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ABSTRACT 
 

Ganger, Zachary Durnell. M.S.M.S.E., Department of Mechanical and Materials 

Engineering, Wright State University, 2019. Growth of Two-Dimensional Molybdenum 

Disulfide via Chemical Vapor Deposition. 

 

Graphene has successfully been a 2D material applied in various fields, but it is not the 

most appropriate candidate for many electronic devices unless its bandgap structure is 

tuned through functionalization. Among all other 2D material families, transition metal 

dichalcogenides (TMDs), represented by molybdenum disulfide (MoS2), are promising 

and emerging in power electronics due to their large direct bandgap and other electronic 

properties.  2D MoS2 has been fabricated through different approaches such as 

mechanical exfoliation, chemical etching, and chemical vapor deposition (CVD).  The 

current major challenge in fabricating 2D MoS2 films is to produce a high-quality large-

area monolayer film at a controlled condition.  

This thesis study is to grow 2D MoS2 films by CVD method at various experimental 

settings and to characterize the size, thickness, and morphology of the films, towards 

finding an optimal processing condition. Experimental settings for the growth parameters 

include the precursor amounts and placements, growth time, growth temperature, carrier 

gas flow rate, substrates, and seeding promoters.  The growth films are characterized with 

the help of optical microscopy, Raman spectroscopy, scanning electron microscopy 

(SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM).   It 

is found that 1) MoS2 growth is sensitive to the carrier flow rate and temperature; and 2) 

2D MoS2 grain size and areal coverage are correlated with grow time as well as the 

distance from the promoter PTAS (perylene-3,4,9,10-tetracarboxylic acid tetrapotassium 

salt) resource.  Existence of monolayer MoS2, in the presence of PTAS promotor, is 
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confirmed with Raman Spectroscopy and AFM. Multilayer MoS2 films with grains up to 

several hundreds of micrometers, confirmed with optical microscopy, SEM and Raman, 

are successfully grown on clean Si/SiO2 substrate in the presence of PTAS promotor 

vapor in the vicinity. Growth of monolayer/multilayer MoS2 on sapphire and graphene 

was also demonstrated.  
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1 Introduction and Background 

 

1.1 Motivation 

Electronics and computing technologies have been a convenience for many decades but 

continue to become an increasingly integral part of how society functions.  As the 

technological achievements increase, so does society’s dependence and reliance on its 

electronic devices.  Therefore, it is necessary to devote time and research towards the 

improvement of electronics, both in form and function.  

Semiconductors, as opposed to metals and insulators, usually have a band gap in the 

range up 0.1 - 4eV, which electrons can overcome to contributing the conduction. [1] 

The discovery of semiconductors has shaped the field of electronics and their 

applications.  Semiconductors have many applications including diodes, transistors, 

integrated circuits, and light emitting devices and detectors.   

Properties of semiconductors, such as photoconductivity was initially discovered and 

noted in the 1870’s by Willoughby Smith while studying selenium for use in visual image 

transport by telegraph.    Semiconductor technology was brought attention as J. C. Bose 

studied and successfully produced electromagnetic wave detectors using silicon and 

galenite.  In the late 1920’s when Grondahl and Geiger designed and manufactured their 

own rectifier based on a cuprous oxide.  At the onset of WWII, it became a necessity to 

begin studying semiconducting crystals which allowed devices to be designed smaller.  

High quality, single crystal, silicon and germanium semiconductors were able to be 

reliably and repeatedly fabricated.  Upon this success, many devices were built and 

researched using silicon and germanium.  [1] In the later 1940’s research conducted by 



2 

 

the Bell Telephone Laboratories led to the discovery of the amplification effect and, 

ultimately, to the invention of the transistor.     

Silicon has long been established as a good semiconductor and continues to be a widely 

used material due to perfected fabrication and well understood properties. As research 

has progressed many compounds have been determined to be promising semiconductors. 

GaAs is a common III-V compound. other binary compounds exist such as II-VI and IV-

VI compounds, along with ternary and quaternary compounds as well. [1]   

Depending on the desired results the semiconductor may be constructed differently and 

may be doped with other elements to alter properties of the semiconductor. One common 

construction is to place oppositely doped materials into contact with each other creating a 

p-n junction. P-n junctions create a buildup of internal charge where the p and n regions 

meet, which serves as a barrier that requires an extra energy for charge to flow across the 

region.  The barrier serves to assist flow of charge in one direction and deter flow in the 

other direction, allowing the charge to be better controlled; this can be either forward 

biased or reverse biased.  [2] Devices such as diodes and transistors are built on these 

principles, and can be used as current control switches and amplifiers in microelectronics 

or optoelectronic devices used in photonics.  A couple commonly used transistors are 

bipolar junction transistors (BJTs) and field effect transistors (FETs).  Transistors are 

often used in electronics because they can operate as fast on-off switches, and can be 

used to amplify the current or voltage.  BJTs are comprised of two p-n junctions in a back 

to back setup, this creates a three-terminal carrying device.  The band gap in 

semiconductors also allows for the emission of light.  Using a p-n junction semiconductor 

diode, light can be emitted by radiative recombination of injected minority carriers into 
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the majority carriers, causing light emission from a forward biased diode; this device is 

commonly referred to as a light emitting diode (LED).  The extra energy from the 

electrons injected into the conduction band which fall into the valence band, is converted 

into photon emission.  Reverse biased p-n junction diodes can be used for the detection of 

light, this device is called a photodiode.  Light is detected in a photodiode due to the 

generation of electron-hole pairs from the presence of a light source.  These charge 

carriers affect the current through the device, allowing for detection when a change is 

measured.  [2] 

Typical semiconductor materials, such as the aforementioned silicon and germanium, 

have been and will continue to play an important role in electronic applications and 

research.  However, as electronics research continues there is an interest to create smaller 

devices with higher processing speeds.  As a result, typical semiconductor materials 

begin to run into limitations creating a need to study alternative semiconducting 

materials.  This has led many researchers to investigating two-dimensional (2D) 

materials.   

1.2 Different Kinds of 2D Semiconducting Materials 

1.2.1 First Generation 2D Materials - Graphene 

Interest in monolayer materials dates back to the mid-1900s when scientists argued that 

strictly two-dimensional (monolayer) materials would be thermodynamically unstable.  It 

was theoretically determined that thermal fluctuations in such low dimensional lattices 

would cause such large atomic displacements that the lattice would no longer hold its 

structure. A thin film’s melting temperature decreases with a decreasing thickness, so it 
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was assumed that a monolayer film would not be able to exist apart from a three-

dimensional structure.  [3]   

In 2004 scientists (Sir Andre Geim and Sir Kostya Novoselov) at the University of 

Manchester separated graphene flakes from a piece of bulk graphite (see Figure 1) using 

adhesive tape (referred to as the scotch tape method), and noticed interesting electronic 

differences as a flake of one atom thick had been obtained.  [4]  While there had been 

many attempts from other scientists to grow graphene on other surfaces, this was the first 

time that graphene had been isolated.  Upon later research, it was found that the two-

dimensional material was both continuous and had high crystal quality.  The existence of 

these materials could be justified by the fact that two-dimensional materials are 

essentially quenched in a meta-stable state having been removed from a three-

dimensional crystal and the strong interatomic bonds paired with the small size prevents 

thermal fluctuations that could cause dislocations or defects in the lattice.  [3] 

 

Figure 1: Graphene flake and atomic sketch [3] 

 

Since its discovery, graphene has been a well-researched and used material in 

nanotechnology due to its many very unique characteristic as a semiconducting material.  

It was believed that graphene would be able to replace the conventional semiconductors 
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in uses such as metal-oxide field effect transistors (MOSFETs).  However, as a result of 

its zero-band gap, graphene MOSFETs cannot be switched off, a necessity for digital 

logic usage, and have low radio frequency performance. [5]  Graphene’s zero-band gap 

also limits its uses in electronics and optoelectronics due to high leakage current. [6]  

This has led to an increased interest in other two-dimensional semiconducting materials 

to be used for electronics in nanotechnology.   

1.2.2 Second Generation 2D Materials  

With the discovery of graphene, various two-dimensional materials have emerged. The 

second generation 2D materials include layered van der Waals solids, layered ionic 

solids, 2D nonlayered materials and other carbon-based 2D materials.  The most common 

class is layered van der Waals solids represented by metal dichalcogenides.     

1.2.2.1 Layered van der Waals Solids 

Layered van der Waals solids are the more common class of two-dimensional materials 

having a crystal structure with neutral single atom thick, or polyhedral thick, layers of 

atoms.  These atoms are held together by typical ionic or covalent bonding within the 

plane, however, the layers are held together by van der Waals bonds along the third axis. 

[7]  Single layer or few layer films of these materials are often acquired via mechanical 

exfoliation and chemical exfoliation.  Mechanical exfoliation is the act of removing a 

layer of material from the bulk by some mechanical action such as the “scotch tape” 

method.  Similarly, chemical exfoliation is the act of removing a layer from the bulk 

material with the aid of some solvent.  The most commonly used method is mechanical 

exfoliation due to the fact that it does little damage to the bulk material during 
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exfoliation.  The most widely studied family within van der Waals solids is the layered 

transition metal dichalcogenides (TMDs), which will be described in detail in section 1.3.   

1.2.2.2  Layered Ionic Solids 

Rather than van der Waals bonds, the materials in this class are often held together by 

either strongly electronegative anions or strongly electropositive cations. [7]  A typical 

structure for layered ionic solids is a polyhedral layer that has been sandwiched between 

either hydroxide or halide layers. [8]  Layers are held together due to the electrostatic 

forces between the anions and cations.  To create the layers of ionic solids, via 

exfoliation, or as it is more commonly referred to as intercalation, the cations and anions 

are exchanged with larger organic cations and anions, then dispersed onto a substrate. [7]  

It is also possible to get single layers by exfoliating the bulk material via ion exchanges. 

Perovskite type oxides are a common example of such layered ionic solids exfoliated by 

this method. [8] 

1.2.2.3  2D Nonlayered Materials 

Materials in this class exhibit similar properties as the other two-dimensional materials, 

however, their crystal structure has chemical bonding in three dimensions making it 

difficult to exfoliate to atomic thicknesses like the layered solids.  There are many 

dangling bonds on the surfaces of these materials leading them to become chemically 

active in catalysis, sensing, and electronic transport. Due to the challenges of isolating 

layers, few exfoliation methods with surface modification were successful. Common 

examples of 2D nonlayered materials would be group III-V semiconductors, with a high 

carrier mobility and direct bandgap.  [8] 
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1.2.2.4 Other Carbon-Based 2D Materials 

In attempts to circumvent issues that arise from graphene’s lack of a bandgap, other 

carbon-based materials have been explored.  These materials are similar to graphene 

given that they have the same honeycomb lattice, however, the carbon atoms are replaced 

with sp- and sp2- hybridized carbon atoms.  This allotrope is called graphyne, and the 

carbon bonds are replaced by acetylenic bonds.   By varying the length of the acetylene 

chains a variety of derivatives can be formed such as graphdiyne, graphtriyne, and 

graphtetrayne (see Figure 2). [8]   

 

Figure 2: (a) α-, β-, and γ- graphyne, (b) graphdiyne, and (c) f extended graph-n-yne by 

acetylenic carbon chain length [8] 

 

Additionally, much research has been done to functionalize graphene via doping and 

introducing different defects into the lattice.  For instance, a particular family of graphene 

allotropes called pentaheptites make use of a pentagonal (C5) or heptagonal (C7) structure 

of carbon atoms rather than graphene’s typical hexagonal structure (C6).  Constructing a 

sheet of carbon with C5 or C7 bonds will create stone Wales defects.  Stone Wales defects 

are characterized by an in plane 90-degree rotation of two carbon atoms causing a change 

in the lattice structure.  What would normally be an all hexagonal structure becomes a 

combination of heptagons and pentagons (see Figure 3).  [9] 
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Figure 3: Graphene (1) and graphene allotropes pentaheptites (2-3), haeckelites (4), graphynes 

(5-6), 4:8 net (7)[10], C4 squares and C10 decagons (8), distorted hexagons (9) supergraphene 

(10), polycyclic network of C3 and C12 (11) and squarographenes (12- 13’): [9] 
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1.2.3 Third Generation 2D Materials 

The more recently studied materials are known as third-generation two dimensional 

materials.  The majority of these third-generation materials fall under the classification of 

van der Waals solids.  Many of these materials were theorized and predicted by computer 

simulations among which most still have not been successfully isolated yet.  A few of the 

successfully isolated materials were silicene, germanene, and stanene.   

