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ABSTRACT

Bhusal, Prem. M.S., Department of Computer Science and Engineering, Wright State University,
2019. Scalable Clustering for Inmune Repertoire Sequence Analysis.

The development of the next-generation sequencing technology has enabled systems
immunology researchers to conduct detailed immune repertoire analysis at the molecule
level. Large sequence datasets (e.g., millions of sequences) are being collected to com-
prehensively understand how the immune system of a patient evolves over different stages
of disease development. A recent study has shown that the hierarchical clustering (HC)
algorithm gives the best results for B-cell clones analysis - an important type of immune
repertoire sequencing (IR-Seq) analysis. However, due to the inherent complexity, the
classical hierarchical clustering algorithm does not scale well to large sequence datasets.
Surprisingly, no algorithms have been developed to address this scalability issue for im-
munology research. In this thesis, we study two different strategies, aiming at finding
the best scalable methods that can preserve the quality of hierarchical clustering structure.
The two strategies include (1) non-Euclidean indexing methods for speeding up the clas-
sical hierarchical clustering(HC), (2) a new tree-based sequence summarization approach
- SCT that scans the large sequence dataset once and generates summaries for hierarchi-
cal clusters(HC). And we also experimented with the Spark based minimum-spanning-tree
algorithm (SparkMST) that generates the equivalent result of single linkage hierarchical
clustering (SLINK) for comparative analysis.

We have implemented all these algorithms and experimented with real sequence datasets
for B-cell clones analysis. The result shows that (1) the indexing-enhanced HC (e.g., us-
ing the Vantage-Point tree for indexing) preserves the clustering quality very well, while
also significantly reducing the time complexity of the original HC; (2) SCT with HC is the
fastest approximate HC method with slightly sacrificed quality; and (3) SparkMST scales

out satisfactorily and gives significant performance gain with a large Spark cluster.
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Introduction

Clustering is basically grouping of the similar object together from huge dataset so that
object belonging to one cluster ( group ) are closely related to each other than the object
present in other cluster. So the main task in clustering is to partition the huge set of data into
a small closely related group where the closeness is defined with some similarity criteria
(‘e.g. distance). Clustering is unsupervised learning process where input data is provided
without the previous knowledge of inherent structure of group or class in the data and
the clustering method should identify most appropriate organization of groups without any
external information. It is a popular technique for data analysis in various field such as data
mining,machine learning, bioinformatics,image processing , information retrieval and so
on.

Fine clustering is one of the challenging problems because the complexity of finding
final cluster structure increases as the dimension and size of input data increases.

Hierarchical Clustering(HC) is one of the widely used methods in the bio-medical
field for gene expression data analysis, genomic sequence analysis and so on. In this thesis,

we study the hierarchical clustering for the analysis of Immune Repertoire-Sequence data.

1.1 Motivation

The human immune system works amazingly well in defending the body against attacks

by “foreign” invaders. One of the important mechanisms is adaptive immunity that can



respond to many types of infections automatically. The core of this mechanism is that the
B cells, a subtype of white blood cells, can adaptively generate a variety of antibodies that
fight a different type of antigens, e.g., bacteria or viruses. Without infection, the B-cells
already carry genes for generating about ~ 107 unique immunoglobulin (Ig) molecules
that determine the types of antibodies. Upon activation (e.g., infection), these naive B-cells
will further diversify through a process called somatic hypermutation to better handle new
types of antigens. It has been observed that in healthy human adults, about 7 % of B cells
are mutated [28], which means about 10° new types of Ig molecules may be generated by
each activation. The mutation rate and the B-cell clone distribution may vary due to aging
[27] and disease [7, 17]. Profiling a person’s B-cell clones can help us understand the
healthiness level of their immune system.

Profiling B-cell clones at the molecule level was an impossible mission until the next-
generation sequencing technique [22, 20] was invented, which is often referred as the
immune repertoire sequencing (IR-seq) approach. The next-gen technique can profile such
a large scale of mutations at a low cost. For example, Illumina MiSeq costs only about $500
for sequencing one gigabase pairs (one gigabase pairs (Gb) = 10° base pairs). A typical se-
quence for studying B-cell mutation has about 100-300 base pairs and one experiment may
generate about millions of sequences. Thus, IR-seq has become a popular and economical
tool for molecule-level immune systems research, including B-cell clones analysis.

The diversity of B-cell comes from the unique VDJ recombination process (Figure
1.1) which produces millions of B-cells that each bear a unique antibody gene. B-cells
randomly assemble different gene segments - known as the variable (V), diversity (D) and
joining (J) genes, to generate unique antibodies. Antibody repertoire is able to further
diversify upon antigen stimulation through somatic hypermutation (SHM), which randomly
mutates the antibody genes. As illustrated in Figure 1.1, single original ancestral nave
B cell could become several different subpopulations, each with different SHM pattern

and cell abundance. The IR-seq method profiles this VDJ segment (200-300 base pairs)
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Figure 1.1: Antibody repertoire generation and diversification during activation

to understand the diversity and similarity between mutations as the mutation happens in
the VDIJ junction region. To identify the B-cell clones, one effective method is to study
the clustering structures of VDJ junction segments in one person’s B cells, e.g., extracted
from his/her blood samples. In particular, the hierarchical clustering structure gives good
clues about the B cell evolving patterns - how one VDJ mutates into another. Gupta et al.
[12] has shown that among hierarchical clustering algorithms, the single-linkage algorithm
(SLINK) gives the best results for B-cell clones analysis. Recently, we have also applied
this clustering analysis method to understand the patterns of B-cell clones and how they
evolve for malaria patients [27]. The key challenge of this clustering analysis is the number
of profiled sequences can be very large from hundreds of thousands to millions. However,
the optimized SLINK clustering methods still take O(N?) time complexity for N sequences

- in practice, with a classical implementation running on a single machine, it may take



days to get the clustering results for merely hundreds of thousands of sequences, which
is inconvenient for domain experts. With the increased scale of studies that will generate
more sequences, any significant development of faster and scalable single-linkage (and
hierarchical, in general,) clustering algorithms will benefit the whole systems immunology
research community, and possibly other biomedical research domains [4], as well, that use
clustering of large-scale sequence data as a major analytic tool.

