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ABSTRACT 
 
 
Vaishnav, Monit D. M.S. IHE, Department of Biomedical Industrial and Human Factors 
Engineering, Wright State University, 2019. A Model to Optimize Major Trauma Center 
Network Considering Patient Safety. 
 
 
Trauma is any physical injury that has the potential to cause prolonged disability and death if the 

appropriate level of care is not administered in a timely fashion. Existing approaches in the 

literature and by the American College of Surgeons (ACS) to optimize the network of trauma 

centers are limiting. To address this challenge, we introduce the Trauma Network Design Problem, 

a bi-objective mathematical model that aims at determining the optimal trauma network by 

minimizing the weighted sum of mistriages. We use the trauma network data from 2012 for the 

state of Ohio to illustrate the use of our approach and conduct sensitivity analysis. While substantial 

improvements in mistriages can be realized through our approach, the solutions are sensitivity of 

the weights in the objective terms, trauma volume, and threshold values. We also illustrate how our 

approach can be used to compare suggestions from the ACS’s NBATS tool. 
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1. INTRODUCTION 

Trauma is a body wound caused by sudden physical injury, such as from motor-vehicle crash, 

gunshot, fall, or violence which requires immediate medical attention (Cho et al., 2014). It is #1 

leading cause of death, disability, and morbidity for those under the age of 44 in the United States, 

resulting in almost 200,000 deaths and an economic burden of over $670 billion annually (ACS, 

2016). It is the most expensive, yet predictable and preventable public safety problem (Potter, J. 

D., 2011). 

A trauma center is a type of hospital equipped and operated to provide a designated level 

of care for the patients suffering from major traumatic injuries (Cho et al., 2014). The American 

College of Surgeons (ACS) has verified, and categorized trauma centers based on their level of 

care, from Level I (L1) to Level V (L5). Both L1 and L2 are designated trauma centers with access 

to high-quality medical and nursing care, and highly sophisticated surgical and diagnostic 

equipment. They are required to have 24/7 in-house coverage and prompt availability in surgical 

specialties such as orthopedic, neurology, radiology, and even burn. On the other hand, the lower 

level of trauma centers (L3-L5) are intermediate facilities that only provide a subset of these 

services, only part of the day, and serve as centers for initial care, resuscitation, and transfer to 

L1/L2 centers (ATS). Because L1/L2 center are destinations for appropriate care of trauma patients, 

we refer to them as trauma centers (TCs) in this study; all other lower level trauma facilities and 

community hospitals are referred to as non-trauma centers (NTCs).  

Because trauma is a time-sensitive disease condition, timely access to a TC is recognized 

as one of the critical components of key determinants of outcome in trauma care system (Branas et 

al., 2013; Jansen et al., 2015). It has been reported that if a severely injured trauma victim is able 
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to receive care at a TC, then their survival 

improves by 25% relative to the care 

delivered at an NTC (MacKenzie et al.,  

2006). However, according to the Centers 

for Disease Control and Prevention, “there 

is no access to an advanced trauma center 

for nearly 45 million Americans within the 

golden hour (60 minutes)” (ACS, 2016) . 

The reason for this is the geographic maldistribution of TCs in the US; in 2010, nearly 9 states had 

a clustered pattern, 22 had a dispersed pattern, and 10 had a random pattern of TC distribution in 

the U.S. (Brown et al., 2016). Figure 1 shows the distribution of nearly 520 L1/L2 TCs in the U.S. 

with the coverage of 90.8% of the total population in 60 minutes (across 30.38% land) via 

ambulance and helicopter; for 45 minutes coverage, the coverage drops substantially to 76.72% 

population (14.09% land) (Branas et al., 2005; Carr & Branas, 2010).   

Trauma decision making starts from the moment the Emergency Medical Service (EMS) 

providers arrive at the scene of the incidents. EMS field triaging is the process of accessing a 

patient’s severity of injury to determine the required level and promptness of care. The goal of the 

triage decision is to improve safety and reduce mortality, a primary safety metric. Literature 

suggests that errors in field triage, known as mistriages, can jeopardize patient safety, and is often 

used as surrogate, quantifiable, patient-safety measure (Sasser et al., 2012). A mistriage is referred 

to as an incorrect determination of the required level of care based on the patient’s underlying 

injuries (Ciesla et al., 2015). 

Several reasons contribute to mistriages: controllable (such as trauma network, injury 

assessment, EMS resources) or uncontrollable (such as weather condition, law and policy, traffic 

congestion) factors. While approaches to address some of the controllable factors such as accurate 

assessment of injury (Brown et al., 2016; Parikh et al., 2017), and EMS resources (Eastwood et al.,  

Figure 1: Network of L1/L2 TCs in U.S. Red dots=TCs, 
dark shade = 60-minute coverage via ground and air, and 

light = U.S. population 
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2015; Voskens et al., 2018)  have been studied that may lead to mistriages, very little work has 

been done in assessing the implications of a suboptimal network of TCs (quite often a primary 

factor in the EMS decisions) on mistriages. A lack of a TC within a prespecified time (per clinical 

recommendations, say 45 minutes) from the scene can cause the EMS providers to take a severely 

injured patient to a nearby NTC, which is referred to as under-triage (UT). Similarly, an excess (or 

cluster per Brown et al., 2016) of TCs in the vicinity of a scene can prompt the EMS providers to 

take a less severely injured patient to one of those (instead of an NTC), which is referred to over-

triage (OT) (Newgard et al., 2016). UT causes delay in the provision of definitive care and increases 

the likelihood of an adverse outcome (such as disability, morbidity, and even mortality) (Roland et 

al., 2014). In contrast, OT can cause overcrowding at emergency departments (Lerner, 2006), 

unnecessary trauma activation requiring trauma providers (physicians and nurses) to suspend their 

care of admitted trauma patients in the operating room and/or trauma inpatient unit to attend the 

arriving trauma patient (who does not have major trauma injuries), and loss of other salvageable 

lives in mass casualty trauma (Frykberg, 2002; Armstrong et al., 2008). OT also has another side 

effect of higher cost of care due to clinical tests, trauma activation fee, trauma surgeon charges, etc. 

The American College of Surgeons (ACS) has suggested the acceptable range for UT to be less 

than 5% and OT rate to be around 25-35% for optimal triage and system utilization (Roland et al.,  

2014).   

