State Park (IN), Trevlac Bluffs Nature Preserve (IN), Laura Hare 

Nature Preserve (IN), and Hemlock Bluff Nature Preserve (IN). All sites provide 

climatically and topographically similar habitat for what are believed to be wild 

populations of eastern hemlock individuals. Sites were selected to provide comparative 

representation of both contiguous (i.e. the Pennsylvania individual and the private 

property in Hocking Hills) and disjunct (i.e. all Indiana sites) populations. Six of eight 

disjunct comparative sites in Indiana were selected thanks to their sampling in a genetics 

study published by Hobbs and Clay in 2013.  

Timing of field work as well as materials and methods used in propagation 

attempts were based on hemlock cuttings trials conducted by Caswell et al. (2008). The 

out-of-state collection trip for this study was conducted February 28 and March 1, 2017. 

Ten 15-centimeter terminal branch cuttings were taken using pruning shears from the 

lowest healthy branches of 10 eastern hemlock individuals at each site. Cuttings were 

stored and transported in five-gallon buckets of tap water for the duration of the trip. 

Upon returning to the laboratory, the large cuttings were trimmed down with a razor 

blade at a 45-degree angle to lengths of approximately seven centimeters. Needles and 



13 

 

the majority of twig bark were removed from the bottom third of each cutting and the cut 

end dipped for approximately 5 seconds in a 1:1 solution of distilled water and Dip ‘N’ 

Grow Rooting Hormone. The rooting hormone-saturated end of each cutting was then 

inserted into a shallow tray of potting soil. Cuttings were misted daily with distilled water 

from a spray bottle and the soil kept moist as consistently as possible. Approximately 

every other day dead cuttings were removed from the trays and discarded. Cuttings from 

the Pennsylvania individual, Clifty Falls, and Hocking Hills were fertilized on April 6, 

2017 with a liquid preparation of Plant Marvel Nutriculture General Purpose fertilizer 

mixed according to the instructions on the bag. On April 27, 2017 all surviving cuttings 

were treated for spider mites with a batch of Avid insecticide that had been mixed in 

August of the previous year. Within one year of cuttings harvest and planting, all cuttings 

had lost their needles and died, including the few that had developed substantial roots.  

 

STATISTICAL METHODS 

ENVIRONMENTAL AND DEMOGRAPHY DATA ANALYSIS 

 

When not handled as a single population, the main study population at Clifton 

Gorge (CG) is split into two subpopulations, the gorge subpopulation upriver toward 

Clifton and the picnic subpopulation behind the lower picnic shelter in John Bryan. The 

distance between these two subpopulations and the considerable differences in 

topography between the sites might suggest that these two groups of trees are 

ecologically distinct. Thus, separate tests were run on both the entire CG population and 
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on the individual subpopulations. The trees sampled in Cantwell Cliffs (CC) were treated 

as a single population in all cases. 

Data collected for each tree include three ordinal variables: relative slope of the 

site, relative thickness of leaf litter, and relative health of the individual – all ranked one 

to three. Binary data for the presence or absence of cones were also recorded per 

individual. For each of these variables, Chi-square tests for independence were conducted 

to determine if the frequency distribution of trees placed in different categories varied 

significantly between sites (R software, R Core Team 2017). Eight chi-square tests were 

run to compare each environmental (i.e. slope and leaf litter) and demographic variable 

(i.e. health) for the entire CG population versus Cantwell Cliffs and for the CG gorge 

subpopulation versus the CG picnic subpopulation.  

 

SEED BOX DATA  

 

A two sample Student’s t-Tests was performed to elucidate any differences in 

seed catch between boxes placed on the cliff edge and boxes placed on the gorge floor (R 

software, R Core Team 2017). 

 

DENDROCHRONOLOGY DATA 

 

Data obtained through dendrochronological methods included growth ring width 

per year for each cored individual. Widths for each year were averaged over all cored 

individuals at each site to produce average annual ring width by site. Average annual ring 



15 

 

width at each site visualized through time revealed steep peaks in annual ring width 

followed by stabilization in observed trends. These peaks are believed to represent 

release events during which one or more resources (e.g. light) were uncharacteristically 

abundant. The oldest individuals at the CG site were found in the gorge subpopulation, 

one of which was dated back to 1782. Statistics performed to compare average annual 

ring width to climate variables were limited by the earliest year of available climate data, 

1895. For this reason, average annual ring widths for years 1782 through 1894 were 

excluded from statistical analyses for the only two sites for which data was available 

during that time, CG overall and the gorge subpopulation at CG. Statistical analyses to 

describe the overall CG site without release events include only years following the 

release event at the picnic subpopulation (1949 through 2017), as it occurred more 

recently than the release event at the gorge subpopulation.  

Correlations were run to test for associations between average annual ring width 

and calendar year at each site, both with and without data from release event years (R 

software, R Core Team 2017). A correlation was also run to test for associations between 

time and annual ring width averaged for all cored individuals across all sites (R software, 

R Core Team 2017).    

Multiple regression was utilized to estimate the relationship between average 

annual ring width and several climate variables (R software, R Core Team 2017). The 

climate dataset used for this study contains time series data averaged for the entire state 

of Ohio starting in year 1895 (NOAA National Centers for Environmental information, 

2018). Variables considered in this study included: average temperature in May of each 

year, average temperature over the growing season (April – June) of each year, maximum 
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and minimum temperatures for May of each year and over the growing season of each 

year, and average precipitation in May and over the growing season of each year. May 

was isolated as a month in which significant growth typically occurs for hemlock trees in 

Ohio, as resource allocation begins to shift toward reproduction in following months 

(Olson et al., 1959). Correlations were run to test for associations between each climate 

variable and time (R software, R Core Team 2017). A correlation matrix including all 

independent climate variables was run to aid in model building. For any two independent 

variables with a correlation coefficient greater than 0.7, the variable spanning the 

growing season was preferentially selected for inclusion in the models (Dormann et al., 

2013). Maximum temperature in May was not strongly correlated with any other climate 

variables and was included to capture some component of extreme climate events. 

 

Variables and interactions were reduced to produce two general model formulas: 

AvgGrowth ~ AvgTempGS + AvgPrecipGS + AvgTempGS*AvgPrecipGS 

AvgGrowth ~ AvgTempGS + AvgPrecipGS + MaxTempMay + AvgTemp3*Precip3 + 

MaxTempMay*Precip3  

 

where AvgGrowth refers to the average yearly ring width, AvgTempGS refers to the 

average yearly temperature over the growing season, AvgPrecipGS refers to the average 

yearly precipitation over the growing season, MaxTempMay refers to the maximum 

temperature in May of each year, and * denotes an interaction between two independent 

variables. Regressions were run for all cored individuals averaged across the entire CG 
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population, all cored individuals averaged across Cantwell Cliffs, for each CG 

subpopulation averaged individually, and for the combined average yearly ring widths 

including all cored individuals at both Cantwell Cliffs and Clifton Gorge. Regressions 

were also run for each population/subpopulation substituting AvgPrecipGS for a vector 

containing the average precipitation over the growing season in the previous year 

(PrevAvgPrecipGS).  

 Akaike information criterion (AIC) was calculated for all models at sites for 

which more than one model resulted in a significant overall p-value (R software, R Core 

Team 2017). The model with the lowest AIC value was selected as the best fit model for 

that site.  