We have developed a complete immune repertoire sequencing (IR-Seq) analysis frame-
work and used it in several applications [27, 13]. Fig 1.2 gives the overall structure and dif-
ferent components of IR-seq analysis framework. It consists of four stages namely (1) Se-
quence Reads Processing, (2) Sequence Annotation, (3) Lineage Formation, and (4) Anal-
yses. The algorithms used in the stages (1) and (2) have linear time complexity and they
scale well with large datasets with naturally parallel processing [8, 9]. Reads processing has
some well-known modules, such as read 1 and 2 alignment for paired-end sequencing, bar-
code removal, consensus building, and sequence truncating, which we skip the details[27].
Typically, the algorithms either work on pairs of reads or individual sequences and simple
linear complexity algorithms (e.g., key-based aggregation for consensus building). Sim-
ilarly, sequence annotation works on individual sequences. It’s straightforward to scale
up the processing with simple models like MapReduce [8]. After Lineage Formation, the
lineage-level analyses [S5] involve only thousands or tens of thousands of lineages, where
scalability and speed become less serious for the common analytics algorithms.

Among all the components, Lineage Formation uses a clustering algorithm to find
groups of similar sequences and then generate the lineage, i.e., the representative sequence
for each group. It has become the bottleneck for large sequence datasets (in range of hun-
dreds of thousands to millions) which we will discuss in detail in the problem definition
section. Our main focus is to develop a fast and scalable hierarchical clustering algorithm
to overcome this bottleneck. This empirical study will adapt the existing approaches proven

successful in other domains to the problem of clustering sequence data in IR-seq analysis.
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Figure 1.2: Overview of IR-Seq framework

1.2 Problem Definition

To determine the clones in IR-Seq dataset, sequences are first grouped based on identical V
gene and J gene and junction length. Hierarchical clustering is performed for each group.
The resulting hierarchy of each group is cut at a certain distance threshold ( discussed later)
to get the flat clusters which are called clones. The grouping is based on the assumption
that the sequences belonging to the same clones are supposed to have the same length in
the junction region and share the same V gene and J gene [12]. Note this assumption has
excluded the case where mutations may change the junction length. In some extreme but
rare case, the junction length may change, although the percentage is low around 1.3-6.5
% [30].

We tried to understand how the group size(V-J-Junction group) is distributed in IR-
Seq dataset by using some of the real dataset used in our experiment. As shown in Figure
1.3 and Figure 1.4, for the four datasets(explained in detail later) , the group sizes are al-
most linearly related to the overall dataset sizes.X-axis represents the data size in thousand
and the y-axis is the corresponding biggest group based on common V, J gene and junction
length. With this projection, we expect the group size of around 25 thousand at two mil-
lion of records in the dataset, and 140-180 thousand at 10 millions of records. The biggest

group becomes even larger around 600-700 thousand for 10 million dataset when grouping



is done based only on the V and J gene ( considering junction length change on mutation).
Since clustering has to be performed on each group, and we may expect many such big
groups, hierarchical clustering becomes the bottleneck for such big groups because of its
O(N?logN) computational complexity. So far, the most effective algorithm for finding the
B-cell clones is single-linkage hierarchical clustering that generates the closest domain-
specific clustering structures as shown by Gupta et al. [12]. Yet, its best complexity is
O(N?) [23], which significantly restricts the scale of sequence datasets. Our goal is to in-
vestigate the methods that give (possibly approximate) single-linkage clustering structures
with much faster processing time. For our experiment, we have used grouping based on
common V, J, and Junction length because there is less chance(1.3-6.5 %)that mutation

might change the junction length.
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Figure 1.3: The largest size of group according to the overall dataset size when grouped
based on V,J gene
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1.3 Strategies

One of our strategy includes processing all the V-J groups in parallel. This kind of parallel
processing can be easily achieved using a spark. The major problem lies in clustering
of these groups when the single group size is very large.So optimization is necessary for
hierarchical clustering algorithm used to cluster such single big group. Here we discuss our
three different strategies for fast processing of hierarchical clustering(HC) algorithm that
works with sequence data.

First, we will experiment with non-Euclidean indexing methods customized for se-
quence data to reduce the complexity of key steps in the bottom-up agglomerative algo-
rithms. Most existing agglomerative algorithms require the pairwise distance matrix as the
input, which is not scalable. It is possible to avoid computing the entire distance matrix
computation with an indexing structure for sequences, which can potentially reduce the

complexity of the initialization stage from O(N?) to O(N log V). With a certain approxi-



mate method, the complexity of the intermediate iterative steps can also be reduced. Many
such optimization methods have been based on the Euclidean space [24] and especially on
low dimensional (2 or 3 dimensions) datasets for fast nearest neighbor search, as indexing
only works effectively on low-dimensional Euclidean datasets due to the curse of dimen-
sionality [15]. It’s unknown how effective the sequence indexing methods are, which uses
non-Euclidean metrics, such as edit distance, Hamming distance, and alignment-based dis-
tance [16, 11]. Our first strategy will be investigating the non-Euclidean indexing methods
to speed up certain stages of hierarchical clustering and thus reduce the overall complexity.

Second, we also explore the tree-based summarization approach for sequence data.
The idea is to maintain a height-balanced multi-way tree in a stream-processing style,
which scans the sequence dataset once and absorbs each record into the summarization
tree. BIRCH [26] has shown such a tree works for numeric data on Euclidean distance
space. However, no study has shown that this idea also works for sequence data in non-
Euclidean space and generates fast summarization results. We expect this summarization
to be useful as preprocessing to reduce the input size for hierarchical clustering used in
B-cell clones analysis.

Third, parallel processing can be effective for certain algorithm settings. There have
been several efforts to develop the parallel or distributed version of the single-linkage al-
gorithm. Olson [23] shows that using the parallel random access memory (PRAM) ar-
chitecture, the overall complexity can be reduced to O(NN) with N processors for N se-
quences. Most recently, Jin et al. [14] have implemented the minimum-spanning-tree
(MST) algorithm with Apache Spark. Since single-linkage clustering is equivalent to the
MST problem, the SparkMST works as a parallel single-linkage algorithm. As Gupta et
al. [12] has shown that single-linkage clustering is the best for B-cell colony analysis, we
consider that the SparkMST as a promising candidate for large-scale parallel processing
of sequence data. Note that the first two approaches also work for hierarchical clustering

algorithms other than SLINK, while the parallel solution works only for SLINK so far.