1.2.3.1  Silicene, Germanene, and Stanene 

Since silicon, germanium and tin are in the same column of the periodic table as carbon 

(group IV), it was theorized that they might be able to provide similar structures.  

However, unlike graphene, these are 2D nonlayered materials which makes isolating 

them a challenge.  Despite the fact that the ground state structure of these particular third 

generation materials show signs of buckling, due to the tendency to favor a sp3 bond 

rather than an sp2 bond, they are still believed to be tunable for use as topological 

insulators. [11] Silicene was proven to be dynamically stable and has an increased band 

structure tunability when compared to graphene.   

Silicene was not successfully experimentally synthesized until 2012.  Silicene was often 

synthesized using either chemical exfoliation or vacuum deposition.  A layer of silicene 

can be removed from a piece of calcium silicide (CaSi2).  By chemically etching away Ca 

atoms using hydrochloric acid (HCl) and magnesium (Mg), a layer of interconnected Si6 

rings were revealed.  Silicene can also be deposited under vacuum conditions on various 

substrates such as Ag(111), Ag(110), Au(110), Ir(111), MoS2, ZrB2, and h-MoSi2.  Using 

similar exfoliation of CaGe2 or vacuum deposition, a layer of germanene can be separated 

from the bulk state.  [8]  The overall structures of silicene and germanene are very 
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comparable and similar to graphene (see Figure 4 (a) and (b)), however, they have slight 

structural differences in bonding angles and distances.  

Silicene and germanene exhibit many unique properties that make them materials of 

interest.  For instance, silicene shows levels of ferromagnetism, quantum spin Hall effect, 

and tunable thermal conductivity through doping.  Like silicene, germanene has half-

metallic characteristic with photonic properties in its ground state, structural stability, 

controllable magnetic properties, and large carrier mobility.  [8]  Materials that exhibit 

half-metallic properties are particularly interesting. With electrons of one spin 

orientation, the material acts as a conductor of electrons, however with electrons of the 

opposite spin orientation, act as an electronic insulator.  [12]   

 

Figure 4: (a) Silicene and (b) Germanene two-dimensional structures. [13] Stanene - two 

sublattices of tin on a Bi2Te3 substrate from (c) a top view and (d) a side view. [14] 
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The two-dimensional lattice of tin is called stanene (less commonly referred to as tinene).  

Stanene is formed by stacking two triangular sublattices of tin in the (111) plane.  The 

stacking of these sublattices creates a buckled honeycomb structure.  Unlike silicene and 

germanene, stanene is not easily formed via exfoliation. It is more commonly fabricated 

through molecular beam epitaxy (MBE).  For instance, processed tin atoms were 

evaporated and deposited onto a Bi2Te3(111) (Bismuth Telluride) substrate (see Figure 4 

(c) and (d)). Stanene also has many interesting properties such as the quantum spin Hall 

effect, low thermal conductivity, and superconductivity.  [8] 

1.2.3.2 Group V Two-Dimensional Materials 

Group V semiconducting elements have been explored as two-dimensional materials.  

This includes black phosphorous (BP), blue phosphorous, arsenene, antimonene, and 

bismuthine.  [8]  Black, white, red, blue and violet phosphorous are all allotropes of 

phosphorous, deriving their names from their fundamental bandgap, among which BP is 

the most stable phase. [15]  In BP each phosphorous atom is covalently bonded to three 

other phosphorous atoms; this creates a puckered honeycomb structure as a monolayer 

lattice.  As the thickness of BP decreases to a single layer, the band gap increases from 

nearly no band gap, about 0.3 electron volts (eV), to 1.5eV.  It shows great potential for 

electronics and photonics as it exhibits a large carrier mobility at room temperature 

around 1000 cm2 V -1 s-1 in few layers.   The most widely used method of fabrication for 

BP is mechanical exfoliation. Chemical exfoliation and CVD have also been used in 

various research efforts. The electronic structure of BP is dependent on the stacking order 

and the lattice strain, so definitive values are varied; they indicate that BP is a viable 

option for photoelectronics. [8] The blue phosphorous phase has the honeycomb structure 
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seen in graphene, when compared to the other phosphorous allotropes.  Blue phosphorous 

shares BP’s high stability and layered structure.  It is more analogous to graphite, 

however it can be exfoliated to a quasi-two-dimensional state and demonstrates a wider 

fundamental band gap than both BP and graphite.  [15] 

 

Figure 5: Top view of layered structures of (a) black phosphorous and (b) blue phosphorous. (c) 

A schematic depicting the conversion from black phosphorous to blue phosphorous and (d) a side 

view of stacked blue phosphorous.  [15] 
 

Arsenene is a single layer of gray arsenic atoms arranged in a rhombohedral structure.  It 

is most commonly fabricated using a plasma assisted ablation onto an indium arsenide 

(InAs) substrate with a thickness of 14 nm.  A couple notable properties are high thermal 

conductivity and topological phase transitions from strain modulation.  [8]  
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Similarly, the most stable allotrope of antimonene is comprised of a monolayer of gray 

antimony atoms.  In the monolayer state antimonene maintains semiconductor properties 

with a theoretical indirect bandgap of 2.28eV.  Through theoretical calculations it has 

been found that antimonene presents an array of interesting properties such as ultraviolet 

light absorption, spin-orbit coupling effect, and electronic properties that are affected by 

stone-Wales defects.  Antimonene’s band gap can be shifted from indirect to direct by 

applying a strain to the monolayer structure.  There are many fabrication processes used 

to develop the monolayer film, such as CVD, MBE, and both mechanical and chemical 

exfoliation.  [8]   

The two-dimensional allotrope of bismuth, bismuthene, transitions from semimetal to a 

semiconductor when thinned to a monolayer film.  Bismuthene was first synthesized via 

deposition on a silicon substrate. The most notably unique characteristics of bismuthene 

are its ability to remain stable against long wave vibrations, and its thermal excitations at 

high temperatures.  [8] 

1.2.3.4 Group III and Transition Metal Elements 

Additional elemental two-dimensional materials are group III and transition group 

materials.  The only group III two-dimensional material is currently borophene which 

derives from boron as a quasi-planar structure.  Using additional calculations, it was 

determined that borophene has a high work function, high magnetic properties, and an 

ultrahigh hydrogen storage capacity.  This makes borophene an ideal candidate for power 

generation, electricity transmittance and energy storage.  [8] 

Many of transition metal elements have been successfully fabricated into two-

dimensional lattices including Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt, and Au.  The most 
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suitable method of fabrication differs from material to material.  One of the most 

common methods for the synthesis of the monolayer films is solvent thermal method. 

Transition metals are thought to be good materials for electrocatalysis applications as a 

result of their optical absorption and photothermal properties.  [8] 

1.2.3.5  2D Compounds: h-BN  

Hexagonal boron nitride (h-BN) is compound with a structure similar to graphene. Due to 

the stronger bonding between boron and nitride its chemical and thermal stability is 

greater than graphene’s.  h-BN has a high thermal conductivity, and the bending elastic 

modulus is several hundred of gigapascals (GPa).  There is also a large charge transfer 

from boron to nitrogen atoms that helps to distinguish h-BN from graphene when 

considering optical and electrical properties.  h-BN is white with a band gap of about 

5.5eV, making it very useful in dielectric applications.  When graphene is placed on top 

of the h-BN, a band gap can be created due to BN’s ability of enhancing carrier mobility.  

[16]  The most prominent method of synthesis for this material is MBE.  [17]   

1.2.3.6 Transition Metal Oxides  

Oxygen is highly polarizable which create non-linear and non-uniform distribution of 

charges across the surface of the TMO film.  Properties of TMOs are affected by the 

cations and their ability to change oxidation states.  Having oxygen ions on the surface in 

the transition metal oxides (TMOs) opens up many possibilities to the functionalization 

of the films.  Tunability of the nanostructure is primarily controlled by the oxygen 

vacancies and reduction-oxidation reactions.  [18] 
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1.2.3.7 MXenes 

MXenes is the two-dimensional transition metal carbides or nitrides, derived from MAX 

phase ceramics by etching out the A group elements.  MAX are a group of layered 

structure ceramics in which M is an early transition metal, A is an A-group element 

(mostly IIIA and IVA), and X is either carbon, nitrogen, or both. [19]   Once A group 

elements are etched out, the material is left with a general chemical formula of MN+1XN.  

Each layer is created by bonding alternating hexagonal planes of M and X.  A few 

examples are Ti2C, Ti2CO2, and the Cu2X family. The general structure of MXenes can 

be seen in the image of Ti2C and Ti2CO2 (see Figure 6). Cu2S, well studied in its bulk 

form, has recently been isolated as a two-dimensional layer.[11]  Interesting properties of 

MXenes are their hardness, wear resistant capabilities, metallic conductivity, and thermal 

stability.  [20]  

 

Figure 6: Atomic structure (a) of Bare Ti2C, (b) Ti2CO2, (c) Ti2CO2-II, and (d) Ti2CO2-III [21] 
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1.3 2D TMDs and Their Emerging Applications 

1.3.1 Overview of 2D TMDs 

Third-generation two-dimensional materials have a promising future, but there are 

extensive developments that can be accomplished within the first and second-generation 

materials.  A large focus has been put on the study and development of transition metal 

dichalcogenides (TMDs).     

TMDs have a chemical formula MX2 and a layered structure of X-M-X.  [22]  TMDs  can 

be semiconductors, semi-metals, true metals, or super conductors depending on their 

composition. [23]  A larger focus is on the semiconducting TMDs, where M represents a 

transition metal and X represents a chalcogen element. [22]  A monolayer TMD is 

defined as two layers of chalcogen atoms in hexagonal planes sandwiched around a 

hexagonal layer of metallic atoms. [24]  Like graphene, TMDs possess weak non-

covalent bonds between layers, but strong in-plane covalent bonds.  

As a result of quantum confinement, the monolayer TMDs have electronic properties that 

do not exist in their bulk form. For example, some bulk semiconducting TMDs have an 

indirect band gap, however the single layer form has a direct band gap.  [23]  An indirect 

band gap is one in which the maximum energy of the valence band occurs at a different 

value of momentum then the minimum energy of the conduction band, while a direct 

band gap has both the valence maximum and conduction minimum occurring at the same 

value of momentum.  [25]  Due to their shift from indirect to direct band gap from bulk to 

single layer, these TMDs make good candidates for electronic devices like transistors and 

photodetectors.  TMDs also have found applications in photovoltaics, lithium ion 

batteries, and ultrasensitive biosensors just to name a few.   
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The most studied TMDs are molybdenum disulfide (MoS2), molybdenum diselenide 

(MoSe2), tungsten disulfide (WS2) and tungsten diselenide (WSe2).  Other notable TMDs 

are in the form of NbX2 and TaX2, where X is a chalcogen atom.  In general, MoX2 and 

WX2 will be semiconducting, while NbX2 and TaX2 will be metallic. [26][27] 

1.3.2 Structure and Properties of 2D MoS2  

MoS2 is a TMD with an X-M-X structure as discussed in the previous section.  From a 

top down view, the structure is similar in appearance to the honeycomb structure of 

graphene, however the side view shows that the S atoms sit in an offset plane from the 

Mo atoms as seen in Figure 7. 

  

Figure 7 (a) Top view of monolayer MoS2, (b) Side view of monolayer MoS2.[28] 

 

In bulk MoS2 the valence band maximum occurs at the Brillouin zone Γ point while the 

conduction band minimum occurs at the Brillouin zone K point.  The conduction band 

minimum has a strong dependence on the d orbitals of Mo and the pz orbitals of S, which 

causes a dependence in the interlayer coupling.  As the number of layers decreases to 
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one, the K point of both the valence and conduction band remains nearly constant, while 

the other points reduce or increase, respectively, leaving both the valence band maximum 

and conduction band minimum at the K point state, seen in Figure 8. [29] The resulting 

direct band gap is 1.3eV which is larger than the indirect band gap of 1.2 eV.  [27] 

 

Figure 8: Band structure of MoS2 for bulk, 4 layer, 2 layer and 1layer [29] 

 

Molybdenum disulfide in its single layer form allows valley polarization.  [30]  Valley 

polarization is a smaller part of “valleytronics”, a technique that uses the electrical charge 

of an electron to hold information, rather than the wave quantum number typically used 

in crystalline materials.  [31] It is also noteworthy that MoS2 has a high on/off ratio 

(~108) and a relatively high mobility (~17cm2V-1S-1).  This is due to the band gap, which 

is not present in graphene and makes MoS2 a promising material in electronics, especially 

in semiconductor applications.  [32] There is an increasing demand for flexible devices, 
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and MoS2 is one of the materials that can help to pave the way in this direction.  It is a 

practical option for transistors, touch screen devices and even batteries. [5]   

Applications such as photosensors make use of MoS2’s optical properties (see Figure 9).  

