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ABSTRACT

KULTINOV, KIRILL. M.S.C.S., Department of Computer Science and Engineering, Wright State
University, 2019. SOFTWARE IMPLEMENTATIONS AND APPLICATIONS OF ELLIPTIC CURVE
CRYPTOGRAPHY.

Elliptic Curve Cryptography (ECC) is a public-key cryptography system. Elliptic Curve

Cryptography (ECC) can achieve the same level of security as the public-key cryptography

system, RSA, with a much smaller key size. It is a promising public key cryptography

system with regard to time efficiency and resource utilization.

This thesis focuses on the software implementations of ECC over finite field GF(p) with

two distinct implementations of the Big Integer classes using character arrays, and bit sets

in C++ programming language. Our implementation works on the ECC curves of the form

y2 = x3 + ax + b (mod p). The point addition operation and the scalar multiplication

are implemented on a real SEC (Standards for Efficient Cryptography) ECC curve over

a prime field with two different implementations. The Elliptic Curve Diffie-Hellman key

exchange, the ElGamal encryption/decryption system, and the Elliptic Curve Digital Sig-

nature Algorithm (ECDSA) on a real SEC ECC curve with two different implementations

of the big integer classes are tested, and validated. The performances of the two different

implementations are compared and analyzed.
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Chapter 1: Introduction

1.1 Motivation

Data security is very crucial for almost any system nowadays [19]. Cryptography is a math-

ematical tool that is used in the software and hardware system to provide security services,

and defend data and information in storage and in transmission against unauthorized access

or tampering, facilitate key exchange between two communication parties. Cryptography

plays an important role in many applications.

In the early days of cryptography, the symmetric key cryptographic systems [7] are

used to encrypt and decrypt messages. Public-key cryptography systems [2], Diffie-Hellman

key exchange system, and RSA, are developed in 1976, 1977 respectively, which are more

secure compared to the symmetric encryption systems, since public-key systems are based

on the number theory, and are asymmetric, involving the use of two separate keys, the

public key, and the private key.

Nowadays, public key cryptography is very crucial because data integrity and confi-

dentially depends on it. Public key cryptography has to provide forward secrecy, which

means that information secure in present must be also secure in the future [14]. RSA is

the most popular public key cryptography algorithm. Its security is based on the difficulty

of factoring large numbers [10]. As computational capabilities of the computers increase,

RSA is not able to provide sufficient forward secrecy without exponentially increasing

key sizes. Because of the computational overhead of RSA systems with large key sizes,
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Elliptic curve cryptography (ECC), a public-key cryptography system based on algebra,

became more and more popular for developing Public-key based cryptography system. El-

liptic Curve Cryptography (ECC) can achieve the same level of security as the public-key

cryptography system, RSA, with a much smaller key size. The key size comparisons to

achieve the same level of security by RSA and ECC are shown in table 1.1. ECC is a

promising public key cryptography system with regard to time efficiency and resource uti-

lization. ECC was developed in 1985 by Neal Koblitz and Victor Miller and has come into

use since 2005 [8]. The logic of ECC is completely different from any other cryptographic

algorithm and depends on the difficulties of solving discrete logarithm problem over point

additions and multiplications on elliptic curves. ECC is growing its popularity and has been

applied in many systems and protocols.

Table 1.1: Comparable key sizes in Terms of Computational Effort for Cryptanalysis.
Symmetric key size in bits RSA key size in bits ECC key size in bits

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

One of the most popular applications of ECC is the key exchange between two com-

munication parties. ECC can be used in a variant of Diffie-Hellman key exchange called

Elliptic Curve Diffie-Hellman. 97% of popular websites have some support of elliptic curve

Diffie-Hellman. More precisely, these websites are using Elliptic Curve Diffie-hellman

Ephemeral Elliptic Curve Digital Signature Algorithm (EDHE ECDSA) for key exchange

while establishing HTTPS connections [8]. ECDSA is widely applied in blockchain tech-

nology [13]. ECC can also be applied in DNSSEC protocol, which is a secured version

of DNS that protects DNS servers from DDoS attacks [8]. It is possible to implement

DNSSEC using RSA as a signature algorithm. However, it makes servers vulnerable to

different possible attacks [8]. Instead, ECDSA (Elliptic Curve Digital Signature Algo-
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rithm) algorithm can be applied on DNS servers to protect them from amplification attacks

without any packet fragmentation and other complications [23].

Mobile devices are a part of every aspect of people’s lives. These devices have net-

working capabilities and attackers can exploit different vulnerabilities. Securing mobile

devices is very important. However, public key cryptography algorithms are too computa-

tionally expensive due to computing capabilities and memory constraints of these devices.

Fortunately, ECC is suitable to be used in two-factor authentication. For example, a light-

weight protocol proposed by a team of researchers uses elliptic curves and is resistant to

many different attacks such as man-in-the-middle attacks and replay attacks [15]. In addi-

tion to that, ECC can also used in one time password (OTP) scheme based on Lamport’s

OTP algorithm and for IoT devices utilizing ECDH [8]. Finally, ECC is used in protecting

smart grids and securing communication channels of autonomous cars [6, 9].

This thesis focuses on the software implementation of ECC over finite field GF(p)

using character arrays, and bit sets in C++ programming language. Our implementation

works on the ECC curves of the form y2 = x3 + ax + b (mod p). The point addition

operation and the scalar multiplication are implemented on a real SEC (Standards for Ef-

ficient Cryptography) ECC curve over a prime field with two different implementations.

The ElGamal encryption/decryption system and Elliptic Curve Digital Signature Algorithm

(ECDSA) on a real SEC ECC curve implemented with two different implementations are

implemented, and validated. The performance of the two different implementations are

compared and analyzed.

1.2 Overview

Chapter 1 illustrates why it is important to implement ECC public-key systems on real

NIST (National Institute of Standard and Technology) ECC curves over a prime field using

character arrays, and bit sets in C++ programming language, and also provides the outline

3



and the organization of the thesis.

Chapter 2 provides background information used in this thesis. It includes basic num-

ber theory concepts, including modular arithmetic and properties of groups, rings, fields.

Finally,The ECC crypto-system is illustrated in details, and point addition, point doubling

operations are introduced.

Chapter 3 describes the detailed implementation of the ECC public-key systems on

real NIST (National Institute of Standard and Technology) ECC curves over a prime field

using two distinct implementations of the Big Integer objects, i.e., character arrays, and bit

sets. We illustrate how each component of ECC system is designed and also introduced the

optimization techniques we used to make our implementations more efficient.

Chapter 4 reports the experimental results of our implementations of ECC in C++ on a

Linux Ubuntu OS. We also compare the timing performances of the basic operations, point

addition, point doubling operations, of our implementations of Big Integer objects used in

the ECC systems with two distinct implementations, the character arrays, and the bit sets.

In addition, we implement and test the Diffie-Hellman key exchange, the ElGamal encryp-

tion/decryption system, and the Elliptic Curve Digital Signature Algorithm (ECDSA) on a

real SEC ECC curve.

Chapter 5 summarizes our thesis work and discusses the future work of this thesis.
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Chapter 2: Background

In this chapter, we will introduce basic concepts used in this master thesis.

2.1 Mathematical Background

Number theory and algebra play a very important role in cryptography [20]. Cryptogra-

phy algorithms are based on number theory concepts that allows making these algorithms

secure against different attacks. Logic of ECC is different from other public key cryptog-

raphy algorithms and can be challenging to understand. In this chapter, we will introduce

basic concepts including modular operations, groups, finite fields, ECC, point addition,

and scalar multiplication on ECC curve, and the applications of ECC, including ElGamal

systems.

2.1.1 Modular Arithmetic

Given any positive integer n, and any nonnegative integer a, dividing a by n will give us

an integer quotient q, and a remainder r that meet the following condition [21]:

a = qn+ r 0 ≤ r < n; q = ba/nc (2.1)

Considering assumptions made above, the remainder of an arithmetic operation, where

a is divided by n, is denoted by amod n and the integer n is called modulus. For any integer
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a, the division algorithm illustrated in equation 2.1 can be written as:

a = ba/nc × n+ (a mod n) (2.2)

Examples of mod operation is shown below:

13 mod 7 = 6 − 13 mod 7 = 1

Congruent Modulo

Properties of congruent modulo are used in cryptography and play an important role. Con-

gruence is denoted by≡ symbol and we say that two integers a and b are congruent modulo

n if the following condition is satisfied [21]:

(a mod n) = (b mod n) (2.3)

From the equation 2.3, we note that if a ≡ 0 (mod n), then n is a divisor of a or

n | a. In addition to that, congruences have the following properties:

1. a ≡ b (mod n) if n | (a− b)

2. a ≡ b (mod n) =⇒ b ≡ a (mod n)

3. a ≡ b (mod n) ∧ b ≡ c (mod n) =⇒ a ≡ c (mod n)

Properties of Modular Arithmetic

Equation 2.1 shows that (mod n) operation maps all integers into a set of values Zn =

{0, 1, ..., n− 1}. Indeed, if we divide a by n, the remainder satisfies the following condition

0 ≤ r < n. It means that we can perform arithmetic operations within the defined set [21],

which are called modular arithmetic and have the following properties:

6



1. [(a mod n) + (b mod n)] mod n = (a+ b) mod n

2. [(a mod n)− (b mod n)] mod n = (a− b) mod n

3. [(a mod n)× (b mod n)] mod n = (a× b) mod n

4. ak ≡ bk (mod n) if k is an integer and k ≥ 0

2.1.2 Multiplicative Inverse

Multiplicative inverse is an important modular operation used in many cryptography algo-

rithms [24]. The existence of a multiplicative inverse is one of the axioms that makes a set

of elements a field.

Suppose a and x are elements of Zp and p is a prime number, then x is a multiplicative

inverse of a, i.e., x = 1/a (mod p) if the following equation is satisfied.

ax (mod p) = 1 (2.4)

The Extended Euclidean Algorithm

The greatest common divisor of a and b is the largest integer that divides both a and b with

a zero remainder. The greatest common divisor of two integers is denoted by gcd(a, b)

[21]. The Euclidean algorithm can be used to compute the greatest common divisor of two

integers. The algorithm states that for any nonnegative integer a and a positive integer b, we

can find the greatest common divisor of these two integers using the following equation:

gcd(a, b) = gcd(b, a mod b) if a > b (2.5)

The Euclidean Algorithm can be used to compute the greatest common divisor of two

integers. However, it is not suitable to dealing with large numbers. In cryptography, the

Extended Euclidean Algorithm is used instead. The algorithm not only computes the gcd

7



of two integers a and b, but also calculates two additional integers x and y that satisfy the

following equation:

ax+ by = gcd(a, b) (2.6)

In the equation above, the integer x is a modular multiplicative inverse of a modulo b

and y is a modular multiplicative inverse of b modulo a.

Cryptography algorithms primarily deal with elements of finite fields GF (p). In this

case, the Extended Euclidean Algorithm can also be used for computing multiplicative

inverses of a and b. If a and b are relatively prime (gcd(a, b) = 1), then b has a multiplicative

inverse modulo a. Also, if gcd(a, b) = 1, we have ax + by = 1 [21]. Now, applying

properties of modular arithmetic, the equation 2.6 becomes:

[(ax mod a) + (by mod a)] mod a = 1 mod a

by mod a = 1

From this, if by mod a = 1, then we have y = b−1 mod a, which is identical to

equation 2.4, where y is the multiplicative inverse of b. Thus, the Extended Euclidean

algorithm can be used to compute multiplicative inverse efficiently.

2.1.3 Group, Ring, Field

Group

A group, denoted by {G, •}, is a set of elements with a binary operator •, in which the

relationship among all elements in the set satisfies the following properties:

1. Closure: If a and b ∈ G, then a • b ∈ G

2. Associative: a • (b • c) = (a • b) • c for all a, b, c ∈ G

8



3. Identity element: There is an element e in G such that a • e = e • a = a for all a ∈ G

4. Inverse element: For every a ∈ G, there is an element a′ ∈ G such that a • a′ =

a′ • a = e

Groups can be finite and infinite. Finite groups have a finite number of elements, while

infinite groups have infinite number of elements. In addition to that, a group is said to be

abelian [21] if the following property exists:

• Commutative: a • b = b • a for all a and b ∈ G

Ring

A ring is a set of elements, denoted by {R,+,×}, with two binary operator + and ×, such

that for all a, b, c ∈ R the following axioms are satisfied:

1. Abelian group: R is an abelian group with respect to addition with the identity ele-

ment denoted by 0 and the inverse of a denoted by −a.

