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ABSTRACT 

 

Halurkar, Manasi Suchit. M.S. Department of Pharmacology and Toxicology, Wright 

State University, 2019. Effect of endothelial progenitor cell-derived exosomes on high 

glucose and hypoxia/reoxygenation-induced injury of astrocytes. 

 

In this study, we tested the protective effects of EPC-EXs (endothelial progenitor cell 

derived exosomes) and miR-126 EPC-EXs (microRNA-126 EPC-EXs) on the astrocytes 

injured by HG (high glucose) plus H/R (hypoxia/reoxygenation) model. At first, we 

determined the concentration and time dependent uptake of EPC-EXs by astrocytes. It was 

also found that the EPC-EXs were uptaken via macropinocytosis, caveolin-dependent and 

clathrin-mediated pathways in astrocytes. Furthermore, the astrocyte cell line was injured 

through the HG + H/R model. EXs, isolated by ultracentrifugation from the EPC culture 

supernatant were co-incubated with the injured cells. It was found that EPC-EXs and miR-

126 EPC-EXs decrease apoptosis, lipid peroxidation, oxidative stress and cytotoxicity in 

the injured cells, hence protecting them. 
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I. INTRODUCTION 

1. Ischemic Stroke 

1.1. Prevalence, definition and types 

The third leading cause of death in the United States is stroke, killing around 140,000 

people each year [1]. It leads to long-term serious disability, high frequency of recurrence, 

reduction in mobility and other unfortunate consequences [2]. Stroke is a cerebrovascular 

accident, also known as a brain attack, is defined as a global or acute neurological deficit 

that is bound to last for more than 24 hours or leading to death [4]. It occurs when the blood 

supply to the brain is interrupted unexpectedly, leading to the death of the brain cells which 

are bereft of the nutrition and oxygen supplied by the blood [3]. It is broadly classified, on 

the basis of its underlying pathological condition, into ischemic stroke and haemorrhagic 

stroke and has no etiology other than the vascular origin. Ischemic stroke occurs when 

blood vessel carrying blood to the brain is obstructed via a thrombus formation within or 

an embolus, while the rupture of a blood vessel leads to haemorrhagic stroke [5]. However, 

an acute stage of stroke which is known as the Transient Ischemic Attack (TIA) is defined 

as a temporary event wherein the signs and symptoms of stroke resolve within 24 hours of 

its occurrence [6].  

Ischemic stroke accounts for 80% of the total stroke cases and is more prevalent with 

growing age and changing lifestyle of people. It occurs when a cerebral artery, an artery 

carrying blood to the brain, is blocked thus the blood supply is interrupted, resulting in 
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death of the brain cells due to lack of sufficient oxygen and nutrition [3]. The block could 

either be a result of a thrombus formation, which can be a fat-based plaque or a blood clot, 

within the blood vessel leading to thrombotic ischemic stroke or an embolus, which is a 

free-formed clot formed elsewhere in the circulation but lodges itself into the cerebral 

blood vessel thus leading to embolic ischemic stroke [7]. It can also be a result of stenosis 

wherein the blood vessel narrows due to the fat deposition and clots along the vessel walls 

[8]. 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Risk factors 

There are various underlying causes and risk factors associated with ischemic stroke. These 

factors can be classified into modifiable and non-modifiable factors. The non-modifiable 

risk factors, which tend to be the markers for higher risk of stroke, include age, sex, race-

ethnicity, heredity and geographical location. Incidence and risk of stroke occurrence 

increases with increasing age, wherein after 55 years of age it doubles for every decade. 

Fig 1:Ischemic Stroke. The atherosclerotic   

blood clot within the cerebral blood vessel 

leading to hypoxic condition in the brain thus 

cell death [9]. 
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Higher occurrence in women however more deaths due to stroke reported in men, a 

possible reason being that the women outlive the men. Higher stroke occurrences found in 

African Americans (2-4 folds), Hispanics (2 folds) and Chinese in comparison to non-

Hispanic Whites.  Higher incidence in first-degree relatives by 2 folds [10]. 

The modifiable risk factors on the other hand are the reversible aspects which account for 

the lower risk of stroke being amenable to intervention. These factors include various 

conditions and diseases such as hypertension, atrial fibrillation, coronary heart diseases, 

left ventricular hypertrophy, alcohol consumption, obesity, diabetes mellitus, smoking, 

hyperlipidaemia and physical inactivity [3,10, 11, 12]. These conditions are responsible for 

increased incidence of ischemic stroke and thus need to be taken care of medically in order 

to avoid the stroke risk. 

Non-Modifiable Modifiable 

Age Hypertension 

Gender Diabetes Mellitus 

Race Atrial Fibrillation 

Ethnicity Cardiac disease 

Previous stroke history Smoking 

  Alcohol Consumption 

  Oral contraceptives 

  Hyperlipidaemia 

  Transient Ischemic Attack 

  Hormone therapy 

  Physical inactivity 
Table 1: Risk factors associated with stroke. 

 

1.3. Diagnosis and treatment 

A series of diagnostic procedures are available to determine stroke development as well as 

its location. Procedures such as computerized tomography (CT) scan gives a detailed image 
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of the brain focussing on the blood vessels in the neck and brain by the means of X-rays, 

magnetic resonance imaging (MRI) employ magnetic and radio waves to detect tissue 

damage in the brain, carotid ultrasound shows the build-up of plaque and blood clot by 

using sound waves and by cerebral angiogram wherein a dye is injected into a major blood 

vessel and then imaged using X-rays for any block or clot inside the vessel [13,14]. 

Ischemic stroke is an expensive as well as a life-threatening disease costing around $40 

billion to the US economy every year [16]. The primary motive of a therapy for this disease 

is to either reverse or limit the complications, occurring after the onset, for the patient to 

recover. The most standard mode of treatment employed for ischemic stroke is the use of 

a thrombolytic agent, recombinant tissue plasminogen activator (rtPA) administered 

intravenously (IV). This is the only approved therapeutic agent by the Food and Drug 

Administration (FDA) for this disease condition till date. Although, only a few (3-5%) of 

the stroke sufferers receive this treatment on time [17]. tPA is a serine protease by nature 

which is converted into synthetic products by the means of recombinant technology thus 

naming it as rtPA. Being a thrombolytic, it dissolves the clot by breaking the fibrin 

Fig 2:Diagnostic tests for ischemic stroke in young adults. The figure is a graphical 

representation of percentage of patients who underwent a certain test and the percentage which 

depicted positive results for the same. CSF-Cerebrospinal fluid, CT-Computed Tomography, MRI-

Magnetic resonance imaging [15]. 
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molecules through the plasmin which is released from the activated plasminogen which is 

fibrin-bound [18].  

However, the treatment with rtPA is only viable for a small percentage of patients due to a 

narrow therapeutic window of this drug, which lasts for upto 4.5 hours after the event onset. 

Other therapies include the treatment via stem cell therapy, using various biomaterials and 

mechanical thrombectomy as a part of endovascular intervention [21,22]. 

 

2. Diabetes Mellitus 

2.1. Prevalence, definition and types 

Diabetes mellitus, a chronic metabolic disorder associated with high blood glucose is one 

of the major leading causes of death in the United States, reported as 7th in year 2015. As 

per the guideline report presented by the International Diabetes Federation (IDF), the 

number of people suffering from diabetes mellitus has been growing ever since [23,24]. 

The prime risk factors associated with the occurrence of this disorder are age, history of 

diabetes, lifestyle, smoking, ethnic origin, obesity and improper diet. Although a higher 

Fig 3: Mechanism of action of rtPA. rtPA binds to the fibrin mesh (formed by platelet aggregation 

resulting in clot formation) thus activating the fibrin-bound plasminogen complex. This activation 

leads to the release of plasmin from the complex which breaks up the clots by breaking up the 

fibrin molecules thus inititating the process of fibrinolysis [18,19,20]. 
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incidence of diabetes is observed in the population in the passing years, however around 

30% of them are found to be undiagnosed cases. It is also a leading cause of various 

complications such as cardiovascular and kidney diseases, retinopathy, limb amputations 

and many such co-morbidities [25]. 