Two sample Student’s t-tests were performed to test for differences in average 

annual ring width between sites (R software, R Core Team 2017). Tests were run 

comparing Cantwell Cliffs to the entire CG population and separately to each 

subpopulation both including and excluding release events. t-Tests were also performed 

to compare average annual ring width between CG picnic and CG gorge subpopulations, 

both with and without release events. The average annual ring width vector in each t-test 

for which release events were included consisted of only years for which at least one tree 

at each site had available core data. Thus, the site with the younger oldest tree provided 

the limiting data set. The average annual ring width vector in each t-test for which release 

events were excluded consisted of only years for which neither site was undergoing a 

release event. 
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III. RESULTS 

DEMOGRAPHY 

  

The eastern hemlock population at Clifton Gorge consists of approximately 132 

individuals (Fig. 1), 110 in the gorge subpopulation, 22 in the picnic subpopulation, and 

two additional individuals that did not clearly belong to either subpopulation and were 

therefore excluded from statistical analyses (Fig. 2-3). The picnic subpopulation has no 

small individuals with DBH of zero to 10 cm nor any individuals larger than 51 cm DBH. 

Distribution of individuals across the size classes that are represented in the picnic 

subpopulation follows a relatively normal distribution with a slight skew toward smaller 

size classes (Fig. 2).   

Of the 110 individuals in the gorge subpopulation, 95 are small seedlings with 

DBH less than 2 cm (Fig. 3). The gorge subpopulation consists of no individuals with 

DBH between 11 and 50 cm and only one to two individuals in each of the remaining, 

larger size classes (Fig. 3). All size classes for which the picnic subpopulation had no 

representation contained one or more individuals at the gorge subpopulation with the 

exception of 41-45, 71-75, 86-90, and 91-95 cm DBH. The gorge subpopulation includes 

the largest and smallest individuals while the picnic subpopulation includes individuals 

from the slightly right-skewed intermediate size classes.  
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Fig. 1 – Overall size distribution of eastern hemlock individuals at Clifton Gorge State Nature Preserve, 

Yellow Springs, Ohio (N = 134).  

 

 

 

Fig. 2 – Size distribution of eastern hemlock individuals in the picnic subpopulation at Clifton Gorge State 

Nature Preserve, Yellow Springs, Ohio (N = 22). 
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Fig. 3 – Size distribution of eastern hemlock individuals in the gorge subpopulation at Clifton Gorge State 

Nature Preserve, Yellow Springs, Ohio (N = 110). 

 

 

ENVIRONMENT CHARACTERISTICS BY SITE 

 

Significant differences among sites in distribution of individuals across the three 

slope categories were found for CG relative to CC (X2 = 86.581, df = 2, p < 2.2e-16) and 

for the CG picnic subpopulation relative to the CG gorge subpopulation (X2 = 46.497, df 

= 2, p < 8.0e-12; Fig. 4 – 5). Individuals growing at Clifton Gorge tend to grow on 

shallower slopes than individuals at Cantwell Cliffs. Eighty-nine percent of individuals at 

CG grow on flat or nearly flat ground while all individuals at Cantwell Cliffs grow on 

either moderately (34%) or steeply (66%) sloped ground. 

Individuals in the gorge subpopulation at Clifton Gorge tend to grow on less 

sloped ground than individuals in the picnic subpopulation at Clifton Gorge. 

Approximately 91% of individuals grow on flat or nearly flat ground in the gorge 
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subpopulation while only about 32% of individuals grow in the same slope category in 

the picnic subpopulation.  

 

 

Fig. 4 – Proportion of eastern hemlock individuals in each of three slope categories at Cantwell Cliffs (CC; 

N = 32) and Clifton Gorge (CG; N = 132), Ohio. 1 = flat or nearly flat; 2 = slight to intermediate slope; 3 = 

steep slope to cliff edge. 
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Fig. 5 – Proportion of eastern hemlock individuals in each of three slope categories at Clifton Gorge, Ohio 

in the picnic (CGP; N = 22) and the gorge (CGG; N = 110) subpopulations. 1 = flat or nearly flat; 2 = slight to 

intermediate slope; 3 = steep slope to cliff edge. 

 

 

Significant differences among sites in distribution of individuals across the three 

leaf litter categories were found for CG relative to CC (X2 = 35.77, df = 2, p < 1.7e-8) 

and for the CG picnic subpopulation relative to the CG gorge subpopulation (X2 = 41.52, 

df = 2, p < 9.6e-10; Fig. 6 – 7). Individuals at Clifton Gorge tended to grow in shallower 

leaf litter than individuals at Cantwell Cliffs. Most individuals at CG (approximately 

61%) grow in areas with the least amount of leaf litter while the remaining approximately 

39% of individuals are split almost evenly between categories two and three 

(approximately 17 and 22%, respectively). Approximately 66% of individuals at CC 

grow in the thickest category of leaf litter, with approximately 31% of individuals falling 

into category two and only about 3% of individuals in the thinnest leaf litter category.  
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  The majority of individuals in the gorge subpopulation at CG (approximately 

73%) grow in areas with the thinnest leaf litter, with approximately 16% in category three 

and approximately 11% in category two. Overall, individuals in the gorge subpopulation 

grow in thinner leaf litter than individuals in the picnic subpopulation, where all 

individuals are evenly split between categories two and three.  

 

  

Fig. 6 – Proportion of eastern hemlock individuals in each of three leaf litter categories at Cantwell Cliffs 

(CC; N = 32) and Clifton Gorge (CG; N = 132), Ohio. 1 = thin leaf litter with most to half of the ground 

exposed; 2 = more than half of the ground covered, thin accumulation over most or all of the ground; 3 = 

moderate to thick coverage. 
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Fig. 7 – Proportion of eastern hemlock individuals in each of three leaf litter categories at Clifton Gorge, 

Ohio in the picnic (CGP; N = 22) and the gorge (CGG; N = 110) subpopulations. 1 = thin leaf litter with most 

to half of the ground exposed; 2 = more than half of the ground covered, thin accumulation over most or 

all of the ground; 3 = moderate to thick coverage. 

 

 

TREE HEALTH BY SITE 

 

Significant differences among sites in the distribution of individuals across the 

three health categories were found for CG relative to CC (X2 = 17.567, df = 2, p < 0.001) 

and for the CG picnic subpopulation relative to the CG gorge subpopulation (X2 = 

17.123, df = 2, p < 0.001); Fig. 8 – 9).  

Both CC and CG had the greatest number of individuals in the intermediate health 

category, followed by the good and the poor health categories, respectively. With 

approximately 96% of individuals in either the second or third health category, CG scores 

higher for overall health than CC (approximately 78% in categories 2 and 3). 
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Both the picnic and the gorge subpopulations at Clifton Gorge have very few 

individuals in the lowest health category relative to either of the two higher health 

categories. While both subpopulations have a very similar proportion of individuals in 

either of the two highest health categories (approximately 97 and 95% for the gorge and 

picnic subpopulations, respectively), the picnic subpopulation has more individuals in the 

best health category. Thus, the picnic subpopulation scores higher in overall health than 

the gorge subpopulation.  

 

 

Fig. 8 – Proportion of eastern hemlock individuals in each of three health categories at Cantwell Cliffs (CC; 

N = 32) and Clifton Gorge (CG; N = 132), Ohio. 1 = poor health, missing branches, excessive epicormic 

branching, canopy dieback; 2 = intermediate health, only one to two indicators of decreased health; 3 = 

very healthy with little to no indication of health issues. 
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Fig. 9 – Proportion of eastern hemlock individuals in each of three health categories at Clifton Gorge, Ohio 

in the picnic (CGP, N = 22) and the gorge (CGG; N = 110) subpopulations. 1 = poor health, missing 

branches, excessive epicormic branching, canopy dieback; 2 = intermediate health, only one to two 

indicators of decreased health; 3 = very healthy with little to no indication of health issues. 