2. Closure under multiplication: if a and b ∈ R, then ab ∈ R

3. Associativity of multiplication: a (bc) = (ab) c for every a, b, c ∈ R

4. Distributive laws: In R, multiplication is distributive with respect to addition as

shown in the following:

• a (b+ c) = ab+ ac for all a, b, c ∈ R

• (a+ b) c = ac+ bc for all a, b, c ∈ R

A ring can also be commutative if the following condition is satisfied:

• Commutativity of multiplication: ac = ca for all a, c ∈ R

9



In order to understand properties of a field, it is necessary to describe an integral

domain. An integral domain is a commutative ring R, under which two addition properties

are satisfied:

1. Multiplicative identity: an element 1 in R exists that satisfies a1 = 1a = a for all

a ∈ R

2. No 0 divisors: if a, b ∈ R ∧ ab = 0 =⇒ a = 0 ∨ b = 0

Field

A field is a set of elements, denoted by {F,+,×}, with two binary operators + and ×, in

which for all a, b, c ∈ F , the following conditions are satisfied:

1. Integral domain: F is an integral domain. More precisely, all axioms for an abelian

group are satisfied and properties of an integral domain are satisfied.

2. Multiplicative inverse: For every a ∈ F , there is an element a−1 such that aa−1 =

(a−1) a = 1

Finite Fields GF (p)

Finite fields of order pn (order is the number of elements in a given field) are called Ga-

lois Fields and denoted by GF (pn). In cryptography, finite fields of the form GF (p) are

preferred due to security measures and their arithmetic properties.

For a given prime p, Galois Field of order p is a set of integers Zp = {0, 1, ..., p− 1}

along with operations modulo p. In addition to properties of a field described earlier,GF (p)

has an additional unique property:

• Multiplicative inverse w−1: for every w ∈ Zp ∧w 6= 0 there is a z ∈ Zp that satisfies

w × z ≡ 1 (mod p)

10



As mentioned in sections 2.1.2, we can use the Extended Euclidean algorithm in order

to calculate w−1 when dealing with large numbers during the implementation process of

ECC.

2.2 ECC Concepts

Elliptic Curve cryptography are based on equations of elliptic curves and computations

over the points that belong to a given curve. In this section, we introduce concepts of ECC

used in cryptography. First, we explain properties and operations of Elliptic curves over

real numbers because important details can be easily shown with the use of geometry. Next,

we describe elliptic curves over GF (p) that are used in ECC.

2.2.1 Main idea of ECC

Imagine a large but finite set E that consists of points on the plane (xi, yi) drawn from the

elliptic curve. We can define a group addition operator, denoted by +, for given two points

P and Q in the set E. The group operator allows us to calculate a third point R ∈ E such

that P +Q = R.

Given a point G ∈ E, we are interested in calculating G + G + G + ... + G using

the group operator. More precisely, having an arbitrary number k /∈ G, we use notation

k×G to represent a repeated addition of point G to itself k times (operator + invoked k−1

times). The idea of ECC is that it is hard to recover k from k×G because an attacker needs

to try all possible combinations of repeated addition: G+G,G+G+G,G+G+G+...+G

[11]. This problem is called discrete logarithm problem and is the base for the security of

ECC algorithm.
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2.2.2 ECC Over Real Numbers

Elliptic curves do not have anything in common with ellipses [11]. Instead, they are

described using cubic equations that are used for calculating the circumference of an ellipse

[21]. Generally, those curves have the form known as Weiestrass equation

y2 + axy + by = x3 + cx2 + dx+ e (2.7)

where parameters a, b, c, d are real numbers. For cryptography purposes, the equation

of the following form is used instead:

y2 = x3 + ax+ b (2.8)

The equation above is for a field of real numbers, where coefficients a and b and the

variables x and y belong to the field of real numbers. Moreover, examples and concepts

provided in this section use fields of characteristic 0. Characteristic of a field is the small-

est number of additions of multiplicative identity element to itself that gives the additive

identity element [3]. Characteristic 0 means that it does not matter how many times we

add the multiplicative identity to itself, we never get the additive identity element.

Figure 2.1 and Figure 2.2 show examples of elliptic curves drawn from equation with

different parameters a and b in equation 2.8:
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Figure 2.1: Examples of Elliptic Curves

Elliptic curves can be singular or non-singular. Figure 2.1 shows an example non-

singular elliptic curve. You can see that the curve is smooth. Non-smooth curves are

singular as shown in Figure 2.2. Smooth curves satisfy the discriminant condition of a

polynomial f(x) = x3 + ax+ b:

4a3 + 27b2 6= 0 (2.9)

The elliptic curve described in equation 2.8 is a cubic polynomial. It means it has

three distinct roots r1, r2, and r3. The discriminant is described by a formula:

D3 =
3∏

i<j

(ri − rj)2 (2.10)

which is equivalent to:

Figure 2.2: Examples of Singular Curves
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D3 = (r1 − r2)2 (r1 − r3)2 (r2 − r3)2 (2.11)

If the discriminant is zero, then two or more roots have coalesced, which makes the

curve non-smooth [11]. Singular curves are not suitable for cryptography purposes because

they are easy to crack. Thus, we are only interested in non-singular curves, which means

curves used in ECC algorithms must have non-zero discriminant.

Group operator for ECC

For an elliptic curve defined in the equation 2.8, we have a set of points that belong to the

curve denoted by a set E (a, b) along with a special distinguished point at infinity, denoted

as O. E (a, b) is abelian group [11, 21] under a special addition operator, denoted by

+. The addition operator does not have anything in common with a traditional addition

operator used in algebra and is described as follows.

Point addition

Suppose we want to add a point P to another point Q, we take the following steps:

1. Draw a straight line joining points P and Q

2. Find the intersection of the joining line and the elliptic curve to get a third point R

3. Reflect the pointR along the x-axis. It gives us a point denoted by−R. The reflection

is possible because the equation 2.8 can be re-written as y =
√
x3 + ax+ b, which

means the curve is symmetrical with respect to the x-axis.

Point addition on a curve over real numbers can be shown geometrically (See Figure

2.3).
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Figure 2.3: Point Addition on Elliptic Curves
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Thus, adding two points gives us P + Q = −R. An exception to this procedure is

when the intersection of the joining line of points P and Q with the elliptic curve does not

exist. In this case, we say it is at the distinguished point at infinity. It is only possible when

the line joining P and Q is parallel to y-axis. Point at infinity allows us to stipulate the

following properties:

• P + O = P . Adding point P to a point at infinity will require us drawing a line

parallel to y-axis. We find another point crossing the curve, which is the mirror

reflection of P with regard to x-axis. Thus, reflecting that other point −P along x-

axis gives us point P . Also, −P is an additive inverse of P under + group operator.

• if P is the mirror reflection of Q with regard to x-axis, then P = −Q and

• O +O = O and O = −O

The point addition procedure described above can be algebraically expressed. Again,

suppose we want to add two arbitrary points P and Q on an elliptic curve E (a, b). This

process results in having three intersections with the curve such that:

P +Q = −R (2.12)

which must satisfy that P +Q+R = O

The straight line passing through points P and Q is described with an equation :

y = αx+ β (2.13)

with the slope:

α =
yQ − yP
xQ − xP

(2.14)
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Since both points P and Q ∈ E (a, b) and the line of the equation 2.13 joins these

points, we can write equation 2.8 as:

(αx+ β)2 = x3 + ax+ b (2.15)

Moreover, if the equation 2.15 has three roots, then there are three intersection points

between the straight line described with equation 2.13 and the elliptic curve described with

equation 2.8. Two of these roots are x-coordinates of points P and Q, denoted as xP and

xQ respectively. The third root xR (x-coordinate of intersection between the line and the

curve) can be found using the property of a monic polynomial. Monic polynomials have

the coefficient of the highest power of x equal to 1 [25]. It means that equation 2.15 is a

monic polynomial, which can also be re-written as:

x3 − α2x2 + (a− 2αβ)x+
(
b− β2

)
= 0 (2.16)

The property of monic polynomials states that the sum of all roots equals to the co-

efficient of the second highest power of x [11]. In other words, the following equation

holds:

xP + xQ + xR = α2 (2.17)

from which we can find the third root xR:

xR = α2 − xP − xQ (2.18)

We know that the third point R must be on the straight line passing through points P

and Q as well. So, we can express y-coordinate of point R as:

yR = αxR + β (2.19)
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Combining equation 2.19 and equation 2.13 of a straight line for points P and R, we

get:

yR = αxR + (yP − αxP ) = α (xR − xP ) + yP

Summarizing the equations derived above, we can calculate coordinates (xR, yR) of

point R using the following two equations:

xR = α2 − xP − xQ

yR = α (xR − xP ) + yP

(2.20)

From the equation 2.12, we know that the result of addition of two points is the

reflection of point R along x-axis. So, the final step of point addition is to write equations

2.20 as:

xP+Q = α2 − xP − xQ

yP+Q = α (xP − xR)− yP
(2.21)

Point doubling

As stated earlier, ECC is based on adding a point to itself k times in order to obtain another

point k×G. Adding point to itself is called point doubling and expressed as P +P = 2P .

Essentially, point doubling is very similar to adding points P and Q. Adding point to itself

means that the other point Q approaches point P until they represent the same point on the

curve. So, we can compute 2P using the following steps:

1. draw a tangent line at P

2. find the intersection of the tangent line with the elliptic curve to obtain point R
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3. reflect the point of intersection along the x-axis

Figure 2.4 shows an example of point doubling. An exception to this is when the

tangent line is parallel to y-axis. In this case, we say P + P = O. This also means that the

additive inverse of such point is the point itself.

Point doubling can also be easily expressed algebraically. Similarly to point addi-

tion, we calculate a slope. However, we obtain the slope of a single point P at (x, y) by

differentiating both sides of equation 2.13:

2y
dy

dx
= 3x2 + a (2.22)

and expressing the slope as :

α =
3x2P + a

2yP
(2.23)

Next, we use equation 2.15 in order to describe three roots of the polynomial. It

is important to notice that two roots of this equation will be identical because point Q

approaches P . So, the equation 2.17 becomes:

xP + xP + xR = α2 (2.24)

from which we can find the x-coordinate of point R:

xR = α2 − 2xP (2.25)

Almost Identical to point addition, we know that the third point R is on the straight

line of the equation 2.19. Using this equations, we can find y-coordinate of the point R:
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Figure 2.4: Point Doubling on Elliptic Curves
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yR = α (xR − xP ) + yP (2.26)

The final step is to reflect the point R with respect to x-axis in order to get the point

2P :

x2P = α2 − 2xP

y2P = α (xP − xR)− yP
(2.27)

2.2.3 ECC Over GF (p)

Elliptic curves over real numbers are not suitable for cryptography. Instead, prime numbers

are preferred due to error-free arithmetic provided by prime fields Zp. ECC over GF (p)

work only with values that are in the set {0, 1, ..., p− 1}. It means that parameters a and

b along with variables x and y are in the set GF (p). Finally, all operations are carried out

modulo p. The elliptic curve described with equation 2.8 becomes:

y2 ≡ x3 + ax+ b (mod p) (2.28)

where the condition 2.9 is also satisfied in the form:

(
4a3 + 27b2

)
6= 0 (mod p) (2.29)

A set of points (x, y) on the elliptic curve over GF (p) are denoted by Ep (a, b) along

with a distinguished point at infinity O. These points no longer constitute a curve but a set

of discrete points on the plane [11], which means it is impossible to show point addition and

point doubling geometrically. However, all algebraic expressions and properties hold under

21



modulo p operation. The major distinction is how slopes are calculated for point addition

and doubling. As for point addition, we can find the slope of a line passing through points

P and Q by modifying equations 2.14:

α = (yQ − yP ) (xQ − xP )−1 (mod p) (2.30)

where (xQ − xP )−1 is a multiplicative inverse (mod p). Similarly, the slope of a

tangent line for point doubling shown in the equations 2.23 becomes:

α =
(
3x2P + a

)
(2yP )

−1 (mod p) (2.31)

Finally, the set Ep (a, b) is a group with an addition + group operator. The prime

number p represent the characteristic of the field Zp. Prime finite fields with p ≤ 3 are not

safe for cryptography purposes [11].