1.4 Contribution

We summarize our unique contributions as follows.

e We have designed the framework for integrating cluster indexing structures for faster
(and approximate) hierarchical agglomerative algorithm. It allows any non-Euclidean
indexing method to plug in. We have experimented with the VP-Tree [29, 3] as the
non-Euclidean indexing plugin. The result shows that this approach can preserve the

clustering quality perfectly with good performance gain .

e We have developed the Sequence Condensation Tree (SCT) structure and algorithms
for scanning the dataset once and absorbing sequences into a hierarchical clustering
structure. It includes a novel design of node structure that can hierarchically and
recursively summarize similar records under each tree branch. We show that this
algorithm is highly scalable and resource efficient and good preprocessing approach

for the index-based hierarchical clustering algorithm .

e We have implemented the Spark version of the MST-based clustering (SparkMST)
[14] for processing sequence data. Our experimental evaluation shows that SparkMST
scales well to both the size of sequence dataset and the size of the Spark cluster. It’s
a good candidate solution for users who can provision a large-scale Spark cluster and

need only SLINK result.

e We have developed spark based parallel processing of all V, J groups for entire im-
mune repertoire data analysis. Optimized indexed-enhanced HC, SCT based HC and
MST based HC can be applied to the individual group to get the clustering structure
within them. Our experimental result shows that all of our fast hierarchical clustering

approaches greatly improves the computational cost for immune repertoire analysis.

e We have performed a comparative empirical study to understand the performance

improvements of different approximate hierarchical Clustering(HC) approach.
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1.5 Thesis Structure

The remaining sections of the thesis are organized as follows. In Chapter 2 we give in-
formation about Immune system , IR-Sequencing, the basic notations and definitions and
some related work . Chapter 3 describes the detailed strategies for fast and scalable se-
quence clustering with a focus on optimizing the hierarchical clustering method. Chapter
4 describes some existing methods used for our comparative study and shows the experi-

mental evaluation results. Finally, Chapter 5 concludes our work.
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Background

2.1 The immune system

The human immune system is made up of different cells, tissues and organs working to-
gether to defend the body from foreign invaders. One of the important cells is white blood
cells(e.g B-cell and T-cell). The foreign agent can be an infection causing organism such
as virus, bacteria, fungi and so on. The human body provides the environment for them
to enter and grow. So the immune system has to keep them out or destroy from our body.
There are many body parts such as thymus, bone marrow, spleen, lymphoid tissue, lymph
node and vessels which actively take parts in the immune system. Antibodies produced
by B-cell are responsible to capture anti-genes which are destroyed by T-cells. Scientists
are now able to mass produce immune cells and antibodies for detail study. This has not
only revolutionized the study of the immune system but also has created a great impact
in clinical study and research. Even though much research has been done to understand
the immune system, there is plenty of opportunities to study how the human body destroys

infected cells and how body shows immune response when vaccination has been applied

11



2.2 Immune Repertoire Sequencing(IR-Seq)

Immune repertoire sequencing (IR-seq ) refers to the sequencing of both B cell immunoglob-
ulin receptor (BCR) and T cell immunoglobulin receptor (TCR) and is considered useful

in both research and clinical settings. A systematic study of IR-seq is important to under-

stand the response of the adaptive immune system, to find new infectious agents, diagnosis

disease and measure vaccination effects[18].

Using V(D)J recombination, the human immune system generates hundreds of mil-
lions of B T cells that each bear a unique antigen receptor gene. When B-cell recognizes
the antigen it gets activated and divides into B-cell clones. Single original ancestral nave B
cell could become several different sub-population.During division B-cell receptor under-
goes a high rate of mutation which is due to single nucleotide substitution, insertion, and
deletion. Organizing these cells into informatically defined lineages by examining their
antibody gene sequences provided a means of study this important condensed evolution. T
cell also follows a similar path to generate diversity however, they don’t undergo somatic
hyper-mutation(SHM) . This makes T cell IR-seq data easier to analyze compared to B
cells.

Statistical properties of IR-seq data such as diversity, mutation, clone size distribution
plays an important role in the identification of abnormalities caused by disease and ag-
ing. Accurately identifying clone size distribution can reveal many important information
like species richness,minimal residual disease detection ,Shannon entropy and so on. Lin-
eage analysis within the clone also has several applications. Once the sequence has been

assigned to clonal lineage, the following information can be obtained:
e degree of diversification (species of new sequences and their abundance)
e amount of mutations from ancestor to progenies

e the antibody developmental path if samples from multiple time points are pooled

together.

12



e degree of isotype switching (IgM to IgG or IgA)

IR-seq analysis is an interesting problem because there is a need to develop the method
to find the sub-populations and there are a great many numbers of sub-populations in the
repertoire. Different treatment for the disease (e.g. cancer) has been developed which affect
the immune system, hence the size of repertoire keeps changing. So IR-seq analysis helps

to monitor those effect by measuring the size of repertoire.

2.3 Sequence

A sequence in our study is a string of characters formed from the nucleobases, namely
{A,C,T,G}. As the bases are typically paired chemically and sequences exist in pairs, the
length of the sequence is also called the number of “base pairs”. The typical sequence
length for immune repertoire analysis is around 200-300, depending on the specific exper-
imental design. In this paper, we will use lower cases, e.g., m or n to denote the sequence

length, and NV to represent the number of sequences.

2.4 Distance Measures

The similarity of sequences is defined with a certain measure. We list a few popular choices

of the similarity measure.

2.4.1 K-mer based distance

K-mer refers to the substring of length k from the given string. In the field of bioinformat-
ics, k-mer can be referred as all possible subsequence of length k from full-length DNA
sequence read.All possible 3-mer for sequence ’ACTAGG’ are ACT,CTA,TAG,AGG . So

the k-mer distance between any two sequences can be defined as the number of unique

13



k mer that are shared between them. K-mer based distance can be used for approximate
distance computation as this is computationally less expensive than other exact distance

computation like edit-distance and sequence alignment.