It has been reported that the gas adsorption on MoS2 is closely related to the 

photoresponse.  Likewise, the photoluminescence has been noticeably increased by the 

adsorption of oxygen or water molecules. A photodetector with a two-step response, fast 

and a slow response, was developed.  It was determined that the fast response was due to 

the electron-hole pair generation from the primary beam of light and the slow response is 

because of the gas desorption.  As a result, the photoresponse is noted to be dependent on 

wavelength and a shorter wavelength will induce a longer slow response.  [33] 

 

Figure 9: Schematic diagram of MoS2 photosensor device structure. [33] 

 

In the biomedical field research to use MoS2 in solid-state nanopores for DNA 

sequencing has been conducted (see Figure 10).  Current efforts are using solid-state 

nanopores to replace biopores.  Biopores have been constructed of a membrane protein 

complex, used for sequencing a single DNA molecule by allowing each of the four 

nucleotides to pass through the pore.  Each nucleotide has a characteristic change in 
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current as it passes through the pore.  Efforts to make a solid-state nanopore prior to use 

of MoS2 were deterred by the inability to create nanopores in SiNx that could differentiate 

the nucleotide charges.  A solution using MoS2 was to suspend a few layers of MoS2, 

with holes drilled using an electron microscope, on the SiNx membrane.  This solution 

increased the resolution of the membrane from 20nm to 1nm.  [34] 

 

Figure 10: MoS2 Biosensor for DNA sequencing [34] 

 

1.3.3 Fabrication of 2D MoS2  

As early as the 1950s  Robert Frindt attempted to created single layers of molybdenum 

disulfide by using an adhesive tape and synthesize the monolayers with lithium 

intercalation, it did not prove to be successful. [23]  Since then, multiple other methods 

have been explored for fabricating 2D molybdenum disulfide.   

One method is micromechanical exfoliation, much like Geim and Novoselov’s isolation 

of graphene. Flakes of molybdenum disulfide are removed from the bulk material by 

sticky tape which is then pressed to a substrate.  Some of the flakes will stick to the 

substrate because of the weak Van der Waals forces between layers, these become the 
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isolated single layer pieces of molybdenum disulfide.   Using this technique can provide 

both single and multi-layer MoS2 films.  [35]  By using this method the film retains the 

highest crystalline quality which allows its use in ultrasensitive photodetectors and digital 

circuits. [36]   

Another method that has been explored is wet chemical thinning shown in Figure 11.  

During this process, a thin multilayer film of MoS2 on SiO2/Si was put in contact with a 

nitric acid (HNO3).  When heat is provided the HNO3 reacts with the MoS2 at the edges 

and creates MoO3.  MoO3 further reacts with the HNO3 to form H2MoO4 which is soluble 

in the acid.  [37] 

 

Figure 11: (Left) Wet chemical thinning process. (Right) Optical image of MoS2 flake before (a) 

and (d) with image of MoS2 flake after etching (b) and (e). [37] 

 

There is an approach for fabricating molybdenum disulfide nanosheets from a bulk 

source with the help of various etching solutions.  The bulk molybdenum disulfide is 

immersed in an etchant such as butyllithium solution for a period of time followed by 
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ultrasonicating the LixMoS2.  The excess lithium is removed, and the thin films are 

created by filtering a diluted suspension through a membrane. [38]   

One of the more popular methods for synthesizing molybdenum disulfide is a modified 

form of chemical vapor deposition (CVD).   A typical chemical vapor deposition process 

introduces vapors with a non-reactive gas into a chamber, often a furnace, to react and 

deposit onto a substrate. [39]  Due to the complexity of getting molybdenum in a gaseous 

state, the CVD process most often placed molybdenum oxide (MoO3) and sulfur (S) 

powders in the furnace and a non-reactive gas flowed through the furnace to carry the 

evaporated precursors downstream to the substrate on which they will deposit. [40] 

Two mechanisms have been proposed to describe the reactions of MoO3 and S during 

nucleation.  One suggests that the initial reaction between S and MoO3 creates a volatile 

compound MoO3-xSy on the substrate. The complete sulfuration and reaction of this 

compound leads to a conversion into MoS2. The other proposed mechanism states that the 

MoO3 and S react in the vapor phase and then deposit onto the substrate as MoS2.  The 

nucleation occurs in the form of either planar nucleation or self-seeding nucleation, 

depending on the reactant concentrations, carrier gas flow rate, and growth temperature.  

Planar nucleation, creates a flat even layer flake, while, self-seeding nucleation, produces 

flakes with a nanoparticle at the center of the triangle.  In self-seeding nucleation, these 

thick center spots serve as a nucleation point for the growth process and can be seen and 

identified as thicker during characterization after the growth.  It was determined that 

higher temperatures, higher carrier gas flow rates, and higher reactant concentrations 

tends to lead to self-seeding nucleation.  Planar nucleation was usually a result of lower 

temperatures, flow rates and reactant concentrations.    
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The above phenomenon can be seen in Figure 12; the set of growths with temperature as 

the varying factor depict planar growth at the lower growth temperatures (725oC. 750oC, 

and 775oC), while the higher temperatures (800oC) demonstrates self-seeding growth as 

exemplified by the white dots in the images.  Similar results are obtained in the set of 

growths with varying carrier gas flow rate.  At lower flow rates (15sccm, 25sccm, and 

30sccm) planar seeding is observed as seen by the flat triangular growth.  Self-seeding 

growth is seen at higher flow rates (35sccm, 40sccm and 50sccm), characterized by the 

white/dark blue nucleation points in the center of the triangular grain. [41]  

 

Figure 12: (left) Optical images of growths with varying temperature of (a) 725oC, (b) 750oC, (c) 

775oC, and (d) 800oC. SEM image of growth at (e)750oC and (f) 800oC. (right) Optical images of 

growths with varying carrier gas flow rates of (a) 15sccm, (b) 25sccm, (c) 30sccm, (d) 35sccm, 

(e) 40sccm, and (f) 50sccm. [41] 

 

MoS2 sheets can also be fabricated using a combined method of thermal evaporation and 

atomic layer deposition (ALD) with the help of metalloporphyrin as a growth promoter.  

The Mo solution, prepared by dissolving 0.1M ammonium heptamolybdate in distilled 

water, was deposited onto a UV treated SiO2/Si substrate by spin coating. Sulfur was 

placed upstream and growth took place at 600˚C for 5 minutes with pressure of about 1 

Torr and 500sccm of Ar.  The seeding promoter (metalloporphyrin) is deposited on the 
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growth substrate first (see  Figure 13 (b)), then the Mo solution is applied along with the 

sulfurization seen as a condensed process in Figure 13 (c).  The growth on this seeding 

promoter also allows for doping of the film for use as an MoS2 based device as seen in 

Figure 13 (e).  [42] 

 

Figure 13: Seed promoter and growth processes for creating MoS2 nanosheets. (a) thermal 

evaporation, (b) metalation process, (c) growth of MoS2 sheets, (d) transfer of MoS2 sheets, and 

(d) fabrication of MoS2 device. [42] 

 

1.4 Research Objectives and Outline of this Thesis 

While there are various new generation two-dimensional materials, 2D molybdenum 

disulfide has great potentials for practical applications in the near future. The big 

challenge is the capability of producing high quality, large area, monolayer molybdenum 

disulfide.  Density and structural disorders, such as grain boundaries, vacancies and 

dislocations limit the performance of the material resulting in a lower quality film. The 

objective of this research is to study and identify key growth parameters towards 

fabricating large area, monolayer films of MoS2 in our CVD facility.  
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In chapter 2, previous research on CVD growth of MoS2 has been reviewed. The 

experimental aspects and characterizations used in this study will be presented in chapter 

3. Results will be presented and discussed in chapter 4 and concluded in chapter 5.  
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2 Current Research on Chemical Vapor Deposition of 2D 

Molybdenum Disulfide 

 

Bilgin et al [40] synthesized monolayer MoS2 at a growth temperature of 750˚C.  The 

growth took place in a tube furnace, with a 1inch quartz tube at atmospheric pressure.  An 

SiO2/Si substrate with a thickness of 300nm serves as the growth substrate, which was 

first cleaned by acetone, isopropyl alcohol (IPA) and deionized water (DI) before being 

placed faced down in an alumina (Al2O3) boat holding 10mg of molybdenum oxide 

(MoO2) powder.  For the growth, the boat was placed at the center of the tube furnace, 

while 20mg of sulfur (S) powder was placed upstream at the edge of the furnace.  Before 

starting the growth process the tube was flushed three times with argon (Ar) carrier gas. 

The tube furnace was then brought to 300˚C for an hour with 100sccm of Ar before being 

ramped up to 750˚C, at a rate of 3˚/min, held for 15 minutes and then allowed to cool 

back down to room temperature. The optical images of the obtained MoS2 films are 

shown in Figure 14.   

 

Figure 14: (Left) Graphic depicting typical layering of MoS2. (Right) Optical image of MoS2 

grown on SiO2/Si. [40] 
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Typical grain edge lengths, for this study, ranged between 10 and 50μm.  Using atomic 

force microscope (AFM) near the edge of a multilayer grain, the MoS2 thickness was 

found to be 0.5-0.8nm, indicating that the edge of the sample was a monolayer film.  

Raman spectroscopy was performed on the same grain and used to determine the 

presence of 1, 2, 3, and 4 layer MoS2. [40]     

A similar experiment was conducted by Dr. Y.-H. Lee et al [43] using various seeding 

promoters, including reduced graphene oxide (rGO), PTAS (perylene-3,4,9,10-

tetracarboxylic acid tetrapotassium salt), and PTCDA (perylene-3,4,9,10-tetracarboxylic 

dianhydride).  The synthesis took place in a hot wall furnace on SiO2/Si substrates.  

Before the growth began, a drop of seeding promoter was placed on the substrate.  The 

substrate was placed face down on top of an Al2O3 crucible containing MoO3 powder, 

with S powder in another Al2O3 crucible.  Growth temperature was brought to 650˚C at a 

rate of 15˚/minute then held at that temperature for 15 minutes with a flow of nitrogen of 

1sccm.  

 

Figure 15: Optical micrographs of MoS2 synthesized with rGO seeders [43] 
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Thickness of the film was determined, by AFM, to be approximately 0.72nm; and 

confirmed by photoluminescence (PL) and Raman spectroscopy to be monolayer.  Edge 

lengths of the grains were determined to be less than 5μm for monolayer triangular 

grains, and approximately 20μm for three pointed stars (Figure 15) formed using an rGO 

seeding promoter.  A nucleation point can be seen at the center of the stars as well. [43]  

Ling et al [44] studied PTAS’s role as a seeding promoter in a similar synthesis method.  