2.3 Point Encoding

In most cryptographic systems, we need to map a plaintext into a value that can be used

by a given cryptography algorithm [22]. ECC is not an exception to this procedure. More

precisely, for ECC, we need to convert a message into a point on the elliptic curve. Then

we perform point operations described earlier in order to obtain a ciphertext.

The process of converting a message to a point on the elliptic curve has one major

problem. There is no deterministic algorithm for writing down points on a curve over

GF (p) [22]. However, we can use the Koblitz algorithm [16], which allows us to find an

appropriate point on the elliptic curve with a very small probability of an error. Suppose,

we are using elliptic curve described in equation 2.28. The plaintext m, represented as a

number, will be embedded into the x-coordinate of a point with some additional bits at the

end. We cannot use the message m as the x-coordinate because it gives us only 50% of
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probability that a square modulo p is equal to m2 + am+ b.

Instead, we pick an integer K, which describes a failure rate 1/2K . The plaintext

message will satisfy the following condition:

(m+ 1)K < p (2.32)

This restricts the message to be in the following range of values:

0 ≤ m ≤ p−K
K

(2.33)

The x-coordinate of a point, which contains the encoded plaintext, is described using

the following equation:

x = mK + j (2.34)

where j is in the range 0 ≤ j < K. Then, we iterate through all possible values of

j and compute x3 + ax + b until we find a square root of x3 + ax + b (mod p). This

will represent the y-coordinate of the point. If we are not able to find a square root for

all possible values of j, then the given message cannot be mapped to a point on a given

elliptic curve. Values derived from equation 2.34 and the square root y give us a point

Pm = (x, y), which can be used in encryption. In order to get the plaintext m from the

point, we use the following equation:

m = [x/K] (2.35)

Suppose, we have a message m = 9 and an elliptic curve over GF (p) represented by

y2 ≡ x3 + 2x+ 7 (mod p). If a failure rate of 1/215 is sufficient for us, then value of K is

equal to 15. Using equation 2.33, we find that the size is restricted to 0 ≤ m ≤ 10. From

equation 2.34, the x-coordinate will be represented as x = 9 ∗ 15+ j = 135+ j. Now, we
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iterate through all possible values of x = {135, 136, ..., 149} until we find a square root of

x3 + ax+ b (mod p). For x = 139, we get x3 + ax+ b ≡ 9 (mod p) or 9 ≡ 32 (mod p).

So, we represent the message as point on a curve Pm = (139, 3). The point can be decoded

by using equation 2.35, which results in m = [139/15] = 9.

2.4 Cryptographic Schemes

Repeated additions are not used directly for encryption described by m×G [11]. Instead,

the concept of point multiplication is applied in many different cryptographic schemes and

algorithms. In this section, we introduce the Elliptic Curve Diffie-Hellman key exchange

scheme, the ElGamal cryptosystem, and the ECDSA.

2.4.1 Elliptic Curve Diffie-Hellman

Elliptic Curve Diffie-Hellman (ECDH) secret key exchange scheme can be used for estab-

lishing a shared secret key between two parties. Suppose, Alice and Bob want to create a

secure communication channel. Assume, they choose ECC parameters p, a, and b for an

elliptic curve of equation 2.28 and a base point B ∈ Ep (a, b).

Alice selects an integer XA as her private key. She also calculates a point YA = XA×

G, which will be her public key. At the same time, Bob selects a private key represented

as an integer XB and calculates a point on the curve YB = XB × G. Public keys YA and

YB are shared between the two participants. Now, Alice and Bob can calculate the shared

secret key. Alice uses the following equation to obtain the secret key:

K = XA × YB (2.36)

while Bob obtains the secret key by:
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K = XB × YA (2.37)

where K is a point on the elliptic curve in Ep (a, b). Equations 2.36 and 2.37 result in

the same value of K, i.e., K = XA ×XB ×G, since YB = XB ×G , YA = XA ×G, and

the elliptic curve group Ep (a, b) has the associativity property.

2.4.2 ElGamal cryptosystem

ElGamal cryptosystem is an asymmetric key encryption algorithm based on Diffie-Hellman

key exchange. The ElGamal system based on RSA is widely used [22]. It can also be im-

plemented over ECC. The elliptic curve version of ElGamal operates on the points of a

given curve over GF (p) and involves repeated point addition operations rather than expo-

nentiations used in RSA [17].

Alex and Bob agree on an elliptic curve and a base point B ∈ Ep (a, b). Alice selects

a random large integer a = {1, 2, ..., p − 1} as her private key. Bob also selects a random

large integer b = {1, 2, ..., p − 1} as his private key. Next, the public key (p,B,G) is

calculated, where GA = a× B for Alice and GB = b× B for Bob. Suppose, Alice wants

to send a message m to Bob. The message is first encoded into a point Pm. Then, Alice

represents the ciphertext Pc as a pair of points on the curve:

Pc = [(a×B) , (Pm + a×GB)] (2.38)

and sends it to Bob, where B and GB are obtained from Bob’s public key (p,B,GB).

Bob can decrypt the message by computing the product of the first point from Pc and

his private key b× (a×B). Then, Bob subtracts this product from the second point of Pc:
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(Pm + a×GB)− [b× (a×B) ] = Pm + a (b×B)− b (a×B) = Pm (2.39)

Finally, Bob can decode the original message from the point Pm using equation 2.35.

2.4.3 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm is a variant of the Digital Signature Algo-

rithm (DSA) that uses elliptic curves. The ECDSA algorithm is implemented in DNSSEC

protocol and blockchain technology to provide sufficient level of security in terms of au-

thenticity. Similar to the ECDH and the Elgamal cryptosystem, both parties have to agree

on an elliptic curve equation, a base point B, and a prime integer n, which is the order of

B, such that n×B = O.

Suppose, Alice wants to send a message along with the digital signature to Bob. Al-

ice’s private key is an integer a that is in range {1, 2, ..., p−1}. The public keyGA = a×B

is obtained using scalar multiplication, where B is the base point of the selected curve. Al-

ice needs to perform a series of steps to generate a signature of a message m as follows:

1. Calculate e = HASH (m) using hashing algorithm

2. Obtain value z by extracting Ln leftmost bits of e, where Ln is the bit length of the

group order n

3. Select a cryptographically secure random integer k that is in the range {1, 2, ..., n−1}

4. Calculate a point (x1, y1) = k ×B using point multiplication operation

5. Calculate r = x1 mod n. If r = 0, go back to step 3

6. Calculate s = k−1 (z + ra) mod n. If s = 0, then go back to step 3
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The generated signature is the pair of values r and s denoted by (r, s). Alice sends

it together with the message m to Bob. Bob can verify the received signature using the

following steps:

1. Check that both values r and s are in the range {1, 2, ..., n−1}. If at least one number

does not satisfy this condition, then the signature is invalid

2. Calculate e = HASH (m) using hashing algorithm identical to the one used by

Alice during signature generation process

3. Identical to the signature generation process, obtain value z by extracting Ln leftmost

bits of e, where Ln is the bit length of the group order n

4. Calculate the multiplicative inverse of s

5. Obtain values u1 = zs−1 mod n and u2 = rs−1 mod n

6. Calculate a point (x1, y1) = u1 × B + u2 × GA. If (x1, y1) = O, then the signature

is invalid

7. If r ≡ x1 (mod p), then the signature is valid. Otherwise, the signature is invalid

2.5 Jacobian Projective Coordinates

As illustrated in the previous sections, when points are represented in affine coordinates,

the point operations on the elliptic curve use arithmetic additions, subtractions, multiplica-

tions, squaring, and also compute the modulo multiplicative inverse, since point addition

and doubling operations require the calculation the value of the slope. Since, we work

on elliptic curves over GF (p), a multiplicative inverse must be calculated as shown in

equations 2.30 and 2.31. Calculating multiplicative inverse is computationally expensive,

compared to other arithmetic operations. Multiplicative inverse must be calculated multiple
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times because point multiplication involves multiple point addition and multiplication op-

erations. Since computing the modulo multiplicative inverse is computationally expensive,

it is practical to represent the elliptic curve points in projective coordinates. One of the ef-

ficient coordinates for the elliptic curves over GF (p), is the Jacobian projective coordinate

system.

Jacobian coordinates could be used to improve the performance of ECC algorithms

because it allows us to reduce the number of multiplicative inverse calculations on big

integers [18].

A given point in Affine coordinates (x, y) has a representation in Jacobian coordinates

of the following form (X, Y, Z). For example, a point P with Affine coordinates (xP , yP )

can be represented in Jacobian coordinates (xP , yP , 1). Oppositely, a point represented in

Jacobian coordinates (X, Y, Z) can be converted back to Affine coordinates using equa-

tions:

• x = X
Z2

• y = Y
Z3

The point at infinity corresponds to (1, 1, 0), while the negative of (X, Y, Z) is

(X,−Y, Z).

Suppose we want to add a point P with coordinates (XP , YP , ZP ) and another dis-

tinct point Q with coordinates (XQ, YQ, ZQ). First, we define variables A, B, C, and D

described by equations:

• A = XP ∗ Z2
Q

• B = YP ∗ Z3
Q

• C = XQ ∗ Z2
P − A

• D = YQ + Z3
P −B

28



Now, the coordinates (XR, YR, ZR) representing the result of point addition R = P +

Q can be obtained by:

• XR = −C3 − 2A ∗ C2 +D2

• YR = −B ∗ C3 +D(A ∗ C2 − xR)

• ZR = ZP ∗ ZQ ∗ C

If we want to perform point doubling operation on a point represented in Jacobian

coordinates, where P + P = 2P = R, we need to calculate three variables A, B, and C

using the following equations:

• A = 4XP ∗ Y 2
P

• B = 3X2
P + a ∗ Z4

P

• C = −2A+B2

then coordinates of the point R are obtained using the following equations:

• XR = C

• YR = −8Y 4
P +B(A− C)

• ZR = 2YP ∗ ZP
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Chapter 3: ECC Implementation

Implementations of the ECC require an understanding of the main components of the ECC

from the software engineering prospective. We identify 4 main components of any se-

curity system implemented using ECC. We present the hierarchy of these components in

a pyramid-like view in order to underline the dependence of all layers from each other.

Figure 3.1 shows these components.

Figure 3.1: ECC Components Pyramid

Encryption algorithms that utilize properties of ECC are based on scalar multiplica-

tion. Scalar multiplication is a combination of point addition and point doubling tech-

niques, which requires a way to handle big integers because standard primitive data types

are not able to handle values larger than 64 bits. Moreover, big integer arithmetic is needed

for representing a plain text message as a point on an elliptic curve. Thus, big integers are
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the base for every arithmetic operation and point operation of ECC.

In this chapter, we first introduce algorithms and data structures used in our customed

Big Integer class. Then, we illustrate the implementations of elliptic curve point addition,

doubling, and multiplication with two distinct implementations of the Big Integer objects

using character arrays, and bit sets. Next, we illustrate the working mechanism of the

ECDH (Elliptic Curve Key Exchange), the ElGamal encryption /decryption algorithms,

the ECDSA and their implementations. We also justify our design choices and consider-

ations during the implementations of ECC. We demonstrate our implementations using a

real real SEC (Standards for Efficient Cryptography) ECC curve over a prime field, i.e., the

secp192r1 curve whose parameters are presented in table 3.1 [1]. However, our implemen-

tation works on any valid elliptic curve over GF (p).

Table 3.1:
Parameter Value
prime number p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF
a FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFC
b 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1
base point G 04 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD

82FF1012 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1
1E794811

3.1 Big Integer Class Implementation

The computations over Big integers are the basis for all arithmetic operations in public

cryptography. We design our own Big Integer class for exploration and potential perfor-

mance improvement purposes. Also, we achieve flexibility with the implementations of

Big Integer classes for the elliptic curves, which can be supplied by a user. In our master

thesis research, the Big Integer class are implemented using character arrays, and bit sets.