2.4.2 Edit-Distance

Edit distance, also known as Levenshtein distance, is a standard metric for defining the dis-
similarity between two strings by computing the minimum number of operations (insertion,
removal, and substitution) required to transform one string to the other. Edit-Distance is a
popular choice for strings of unequal length. However, it’s quite expensive for sequences
of 200-300 base pairs. For two sequences of lengths m and n, respectively, the overall
complexity of edit distance is O(mn).

Lets take two strings bitten, hitting .The edit-distance between these two words is 3

which can be explained by following operations.
e bitten — hitten ( replace b with h)
e hitten — hittin ( replace e with 1)
e hittin —hitting ( adding g at the end)

Similarly consider two DNA sequences ACTAGAA, CCTAGT

o ACTAGAA—CCTAGAA ( substitute C for A at first position)
o CCTAGAA—CCTAGTA ( substitute T for A at 6th position)

o CCTAGTA— CCTAGT (delete A from Last position)

So the edit distance between two sequences ACTAGAA, CCTAGT is 3.

14



2.4.3 Sequence Alignment

Sequence alignment is the process of arranging the DNA or protein sequences so as to find
the similarity between them. After the alignment, a small gap will be inserted between the

nucleotide so that similar letters/nucleotides will be falling in the same column.

Before alignment After alignment
e ACATTG — ACATTG
e ACCG — AC--CG

Dynamic programming is used to find the sequence alignment provided the particular
scoring function ( positive score if nucleotide match, negative score if mismatch or gap).
After the alignment, the distance between sequences can be calculated as the number of
mismatch in the nucleotide. Even though dynamic programming guarantees the optimal
alignment, this method becomes very expensive when the length of the sequence is very
large. The popular alignment algorithms, such as Smith-Waterman [25], are quite expen-

sive.

2.4.4 Hamming Distance

Hamming distance is measured between two equal length string. It is defined as the num-
ber of position at which corresponding characters differ. As the typical immune-related
mutations happen as base substitutions and thus the length of sequence keeps unchanged,

Hamming distance is a valid choice for B-cell colony analysis [12].

2.5 Related Work

Many well-known fast sequence clustering algorithms, such as CD-HIT [16], UCLUST
[10], DNACLUST [11], are based on simple threshold-based grouping, which does not
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give the ideal clustering structures. CD-HIT[16] first sorts sequences by length ,so that
the longest sequence is selected as the first seed cluster. Each of the remaining sequences
is compared with the existing seed clusters, and either merged to the seed clusters if the
distance to the seed is less than a predefined threshold or becomes a new seed cluster if not
existing ones can absorb it. It also uses k-mer based filtering for fast processing. The algo-
rithm has the complexity of O(Nn) where n < N, n is the total seed sequences, and N is
the total number of sequences. With tight thresholds, n is often very large, e.g., up to thou-
sands, leading to slow processing. The core idea of UCLUST[10] is similar to CD-HIT[16]
and has similar complexity. It uses a fast sequence search heuristic to find the closest seed
sequence, which helps when n grows large. DNACLUST](11] is another similar threshold-
based approach, but using edit-distance as the similarity measure. Apparently, this category
of methods only work as rough grouping methods to aggregate very similar ones (e.g., with
a threshold > 95% of sequence length). With a relaxed threshold, the algorithms do not
give ideal clusters and the clusters highly depend on the order of processed sequences.
Dendrograms generated from hierarchical clustering have been one of the most intu-
itive methods for clustering analysis in biomedical research. However, the general hier-
archical clustering algorithms optimized with heap have the complexity of O(N?log N),
which does not scale well for large sequence datasets. Biomedical researchers have been
using the expensive algorithms and enduring the long running times, until the size of data
grows to an acceptable level. Recently, Cai et al. propose the ESPRIT-Tree [4] method,
aiming to address the performance issues with the million-level sequence set. It uses k-mer
and Alignment based distance computation and a leveled tree to organize sequences. Each
layer in the tree has a specific layer-based distance threshold: the distances between nodes
are all larger than the threshold, while records covered by the node have distances to the
node center less than the threshold. The tree is used for nearest neighbor search for a hier-
archical clustering algorithm. It worked well on the microbial RNA sequences. However,

our experiment shows that it does not give the top-quality clustering results and its C++
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implementation is constantly slower than our Scala-based VPT-HC.

The general agglomerative hierarchical clustering framework does not have good in-
herent parallelism, as each decision of cluster merging has to depend on previous merging
results. HPC-CLUST [21] tried multi-threading approach to achieve parallelization in the
distance calculation step, which does not address the scalability bottleneck. Swarm [19]
uses a two-phase agglomerative single linkage algorithm and tries to address the input or-
der dependency. However, the algorithm is quite slow and does not scale well to large data.
For the specific type of hierarchical algorithms: the single-linkage algorithm, Olson [23]
has shown that O(/N) complexity can be achieved with O(/N') nodes under a shared mem-
ory PRAM architecture or with a O(N/log N)-node butterfly network. However, such
special architectures are not accessible to most biomedical researchers. Recently, Jin et
al. [14] propose a parallel MST-based graph clustering algorithm, equivalent to single-
linkage clustering that can be implemented with a Spark cluster on commodity servers. We
have investigated its scalability on sequence datasets and found good performance with the
increased data size.

The tree-based summarization methods have been used in stream clustering, e.g.,
BIRCH [26] and CluStream [1] for multidimensional vectors in Euclidean space, and HE-
Tree [6] for categorical data. To our knowledge, no work is reported on sequence data. We
design the SCT approach for sequence data and shows that it has very low processing costs
and is highly scalable for large datasets. Post-processing algorithms can be developed to
work with a much less number of summarized nodes to generate clustering results close to

the single linkage’s or any other hierarchical clustering.
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Approximation methods to speed up
Hierarchical Clustering(HC) for

sequence data

Since hierarchical clustering gives the best results for B-cell clones analysis, our strate-
gies for developing scalable clustering algorithm will be around optimizing this algorithm.
First, we will keep the agglomerative framework and optimize its key steps with indexing
structures. The progressively merged subclusters will be organized with a non-Euclidean
indexing structure. This indexing structure is basically used to support fast nearest neigh-
bor search. The index-enhanced framework will be compared with a recently developed
ESPRIT-tree [4] for 16sRNA Sequence-based microbial community analysis. Second, we
develop the SCT tree-based summarization approach for processing the large sequence data
in one scan, which will be highly scalable even with only a single machine. We will eval-
uate how the generated summarization can be useful as preprocessing for index-enhanced
hierarchical clustering. Finally, we still keep the single-linkage algorithm unchanged, while
evaluating its parallel implementation based on Jin et al. [14] Spark MST algorithm. Jin et
al. have experimented the Spark-based implementation for vector data up to two millions
of records. However, There is no study yet about its scalability on IR sequence data. We

adopt the Spark MST algorithm and extend it to sequence data.
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In the following, we will give more details of the three strategies and also conduct

theoretical analysis on the potential performance gain.