 

 

SEED PRODUCTION AT CLIFTON GORGE 

 

Significant differences among sites in the frequency of cone-bearing individuals 

were found at CG, where the picnic subpopulation had a significantly larger proportion of 

cone-bearing individuals (36%) than the gorge subpopulation (10%; X2 = 9.379, df = 1, p 

< 0.003). 

 Seed boxes positioned at Clifton Gorge on the gorge floor caught significantly 

more seeds (�̅� = 104 ± 53 seeds; N = 6) than boxes positioned along the cliff edge above 

(�̅� = 37 ± 10 seeds; N = 4; t = -3.052, df = 5.498, p < 0.03). 
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DENDROCHRONOLOGY  

CLIMATE DATA 

 

Average yearly temperature over the growing season, average yearly precipitation 

over the growing season, and average yearly minimum temperature over the growing 

season were the only climate variables for which data was analyzed that displayed 

statistically significant trends over time. Average yearly temperature over the growing 

season (r = 0.236, df = 121, p < 0.01; Fig. 10) and average yearly precipitation over the 

growing season (r = 0.239, df = 121, p < 0.01; Fig. 11) increase slowly but significantly 

over time for the state of Ohio. Average minimum temperature over the growing season 

increases significantly over time for the state of Ohio (r = 0.314, df = 121, p < 0.001; Fig. 

12).  

 

  

Fig. 10 – Average three-month temperature (April – June) for each year in the state of Ohio from 1895 

through 2017 (NOAA National Centers for Environmental information, 2018). 
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Fig. 11 – Average three-month precipitation (April – June) for each year in the state of Ohio from 1895 

through 2017 (NOAA National Centers for Environmental information, 2018). 

 

 

 

  

Fig. 12 – Average three-month minimum temperature (April – June) for each year in the state of Ohio 

from 1895 through 2017 (NOAA National Centers for Environmental information, 2018). 
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GROWTH TRENDS 

 

Time periods in average yearly ring width during which release events are 

believed to have taken place include 1898 through 1940 for Cantwell Cliffs, 1931 

through 1948 for the picnic subpopulation at Clifton Gorge, and 1827 through 1848 for 

the gorge subpopulation at Clifton Gorge (Fig. 13). When both CG subpopulations are 

averaged together to obtain overall average yearly ring width for the CG site, statistics 

specified to exclude release events use only data from time periods for which neither 

subpopulation was experiencing a release event (i.e. 1949-2017). 

 

 

Fig. 13 – Yearly ring width averaged separately across all eastern hemlock individuals cored from the 

gorge (CGG; N = 30) and picnic (CGP; N = 22) subpopulations at Clifton Gorge State Nature Preserve, 

Yellow Springs, Ohio and from Cantwell Cliffs (CC, N = 28), Rockbridge, Ohio.  First and last years of release 

events for each site/subpopulation are marked with triangles in each data series (1827 and 1848 for CG 

gorge; 1898 and 1940 for CC; 1931 and 1948 for CG picnic).  
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 No significant long-term changes in average ring widths were detected through 

time at CC either with (r = 0.163, df = 118, p > 0.05; Fig. 14) or without (r = 0.118, df = 

75, p > 0.3; Fig. 15) release events despite the very slight increase in ring width in both 

cases.  

 

  

Fig. 14 – Yearly ring width averaged across all eastern hemlock individuals cored at Cantwell Cliffs, 

Rockbridge, Ohio (N = 28). Data series was truncated at year 1898 based on the first available ring width 

from the oldest cored individual. First and last years of release events are marked with triangles (1898 and 

1940). 
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Fig. 15 – Yearly ring width averaged across all eastern hemlock individuals cored at Cantwell Cliffs, 

Rockbridge, Ohio, excluding years during which release events are believed to have occurred (N = 28). 

Data series was truncated at year 1941 based on the first year following the end of the release event time 

frame. 

 

 

Average yearly ring width for the entire CG population (Fig. 16) decreased 

significantly over time both when release events were included (r = -0.267, df = 121, p < 

0.01; Fig. 17) and excluded (r = -0.376, df = 67, p < 0.01; Fig. 18). 
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Fig. 16 – Yearly ring width averaged across all eastern hemlock individuals cored at Clifton Gorge, Yellow 
Springs, Ohio (N = 30). Data series stretches back to year 1782 based on the first available ring width from 
the oldest cored individual from the gorge subpopulation.  First and last years of release events are 
marked with triangles (1827 and 1848 for the gorge subpopulation; 1931 and 1948 for the picnic 
subpopulation). 

 

 

Fig. 17 – Yearly ring width averaged across all eastern hemlock individuals cored individuals at Clifton 

Gorge State Nature Preserve, Yellow Springs, Ohio (N = 30). Data series was truncated at year 1895 based 

on the earliest year of available climate data (NOAA National Centers for Environmental information, 

2018). First and last years for which either subpopulation experienced release events are marked with 

triangles (1931 and 1949 for the picnic subpopulation; gorge subpopulation release event excluded by 

availability of climate data). 
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Fig. 18 – Yearly ring width averaged across all eastern hemlock individuals cored individuals at Clifton 

Gorge State Nature Preserve, Yellow Springs, Ohio, excluding years during which release events are 

believed to have occurred (N = 30). Data series was truncated at year 1949 based on the latest release in 

either CG subpopulation, which occurs for the picnic subpopulation at CG from 1931 until 1948.  

 

 

 Average annual ring width for the picnic subpopulation at CG decreased 

significantly over time both with (r = -0.603, df = 85, p < 6.13e-10; Fig. 19) and without 

(r = -0.477, df = 57, p < 3.5e-5; Fig. 20) release events.  
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Fig. 19 – Yearly ring width averaged across all eastern hemlock individuals cored from the picnic 

subpopulation at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio (N = 22). The data series was 

truncated at 1931 based on the first available ring width from the oldest cored individual. First and last 

years of release events are marked with triangles. 

 

  

 

Fig. 20 – Yearly ring width averaged across all eastern hemlock individuals cored from the picnic 

subpopulation at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio, excluding years during which 

release events are believed to have occurred (N = 22). Data series was truncated at year 1949 based on 

the first year following the release event time period.  
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 Ring width data was available for the gorge subpopulation at CG from 1782 to 

2017 (Fig. 21). The release event for this site was excluded from statistical analyses due 

to the first available year of climate data. Average yearly ring width for the gorge 

subpopulation at CG following the release event from 1827 through 1848 decreases 

significantly over time (r = -0.560, df = 167, p < 2.85e-15; Fig. 22). This significant 

decline is maintained when data for the gorge subpopulation is further restricted to match 

available climate data (r = -0.458, df = 121, p < 9.98e-8; Fig. 23).  

 

 

Fig. 21 – Yearly ring width averaged across all eastern hemlock individuals cored from the gorge 
subpopulation at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio (N = 6). The data series was 
truncated at 1782 based on the first available ring width from the oldest cored individual.  Triangles 
indicate the first and last years of the release event time period (1827 and 1848).  
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Fig. 22 – Yearly ring width averaged across all eastern hemlock individuals cored from the gorge 

subpopulation at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio, excluding years during which 

release events are believed to have occurred (N = 6).  Data series was truncated at year 1849 based on the 

first year following the release event time period. 

 

 

  

Fig. 23 – Yearly ring width averaged across all eastern hemlock individuals cored from the gorge 

subpopulation at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio (N = 6). Data series was 

truncated at year 1895 based on the earliest year of available climate data (NOAA National Centers for 

Environmental information, 2018).  
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 Collective yearly ring width averaged across all cored individuals from both CG 

and CC (Fig. 24) decreases significantly over time (r = -0.207, df = 121, p < 0.03; Fig. 