The first Big Integer class uses array of characters to represent each digit of a large number.
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The second Big Integer class stores binary representation of integers in an array of Boolean

values, i.e., bit sets.

The main question to be answered before implementing the big integer class is what is

the best suitable data structure for representing a big integer of any size. We could consider

linked list as an option. However, accessing elements in a linked list has O(n) complexity.

In addition to this, linked lists introduce performance overhead because each node needs

to store the pointer to the next node. Vectors provided in the standard C++ library are built

using dynamic arrays [4]. This data structure is easy to use and provides rich functionality.

However, we do not know how the size of the dynamic array will be changed internally

during run time. We want to have control over the memory usage in our implementations.

Arrays seem to be the best option for our implementation because working with primitive

data types is faster in terms of performance.

The second question we want to answer is what is the most suitable data type for the

array to hold. We represent each digit of a big integer as a number in the range 0-9, where

each digit is stored in a separate index of an array. Using integer data type is not efficient

in terms of memory consumption because each int value takes 32 bits. The best option for

us is to choose char data type to represent each digit of big integers [5]. Ideally, we can

represent big integers as an array of long values instead of character arrays. For example,

it is possible to represent 320 bits integer as an array of long values with size 5.

In addition, we need to consider the order in which the digits are stored in an array.

Naturally, the arithmetic operations always require accessing least significant bit (LSB)

first [5]. That is why, we store the digits in LSB format. In this case, only printing of

these values will require starting from the last index on the array. However, this approach

eliminates the flexibility of our solution. Our implementation allows the usage of any

elliptic curves by simply modifying parameters of an elliptic curve equation 2.28 only.

Character array is a suitable choice for our goals because it gives flexibility to work

with the ECC parameters of any size and is considered to be relatively efficient. The sec-

32



ond implementation of the Big Integer class using bit sets is explored because arithmetic

operations such as addition and multiplication can be implemented without any data de-

pendencies. Moreover, division and exponentiation can be implemented using algorithms

that require less data manipulations. Each bit of an integer is stored as a Boolean value in

a separate index of the array. Since each bool value takes 8 bits of memory, we attempt to

make a trade-off between speed and memory in the favor of speed using arrays of Boolean

values. Identically to the character array version, we store numbers in LSB format.

Both implementations of Big Integer class support all arithmetic operations. In this

section, we describe the detailed implementation and illustrate how the mathematical op-

erations (addition, subtraction, multiplication, division, modulus, and modulo exponenti-

ation) work with pseudocode algorithms. In addition to this, we implement comparisons

and shift operators for each version of the Big Integer class. Thus, these big integer classes

can be used in other application areas other than cryptography.

3.1.1 Big Integer Addition

Addition operation on big integers is one of the most important and basic operations needed

in public cryptography. We overload + addition operator in order to add two big integers.

The operator takes two Big Integer objects, performs addition and returns result of the

addition as a Big Integer object.

There are several cases to be considered when performing the addition operation.

More precisely, we need to consider sizes and signs of operands. Overloaded addition

function performs a check based on several conditions. First, we check if two numbers

have identical sign. When signs are identical, we can directly perform addition operation

on either negative or positive numbers. We use wrapper function add() in order to provide a

logical separation between the addition operator and possible cases as illustrated above. If

both numbers have identical signs, we compare lengths of these numbers and make a func-

tion call to add() function placing the longer number as the first parameter and a shorter
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number as a second parameter.

Algorithm 1: The pseudocode of add() function using char array.
Input: num1, num2
Output: result

1 carry = 0;
2 tempSum = 0;
3 i = 0;
4 while i < num1.size do
5 if i < num2.size then
6 tempSum = num1[i] + num2[i] + carry;
7 tempSum += carry;
8 carry = 0;
9 if tempSum > 9 then

10 result[i] = tempSum - 10;
11 update carry;
12 else

result[i] = tempSum;
end

13 else
14 tempSum = num1[i];
15 tempSum += carry;
16 carry = 0;
17 if tempSum > 9 then
18 result[i] = tempSum - 10;
19 update carry;
20 else

result[i] = tempSum;
end

end
21 i++ ;

end
22 return result;

Algorithm 1 shows the pseudocode algorithm for adding two big integers represented

as a character array. The algorithm is linear and requires iterating through all elements

of the arrays. The inputs are two character arrays stored in variables num1 and num2

respectively. We use a loop to iterate through each digit of the first number. Since, the

second number can be shorter than the first one, we check boundaries of the second number.
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If a value of the counter i is within the length of the array, we add two digits and the carry

in value together and store it in a variable that holds this sum. Next, we check if the the

temporary sum is greater then 9. If this condition is true, then we need to subtract the value

of the base, which is 10, and update the carry value for the next digit in the array, because

each digit can only be in the range {0...9}. Otherwise, we just place the value of the sum

into the result array at the current index i. If we run out of digits in the second operand

num2, we need to fill out the rest of the array stored in num1 variable.

As for binary version, we follow the same logic. We override the + operator and use

wrapper add() function if both operands have the same sign. However, the advantage of

working with binary number is that we can eliminate using if − else statements. There

should be a performance advantage because if−else statements slow down loops, depend-

ing on the compiler. We achieve that by using full adder algorithm for adding two numbers.

Algorithm 2: The pseudocode of add() function using bool array.
Input: num1, num2
Output: result

1 carry = 0;
2 tempSum = 0;
3 i = 0;
4 while i < sumSize do
5 result[i] = (num1[i] XOR num2[i]) XOR carry;
6 carry = ((first[i] & second[i]) OR (first[i] & carry)) OR (second[i] & carry);
7 i++ ;

end
8 if carry > 0 then

result[sumSize - 4] = 1;
end

9 return result;

Algorithm 2 describes the logic for adding two binary numbers represented as arrays

that hold Boolean values. Inputs to the function are two arrays num1 and num2 of the

same size. We use a loop to iterate through all elements of arrays. Inside the loop, we use
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a full adder algorithm, which utilizes bitwise operators. Suppose we want to add numbers

A and B. Full adder algorithm consists of two operations. First operation calculates the

sum sum = A ∧B ∧ Cin, where Cin is the carry in. Second operation calculates carry out

value Cout = (A & B) | (A & Cin) | (B & Cin). Thus, for each bit of the number we

are able to compute output of a particular bit and update the carry. Finally, after the loop is

finished we check if there is a carry value that must be placed in front of the result.

3.1.2 Big Integer Subtraction

Our implementations of Big Integer class support subtraction operation. We overload sub-

traction operator −. However, it was mentioned above that addition may involve numbers

that have different signs. That is why, we can convert subtraction to addition. More pre-

cisely, operation A − B is converted to A + (−B). That results in calling overloaded +

operator. Internally, if−else conditions are used to call either add() or subtract() wrapper

function inside the addition operator function.

Algorithm 3: The pseudocode of subtract() function.
Input: num1, num2
Output: result

1 carry = 0;
2 tempSum = 0;
3 i = 0;
4 while i < sumSize do
5 tempSum[i] = num1[i] - num2[i] - carry;
6 carry = 0;
7 if tempSum < 0 then
8 tempSum += (base);
9 carry = 1;

end
10 result[i] = tempSum;
11 i++ ;

end
12 return result;
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Algorithm 3 subtracts a big integer num2 from another big integer num1. Since

overloaded + operator passes a greater operand as a first parameter to subtract() function,

we iterate through every element of an array and calculate the difference between elements

of num1 and num2 at index i and subtracting the carry. Next we check if the result of the

subtraction is a negative number. If condition on line 7 is evaluated to true, we subtract

a value of the base we are working with (2 if working with binary number and 10 in the

implementation that uses the decimal numbers). Finally, we set the carry out value to 1

in order to indicate that a number was borrowed from the next digit in the array. The last

step is to put the calculated value of temporary sum to the result at the specified index.

This algorithm is applicable to both versions of our Big Integer classes because the only

difference is the value of the base we work with. The returned result is normalized inside

the overloaded + operator function.

3.1.3 Big Integer Multiplication

Multiplication operation on two big integers is performed using overloaded ∗ operator.

Multiplication is relatively straight forward compared to previously presented arithmetic

operations. We do not need to use conditional statements to cover all possible cases regard-

ing sizes and signs of the operators. However multiplication operation is the heaviest on

memory consumption because we need to construct an array of size m × n where m and

n are sizes of the first and second big integers respectively. Also, there are two extreme

cases to be considered. The first case is when one of the operands is equal to 0. In this

case, the result will be 0. Another case is when one of the operands is one, then the result

will be equal to another operand. All remaining cases will require the implementation of

the multiplication logic similar to when multiplication is performed manually.

Algorithm 4 shows the pseudocode for multiplying two Big Integer objects. Inputs to

the function are two numbers represented as arrays of characters. The output of the function
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Algorithm 4: The pseudocode of multiply() function using char array.
Input: num1, num2
Output: result

1 carry = 0;
2 tempSum = 0;
3 n1 = num1.size;
4 n2 = num2.size;
5 i = 0;
6 result = new char[num1.size + num2.size];
7 while i <= n1− 1 do
8 carry = 0;
9 digit1 = num1[i];

10 j = 0;
11 while j <= n2− 1 do
12 digit2 = num2[j];
13 sum = digit1*digit2 + result[i + j] + carry;
14 carry = sum / 10;
15 result[i + j] = sum % 10;
16 j++;

end
17 if carry > 0 then
18 result[i + j] += carry;

end
19 i++ ;

end
20 normalize result ;
21 return result;

is the multiplication result. Before the multiplication process, we initialize an array called

result, whose size is the sum of the size of the two operands. At most we can have an

array of length 2n, where n is the length of two input arrays of same size. Multiplication

process is essentially multiplying each digit of the first number by the entire number and

accumulating the result of multiplication in the result. More precisely, we take one digit at

a time using the outer for loop created on line 7. The inner for loop is used to multiply this

digit by every digit of the second number. The intermediate multiplication result of two

digits is stored in a variable called sum and added together with the carry value. On lines

14 and 15, we calculate a carry out value by dividing the sum by 10 because we work with
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base 10 numbers and place the result modulo 10 at index i + j. Index j is used to keep

track of the proper index of the result. Finally, when we finish multiplying a number by a

digit, we check if there is a carry out value and place it at the corresponding index position.

After multiplication is finished, the result is normalized by removing leading zeros in front

of the MSB of the number.

Algorithm 5 presents the pseudocode for multiplication operation on arrays of Boolean

values, which is slightly different. Two Inputs have the same size. However, We initialize

the intermediate multiplication result matrix represented as 2D array first.

Algorithm 5: The pseudocode of multiply() function using bool array.
Input: num1, num2
Output: result

1 carry = 0;
2 tempSum = 0;
3 i = 0;
4 matrix = new bool[size][size*2];
5 while i < rows do
6 if num2[i] == 1 then
7 copy elements of the first array to the matrix at row of index i with a shift of i

bits;
end

8 i++;
end

9 i = 1;
10 result = bool[size*2 + 4];
11 while i < rows do
12 add row at index i to the result;

end
13 normalize result;
14 return result;

Algorithm 5 shows a declaration of a multiplication matrix on line 4. The size of

the matrix is m × 2m size since both arrays are normalized and size of the result cannot

exceed 2m. Number m represents number of rows in the matrix, while 2m is the number

of columns. First, we fill out the matrix multiplying each digit of the second number by

the first number. Multiplication on binary numbers has an advantage because we can have
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only two possible cases:

1. A× 1 = A

2. A× 0 = 0

It means that if we multiply a number A by 1, then the result is one and 0 otherwise.

In our case, line 6 checks if the bit of the second number at index i is one. If it true, then

we copy contents of the first array into the row at index i with a shift of i bits. If the bit

of the second number at index i is 0, then we do not do anything because the result of

multiplication is zero and all values inside arrays in C++ are initialized to 0 by default. We

cannot add multiple binaries number simultaneously. Thus, we need to add two numbers

at a time and update the value of the result. This procedure is handled using the while loop

at lines 11 and 12.