First a 300nm SiO2/Si substrate was cleaned with a piranha solution (H2O:HCL:H2O2-

2:1:1).  Then PTAS and crystal violet (CV) were dissolved in water, applied to the 

substrate and spread evenly across the surface using a micropipette tip; the droplet was 

then dried by N2 flow.  For other seeding promoters used such as, F16CuPc, PTCDA and 

TCTA (tris(4-carbazoyl-9-ylphenyl) amine) the promoter was placed on an upstream 

substrate then thermally evaporated onto the growth substrate. The substrate was placed 

face down on an alumina crucible containing MoO3 powder, at the center of the quartz 

tube, while another crucible containing sulfur was placed upstream.   After purging the 

system for 3 minutes with 500sccm of Ar, 5sccm of Ar was flowed through as a carrying 

gas.  Growth took place after heating the furnace to 650˚C at a rate of 15˚/min and held 

for 3 minutes at atmospheric pressure; as a result, the sulfur temperature during the 

growth was about 180˚C.  Once the growth was complete, the system was cooled quickly 

by opening the furnace and removing the quarts tube.  The reactants were then removed 

by flowing 500sccm of Ar through the tube. Shown in Figure 16 the grains were 

measured to be about 50μm in length.  Using Raman spectroscopy characteristic peaks 

were measured between the ranges of 380-382cm-1 for the E2g peak and 403-405cm-1 for 

the A1g peak, indicating a range of thicknesses from monolayer to multilayer.   [44]  
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(I)  

(II)  

Figure 16: (I) Seeding promoter application. (II) Growth substrate at various distances from 

promoter substrate. Distances of (a) 60μm, (b) 126μm, (c) 192μm, (d) 258μm, (e) 324μm, (f) 

390μm, (g) 456μm, (h) 522μm, (i) 588μm, (j) 654μm, (k) 720μm, (l) 786μm, (m) 852μm, (n) 

918μm, (o)984μm, and (p) 1050μm. (the white scale bars for the images are all 20μm) [44] 

  

Chen et al [45] introduced oxygen during the growth to prevent poisoning the precursors 

and eliminate defects in the growth.  MoO3 and S were loaded, in separate mini quarts 

tubes (about 10mm in diameter), into a three-zone furnace.  The S was placed in the first 

zone, the MoO3 was placed in the second and a sapphire (Al2O3) substrate was placed in 

the third zone about 16-18cm away from the second zone.  To clean the substrate the 

third zone was heated to 1000˚C for three hours with an Ar flow at atmospheric pressure.  
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The three zones were heated to their specified temperatures at a rate of 25˚/min, 115˚C 

for zone 1, 530˚C for zone 2, 850˚C for zone 3 and stabilized at these temperatures for 20 

minutes before growth.  Growth took place for 30 minutes with Ar and an O2 flow 

varying between 0 and 2sccm. Edge length of the growth was measured with a few grains 

as large 350μm with a growth time of 40 mins as seen in Figure 17.  Raman spectroscopy 

providing measurements of the thickness; the distance between the characteristic peaks 

was measured to be 20cm-1 indicating that monolayer MoS2 was present.   [45]  

(I)   

(II)   

Figure 17: (I) Growth set-up showing substrate, S, and MoO3 placements. (II) Growth at different 

durations (a) 5mins, (b) 10mins, (c) 15mins, (d) 20mins, (e)25mins, (f) 30mins, (g)40mins, (h) 

50mins, and (i) 60mins [45] 
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Sina Najmaei et al [6] made an effort to produce monolayer MoS2 using MoO3 

nanoribbons as a precursor for the CVD process.  MoO3 nanoribbons were placed on a 

silicon substrate with bare silicon substrates next to it at the center of a tube furnace.  At 

the end of the furnace 0.8-1.2g of sulfur was placed where the temperature was 600˚C.  

AFM was performed to determine a thickness of about 0.7nm indicating monolayer 

growth, which was confirmed using Raman spectroscopy to determine the characteristic 

peak spacing.  As seen in Figure 18 (c) MoS2 growth was measured to have edge lengths 

of approximately 10μm.  [6]  

(a)  

(b) (c)  

Figure 18: (a) Experimental setup of furnace, (b) SEM image of MoO3 nanoribbon, (c) Optical 

image of MoS2 growth [6] 

 

S. Inguva et al [46] focused on the angle of the substrate during the growth.  SiO2/Si 

substrates were held at specific angles between 0o and 90o, with 0o being flat and 90o 

standing vertically.  The sample was first extensively cleaned via ultrasonication for 3 
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minutes each in deionized water, acetone, and isopropyl alcohol.  This was followed by 

an immersion in deionized water and an acid piranha solution at 180oC for 20 minutes.  

Another ultrasonication for 3 minutes each in deionized water and isopropyl alcohol was 

carried out.  Sulfur was weighed out to 1g and placed 10cm upstream of 250mg of MoO3 

which was placed 10cm upstream of the substrate.  The furnace was purged with Ar 

having a flow rate of 400sccm, after which, the furnace was heated to 900oC at a rate of 

15o/C, and then held for the 60-minute growth.  During the growth the Ar flow rate was 

set to 100sccm.  The setup for the growth can be seen in the following sketch.  [46]    

(I)  

(II)  

Figure 19: (I) (a) Experimental set-up for CVD (b) substrate positioned at 0o and (c) substrate 

positioned at 30o, 45o, 70o, and 90o. (II)SEM images of MoS2 growth with different substrate 

angles. (a) 0o, (b) 30o, (c) 45o, (d) 70o, and (e) 90o. (f) A wide view of the 90o substrate. [46] 
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In this study, as shown in Figure 19 , nanosheets of MoS2 ranging in thickness from about 

1.3~1.5μm.  Angle of the deposition substrate affected the length of the microstructure.  

At an angle of 0o the average length was approximately 4μm and increased with 

increasing substrate angle to a length of approximately 8μm at a 90o angle.   

Wang et al [47] examined the effect of growth temperature during the synthesis using a 

similar single zone CVD furnace.  MoO3 and sulfur powders were used as precursor 

materials.  3mg of MoO3 powder was spread out on an SiO2/Si substrate, with another 

SiO2/Si substrate placed face down above the powder as the growth substrate; these were 

then placed in the center of the furnace.  500mg of S was placed in a Mo boat and placed 

in the furnace’s quartz tube on the upstream side, so as to sit outside of the furnace block.  

After being flushed with Ar at 100sccm, the furnace was heated at a rate of 18.4o/min.  

Once the furnace reached the preset temperature, e.g. 800oC, 810oC, 820oC, 830oC, 

840oC, and 850oC, the Mo boat containing S was pushed into the furnace block where the 

temperature was 200oC.  The furnace was kept at growth temperature for 5 minutes and 

then allowed to cool down naturally to room temperature.  Samples were then studied 

using Raman spectroscopy, SEM, TEM, and AFM.   

Seen in Figure 20, shape of the growth was found to be affected by the temperature of the 

furnace during the growth.  At low (800oC and 810oC) as well as high (850oC) triangular 

growth was formed, while at temperatures between (820oC-840oC) had truncated 

triangles resulting in hexagons.  Throughout the growth temperatures, additional 

nucleation points appear on the triangles and hexagons.  However, grains grown at 810oC 

have much less dots on the triangles and even have some without leaving a monolayer 

growth with an edge length of approximately 5-10μm.  AFM was conducted to measure a 
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thickness of about 6.5μm suggesting monolayer growth, verified by Raman with a 

characteristic peak difference of 20cm-1.  [47]  

(I)  

(II)  

Figure 20: (I) CVD setup for MoS2 growth. (II) Crystal growth of MoS2 synthesized at (a) 800oC, 

(b) 810oC, (c) 820oC, (d) 830oC, (e) 840oC, and (f) 850oC.  [47] 

 

A similar MoS2 growth was conducted by Wang et al [48] by separating S from the 

MoO3 and the substrate for sulfur was an insulating plate used to slow the S evaporation 

so there was enough for the growth.  The furnace was heated to 750oC at a rate of 
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15o/min and held there 30 minutes, after which it was allowed to cool down to room 

temperature naturally.  Pressure inside the chamber was 3.3Pa with an Ar flow of 

20sccm.  For the precursors, 2g of S was placed upstream near the edge of the furnace 

block 30cm from the center of the furnace.  Si substrates were placed upstream of the 

0.1g MoO3 powder placed at the center of the furnace.  Vertical nanosheets were 

measured to have a thickness of 50-100nm and Raman confirmed the bulk state of MoS2
 

with a characteristic peak separation of 25cm-1.  The length of the microstructures was 

measured to be approximately 1-1.5μm.  [48]  

(I)  

(II)  

Figure 21: (I) CVD furnace and sample set up. (II) FESEM images of MoS2 nanosheets taken a) 

closer to S source and b) closer to MoO3 source [48] 

 

In another study performed by Wang et al [49], 0.5g of S and 3mg of MoO3 were used as 

sulfur and molybdenum sources.  MoO3 was placed at the center of the furnace, 

sandwiched between two face to face SiO2/Si substrates, while the S was placed upstream 

in the cold zone.  The furnace was heated to 800oC at a rate of 15o/min and held for the 
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duration of the growth time with a carrier gas (N2) flow rate of 80sccm.  The setup and 

reaction mechanism are illustrated in Figure 22. It was determined that the MoO3 is 

sulfurated by the S vapor creating a partially sulfurated reactive intermediate.  This then 

becomes sulfurated MoS2 nanoparticles; the nanoparticles then diffuse to the surface of 

the substrate to create films of MoS2.  AFM measured a thickness of about 0.71nm, with 

Raman measuring a characteristic peak difference of 20.7cm-1 both of which suggest 

monolayer growth.  The monolayer had edge lengths of around 5-50μm. [49] 

 

Figure 22: (a) Heating furnace and precursor positioning for CVD growth (b) reaction and 

nucleation process of MoS2 thin films [49] 

 

Wang et al [50] thermally evaporated MoO3 powder and reduced it with S to create 

MoO2 microplates on SiO2/Si substrates.  The MoO2 microplates were then sulfurized 

during a high temperature (850-950oC) annealing for 0.5-6 hours creating MoS2 films.  

Annealing duration affected the number of layers in the MoS2 films.  AFM was 

performed to determine the thickness of the MoS2 film on the MoO2 microplate.  A 

thickness of about 1.5nm was measured suggesting bilayer film on the microplates; 

occasionally single layer flakes were detected at about 0.8nm.  Grain size was determined 
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by measuring the edge length of the growth; the largest grains reported were about 10-

20μm.  [50] 

A group of researchers (Zafar et al [51]) studying the intrinsic optical quality of MoS2 

films synthesized their films via a CVD process as well.  Growth substrates SiO2/Si and 

precursors MoO3 and S were placed at the center of the furnace and 30cm upstream of the 

center, respectively.  The furnace was prepared for the growth by pumping the pressure 

down to 10-1 Pa and flushed with 200sccm of Ar, the temperature was then raised to 

105oC for an hour to remove any water left in the tube.  The Ar flow rate was set to 

10sccm for the growth, while the furnace was heated to the growth temperature (600-

900oC) at a rate of 15o/min; it was then held at the growth temperature for 5 minutes. 

During the growth the S was kept at 230oC.   After the growth, the furnace was allowed 

to cool down to a specific temperature before being rapidly cooled to room temperature 

by opening the furnace and increasing the Ar flow rate to 200sccm. Edge length of the 

samples was measured to be approximately 5-10μm.   [51] 

One study performed by Zheng et al [52] focused on controlling the growth of six-point 

star shaped MoS2 grains also used a single zone furnace with S and MoO3 powders as 

precursor sources.  SiO2/Si substrates were prepared by cleaning with acetone, 

isopropanol alcohol and deionized water.  0.6g of S was placed near the left zone of the 

furnace, while 30mg of MoO3 was placed in the right zone of the furnace with the 

Si/SiO2 substrates placed 3-4cm downstream of that.  The furnace was purged with 

1000sccm of Ar for 10 minutes; after purging, the Ar flow rate was reduced to 10-15sccm 

during the growth.  For the growth, the right zone of the furnace (MoO3) was heated to 

680oC at the same time, the left zone of the furnace (S) was heated to 250oC.  Once the 
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right zone reached 680oC the S was pushed into the left zone of the furnace and kept 

there for the duration of the growth (5-30 minutes).  After the growth, the furnace was 

allowed to cool down to room temperature.  The samples were studied using Raman, PL, 

SEM, and AFM.  The experimental setup and SEM image is shown in Figure 23. 

Thickness of the MoS2 stars was determined using Raman spectroscopy.  The frequency 

difference between the E2g and A1g peaks was found to be 21cm-1 indicating that the 

growth was monolayer. [52]  

 

Figure 23: (a) CVD set-up for MoS2 growth (b) SEM imaging of MoS2 grains [52] 

 

Dumcenco et al [53] conducted a study to grow MoS2 films on a sapphire substrate via 

CVD.  Substrates were placed face down above a crucible holding about 5mg of MoO3 

powder; while about 350mg of S was placed upstream from the growth substrate.  The 

furnace was purged at 300oC for 10 minutes with an Ar flow rate of 200sccm; after 

purging, the furnace was heated to 700oC and held there for 10 minutes with a flow rate 

of 10sccm.  After growth, the furnace was allowed to cool down naturally to 570oC at 

which point the Ar flow rate was increased to 200sccm and the furnace was opened for 

rapid cooling of the sample.  Using optical microscopy, small grains can be seen near the 
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edge of the sample (Figure 24 (a)) and can also be seen starting to form together near the 

center of the sample (Figure 24 (b)).  Raman was conducted finding a peak separation of 

20cm-1 suggesting monolayer growth.   