25). When time periods for which one or more of the sites are experiencing release events 

are removed, the slight decrease in overall yearly ring width is no longer significant (r = -

0.098, df = 57, p > 0.4; Fig. 26). 

 

 

Fig. 24 – Yearly ring width averaged across all eastern hemlock individuals cored at both Cantwell Cliffs, 
Rockbridge, Ohio and Clifton Gorge State Nature Preserve, Yellow Springs, Ohio (N = 58). Data series 
stretches back to year 1782 based on the first available ring width from the oldest cored individual from 
the gorge subpopulation at Clifton Gorge.  First and last years of release events are marked with triangles 
(1827 and 1848 for the gorge subpopulation; 1898 to 1940 for Cantwell Cliffs; 1931 and 1948 for the 
picnic subpopulation). 
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Fig. 25 – Yearly ring width averaged across all eastern hemlock individuals cored at both Cantwell Cliffs, 

Rockbridge, Ohio and Clifton Gorge State Nature Preserve, Yellow Springs, Ohio (N = 58). Data series was 

truncated at year 1895 based on the earliest year of available climate data (NOAA National Centers for 

Environmental information, 2018). First and last years of release events are marked with triangles (1898 

to 1940 for Cantwell Cliffs; 1931 and 1948 for the picnic subpopulation). 

 

 

  

Fig. 26 – Yearly ring width averaged across all eastern hemlock individuals cored at both Cantwell Cliffs, 

Rockbridge, Ohio and Clifton Gorge State Nature Preserve, Yellow Springs, Ohio, excluding years during 

which release events are believed to have occurred (N = 58). Data series was truncated at year 1949 

based on the first year following the most recent release event time period, which occurs from 1931 to 

1948 in the CG picnic subpopulation. 
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PREDICTING GROWTH TRENDS 

 

One or more significant linear models were produced to predict average yearly 

ring width at all sites except Cantwell Cliffs, where ring width was not predicted by any 

models (Table 1 – 2). Significant models were also produced to predict average yearly 

ring width across all cored trees, collectively, from all sites.  

When the CG population was taken as a whole and considered over the entire 

time frame for which environmental data was available from the NOAA National Centers 

for Environmental Information, average ring width was best predicted by the independent 

effects of average temperature and precipitation over the growing season (April through 

June) and the interactive effect of the two (AIC = 121; Table 1). The overall statistical 

significance of this model and all other models lacking statistically significant 

coefficients was due to the combined small effects of several variables (Table 1 – 2). The 

lowest coefficient p-value in the CG population model was attributed to the independent 

effect of average precipitation over the growing season (p < 0.085; Table 2). The positive 

coefficient for this effect indicates that as average growing season precipitation increased, 

so did average annual ring width. The negative coefficient for the interactive effect of 

average growing season temperature with average growing season precipitation (p < 

0.098; Table 2) suggests that increased growing season temperature dampened the 

positive impact of increased growing season precipitation on ring width.  

When release events were excluded from the analysis of CG, ring width across the 

entire CG population was best predicted by the independent effects of average growing 

season temperature, average growing season precipitation, and maximum temperature in 
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May of each year along with the interactive effects of average growing season 

temperature with average growing season precipitation and maximum May temperature 

with average growing season precipitation (AIC = -21; Table 1). This model produced no 

statistically significant coefficients, but the interactive effect of average growing season 

temperature with average growing season precipitation resulted in the smallest p-value (p 

< 0.07; Table 2). This model lacked significant or nearly significant coefficients for any 

of the independent effects. In this case, the negative coefficient for the interactive effect 

of average growing season temperature with average growing season precipitation 

indicates that as either growing season temperature or growing season precipitation 

changed, the effect of the other variable on ring width was dampened. The positive 

coefficient for the interactive effect of average growing season precipitation with 

maximum annual temperature in May (p < 0.094; Table 2) indicates that change in either 

climate variable enhanced the effect of the other variable on ring width.  

The model including average growing season temperature, average growing 

season precipitation, and the interaction of average growing season temperature with 

average growing season precipitation best predicted average yearly ring width for the 

picnic subpopulation at CG when release events were included (no AIC, single 

significant model). The CG picnic ring width model including release events contained 

no statistically significant coefficients, but the p-value for the independent effect of 

average growing season precipitation was the closest to significance (p < 0.07; Table 2).  

The positive coefficient for this independent effect indicates that increased growing 

season precipitation leads to increased ring width. The negative coefficient for the 

interactive effect of average growing season temperature with average growing season 
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precipitation (p < 0.076; Table 2) suggests that an increase in growing season temperature 

dampened the positive impact of increased growing season precipitation on ring width.  

When release events were excluded from the model to predict ring width for the 

picnic subpopulation at Clifton Gorge, the only statistically significant model included 

the independent effects of average growing season temperature, average growing season 

precipitation, and maximum yearly temperature in May as well as the interactive effects 

of average growing season temperature with average growing season precipitation  and 

average growing season precipitation with maximum yearly temperature in May. For this 

model, the interactive effect of average growing season temperature with average 

growing season precipitation was nearly significant (p < 0.051; Table 2). The negative 

coefficient for this interactive effect indicates, with an absence of statistically significant 

or nearly significant independent effect coefficients, that as either growing season 

temperature or growing season precipitation changes, the effect of the other variable on 

ring width is dampened. The positive coefficient for the interactive effect of average 

growing season precipitation with maximum annual temperature in May (p < 0.067; 

Table 2) indicates that change in either climate variable enhances the effect of the other 

variable on ring width.  

Due to the limitations of the climate data, it was not possible to run iterations of 

the models for the gorge subpopulation at Clifton Gorge to include release events. Even 

the earliest available climate data excludes the release event for that subpopulation. Thus, 

the single set of models for the gorge subpopulation describe only post-release ring 

width. Average yearly ring width for the gorge subpopulation at Clifton Gorge was best 

predicted by the independent effects of average growing season temperature for a given 
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year and average growing season precipitation in the previous year and the interactive 

effect of the two (no AIC, single significant model). This model did not result in 

statistically significant coefficients, but the coefficient for average growing season 

precipitation in the previous year was closest to significance (p < 0.3; Table 2). The 

positive coefficient for this effect indicates that increased growing season precipitation in 

the previous year leads to increased ring width the following year. 

The model including average growing season temperature, average growing 

season precipitation, and the interaction of average growing season temperature with 

average growing season precipitation best predicted collective average ring width for all 

trees at both CG and CC both when years for which one or more site was experiencing 

release events were included (AIC = 66; Table 1) and excluded (AIC = -51; Table 1). The 

model to predict average ring width for all trees across both sampled populations with 

release events included was the only model to include statistically significant coefficients. 

For this model, both the independent effect of average growing season precipitation (p < 

0.04; Table 2) and the interactive effect of average growing season temperature with 

average growing season precipitation (p < 0.05; Table 2) were significant contributors to 

the overall model. The positive coefficient for the effect of growing season precipitation 

indicates that an increase in growing season precipitation leads to an increase in ring 

width. The negative coefficient for the significant interactive effect indicates that an 

increase in growing season temperature dampened the positive impact of increased 

growing season precipitation on ring width. 

  When release events were removed from the data set, the independent effect of 

average growing season precipitation (p > 0.053; Table 2) and the interactive effect of 
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average growing season temperature with average growing season precipitation (p > 

0.058; Table 2) were no longer statistically significant but were still nearly significant. 