3.1.4 Big Integer Division and Modulo Operations

Division and modulo operations are closely related to each other. Just as any other mathe-

matical operation of our Big Integer class, operators / and % are overloaded. Suppose we

want to divide number A by another number B. We need to consider the extreme cases:

1. If B is zero, then division operator returns an error.

2. If A is zero, then the result is 0.

3. If A < B, the result of division is equal to A.

In all other cases we need to perform division operation by manipulating digits of both

numbers. We could use repeated subtraction but this would be very inefficient. Instead, we

implement long division algorithm inside a divide() wrapper function that is called inside

the overloaded / operator.
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Algorithm 6: The pseudocode of divide() function using char array.
Input: dividend, divisor, type
Output: quotient ‖ remainder

1 reminder = 0;
2 quotient = 0;
3 i = dividend.size-1;
4 compute look up table;
5 while i >= 0 do
6 remainder[0] = dividend[i];
7 quotient << 1;
8 if remainder >= divisor then
9 quotient[0] = get temp quotient from look up table;

10 remainder = remainder - (temp quotient*divisor);
end

11 remainder << 1;
12 i=i-1;

end
13 if if type = 1 then
14 return remainder;

end
15 else
16 return quotient;

end

Algorithm 6 describes the logic of long division of two big integers using character

arrays. In every case, the dividend is greater than the divisor. An advantage of this al-

gorithm is that it calculates a quotient and a remainder simultaneously. That is why, the

algorithm can be utilized in modulo operation. Initially, both quotient and remainder are

initialized to 0 and the arrays, which represent the quotient and the remainder have the

same size as the dividend. In each round of the while loop, we push digits of the quotient

to the remainder one by one starting at MSD and shifting digits of the quotient to the left.

It is done until the statement on line 8 is evaluated to true. which means that the tempo-

rary value of the remainder is greater than the divisor. Now we need to figure out what

number should be added to the quotient by using precomputed table that contains values in

{0×divisor, 1×divisor, ..., 9×divisor} range. Next, we update the value of the remain-

der by subtracting the result of multiplication shown on line 10. Essentially, this algorithm
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is identical to long division algorithm performed manually. Finally, during each iteration

of the loop we shift digits of the remainder to the left in order to place the next digit of the

quotient in the remainder. The function returns either the quotient or the remainder, based

on the type variable. In case of division, the type is 0 and the quotient is returned.

Long division technique for binary numbers is shown in algorithm 7, which is almost

identical to algorithm 6. However, we do not need to precompute the lookup table and use

it to find a right digit for the quotient because we have only two possible values 0 and 1;

So, we directly subtract divisor from the remainder on line 8 and put 1 in the quotient array

at index i.

Algorithm 7: The pseudocode of divide() function using bool array.
Input: dividend, divisor, type
Output: quotient ‖ remainder

1 reminder = 0;
2 quotient = 0;
3 i = dividend.size-1;
4 while i >= 0 do
5 remainder << 1;
6 remainder[0] = dividend[i];
7 if remainder > divisor then
8 remainder = remainder - divisor;
9 quotient[i] = 1;

end
end

10 if if type = 1 then
11 return remainder;

end
12 else
13 return quotient;

end

Modulo operation is based on division operation, which is implemented inside the

overloaded % operator and uses wrapper member functions presented earlier in this chapter.

Thus, it is suitable for both versions of big integer classes. However, if numbers A and B

are equal to each other, then the result will be zero. The modulo operation does not cover
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the case when the second operand is negative since modulo operations using a negative

divisor are not used in public key cryptography systems. All other cases are covered in

algorithm 8.

Algorithm 8: The pseudocode of modulo operation.
Input: num1, num2
Output: result

1 if num1 < num2 then
2 if same signs then
3 return num1;

end
4 else

return num2 - num1;
end

end
5 else
6 if same signs then
7 result = num1.divide(num2, true);

end
else

8 result = num1 / num2;
9 result = num1 - result * num2;

end
end

10 return result;

Suppose we want to perform A%B operation. Absolute values of these numbers are

the inputs to the modulo function shown in algorithm 8 and represented as num1 and

num2 respectively. We first check if the first number is less than the second number. If

these numbers have identical signs, then the result will be num1, for example 5 mod 8 = 5.

Otherwise, we subtract num1 from num2, for example −5 mod 8 = 3.

All the other possible cases are when the absolute value of the first number is greater

than the second. We also check if numbers A and B have same signs. If they do, then we

use divide() function to get the remainder of the division operation. Otherwise, we get the

quotient, multiply it by num2, and subtract this value from num1.
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3.1.5 Big Integer Modulo Exponentiation

Exponentiation operation is used in many algorithms in ECC. Simply thinking, exponenti-

ation is a process of repeated multiplication of a number by itself. However, this approach

will overwhelm system resources when we work with large numbers. Instead, we apply

repeated squaring algorithm that results in n multiplications at most, where n is the length

of the exponent in bits.

Algorithm 9: The pseudocode of pow() function using char array.
Input: num1, num2, p
Output: result

1 result = 1;
2 i = 0;
3 num2Binary = DecimalToBinary(num2);
4 if num2=0 then
5 return 1;

end
6 else
7 while i >= num2.size do
8 if num2Binary[i]=1 then
9 result = result * num1;

10 result = result % p;
end

11 num1 = num1 * num1;
12 num1 = num1 % p;
13 i++;

end
end

14 return result;

Algorithm 9 describes the squaring algorithm used for calculating AB mod p. The

inputs to the function are num1 representing A, num2 representing B, and p representing

a prime number, which is the order of a group we work with during ECC implementations.

The function covers an extreme case when num2 = 0 on lines 4 and 5. Since, we cannot

access bits of num2 directly, we do a conversion from base 10 to base 2 of the exponent.

Next, we iterate through each bit of the binary number. Every iteration requires multiplying
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number by itself and performing modulo operation because we want the result to be in the

range {0...p − 1}. If a bit at index i is 1, then we multiply result by num1 and round the

value using modulo operation.

Implementations of Big Integers using array of Boolean values does not need the

conversion from base 10 to base 2 since all numbers are in the binary format already. In

general, we also overload ∧ operator that uses the same technique but without lines 10 and

12 because modulo operation is not needed in these cases.

3.2 ECC Point Operations

Arithmetic operations on points of elliptic curves are essential for any applications of ECC.

Scalar multiplication (Multiplying a scalar with a point), also known as repeated point

addition, is the key element that provides forward secrecy. Scalar multiplication consists of

point addition and point doubling. For the purposes of point operations on elliptic curves,

we implement a Point class that has two private members, which represent the x and y

coordinates of a point represented as Big Integer objects. We implement basic setters and

getters to access those coordinates. Most importantly, we implement add(), double(), and

multiply() public member functions. In this section, we describe algorithms of ECC point

operations along with any additional algorithms required to support these operations.

3.2.1 Point Addition

Algebraic expressions for point addition on elliptic curves are presented in equation 2.21.

These equations can easily be coded in C++ since we have Big Integer classes that support

all arithmetic operations.

Algorithm 10 describes the procedure of adding point p1 to a point p2 on an ellip-

tic curve. Equation 2.21 requires the value of the slope to be calculated. Lines 3 and 4
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Algorithm 10: The pseudocode of adding two points on a curve
Input: p1, p2
Output: result

1 if p1 = p2 then
2 return double p1;

end
3 dY = p2.y - p1.y;
4 dX = p2.x -p1.x;
5 if dX is negative then
6 flip signs of dX and xY;

end
7 dX = gcdExtended(dX, p);
8 slope = dY*dX%p;
9 result.x = (slope.pow(2, p) - p1.x - p2.x) % p;

10 result.y = slope * (p1.x - result.x) - p1.y;
11 return result;

show how to compute dY and dX that represent the differences of y and x coordinates

respectively. Next, we check if the difference of x coordinate is negative. If it is the case,

then we move the negative sign from denominator to numerator by flipping signs of dX

and dY . Since all operations on elliptic curves over GF (p) are carried out with modulo p

operations, we need to calculate the multiplicative inverse of dX using the Extended Eu-

clidean Algorithm described below. The equation for the slope 2.14 uses the division of

dY and dX , since we are dealing with GF (p), we convert the division to multiplication

using multiplicative inverse. Finally, we code equations 2.21 directly in order to obtain the

coordinates of the result point.

Algorithm 11 describes the pseudocode implementation of the Extended Euclidean

Algorithm in C++. Recall from chapter 2, the algorithm calculates values x and y in the

equation 2.6. The algorithm iterates until the value of the second number b is equal to 0. We

declare helper variables x, lastx, temp, and tempa for keeping track of previous values of

the variables. Inside the while loop, we calculate quotient and remainder values by using

division and modulo operations, then replacing values of x and lastx while performing

calculations with the new values of x. The same is true for values of y and lasty. This is
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Algorithm 11: The pseudocode of the Extended Euclidean Algorithm
Input: a, b
Output: multiplicative inverse of a

1 x = 0 y=1 lastx = 1 lasty = 0;
2 temp = 0 temp2 = a temp1 = b;
3 while b != 0 do
4 q = a/b;
5 r = a%b;
6 a = b;
7 b = r;
8 temp = x;
9 x = lastx - q * x;

10 lastx = temp;
11 temp = y;
12 y = lasty - q*y;
13 lasty = temp;

end
return lastx;

similar to finding GCD but working backwards. Properties of the relatively prime numbers

make these replacements to put the value of the multiplicative inverse of a in lastx variable

and the value of multiplicative inverse of b in lasty variable. In algorithm 10, we pass

values dX and p to the Extended Euclidean Algorithm. Thus, the algorithm returns the

lastx variable because we are interested in the multiplicative inverse of dX .

3.2.2 Point Doubling

Point doubling is another important point operation required for the implementations of

ECC. Algebraic expression for point doubling is shown in equation 2.23. We implement

the algorithm as a public member function of the Point class.

Algorithm 12 describes the implementation logic for point doubling. The input of

this member function is a point p1, the output is the result 2 × p1. First of all, we need

to calculate the slope using equation 2.23. The calculation of the numerator is shown

on line 1. Next, we calculate the denominator using the statement on line 2. Next, we
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Algorithm 12: The pseudocode of point doubling
Input: p1
Output: result

1 numerator = 3*p1.x.pow(2,p) + a;
2 denominator = 2*p1.y;
3 denominator = gcdExtended(denominator, p);
4 slope = numerator*denominator%p;
5 result.x = slope.pow(2,p) - 2*x% p;
6 result.y = slope * (p1.x - result.x) - p1.y;
7 return result;

find its multiplicative inverse using algorithm 11 because division in algebraic expressions

for point operations in GF (p) is replaced with multiplication. On line 4, we use modulo

operation to keep the value of the slope within the range {0...p − 1}. Finally, we are able

to obtain x and y coordinates of the point 2× p1.

3.2.3 Point Multiplication

Point multiplication is the main operation used in ECC systems. The multiplication is also

called a scalar multiplication and can be represented as repeated point addition, i.e., points

on an elliptic curve are multiplied by a number. Suppose we want to calculate 3P . The

multiplication can be represented as a series of additions P + P + P . To calculate 3P , we

can also perform point doubling, since P + P = 2P . This leaves us with 2P + P . Since

these two points are different, we need to add a point 2P to another point P , using point

addition technique described in chapter 2.

Algorithm 13 shows the pseudocode for multiplying arbitrary point P on an elliptic

curve over GF (p) by a scalar multiplier m represented as a Big Integer object. The point

multiplication is implemented using double-and-add method. First, the result point is ini-

tialized to the point at infinity. Since, there is no way for us to represent infinity values, we

say that x and y coordinates of a point at infinity are equal to 0. Similar to repeated squar-

ing algorithm, we obtain a binary representation of the scalar multiplier m and traverse
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Algorithm 13: The pseudocode of point multiplication
Input: P, m
Output: result

1 n = P;
2 result = (0,0);
3 convert m to binary;
4 i = 0;
5 while n < m.size do
6 if m[i] = 1 then
7 if result is point at infinity then
8 result = n;

end
9 else

10 result = result.add(n);
end

end
11 n = double n;

end
12 return result;

through each bit of the number. During each iteration we double the value of the point P

using the point doubling operation described in algorithm 12. If the value of a bit at index

i is equals to 1, then we need to perform a point addition 2i ∗ P + result and store it in the

result value as explained above. However, we also check if one of the points is a point at

infinity. Using property of elliptic curves P + O = P , we simply assign the current value

of P to the result on line 8. We obtain the result of m× P after the iteration of the loop is

completed.