 

Figure 24: Optical image of MoS2 grown on sapphire substrate. near (a) edge and (b) center of 

sample. [53] 

 

Research conducted by Guo et al [54] humidity sensor devices were manufactured on the 

MoS2 films via e-beam lithography.  The films were prepared using a CVD system.  First, 

4nm of Mo was deposited onto a sapphire substrate by e-beam deposition.  The Mo layer 

was then sulfurized in a CVD furnace using an H2S/H2/Ar gas mixture.  Sulfurization was 

carried out at 1000oC and 1.33kPa, for 20 minutes, after which the substrates were 

quickly cooled to 500oC.  AFM and SEM were performed to determine the quality of the 

MoS2 films.  Thickness of the film was determined to be 9nm which when considering 

the measured surface roughness of the film of 3-4nm, it is likely to be monolayer.    [54] 
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Wen et al [55] researched the use of MoS2 as a transistor was studied with fabrication 

methods of thermal vapor sulfurization (TVS) and thermal vapor deposition (TVD), both 

are variants of a CVD process.  In a TVS process the growth substrate is first covered 

with a molybdenum source, either Mo or MoO3, and then sulfurized by the sulfur vapor.  

While the TVD process is the same as the CVD growths previously addressed, in which, 

the sulfur and molybdenum source are both deposited on the surface at the same time.  

MoO3 and S precursors are loaded in separate heating zones of the furnace.  Growth 

occurs on a SiO2/Si substrate under a pressure of 30-Torr, with a carrier gas (Ar) flow 

rate of 70sccm.  The temperature of the heating zone at the MoO3 is held at 700oC while 

the temperature at the S source varies between 140oC and 152oC with a step of 3oC.  

Raman spectroscopy data was collected with the characteristic peaks difference being 

measured between 19.7cm-1 and 25.5cm-1, which was used to determine that the film 

varied in thickness between monolayer and bulk. [55]   

Wang et al at the University of Oxford [56] studied the growth of MoS2 on multilayer h-

BN compared to growth on SiO2/Si.  This was accomplished by first growing h-BN on a 

copper foil, via CVD at atmospheric pressure, with ammonia borane as a precursor; after 

growth, the h-BN film was transferred to a SiO2/Si substrate.  MoS2 was then grown on 

either the h-BN film on SiO2/Si or directly on SiO2/Si.  For the synthesis of the MoS2 

film, MoO3 and S were used as the Mo and S sources during the CVD growth.  Using a 

two-zone furnace, S was placed in the center of furnace 1, while MoO3 was placed about 

2cm from the upstream opening of furnace 2.  The furnaces were then flushed with Ar for 

60 minutes, followed by introducing S to the growth region by heating furnace 1 to 180oC 

for 15 minutes.  Next, furnace 2 was heated to about 800oC, causing the MoO3 powder to 
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heat to about 300oC and kept at this temperature with an Ar flow rate of 150sccm for 15 

minutes; then reducing the flow rate to 10sccm and holding for 25 minutes.  After the 

growth was complete, optical measurements were taken to find the average grain size; 

while Raman spectroscopy and PL were conducted to determine thickness of the films.  

Average grain size for both methods was found to be about 3-5μm, and characteristic 

peaks found via Raman were found to have a frequency difference of about 20.5cm-1 

indicating monolayer growth.  The grain shape, however, was affected by the h-BN film 

causing truncated triangles (Figure 25 (c)). PL was able to verify monolayer growth by 

finding MoS2 peaks at about 625nm and 670nm, matching other reported values for 

monolayer MoS2.  [56] 

 

Figure 25: (a) Furnace setup for CVD growth, (b) optical image of MoS2 grown on SiO2/Si 

substrate, (c) optical image of MoS2 grown on h-BN film, and (d) Raman data comparing MoS2 

growth on SiO2/Si and h-BN.[56] 
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Samad et al [57] conducted a similar study of growing MoS2 on other heterostructural 

films.  First graphene, TaS2, or SnS2 was placed on to the growth substrate; then the 

synthesis of MoS2 was carried out.  MoCl5 and S were used as precursors for the growth.   

The growth substrates were placed about 1cm away from the center of the furnace and 

heated to 420oC for a time of 1-2 minutes.  Raman, AFM and PL were conducted to 

characterize the films growth.  Raman with a peak separation of 21.5cm-1 suggested 

monolayer growth, which was confirmed by PL with the characteristic peaks at 630 and 

680nm.  AFM was carried out to determine that the film was uniform in thickness.  [57] 

 

 

Figure 26: (a) Furnace setup for CVD growth, (b) optical image of single layer MoS2-SnS2 

heterostructure (scale bar is 20μm), and (c) SEM image of single layer MoS2-SnS2 

heterostructure (scale bar is 40μm).  [57] 
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While much research has gone into the fabrication and application of MoS2, there is still 

much need to study MoS2 in order to improve process and development of the film.  

Researchers have been able to produce large area MoS2 films with edge lengths as large 

as 50μm, however there is often still impurities across the surface of the film, such as 

nucleation sites for additional layers of MoS2.  Producing large area nanosheets with a 

thickness closer to that of bulk MoS2 has also been achieved, however many of the 

electronic attributes of monolayer MoS2 diminish with an increase in film’s thickness.  

For these reasons, it is necessary to continue studying MoS2 in order to produce a low 

impurity monolayer film at a large scale.   
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3 Experimental Aspects of This Study 

 

3.1 CVD Growth 

3.1.1 The CVD setup 

The method used for molybdenum disulfide synthesis in this study was chemical vapor 

deposition. The tube furnace (Thermo Scientific™ Lindberg/Blue M™ Mini-Mite™ 

Model TF55030A-1) has the capability of programming a temperature profile.  This is a 

single zone furnace, designed to hold a 1 inch diameter tube; the heated zone is 12 inches 

in length, with a temperature range between 100oC and 1100oC. [58] The tube for the 

furnace was 1 inch in diameter and 24 inches in length, allowing for space to place the S 

powder just outside the furnace block.   

The precursors are molybdenum trioxide (MoO3) powder and sulfur (S) powder. Sulfur 

(>99% purity) will begin to melt at a temperature of 118 ˚C and with a flash point at 207 

˚C. [59] At atmospheric pressure MoO3 has a melting temperature of about 1250oC. [60] 

3.1.2 Growth Procedures 

Experimentally, the predetermined amount of precursors, i.e.  MoO3 and S, were 

measured and placed into quartz boats upstream from the growth substrate in the quartz 

tube. The substrate was placed in the center of the quartz tube, where the thermocouple is 

located and the furnace will be at the set temperature.   

The furnace was firstly purged with argon gas. The tube furnace was programmed to stay 

at room temperature for the time of purging and was then to increase the temperature at a 

rate of 15˚C per minute until it reached the growth temperature.  Once the furnace 

reached the growth temperature, it was held at that temperature for a desired amount of 
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time (1-10 minutes) before being allowed to cool back down.  The furnace was then 

allowed to cool down to a specified temperature at which point the contents of the tube 

furnace were removed and the substrate was analyzed.  The temperature at which the 

furnace was opened, and the substrate and quartz boats were removed, is referred to here 

as the quench temperature.   

The general schematic of the growth parameters can be seen Figure 27 below.  MoO3 sits 

upstream of the substrates which are placed at the thermocouple of the furnace.  S is 

placed further upstream so that part of the boat is partially in the furnace block, in order 

to get the S to reach the appropriate temperature.  The seeding promoter, when used, was 

placed on the substrate where the PTAS is labeled.   

 

Figure 27: Schematic of growth parameters. (Top) Substrate and precursor positions inside 

furnace tube. (Bottom) Growth substrates and seeding promoter placement. 
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3.2 Growth Variables 

There were a variety of variables that were considered when determining the optimal 

growth conditions.  Such variables include position of precursors, type of substrate, 

substrate surface treatment, seeding promotors, promotor application method, promotor 

concentration, the growth time, carrier gas flow rate, quenching temperature. etc. 

3.2.1   Position of Precursors 

With the one-zone furnace, the tube is not heated evenly or retain the same temperature 

along the length of the furnace.  The temperature of positions further away from the 

center of the furnace will gradually decrease from the setting furnace temperature.  In 

consideration of the temperature gradient that is present within the furnace and properties 

of the two precursors, the sulfur powders were placed much further upstream (almost out 

of the tube furnace to allow it to sublime rather than burn out), whereas the molybdenum 

oxide was placed near the thermocouple in the furnace for its high melting temperature. 

Towards optimizing the growth, the exact positions of the two precursors were varied and 

the results of the growth were accessed.  

The position of the precursor powders was altered until it seemed as though an ideal set 

of position parameters had been determined.  For instance, the MoO3 powder was placed 

in varying distances, with relation to the growth substrate, from being directly beneath 

the substrate to a distance of 2 inches upstream of the substrate.  While the sulfur 

positioning was much more limited, as moving the sulfur too far into the furnace resulted 

in burning rather than sublimation and too far away from the furnace block presented no 

sulfur vapor into the chamber for growth.  As a result, it was determined that placing the 

MoO3 powder 1.75 inches upstream of the substrate and placing the sulfur so that the 
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downstream edge was ¼ inch inside of the furnace block edge while the rest of the sulfur 

boat rested outside of the furnace block.   

3.2.2 Growth Time 

Different growth times were considered ranging from 1 minute to 10 minutes, the furnace 

was kept at the growth temperature for the chosen duration of the growth time.   

3.2.3 Carrier Gas Flow Rate 

Argon was used as the carrier gas for the growths.  The flow rate for the carrier gas was 

set at varying rates between 100sccm and 500sccm.  It was decided that the optimal flow 

rate was between 200sccm and 400sccm.   

3.2.4 Quench Temperature  

Different quench temperatures were observed to determine if there was a large impact 

from the temperature at which the growth was ended.  There was no distinct difference 

between the growths that were quenched at higher temperatures compared to growths that 

were allowed to cool down to room temperature.   

3.2.5 Substrate 

Lastly, a variety of substrates were used.  The most common substrate used was SiO2/Si, 

however sapphire was also used as was platinum and HOPG.   

Sapphire substrate has a similar lattice structure as MoS2 which made it likely to serve as 

a good deposition substrate.  

MoS2 is a semiconductor. It would be interesting to be able to grow MoS2 on conductive 

substrates for some electrical characterization and device. In this study, growth on Pt 

coated on sapphire as well as HOPG substrates were explored.  
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Graphene and molybdenum disulfide have similar lattice structures which suggests that a 

film of MoS2 might deposit on the graphene.  However, due to the high temperature used 

for growth, the graphene did not often maintain its structure.  The graphene burned off 

the substrate at higher temperatures.   

3.2.6 Substrate Surface Treatments 

Two different approaches were explored to treat the surface of the sapphire substrate 

which are physical scratching and plasma chemical etching. Different patterns of 

scratches as well as different levels of power and exposure time for the plasma etcher 

were tested.   

Two sets of scratches were examined (see Figure 28). The first substrate has a set of three 

scratches around the center of the substrate. The second substrate has a set of 5 scratches 

with 4 on the upstream side and one near the downstream side, considering most growth 

nucleates at the upstream.    

 

Figure 28: Scratch configuration for 3 and 5 scratch surface treatment 

   

In this study, the substrate surface was subjected to oxygen plasma etching, which is 

commonly used for cleaning the surface of a substrate. At higher plasma power and 

exposure time plasma etching can cause small defects that remove, on an atomic scale, 

bits of the substrate’s surface. These defects make good nucleation sites for depositing a 
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thin film.  The O2 pressure was kept at 2 bars. Etching duration and power of plasma 

etching examined are at 3min at 50 W, 5 min at 50 W, as well as 30 seconds, 1 min and 5 

minutes with a power of 100 watts.   

3.2.7 PTAS Promotors 

One major treatment is the use of a seeding promoter PTAS (perylene-3,4,9,10-

tetracarboxylic acid tetrapotassium salt). This salt is known to facilitate monolayer 

growth via catalyzing the reduced metal oxide (molybdenum oxide) on the substrate. [61] 

PTAS is soluble in water. In this study, a PTAS solution was deposited on the surface of 

the substrate before being placed in the furnace. The experimental variables are its 

concentration and application method (droplet, spray, or spin coat).   

The first method of application was to place a droplet of PTAS solution onto the surface. 