The positive coefficient for the effect of growing season precipitation indicates that an 

increase in growing season precipitation leads to an increase in ring width. The negative 

coefficient for the interactive effect indicates that an increase in growing season 

temperature dampened the positive impact of increased growing season precipitation on 

ring width. 
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Table 1 – Significant Linear Models to Predict Average Yearly Ring Width of Eastern Hemlock 

Trees at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio and across all Ohio Sites – 

Summary of Akaike Information Criterion (AIC) Values Used to Select Best-Fit Models 

 

CG All = Including trees from both CGP and CGG subpopulations; CGP = Picnic subpopulation 

at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio; CGG = Gorge subpopulation at 

Clifton Gorge State Nature Preserve, Yellow Springs, Ohio; OH All = Including trees from both 

Clifton Gorge State Nature Preserve and Cantwell Cliffs, Ohio; AvgTempGS = Average 

temperature for the growing season (April – June) of each year; AvgPrecipGS = Average 

precipitation for the growing season of each year; MaxTempMay = Maximum temperature in 

May of each Year; PrevAvgPrecipGS = Average precipitation for the growing season of the 

previous year; * = Interactive effect of two independent variables  

 

Site Years Significant Models (Independent Variables) AIC 

Values 

 AIC 

df 

CG All 1896 - 

2017 

AvgTempGS + AvgPrecipGS + AvgTempGS*AvgPrecipGS 121.5  5 

  AvgTempGS + AvgPrecipGS + MaxTempMay + 

AvgTempGS*AvgPrecipGS + MaxTempMay*AvgPrecipGS 

123.0  7 

  AvgTempGS + PrevAvgPrecipGS + AvgTempGS*PrevAvgPrecipGS 122.7  5 

  AvgTempGS + PrevAvgPrecipGS + MaxTempMay + 

AvgTempGS*PrevAvgPrecipGS + MaxTempMay*PrevAvgPrecipGS 

126.7  7 

CG All 1949 - 

2017 

AvgTempGS + AvgPrecipGS + AvgTempGS*AvgPrecipGS -18.9  5 

  AvgTempGS + AvgPrecipGS + MaxTempMay + 

AvgTempGS*AvgPrecipGS + MaxTempMay*AvgPrecipGS 

-20.7  7 

  AvgTempGS + PrevAvgPrecipGS + AvgTempGS*PrevAvgPrecipGS -17.0  5 

CGP 1931 - 

2017  

AvgTempGS + AvgPrecipGS + AvgTempGS*AvgPrecipGS NA  NA 

CGP 1949 - 

2017 

AvgTempGS + AvgPrecipGS + MaxTempMay + 

AvgTempGS*AvgPrecipGS + MaxTempMay*AvgPrecipGS 

NA  NA 

CGG 1896 - 

2017  

AvgTempGS + AvgPrecipGS + MaxTempMay + 

AvgTempGS*AvgPrecipGS + MaxTempMay*AvgPrecipGS 

117.3  7 

  AvgTempGS + PrevAvgPrecipGS + AvgTempGS*PrevAvgPrecipGS 113.7  5 

  AvgTempGS + PrevAvgPrecipGS + MaxTempMay + 

AvgTempGS*PrevAvgPrecipGS + MaxTempMay*PrevAvgPrecipGS 

115.9  7 

OH All 1896 - 

2017 

AvgTempGS + AvgPrecipGS + AvgTempGS*AvgPrecipGS 66.1  5 

  AvgTempGS + AvgPrecipGS + MaxTempMay + 

AvgTempGS*AvgPrecipGS + MaxTempMay*AvgPrecipGS 

69.8  7 

  AvgTempGS + PrevAvgPrecipGS + AvgTempGS*PrevAvgPrecipGS 70.4  5 

OH All 1949 - 

2017 

AvgTempGS + AvgPrecipGS + AvgTempGS*AvgPrecipGS -50.8  5 

  AvgTempGS + AvgPrecipGS + MaxTempMay + 

AvgTempGS*AvgPrecipGS + MaxTempMay*AvgPrecipGS 

-49.7  7 

  AvgTempGS + PrevAvgPrecipGS + AvgTempGS*PrevAvgPrecipGS -45.2  5 
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Table 2 – Significant Linear Models to Predict Average Yearly Ring Width of Eastern Hemlock Trees at Clifton Gorge State Nature 

Preserve, Yellow Springs, Ohio and across all Ohio Sites – Summary of Model Coefficients           

 

CG All = Including trees from both CGP and CGG subpopulations; CGP = Picnic subpopulation at Clifton Gorge State Nature Preserve, 

Yellow Springs, Ohio; CGG = Gorge subpopulation at Clifton Gorge State Nature Preserve, Yellow Springs, Ohio; OH All = Including 

trees from both Clifton Gorge State Nature Preserve and Cantwell Cliffs, Ohio; AvgTempGS = Average temperature for the growing 

season (April – June) of each year; AvgPrecipGS = Average precipitation for the growing season of each year; MaxTempMay = 

Maximum temperature in May of each Year; PrevAvgPrecipGS = Average precipitation for the growing season of the previous year; * = 

Interactive effect of two independent variables  
                                                                                                   

Site Years Model p-Value Multiple R-Squared Adjusted R-Squared Independent Variables in Best-Fit Model Coefficient Coefficient p-Value 

CG All 1896 - 2017 0.004976 0.1028 0.07995 AvgTempGS 0.135565 0.1877 

     Avg PrecipGS 0.918149 0.0846 

     AvgTempGS*AvgPrecipGS -0.01469 0.0971 

CG All 1949 - 2017 0.01069 0.2067 0.1437 AvgTempGS 0.131643 0.1941 

     AvgPrecipGS 0.5171 0.1634 

     MaxTempMay -0.05357 0.1928 

     AvgTempGS*AvgPrecipGS -0.01549 0.068 

     MaxTempMay*AvgPrecipGS 0.006081 0.0935 

CGP 1931 - 2017 0.0512 0.08877 0.05584 AvgTempGS 0.24144 0.1406 

     AvgPrecipGS 1.48942 0.0695 

     AvgTempGS*AvgPrecipGS -0.02417 0.0757 

CGP 1949 - 2017 0.02803 0.1769 0.1115 AvgTempGS 0.185399 0.1462 

     AvgPrecipGS 0.672375 0.1494 

     MaxTempMay -0.077 0.1371 

     AvgTempGS*AvgPrecipGS -0.02087 0.0507 

     MaxTempMay*AvgPrecipGS 0.008393 0.066 

CGG 1896 - 2017 0.01258 0.08748 0.06428 AvgTempGS 0.017406 0.806 

     PrevAvgPrecipGS 0.396616 0.294 

     AvgTempGS*PrevAvgPrecipGS -0.00612 0.334 

OH All 1896 - 2017 0.008449 0.09409 0.07106 AvgTempGS 0.134063 0.1027 

     AvgPrecipGS 0.873858 0.0399 

     AvgTempGS*AvgPrecipGS -0.0142 0.0448 

OH All 1949 - 2017 0.00293 0.1922 0.155 AvgTempGS 0.074015 0.2033 

     AvgPrecipGS 0.564078 0.0538 

     AvgTempGS*AvgPrecipGS -0.00915 0.0585 
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AVERAGE ANNUAL RING WIDTH BY SITE 

 

The average yearly ring width vector in each t-test for which release events were 

included consisted of only years for which at least one tree at each site had available core 

data. Thus, the site with the younger oldest tree provided the limiting data set. 

Comparisons between Cantwell Cliffs and either all of Clifton Gorge or the gorge 

subpopulation at Clifton Gorge consisted of average yearly ring width for 1898 through 

2017, with the year-limiting data set attributed to Cantwell Cliffs. Comparisons between 

the picnic subpopulation at Clifton Gorge and either Cantwell Cliffs or the gorge 

subpopulation at Clifton Gorge consisted of average yearly ring width for 1931 through 

2017, with the year-limiting data set attributed to the picnic subpopulation at Clifton 

Gorge. The average yearly ring width vector in each t-test for which release events were 

excluded consisted of only years for which neither site was undergoing a release event. 