3.3 Message Encoding

Suppose, Alice wants to send a message to Bob. Since ECC works with points on elliptic

curves only, the message must be represented as a point on an elliptic curve over GF (p).

We recall that an elliptic curve is described by an equation 2.28, where parameters a, b,

and prime number p must be specified. Using the parameters of the secp192r1 curve, the
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equation 2.28 for an elliptic curve becomes:

y2 ≡ x3 + 6277101735386680763835789423207666416083908700390324961276x

+2455155546008943817740293915197451784769108058161191238065

(mod 6277101735386680763835789423207666416083908700390324961279)

Algorithm 14: The pseudocode of message encoding
Input: M
Output: Point

1 maxMessageSize = (p - K) / K;
2 if m > maxMessageSize then
3 return Point(-1, -1);

end
4 m1 = m + 1;
5 if m1 ∗K < p then
6 j = 0;
7 while j < K do
8 x = m*K + j;
9 y2 = (x.pow(3,p) + b*x + c) % p;

10 roots = STonelli(y2, p);
11 if root.first != -1 AND root.second != -1 then
12 return Point(x, smaller root);

end
13 j++;

end
end

14 else
15 return Point(-1, -1);

end
16 return Point(-1, -1);

Algorithm 14 describes the pseudocode for representing a message as a point on a

given elliptic curve with specified parameters described above. We make an assumption

that a message has been represented as a number. The approach for encoding a message
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is probabilistic and we consider it reasonable by choosing value of K equals to 10, which

makes the probability of failure to map a message on an elliptic curve 1/210. Lines 1-3

of the algorithm are used to check if the message is within the allowed limits defined by

equation 2.33. If the integer used to represent a message is larger than the allowed maxi-

mum value, we return a point with coordinates (−1,−1). Next, we check if the condition

2.32 is satisfied. The process of mapping a message on the curve starts at line 7, where

we iterate through all possible values of the x-coordinate described by equation 2.34. For

each value of x, we compute value of y2 mod p using the right hand side of the elliptic

curve equation. We need to check if the square root exists in order to obtain the value of

y. Having y2 and p, we can find the square root of y2 modulo p by using Tonelli-Shanks

algorithm described below. If we are able to find the value of y-coordinate, then we return

the x and y-coordinates of the point as an object of type Point. Otherwise, we return a point

with coordinates (−1,−1).

Algorithm 15 shows the pseudocode of Tonelli-Shanks algorithm. The algorithm is

generally used to compute the square root r that satisfies the equation r2 ≡ n (mod p),

where p is a prime. In other words, we can find the square root of n modulo p. The

algorithm, takes an arbitrary number n and a prime number p as its inputs. The algorithm

returns two square roots modulo p of the number n that we are interested in. Lines 1 and

2 of the algorithm are used for checking Euler’s criterion, which says n has a square root

if and only if the following condition is satisfied: n
p−1
2 ≡ 1 (mod p). If the criterion

is satisfied, then we can find the square root of n. Otherwise, we return a pair of values

(−1,−1) indicating that the square root does not exist. Next, we are trying to find a positive

value of q by factoring out powers of 2. If the counter for factoring out the powers of 2 is

equal to 1, then we compute the value of both roots on lines 9 and 10. Otherwise, we search

for a value of z that is a quadratic non-residue. Next, we define a number of variables to

perform manipulations using repeated squaring algorithm. On line 17, we check if the

value of t is equal to 1 before each iteration of the loop. If t is 1, then the root is found
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Algorithm 15: The pseudocode of TonelliShanks algorithm
Input: n, p
Output: r1, r2

1 x1 = p - 1 expTemp = x1 / 2 temp = n.pow((p-1)/2, p);
2 if temp != 1 then
3 return (-1, -1);

end
4 q = x1 counter = 0;
5 while q % 2 == 0 do
6 q = q / 2;
7 counter++;

end
8 if counter = 1 then
9 r1 = n.pow((p+1) / 4, p);

10 r2 = p - r1;
11 return (r1, r2);

end
12 z = 2 temp = z.pow(x1 / 2, p);
13 while !(temp = x1) do
14 z++;

end
15 c = z.pow(q,p) r = n.pow((q+1)/2, p) t = n.pow(q,p) m = counter;
16 while true do
17 if t = 1 then
18 r2 = p-1;
19 return (r, r2);

end
20 i = 0 zz = t;
21 while !(zz = 1) i < (m - 1) do
22 repeated squaring of zz;
23 i++;

end
24 b = c;
25 e = m-i-1;
26 while !(e ¡ zero) do
27 repeated squaring of b;
28 e–;

end
29 update r, c, and t;
30 m = i;

end
31 return (-1,-1);
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because t2m−1
= 1, which implies r2 = n(mod p).

3.4 ECDH Implementation

One of the most important applications of ECC is Diffie-Hellman key exchange. We imple-

ment ECDH (Elliptic Curve Diffie-Hellman Key Exchange) technique using stream sockets

over TCP. The ECDH logic for establishing secure communication is shown in figure 3.2.

For illustration purpose, suppose Alice and Bob want to establish a secure shared secret

key. In our socket set up, Bob acts as a server and Alice acts as a client. We make an as-

sumption that Alice and Bob agreed on an elliptic curve and a base point G (the secp192r1

curve) in advance.

Figure 3.2: The Key Exchange Process Using ECDH.

Alice connects to Bob’s machine over standard sockets provided by C++ language.

Once socket communication is established, she generates a random number Xa as her pri-

vate key. She calculates her public key Ya = Xa ×G using point multiplication operation.
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Alice sends the generated public key to Bob. Similarly, Bob generates his private key Xb

and public key Yb = Xb×G and sends Yb to Alice. Now, they can both calculate the shared

secret key Xa × Xb × G. Once this process is completed, they exchange a flag message

indicating that they are ready to securely send messages to each other using the established

shared secret key.

Algorithm 16: The pseudocode for client socket key exchange
1 sockfd = socket(afinet, sockstream, 0);
2 if sockfd < 0 then
3 print(error opening socket);

end
4 servername = gethostbyname(”localhost”);
5 connect(sockfd, serveraddress);
6 if not connected then
7 print(error connecting to the server);

end
8 privKey = genPrivateKey();
9 pubKey = privKey * BasePoint;

10 write(sockfd, pubKey);
11 serverPubKey = read();
12 secretKey = privKey * setverPubKey;
13 write(sockfd, ’1’);
14 response = read();

Algorithm 16 shows the pseudo code for creating a socket, connecting to a server,

and creating a shared secret session key between the client’s machine and the server. We

use standard Linux C built-in header files types.h, socket.h, and netinet/in.h for socket

creation and establishing the connection between the client machine and the server. Lines

1-3 are used to define a socket system call for creating a socket. If the returned value of

the system call is negative, then there was an error in creating a socket. We handle this

error on lines 2 and 3. Next, we describe the information about the server that the client

will connect to. The final step of the socket creation is to connect to the specified server

by using the socket created on line 1. If the connection is successful, we generate public

and private keys. Private key is randomly generated using built-in srand () function, which
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takes time as an input seed. The public key is obtained by point multiplication operation.

The public key is written to the socket, so the server can use it for calculating the shared

secret key. Following the logic described in figure 3.2, we wait for the server’s public key

in order for the client to calculate the shared secret key. Finally, we send a flag, which has

a value 1, in order to confirm the success of the ECDH key exchange process.

Algorithm 17: The pseudocode for the server socket key exchange
1 sockfd = socket(afinet, sockstream, 0);
2 if sockfd < 0 then
3 print(error opening socket);

end
4 bind(sockfd, servAddr);
5 if not binded then
6 print(error binding socket);

end
7 listen(sockfd, 5);
8 getClientAddress();
9 acceptConnection(sockfd, clientAdress);

10 clientPubKey = read();
11 privKey = genPrivateKey();
12 pubKey = privKey * BasePoint;
13 write(sockfd, pubKey);
14 response = read();
15 secretKey = privKey * setverPubKey;
16 write(sockfd, ’1’);

The pseudocode for ECDH key exchange on the server side is shown in algorithm

17. It is almost identical to the pseudocode for client side implementation except minor

changes. Server side socket initialization requires binding a socket to a specified port and

checking if this action was successful, which is shown on lines 4 and 5. In addition to this,

the server has to accept a connection from the client. When connection is established, the

logic for key exchange in diagram 3.2 is followed on lines 10-16.
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3.5 ElGamal Implementation

The ElGamal cryptosystem can be used for encrypting/decrypting of symmetric keys. We

implement a sample program that simulates ElGamal ecryption/decryption process be-

tween two parties using secp192r1 elliptic curve. The complete process of encryption and

decryption is shown in figure 3.3.

Figure 3.3: Message exchange using the ElGamal cryptosystem.

Suppose, Alice wants to send a message to Bob. We make an assumption that Alice

and Bob agreed on a curve and a base point B. Each party calculates their own private

key. In our implementation we use randomly generated number. Next, the public key is

is obtained using a scalar multiplication of the base point. Alice’s public key is calculated

using GA = a × B equation. Similarly, equation GB = b × B used to calculate Bob’s

public key. After Alice and Bob exchanged their public keys with each other, Alice can

securely send a message to Bob. Alice encodes the message as a point Pm on the curve and

encrypts it using Bob’s public key using equation 2.38. Once Bob receives the cipher text,

he is able to recover the plaintext by decrypting the ciphertext as described in equation 2.39

and decoding the message using equation 2.35.

Similar to the implemented the ECDH key exchange mechanism, Bob acts as a server
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and Alice acts as a client in the established communication channel using sockets. Algo-

rithm 18 shows the pseudocode for the ElGamal cryptosystem on the client side.

Algorithm 18: The pseudocode for the ElGamal cryptosystem on the client side
1 sockfd = socket(afinet, sockstream, 0);
2 if sockfd < 0 then
3 print(error opening socket);

end
4 servername = gethostbyname(”localhost”);
5 connect(sockfd, serveraddress);
6 if not connected then
7 print(error connecting to the server);

end
8 privKey = genPrivateKey();
9 pubKey = privKey * BasePoint;

10 write(sockfd, pubKey);
11 serverPubKey = read();
12 encodedMessage = encodeMessage(message);
13 cipher = encrypt(encodedMessage, serverPubKey);
14 write(sockfd, cipher);
15 response = read();

Lines 1-3 are used for opening the socket for future communication. Client connects

to the server machine running on the local host as shown on line 5. Alice calculates her

public key using point multiplication algorithm 13 and sends it to Bob. After receiving

Bob’s public key by reading a message from the socket on line 11, Alice encodes a message

as a point on the selected curve using algorithm 14. She also encrypts the message using

the function called encrypt () that implements the logic described by equation 2.38 that

consists of point addition and multiplication operations presented in algorithms 10 and 13

respectively.

Algorithm 19 shows the implementation of the ElGamal cryptosystem for the server

side. identical to algorithm 17, lines 1-10 are used to set up a socket and start listening

for incoming messages over the stream socket. Bob generates a private key using built-in

random number generator and calculates his public key, which is sent to Alice. Next, any
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Algorithm 19: The pseudocode for ElGamal cryptosystem on the server side
1 sockfd = socket(afinet, sockstream, 0);
2 if sockfd < 0 then
3 print(error opening socket);

end
4 bind(sockfd, servAddr);
5 if not binded then
6 print(error binding socket);

end
7 listen(sockfd, 5);
8 getClientAddress();
9 acceptConnection(sockfd, clientAdress);

10 clientPubKey = read();
11 privKey = genPrivateKey();
12 pubKey = privKey * BasePoint;
13 write(sockfd, pubKey);
14 cipherText = read();
15 encodedMessage = decrypt(ciphertext);
16 plainText = decodeMessage(encodedMessage);

incoming messages are considered to be a ciphertext sent by Alice. Bob can decrypt the

ciphertext following the logic presented in equation 2.39. The algorithm for decrypting

messages is shown in the pseudocode below. The decrypted message is passed to the

decodeMessage () function, which takes a point with the encoded message embedded in

the x-coordinate. If Bob wants to send an encrypted message to Alice, he follows the logic

described in lines 12-14 of algorithm 18 but using Alice’s public key.