3.1 Speeding up Hierarchical Clustering(HC) with Index-
ing

Consider the general sequence-based agglomerative clustering framework (Algorithm 1).

There are two steps: Step 2 and Step 8 involving the nearest neighbor search.

Algorithm 1 Sequence Agglomerative Single-Linkage Clustering (S, ¢, 9)
1: input: sequence set S, the distance threshold ¢ for stopping merge, and the distance function
(s, s;) for any pair of sequences.
2: consider each sequence s; € S as a cluster and find its nearest neighbor s;.NN, which results
in a tuple (s;, s;.NN, d;)
initialize a priority queue ¢ with the tuples (s;, s;.NN, d;), sorted by d;.
while the merged cluster has distance < ¢ or the number of clusters > 2 do
(s, s.NN, d) < q.dequeue;
s’ «+ merge s and 5s.NN;
update the tuples in ¢, whose nearest neighbor is s or s.NN;
s’ NN <« find the nearest neighbor of s’ that has the distance d’;
insert (s’, s" NN, d’) into ¢;
10: end while
11: return the remaining clusters in gq.

R A

Therefore, we consider using a sequence-based indexing tree to speed up the nearest
neighbor search steps. There are two key requirements on the desired indexing structure
(1) it works on non-Euclidean metric space, and (2) it indices clusters of sequences, not
individual sequences. For the first requirement, we consider adopting existing indexing
methods for general metric spaces, such as the Vantage-Point tree (VP tree) [29, 3], and
Cover Tree [2]. For the second requirement, we use a representative-sequence method to
approximately sketch the boundary of a cluster. For single-linkage clustering, the distance

is defined as the minimum pairwise distance between two sets of representative points from
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the two compared clusters, respectively. We describe the key algorithm for maintaining the
representative sequences when merging two clusters.

Maintaining Representative Sequences in Merging. In the above framework, the
indexing algorithm will build an index on cluster objects, the distances between which
have to be defined. The cluster objects start from one sequence and can grow to large size
after the merging operations. For the single-linkage algorithm, the cluster distances can be
updated incrementally: when merging a pair of clusters s and its nearest neighbor s.NN,
the nearest neighbor of s.NN can be used as the nearest neighbor of the merged cluster,
when s and s.NN are not mutual nearest neighbors: i.e., s.NN.nearest != s. When they are
mutual nearest neighbors, the index on clusters is used to find the nearest neighbor of the
merged cluster.

We use representative sequences in each cluster for approximate cluster-cluster dis-
tance computation. Traditionally, the cluster distance in hierarchical clustering is defined
based on the pairwise distances between pairs of members from the two clusters, respec-
tively, e.g., the minimum, average, and complete linkage definitions, which are quite expen-
sive. We try to extract the representative sequences likely around the exterior boundary of
the cluster by the following recursive method. (1) If the cluster contains only one sequence,
that sequence becomes a representative sequence and the center sequence, automatically.
(2) Assume two clusters C; and 5y are merged, the representative sequence sets of which
are Ry and R,, respectively. Let set sizes be |R;| = n; and |Rs| = no. If ny + ny > k,
where k is the pre-defined maximum number of representative points per cluster, com-
pute the total sum of squared distances, 7;, for each candidate sequence r; in the union set
Ry U R,.

T, = Z diStGTLCGQ(Ti7 )
i#i

This total sum of squared distances for r; can approximately capture the location of the

sequence inside the cluster: the ones with the largest sums are around the boundary of the
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cluster. Thus, we can keep the top k£ candidates that have the largest total sums as the
representative sequences in the merged cluster. Similarly, we also keep track of the center
sequence of the cluster that has the smallest total sum. The overall update cost is controlled
by the parameter k.

Cost Analysis. Ideally, the index building time is about O(/N log N) and the nearest
neighbor search costs O(log ) distance computations. Thus, the cost of the initial step of
finding each sequence’s nearest neighbor is reduced to O(N log V) distance computations.
The steps in the loop involve one nearest neighbor search and possibly O(/N') comparisons
with the representative-sequence based cluster representation. Thus, with the help of in-
dexing, we can reduce the number of expensive distance computations to O (N log N). We
will evaluate the costs in Section 4 with the VP-tree as the indexing structure, and compare

with a recently developed index-enhanced sequence clustering method ESPRIT-tree [4].

3.2 Sequence Condensation Tree (SCT) - a fast sequence

summarization algorithm

To study more efficient single-machine processing methods, we develop the SCT fast se-
quence summarization algorithm that scans the dataset for only once and sketches the sum-
maries in the dataset. The SCT tree is a multi-way balanced tree. It grows from a single root
node to multiple layers with the inserted sequence. The SCT sequence insertion algorithm
quickly routes a new sequence along the right path on the SCT tree to the expected node
that absorbs the sequence, via a series of node-sequence similarity computation. Thus, the
cost of processing one sequence is fast, O(log N) at most.