In the recent years, there has been an increased interest in developing approaches to analyze 

an existing network of TCs and potentially optimize it to meet the ACS recommendations. The 

ACS itself has developed a guideline, Needs Based Assessment of Trauma Systems (NBATS), that 

suggests the number of TCs in a region (but not their location), it is limited as the impact of these 

TCs on UT and OT cannot be estimated. A few studies have emerged that attempt to use 

optimization-based approaches (see Section 2) but they do not account for OT and discuss the 

sensitivity of their solutions to system parameter
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The specific objective of this study is to address the questions that were posed to us by our 

collaborating trauma decisions makers and researchers, but cannot be done so using existing 

approaches: (i) What is the optimal network of TCs that minimizes the weighted sum of mistriages 

(i.e., UT and OT)?; (ii) How sensitive is the network to changes in system parameter; and (iii) How 

does this solution compare to the current network in the state and recommended network using the 

ACS-NBATS tool? To address these questions, we propose the Trauma Network Design Problem 

(TNDP) of determining the optimal number and location of TCs in order to minimize the Weighted 

Sum of Mistriages (WSM) and present a bi-objective optimization model. The key contributions 

of our approach are as follows. First, we explicitly include both UT and OT in the objective 

function; OT was not considered in prior work limiting the negative implications on patient safety 

if TCs in a region were in excess. Second, we propose an approach to estimate it using a notional 

field triage protocol, which uses actual drive times from the scene to all the candidate hospitals 

calculated using Google Distance Matrix API. Third, because UT and OT are not in closed 

analytical form lending the optimization model not amenable to be solved using state-of-the-art 

methods, we propose a heuristic-based solution approach using binary particle swarm optimization. 

Fourth, we also evaluate the sensitivity of our solutions to the minimum trauma volume required 

for a TC to exist, choices of weights in the bi-objective function, and threshold value for UT 

estimation. Finally, we compare our solutions to that of the current network in the state of OH and 

that proposed by the ACS-NBATS tool. We illustrate the use of our approach and conduct all the 

analysis using a representative sample of nearly 6000 de-identified trauma patient data from 2012 

provided from the Ohio Department of Public Safety’s EMS Division. 

Our findings suggest that it is possible to achieve same or better performance on mistriages 

with 19 TCs versus 21 TCs in the state of OH in 2012; we observed a 26% reduction in WSM. 

Further, an increase in the minimum required total trauma volume results in a decrease in the total 

number of TCs. Solutions from our approach are also sensitive to the selection of weights; higher 
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weight on UT increases the number of TCs, while higher weight on OT decreases this number. 

Furthermore, an increase in the ‘access’ threshold value in the notional triage protocol, which 

indicates a higher access time margin for the EMS to reach the appropriate TC, results in a decrease 

in the WSM. A comparison with the ACS-NBATS prediction, which projects a total of 12 TCs for 

the state but does not specify locations, demonstrate a 31% decrease in the WSM value (46.4% 

decrease in UT rate and 35% increase in OT rate. Similarly, just a re-distribution of the 2012 

network for the same number of TCs (i.e., 21) led to a 26% reduction in WSM value (62.5% drop 

in the UT rate and 18.75% increase in the OT rate). 
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2. LITERATURE REVIEW 

The literature in healthcare facility location is vast and includes locating long-term health care 

facilities (Cardoso et al., 2015), blood bank locations (Çetin & Sarul, 101), organ-transplant centers 

(Caruso & Daniele, 2018), tuberculosis testing laboratories (Saveh-Shemshaki et al., 2012), and 

mobile healthcare units (Doerner et al., 2007). See (Ahmadi-Javid et al., 2017) for a comprehensive 

review of similar healthcare facility location models. These models vary in their objectives, may it 

be cost-based or patient safety based. Several cost-based approaches have been proposed; e.g., 

location-allocation of organ-transplant center (Zahiri et al., 2014), design of medical service 

(Shishebori & Babadi, 2015), and health centers for traumatic brain injury(Côté et al., 2007; Syam 

& Côté, 2010). Because the focus of our work is on patient safety, we now summarize key 

approaches below.  

Access to a facility has often been used as a surrogate for patient safety; for instance, (i) 

minimizing the total distance or time traveled across all constituents and (ii) maximizing the 

demand coverage with a fixed assess time. Objective (i) has been used to improve access to 

healthcare facilities (Cocking et al., 2012), optimizing the location of organ transplant centers 

(Beliën et al., 2013), solving location and dispatching problem for an ambulance system (Schmid, 

2012; Toro-Díaz et al., 2013), and optimizing shelter location in humanitarian logistics (Bayram et 

al., 2015; Chen et al., 2013). Similarly, objective (ii) has been preferred in general healthcare 

facility planning (Kim & Kim, 2013; Shariff et al., 2012), optimizing ambulance location 

(Ingolfsson et al., 2008), and relocation of ambulance station (Cheng et al., 2011), and location of 

distribution centers in a relief network (Balcik & Beamon, 2008), and emergency response facility 

during an earthquake (Salman & Yücel, 2015).  

Patient safety has been an important criterion in the trauma facility location literature. 

Branas et al., (2000), proposes a linear programming model, Trauma Resource Allocation Model 

for Ambulance and Hospitals (TRAMAH) that simultaneously locates trauma centers and air 
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ambulance with an objective of maximizing coverage of severely injured patients using Maryland 

as a test region. TRAMAH, first of its kind, considers Rand-McNally TripMaker Version 1.0 to 

calculate shortest driving time and Euclidean distance for air time and is solved using CPLEX 

Version 1.2. The model uses proxy for incident location, lacking the geographical granularity and 

does not account for the less severely injured patients. Lee et al., (2012), presents a model that 

simultaneously locates trauma centers and medical helicopters with an objective of maximizing the 

expected number of patients transported to a TC within 60 minutes and applies the model to 

nationwide trauma care system in Korea. The authors have not only incorporated busy fraction for 

medical helicopters, but also developed the Shifting Quadratic Envelopes algorithm to optimize the 

problem However, the model only considers severely injured patients and has incorporated 

Euclidean distance between demand region and a TC. Jansen et al., (2014), proposes a novel data-

driven approach with a bi-objective of minimizing the total access time and the number of 

exceptions or system related UT for Scotland (Jansen et al., 2015). They extended the model 

formulation in (Handing et al., 2016) and solves it by proposing a multifidelity surrogate-

management strategy for NSGA-II. They demonstrate the viability of their approach using real data 

from the state of Colorado’s trauma system (Jansen et al., 2018). In contrast, the model is 

computationally complex requiring considerable processing time and also fails explicitly in 

considering the over-triage cases, an important factor of patient-safety metric. The ACS Committee 

on Trauma suggested tool, Needs-Based Assessment of Trauma System (NBATS), helps determine 

the required number of TCs in a specified geographical region by allocating points based on 

population, transport time, community support, where were severely injured patients transported 

(TCs and NTCs), and total number of TCs (ACS-NBATS, 2015). However, the tool does not 

determine the location of these TCs.  