Algorithm 20: The pseudocode for decrypting a message in the ElGamal cryptosys-
tem

Input: p1, p2
Output: encodedMessage

1 product = b*p1;
2 product.y = -product.y mod p;
3 encodedMessage = p2 + product;
4 return encodedMessage;

Algorithm 20 shows the pseudocode for recovering the message represented as a point

on a given curve from a ciphertext. The function for decrypting a message takes two points
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p1 and p2 because ciphertext is a pair of points on an elliptic curve in the ElGamal cryp-

tosystem. As shown in equation 2.39, Bob needs to calculate a point, which is the product

of the first point of the ciphertext pair and his private key. This is simply done using

point multiplication operation. Next, he subtracts this point from the second point of the

ciphertext pair. However, there is no point subtraction operation. Instead, we represent

subtraction by adding the negative point to the first point of the ciphertext pair. Recall from

chapter 2, the negative of a point is the same point reflected against x-axis. However, we

cannot simply change the sign of the y-coordinate because we work on the elliptic curves

over GF (p). We also need to use modulo operation as shown on line 2 of Algorithm 20.

Finally, we add the point obtained on line 1 to the second point of the ciphertext pair. En-

coded message is recovered, where the plaintext is encoded in the x-coordinate and can be

recovered using equation 2.35.

3.6 ECDSA Implementation

The ECDSA can be used for verifying the integrity of the message and the authenticity of

the sender. We implement a sample program to simulate the message exchange process

with the support of ECDSA over the secp192r1 curve. The process is described in the

diagram shown in 3.4.

Suppose, Alice wants to send a message along with the generated digital signature of

the message to Bob. We make an assumption that both parties agreed on a curve, a base

point B, and the order n. Alice and Bob calculate their public-private key pairs. Alice

calculates her public key GA = a×B, where a is her private key. Similarly, Bob calculates

his public key GB = b × B, where b is his private key. Next, Alice and Bob exchange

their public keys. If Alice wants to send a message along with the digital signature, she

generates a pair of values (r, s), which constitutes the digital signature, and sends it to Bob

together with the original message. After Bob receives the message and the signature, he

59



Figure 3.4: Message exchange using ECDSA.

is able to verify the integrity and authenticity of the message using the procedure described

in chapter 2.

We simulate the ECDSA algorithm by building communication between two parties

using sockets. Identical to the previously described implementations, Bob will act as the

server and Alice will act as the client. Algorithm 21 shows the pseudocode for ECDSA

Implementation on the client side. Lines 1-7 show the logic for establishing connection

with the server using C++ standard sockets. The implementation of key generation and

exchange is shown on lines 8-11. Before sending a message to the server, Alice generates

the signature using sign () function. The message is written to the socket along with the

signature as shown on line 13.

Algorithm 22 shows the implementation of sign () function, which is responsible for

generating the digital signature of a given message. The algorithm takes a message as

an input and returns a pair of values r and s that constitutes a signature. We use SHA-

256 hashing algorithm provided by CryptoPP library in order to generate the hash of a

message. Next, we extract 192 leftmost bits of the generated hash because the order of the

secp192r1 curve is 192 bits long. Next, we generate a random number k and perform a
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Algorithm 21: The pseudocode for ECDSA on the client side
1 sockfd = socket(afinet, sockstream, 0);
2 if sockfd < 0 then
3 print(error opening socket);

end
4 servername = gethostbyname(”localhost”);
5 connect(sockfd, serveraddress);
6 if not connected then
7 print(error connecting to the server);

end
8 privKey = genPrivateKey();
9 pubKey = privKey * BasePoint;

10 write(sockfd, pubKey);
11 serverPubKey = read();
12 signature = sign(message);
13 write(sockfd, message, signature);

Algorithm 22: The pseudocode for signing a message using ECDSA
Input: message
Output: r,s

1 hash = SHA256(message);
2 z = extract(hash);
3 while true do
4 k = generateRandomKey();
5 point = k*basePoint;
6 r = point.x mod n;
7 while r = 0 do
8 k = generateRandomKey();
9 point = k*basePoint;

10 r = point.x mod n;
end

11 kInverse = gcdExtend(k, n);
12 s = kInverse * (z + r*privateKey) mod n;
13 if s = 0 then
14 return pair(r,s);

end
end

15 return pair(r,s);

point multiplication operation to get an intermediate point. We obtain the first value of the

signature using modulo operation as shown on line 6. We check if the value of r is equal
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to zero. If it is zero, then we enter a while loop that will iterate until we are able to obtain

r distinct from zero. We compute the multiplicative inverse of k and obtain the value of

s using equation on line 12. If the calculated value is zero, then we need to start over by

going back to line 4. The algorithm returns a pair of values r and s as soon as the valid

signature is generated.

The server side implementation is similar to the previously described implementations

of ECC applications. Algorithm 23 show the server side implementation for ECDSA. More

precisely, lines 1-14 are identical to the pseudocode used in ElGamal implementation on

the server side. However, the server needs to verify the integrity and authenticity of the

message using the received signature from the client.

Algorithm 23: The pseudocode for ECDSA on the server side
1 sockfd = socket(afinet, sockstream, 0);
2 if sockfd < 0 then
3 print(error opening socket);

end
4 bind(sockfd, servAddr);
5 if not binded then
6 print(error binding socket);

end
7 listen(sockfd, 5);
8 getClientAddress();
9 acceptConnection(sockfd, clientAdress);

10 clientPubKey = read();
11 privKey = genPrivateKey();
12 pubKey = privKey * BasePoint;
13 write(sockfd, pubKey);
14 clientMessage = read();
15 verify(clientMessage.signature, clientMessage.message);

Algorithm 24 describes the implementation of signature verification using ECDSA.

The algorithm accepts two parameters. The first parameter is a pair, which holds two values

r and s that constitute a generated digital signature. The algorithm returns a Boolean value

to describe if the signature is valid. The second parameter is a message received by the
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server. Line 1 is an if statement used to check if the values r and s are within a valid

range. If at least one value is out of range, then the function returns false, meaning the

signature is invalid. If the values are in the range, we perform a series of steps identical

to the signature generation process as shown on lines 3 and 4. Next, we compute the

multiplicative inverse of s using the Extended Euclidean Algorithm and obtain values of u1

and u2 as shown on lines 6 and 7. An intermediate point on the selected curve is obtained

using scalar multiplication and point addition operation on line 8. If the calculated point is

a distinguished point at infinity, then the signature is invalid. Otherwise, we calculate the

values n1 and n2 used in the final step of signature verification process. If these two values

are identical, then the signature is valid and the verify () function returns true. Otherwise,

false Boolean value is returned.

Algorithm 24: The pseudocode for verifying a signature using ECDSA
Input: signature, message
Output: valid

1 if r or s are not in the range from 1 to n-1 then
2 return false;

end
3 hash = SHA256(message);
4 z = extract(hash);
5 sInverse = gcdExtend(signature.s, n);
6 u1 = sInverse * z mod n;
7 u2 = (signature.r * sInverse) mod n;
8 result = (u1*G + u2*publicKey) mod n;
9 if result = pointAtInfinity then

10 return false;
end

11 n1 = signature.r mod n;
12 n2 = result.x mod n;
13 if n1 = n2 then
14 return true;

end
15 else

return false;
end
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Chapter 4: Evaluation

In this chapter, we present the performance evaluation of the arithmetic operations of the

Big Integer classes on the operands with various sizes, and the point operations required

for all application of ECC on the secp192r1 curve.

4.0.1 Platforms

All arithmetic and point operations have been tested on a PC with a quad-core Intel(R)

Core(TM) i7-7700K CPU running Ubuntu 15.04 operating system along with execution

time measurements. The implemented software program was compiled and run using stan-

dard GNU C++ compiler version 4.9.2. The program was checked for memory-related

errors using the dynamic analysis tool Valgrind [12].

4.1 Results

This section presents experimental results. We compare the time performance of the arith-

metic operations, i.e., addition, subtraction, division, multiplication, and modulo exponen-

tiation of the Big Integer classes. We also measure and report the execution time of point

addition, point doubling, and scalar multiplication operations over the secp192r1 curve that

was used to implement the ECDH key exchange mechanism, the ElGamal cryptosystem,

and the ECDSA. The program was executed 20 times and the average running time to
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perform these operations is reported.

4.1.1 Big Integer Arithmetic Operations

The execution time of several arithmetic operations is measured using operands of various

sizes. For each operation, we compare the timing performance of the arithmetic operations

of the two versions of the Big Integer classes implemented using array of characters and

array of Boolean values respectively.

Table 4.1: Comparison of performance: Addition Operation
Operands Size in bits BigInteger addition in µs Bitset addition in µs

160 0.9024 1.2686
192 0.9602 1.0700
256 0.7904 1.1150
384 1.4684 2.7106
512 1.6644 2.2730

Table 4.1 reports the comparison of the average execution time of addition operation

on the two versions of the Big Integer classes with various sizes. Each operand is a ran-

domly generated number of size specified in the first column of the table. We can see that,

for both implementations, adding two 192 or 256 bits long numbers is slightly faster than

adding two 160 bits long numbers, which is hard to explain. Also, all the arithmetic op-

erations of the Big Integer class implemented using bit set is slower on all operands sizes,

which is because the number of loop iterations described in algorithm 2 is larger than the

number of loop iterations of the Big Integer class using arrays of characters. In addition,

the memory size to represent a certain big integer with bit set is larger than the memory size

to represent the same big integer with character array, because internally, every bit in the bit

set is stored with one byte in C++. However, the smallest difference in average execution

time occurs when the two 192 bits integers are added, which again is hard to explain.

Table 4.2 reports the average execution time of subtraction operation on the two ver-

65



Table 4.2: Comparison of performance: Subtraction Operation
Operands Size in bits BigInteger subtraction in µs Bitset subtraction in µs

160 0.7214 3.3352
192 0.5934 2.8514
256 0.4484 2.8286
384 0.6130 4.0692
512 0.8030 4.7016

sions of the Big Integer classes with various sizes. Each operand is randomly generated

with a specified size. However, we make sure that the operands are not identical in order to

avoid the extreme case, which automatically assigns 0 to the the result of subtraction. The

execution time of the subtraction operation of the Big Integer classes implemented with bit

set is slower as well. However, the differences of execution time between the two imple-

mentations of the Big Integer classes are larger than the differences of the execution time

of the addition operation. Despite the fact that addition and subtraction operations have

the same time complexity, the subtraction operation of the Big Integer classes implemented

using arrays of characters is faster than addition. As for the Big Integer class implemented

with the bit set, the results are opposite. More precisely, the subtraction operation is slower

than the addition operation for the Big Integer class implemented with the bit set.

Table 4.3: Comparison of performance: Multiplication Operation
Operands Size in bits BigInteger multiplication in µs Bitset multiplication in µs

160 30.3884 162.2900
192 50.8660 347.0710
256 62.8070 477.0820
384 148.6238 1408.4024
512 236.4642 2487.5310

The average execution time of the multiplication operation on the two versions of the

Big Integer classes on operands with various sizes is reported in table 4.3. Each operand

is randomly generated with specified size. We can see that the execution time of the multi-

plication operation of the Big Integer classes implemented with bit set is way slower than

the multiplication operation of the Big Integer classes implemented using character arrays,
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which is because the multiplication of binary numbers requires increased number of loop

iterations for repeated additions to accumulate the result of multiplication as described in

algorithm 5. The table also shows that the larger the size of the operand, the greater is

the difference in the execution time between the two different implementations. Finally,

the Big Integer classes implemented with Boolean arrays take more space compared to the

Big Integer classes implemented with a character array. As the number of loop iterations

increases, more time is needed to perform computations.