These time periods were 1949 through 2017 for Cantwell Cliffs against Clifton Gorge 

overall, 1949 through 2017 for Cantwell Cliffs against the picnic subpopulation at Clifton 

Gorge, 1941 through 2017 for Cantwell Cliffs against the gorge subpopulation at Clifton 

Gorge, and 1949 through 2017 for the Clifton Gorge subpopulations against one another.  

Overall average yearly ring width varied significantly across all sites compared. 

When release events were removed from the analysis, all tests became more significant 

with increased t-statistics except for the comparison between CG picnic and CG gorge 

subpopulations (Table 3). Average ring width at CC was always found to be greater than 

average ring width at CG, either overall or relative to each subpopulation individually. 

The CG picnic subpopulation was always found to have greater average ring width than 

the gorge subpopulation.   
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Table 3 – Differences in Grand Ring Width Average between Sites – Summary of t-Test Results 

Site 

x 

Site 

y 

Release 

Events 

Grand Ring Width 

Average (mm) - 

Site x 

Grand Ring Width 

Average (mm) - 

Site y 

t df p 

CC CG Included 1.57 ± 0.52 1.42 ± 0.40 2.54 223.38 0.01 

CC CGP Included 1.66 ± 0.37 1.49 ± 0.53 2.44 152.37 0.02 

CC CGG Included 1.57 ± 0.52 1.12 ± 0.39 7.53 218.61 1.34e-12 

CGP CGG Included 1.49 ± 0.53 0.98 ± 0.25 8.00 126.65 6.87e-13 

CC CG Excluded 1.59 ± 0.27 1.29 ± 0.21 7.27 129.18 3.00e-11 

CC CGP Excluded 1.59 ± 0.26 1.29 ± 0.22 6.46 135.92 1.69e-09 

CC CGG Excluded 1.57 ± 0.26 1.01 ± 0.26 13.45 152.00 2.20e-16 

CGP CGG Excluded  1.29 ± 0.26 1.00 ± 0.26 6.57 135.96 1.01e-09 

CC = Cantwell Cliffs, Rockbridge, Ohio; CG = Clifton Gorge State Nature Preserve, Yellow 

Springs, Ohio; CGP = Picnic subpopulation at Clifton Gorge; CGG = Gorge subpopulation at 

Clifton Gorge  

 

 

CUTTINGS FAILURE  

 

By the end of summer 2017, all cuttings had died either due to desiccation and 

needle abscission or root rot. This loss of data prevented any statistical analyses for the 

cuttings objective, and the loss of the specimens themselves prevented completion of the 

intended HWA-resistance trials.  
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IV. DISCUSSION 

 

To predict future threats, I assessed the status of a small, disjunct, and 

geographically isolated population of eastern hemlock trees at Clifton Gorge State Nature 

Preserve (CG) in Yellow Springs, Ohio. The establishment of the population in the gorge 

is believed to have resulted from the shifting of the range of the species as glaciers 

advanced and the formation the gorge as glaciers receded. The moist, shaded, and 

“refrigerated” microclimate of the gorge would have allowed the trees to survive even 

after the favorable effect of the glacier on local climate had long dissipated (Delcourt et 

al., 1983). Previously, little was known about the number of individuals in the 

population, their health and reproductive capacity, or their size and age distributions. The 

incidence of hemlock woolly adelgid (HWA) in the population had not yet been 

systematically examined. Observations of the population at this site indicate that it 

consists of two distinct subpopulations – one at Clifton Gorge State Nature Preserve and 

one at John Bryan State Park – each with their own size distributions and reproductive 

outlooks. The use of dendrochronology has revealed that the CG population over all as 

well as each subpopulation individually has experienced a significant decrease in average 

annual ring width over time. This decline in average annual ring width over time is not 

apparent in a comparative population from the contiguous range of hemlock at Cantwell 

Cliffs (CC), Rockbridge, Ohio, where an insignificant but slight increase in ring width 

was observed over time. Clear differences between sites in environmental characteristics
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and health metrics were also observed.  

 

SITE CHARACTERISTICS AND DEMOGRAPHY  

 

Individuals at the CC site grow on steeper slopes and in thicker leaf litter overall 

than individuals at CG. These ratings and the higher needle content in leaf litter at CC 

suggest that this site is more characteristic of the microenvironments common in 

hemlock-dominated stands (Goerlich and Nyland, 2000). However, individuals at CC 

were rated to be less healthy overall than individuals at CG. This might seem to 

contradict the commonly held belief that habitat within the contiguous range of a species 

is typically more favorable with greater provision of resources, thus enabling increased 

fitness (Kincaid and Parker, 2008; Kessell, 1979). While the favorability of the site is not 

clearly reflected in the health rating for individuals, which considers only the outward 

appearance of the tree at the time of survey and does not fully capture their performance, 

favorability does seem to be supported by the slight positive trend in annual ring width 

and the significantly greater grand ring width average at this site. The site at Cantwell 

Cliffs is far more densely populated than the Clifton Gorge site, likely reflecting site 

favorability, and this increased competition for resources such as light may contribute to 

decreased health ratings in these individuals. The high abundance of young, healthy 

seedlings at CG may also skew the health ratings for that site toward a higher overall 

score, as individuals in a similar size class were not only entirely absent from the CC 

location, possibility due to the thick mixed leaf litter (Rooney et al., 2000), but also 

would have been excluded from the sample due to the selection of only individuals 
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greater than 10 cm DBH for coring.  It is important to note, however, that individuals 

sampled at Cantwell Cliffs were in close proximity to a highway at the edge of the 

population. It is possible that edge effects in combination with increased competition 

contribute to decreased health ratings at CC relative to CG despite increased annual ring 

width over time. 

While the area surrounding the gorge subpopulation at CG has many sheer cliffs 

and steep slopes, individuals in the gorge subpopulation grow on shallower slopes and in 

thinner leaf litter than individuals in the picnic subpopulation and score lower for health. 

At the gorge subpopulation site, hemlock trees are commonly found growing on or 

around large, relatively flat rocks and on mostly level areas along the riparian zone or a 

short distance from the cliff edge. It is possible that the shallower slope and differences in 

slope aspect and/or configuration at the gorge population site contribute to reduced soil 

moisture, thus decreasing health and grand ring width average relative to the picnic 

subpopulation (Parker, 1982; Avery et al., 1940). The observation of thinner leaf litter for 

the gorge subpopulation may explain, in part, the greater number of seedlings in the 

gorge subpopulation relative to the picnic subpopulation, as leaf litter is a major obstacle 

to germination in eastern hemlock (Olson et al., 1959; Rooney et al., 2000).  