Our review of the above literature reveals the following gaps. First, the derivation of OT 

rates based on injury score and its on-scene operational decision-making process has never been 

explicitly considered and accounted in the optimization models. Second, no studies consider the 
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fact that the determination of medically-appropriate time to access a suitable hospital (TC or NTC) 

varies by the type and volume of the injury. For a severely injured patient, the proposed access time 

is 30, 45, or 60 minutes (depending on the region/state), but for a less-severely injured patient, there 

is no such access time proposed by the literature. Third, the sensitivity of the ‘access’ threshold 

values for a patient to reach its designated level of care, used for determining the UT based on the 

number and location of trauma centers has not been explored. Finally, we know of no literature that 

jointly considers the metrics of mistriages (UT and OT) to determine the optimal number and 

location of trauma centers. 

To fill the gap as mentioned above, we propose a bi-objective non-linear mathematical 

model that determines the optimal number and location of trauma centers with the aim of 

minimizing the weighted sum of mistriages. The key features of this model are the inclusion of 

actual drive times from the scene to all the candidate hospital locations, a notional field triage 

protocol to determine UT and OT rates, and sensitivity on the minimum trauma case volume, 

weights of mistriages, and threshold value for UT rate. We now present our proposed model and 

solution approach. 
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3. A BI-OBJECTIVE MODEL FOR TNDP 

We define the Trauma Network Design Problem (TNDP) as the determination of an optimal 

network that minimizes the weighted sum of mistriages (UT and OT). The model assumes that a 

geographically defined region, known as the Trauma Service Area (TSA), is known. This defined 

region could be a county, a region in the state, or the state itself. We make the following 

assumptions in developing our model: 

• The candidate locations for the TCs in the TSA are known and finite. 

• Injury Severity Score (ISS) is used as a surrogate to estimate the severity of injury at the scene. 

• Ground ambulance services are available without constraints, but the availability of air 

ambulance is limited, but known. 

• If a TC is located in a zip-code, the population of all adjacent zip-codes in the radius of 60 

minutes are assumed to be covered to emulate the ‘golden hour’ coverage often reported in the 

trauma literature. 

Tables 1 and 2 summarize the parameters and decision variables, respectively, used in our model. 

Table 1. Parameters used in model 

Notation  Definition 
i    Index for candidate location for TC; i = 1, 2, …, I 
j    Index for zip-code; j = 1, 2, …, J 
k    Index for trauma incidence; k = 1, 2, …, K 
TP   Total population in the region 
Pj   Population in zip-code j 
Aij   1, if zip-code is covered by a TC; 0, otherwise     
α    ‘Access’ time threshold for UT (minutes) 
β   ‘Bypass’ time threshold for OT (minutes) 
In-time   Inbound time for an air ambulance from its base to scene 
Load-time  Loading time of a patient to an air ambulance 
δ   Coverage parameter 
µ   Availability of air ambulance; 0≤ µ ≤1 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚   Minimum trauma volume at location i 
ISSk    Injury severity score for incident k 
ω1   Weight for under-triage (UT) 
ω2   Weight for over-triage (OT) 
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Table 2. Decision variables in the model 

Notation  Definition 
xi    1, if a candidate location is designated to be a TC; 0, otherwise 
yij   1, if a zip-code j is covered by a facility i; 0, otherwise 
𝛾𝛾𝑚𝑚𝑖𝑖     1, if an incident k is assigned to a facility i; 0, otherwise 
zj    1, if a zip-code j is covered by a facility i; 0, otherwise 
UT   Estimated UT rate from the notional field triage algorithm 
OT   Estimated OT rate from the notional field triage algorithm 
 

Minimize: ω1⋅ UT + ω2⋅ OT 

Subject to: 
  UT = f (xi, α µ, ISSk; ∀i, k)    (1) 
  OT = g (xi, β, ISSk; ∀i, k)     (2) 

∑ (𝑧𝑧𝑗𝑗  𝑃𝑃𝑗𝑗)𝑗𝑗  ≥  𝛿𝛿  𝑃𝑃      (3) 
  𝑧𝑧𝑗𝑗 ≤  ∑ (𝑦𝑦𝑚𝑚𝑗𝑗𝑚𝑚  𝐴𝐴𝑚𝑚𝑗𝑗)        ∀ 𝑗𝑗      (4) 
  ∑ 𝛾𝛾𝑚𝑚𝑖𝑖𝑖𝑖  ≥  𝑥𝑥𝑚𝑚   𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  ∀ 𝑖𝑖    (5) 
  𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑗𝑗 , 𝛾𝛾𝑚𝑚𝑖𝑖 , 𝑧𝑧𝑗𝑗  ∈  {0, 1}      ∀ 𝑖𝑖, 𝑗𝑗, 𝑘𝑘   (6) 
  𝑈𝑈𝑈𝑈 , 𝑂𝑂𝑈𝑈  ∈  [0, 1]     (7) 
  ω1 + ω2 = 1      (8) 
 

The objective of the TNDP is to minimize the weighted sum of under-triage (UT) and over-triage 

(OT) rates. Both UT and OT are estimated via functions f and g, respectively, which depend on 

several system parameters (Constraints (1) and (2)). We estimate these functions through the 

notional field triage protocol (see Section 3.1). 

Constraint (3) ensures that the total population covered across all zip-codes exceeds a pre-

specified proportion (δ) of the total population in the State. Constraints (4) define the population 

covered by the network of TCs for each zip-code. We use 𝑧𝑧𝑗𝑗 to ensure that a zip-code is only 

counted once. Constraint (5) specifies a lower bound on the trauma cases required to be handled by 

a location i if it is a TC. Constraints (6), (7), and (8) specify bounds on the decision variables and 

parameters. 