Diabetes mellitus is defined as a chronic disease or a metabolic syndrome wherein a rise in 

blood glucose levels observed as a result of ineffective production of insulin by the 

pancreas or the inability of body to respond to the insulin effectively. This increase in blood 

glucose levels is responsible for damaging various body systems namely the blood vessels 

and nerves [26]. Depending on its etiology, diabetes mellitus is classified into major two; 

Type I Diabetes Mellitus and Type II Diabetes Mellitus. Type I is also known as insulin-

dependent diabetes while type II is often known as insulin-independent diabetes. However, 

there are other minorly classified types as well, such as gestational diabetes mellitus 

(GDM) and other specific types of diabetes [27,28]. 

 

2.2. Type I Diabetes Mellitus 

Type I diabetes mellitus, also known as insulin-dependent diabetes which accounts 5-10% 

cases of diabetes, occurs due deficiency in insulin production thus leading to high blood 

glucose levels or hyperglycemia. This deficiency in insulin production is usually due to 

pancreatic β-cell destruction. It is broadly classified into immune-mediated diabetes and 

idiopathic diabetes. The patients suffering from type I diabetes need to be put on insulin 

therapy in order to maintain the normoglycemic (normal glucose) levels in the body 

[28,29]. 
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2.3. Type II Diabetes Mellitus 

This is the more common type of diabetes, found in about 90-95% of the diabetic 

population. Although more prevalent, it is the controllable and reversible type of disorder 

also known as insulin-independent diabetes [30]. In type II diabetes, the body develops 

insulin resistance wherein the cells do not respond to the signal by insulin to take up the 

blood sugar. Thus, leading to increased blood glucose levels as the glucose remains in the 

blood and not being used up by the cells. In the beginning when insulin resistance starts 

developing, it is known as the pre-diabetic phase which later on turns to complete resistance 

by all cells, leading to hyperglycemia and damage to other body systems eventually [31]. 

Obesity and physical inactivity are two of the few major causes of type II diabetes. This 

disorder is however reversible, in comparison to that of type I diabetes. It can be reversed 

by making changes to lifestyle, eating healthy, adequate exercise, intake of proper 

medication and quitting smoking and alcoholism. If left untreated or uncontrolled, it may 

lead to severe nerve damage, chronic kidney disease, stroke, wound healing problems, 

cardiovascular disorders, eye disease, lower extremities amputation, bladder problems and 

hindrance of sexual activity [32]. Type II diabetes mellitus is one of the leading causes for 

occurrence of ischemic stroke, thus patients with an underlying condition of diabetes are 

at higher risk for developing stroke. 
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2.4. Gestational Diabetes Mellitus (GDM) and Other Specific Types 

GDM generally develops in 2-5% of pregnant women where insulin resistance is observed 

during pregnancy, which did not occur previously. Due to this insulin resistant and 

hyperinsulinemia, pregnant women develop diabetes. Various factors responsible for this 

insulin resistance are insulinase enzyme production, growth hormone alteration, cortisol 

and human placental lactogen secretion along with the insulin imbalance due to estrogen 

and progesterone [34]. 

Other specific types of diabetes mellitus, also known as secondary diabetes, mainly occur 

due to infection, endocrinopathies, chemical/ drug-induced diabetes, exocrine pancreas 

Fig 4: Types of Diabetes Mellitus. a) Healthy condition: 

Efficient uptake of the glucose circulating in blood by the 

cell in response to the action of insulin on insulin receptor; 

b) Type I diabetes mellitus: Inability of pancreas to 

produce sufficient insulin, thus high blood glucose levels; 

and c) Type II diabetes mellitus: Pancreas produce 

sufficient amount of insulin but the cells are unable to 

respond to it efficiently [33]. 

a 

b 

c 
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disease, genetic defects in β-cell function and insulin resistance and other genetic 

syndromes related to diabetes [35]. 

2.5. Developing stroke due to diabetes mellitus 

Diabetes mellitus is one of the major modifiable risk factors for ischemic stroke. 

Individuals suffering from this syndrome are 1.5 times likely to be affected by stroke than 

the ones who are not [37]. The resulting hyperglycemia due to diabetes are responsible for 

causing fat deposits or blood clots within the blood vessels. Hyperglycaemic condition also 

leads to hardening of arterial walls and reduction in their elasticity thus leading to 

acceleration of atherosclerosis. Diabetes leads to impairment of Nitric Oxide (NO) 

mediated vasodilation due to increase in the inactivation of NO or because of decreased 

interaction between NO and the smooth muscles. This results in endothelial dysfunction 

which is one major cause of the resulting stroke in diabetic individuals [36].  Development 

Fig 5:Possible mechanisms leading to stroke due to diabetes. The various possible mechanisms 

leading to stroke due to the occurrence of diabetes mellitus within an individual [36]. 
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of atherosclerosis further leading to stroke is also a result of increased systemic 

inflammatory response predicted through the markers- adiponectin, C-reactive protein and 

cytokines (TNF-α, IL-1 & IL-6) [36, 38]. Thus, diabetes mellitus resulting into an ischemic 

stroke is at a higher risk because of these factors combined. 

3. Endothelial Progenitor Cells (EPCs) 

3.1. Origin and function 

EPCs are referred to as the cell population which further mature into endothelial cells 

(ECs), thus known as the precursors of ECs. EPCs mobilize, differentiate and proliferate 

into mature ECs. Ashara et al. identified a hematopoietic population, which were CD34 

and Flk1 positive mononuclear cells, having the potency to prompt vasculogenesis [39]. 

These are bone marrow-derived circulating cells originating in the blood of umbilical cord 

and periphery which were initially isolated using magnetic microbeads. These cells were 

termed to have the properties of embryonal angioblasts leading to neovascularization and 

re-endothelialisation. Apart from these functions, EPCs are involved in wound healing, 

angiogenesis, tissue regeneration as well as remodelling [40,41]. 

 

 

 

 

 

 Fig 6: Endothelial Progenitor Cell Function. [42] 
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3.2. Role of EPCs in Ischemic Stroke 

Previous studies involving EPCs have suggested that EPCs play a major therapeutic role 

in ischemic stroke.  

 

 

 

 

 

 

 

 

 

 

 

4. Exosomes 

4.1. Introduction to exosomes 

Exosomes are 30-100 nm sized, phospholipid bilayer extracellular vesicles (EVs). These 

vesicles, discovered around 30 years back, are formed within the cell and released in the 

extracellular space by undergoing a series of steps. Exosomes are released in the 

extracellular space by almost all cells, under normal physiological or stressful conditions 

and are found in biological fluids such as blood, urine, saliva, CSF and semen [44]. 

 

Fig 7: Various roles of EPCs in treating stroke. [43] 
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At the time of initial discovery, these vesicles were thought to be cell debris, which were 

responsible for disposal of unwanted cellular components from the cellular environment. 

However, in recent years they have gained recognition in being responsible for intercellular 

communication, carrying information from one cell to another [46]. 

4.2. Biogenesis and Composition 

 

 

 

 

 

 

 

Fig 8: Exosomes. EXs released by Epstein–

Barr virus-transformed B cell under 

Transmission Electron Microscopy [45]. 

Fig 9: Exosome biogenesis. A brief insight into the EX biogenesis 

within a cell and their release in the extracellular space [47]. 
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EXs generate within the early endosomes which are formed by inward budding of the 

plasma membrane. Early endosomes then mature into late endosomes also known as 

multivesicular endosomes (MVEs) containing the intraluminal vesicles (ILVs). The MVEs 

then fuse with the plasma membrane releasing the contents, which is the ILVs, into the 

extracellular space, then denoted as EXs [47, 48]. 

 

 

 

 

 

 

 

 

 

During the endosomal maturation stage, after which the MVEs are generated, cargo sorting 

within the endosomes occurs. Cargo sorting is responsible for the overall contents of the 

exosomes and hence their varied functions. This process is regulated by either Endosomal 

Sorting Complex Required for Transport (ESCRT)-mediated pathway or ceramide-

dependent pathway. They are interchangeably known as non-ceramide pathway and non-

ESCRT dependent pathway respectively. The ESCRT-mediated pathway incorporates four 

components, namely ESCRT-0, I, II and III, each of which are responsible for varied 

Fig 10:EX composition. EXs are composed of a varied collection of 

biomolecules such as the mRNA, miRNA, DNA, proteins and lipids [49].  
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functions in regard to the cargo sorting. While the ceramide-dependent pathway involves 

lipid rafts which are glycolipoprotein microdomains. However, the cargo carried by these 

EXs is a function of the parent cells within which these EXs are formed. The EXs are found 

to mainly contain mRNA, miRNA, DNA, lipids and proteins [48, 49, 50]. 