 The gorge subpopulation at CG is overly represented by seedlings in the smallest 

size category. Nearly all the seedlings were found within a floodplain on the gorge floor, 

which is consistent with the greater number of large, reproductive individuals in the 

gorge relative to the cliff edge and the significantly larger number of seeds caught by 

boxes on the gorge floor relative to the cliff ledge above. Periodic flooding keeps the 

floodplain area mostly free of leaf litter and continuously moist, two requirements of 
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eastern hemlock seed germination and subsequent seedling success that are not as readily 

available along the cliff edge. The picnic subpopulation has no individuals in either of the 

two smallest size categories despite having a similar number of cone-bearing individuals 

as the gorge subpopulation. This might be attributed in part to the thicker mixed 

deciduous-coniferous leaf litter at the picnic subpopulation preventing germination and 

seedling survival. Another explanation might be increased accessibility of the site to 

whitetail deer compared to the gorge subpopulation. Topography at the picnic 

subpopulation has fewer loose rocks, steep cliffs, and narrow passes that may contribute 

to the exclusion of deer from areas in the gorge subpopulation. In the 1900s, deer were 

extirpated from Ohio. The average age of cored individuals in the picnic subpopulation is 

78 years. This corresponds roughly with the deer restocking program in Ohio in the 

1920s and 1930s and might help to explain how the existing trees could have germinated 

and grown relatively free of deer for some time, but now fail to recruit seedlings under 

the steady pressure of deer herbivory. The combined effect of increased deer browse with 

possibly reduced germination as the hardwood canopy has developed and produced more 

leaf litter over time may be responsible for the lack of small individuals in the current 

population. The characteristics of the gorge site or the trees located there are currently 

less favorable than those of the picnic subpopulation for supporting cone production but, 

at least in the floodplain area, the gorge site appears to be better at supporting seed 

germination and initial seedling growth. The picnic site also lacks exceptionally old 

individuals, either due to the inability of the site to support them or simply due to the 

relatively young age of the population.  
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The large gap in size class representation in the gorge subpopulation raises the 

question as to what factors prevent seedlings from advancing to the next life stage and 

eventually contributing to the sparsely-represented larger size classes. It is possible that 

the seedlings currently inhabiting the floodplain are the result of a massive reproductive 

event that has not occurred for many years and that these individuals will in fact survive 

to reach cone-bearing age. If we assume, however, that mature trees in the gorge area 

reproduce in this way every few years, it is possible that, like the picnic subpopulation, 

deer grazing contributes to the lack of recruitment. This is more likely the case for 

seedlings along the cliff ledge, where deer can easily access the site and browse on any 

individuals tall enough to emerge above the leaf litter. The descent to the lower flood 

plain where most seedlings are found is steep and winding, likely greatly reducing or 

even completely preventing deer grazing, especially during times when increased water 

volume would make crossing the river difficult. In the absence of deer herbivory, some 

other factor or combination of factors must be responsible. While periodic flooding might 

keep the soil continuously moist for germination and early seedling growth, perhaps the 

periodic submersion and constant wetness resulting from poor soil drainage is not ideal 

for seedlings after they have reached a certain size. After seedlings have grown to a size 

where desiccation is no longer an immediate threat, constant soil moisture might 

contribute to root rot and tissues damage (Kincaid and Parker, 2008). Periodic 

submersion might damage needles, causing reduced photosynthetic capacity and/or 

needle abscission. Periodic flooding might be responsible for washing away small, 

shallowly-rooted individuals growing in susceptible areas. It is also possible that the large 

gap in representation of small size classes in the gorge subpopulation is largely attributed 
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to the episodic recruitment patterns characteristic of the species and that this reproductive 

unpredictability in combination with extremely variable substrates within the gorge and 

local variation in climate through time simply reduces the chance that all factors will 

align and allow individuals of this sensitive species to make it past 5 cm DBH (Myers et 

al., 2015; Hett and Loucks, 1976).  

  

DENDROCHRONOLOGY 

  

When ring widths were plotted against time for all sites, it became apparent that 

ring width does not increase or decrease linearly over the entire time frame for which 

data is available. Instead, all sites displayed periods of drastically increased growth 

followed by drastic decreases in growth and a leveling off into a roughly linear trend. We 

consider these peaks in growth “release events”, which correspond to the sudden and 

dramatic increases in one or more resources that quickly impacted ring width in these 

trees.  In the case of the sites included in this study, sudden increases in light availability 

are the most likely contributor to the increased ring width observed during release events 

(Finzi and Canham, 2000). Due to the lack of information available about the historical 

land use at Cantwell Cliffs, it is difficult to speculate about what might have happened 

there to initiate the release events. It is possible, however, that release events in the 

Cantwell Cliffs population were related to hardwood and some conifer logging through 

the 1800s and into the early 1900s for building and for wood burning in a nearby iron 

furnace (Conway, 2018). Alternatively, it is possible that release events resulted from 
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natural successional changes within the forest or from one of the many disturbance 

regimes commonly associated with edge habitats.  

 The detailed history of the hemlocks at Clifton Gorge is not well documented, but 

several key pieces of information seemingly connected to release events in the CG 

subpopulations are readily available. A series of mills along the river upstream of the 

Clifton Gorge hemlocks was built starting in the early 1800s. It is likely that some of the 

lumber used for the buildings came from trees growing in the gorge, opening the canopy 

and increasing light availability. The largest and closest of the mills to the CG gorge 

subpopulation was the four-story paper mill, which would have required a great deal of 

clearing and lumber preparation leading up to its construction and likely required local 

lumber for paper production. Additionally, one of the mills further upstream was a saw 

mill, which would have produced a sustained demand for local timber. The construction 

of this mill and the other mills along the Little Miami river corresponds well with the 

period determined to be a release event at the gorge subpopulation (1827 – 1848). While 

hemlock is not a preferred timber species, the use of eastern hemlock in the leather 

tanning industry during this period of history is well documented (Hergert, 1983). The 

oldest of the hemlocks at Clifton Gorge are found deep within the gorge or, in the case of 

one individual, growing off the side of the cliff into the opening above the river. These 

individuals would have been difficult and dangerous to harvest for either timber or bark 

tannins, which might explain why they were never felled.  

 The release event observed in the average ring width pattern of the CG picnic 

subpopulation took place from the first available ring width year, 1931, through 1948. 

This corresponds to the construction of the nearby shelter house by the Civilian 
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Conservation Corps in the 1930s. Across the parking lot from the shelter house and the 

picnic subpopulation is an old foundation with a large hemlock at each corner. There was 

some speculation as to whether these individuals were planted and subsequently seeded 

the group of individuals behind the shelter, but it would seem as though the shelter 

individuals are not the offspring of one or both of the foundation trees. For this to have 

been the case, at least one of the individuals by the foundation would have had to reach 

cone-bearing age (approximately 15 years in vigorous individuals) and spread seed to the 

shelter area. Picnic individuals would therefore be at least 15 years younger than either of 

the foundation trees. The oldest individual in the picnic subpopulation (87 years) is near 

the shelter itself rather than by the foundation. It does not appear that the picnic 

population spread from one or more planted individuals near the shelter despite the age of 

the oldest individual roughly matching the time of shelter construction, as the distinct 15-

year gap in age of individuals is not apparent by the shelter, either (several individuals 

aged late to mid-70s). What is more likely is that clearing of the area for construction of 

the shelter house and possibly the building that was reduced to a foundation across the 

parking lot increased light availability and allowed for the rapid growth of individuals 

that had already been struggling to grow in the area.   