Clearly, TNDP is specific case of a more general network design problem. Such problems 

are combinatorial in nature and have been shown to be NP-hard (Daskin, 2013). TNDP exhibits the 

same characteristic where the decision to upgrade or downgrade each of the n existing hospitals is 
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binary. For n=150, this results in 2150 = 1.42x1045 solutions. To further add complexity to the TNDP, 

both UT and OT rates cannot be expressed in a closed analytical form. For a given trauma network, 

these rates depend upon the decision of the allocation to the most appropriate closest TC or NTC 

for each patient’s injury severity score. That is, as the network of TCs changes, so do the UT and 

OT rates. Considering the limitations of existing approaches to solve TNDP optimally, we explore 

the use of a heuristic based approach using the Particle Swarm Optimization (PSO) framework to 

derive near-optimal solutions in a reasonable time. We now discuss how we estimate the UT and 

OT rates for a given network based on a notional field triage algorithm and then discuss the PSO 

algorithm. 

 

3.1 A Notional Field Triage Protocol to estimate UT and OT rates 

Our proposed notional field triage protocol, similar to (Jansen et al., 2018), attempts to mimic the 

decision-making process of the EMS providers on the field. To model the EMS decisions based on 

transport times, we introduce two threshold values; (i) ‘access’ threshold for transport to the TC 

(for UT) and (ii) ‘bypass’ threshold for transport to NTC (for OT). While (i) helps determine if a 

case would be an UT, (ii) helps to determine if the case may result in an OT. Further, in line with 

the existing trauma literature, we use Injury Severity Score (ISS) as a surrogate for the severity of 

injuries on the field; ISS is a post-hoc metric evaluated after the patient arrives at the hospital. Note 

that while (i) was used in (Jansen et al., 2018), (ii) has never been discussed in the literature before; 

in that sense, our notional protocol is more general than previous work. Figure 2 shows a schematic 

of the notional protocol. 
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Our review of the literature and observations at a leading EMS agency in our region 

suggests that for severely injured patients, the EMS providers first check if a TC is accessible within 

the ‘access’ threshold time. If yes, then the patient is transported to the TC. If no, then they check 

if an air ambulance can be called in to transport the patient to the nearest TC. However, if the sum 

of the inbound-to-scene, loading, and transport-to-TC is higher than the ‘access’ threshold, then the 

EMS would most likely take the patient to a nearby NTC, resulting in a UT. In contrast, the case 

of an OT is a bit more complicated. While less severely injured patients should be taken to an NTC, 

if the additional time to reach a TC is within the ‘bypass’ threshold, then the EMS often take the 

patient to the TC, resulting in an OT. The reasons for such OT can vary; TC’s reputation, the-

bigger-the-hospital-the-better-the-care, patient/family choice, insurance situation, and even 

negotiated contracts between the EMS and TC.  

 Table 3 presents a few cases to illustrate how the protocol helps classify a specific trauma 

incidence as appropriately triaged (ATP for triaged to TC and ATN for triaged to NTC) or mistriaged 

(UT or OT). For these instances, we assume ‘access’ (taccess) and ‘bypass’ (tbypass) thresholds as 30 

Figure. 2 Notional Field Triage Protocol 
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minutes and 15 minutes, respectively. For example, consider the trauma incidence #1 with ISS>15, 

suggesting the need to transport this patient to the nearest TC. The algorithm first finds the nearest 

TC in a given network and compares the EMS ground transportation to this TC (tTC-gnd) to the 

‘access’ threshold. Because tTC-Gnd < taccess = 25<30, driving to this TC is feasible and, so the case 

is categorized as ATP. However, for incidence #2 also with ISS>15, tTC-Gnd > taccess (40>30), and so 

the possibility of air transportation is explored. The algorithm then compares the total flight time 

to this TC (tTC-air), which accounts for inbound from the nearest helicopter base, patient loading, 

and outbound to the TC, with taccess. Assuming the inbound time of 5 minutes and loading time of 

5 minutes, the total air transportation time will result in 25 minutes. In this case, tTC-air < taccess 

(25<30), and hence this incidence is classified as transportation via air, also resulting in ATP. But 

the total air transportation time incorporating inbound and loading time may not be feasible, as in 

the case of incidence #3 where tTC-air < taccess ({35+5+5} 45 <30), in which case the patient will be 

assigned to the nearest NTC by road, and the incidence will be classified as an UT. Similarly, all 

the patients meeting the inclusion criteria are run through the protocol. A similar process is 

followed for patients with ISS≤15; air transportation is not considered as the injuries are less severe, 

in line with actual EMS practice. 

 

 

 

 

 

 

 

 



14 
 

Trauma literature suggests treating the 

EMS decision making process as similar 

to a binary classification problem. 

Accordingly, we can generate a 

contingency matrix with ATP (true 

positive), ATN (true negative), UT (Type 1 error), or OT (Type 2 error); see Table 4. In that case, 

UT is calculated as (1-sensitivity), where the true positive value is the count of total appropriate 

triages, and the false negative value or type-1 error is the total under-triage cases for incidents with 

ISS>15 for a given network. Similarly, OT rate is derived as (1-specificity), where the true negative 

value is the total appropriate triage, and false positive or type-2 error is the sum of total over-triage 

cases, for incidents with ISS≤15 for a given configuration and can be determined via the below 

expressions: UT = 1 – sensitivity = 1 −  � 𝐴𝐴𝐴𝐴𝑃𝑃

𝐴𝐴𝐴𝐴𝑃𝑃+𝑈𝑈𝐴𝐴
� and OT = 1 – specificity = 1 − � 𝐴𝐴𝐴𝐴𝑁𝑁

𝐴𝐴𝐴𝐴𝑁𝑁+𝑂𝑂𝐴𝐴
� 

(Newgard et al., 2016) . 