4.3. Isolation 

There are various methods of EX isolation discovered over the years, and each of these 

methods have their own advantages and disadvantages on being looked for. Some of these 

methods are differential centrifugation (more commonly known as ultracentrifugation), 

density gradient centrifugation, filtration, size exclusion chromatography, polymer-based 

precipitation, sieving and immunological separation. The most commonly and widely used 

method, also known as the gold standard method of EX isolation, is the isolation by 

ultracentrifugation. Ultracentrifugation involves centrifugation at high-speed in order to 

obtain the EX pellet. It is the most commonly used method to derive EXs from biological 

fluids [51]. 

4.4. Detection and Characterization 

EXs, after isolation, can be analysed by various methods for determining their morphology, 

quality, size and concentration. These methods are broadly classified into antibody-based, 

optical and biophysical methods. Various EX specific antibodies and arrays are available 

which are detected by FACS/flow cytometry or ELISA. The optical methods comprise of 

Nanosight Tracking analysis (NTA) which works by the principle of detection of Brownian 

motion of these particles under the laser; scattering flow cytometry (SFC), fluorescence 

microscopy and dynamic light scattering (DLS). While the biophysical methods involve 
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scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic 

force microscopy (AFM) [52,53]. 

4.5. EX uptake 

Literature and studies have suggested that there is more than one pathway or mechanism 

for the uptake of EXs by the cells. However, this uptake is a characteristic of the recipient 

cell rather than the donor cell. In the recent years, more studies are being conducted to 

know more about the uptake pathways and their unique characteristics. The uptake 

pathways are broadly classified into membrane fusion and endocytosis. Major uptake is 

carried out via the endocytic mechanism. Endocytosis is further classified into 

phagocytosis, macropinocytosis, clathrin-mediated endocytosis, caveolin-mediated 

endocytosis, lipid-raft mediated endocytosis and receptor mediated endocytosis (67). 

 

 

 

 

 

 

 

 

 

Fig 11:Pathways participating in EX uptake. [67] 
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4.6. Function 

Studies have suggested that EXs are involved in cellular signalling, wherein they carry 

information in the form of biomolecules from the parent cell to the recipient cell. This 

remains to be the unique function of EXs. Along with this, they are involved in facilitation 

of immune response, angiogenesis, wound healing, inflammation and coagulation [54]. 

They are also considered to be biomarkers in diagnosis and prognosis of various medical 

conditions and have proved to have immense diagnostic potential over the years. However, 

the most important property of EXs, which has gained some limelight over time, is that 

they can act as therapeutic agents and drug delivery carriers. The reason being the cargo 

present in these vesicles which is then expelled into the recipient cell for its own benefits. 

This cargo can then provide the required therapy. Although, the cargo either depends on 

the parent cell or if it has been edited for specific drug delivery [55]. 

4.7. Studies on EPC-EXs 

Various studies in the recent years have focussed on the therapeutic efficacy of EPC-EXs. 

In year 2016, Li X. et al. determined that EPC-EXs are involved in vascular repair 

attenuation and acceleration of reendothelialization [56]. While, Li X. et al. and Zhang J. 

et al. proved that EPC-EXs accelerate cutaneous wound healing by promoting endothelial 

function and promoting angiogenesis via Erk1/2 signalling respectively [57, 58]. In 2017, 

Ke X. et al. found EPC-EXs responsible in increasing angiogenesis and proliferation in 

cardiac fibroblasts [59]. While Jia Y. et al. in 2019 suggested that EPC-EXs are involved 

in accelerating bone regeneration by regulating angiogenesis, in the distraction 

osteogenesis phase [60]. 
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5. MicroRNA-126 

5.1. Definition and Location 

MicroRNA-126 (miR-126) is an endothelial-specific miRNA found to be expressed in a 

broad range of tissues, specifically the vascular system and highly vascularized tissues such 

as lungs and heart.  

 

 

  

 

 

 

 

miR-126 is found on the human chromosome 9, located on the 7th intron of the epidermal 

growth factor-like domain 7 (EGFL7) gene. miR-126 is expressed in its stem loop structure 

with its complementary strand miR-126* [61]. 

5.2. Downstream Targets 

Potential targets of miR-126 are vascular endothelial growth factor A (VEGF-A), vascular 

cell adhesion molecule 1 (VCAM-1), insulin receptor substrate 1 (IRS-1), sprouty related 

EVH1 domain containing 1 (SPRED-1) and PI3K (phosphoinositol-2-kinase) regulatory 

subunit p85 beta (PIK3R2). 

Fig 12:miR-126 location. miR-126 located on chromosome 9 [61]. 
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5.3. Function 

Like all other miRNAs, miR-126 also has specific functions. As miR-126 is endothelial 

specific, its functions also rely on that property. Hence, miR-126 is predominantly involved 

in angiogenesis and thus a prospective target for regulation of vascular integrity and 

treating various vascular disorders [62,63]. Studies have proved that priming of this 

miRNA in EPCs have been beneficial in enhancing their therapeutic efficacy in ischemic 

cerebral impairment [64]. It also functions in suppressing tumor growth in colorectal cancer 

through CXCR4 targeting, while being involved in rescuing cardiomyocytes efferocytosis 

due to diabetes [65, 66]. Owing to their therapeutic potential, they are deemed to be 

beneficial in stroke and diabetes related therapies. 
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II. HYPOTHESIS AND SPECIFIC AIMS 

Hypothesis: 

EPC-EXs could be uptaken by astrocytes and have protective effects on HG and H/R-

injured astrocytes. 

Specific aims: 

Aim 1) 1a: To determine EPC-EXs uptake pattern in astrocytes. 

 1b: To determine the uptake mechanisms of EPC-EXs in astrocytes. 

Aim 2) To assess the protective effects of EPC-EXs on HG and H/R-injured astrocytes. 

Aim 3) To determine if miR-126 EPC-EXs have enhanced protective effects on HG and 

H/R-injured astrocytes. 
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III. EXPERIMENTAL DESIGN 

Design for Aim 1a: 

EPCs were cultured and allowed to be 80% confluent followed by serum starvation for 48 

hours. The culture medium was collected for EX isolation. The obtained EPC-EXs were 

fluorescent labelled with PKH26 and resuspended in astrocyte (ASC) medium. 

Concentration-dependent uptake of the labelled EPC-EXs was determined by dividing the 

EPC-EXs in 3 concentrations - 1 x 109 , 2 x 109 and 3 x 109  EX particles/ml, which were 

added to the ASCs for 24 hours after which the cells were stained with DAPI and 

fluorescent images were obtained. Time-based uptake was determined by adding the 

labelled EPC-EXs to the ASC culture wherein the fluorescent images and flow cytometry 

data was obtained at 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 hours. 

Design for Aim 1b: 

EPCs were cultured and allowed to be 80% confluent followed by serum starvation for 48 

hours. The culture medium was collected for EX isolation. The obtained EPC-EXs were 

fluorescent labelled with PKH67 and resuspended in astrocyte (ASC) medium. On the 

other hand, the ASCs were cultured and grown till 80% confluency followed by treatment 

with vehicle, 80 μM Dynasore, 10 μM Pitstop 2, 200 μM Genistein or 5 μM LY294002 for 

30 minutes. The cells were then washed and the labelled EPC-EXs were added for 24 hours. 
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The mechanism of uptake was determined by obtaining fluorescent images and performing 

flow cytometry. ASCs at passages 4-10 and EPCs at passages 4-12 were used for this study. 

 

 

 

 

 

 

 

Design for Aim 2: 

EPCs were cultured and allowed to be 80% confluent followed by serum starvation for 48 

hours. The culture medium was collected for EX isolation and the obtained EPC-EXs were 

resuspended in ASC medium. ASCs were cultured and grown till 80% confluency, 

followed by subjecting to 25 mM glucose for 24 hours. After this these culture plates were 

put into the hypoxic chamber (with 1% O2, 5% CO2 and 94% N2) for 6 hours, followed by 

reoxygenation for 24 hours. The isolated EPC-EXs were added to the cells during the 

reoxygenation phase for the 24 hour period after which apoptosis, oxidative stress, 

cytotoxicity and lipid peroxidation analysis were performed. ASCs at passages 4-10 and 

EPCs at passages 4-12 were used for this study. 