The algorithm starts with one empty root node. The tree grows incrementally with
inserted sequences. When a new sequence comes, it follows the root node down to the leaf

by comparing the similarity between the sequence and the node. Each time the child node
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with the highest similarity (or lowest distance) is selected to move down until it reaches the
leaf. The leaf entries are checked to find the similar one (within a threshold ¢, distance(leaf
entry, sequence) < t), to absorb the sequence. If no leaf entry can absorb, a new entry
is created to contain that record. The creation of new entry may cause node split when
the pre-defined maximum number of entries is reached. Node split may be propagated
up to make the tree balanced, a similar process used by multi-way balanced trees. The
core similarity computation is defined between node and sequence. To describe the cluster
defined by the node, we have used the representative-sequence method defined previously
in Section 3.1. While a new sequence is inserted into the node, we use the total sum method
to check whether this sequence can be a new representative sequence for that node. Based
on the representative sequences, we have defined the following methods for node-sequence

similarity computation.

e Center based: A center record is dynamically maintained with the previously de-
scribed method. The center-based node-sequence similarity is simply defined as the

distance between the center and the sequence.

e Average/Min: Alternatively, we consider using the average or minimum distance
among all pairs of representative sequence and the inserted sequence to define the

node-sequence distance.

A simple structure of SCT is illustrated in Figure 3.1. The SCT has 3 levels with leaf nodes
at Level 0, the root node at Level 2, and intermediate/non-leaf nodes at Level 1. Sequences
at leaf nodes are absorbed into a leaf entry according to a predefined threshold ¢. Typically,
in B-cell colony analysis, we don’t need to separate very similar sequences, e.g., those
having their similarity higher than 95% of the sequence length, and they are merged into
one leaf entry.

The SCT has several unique advantages for clustering sequence data.
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Figure 3.1: Structure of Sequence Condensation Tree (SCT)

e The whole sequence dataset is scanned only once and thus scalable to large sequence

sets.

e The cost of processing one sequence is determined by the height of the tree, which
is approximately O(log; IV) for N sequences, where f is the number of entries per

node. For large f, e.g., f=10 or 20, the height is very limited.

e The tree can serve as a preprocessing tool for quickly filtering out singletons and
characterizing major groups, e.g., the size, scale (defined by the representative se-

quences) and the center).

e Thresholds can be applied to select the nodes for fast post-processing, e.g., generating

hierarchical clustering structures based on the selected nodes.

When using SCT as the preprocessing step of HC, we choose a threshold, 7', between the
leaf-level threshold and the bimodal threshold to identify the summary nodes in the tree
those nodes have their diameters < 7', while their parents have diameters > 7. Figure 3.2

shows simple diagrammatic representation how the summary node can be obtained while
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Some distance -
Threshold T

Figure 3.2: Cutting of Sequence Condensation Tree (SCT) at threshold T

cutting SCT at threshold T. These summary nodes are used as the input to the standard
HC algorithm to find the final clusters. Our experiments have shown SCT can generate
a significantly smaller number of summary nodes than the number of sequences in the

original dataset, which significantly reduces the overall complexity of HC.
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Experiments

The goals of the experimental evaluation include: (1) the scalability approximate hierarchi-
cal clustering : the index-enhanced hierarchical clustering approach and the SCT summa-
rization tree approach, (2) the scalability of multi-server Spark-based method: SparkMST,
(3) the clustering quality of the approximation methods, including the index-enhanced ap-
proach and SCT, (4) time cost comparison of clustering entire repertoire ( all v,j group) for
different algorithms.

First, let us discuss some of the existing HC methods used for comparative analysis

with our approximate methods.

4.1 Existing methods used for our comparative study

4.1.1 Parallel Single Linkage Clustering

Another possible option is to scale up the processing with a parallel processing computing
cluster, e.g., the Spark [31] based approach. The hope is to develop an algorithm that
speeds up nicely with the increased size of the Spark cluster. There have been several
efforts to design a parallel or distributed version of single linkage hierarchical clustering
algorithm in the past [23]. However, they work on the traditional shared memory systems,
not the cheap commodity servers or virtual machines, available in the public clouds for most

users. Recently, Jin et al. [14] have shown that single linkage hierarchical clustering can be
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possibly implemented using Spark. The core idea is to find the single-linkage structure with
the minimum spanning tree (MST) method, which is proved equivalent to single-linkage
clustering.

The MST method can be possibly parallelized in two stages. In the first stage, the
whole dataset is randomly partitioned into p smaller subsets. The complete graph is formed
with each small subset, where nodes are the records, and edge weights are the distances
between the connected records. In total there are p complete graphs and O(p?) bipartite
graphs. To avoid computing all edge weights the Prim’s algorithm is used for finding the
MST of each of these graphs. In the second stage, the MSTs are merged with the Kruskal’s
algorithm that works only the extracted edges. Figure 4.1 describes the parallel version of

the single linkage clustering.

Apply Prims Apply Kruskal's Algorithm to
algorithm merge the edge sets

o —&—
single graphs Q/
Input Dataset _?; Final MST

Bipartite graphs Edge set Second stage

First Stage

Figure 4.1: Parallel Single Linkage Hierarchical Clustering approach based on MST.

Cost and Scalability Analysis. The complexity of the Prim’s algorithm is O(N? log N)
with the help of a priority queue for N sequences. With p partitions, both the complete
graph and the bipartite graph MST algorithms have the same complexity O((N/p)? log(N/p)).
Assume there are w parallel workers in the Spark cluster, we will need to schedule O((p? +
p)/w) rounds to process all the graphs. Thus, the overall parallel running time for the first

stage is O((p?+p)/w(N/p)*log(N/p)) = O(N?/wlog(N/p)), which ideally will linearly
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scale with the number of parallel workers, w. The output of the Prim’s algorithm will con-
tain O(NN/p) edges for both types of graph. Thus, there are O(p?) of such edge sets. With
the Kruskal’s algorithm, we can progressively merge pairs of edge sets in a hierarchical
way in the second stage. There are O(p?) merges, each of which costs O((N/p) log(N/p)).
With w workers, the second stage costs about O(Np/wlog(N/p)), clearly less expensive
than the first stage. Overall, the algorithm should scale nicely to the number of working
nodes w.

We have revised the SparkMST algorithm to work with the sequence data. As the
MST algorithm generates the same result of single-linkage clustering, the quality of clus-
tering is fully preserved compared to other methods we have studied. The experimental
evaluation also shows its good scalability. While with a small number of computing nodes,

the performance gain might be slight, a larger Spark cluster does help reduce the cost.