Table 4. Contingency matrix 
 Injury Severity Score (ISS) 

ISS>15 ISS≤15 

 
Destination 

To 
TC 

Appropriate-
triage (ATP) 

Over-triage 
(OT) 

To 
NTC 

Under-triage 
(UT) 

Appropriate-
triage (ATN) 

 

Table 3. Illustration of Triage Classification by the Notional Field Triage Protocol 
(taccess = 30 minutes and tbypass = 15 minutes) 

Trauma 
incidence ISS 

Should 
be 

allocated 
to 

Time to 
nearest 
TC by 
road, 
tTC-gnd 

(mins) 

Time to 
nearest 

TC by air, 
tTC-air 

(mins) 

Time to 
nearest 
NTC by 
road, 
tNTC 

(mins) 

Likely 
EMS 

transport 

Triage 
classifi-

ation 
Reason 

1 18 TC 25 10 45 TC ATP 
tTC-gnd < taccess 

TC is within access 
threshold by road 

2 27 TC 40 15 55 TC ATP 
tTC-air < taccess 

TC is within access 
threshold by air 

3 24 TC 80 35 24 NTC UT 

tTC-gnd; tTC-air> taccess 
TC is not within 

threshold by 
road/air 

4 10 NTC 30 - 16 NTC ATN 
tNTC - tTC-gnd < tbypass           

NTC is within 
bypass threshold 

5 14 NTC 25 - 8 TC OT 
tNTC - tTC-gnd > tbypass           

NTC is not within 
bypass threshold 
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Note that the notional protocol provides a means to estimate UT and OT rates for a given 

network. We embed this protocol to provide these estimates for every candidate network of TCs 

generated by the BPSO algorithm, discussed next.   
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4. BINARY PARTICLE SWARM OPTIMIZATION 

PSO is a nature-inspired population-based metaheuristic algorithm that optimizes continuous 

nonlinear function (Kennedy James & Eberhard Russell, 1995). PSO has been implemented in a 

wide range of research areas such as facility location (Yapicioglu et al., 2007; Latha et al., 2013), 

network design (Chia-Feng Juang, 2004; Izquierdo et al., 2008), and scheduling (Bo Liu et al.,  

2007; Liao, Chao-Tang & Luarn, 2007). It is not only used in engineering but also used in various 

applications, ranging from biological and medical applications to computer graphics and music 

composition (Sedighizadeh & Masehian, 2009). The PSO framework is easy to implement, makes 

fewer assumptions about the problem, is flexible and robust, and can be applied in a parallel manner 

(Ponnambalam et al., 2009).  

The algorithm mimics the social behavior of birds flocking and fish schooling. It begins 

with a randomly distributed set of particles (potential solutions) and using mathematical operators 

the solution tries to progress to a quality measure (fitness function). As the swarm of particles 

searches over time, they tend to fly towards better search regions, resulting in the convergence to a 

global optimum solution (Clerc & Kennedy, 2002). Each particle keeps track of its position which 

associates with the best solution it has achieved so far, known as particle best (pbest). On the other 

hand, global best (gbest) keeps track of the overall best value obtained thus far by any particle in 

the swarm. 

For example, the ith particle is represented as xi= (xi1, xi2, …, xid) in the d-dimensional search 

space. The previous best position of the ith particle is represented as pbesti= (pbesti1, pbesti2, …, 

pbestid). The location of the best particle among all the population is designated as gbest= (gbest1, 

gbest2, …, gbestd). The rate of position change (velocity) for the particle is represented as vi= (vi1, 

vi2, …, vid). The velocity vid and particle xid updates of the dth dimension of the ith particle for tth 

iteration are given by: 

    𝑥𝑥𝑚𝑚𝑖𝑖𝑡𝑡 =  𝑥𝑥𝑚𝑚𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑚𝑚𝑖𝑖𝑡𝑡                                                         (9) 
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                       𝑣𝑣𝑚𝑚𝑖𝑖𝑡𝑡 = 𝐾𝐾(𝑣𝑣𝑚𝑚𝑖𝑖𝑡𝑡−1 + 𝑐𝑐1𝑟𝑟1�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑡𝑡−1� + 𝑐𝑐2𝑟𝑟2�𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑡𝑡−1�)          (10) 

where 𝑐𝑐1 and 𝑐𝑐2 are acceleration constant set at 2.05, and 𝑟𝑟1  and 𝑟𝑟2  are two uniformly distributed 

random numbers in [0,1]. Constriction coefficient, K, aides in the convergence of the particle 

swarm algorithm; K=0.7298 (Clerc & Kennedy, 2002). The particle velocity given in equation (10) 

is composed of three primary parts; velocity from the previous iterations, cognitive or selfish 

influence (which uses the particle’s personal best to improve the individual particle), and social 

influence (which represents alliance among the particle in the swarm using global best). 

Recall that the decision variables in the TNDP are binary. We, therefore, use the discrete 

binary version of the PSO, the Binary PSO (BPSO) (Kennedy & Eberhart, 1997). Accordingly, 

each particle represents its position in binary values, and the velocity of a particle is defined as the 

probability that might change it to either zero or one. The behavior and meaning of the velocity 

clamping and the inertia weight differ considerably from the real-valued PSO (Khanesar et al.,  

2007). However, the velocity update equation (10) remains unchanged, except that now the 

positions are binary and particle update equation (9) is replaced by: 

                  𝑖𝑖𝑖𝑖 �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() < 𝑆𝑆(𝑣𝑣𝑚𝑚𝑖𝑖)�, 𝑝𝑝ℎ𝑝𝑝𝑟𝑟  𝑥𝑥𝑚𝑚𝑖𝑖 = 1; 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝 𝑥𝑥𝑚𝑚𝑖𝑖 = 0,        (11) 

where the function S(v) is a sigmoid limiting transformation function,  𝑆𝑆(𝑣𝑣𝑚𝑚𝑖𝑖) = 1/(1 + 𝑝𝑝−𝑣𝑣𝑖𝑖𝑖𝑖 ),  

and rand()~Uniform [0,1]. 

The likelihood of a change in a bit value depends on S(v). Furthermore, the probability that 

a bit will be 1 equal S(vid) and a bit will be 0 equals 1 - S(vid). If it is already zero, then the probability 

that it will change is S(vid), and if it is one, then the probability that it will change is 1 - S(vid) 

(Kennedy & Eberhart, 1997). The high-level structure of the PSO is as follows: 
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Initialize population of particle with positions and velocities 
  Do 
        For each particle: 
             Evaluate constraints 
             If feasible: 
                 Evaluate fitness function using protocol 
                 If fitness value is greater than particle best: 
                     Set current solution as particle best 
                 If fitness value is greater than global best: 
                     Set current solution as global best 
             Else: 
                  Reject solution 
        End 
        For each particle: 
             Update particle velocity 
             Update particle position 
        End 
  Until  termination criterion is met 
 

In our proposed BPSO, we consider a swarm of 8 initial feasible particles, each representing a 

network of TCs, with the following representation: H = {0, 1, 0, 1, 1, 0, ..., 0, 1}; where 1 represents 

TC and 0 represents NTC, and |H| represents the total number of existing hospitals. Solutions that 

are not feasible are not evaluated and not considered as either personal or global best. As the 

mathematical model aims to minimize the objective function, the value given to in-feasible 

solutions is much higher. Hence, keeping them out of the loop. Equation (10) and (11) are applied 

for the update of velocity and particle, respectively. 