Fig 13: Pictorial representation of Aim 1 experimental design. 
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Design for Aim 3: 

EPCs were cultured and allowed to be 70-80% confluent, after which they were transfected 

with miR-126 mimic using Dharmafect 1 transfection reagent, for 48 hours. Following the 

trasfection, the cells were serum starved for 48 hours for EX release. The medium was 

collected and miR-126 overexpressing EPC-EXs were isolated and resuspended in ASC 

medium. ASCs were cultured and grown till 80% confluency, followed by subjecting to 25 

mM glucose for 24 hours. After this these culture plates were put into the hypoxic chamber 

(with 1% O2, 5% CO2 and 94% N2) for 6 hours, followed by reoxygenation for 24 hours. 

The isolated EPC-EXs were added to the cells during the reoxygenation phase for the 24 

hour period after which apoptosis, oxidative stress, cytotoxicity and lipid peroxidation 

analysis were performed. ASCs at passages 4-10 and EPCs at passages 4-12 were used for 

this study. 

Fig 14: Pictorial representation of Aim 2 experimental design. 
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Fig 15: Pictorial representation of Aim 3 experimental design. 
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IV. MATERIALS AND METHODS 

Materials 

Human endothelial progenitor cells and human astrocytes were purchased from ATCC. 

Human endothelial progenitor cell culture expansion media serum free with antibiotics and 

human endothelial progenitor cell culture complete growth media with serum and 

antibiotics were purchased from Celprogen (Torrance, CA). Astrocyte medium was 

purchased from ScienCell (Carlsbad, CA). 0.05% trypsin-EDTA was purchased from 

Gibco. PKH26, PKH67 and Dynasore hydrate were purchased from Sigma-aldrich (St. 

Louis, MO). Dharmafect 1 from Dharmacon. miR-126 mimics were purchased from 

Applied biosystems. (D)-glucose and pierce LDH cytotoxicity kit were purchased from 

Fisher scientific. TRIzol reagent, dihydroethidium and Image-it lipid peroxidation kit were 

purchased from Invitrogen (Carlsbad, CA). Annexin V and propidium iodide (PI) were 

purchased from BDbiosciences. LY294002 was purchased from Enzo (Farmingdale, NY). 

Genistein was purchased from EMD Millipore (Israel). Pitstop 2 was purchased from 

Abcam (UK). 

Cell culture 

Human endothelial progenitor cells (HEPCs) and human astrocytes (ASCs) were used for 

this study. HEPCs were cultured in HEPC complete growth medium with serum and 

antibiotics in an incubator with standard cell culture conditions, that is 37°C and 5% CO2. 

Culture medium was replaced every 2 days. EPCs at passages 4-12 were used for this study. 



25 
 

ASCs were cultured in ASC medium with 10% fetal bovine serum (FBS), 5% ASC growth 

factor and 5% penicillin/streptomycin (P/S) solution in a standard cell culture conditions 

maintaining incubator. Culture medium was replaced every 3 days. ASCs at passaged 4-10 

were used for this study. For passaging both these cell types, with 85-90% cell confluence 

achieved, existing medium was replaced with 0.05% trypsin-EDTA at 37°C for 3 minutes, 

then the respective medium with serum was added to stop the reaction. This was 

centrifuged at 300 x g for 6 minutes, the pellet obtained was resuspended in respective 

culture medium and passaged in 1:3 ratio for further culture. 

EX isolation 

EPCs were cultured in serum-free medium for 48 hours. After serum starvation, culture 

medium was collected and centrifuged at 300 x g for 6 minutes, followed by 2000 x g for 

20 minutes to remove the cells along with cell debris. The obtained supernatant was 

centrifuged at 20,000 x g for 70 minutes, this allowed the pelleting of microvesicles (MVs). 

As we do not make use of the MVs in our study, the obtained supernatant was subjected to 

ultracentrifugation at 170,000 x g for 90 minutes to pellet the EXs [69]. After 

ultracentrifugation, the supernatant was discarded, and the pellet was resuspended in 100 

μl sterile-filtered phosphate buffer saline (PBS). 

Nanoparticle tracking analysis (NTA) 

The size and concentration determination of the isolated EPC-EXs was carried out by the 

instrument NS300 (Nanosight, Amesbury, UK). NTA visualizes and measures particle size 

and concentration by utilizing light scattering and Brownian motion properties. It can 

detect size distribution of particles in solution from 10 nm to 2 μm in diameter. The 

optimum particle concentration detected by NTA is ~107-109 particles/ ml. For better 
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detection, the EX samples were diluted with sterile-filtered PBS to a concentration of 107-

108 particles / ml. After diluting the sample, 700 μl of the same was loaded in the instrument 

for movement tracking at the rate of 30 frames/ second. The videos with particle movement 

were recorded for at least 3 times per sample at different positions which were analysed by 

the NTA software (version 2.2, Nanosight). The NTA results were produced as a mean of 

the 3 tests performed per sample and the particle concentration was calculated after 

considering the accurate dilution factor for the NTA results. 

EX labelling 

To label the EXs, PKH26 or PKH67, lipophilic-membrane dyes exhibiting red or green 

fluorescence respectively, were used. The isolated EXs were added to a solution of 2 μl 

dye in 1 ml PBS for 5 minutes. In order to stop the reaction, 1ml 1% BSA was added and 

allowed to stand for a minute. This was then ultracentrifuged at 170,000 x g for 90 minutes, 

to obtain the fluorescent (PKH26 or PKH67) labelled EX pellet. The supernatant was 

discarded, and the pellet was resuspended in ASC medium for further co-incubation with 

the cells. 

Injury model for ASCs 

The experimental model for this study was that of high glucose (HG) plus hypoxia-

reoxygenation (H/R) induced injury of ASCs, which is an in vitro representation of 

ischemic stroke due to diabetes mellitus. For inducing the HG + H/R injury, the ASCs were 

cultured in complete ASC medium until they were 80% confluent. Following this, the 

ASCs were subjected to 25 mM glucose (in complete medium) for 24 hours after which 

the cells were put into the hypoxia chamber, with 1% O2, 5% CO2 and 94% N2, for 6 hours. 

Following this the ASCs were reoxygenated for 24 hours, at standard incubator conditions 
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(37°C and 5% CO2), during which the EXs (unlabelled, EPC-derived or miR-126 

overexpressed) were added. 

Co-incubation of EXs with ASCs 

The isolated EXs were resuspended in the ASC medium and added to the cells as per the 

experimental design. The labelled, unlabelled, EPC-EXs or miR-126 overexpressing EPC-

EXs (miR-126 EPC-EXs) in concentrations 1 x 109, 2 x 109 or 3 x 109 EX particles/ml 

were resuspended in complete ASC medium and then co-incubated with the ASCs for 24 

hours. Following this, the fluorescent images were recorded, or assays were performed. 

EX uptake mechanism determination 

As the literature suggests, there are various pathways for EX uptake which predominantly 

is based on the cell line being studied. To determine the EPC-EX uptake by ASCs, we 

focussed on the endocytic uptake narrowing it down to macropinocytosis, clathrin-

mediated and caveolin-dependent pathways. For this, the cells were treated for 30 minutes 

with various inhibitors at specific concentrations. The inhibitors used were 80 μM dynasore 

(dynamin inhibitor), 5 μM LY290042 (macropinocytosis inhibitor), 10 μM pitstop 2 

(clathrin inhibitor) and 200 μM genistein (caveolin inhibitor). After treatment with the 

inhibitors, the cells were washed twice and then the labelled EPC-EXs were co-incubated 

with these ASCs for 24 hours. Fluorescent images were obtained by fluorescence 

microscope and flow cytometry analysis was carried out through Accuri C6 flow 

cytometer. 

miR-126 transfection 

To generate miR-126 overexpressing EPC-EXs, the EPCs were transfected with miR-126 

mimics (1 nm) using Dharmafect 1 transfection reagent for 48 hours in HEPC complete 
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growth medium with serum and antibiotics followed by replacing the complete medium 

with serum-free medium for 48 hours for release of EXs, isolated by ultracentrifugation at 

170,000 x g for 90 minutes. 