4.1.2 ESPRIT-Tree

ESPRIT-Tree is approximate hierarchical clustering algorithm described by [4] , originally
used for microbial community analysis. This method cluster the sequences in two stage.
First partitioning tree is constructed by considering different threshold at each level i.e par-
ent node has a higher threshold than the child node and parent node radius covers the child
nodes radius. Then clustering is done recursively by finding the Nearest Neighbor(NN)
from the tree and merging the closest cluster. We have obtained the implementation of
ESPRIT-tree from authors website and modified the output according to our need for fur-

ther analysis and compared it with our index-enhanced hierarchical clustering algorithm.
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4.2 Setup

We have implemented all the candidate algorithms for sequence data. VP-tree is used as
the indexing method for the index-enhanced hierarchical clustering approach(VPT-HC).
We compare this approach with a somewhat similar approach ESPRIT-Tree [4] that was
developed for clustering microbial RNA sequences and analyzing the microbial communi-
ties. The ESPRIT-Tree implementation is available as a compiled binary from C++ source
code. All our algorithms are implemented with Scala.

The single-machine algorithms are evaluated on a Linux server equipped with Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz,16 core ,250GB memory. For parallel processing,
we have used a standalone cluster that has 11 powerful nodes (1 head node + 10 slave
nodes), each of which has 16 cores and 250 GB memory. This enables us to set up a Spark

cluster with up to 160 parallel workers.

4.3 Quality Measures and Baseline Establishment

Since the recent study has shown that the single-linkage algorithm is the best option for
B-cell colony analysis, we have adopted the standard single-linkage results as the baseline
for quality evaluation. However, most standard packages (e.g., in R or Python) are not able
to handle the scale of our sequence data, e.g., requiring the whole distance matrix as the
input. We have used the SparkMST algorithm to generate the baseline.

The ground truth cluster labels are generated based on the SparkMST clustering re-
sults. It is done by estimated ideal distance cut, based on a global sample-distance based
threshold identified using distance-to-nearest plot. With the baseline labels, we have used
Normalized Mutual Information(NMI) for determining the quality of a clustering result,
compared to the baseline clustering labels. Let the ground truth cluster labels be the “true

labels” drawn from a random variable 7', and the clustering algorithm assignments are
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the “predicted labels” drawn from another random variable P. Let H(T) and H(P) be the
entropy of the label distributions, respectively, and I(7; P) be the mutual information be-

tween the two random variables. NMI(T; P) is defined as

21(T; P)

NMIT:P) = 5o T 5 p)

To determine the cluster labels, hierarchical clustering is cut at a fixed distance thresh-
old. The threshold is determined using the following method. Gupta et al. and Ning et al.
[12, 13] have shown that B-cell mutations follow a bimodal distribution over the distance-
to-nearest graph, as shown in Figure 4.2. We find the nearest neighbor for each junction
sequence in a sample dataset and then plot the distribution (e.g., the histogram) of the dis-
tances to their nearest neighbors. The ideal distance cut is approximately located at the
valleys between the two modes. The intuition behind this method is that the closely re-
lated sequences forming clones are on the first mode and the remaining (sparse) sequences
are on the second mode. Our experiments on various real datasets also support this bi-
modal distribution. We use this method to generate the cluster labels in clustering quality

evaluation.

4.4 Datasets

We have evaluated the algorithms with the following datasets:

e Malaria Dataset: This dataset is used in studying the B-cell clones of Malaria pa-
tients [27]. The blood samples are from one patient at four-time steps: first-year-pre-
malaria, first-year-acute-malaria, second-year-pre-malaria, and second-year-acute-
malaria. We have two datasets under this category. The first one let’s say D1 which

consists of around 164 thousand sequences, having different V, J combination. And
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Figure 4.2: Threshold determination by distance-to- nearest-neighbor method (Credit [12]).

the other one lets say D2 which consists of around 169 thousand sequences, having

different V, J combination.

e The real dataset shared by Gupta et al. [12]. It Consists of two different datasets.Raw
data is available on SRA under BioProject accession no. PRINA349143 and PR-
JNA338795 .Processed data used for our analysis are directly obtained from the au-
thors. We consider them as D3 and D4 for our representation.D3 consist of sequences
collected from blood samples of a healthy adult as part of an influenza vaccination
study( 800k records).D4 consist of sequence collected from blood sample used for
the study of myasthenia gravis( 250k records with Healthy Doner around 50k). Pro-

cessed data is in a tabulated format with V(D)J assignment on raw data.
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4.5 Result and Discussion

Clustering Quality. We first show the clustering quality of the different methods based on
the NMI measure. To determine the cluster labels we first identified the threshold to cut
the hierarchical clustering algorithm which is described in Gupta et al. [12].We basically
generated a bimodal distance-to-nearest graph for each dataset and identified threshold as
the minimum valley between two peaks. We considered the top 10 biggest groups having
common V, J, and Junction length and identified true labels using MST based single link-
age algorithm(sparkMST) by cutting the dendrogram at the previously identified bimodal
threshold. We used the same threshold to cut the dendrogram for VP-Tree enhanced hier-
archical clustering algorithm denotated as *VPT-HC’ and produced labels for calculating
NMIL

Parameter Setting for SCT: We wanted to find the optimal parameter setting for the
SCT method because cutting the tree at different threshold gives a different summary size.
Threshold T for the summary node (previously discussed in section 4) between bimodal
threshold and leaf level threshold is considered. We look at the rate of reduction of original
data size to summaries by SCT based on different threshold cut. We plotted the different
range of threshold T on x-axis and rate of reduction at the corresponding threshold on
the y-axis as shown in Figure 4.3. Reduction rate is calculated as Rate %= (1 - SCT
summaries/original data size) * 100 . We choose the threshold cut which has the highest
reduction rate. We want to make sure that this threshold cut has no significance drop in
quality as shown in Figure 4.4. We found out from Figure 4.3 and 4.4 that cutting the
SCT tree closely at the bimodal threshold and applying VPT-HC gives us good result with
a significant reduction on cluster size with accuracy intact. We have used this analysis to
calculate the accuracy of SCT-VPT-HC( summary node from SCT used as input to VPT-HC
) algorithm and presented the result in Table 4.1.