 We have used Python programming to implement our proposed BPSO and the notional 

field triage protocol on a personal computer with 8-core, each 3.4 gigahertz processors, and a total 

of 16 GB RAM. We also implemented parallel processing in Python to allow for parallel evaluation 

of each particle, which reduced the computation time to about 4 hours, nearly 60% reduction from 

a standard sequential evaluation approach. We used 8 particles in the PSO to maximally utilize the 

8 cores; preliminary experiments suggested that additional particles improved the solution quality 

minimally but increased the run time considerably. 
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5. EXPERIMENTAL SETTING 

In this section, we apply our approach to the design of a state-wide trauma network for the state of 

Ohio. The state has plain topographic nature and is a manageable size in terms of geographica l 

region. The Ohio trauma network serves over 11.6 million citizens over 44,825 mil2 area. The Ohio 

Department of Public Safety (ODPS) divides the state into 8 regions. The ODPS provided us with 

sample of over 7,000 deidentified trauma incidences for the year of 2012. After removing records 

with missing data, we were left with 6,002 records, which is about a 1/10th of the typical trauma 

incidences occurring in the state. Accordingly, we scale the minimum trauma volume at a TC (Vmin) 

to a tenth in our experiments; i.e., in the base case, we set Vmin=50 trauma patients.  

The 2012 data corresponded to a 

trauma network in the state with 21 TCs and 

140 NTCs. That is, we considered a total of 

161 potential candidate locations for TCs 

and geocoded them in terms of their latitudes 

and longitudes. Figure 3 illustrates the heat 

map of 6,002 incidents, and the location of 

TCs and NTCs during 2012. 

We used Google Distance Matrix 

API to calculate the actual drive time based 

on the quickest route from each incidence location to all the potential destination facilities; we used 

the Haversine formula for air travel times (assuming the helicopter speed of 150 mph). The resulting 

time matrix for each ground and air (each 161 × 6002 in size) served as the look-up table for the 

notional triage protocol when estimating UT and OT rates for a given network of TCs. Analysis of 

the transport mode from the incident’s scene to the hospital (TC or NTC) across 6,002 incidents 

indicated that air transport was used for 12.2% of severely injured patients. The evaluation of total 

Figure 3: Trauma Care in OH for 8 regions; stars 
indicate TCs and ‘plus’ indicate NTCs. Darker shades 

of grey indicate higher values of incidences 
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air transport time was calculated by combining the time from helicopter depot to scene (10 

minutes), loading of the patient (5 minutes) and air time from scene to nearest TC.  

To estimate, the coverage of a TC to its nearby population, we used the Haversine formula 

to estimate the travel time between the candidate hospital sites and available 1,447 zip-codes in the 

state. This helped us derive the coverage matrix (Aij). The zip-code level population was obtained 

from the United States Census Bureau. The coverage parameter was set at 0.90, which means that 

a network of TCs must cover at least 90% of zip-code-level population. 

Further, for the base case, we used 35 minutes as the ‘access’ threshold and -8 minutes as 

the ‘bypass’ threshold. Both these thresholds resulted in the UT rate of 0.16 and OT rate of 0.49, 

which closely matched the actual rates (UTactual=0.2 and OTactual=0.5) derived from the original 

2012 data. Even the trauma literature recommends the ‘access’ threshold for the transport of 

severely injured patients (ISS>15) to the nearest TC should typically be between 30 (Minnesota 

Department of Health, EMS triage and transport guidelines.)  and 45 (Jansen et al., 2018) minutes, 

which lends credibility to the base value of 35 minutes. Considering that the trauma literature often 

suggests UT as more critical patient safety measure than OT, in the base case, we set the weights 

for UT and OT rate as 0.8 and 0.2, respectively. Given these foundations, we conducted our 

experiments to (i) optimize the 2012 network, (ii) evaluate the sensitivity of the solutions to system 

parameters, and (iii) evaluated the effect of redistributing a given number of TCs as with ACS-

NBATS and the 2012 network. 

5.1 Optimizing the State’s Trauma Network 

Because we have access to 2012 data, we focus our attention on analyzing the trauma network that 

existed in that year. Figure 3 shows the distribution of the 21 TCs in the state, generally located in 

the areas of the higher population density forming a clustered pattern, as also alluded in (Brown et 

al., 2016). With 6,002 de-identified trauma patients, we estimated the UT (=0.16) and OT (=0.49) 

rates using the notional field triage protocol (see Section 3.1); the resulting WSM at ω1=0.8 and 
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ω2=0.2 was 0.23.  Not surprisingly, Regions 7 and 8 (with no TC) experienced higher UT rate 

(=1.00) and negligible OT rate; in contrast, Regions 2 and 5 yielded much lower UT rate (=0.04), 

but higher OT rates of 0.47 and 0.75, respectively. On the other hand, Region 1 with 5 TCs still 

produced an unusually high UT rate of 0.43, largely because of the clustering of 3 out of 5 TCs in 

a single urban area (Toledo), resulting in higher access times for incidents occurring outside of 

Toledo. This initial study raised an important question; can we optimize this network to minimize 

the weighted sum of mistriages?  

To optimize the network, the values of the system parameter used were the same as 

mentioned above (i.e., the base case values). We manually generated 8 feasible particles inspired 

by the 2012 network. The best solution obtained by PSO resulted in 19 TCs with the WSM value 

of 0.17, a 26% decrease from the 2012 estimate of 0.23. This optimized network reduced the UT 

rate by 50% (i.e., 0.08 vs. 0.16 in 2012), with a slight (6.12%) increase in the OT rate (i.e., 0.52 vs. 

0.49 in 2012). This network covers over 99.14% of the zip-code level population. 

Evaluation of the results depict a rather dispersed pattern of TCs across the state. To be 

specific, the distribution of TCs by each region (vs. 2012 network) is as follows: Region 1 – 3 (vs. 

5), Region 2 – 2 (vs. 3), Region 3 – 2 (vs. 2), Region 4 – 3 (vs. 4), Region 5 – 5 (vs. 6), Region 6 – 

2 (vs. 1), Region 7 – 1 (vs. 0), and Region 8 – 1 (vs. 0). Regions 7 and 8 (with 1 TC each) have a 

lower UT rate of 0.07 and 0.33, respectively. But with a TC in the region, the OT value increases; 

the OT rates for Region 7 and 8 are 0.83 and 0.33, respectively. Alternatively, a reduction from 5 

TCs to 3 TCs in Region 1 resulted in the UT rate dropping to 0.2 (compared to 0.43 in 2012).  