miR-126 expression analysis 

miR-126 from the EPCs and EXs was extracted using the TRIzol reagent. After discarding 

the culture medium from the flask, 1ml TRIzol reagent was added to the flask and made to 

sit for a minute. This allowed the detachment of the cells, which were later transferred into 

a 1.5 ml microfuge tube. To this, 100 μl chloroform was added and shaken for 15 seconds 

until the solution turned pink. The tubes were allowed to stand for 10 minutes at room 

temperature and then centrifuged at 12,500 x g for 15 minutes at 4°C. Centrifugation 

resulted in separation of 3 layers, the topmost clear layer with the RNA extract, the middle 

cloudy layer with the DNA interphase and the bottom most later with the cell debris. The 

top clear layer was collected and transferred to a new tube to which 500 μl of pre-cooled 

isopropanol was added, mixed thoroughly via pipetting and allowed to rest at -20°C for 10 

minutes. Following this, the tubes were centrifuged for 12,500 x g for 15 minutes at 4°C, 

and the supernatant was discarded. To the pellet, 1 ml of pre-cooled 75% ethanol was added 

and vortexed. The tube was then centrifuged at 7500 x g for 5 minutes at 4°C and the 

supernatant was discarded efficiently, after which the tube was dried in the ventilation hood 

for 5-10 minutes. The obtained RNA was the eluted with 30 μl of RNase free water by 

vigorous pipetting. The RNA concentration was measured using Nano drop 2000. cDNA 

was synthesized using PrimeScript RT reagent kit (Takara Bio Inc.) following the 

manufacturer’s instructions. qRT-PCR was carried out using miR-126 specific primers and 

SYBR Premix Ex Taq kit (Takara Bio Inc.) on a real-time PCR instrument (Bio-Rad), 
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while RNA U6 was used as an internal control for this determination. Expression of miR-

126 was calculated using 2−ΔΔCT method. 

However, for the determination of miR-126 expression in the EXs, the similar steps were 

carried out as the EPCs except for the initial few and the concentrations of reagents used. 

After the isolation of EXs from the EPCs, the supernatant was discarded and to the tube 

100 μl of TRIzol reagent was added. Following the same steps as before, 10 μl of 

chloroform, 50 μl of isopropanol and 100 μl of 75% ethanol were used in their respective 

steps. The RNA was eluted with 10 μl of RNase free water and the similar steps were 

followed as the EPCs. 

Cell apoptosis assay 

Cellular apoptosis was determined using Annexin V/ PI. Annexin V is a potent biomarker 

for cell apoptosis. It binds irreversibly to phosphatidyl serine, usually present on the inside 

of the plasma membrane in normal conditions, which is exposed during apoptosis because 

of scrambling of the plasma membrane. To determine apoptosis, ASCs were cultured in 6-

well plate, injured with the HG + H/R model and then treated with EPC-EXs. ASCs without 

injury and EPC-EX treatment were treated as control. After this, the cells were detached 

from the wells, transferred to microfuge tubes and centrifuged at 300 x g for 6 minutes to 

obtain pellets. The pellets were resuspended in 100 μl of Annexin V binding buffer and 

vortexed. To the isotype control, 5 μl of isotype PE and 5 μl of isotype APC were added 

while to all the other groups 10 μl of conjugated PI and 5 μl of Annexin V were added. The 

tubes were vortex again and allowed to sit for 15 minutes in dark, at room temperature. 

The tubes were then centrifuged at 300 x g for 6 minutes, after which the supernatant was 
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discarded, and the antibody-labelled cells were resuspended in 100 μl of Annexin V 

binding buffer. The percent apoptosis was analysed using the flow cytometer. 

Oxidative stress or intracellular ROS generation assay 

Intracellular ROS generation, an effective method for determining oxidative stress in the 

cells was determined using dihydroethidium (DHE) staining in this study. DHE is a 

superoxide indicator which when oxidized primarily by a superoxide resulting in 2-

hydroxyethidium. This compound intercalates with the DNA and stains the nucleus bright 

red, along with the cytosol. The ASCs were cultured in 6-well plate. After their 

reoxygenation phase of the injury model, they were incubated with 10 μM DHE solution 

(in dark) for 30 minutes at 37°C. The solution was then discarded, and the cells were 

washed with PBS twice, and fresh new complete medium was added to the wells. ASCs 

without injury and EX treatment were treated as control. The cells were then observed 

under fluorescence microscope and the percentage of DHE-positive cells was analysed 

using the flow cytometer. 

Cell cytotoxicity assay 

Cellular cytotoxicity determination is carried out using LDH cytotoxicity kit. This is a 

steadfast colorimetric assay that measures cytosolic LDH (lactate dehydrogenase), an 

oxidoreductase enzyme allowing the conversion of lactate to pyruvate, released into the 

medium by injured (or damaged) cells. A series of enzymatic reactions involving the 

released LDH result in generating a red fluorescent product, formazan. This resulting 

formazan can be measured at 490 nm. To determine the cell cytotoxicity, ASCs were 

cultured in 96-well plate (in triplicate wells), injured with the HG + H/R model and then 

treated with EPC-EXs. ASCs without injury and EPC-EX treatment were treated as control. 
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As per the manufacturer’s instructions, the triplicate wells for each group were categorised 

into spontaneous LDH activity controls, maximum LDH activity controls and test LDH 

activity. To the spontaneous LDH activity control wells, 10 μl of ultrapure water was added 

and incubated at 37°C, 5% CO2 for 30 minutes. Following this, 10 μl of lysis buffer was 

added to the maximum LDH activity control wells, mixed by gentle tapping and incubated 

at 37°C, 5% CO2 for 45 minutes. After this, 50 μl of each sample medium was transferred 

to a new 96-well plate, to which 50 μl of reaction mixture was added and incubated for 30 

minutes at room temperature, in dark. To stop the reaction, 50 μl of stop solution was added 

to each well and mixed by gentle tapping. Absorbance was measured at 490 nm and 680 

nm and calculations for determination of percent cytotoxicity were carried out as per the 

manufacturer’s instructions. 

Lipid peroxidation assay 

Lipid peroxidation refers to degradation of cellular lipids due to generation of reactive 

oxygen species within the cell. For the determination of lipid peroxidation, a sensitive 

fluorescent reporter BODIPY 581/591 C11 reagent (BODIPY dye) was used. The 

phenylbutadiene portion of the dye allows the shift of fluorescence emission peak from 

590 nm-red to 510 nm-green upon oxidation. To determine the lipid peroxidation, ASCs 

were cultured in 6-well plate, injured with the HG + H/R model and then treated with EPC-

EXs. ASCs without injury and EPC-EX treatment were treated as control. Following this, 

10 μM BODIPY reagent was added to the wells and incubated for 30 minutes at 37°C. The 

media was removed followed by washing with PBS for 3 times. The ratio of reduction (590 

nm)/oxidation (510 nm) was derived by reading the fluorescence intensities at the separate 
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wavelengths on Cytation 5 plate reader while the percent lipid peroxidation was analysed 

by the flow cytometer. 

Statistical analysis 

All data are expressed as mean ± SD of at least 3 experiments. Comparisons between two 

groups were performed using Student’s t-test, while multiple comparisons were carried out 

by one-way ANOVA, followed by Tukey’s post hoc test. A value of P < 0.05 was 

considered statistically significant. All the statistical analyses were performed using 

SigmaPlot (version 14.0) software. 
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V. RESULTS 

 

PKH26 labelled EPC-EXs were uptaken by ASCs in concentration and time-

dependent manner. 

For the concentration-based study, cultured ASCs were co-incubated with PKH26 labelled 

EPC-EXs at 3 different concentrations- EPC-EX 1: 1 x 109 particles/ml, EPC-EX 2: 2 x 

109 particles/ml and EPC-EX 3: 3 x 109 particles/ml for 24 hours. The fluorescence images 

were recorded after 24 hours indicating the labelled EPC-EX particles merged with the 

ASCs. The intensity of the exhibited red fluorescence suggesting that the uptaking ability 

of the EPC-EXs by the ASCs. The images suggested that the EPC-EXs were uptaken by 

the cells in a concentration-based pattern, wherein the fluorescence exhibited increased as 

the concentration of EPC-EXs increased (Fig 16A). However, for the time-dependent 

study, PKH26 labelled EPC-EXs were co-incubated with the ASCs at a concentration of 3 

x 109 particles/ml for 24 hours, wherein fluorescent images were recorded for every 2 

hours. Again, the fluorescence intensity proved to be the basis for the uptaking of these 

particles, merged with the cells. It was observed that the uptake was gradual as the time 

passed, greater uptake and fluorescence intensity was observed at 16-18 hours. This 

fluorescence gradually decreased until 24 hours suggesting the EXs being consumed by 

the cells, hence the loss in fluorescence (Fig 16B). Fluorescence fold change was recorded 

by flow cytometry at every time-point (Fig 16C). 
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Fig 16: Concentration and time dependent uptake of EPC-EXs by ASCs. A) 

Representative images of PKH26 (red) stained EPC-EXs merged with ASCs, 

observed under the fluorescence microscope after 24 hours co-incubation. a-c1) 

DAPI (blue) stained nucleus of ASCs, a2) 1 x 109 PKH26 labelled EPC-EX 

particles/ml, b2) 2 x 109 PKH26 labelled EPC-EX particles/ml, c2) 3 x 109 

PKH26 labelled EPC-EX particles/ml and a-c3) Overlay of images a with b. B) 

Representative images of PKH26 stained EPC-EXs merged with ASCs at various 

time points. C) Data summary representing fold change fluorescence for time-

based uptake of PKH26 stained EPC-EXs by ASCs over 24 hours period. 