Following release events, ring width patterns for all sites settled into a less 

variable and roughly linear trend through time. It is the period following release during 

which canopy gaps closed and variables for which data were unavailable (e.g. light) 

remained more constant, allowing for more meaningful comparison of ring widths with 

climate conditions over time. As a species, eastern hemlock generally prefers cool to 

moderate temperatures and reliable moisture, especially in germination and early growth 
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(Goerlich and Nyland, 2000). It makes sense, then, that as average growing season 

temperature increases, average ring width across all sites decreases and that ring width 

increases with average growing season precipitation in the model predicting average 

annual ring width for all sampled individuals. These findings are consistent with past 

studies of ring width in eastern hemlock (Avery et al., 1940; Kessell, 1979). Growing 

season precipitation was the single variable that most consistently predicted ring width. It 

would seem contradictory, then, that average growing season precipitation across Ohio 

was found to increase over time while average annual ring width decreased at all sites 

except Cantwell Cliffs. Since it is unlikely that precipitation has become so great in Ohio 

that mature trees are overwatered, the widespread and long-term decrease in ring width at 

Clifton Gorge despite increases in annual growing season precipitation can likely be 

attributed to the cumulative effect of increases in annual growing season temperature, the 

decrease in light availability as the hardwood canopy has developed, slight decreases in 

ring width as trees age, and other factors for which data was not collected outweighing 

the positive impact of precipitation on growth. This is supported by the significance or 

near significance of the negative interactive effect of growing season temperature with 

growing season precipitation in models to predict ring width in both the picnic 

subpopulation at CG and averaged across all individuals cored in this study.  The nature 

of the increased precipitation over time might also come into play, with the rate of 

precipitation determining in part the ability of the soil and tree roots to absorb the 

moisture and the timing of the precipitation with temperature determining how fast the 

precipitation will evaporate and become unavailable for absorption.  
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The increased average annual ring width over time at Cantwell Cliffs despite 

increases in annual growing season temperature might be attributed to characteristics of 

the eastern hemlock microhabitat. Hemlocks at the CC site are far more numerous and in 

closer proximity to one another than individuals at CG. The increased production of 

needle litter and the resultant changes in pH might make the site more favorable for 

growth, outweighing the effect of increased temperature (Fenzi et al., 1998). It is also 

possible that the dense hemlock canopy and surrounding topography creates a more 

effective and absolute microclimate at CC relative to CG such that precipitation at CC is 

shaded and allowed longer to absorb into soil for utilization by the trees. This same 

microhabitat/microclimate effect might be part of the explanation for the larger average 

ring width observed at the picnic subpopulation at Clifton Gorge relative to the gorge 

subpopulation. It is important to note as well that climate data was averaged across the 

state of Ohio. Microenvironmental data collected at each location would help to better 

resolve the relationship of such variables with growth. It is possible that the site at 

Cantwell Cliffs gets more precipitation than is reflected in the averaged data and that this 

accounts at least in part for both increased ring width over time and greater average ring 

width overall at Cantwell Cliffs compared to Clifton Gorge.  

 

OVERALL STATUS AND MANAGEMENT PLAN  

 

The systematic treatment of all individuals in the Clifton Gorge population with 

HWA insecticide is feasible considering the low number of large individuals and the 

clustered nature of seedlings. The survey portion of this study did not find any HWA on 
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any hemlocks either in the gorge or the picnic subpopulation, likely due to the provision 

of a geographic barrier by the gorge topography. The lack of HWA at the site and the 

longevity of imidacloprid applications strengthens the argument for preemptive treatment 

of all trees (Smitley and McCullough). Possible solutions to close the size gap in the 

gorge subpopulation and increase the number of reproductive individuals over time might 

include installation of seed beds and deer exclosures at the top of the gorge where deer 

have access and leaf litter is thicker. Seed box data suggests that seeds are distributed to 

the top of the gorge but that those seeds, which are less numerous than those reaching the 

gorge floor, either rarely establish or do not survive the seedling stage. Installation of 

fences around seedbeds would serve a dual purpose: to reduce leaf litter and make the 

ground more suitable for germination and to eliminate the possibility of deer eating any 

seedlings that were able to establish. Thinning of the hardwood canopy, while labor 

intensive and logistically challenging, would increase the availability of light at the gorge 

floor. Even small increases in light availability might increase growth and vitality, 

allowing seedlings in the floodplain to have increased resilience against flooding and 

other challenges (Singer and Lorimer, 1997). The increased light availability might also 

increase the rate of evaporation and decrease the likelihood of root rot in seedlings. 

Canopy thinning might have some negative consequences, however. Invasive species 

such as honeysuckle and burning bush, both of which are prevalent at the site, are also 

likely to take advantage of the increase in light, requiring that park managers develop a 

strategy to keep these species under control. The increased temperature and evaporation 

resulting from increased light might be detrimental to annual hemlock growth despite 

possibly improving conditions for the survival of floodplain seedlings (Avery, 1940). The 
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success of a canopy thinning operation would require that these and other negative effects 

be outweighed by the ability of increased light to increase recruitment in the gorge 

subpopulation.  

A similar management plan including treatment of all individuals with HWA 

insecticide, installation of deer exclosures and seed beds, and thinning of the hardwood 

canopy would likely benefit the picnic subpopulation at CG for the same reasons.  

While the population at Cantwell Cliffs scored lower for health, the vast number 

of individuals in the population shields it from some degree of risk. Increased average 

annual ring width over time suggests that the outlook of existing mature trees is good. 

The identification of hemlock woolly adelgid at the site following my survey in 2017, 

during which I found no instances of the insect on the individuals cored in this study, 

however, significantly decreases both the likelihood of future success for the population 

and the effectiveness of any management plan that might be put into place. The large size 

of the population and the existing HWA presence there are arguments against treatment 

of all individuals with insecticide. The selective treatment of healthy, cone-bearing 

individuals might allow the population to persist even after HWA has killed untreated 

individuals.  
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V. CONCLUSION 

 

Variation in environmental characteristics, health, and average annual ring width 

were found between eastern hemlock at Clifton Gorge State Nature Preserve, Yellow 

Springs, Ohio and a comparative site within the contiguous range of the species at 

Cantwell Cliffs, Rockbridge, Ohio. Variation in these factors was also present between 

two subpopulations at Clifton Gorge. Individuals at Cantwell Cliffs tend to grow on 

steeper slopes and in thicker leaf litter than individuals at Clifton Gorge. Despite an 

outward appearance of reduced health at CC, larger grand ring width average and slight 

positive increases in annual ring width through time indicate that this site from the 

contiguous range of the species is more favorable for growth than the site at Clifton 

Gorge.  

Of the two subpopulations at Clifton Gorge, the picnic subpopulation is the most 

similar to the Cantwell Cliffs site with individuals growing on steeper slopes and in 

thicker leaf litter. Picnic individuals score higher for health than gorge individuals and 

have a larger grand ring width average. Both subpopulations exhibit decreased average 

annual ring width over time, however, with average growing season temperature, average 

growing season precipitation, and the interactive effect of the two being the most likely 

predictors of this trend.  

The CG population is viable but at risk due to low number of individuals and the 

complex effect of regional and local climate, disturbance history, and stand dynamics on 
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this population and the species in general (Myers et al., 2015). The major threats to the 

population include reduced reproduction, reduced tree growth and changes in the 

microclimate of the gorge in response to increasing temperature (Avery, 1940), reduced 

recruitment due to deer herbivory, and hemlock woolly adelgid-associated mortality if the 

insect reaches the gorge. Implementation of a management plan with aims to increase 

germination and seedling recruitment and to prevent HWA-infestation has a much higher 

likelihood of success given the current HWA-free status at the site.  

As is the case with many threatened populations, the trajectory of the Clifton 

Gorge hemlock population is difficult to project. Only the continued study of and 

interaction with this population will reveal its usefulness to the scientific community, 

possibly as a source of rare alleles for HWA-resistance, a comparative site for the 

continued study of disjunct populations and their unique characteristics relative to 

contiguous populations, or as an example of successful eastern hemlock management. 

For those who have grown up enjoying the distinctive beauty of the hemlocks, the 

slow extinction of the population from the Clifton Gorge site would mean more than 

simply the loss of biodiversity. The Clifton Gorge site contributes to quality of life and 

offers a break from the industrialized world we live in. Failure to characterize and protect 

this population might result in the loss of countless opportunities for ecologists as well as 

the loss of a beautiful piece of natural history. 
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