Figure 4 shows the difference in the heat map in the UT and OT rates for 2012 and optimized 

network for every eight regions, along with the location of TCs. 
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5.2 Sensitivity to System Parameters 

We further evaluated the sensitivity of the best solution obtained via the PSO to system parameters. 

These parameters included (i) minimum required total trauma volume at a TC, (ii) weights for UT 

and OT in the objective function, and (iii) ‘access’ threshold for UT estimation. Note that we vary 

the system parameters from their base case value; i.e., Vmin=50, ω1=0.8, ω2=0.2, α=35 minutes, and 

β=-8 minutes. We only vary one parameter at a time and keep the rest constant. 

5.2.1 Sensitivity to Minimum Required Total Trauma Volume at a TC (Vmin) 

We varied Vmin between 0 and 100 in increments of 25; 0 meant a TC can have any number of cases 

assigned to it, while 100 referred to a more stringent requirement (double of the base case). We did 

       UT = 0.16                      OT = 0.49 
2012 Network = 21 TCs 

          UT = 0.08                    OT = 0.52 
Best Network = 19 TCs 

Figure 4: Heat maps of Mistriages.  
(Note: Darker shades indicate higher values; Stars represents TCs 
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this as there is no clear guideline from ACS or state of OH on how many trauma cases a TC must 

manage to be financially viable; trauma literature has used as low as 450 (which corresponds to 45 

in our case), while anecdotal evidence suggests 1000 (which corresponds to 100 in our case)  

Our results suggest that as total trauma volume increased the WSM value also increased. 

For a smaller value of the Vmin, the network tends to have more TCs in order to minimize the UT 

rate; recall, we use ω1=0.8 for UT (base case). This is intuitive as an increase in the number of TCs 

would likely allow more severely-injured patients to reach a TC resulting in a decrease in the UT 

rate. However, it also means that less severely injured patients may now be transported to a TC (as 

there is likely a TC as close to the scene as an NTC) resulting in an increase in OT rate. However, 

as the Vmin increases, the number of TCs will decrease in order to satisfy the Vmin constraint. This 

will increase the UT rate and, so the WSM value. Figure 5 illustrates this trend. With a reduction 

in the number of TCs (as Vmin increased), the percentage of population covered at zip-code 

decreased slightly, from 99.66% to 96.15%.  
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5.2.2 Sensitivity to Weights Selection 

We varied the weights (ω1, ω2) between (1.0, 0.0) and (0.0, 0.1) in steps of 0.2 ensuring that ω1 + 

ω2 = 1. The selection of the weights does play a vital role in determining the optimal number and 

location of TCs. When ω1 >> ω2, the emphasis is on reducing the UT rate by increasing the number 

of TCs; when ω1 << ω2, the emphasis is on reducing the OT rate by decreasing the number of TCs.  

Figure 6 represents the trend in UT and OT rates, and WSM value over the weights; the 

coverage decreased from 99.14% to 91.4% as ω1 decreased. The figure shows that as ω1 decreased 

the UT rate increased and as ω2 increased the OT rate decreased, resulting in a drop in the number 

of TCs. Although a solution with (1.0, 0.0) may be attractive in terms of the lowest WSM, it comes 

at a cost. First, the corresponding network has the highest number of TCs, which put a financial 

burden on the state and the hospital system. Second, a higher corresponding OT rate (0.56) means 

a higher number of less severely injured patients at a TC, which is much more expensive then 

treating such patients at an NTC. Because such costs are difficult to estimate, vary by geographica l 

region and specific clinical conditions, we expect that this analysis will allow the trauma decision 

makers to make an informed judgement on the most appropriate network suitable for their region.  
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5.2.3 Sensitivity to the ‘Access’ Threshold Value 

For this analysis, we consider the ‘access’ threshold (α) at 30, 45, and 60 minutes and a constant 

‘bypass’ threshold of -8 minutes. Figure 7 illustrates the trend in UT and OT rates, the objective 

value (WSM), and the number of TCs. Note that as the ‘access’ threshold (α) increases, the value 

of the objective function decreases. This is intuitive as, for the same network, an increase in α 

would mean that there is more allowable time for the EMS to transport a severely injured patient 

to a TC further away from the scene, compared to lower values of α. Clearly, this will result in a 

decrease in the UT rate. This also means that the corresponding network will need fewer TCs, 

which will also decrease the OT rate. As both the UT and OT rates are falling, the WSM value 

would also observe a sudden drop. The population coverage ranged between 96.15% and 97.64%.  

 

 
 

 

 

 

 

 

Figure 7: Representation of trend in UT rate, OT rate, objective function, 
and number of TCs 
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6. EXTENDING THE USE OF OUR APPROACH 

While the analysis presented earlier focused on solving the greenfield design problem (i.e., 

identifying the best network -- number and location -- of TCs), we also wanted to extend our model 

to evaluate and optimize existing networks in which the number of TCs is already given. This may 

be useful in situations where the number of TCs cannot be increased or decreased in the region due 

to socio-economic-political reasons, but their location could be altered via upgrading some NTCs 

to TCs and downgrading a few TCs to NTCs. For instance, the ACS-NBATS tool only specifies 

the number of TCs, but not their location. Similarly, for the 2012 network in OH, we can evaluate 

if a redistribution of the same 21 TCs could have improved patient safety. To facilitate such 

analyses, we extended our model by adding an additional constraint that fixed the number of TCs 

to a prespecified value; the only decision then is their locations. 

6.1 Comparison with the ACS-NBATS tool 

Recall that the ACS-NBATS tool provides a score based on 6 elements; population, transport times, 

agency support, where were severely injured transported (TCs and NTCs), and the current number 

of TCs. We used this tool to estimate the number of TCs for the state of Ohio based on the 2012 

data. Following the approach in prior work done for the states of CA (Uribe-Leitz et al., 2017) and 

GA (Garlow & Johns, 2018), we first estimated the number of TCs in each of the 8 regions and 

used the total for the state. This analysis resulted in a total of 12 TCs. More precisely, the 

distribution by each region is as follows: Region 1 – 1, Region 2 – 1, Region 3 – 1, Region 4 – 2, 

Region 5 – 1, Region 6 – 2, Region 7 – 2, and Region 8 – 2.  