By drying the substrate with a nitrogen gun, it removed most of the PTAS that was being 

placed on the sample, which is not beneficial for the MoS2 growth. This method was 

discarded in the following experiment.  

Instead, the PTAS was applied to the growth substrate and then allowed to dry on a 

hotplate. Water evaporated from the solution leaving the PTAS on the substrate.   

This increase the amount of PTAS left on the substrate. A few different temperatures 

were examined. For the previous examinations the PTAS concentration was also 

considered by changing the number of droplets on the surface. This application created a 

coffee ring of PTAS on the surface which is not desirable.    

 In an effort to have a more uniform distribution of PTAS on the growth substrate a new 

mixture of the PTAS solution with isopropyl alcohol (IPA) was created to use an airbrush 
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spray the PTAS onto the substrate.  The effect of PTAS concentration was observed by 

changing the number of sprays applied to the growth substrate.   

To eliminate/decrease the number of defects from PTAS on the growth substrate, the last 

method was carried out by placing PTAS droplets on a separate substrate which was 

placed on the upstream side of the growth substrate.   

 

3.3 Characterizations 

3.3.1 Optical Imaging and ImageJ Quantification Analysis 

Most of the growth samples were examined by optical microscopy.  The images were 

taken using the Zeiss Axiotron microscope and the AxioVision Rel. 4.7 software.  After 

the growth process samples were placed under the microscope for rapid assessment.  

Images were taken at various magnifications across the sample in order to gain the first-

hand information of the size and coverage of the MoS2 grains.  

ImageJ software was used to process select images, for better quantitative analysis of the 

grain sizes and coverage. The basic steps of processing the images are as the following. 

The contrast between growth and the substrate in the image was first enhanced, and then 

the image was converted to a gray scale image for thresholding.  Thresholding is an 

image segmentation technique that converts the image into a binary (black/white) image. 

[62]  By doing this the grains can be clearly defined from the substrate.  Following the 

thresholding, a particle analysis was done that measured the area of individual grains.  

This data was then able to be presented as a histogram showing the percentage of 

measured grains that fall into bins of specified sizes; it was also then possible to show the 

percentage coverage by each grain size across the surface of the substrate.   
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3.3.2 Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy  

Scanning electron microscopy is another characterization technique that provides more 

analysis of the film’s composition and a better visual of the grain topography of the 

sample.   

In principle, the impinging electrons inelastically transfer energy to the electrons and 

lattice of the sample.  The interaction of the primary beam with the surface of the sample 

creates varying excitation energies for the electrons on the surface. These energies are 

dependent on the penetration depth of the primary beam.  A shallower penetration depth 

will excite a large number of low-energy electrons to be emitted from the near surface 

region, electrons of this nature will be called secondary electrons.  While a deeper 

penetration of the primary beam will cause a lower number of high-energy electrons to be 

emitted from deeper into the sample, electrons emitted in this manner are known as back 

scattered electrons.  An even deeper penetration could cause much higher-energy 

electrons to be emitted called x-rays.   

In thin films, the most commonly observed electrons are secondary electrons that have 

been emitted from the surface or near surface area.  By focusing the lens, through which 

the primary beam travels, the spot size on the surface can be narrowed down to about 

10Å.  Once the detector collects the electron energies, a topographical image for the 

scanned area can be formed.  This topographical image can help to determine the relative 

thickness of nucleations and growths on the surface.  In the monochromatic images, it is 

generally the case that the brighter regions of the image are thicker than the darker 

regions. [39]    
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While SEM can provide a good topographical depiction of the sample, energy dispersive 

x-ray spectroscopy (EDX/EDS), by collecting the excite x-rays from the studied sample 

with the help of an Si(Li) detector, is a valuable technique for identifying the chemical 

components of the sample.  The spectrum is presented as the counts against the voltage 

range. [39] Each element has different counts at different voltage ranges, allowing the 

composition of the film to be determined by looking for the characteristic peaks of Mo 

and S in the spectrum.   

 

Figure 29: (a) Penetration depth profile of primary electrons on surface (b) spectrum of emitted 

electrons from surface (c) electron emission effected by surface topography. [39] 

 

In this study, SEM a primary beam of electrons (1keV⁓5keV) was usually used to 

imaging and (5-10 keV) was used for EDS analyze the MoS2 film samples. The 

SEM/EDS characterization was performed on Gemini Scanning Electron Microscopy.  

3.3.3 Atomic Force Microscopy  

The atomic force microscopy (AFM) technique provides another opportunity to gain a 

topographical understanding of the sample.  Using a soft spring cantilever with a sharp 
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tip on the end, the topography of the sample can be measured mechanically.  In order for 

this technique to be successful it was determined that the cantilever spring constant 

needed to be less than the value of spring constant understood to exist between atoms.  

Also, the force being applied to the surface needed to be large enough to detect surface 

changes but no so large that it would displace any of the atoms on the surface being 

studied.  There are two main methods of AFM, contact and non-contact.  In contact AFM 

the tip on the cantilever comes in contact with the surface of the sample. The forces of 

contact AFM are typically in the range of 10-6 to 10-8 N. Non-contact AFM makes use of 

van der Waals forces; in this method, when the tip and the surface are widely separated 

van der Waals forces will weakly pull them together.  Similarly, when the tip and the 

surface get too close together, electron clouds overlap and van der Waals forces will 

cause them to repulse from one another.  The cantilever needs to be stiffer in non-contact 

AFM to prevent contact with the surface, this affects the forces applied to the surface, 

usually resulting in forces as low as ~10-12 N.  [39]   

In this study, AFM data and images were collected using the Agilent 5420 SPM/AFM 

microscope ran on contact mode. 

3.3.4 Raman Spectroscopy 

While the optical, SEM and AFM images can give a general idea of the size of the 

growth, it does not provide much information about the thickness of the growth.  Raman 

spectroscopy was often used to assess the quality and the thickness of the MoS2 

grains/films.  For this experiment the Raman equipment used was a Renishaw Raman 

spectrometer with 514 nm laser.   
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Raman spectroscopy is based on the inelastic scattering of light from a laser source in the 

visible or near infrared wavelength range.  The light interacts with the molecular 

vibrations on the surface of the target, the reflected light is then collected by a detector 

and the change in the energy is determined.  This change in energy gives a unique 

“fingerprint” for each element.  Every material has a series of peaks correlated to the 

wave number of the input signal, with varying intensities.  Raman spectroscopy is a tool 

used to observe the vibrational movement across atoms bonded together.   

Every atom has three degrees of freedom; these are the directions that it can move 

independently of the other directions.  In a cartesian coordinate system they are the x, y, 

and z directions.  Molecules are a grouping of atoms, that are bounded to one another, 

representing the smallest fundamental unit of a chemical compound.  The degrees of 

freedom of a molecule can be described mathematically by the equation   𝐷𝐹 = 3𝑛 − 6, 

where 𝐷𝐹 is the degree of freedom and 𝑛 is the number of atoms in the molecule.  A 

molecule will have the same three degrees of freedom as an atom, in which all atoms of 

the molecule will move simultaneously in one of the three directions of the cartesian 

coordinates.  There are three additional degrees of freedom which describe the rotation of 

the molecule about principle axes of the inertial ellipsoid of the molecule.  Again, the 

atoms in the molecule will remain unchanged with respect to each other.  The remaining 

degrees of freedom describe the change in bond lengths and angles between the atoms of 

the molecule.  The bonds between atoms are elastic and, as a result, allow periodic 

independent motion of the atoms.  Vibrations among the atoms in the molecule give rise 

to a specific energy state.  Quantum mechanics has shown that molecules will only exist 
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in definite energy states, and that as the energy of the molecule increases, the distance 

between the energy states will decrease.  [63] 

By exposing the molecule to light, it can absorb the energy of the light, via vibrations, 

and be excited from one energy state to the next.  The same vibrational excitement can 

also be accomplished by the inelastic scattering of photons with a high energy, this is 

known as the Raman effect.  Photons are emitted from a laser source in the direction of 

the specimen being studied.  The electric field from the photons causes an induced dipole 

moment in the molecule.  When the incident photons interact with the molecule those that 

are at the wavelength of the excitation radiation will be adsorbed.  As a result, the 

photons emitted from the molecule will have a longer wavelength, indicating the decrease 

in the photon energy.  Different bonds will have different energies for the excitation 

radiation, depending on the composition.  Every bond will have a characteristic value for 

the excitation radiation that is specific to that particular kind of bond, this allows the 

decay of the photon energy to detect what chemical bonds are in the molecule.  The shift 

in frequency, from the change in wavelength, is recorded and used to determine the 

composition of the molecule. [63] When the frequency shifts are plotted, peaks will be 

present at the frequencies representative of the excitation radiation. The Raman 

spectroscopy results are plotted as Raman shift / cm-1 vs intensity.   

There are several peaks that denote MoS2 on a Raman scattered plot, such as, 32 cm−1 

(E2
2g), 286 cm−1 (E1g), 383 cm−1 (E1

2g) and 408 cm−1 (A1g).  The E2
2g peak comes from 

the vibration between multiple S-Mo-S layers, which would be a weak signal in thin 

films and non-existent in a monolayer film.  The E1g peak is not visible during 

backscattering and has a weak signal as well.  S atoms vibrating in opposite directions 
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with respect to the Mo atoms in the middle causes the E1
2g peak to be noticeable in all 

thickness of the film or bulk.  Lastly, the A1g peak derives from the out-of-plane 

vibrations of the S atoms already vibrating in opposite directions.   

For thin films, the two characteristic peaks most commonly used for detecting MoS2 are 

the E1
2g and A1g peak.  These peaks are subject to shifting from different interactions 

within the sample and substrate. The thickness of the film affects the difference between 

the two characteristic peaks.  It is commonly accepted that a difference of about 20cm-1 

between the peaks suggests that the film is a single layer, and that a difference of 22cm-1 

indicates a two-layer film, once the peak distance reaches about 24cm-1 the films is 

assumed to be multilayer to bulk.  [64] [63]   

Figure 30 is a representative Raman spectrum of MoS2 taken with an incident laser of 

488nm.  Raman data collected by the 514nm laser provides similar results, however the 

incident laser wavelength effects the exact positioning of the resultant peaks.   

  

Figure 30: MoS2 characteristic peaks of bulk, 1 layer, 2 layers, 3 layers and 4 layers. [64] 
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The wavelength of the incident laser will cause a slight shift in the position of the 

characteristic peaks along the Raman shift axis.  This is to be expected, as the collected 

data derives from scattered light (from the incident laser) due to its interaction with the 

target atoms and molecules; the frequency of the scattered light is dependent on the 

frequency of the impinging laser light.  Table 1 shows the variation in position of the 

peaks as a result of a change in the initial laser wavelength.   

 

 

Table 1 Characteristic E2g
1 and A1g peaks of monolayer MoS2 excited by lasers of different 

wavelengths.[65] 
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4 Results and Discussion 

 

The results of MoS2 grown at different conditions are presented here. The impacts of the 

growth variables on the quality of the MoS2 films will be discussed.   

    

4.1 Preliminary Optimization 

4.1.1 Processing Settings 

The first goal was to determine the optimal amount of precursor powders (MoO3 and S) 

and their subsequent positions.  This was determined after using a similar study as a 

guide for initial settings, such as the growth temperature profile and powder amounts.  

The temperature profile started at room temperature (~20o C) with a 30-minute purge of 

the furnace by flowing the argon through the furnace at ~20SCFH (~9500 sccm).  After 

purging the furnace, the temperature was raised to the growth temperature (typically 

650oC) at a rate of 14 o/min (45minutes). The temperature was held for the set growth 

time. Afterwards, it was allowed to cool back down naturally to the ambient temperature.    

 

Figure 31: Typical temperature profile for growth 
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In an effort to determine the effect of growth temperature on the film development, a set 

of growths was also carried out at 750oC. Different growth times were studied ranging 

between 1 and 10 minutes, e.g. growth time was carried out for 1, 3, 5 or 10 minutes. 

 

4.1.2 Sulfur Position 

With the growth temperature set at 650oC the sulfur needed to be placed far away from 

the center of the furnace so as not to be burnt off before growth occurs but not too far 

away to have temperature below sublimation temperature. The measured S was placed 

with the downstream edge of the boat just inside the furnace block at distances of 4/16, 

3/10, and 4/10 inches.   