Fluorescence images were obtained every 2 hours along with flow cytometry 

data. Data represents mean ± SD, n = 3/ group. 
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EPC-EXs were uptaken by ASCs via macropinocytosis, caveolin-dependent and 

clathrin-mediated pathways. 

To determine the uptake mechanisms, ASCs were treated with various synthetic drugs 

which allowed the inhibition of the uptake of PKH67 labelled EPC-EXs. These drugs were 

dynamin, macropinocytosis, clathrin and caveolin inhibitors. It was observed that the EPC-

EX uptake significantly decreased after the treatment of these inhibitors in comparison to 

no treatment (Vehicle). ASCs were treated with vehicle (no treatment), 80 μM Dynasore 

(dynamin inhibitor), 10 μM Pitstop 2 (clathrin-mediated pathway inhibitor), 200 μM 

Genistein (caveolin-dependent pathway inhibitor) and 5 μM LY294002 (macropinocytosis 

inhibitor) for 30 minutes. Fluorescent images were recorded after 24 hours co-incubation 

(Fig 17A). The green fluorescence intensity suggested the uptake and merging of the EPC-

EXs with the cells. Decreased fluorescence suggested decreased uptake of the labelled 

EPC-EXs by the cells hence, the inhibition of uptake had occurred after the drug activity. 

Fluorescence fold change was recorded for each group by flow cytometry (Fig 17B).  
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Fig 17: Mechanisms of uptake for EPC-EXs by ASCs. A) Representative 

fluorescent images of PKH67 labelled EPC-EXs merged with ASCs after 30 

minutes treatment by vehicle, 80 μM Dynasore, 10 μM Pitstop 2, 200 μM 

Genistein and 5 μM LY294002, over an incubation period of 24 hours. B) 

Fluorescence intensity fold change levels recorded by flow cytometric analysis. 

Data represents mean ± SD, n = 4/group, *P (<0.05) v/s Vehicle, #P (<0.05) v/s 

80 μM Dynasore, +P (<0.05) v/s 10 μM Pitstop 2. 
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EPC-EXs decrease cellular apoptosis of HG + H/R injured ASCs.  

To determine whether EPC-EXs could protect the ASCs from HG + H/R-induced injury, 

we assessed the apoptotic rate of ASCs co-incubated with 2 concentrations of EPC-EXs. 

The comparisons were based on the EPC-EX treatment provided to the ASCs after HG + 

H/R-induced injury. The test groups were control (no injury or EPC-EX treatment), HG 

(25 mM glucose), HG + H/R (injury without treatment), EPC-EX 1 (HG + H/R injured 

ASCs treated with 1 x 109 EPC-EX particles/ml) and EPC-EX 3 (HG + H/R injured ASCs 

treated with 3 x 109 EPC-EX particles/ml). Percent apoptosis determination was carried 

out through flow cytometry, focussing on the Annexin V +/ PI – (early apoptosis phase) in 

the quadrant 4 (Q4) (Fig 18A).It was found that the maximum concentration of EPC-EXs, 

the EPC-EX 3 group, significantly decreased cell apoptosis after HG + H/R-induced injury, 

thus protecting the cells against the injury (Fig 18B).  
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Fig 18: Effect of EPC-EXs on HG + H/R-induced apoptosis of ASCs. A) 

Representative flow cytometry plots for groups control, HG, HG + H/R, EPC-EX 

1 and EPC-EX 3 with Annexin V on the y-axis and PI on the x-axis. B) 

Summarized data showing percent apoptosis of ASCs after HG + H/R-induced 

injury and EPC-EX treatment. EPC-EX 1: 1 x 109 EPC-EX particles/ml and EPC-

EX 3: 3 x 109 EPC-EX particles/ml. Data are represented as mean ± SD, n = 

12/group, *P (<0.05) v/s Control, #P (<0.05) v/s HG + H/R. Groups: Control (no 

injury or treatment), HG (High glucose), HG + H/R (High glucose + 

hypoxia/reoxygenation), EPC-EX (Endothelial progenitor cells-derived 

exosomes). 



40 
 

EPC-EXs decrease intracellular ROS generation due to HG + H/R-induced injury in 

ASCs.  

ROS generation is the key factor for injury in the cells due to increased oxidative stress 

and intracellular lipid peroxidation. To deduce if EPC-EXs could protect the ASCs against 

HG + H/R-induced injury by attenuating the oxidative stress and lipid peroxidation, DHE 

and lipid peroxidation assays were carried out. ASCs were co-incubated with 2 different 

concentrations of EXs (EPC-EX 1 with 1 x 109 EPC-EX particles/ml and EPC-EX 3 with 

3 x 109 EPC-EX particles/ml) after the injury, while these groups were compared with HG 

+ H/R injured ASCs group. ASCs without injury and treatment were treated as controls. It 

was found that HG + H/R induced significant ROS generation and lipid peroxidation in the 

ASCs, while the maximum concentration of EPC-EXs, EPC-EX 3 group, significantly 

decreased the HG + H/R induced significant ROS generation and lipid peroxidation. Thus, 

suggesting an important therapeutic of EPC-EXs in reversing the damage due to oxidative 

stress and intracellular lipid peroxidation. DHE staining exhibited bright red fluorescence 

(Fig 19A), detected by fluorescence microscope while the percent DHE-positive cells were 

determined by flow cytometry (Fig 19B). To determine the intracellular lipid peroxidation, 

ratio of reduction (590 nm)/oxidation (510 nm) was derived by reading the fluorescence 

intensities (Fig 19C) while the percent lipid peroxidation was determined by flow 

cytometry analysis (Fig 19D). 
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EPC-EXs decrease cell cytotoxicity of HG + H/R injured ASCs.  

To determine the protective effect of EPC-EXs on cell cytotoxicity levels, we assessed the 

cell cytotoxicity for ASCs which were co-incubated with 2 different concentrations of 

EPC-EXs (EPC-EX 1 with 1 x 109 EPC-EX particles/ml and EPC-EX 3 with 3 x 109 EPC-

EX particles/ml) after the injury, while these groups were compared with HG + H/R injured 

ASCs group. ASCs without injury and treatment were treated as controls. The colorimetric 

assay performed on these groups suggested that there is increased cytotoxicity due to the 

HG + H/R injury, however EPC-EX 3 significantly decreases the percent cytotoxicity 

Fig 19: Effect of EPC-EXs on oxidative stress and lipid peroxidation. A) 

Representative DHE staining fluorescent images exhibiting bright red 

fluorescence. B) Summarized flow cytometry analysis representing percent DHE-

positive cells. C) Fluorescence intensity data summary representing ratio of 

reduction (590 nm)/oxidation (510 nm). D) Summarized flow cytometry analysis 

representing percent intracellular lipid peroxidation. EPC-EX 1: 1 x 109 EPC-EX 

particles/ml, EPC-EX 3: 3 x 109 EPC-EX particles/ml. Data are represented as 

mean ± SD, n = 6-10/group, *P (<0.05) v/s Control, #P (<0.05) v/s HG + H/R, +P 

(<0.05) v/s HG, ^P (<0.05) v/s EPC-EX 1. Groups: Control (no injury or 

treatment), HG (High glucose), HG + H/R (High glucose + 

hypoxia/reoxygenation), EPC-EX (Endothelial progenitor cells-derived 

exosomes). 
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levels for the ASCs, thus protecting the cells from further damage. Percent cytotoxicity 

was determined by the colorimetric LDH assay, reading the absorbance at 490 nm and 680 

nm and performing the calculations as per the manufacturer’s instructions (Fig 20). 
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Fig 20: Effect of EPC-EXs on cell cytotoxicity after HG + H/R injury of ASCs. 