Because the NBATS tool does not specify the locations of these TCs, we used the structure 

of the best solutions identified in prior sections to determine these locations for each region. 

Essentially, we tried to mimic how a trauma decision maker would use the NBATS tool; first find 

the number of TCs based on the tool and then manually locate them. This network of 12 TCs was 

then evaluated via the notional triage protocol to derive estimates of the resulting UT and OT rates; 
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these were 0.28 and 0.31, respectively. The corresponding WSM value is 0.29 and the network 

covers 97% of the total population. Our finding suggests that as tool prioritize rural region (also 

observed in CA and GA states, it leads to higher UT rate experienced in urban regions.  

We then employed our approach (with the added constraint of 12 TCs) in order to optimize 

the location of these TCs in order to minimize the WSM. The remaining constraints were set at 

Vmin=50 patients and δ=0.90. The resulting network reduced the WSM by 31%; UT=0.15 and 

OT=0.42. Figure 8 represents the difference in the location of manually-allocated configuration 

and the optimized network of 12 TCs. The location of these TCs by each region is as follows: 

Region 1 – 2, Region 2 – 1, Region 3 – 2, Region 4 – 1, Region 5 – 4, Region 6 – 2, Region 7 – 0, 

and Region 8 – 0. The analysis of the results shows that the now the TCs are largely allocated to 

the urban regions, resulting in the lower UT rate and WSM value. The coverage was over 96%.  

Clearly, the NBATS tool is limited in its current state (no direct consideration for UT and 

OT, and no suggestions on the location of the TCs).  Our approach not only alleviates both these 

limitations, but also potentially provides a quantitative evidence to the ACS in revising the NBATS 

tool in future iterations. 

 

 
 

NBATS (manually-allocated) = 12 TCs 

Figure 8: Heat maps of Incidents with location of TCs.  
(Note: Darker shades indicate higher values of incidents; Stars represents TCs) 

NBATS (best-network by TNDP) = 12 TCs 
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6.2 Re-Distribution of 2012 Network with 21 TCs 

We posed a similar question to the 2012 network of TCs for OH: could a redistribution of the 21 

TCs within the state reduce the mistriages rate? This question as a natural extension to a prior study 

by (Brown et al., 2016) which pointed at OH having a clustered pattern; this was also indicated as 

a concern by the Trauma decision makers at the state.  

To analyze the impact of redistribution, we used the same approach as in Section 6.1. We 

used Vmin=50 patients, δ=0.90, α=35 minutes, and β=-8 minutes. We had already evaluated this 

network, which resulted in WSM=0.23 (UT=0.16 and OT=0.49) with 21 TCs. We then used the 

PSO algorithm with the added constraint of maintaining a fixed number of 21 TCs and optimized 

their location to minimize WSM.  

The results were quite interesting; the 21 TCs widely spread across the state. Figure 9 

represents the difference in heat map for UT and OT rates for both these networks. The objective 

function (WSM) reduced to 0.17 compared to 0.23; UT=0.06 and OT=0.58. That is, the UT rate 

dropped by 62.5%, but the OT rate increased by 18.75%. The reason of the sudden drop in the UT 

rate is disperse pattern of TCs in the state, which allowed more trauma patients to access a TC 

within the ‘access’ threshold (via ground or air). Specifically, the distribution of TCs by each region 

(vs 2012 network) is as follows: Region 1 – 3 (vs. 5), Region 2 – 2 (vs. 3), Region 3 – 3 (vs. 2), 

Region 4 – 4 (vs. 4), Region 5 – 5 (vs. 6), Region 6 – 3 (vs. 1), Region 7 – 0 (vs. 0), and Region 8 

– 1 (vs. 0). The network covered 98.36% of the total zip-code level population.  
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UT = 0.16                 OT = 0.49 
Current Network = 21 TCs 

       UT = 0.06                             OT = 0.58 
Best Network = 21 TCs 

Figure 9: Heat maps of Mistriages.  
(Note: Darker shades indicate higher values of mistriages; stars represent TCs) 



30 
 

7. CONCLUSION AND FUTURE RESEARCH 

Timely access of a severely injured trauma victim to a trauma center (TC) can improve survival by 

25%. Given the limitations of existing approaches in locating trauma facilities to address patient 

safety, we proposed the Trauma Network Design Problem (TNDP). The TNDP is to determine the 

optimal number and location of TCs in order to minimize the weight sum of mistriages (UT and 

OT). We introduced a notional field triage protocol to estimate the UT and OT based on the standing 

guidelines in the trauma literature. To efficiently solve the resulting model, we proposed a Particle 

Swarm Optimization (PSO) approach and illustrated its use on 2012 data for the state of Ohio.  

The key findings of our study include the following. First, optimizing the 2012 network of 

TCs in the state resulted in a reduction of 2 TCs (19 vs. 21) with a 26% reduction in the objective 

value; UT rate was reduced by 50% (0.16 to 0.08) with a very slight increase in OT rate. This 

indicated that a (near) optimal distribution of TCs can improved patient safety with lesser number 

of TCs. Second, the solutions were sensitivity to the choice of weight; a higher weight on UT 

compared to OT increased the number of TC, and vice versa. Third, a higher requirement of trauma 

volume at a TC, partly due to financial viability of a trauma center, reduces the number of TCs in 

the network and negatively impacts patient safety.  

 To compare our model with the ACS-NBATS recommendation, we solved a specific case 

of the TNDP whereby the number of TCs is given a priori, but their locations need to be determined. 

Our findings suggested that there is 31% decrease in the objective value (46.4% decrease in UT 

rate and 35% increase in OT rate). This shows that it is critical to design a network of TCs not 

purely based on ‘need’ (as in ACS-NBATS) expressed through a limited set of questions, but by 

the ‘performance’ of such a network through a geospatial analysis and optimization approach. 

Similarly, the optimized location for the re-distribution of the 21 TCs (i.e., 2012 network) led to a 

drop in UT rate by 62.5% drop, but with an increase in the OT rate by 18.75%. 
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 The successful application of the TNDP model to Ohio offers integrity and its potential 

application to the other regions in the U.S. Future work in this area could include enhancing the 

notional field triage protocol with additional features such as patient/family choice and additional 

EMS criteria. The inclusion of the cost incurred in upgrading an NTC to a TC through a 

multicriteria optimization model would allow trauma policy-maker to appropriately tradeoff cost 

vs. care in designing their network.  
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