Table 4.4: Comparison of performance: Division Operation
Operands Size in bits Big Integer division in µs Bit set division in µs

160 103.0684 161.9710
192 194.2446 347.4570
256 223.0538 477.5352
384 500.7140 1403.7164
512 905.4234 2486.3946

Table 4.1 compares the average execution time of the division operation of the two

versions of the Big Integer classes with various operand sizes. In this thesis, we divide a

randomly generated large number of various sizes by 2 in order to achieve the execution

time as close as possible to the worst case scenario. Similar to previously presented mea-

surements, the division operation of the Big Integer classes implemented with bit set is

slower than the division operation of the Big Integer classes implemented with character

arrays, which is because the memory size to represent a certain big integer with bit set is

larger than the memory size to represent the same big integer with character array, because

internally, every bit is stored with one byte in C++, so the division operation of the Big

Integer classes using bit set takes longer time even without the performance overhead for

computing a look up table as in the Big Integer classes using character array. Finally, we

observe that as the size of the dividend increases, the execution times increases signifi-

cantly.

Table 4.5 reports the average execution time of power-modulo operation of the two
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Table 4.5: Comparison of performance: Power-Modulo Operation
Operands Size in bits Big Integer power-modulo in ms Bit set power-modulo in ms

160 104.8746 315.4860
192 156.6182 489.4174
256 191.8902 558.2576
384 343.8816 943.9348
512 495.5048 1269.3418

versions of the Big Integer classes on big integers of various sizes. We randomly generate

big integers of various sizes and measure the execution times of pow () described in algo-

rithm 9. For the purpose of this measurement, we calculate AB mod p, where A, B, and

p have equal length in bits. This is the worst case scenario which, does not occur often in

the applications of ECC but often seen in the applications of RSA. The results in the table

show us that this power-modulo operation is the most computationally intensive operation

compared to the other arithmetic operations because it requires n multiplications and mod-

ulo operation, where n is the size of the exponent in bits. The execution time and the size

of the operands have linear dependency. Just as any other operation, the power-modulo

operation of the Big Integer classes implemented with bit set is slower.

4.1.2 Point Operations on the Secp192r1 Curve

Any ECC application requires point addition, point doubling, and scalar multiplication

operations. We report the performance of these operations in table 4.6. Point addition op-

eration is the fastest point operation and takes roughly 7 ms. Point doubling is 3.5 times

slower since it involves more multiplication and exponentiation operations, which are ex-

pensive as shown in tables 4.3 and 4.5. Scalar multiplication is the most expensive point

operation since it consists of point addition and point doubling operations. A given point

is doubled at least n times, where n is the size of a scalar multiplier in bits. The point

operations of the Big Integer classes implemented with bit set is 2 times slower than the

point operations of the Big Integer classes implemented with character arrays.
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Table 4.6: Comparison of performance: Point Operations on the curve secp192r1
Operands Size in bits BigInteger implementation in ms Bitset implementation in ms

Point Addition 7.0504 19.4550
Point Doubling 25.4880 58.7686

Scalar Multiplication 448.0902 1046.708

Since the Big Integer implementation is faster than the Bitset, we use the Big Integer

implementation to compare performance between Affine and Jacobian coordinates. Table

4.7 shows the performance comparisons of point operations between the implementation

that uses Affine coordinates and the implementation using Jacobian projective coordinates.

Table 4.7: Comparison of performance: Affine v. Jacobian coordinates on the curve
secp192r1

Operands Size in bits Affine coordinates in ms Jacobian coordinates in ms
Point Addition 7.0504 8.2093
Point Doubling 25.4880 8.3371

Scalar Multiplication 448.0902 294.576

The table shows that we have a slight performance decrease in point addition opera-

tion. However, point doubling operation is almost 3 times faster. This happens because the

number of arithmetic Big Integer operations is way smaller when using Jacobian coordi-

nates. Thus, this allows us to obtain a significant performance improvement during point

multiplication operation.

4.1.3 Verification of the Correctness

We implemented the ECDH key exchange mechanism and ElGamal encrypting/decrypt-

ing algorithms and verified the correctness of these implementations, as illustrated in the

following.

Figures 4.1 and 4.2 show the screenshots of the established shared secret key during

ECDH key exchange on the client and server side respectively. We can see that both parties
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successfully exchanged their public keys with each other and are able to calculate the shared

secret key independently. The generated shared secret key is represented in hexadecimal

format and is identical on both ends, which verifies the correctness of ECDH key exchange

mechanism and the Big Integer classes.

Figure 4.1: Client side of the ECDH Key Exchange.

Figure 4.2: Server side ECDH Key Exchange.

Table 4.8 reports the parameters used by the ECDH key exchange process, and the

generated shared secret key on the server side and client side.

Table 4.8: Parameters of the ECDH, and the Generated Shared Secret Key
Parameter Value
Alice’s private key 784926782903412329323451
bob’s private key 563794302987362142789234
base point x: 602046282375688656758213480587526111916698976636884684818

y: 174050332293622031404857552280219410364023488927386650641
Alice’s public key x: 5968012002118994516836279607351526756342838937806684779907

y: 2291505877072505624670145660827694525422795921016371207079
Bob’s public key x: 1912064533865894676598776716950229796824804776264475461392

y: 3910688549300795892631189560535503082298732099212948122100
generated secret key 3847210457611900028777758802678809708230333084326754862414
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We validate the correctness of the ElGamal cryptosystems by simulating the encryp-

tion/decryption process when a message is sent from Alice to Bob using Bob’s public key,

where Bob acts as a server and Alice acts a client. Figures 4.3 and 4.4 show the output of

the encryption/decryption process using the Elgamal cryptosystem on the client and server

side respectively. We can see that both parties successfully exchange their public key. Alice

encrypted a sample message represented as a number, encoding the message as a point on

the elliptic curve, using the ElGamal encryption algorithm to generate the ciphertext, which

is a pair of points on the elliptic curve, and send the ciphertext to Bob. Bob receives the ci-

phertext, decrypts the message and recovers the plaintext by decoding the message, which

is embedded in the x-coordinate of the point. In figure 4.4, we can see that Bob recovers the

plaintext of the message, which is identical to the message that was encoded and encrypted

by Alice. That verifies the correctness of the implemented ElGamal cryptosystem.

Figure 4.3: Client side of ElGamal Cryptosystem.

Table 4.9 reports the parameters used by the ElGamal cryptosystem, and the plaintext

message, the intermediate results and the recovered plaintext during the ElGamal encryp-
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Figure 4.4: Server side of ElGamal Cryptosystem.

tion/decryption process.

Table 4.9: Parameters of the ElGamal and the intermediate results of the ElGamal Cryp-
tosystems
Parameter Value
message m 986782900181143871212342314312
Pm x: 9867829001811438712123423143120

y: 2196348078618827511118477981636656982591377148662893949597
P1 of cipertext x: 3791578262768645796343505216555460245718061067438303764475

y: 2162218313333713175244319383127064782727282580321136401970
P2 of ciphertext x: 152545346884612895823185990037253449563301612658927710352

y: 2555668134232493799981445123861833291704734812170729850119
decrypted Pm x: 9867829001811438712123423143120

y: 2196348078618827511118477981636656982591377148662893949597
plaintext from Pm 986782900181143871212342314312

Similar to the ECDH key exchange process and the ElGamal cryptosystems, we also

evaluate the correctness of the ECDSA. In our implementation, Alice acts as a client and

Bob acts as a server. Figures 4.5 and 4.6 show the output of the implemented ECDSA using

sockets for client and server side respectively. We can see that both parties successfully

exchanged public keys between each other. Also, figure 4.5 shows the calculated values r
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and s that constitute the digital signature. We see that the server side obtained the same

hash values of the message using SHA-256 algorithm. The figure 4.2 shows values of

the calculated intermediate parameters, which are required for verifying the validity of the

digital signature. Most importantly, we see that r mod n and x1modn are also equivalent.

This means that the digital signature is valid and the implemented ECDSA is correct.

Figure 4.5: Client side of ECDSA.

Table 4.10 summarizes the obtained results and intermediate parameters used in ECDSA.

Both parties are able to obtain identical values of the parameter z. We also see that gener-

ated value of r by the client side is identical to the received value of r on the client side.

Finally, the values of r mod n and x1 mod n are also equivalent.
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Figure 4.6: Server Side of ECDSA

Table 4.10: Parameters and the intermediate results of ECDSA
Parameter Value
message m 89382075487284788345345
HASH(m) 185F8DB32271FE25F561A6FC938B2E264306EC304EDA518007D17

64826381969
z in hex 185F8DB32271FE25F561A6FC938B2E264306EC304EDA5180
z in decimal 597630496134934525062152428636758271059776916513804145024
generated r 1131376258843917720091875844748311029151964753646636471475
generated s 4357797412442008277179215604970751649941568938148867756195
u1 3046439475643938091811248233621120317830886743790315112337
u2 4568854499746066067863265371343606136890756961925481503622
calculated r mod n 1131376258843917720091875844748311029151964753646636471475
x1 mod n 1131376258843917720091875844748311029151964753646636471475
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Chapter 5: Conclusions and Future

Work

Public key cryptography is very important in assuring data integrity and confidentiality, es-

tablishing a shared secret key between two communication parties. The widely used RSA

algorithm is not able to provide forward secrecy as the computational capabilities of sys-

tems increase. In comparison, ECC is able to provide forward secrecy because it requires

the attackers to solve discrete logarithm problem to recover the plaintext of the encrypted

messages. In addition to this, ECC achieves the same level of security as RSA but with

a much shorter key size. The three most important applications of ECC, are the ECDH

(Elliptic Curve Diffie-Hellman) key exchange, the ElGamal cryptosystems, and the Ellip-

tic Curve Digital Signature Algorithm. These applications are being adopted in different

application areas such as autonomous cars, smart grids, mobile devices, and blockchain.

This thesis focuses on the software implementations of ECC over finite field GF(p)

with two distinct implementations of the Big Integer classes using character arrays, and

bit sets in C++ programming language. Our implementation works on the ECC curves

of the form y2 = x3 + ax + b (mod p). The arithmetic operations of the two different

versions of the Big Integer classes using character array and bit sets are implemented and

the correctness of these arithmetic operations are verified. The performance evaluation of

the arithmetic operations of the two versions of the Big Integer classes on the operands

75



with various sizes are reported. From the performance results reported in chapter 4, we

conclude that the big integer classes using bit set is not suitable for cryptography due to its

slow performance. In addition, the big integer classes using arrays of characters could be

further optimized.

The point operations including point addition, point doubling, and scalar multiplica-

tion operations are implemented on a real SEC (Standards for Efficient Cryptography) ECC

curve, the secp192r1 curve, with the support of the big integer classes, and the correctness

of these point operations is verified. The timing performances of the point operations re-

quired for the ECDH key exchange, the ElGamal cryptosystems, and the ECDSA on the

secp192r1 curve are reported.

Three most popular applications of ECC, the ECDH key exchange, the Elgamal cryp-

tosystems, and the ECDSA are tested and validated. We use standard C++ stream socket

operating over TCP protocol in order to simulate the ECC applications on a real secp192r1

curve. However, the implementation works on any valid elliptic curve with different pa-

rameters of the same size and parameters with different sizes.

In the future work, we plan to optimize our implementations of the big integer classes

and point operations. First of all, the performance of the arithmetic operations of the Big

Integer classes could be improved by reducing the memory used to store the big integers.

Memory consumption can be reduced by representing a big integer as an array of integers.

Thus, the 160 bit long integer will require only 5 32-bit integers.

In addition, the execution time of arithmetic operations of the big integer classes could

be improved by parallelizing the arithmetic operations using GPU. When the performance

of arithmetic operations of the big integer classes is improved, the overall performance of

the ECC applications will be also improved.

Additionally, we plan to improve the performance of the point operations by using

mixed addition operating on the mixture of both Projective coordinates and Affine coordi-

nates. Finally, we plan to further improve the performance and security of the ECC appli-
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cations by implementing Montgomery ladder algorithm for scalar multiplication of points

on a given elliptic curve, which helps to defend the ECC applications from side-channel

attacks.
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