We computed the mean NMI and Standard deviation and presented the result on Table

4.1 for different Datasets. We used the same top 10 groups for each dataset and identified
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Method Dataset D1 | Dataset D2 | Dataset D3 | Dataset D4
VPT-HC 0.95 £0.07 | 0.994 0.00 | 0.97 £0.06 | 0.99+ 0.00
SCT-VPT-HC 0.93 £0.07 | 0.98+0.02 | 0.96 £0.06 | 0.994 0.00
ESPRIT-Tree 0.77 £0.29 | 0.98+0.02 | 0.92 £0.07 | 0.954 0.01

Table 4.1: NMI scores on Different Dataset. 0 <= NMI <= 1. The larger, the better.

labels using ESPRIT-Tree for previously identified bimodal threshold.

From the Table 4.1 it is clear that VP-Tree enhanced algorithm (VPT-HC) has the
highest NMI score. For Dataset D2 and Dataset D4 the quality of VPT-HC is almost perfect.
The quality of SCT-VPT-HC is very close to VPT-HC for all the datasets. The ESPRIT-Tree

has quality significanlty lower than VPT-HC and SCT-VPT-HC for all the Datasets.
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Figure 4.4: NMI value after dataset size is
reduced by SCT and VPT-HC is applied on
reduced groups

Figure 4.3: Data size reduction rate with
different threshold(T) using SCT

Scalability of approximate hierarchical clustering algorithms. To evaluate the
computational costs of approximate hierarchical clustering algorithms and their scalabil-
ity, we sampled up to 20 thousand junction sequence having the same length from the
dataset D3. In Figure 4.5, the x-axis represents the sequence size in thousands and y-axis
is the time (seconds) costs. The result shows that VPT-HC and ESPRIT-Tree have a similar

pattern, slightly higher than linear complexity, which matches our analysis of complex-
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Figure 4.5: Cost comparison between different methods on Junction Sequence sampled
from Dataset D3, for single-machine algorithms

ity O(N log N). SCT-VPT-HC is fastest among all the method because SCT significantly
reduces the original input data to summaries.

Scalability of Spark based hierarchical clustering method:. We have performed
another experiment to study the scalability of spark based single-linkage hierarchical algo-
rithm. We study the scalability based on and how it scales with the increasing number of
computing nodes for the same size of data. For this, we changed the Spark cluster config-
uration with 2, 4, 6, 8, and 10 worker nodes, respectively.

We plotted two figures to understand the scalability of Spark based algorithm when
computing nodes are increased. Figure 4.6 shows the speedup when the computing nodes
are increased from 2 to 10. The speedup is calculated by considering 2 computing nodes

as a minimum number. We calculate speedup as (2 * t2)/tn where t2 is computation cost
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Figure 4.6: Speedup when the computing node are increased

while using 2 nodes and tn is the computation cost while using n nodes. From Figure 4.6
we see that good speedup is achieved with spark based method, slightly lower than the ideal
case.

Figure 4.7 also shows a good trend and significant time gain when computing nodes
are increased.

Cost comparison of approximate HC and spark based algorithm for fixed data
size: We performed the experiment to understand the time cost of our two methods VPT-
HC and SCT-VPT-HC with some existing approach like ESPRIT-Tree , Python implemen-
tation(SciPy).We also compare them with SparkMST. For this experiment, we keep the
fixed data size 20k sequences and recorded the time for execution of all these methods.
From Table 4.2 it is clear that there is a significant improvement of time by VPT-HC and

SCT-VPT-HC and they work for general HC framework. SparkMST with 11 node cluster
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Figure 4.7: Cost for computing Spark Based clustering when computing nodes are in-
creased( 60k sequences)

is fastest among them but it works only for single linkage.

Cost comparison for processing entire repertoire ( all v,j group): We performed
the experiment to understand the cost of computing clustering for entire repertoire dataset.
It involves grouping the sequence based on common v,j gene, and junction length and per-
forming hierarchical clustering on each group. For this, we have developed spark based
parallel grouping and applying HC on each group. Cost comparison of the different al-
gorithm for all our real dataset is shown in Figure 4.8. For this evaluation, we have used
VPT-HC,SCT-VPT-HC and LocalMST for processing individual group. LocalMST here
represents the single linkage hierarchical clustering using MST without spark.

Result form Figure 4.8 shows that there is significant time improvement with SCT-
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Method Time(sec)
SciPy 1200
ESPRIT-Tree 515
VPT-HC 431
SCT-VPT-HC 316
SparkMST 35

Table 4.2: Time cost comparison for different algorithms for fixed data size.

mm VPT-HC
B SCT-VPT-HC
E localMST

102 ]

processing time in seconds

101-_

D1 D2 D3 D4
Repertoire Datasets

Figure 4.8: Cost comparision for entire repertiore analysis (time in sec).

VPT-HC from VPT-HC. MST based method is fastest among all.

Discussion. Based on the evaluation results, we can conclude that all the approaches
work with different levels of performance gain. For the approximate algorithms, the index-
enhanced methods can effectively bring down the cost of the original hierarchical cluster-
ing(HC). We will experiment with other non-Euclidean indexing structures, such as Cover
Tree [2], as the plugin to the framework. In comparison, the SCT method is very fast which
quickly summarizes the data and those summaries can be used with index-enhanced hierar-
chical clustering framework. Finally, SparkMST gives the exact single-linkage clustering

results. SparkMST algorithm scales well for an increasing number of computing nodes.
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Conclusion

Recent studies have shown that hierarchical clustering is the best method for B-cell clones
analysis.However, the scale of sequence data for B-cell clones analysis is rapidly increas-
ing, to a level that the classical hierarchical clustering algorithm cannot handle anymore.
In this thesis, we study two strategies to scale up the hierarchical clustering algorithm for
large sequence datasets: the index-enhanced hierarchical clustering, the SCT single-scan
fast sequence summarization algorithm .And we also performed comparative analysis of
our developed methods with parallel hierarchical algorithm SparkMST. We have done an
extensive experimental evaluation on four real datasets. The result shows that the index-
enhanced hierarchical clustering can preserve the clustering quality almost perfectly, SCT
method can be very good for fast summarization and both these algorithms are memory ef-
ficient. We have implemented SparkMST parallel algorithm and found that SparkMST can
scale well when the number of computing machines is increased but SparkMST is appli-
cable only with single linkage. All these scalable hierarchical clustering algorithms show
great performance improvement for entire immune repertoire sequence data used for B-cell

clones analysis.
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