Experimentally, it was observed that the sulfur appears to be burned at a placement of 

4/16 inches. As a result, sulfur vapor was not at a suitable concentration for growth and 

deposition of the film.  At settings of 3/10 and 4/10 inches the sulfur did not burn and 

hence growth of MoS2 grains was observed across the substrate. With the S setting at 

3/10 inches the growth was substantially thicker compared to the growth carried out at a 

S setting of 4/10inches, as seen in Figure 32.   

 

Figure 32: (a) Growth with S position at 3/10 inches and (b) 4/10 inches. 
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4.1.3 MoO3 Position 

Having determined the S placement at 4/10 inches, MoO3 powder was placed at upstream 

of the growth substrate at distances of 1.25, 1.5, 1.75, and 2 inches to determine its ideal 

setting.   

 

Figure 33: Growth with MoO3 powder distances of (a) 1.25, (b) 1.5, (c) 1.75, and (d) 2 inches 

 

Figure 33 exhibits the representative optical images obtained at these four different 

settings. Close to equilateral triangular shaped MoS2 sheets were seen but the size is 

different obtained at different MoO3 settings. As it can be seen in Figure 33, the grain 

size increased with increasing distance MoO3 placement. The bright triangular grains on 

top are the thicker MoS2 which are undesirable. Qualitatively, the sample with the MoO3 
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placement of 1.75 inches upstream showed larger grain growth than the sample with 

MoO3 placement at 1.25 and 1.5 inches.   

Using ImageJ analysis, average grain size was measured for each setting; at 1.25 inches 

the average grain size was found to be about 3.5μm2, for MoO3 placement of 1.5 inches 

the average grain size was about 5μm2.  At a MoO3 placement distance of 1.75 inches the 

average grain size increased to about 33μm3, an at a setting of 2 inches the average grain 

size was around 60μm2. There was larger grain growth on the sample with MoO3 placed 

2 inches upstream, however it also showed much more thick grain growth, which is 

undesirable. Seen from the optical images, it was determined that the ideal placement for 

the MoO3 powder was 1.75 inches upstream from the substrate. 

4.1.4 Substrate 

Effects of substrate were also taken into consideration.  Silicon dioxide on silicon 

(SiO2/Si) was used for most of the growth. Sapphire (Al2O3) was also used due to the 

similarity to lattice structure of MoS2.  It was determined that there was generally larger 

growth on SiO2/Si and it could also be difficult to see the growth on the sapphire 

substrates. 

If a device were to be made from a growth it would require a conducting substrate.  

Having considered that, platinum and HOPG substrates were also used but not 

extensively studied.  No growth was able to be visually detected on the surface.     
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Figure 34: Substrates evaluated for growths with S at 4/10 in, MoO3 at 1.25in and carried out at 

650oC for 3mins. (a) sapphire, (b) SiO2/Si, and (c) HOPG:  

 

4.2 Surface Treatments on Sapphire Substrate 

It was noticed that defects, either from substrate preparation or any other aspect of the 

growth process, often served as nucleation points for the growth.  In an effort to 

determine the effect of defects on nucleation, a series of growths were carried out using 

surface defects without seeding promoters.  Two methods were examined, scratching the 

surface of the substrate and exposing the substrate to plasma etching.   

Figure 35 presents the optical images of the samples grown on the sapphire substrates 

with physical scratches. Either there are 3 or 5 large scratches over the substrate, there are  
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little or almost no triangular grain growth.  The scratches did not provide the necessary 

nucleations points for the deposition of large area MoS2 on the substrate.   However, 

Raman data shows that the growth that was obtained was monolayer (see Figure 36) 

 

Figure 35: Growths with S at 4/10 in, MoO3 at 1.25in and carried out at 650oC for 3mins (a) 

Sample with 3 scratch surface treatment on sapphire at 100x near the center of the sample and 

(b) Sample with 5 scratch surface treatment on sapphire at 100x at the upstream edge 
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Figure 36: Raman Spectroscopy for sample (a) with 3 scratches and a peak separation of 18 and 

(b) with 5 scratches and a peak separation of 19, both indicating monolayer film. 

Figure 37-Figure 39 presents the images of the samples grown on sapphire with O2 plasma 

etching at various conditions, i.e. 50W for 3min, 50W for 5min, 100W for 30s 100W for 

1min, and 100W for 3min. On the substrate etched for 3min at 50W, some areas were 

able to seen growing together on the sample, as seen in Figure 37 (a). However, the larger 

grains also had a thicker growth than the smaller grains.  At the same power for 5 

minutes, there are very small triangular nucleations that did not grow together seen in 

Figure 37 (b).  It is possible that the extended exposure of plasma etching removed 
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enough surface material that there were less defects present than there were at the 3-

minute exposure.   

The substrate etched for 30 seconds at 100W, had small clusters grew on the substrate but 

no triangular growth could be seen across the substrate. When the exposure time was 

increase to 1-minute, there was almost no triangular nucleation to suggest MoS2.  Instead, 

the nucleation took on the appearance of deposited molybdenum bars, as seen in Figure 

38, which would suggest that there was a high concentration of MoO3 compared to S, 

however, precursors were measured out to be the same as past growths.  It is possible that 

severity of deformations to the substrate, from the plasma etching, was more effective for 

molybdenum deposition than MoS2.  The exposure time was then increased to 5 minutes. 

Again, no triangular growth was able to detected under the microscope.  On the upstream 

edge, there was growth that resembled molybdenum nucleation, however, the 

downstream edge did not exhibit the same nucleation patterns; this can be seen in Figure 

39.  On the downstream side of the substrate, individual grains could not be identified, 

but the growth looked similar to the clusters that can be seen on the 30-second exposure 

substrate.  This indicates that the downstream side of the sample could have larger, or 

coalesced, grains of MoS2. 

Raman data collected showed that some areas of the substrate were covered in 

multilayers of MoS2, with a small area on the downstream side of the sample that had a 

peak difference suggesting monolayer growth.    
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Figure 37: Growth on substrate treated with O2 plasma etcher at (a) 50 watts for 3 minutes at 

100x near the center of the sample and at (b) 50 watts for 5 minutes at 100x near the middle of 

the substrate 

 

 

 

Figure 38: Growth on substrate treated with O2 plasma etcher at 100 watts for 1 minute at 100x 

(a) near the center of the sample and (b) near the downstream edge 

 

 

Figure 39: Growth on substrate treated with O2 plasma etcher at 100 watts for 5 minutes at (a) 

100x at the upstream edge and (b) 50x at the downstream edge 
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4.3 With PTAS Applied via Thermal Drying 

4.3.1 Drying Temperature 

PTAS droplets were placed on the substrate sitting on hotplate.  Different hotplate 

temperatures (50oC, 100oC, and 250oC) were tried to evaluate the impact on the PTAS 

drying.  At 50oC the evaporation of PTAS created a series of rings on the surface of the 

substrate.  This is known as the “coffee ring” effect, where the evaporation of a liquid 

leaves a residue rings from the shrinking droplet during evaporation. These “coffee rings” 

became deformations on the surface and served as nucleation points. However, they are 

not controllable or tunable to serve as a repeatable seeding promoter.  As the temperature 

of the hot plate was increased to 100oC and 250oC, the reduced drying time necessary at 

increased did not effectively suppress the ring effect. In contrast, on the substrate heat 

dried at 250oC, the rings were worse than they had been at 50oC.  The “coffee rings” are 

prominent in each setting, but at higher temperatures there are more rings and they have a 

smaller separation between each ring, meaning that more surface deformations are 

present on the substrate 

Shown in Figure 40, small grains can be seen forming on the substrate with PTAS dried 

at 50oC, while large grains and thicker areas can be seen forming on the substrate with 

PTAS dried at 100oC.  At drying temperature of 250oC, there was very little growth 

across the surface.  It is possible that only a small portion of PTAS remained on the 

surface while others may be deposited.   

The higher temperatures created worse coffee ring effects on the surface of the substrate, 

as such, it was concluded that the heat drying at 50oC produced better results and was the 

more optimal condition.   
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Figure 40: Sample with PTAS dried on a hotplate at a temperature of 50oC at (a) 1.25x and (b) 

100x and sample with PTAS dried at 100oC at (c) 1.25x and (d) 100x. Growth settings of S at 

4/10 in, MoO3 at 1.25in and carried out at 650oC for 3mins 

 

4.3.2 Surface Treatment 

Coffee rings of PTAS make it challenging to have a uniform MoS2 growth across the 

substrate. In an effort to have a more uniform distribution of PTAS solution across the 

sample and attempt to reduce the coffee ring effect, the substrate was treated with O2 

plasma etching to make the surface hydrophilic.  This caused the PTAS solution to spread 

out across the entire sample, rather than sit as a droplet where it was placed on the 

surface.   

The results of the PTAS and MoS2 growth on the hydrophobic ad hydrophilic substrates 

are compared in Figure 41. Although it did not prevent the coffee ring effect, the 
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hydrophilic surface allowed PTAS to be more evenly distributed across the sample giving 

more nucleation sites for growth.  However, many of the grains were much thicker than 

on a hydrophobic substrate. This indicated that the PTAS concentration was too high for 

growth of monolayer films.   

 

Figure 41: Growth on hydrophobic substrate at (a) 1.25x and (b) 100x and growth on 

hydrophilic substrate at (c) 1.25 x and (d) 100x. Growth S at 4/10 in, MoO3 at 1.25in and carried 

out at 650oC for 3mins 

 

4.4 With PTAS Applied via Spraying 

It was difficult to quantify an amount smaller than a droplet with a pipette and it was 

possible to finely tune the amount of PTAS deposition. A new approach was adopted via 

spraying PTAS solution with the help of AirBrush Sprayer.  
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The spraying solution contains 50 droplets of the PTAS solution and 30ml of isopropyl 

alcohol (IPA).  The mixture of IPA allowed the solution to quickly dry on the substrate 

without use of a hot plate and the IPA left no additional residue, allowing the substrate to 

only have the PTAS deposition.  The concentration of PTAS was controlled by the 

number of sprays.  The effect of the PTAS solution was observed under four different 

concentrations.  In this study, the concentrations studied were 5, 10, 15 and 20 sprays.   

 

Figure 42: Optical images (100x) of growth with (a) 5 sprays, (b) 10 sprays, (c) 15 sprays, and 

(d) 20 sprays. Growths settings of S at 4/10 in, MoO3 at 1.25in and carried out at 650oC for 

3mins 

 

See in Figure 42, there was small growth under all four conditions. Individual grains were 

no larger than a few micrometers, while some nucleation was too small to determine 

individual grains.  With a lower concentration (5 sprays) the grains are very small and do 
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not begin to coalesce.  The grains that appear to be a bright blue under the microscope 

reflect more of the incident light back to the lens; this requires a thicker sample, which 

indicates that the growth was at least multi-layer, even though they are small in area.  

When 10 and 15 sprays were used the grains began to grow together, however, they were 

still multilayer growths, displaying a bright blue color under the microscope that would 

not be suitable for devices.  At a higher concentration of PTAS (20 sprays), the grains are 

not triangular or coalescing to form larger growth.   

 

4.4.1 Graphene Substrate with PTAS 

Graphene and a combination of graphene with PTAS droplets were also examined as 

seeding promoter possibilities.   

Seen in Figure 43, very little growth was able to be seen on the sample using graphene as 

the sole seeding promoter.  This indicated that under the settings being used, PTAS was 

necessary for deposition of MoS2.  

Growth was able to be seen using the optical microscope on the substrate using both 

graphene and PTAS as seeding promoters. The growth that occurred on the SiO2/Si 

substrate appeared to be thin growth. However, it was difficult to distinguish if any 

growth occurred on the graphene (see Figure 44).  

Further Raman analysis confirmed the existence of the thin MoS2 nanosheet on graphene 

with the observation of the characteristic two peaks. In some areas the twin peaks have a 

peak separation of 22.94 while in other areas the separation is 24.34. These results are 

presented in Figure 45.  All these indicate that the growth was multilayer.  Additional 

peaks can be observed in Figure 45 (b) and (c); they are characteristic peaks of Si at 
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520cm—1  and 1000cm-1; characteristic graphene peaks are at 1300cm-1, 1600cm-1 and 

2700cm-1.   