Summarized colorimetric absorbance readout data calculated to represent percent 

cytotoxicity. EPC-EX 1: 1 x 109 EPC-EX particles/ml, EPC-EX 3: 3 x 109 EPC-

EX particles/ml. Data are represented as mean ± SD, n = 6/group, *P (<0.05) v/s 

Control, #P (<0.05) v/s HG + H/R. Groups: Control (no injury or treatment), HG 

(High glucose), HG + H/R (High glucose + hypoxia/reoxygenation), EPC-EX 

(Endothelial progenitor cells-derived exosomes). 
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Transfection of miR-126 mimics leads to overexpression of miR-126 in EPCs and 

EPC-EXs. 

In order to obtain miR-126 overexpressing EPC-EXs, EPCs were transfected and EPC-

EXs were isolated. The level of miR-126 in both cells and EXs were analysed by qRT-

PCR. The level of miR-126 in transfected EPCs was found to be almost 30 folds while that 

for the isolated EPC-EXs was found to be around 5 folds (Fig 21). 

 

 

 

 

 

 

 

miR-126 EPC-EXs decrease cellular apoptosis of HG + H/R injured ASCs.  

To determine the effect of miR-126 EPC-EXs on the apoptosis of HG + H/R injured ASCs, 

Annexin V/ PI apoptosis assay was conducted. The comparisons were based on the EX 

treatments provided to the ASCs after HG + H/R-induced injury. The test groups were 

control (no injury or EPC-EX treatment), HG (25 mM glucose), HG + H/R (injury without 

treatment), EPC-EX (HG + H/R injured ASCs treated with 3 x 109 EPC-EX particles/ml) 
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Fig 21: Effect of miR-126 mimic transfection on its expression. Summarized 

data represents the fold change in levels of miR-126 expression in miR-126 

transfected EPCs and isolated EPC-EXs in comparison to the untransfected 

control. Data are represented as mean ± SD, n = 4/group, ***P (<0.05). 
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and miR-126 EPC-EX (HG + H/R injured ASCs treated with 3 x 109 miR-126 

overexpressing EPC-EX particles/ml). Percent apoptosis determination was carried out 

through flow cytometry, focussing on the Annexin V +/ PI – (early apoptosis phase) in the 

quadrant 4 (Q4) (Fig 22A). It was found that miR-126 EPC-EXs significantly decrease the 

ASC apoptotic rate, however the results were not significant in comparison to the EPC-EX 

group (Fig 22B). 
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Fig 22: Effect of miR-126 EPC-EXs on HG + H/R-induced apoptosis of 

ASCs. A) Representative flow cytometry plots for groups control, HG, HG + 

H/R, EPC-EX and miR-126 EPC-EX with Annexin V on the y-axis and PI on the 

x-axis. B) Summarized data showing percent apoptosis of ASCs after HG + H/R-

induced injury and EPC-EX treatment. EPC-EX: 3 x 109 EPC-EX particles/ml 

and miR-126 EPC-EX: 3 x 109 miR-126 overexpressing EPC-EX particles/ml. 

Data are represented as mean ± SD, n = 6/group, *P (<0.05) v/s Control, #P 

(<0.05) v/s HG + H/R. Groups: Control (no injury or treatment), HG (High 

glucose), HG + H/R (High glucose + hypoxia/reoxygenation), EPC-EX 

(Endothelial progenitor cells-derived exosomes), miR-126 EPC-EX (microRNA 

126 overexpressing EPC-EX). 
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miR-126 EPC-EXs decrease HG + H/R induced intracellular ROS generation in 

ASCs. 

As discussed previously, ROS generation is a key factor in cell damage and death. To 

determine if miR-126 EPC-EXs have an effect on the ROS generation, thus affecting the 

oxidative stress and lipid peroxidation, DHE and lipid peroxidation assays were performed. 

It was found that miR-126 EPC-EXs decrease the ROS generation significantly, however 

there was no significant difference observed between the effects of groups EPC-EXs and 

miR-126 EPC-EXs. DHE staining exhibited bright red fluorescence (Fig 23A), detected by 

fluorescence microscope while the percent DHE-positive cells were determined by flow 

cytometry (Fig 23B). To determine the intracellular lipid peroxidation, ratio of reduction 

(590 nm)/oxidation (510 nm) was derived by reading the fluorescence intensities (Fig 23C) 

while the percent lipid peroxidation was determined by flow cytometry analysis (Fig 23D). 
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Fig 23: Effect of miR-126 EPC-EXs on oxidative stress and lipid peroxidation.  

A) Representative DHE staining fluorescent images exhibiting bright red fluorescence. B) 

Summarized flow cytometry analysis representing percent DHE-positive cells. C) 

Fluorescence intensity data summary representing ratio of reduction (590 nm)/oxidation 

(510 nm). D) Summarized flow cytometry analysis representing percent intracellular lipid 

peroxidation. EPC-EX: 3 x 109 EPC-EX particles/ml, miR-126 EPC-EX: 3 x 109 miR-126 

overexpressing EPC-EX particles/ml. Data are represented as mean ± SD, n = 6-10/group, 

*P (<0.05) v/s Control, #P (<0.05) v/s HG + H/R. Groups: Control (no injury or treatment), 

HG (High glucose), HG + H/R (High glucose + hypoxia/reoxygenation), EPC-EX 

(Endothelial progenitor cells-derived exosomes), miR-126 EPC-EX (microRNA 126 

overexpressing EPC-EX). 
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miR-126 EPC-EXs decrease cell cytotoxicity of HG + H/R injured ASCs in 

comparison to EPC-EXs.  

To deduce the effect of the overexpressed miR-126 in the miR-126 EPC-EXs on cellular 

cytotoxicity, we assessed the cell cytotoxicity for ASCs co-incubated with miR-126 EPC-

EXs (3 x 109 particles/ml) after the injury, while these groups were compared with HG + 

H/R injured ASCs group as well as the EPC-EX treated injured group. ASCs without injury 

and treatment were treated as controls. The colorimetric assay performed on these groups 

suggested that there is increased cytotoxicity due to the HG + H/R injury, however miR-

126 EPC-EX significantly decreases the percent cytotoxicity levels for the ASCs, thus 

protecting the cells from further damage. The interesting observation here was the data 

showing significant difference in reduction of cytotoxicity in miR-126 EPC-EX and EPC-

EX groups, suggesting the enhanced effect of miR-126 EPC-EXs on the damaged cells. 

Percent cytotoxicity was determined by the colorimetric LDH assay, reading the 

absorbance at 490 nm and 680 nm and performing the calculations as per the 

manufacturer’s instructions (Fig 24). 
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Fig 24: Effect of miR-126 EPC-EXs on cell cytotoxicity after HG + H/R 

injury of ASCs. Summarized colorimetric absorbance readout data calculated 

to represent percent cytotoxicity. EPC-EX: 3 x 109 EPC-EX particles/ml, miR-

126 EPC-EX: 3 x 109 miR-126 overexpressing EPC-EX particles/ml. Data are 

represented as mean ± SD, n = 5/group, *P (<0.05) v/s Control, #P (<0.05) v/s 

HG + H/R, +P (<0.05) v/s miR-126 EPC-EX. Groups: Control (no injury or 

treatment), HG (High glucose), HG + H/R (High glucose + 

hypoxia/reoxygenation), EPC-EX (Endothelial progenitor cells-derived 

exosome), miR-126 EPC-EX (microRNA-126 overexpressing EPC-EX). 
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VI. DISCUSSION 

EXs are nanosized, extracellular vesicles released by almost all cells in physiological as 

well as stressful conditions. These phospholipid bilayer vesicles, generated within the 

endosomes of the cells and released into the extracellular space via fusion with the plasma 

membrane, are involved in cell-to-cell signalling and found to contain DNA, RNA, mRNA, 

miRNA, lipds and proteins, which are responsible for the transfer of information. This 

property of EXs exemplifies them as novel therapeutic agents also, qualifying them for 

being involved in drug delivery. In this study we isolated the EXs from EPCs which were 

uptaken by the ASCs via macropinocytosis, clathrin-mediated endocytosis and caveolin-

dependent endocytosis mechanisms (Fig 17). Also, the uptake was increased with 

increased time of co-incubation and concentration of EPC-EXs, thus highest uptake was 

observed at the concentration of 3 x 109 particles/ml (Fig 16A) at 16-18 hours (Fig 16B, 

16C), after which the levels decreased suggesting the consumption of these EPC-EXs by 

the cells. These results suggest that EPC-EXs are effectively taken up by the cells in a 

concentration and time-dependent pattern by 3 different uptake mechanisms (Fig 16, 17) 

The in-vitro representation of ischemic stroke due to diabetes was achieved through HG + 

H/R induced injury of ASCs. 25 mM glucose enriched medium correlates with the 

physiological condition of diabetes while hypoxia, 1% O2, 5% CO2, 94% N2, for 6 hours 

followed by 24 hours or reoxygenation at standard incubator conditions depicts the 

physiological condition of ischemic stroke. H/R-induced injury lead to an increase in the 
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ROS, apoptosis, while it decreased NO and eNOS production in the hb-ECs. However, the 

EPC derived microvesicles (MVs) when co-incubated with the H/R damaged ECs, it 

resulted in increased eNOS, NO production while rescuing the cells from ROS 

overproduction and apoptosis [68]. Similar results were obtained in our study, however we 

wanted to test the effect of EPC-EXs on HG + H/R injured ASCs. HG + H/R injury 

induction resulted in early apoptosis of a population of cells which decreased when 

treatment with 1 x 109 EPC-EX particles/ml was carried out. The population further 

decreased with a treatment of higher concentration, that is 3 x 109 EPC-EX particles/ml 

(Fig 18A). Further summarized data suggested that EPC-EXs at a concentration of 3 x 109 

EPC-EX particles/ml, significantly decrease the apoptosis rate of ASCs (Fig 18B). These 

results suggest that EPC-EXs protect the HG + H/R injured ASCs from apoptosis and help 

them recover (Fig 18). ROS is one of the major players’ responsible for cell damage and 

death after HG + H/R. In our study, we found that 3 x 109 EPC-EX particles/ml 

significantly decreased the ROS generation represented by the bright red fluorescence and 

the DHE-positive cells, however the lower concentration of EPC-EXs could not reduce the 

ROS generation that significantly (Fig 19A, 19B). EPC-EXs were also found to decrease 

the ratio of reduction/oxidation of intracellular lipids and lipid peroxidation within the 

ASCs injured by HG + H/R. The colorimetric results suggested that EPC-EXs with the 

concentration 3 x 109 EPC-EX particles/ml decreased the ratio which was elevated due to 

HG + H/R injury (Fig 19C). While, the flow cytometry results proposed the increase in 

lipid peroxidation after the injury which was significantly decreased by the EPC-EXs. 

EPC-EX concentration of 1 x 109 EPC-EX particles/ml decreased the lipid peroxidation by 

almost 30% while, 3 x 109 EPC-EX particles/ml reduced the lipid peroxidation by almost 
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40% which was significantly different to the lower concentration of EPC-EXs used (Fig 

19D). These results demonstrate the therapeutic efficacy of EPC-EXs in attenuating the 

ROS generation by HG + H/R-induced injury (Fig 19). Cell cytotoxicity was another 

parameter which was tested in our study involving the ASCs and the EPC-EXs. We found 

a decrease in cell cytotoxicity after the treatment of injured ASCs with that EPC-EXs, 

however only the EPC-EX concentration of 3 x 109 EPC-EX particles/ml significantly 

reduced the cytotoxicity (Fig 20). 

As mentioned previously, EXs are composed of biomolecules such as DNA, RNA, lipid 

proteins, miRNA are short non-coding RNAs. miR-126 is a highly expressed endothelial 

specific miRNA, located on the human chromosome 9. It has been noted that miR-126 has 

proved to therapeutically efficacious in cerebral impairment due to ischemia [64]. miR-126 

is endogenously expressed in EXs. In our study, as we are focussing on EPC-EXs as 

therapeutic agents, we overexpressed the levels of miR-126 in both the cells as well as the 

EXs derived from these cells. The results from this study showed ~30-fold increase in miR-

126 levels in the transfected cells when compared to the controls, while a ~5-fold increase 

was observed in the EPC-EXs derived from the transfected cells to that of the control (Fig 

21). This indicates that the miR-126 is effectively transfected and overexpressed in the 

EPC-EXs which could in turn provide therapeutic efficacy. 

miR-126 regulates several functions mainly being involved in angiogenesis, cell survival 

and maintenance of vascular structure. Hence, it has proven to be beneficial in treating 

various vascular diseases. It plays a vital part in recovery after ischemia-reperfusion injury. 

miR-126 directly targets vascular endothelial growth factor A (VEGF-A), vascular cell 

adhesion molecule 1 (VCAM-1), insulin receptor substrate 1 (IRS-1), sprouty related 
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EVH1 domain containing 1 (SPRED-1) and PI3K (phosphoinositol-2-kinase) regulatory 

subunit p85 beta (PIK3R2). In our study, we determined the effect of miR-126 

overexpressing EPC-EXs on HG + H/R injured astrocytes. The data demonstrated a 

decrease in ASC apoptosis after treatment with miR-126 EPC-EXs at a concentration of 3 

x 109 miR-126 overexpressing EPC-EX particles/ml. However, the decrease due to miR-

126 was not significantly different from the effect of EPC-EXs on injured ASCs (Fig 22A, 

22B). This suggested that miR-126 EPC-EXs also exhibit a protective effect towards HG 

+ H/R injured ASCs. Similarly, miR-126 EPC-EXs, at a concentration of 3 x 109 miR-126 

overexpressing EPC-EX particles/ml, significantly reduced the ROS generation elucidated 

by the bright red DHE-stained cells (Fig 23A) as well as the summarized flow cytometry 

data (Fig 23B). Again, the effect of miR-126 EPC-EXs was significant in comparison to 

the injured group but not to the EPC-EXs group. This data proclaims that the miR-126 

EPC-EXs are responsible for protecting the ASCs against oxidative stress. While, the lipid 

peroxidation and cell cytotoxicity results showed a significant difference in the effect of 

EPC-EXs on HG + H/R injured ASCs, by reduction in the reduced/oxidized ratio (Fig 

23C), lipid peroxidation (Fig 23D) and cell cytotoxicity (Fig 24). However, the interesting 

part was miR-126 EPC-EXs, at a concentration of 3 x 109 miR-126 overexpressing EPC-

EX particles/ml, significantly decreased the lipid peroxidation and cell cytotoxicity in 

comparison to EPC-EXs at the same concentration. This intriguing data suggested that the 

enhanced protective effects of miR-126 EPC-EXs, in comparison to EPC-EXs, may be due 

to the overexpressing miR-126. 

Through the entire study, it was proved that EPC-EXs do project a protective effect on HG 

+ H/R injured ASCs. However, the enhanced effects due to miR-126 EPC-EXs remain 
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unclear as an inhibitor of miR-126 was not employed here in order to determine the 

enhanced effect exerted was solely due to miR-126 or there were other factors responsible 

for the same. This would be an interesting part to investigate ahead in this study, along 

with the determination of the potential targets for miR-126 in the ASCs. 



58 
 

VII. CONCLUSIONS 

Our data for this study demonstrates that the EPC-EXs are efficiently uptaken by the ASCs 

in a time and concentration dependent manner. The major pathways for mechanism of 

EPC-EX uptake in ASCs are macropinocytosis, clathrin-mediated endocytosis and 

caveolin-dependent endocytosis. HG + H/R-induced injury to the ASCs lead to an increase 

in apoptosis, oxidative stress, lipid peroxidation and cell cytotoxicity. However, the 

treatment of EPC-EXs resulted in reduced apoptosis, oxidative stress, lipid peroxidation 

and cytotoxicity thus, suggesting that EPC-EXs protect the ASCs from HG + H/R-induced 

injury. The data also suggested that EPCs transfected with miR-126 mimics release miR-

126 overexpressing EPC-EXs. Treatment of injured ASCs with miR-126 EPC-EXs also 

resulted in reduction of apoptosis, oxidative stress, lipid peroxidation and cytotoxicity 

suggesting the protective effect of miR-126 EPC-EXs on HG + H/R injured ASCs. 
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