 
 

Figure 43: Sample graphene as sole seeding promoter at (a) 1.25x (b) 50x 

 

 

 

Figure 44: Sample with graphene and PTAS (a) upstream edge of sample at 100x, (b) upstream 

edge of graphene at 100x, and (c) Raman data growth near the graphene. 
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Figure 45: (a) Raman on graphene showing MoS2 peaks, (b) extended Raman on graphene 

showing MoS2 and graphene peaks, and (c) Raman of thicker growth next to graphene 

 

4.5 PTAS Seeding Promoter on Separate Upstream Substrate 

To minimize the impacts of PTAS morphology on the MoS2 growth, PTAS seeding 

promoter was placed on a separate upstream substrate.  This approach appears to lead the 

best MoS2 growth after optimizing the PTAS concentration, growth time and carrier flow 

rate.   
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4.5.1 Varying Amount of PTAS 

In this series of study, the concentration of PTAS was quantified by the number of 

droplets placed on the upstream substrate. Concentrations of 1, 2, and 3 (samples 0130-

0140) droplets placed on the upstream substrate were examined in this study.  By 

inspecting the sample visually with optical microscopy (see Figure 46), it was able to be 

determined that all three concentrations were capable of producing a large area grains 

(~100μm).  However, there were far fewer large grains on the sample grown with 1 

droplet of PTAS when compared to the 2 and 3 droplet samples.   

 

Figure 46: Large MoS2 growth on SiO2/Si substrate with PTAS on a separate substrate in the 

upper stream. (a) 1 PTAS droplet, (b) 2PTAS droplets, and (c) 3PTAS droplets  
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Further analysis was carried out on the samples of 2 and 3 droplet concentrations in the 

form of SEM and EDX.  

Figure 47 presents a series SEM images of MoS2 growth taken across the 1cm2 SiO2/Si 

substrate with the 2 PTAS droplet substrate in the upper stream. It can be seen that an 

MoS2 film is growing in many areas across the bare substrate. Large triangular grains can 

be seen on the on the middle to upstream side of the sample (middle to right images in 

set).  There are also star-like grains on the sample that are likely thicker films of MoS2.  

On the more downstream side of the sample (left images in set), there are areas with a 

more continuous film growth.   

 

Figure 47: SEM images across the entire bare substrate in the presence of a separate PTAS 

substrate (2 droplet concentration) in the upper stream. 

 

Evaluating the star-like shaped grains (Figure 48) shows that different thicknesses.  Near 

the center (nucleation point) of the grain a thicker film can be seen, whereas closer to the 

edges of the grain a thinner film is present.  The thicker area seen in the SEM image is 
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the darker area, while the thinner film has a lighter color.  There are bright dots across 

both the thinner and thicker areas which could have been nucleation points for additional 

grains had the growth process been extended.  The thin triangular shaped grains have a 

relatively more uniform thickness. 

(a)   (b)  

Figure 48: (a) SEM Image of star-like shape MoS2 grain, showing the difference between thicker 

film (dark gray) at the center of the grain and the thinner film (light gray) near the edges. (b)Thin 

triangular growth, with smaller triangles and nucleating points 

 

This area is further characterized using Raman spectroscopy, seen in Figure 49.  A 

thickness gradient can be seen in some growths, for instance the center of the triangle is 

usually brighter (almost white).  Moving away from the center of the triangle the 

thickness often decreases, and the color dims.  In many cases, the grain may contain 

multiple layers of growth.  Using a peak fitting software (Renishaw Wire), the raw 

Raman data is able to studied in better detail.  When the spectrometer detects multiple 

thicknesses in the same measurement, the characteristic peaks of each thickness can 

appear as a wide combined peak for all range of thicknesses, as opposed to detecting each 

independent thickness.  Therefore, peak fitting is necessary to determine if the peaks 

detected during the measurement are composed of one measured thickness or multiple.  If 

multiple thicknesses are measured, then each characteristic peak can be broken down in 
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two or more other peaks.  This can be seen in Figure 49 (b) as the measured peaks of 

MoS2 (red) are each broken down into a peak representing monolayer MoS2 (turquoise 

and pink) and multi-layer MoS2 (green and dark blue).  As a result, the Raman peaks 

often have peaks that identify both monolayer and multilayer growth.  In this set of data 

monolayer can be detected with a peak separation as low as 20, and bulk with a 

separation of 25.   

 

Figure 49: (a) Image from Raman and (b) Raman data for sample with a 2-droplet concentration. 

 

On the downstream side of the sample a more continuous MoS2 film covers a large area, 

as seen in Figure 50. Grain boundaries are not easily distinguishable although 

imperfections can still be seen on the film. 

  

Figure 50: SEM image of continuous downstream area at (a) 7.25kX, (b) 23.63kX;  
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Local EDX analyses were performed in different areas, e.g. the triangular area, the star 

shaped area, and the downstream continuous area (see Figure 51). All the quantitative 

results confirmed the deposited films are composed of MoS2. 

 
Figure 51: EDX (a) analysis of star, (b) triangular area, and (c) downstream area (0138) 

 

 

Figure 52: SEM images across the entire bare substrate in the presence of a separate PTAS 

substrate (3 droplet concentration) in the upper stream. 
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Upon evaluating the three-droplet sample (see Figure 52), it is seen that the MoS2 film 

covers much of the substrate.  The growth on the sample is largest (~120μm) and more 

continuous near the center of the sample.  Upstream growth is of a smaller magnitude and 

less continuous, while growth that happens downstream is smaller and less triangular in 

shape.   

Further investigation of the center area on the substrate, shows that there are grain 

boundaries within the large triangular growths (Figure 53).  Points where the growth was 

starting another layer on top can also be seen scattered through the grains.  It can be 

determined visually (Figure 49) that multiple layering of MoS2 films has occurred, as 

shown by the bright (thick) growth in the center and the darker (thinner) growth near the 

edges of the triangle.  Based on the EDX analyses, all the star-shaped and continuous 

downstream growth are still identified as MoS2.  

 

 
Figure 53: SEM imagines of large star/triangles in center of substrate. At (a)790X, (b) 19.42kX, 

(c) 4.57kX, (d) 16.10kX, (e) EDX on grain, and (f) bright substrate area (0136) 
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Figure 54: (a) SEM image of continuous area with (b) EDX measurement (0136) 

 

4.5.2 Varying Carrier Gas Flow Rate 

The impact of the carrier gas flow rate was studied by running growths with varying flow 

rates.  Flow rates were set at 100, 200, 400 and 500sccm, and then the grain size of the 

growth was measured and compared.  The optical images are shown in Figure 55. At 

100sccm the growth was small with grain widths being less than 5μm; the growth that 

took place at 200sccm had grains that were larger, about 7μm, and growth at 400sccm 

was larger still at around 15-20μm, while the growth at 500sccm was much larger with 

areas as wide as 130μm.  It was determined that 500sccm would produce the largest area 

grains, however it can also be seen that there are more defects across the growth due to 

uneven growth.  Therefore, the optimized flow rate was determined to be 400sccm.   

While grains could be identified as thick or thin by the color of the growth, more analysis 

was required to determine the value of each thicknesses.  For this Raman spectroscopy 

was used.  A thickness gradient can be seen in some growths, for instance the center of 

the triangle is usually brighter (almost white).  Moving away from the center of the 

triangle the thickness often decreases, and the color dims.  In many cases, the grain may 
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contain multiple layers of growth.  As a result, the Raman peaks often have peaks that 

identify both monolayer and multilayer growth.  As can be seen in the following Raman 

data, monolayer can be detected with a peak separation as low as 20, and bulk with a 

separation of 25. 

 

 

Figure 55: Optical images of MoS2 growth with Ar flow rate of (a) 100sccm, (b) 200 sccm, (c)400 

sccm, and (d) 500 sccm 

 

4.5.3 Varying Growth Time 

For systematical study, the impacts of the growth time on the film quality was evaluated 

with the growth temperature fixed at 650˚C.  The growth times varied from 1, 3, 5, to 10 

minutes.  It can be seen that as the growth time increases so does the overall area of 

growth coverage, however there is less uniformity across the growth substrate at a longer 
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growth time.  Upon examining the effect of time on the growth, it was determined that 

the 5-minute growth produced too many areas that were thicker than a monolayer film.   

 

Figure 56: (a) 1 minute, (b) 3 minutes, and (c) 5 minutes with other growth settings being S at 

4/10 in, MoO3 at 1.25in and carried out at 

 

AFM was then performed on both the 1- and 3-minute growths.  As discussed previously, 

MoS2 has a monolayer thickness of about 0.6nm.  Monolayer grains were found on both 

the 1- and 3-minute samples as seen below in Figure 57. Line scans were taken on both 

samples as depicted in Figure 57 (a) and (c) with the maximum thickness being measured 

between 0.4 and 0.6nm for both samples, shown in (b) and (d).   
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Figure 57: (a) AFM image of 1 min growth, (b) topography measurement for 1 min growth, (c) 

AFM image for 3 min growth, (d) topography measurement of 3 min growth 

 

  

(a) 

(b) 

(d) 

(c) 
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4.6 Quantitative Analysis 

Images of the grains from growths at different times were further evaluated using ImageJ.  

About 95% of the grains from the 1-minute growth were less than 200μm2 with a few 

outliers as large as 3200μm2.  The 3-minute growth was determined to be the largest film 

coverage, with a grain size of about 24,500μm2.  This grain was however an outlier, as 

the majority of the grains measured were less than 6500μm2.  The grains grown during 

the 5-minute conditions were the smallest with the largest grains being around 650μm2. 

It can then be determined that the three-minute growth provides a more optimal time for 

the grains to grow laterally across the sample to form larger grains.   

      
 

Figure 58: ImageJ Analysis of 1-minute growth (0153). (a) Original microscope picture, (b) 

edited picture for measurement, (c) digital picture from thresholding measurement; ImageJ 

output measurement (0153) (d) the percentage of grains at different sizes, and (e) the total 

coverage by the grains of different sizes 
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Figure 59:  ImageJ Analysis and measurements of 3-minute growth (0151). (a) Original 

microscope picture, (b) edited picture for measurement, and (c) digital picture from thresholding 

measurement. (d) The percentage of grains at different sizes and (e) the total coverage by the 

grains of different sizes. 

 

Figure 60: ImageJ Analysis and measurement of 5-minute growth (0154). (a) Original 

microscope picture, (b) edited picture for measurement and (c) digital picture from thresholding 

measurement. (d) The percentage of grains at different sizes and (e) the total coverage by the 

grains of different sizes.   
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To minimize the impacts of PTAS morphology on the MoS2 growth, PTAS seeding 

promoter was placed on a separate upstream substrate.  This approach appears to lead the 

best MoS2 growth after optimizing the PTAS concentration, growth time and carrier flow 

rate. For instance, Table 1 summarize the quantitative results showing the impacts of 

growth time on the percentage of small and large grains, the largest grain size, and total 

coverage.   

 
Growth time region Grain size info Large grain (>100 

μm2) coverage Percentage 

(<100 μm2) 

percentage 

>100 μm2 

Largest grain 

(μm2) 

 

1min 

Down 90% 10% 400 45% 

Mid 82% 18% 900 78% 

Upper 62% 38% 1100 87% 

Upper 92% 8% 1900 77% 

3min Upper 50% 50% 1300 95% 

Upper 90% 10% 7200 90% 

5min Upper 70% 30% 700 90% 

Upper 86% 14% 4000 95% 

Table 2: Summary of the quantitative analytical results showing the percentage of smaller grains  

(<100 μm2), the percentage of larger grains (>100 μm2), the largest size of the grain, and the 

total coverage of larger grains within the image. 
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5 Conclusion 

 

Transition metal dichalcogenides (TMDs), represented by molybdenum disulfide (MoS2), 

are promising and emerging in power electronics due to their large direct bandgap and 

other electronic properties.  Much research has demonstrated that 2D MoS2 can be 

fabricated by chemical vapor deposition (CVD).  However, the processing is very 

sensitive to experimental settings for different CVD system. Many factors affect the 

growth process of thin film MoS2. As discussed, the seeding promoter and application, 

growth time, temperature, quenching temperature, carrier gas flow rate, precursor 

position and amount can all make vast changes in the growth of the film.  In order to 

define a reliable and repeatable method, all factors needed to be studied independently.   

 

This thesis study has determined key important experimental factors for the designated 

CVD system. The most optimal precursor amount and positions, as well as the growth 

time and carrier gas flow rate have been able to be determined.  The most reproduceable 

and repeatable larger grain size has been a result of precursor of 0.03g MoO3 powder 

placed 1.75 inches upstream of the growth substrate, with 0.54g of S powder placed 4/10 

of an inch inside the furnace edge.  While the precursor powder was in this position, it is 

found that 1) MoS2 growth is sensitive to the carrier flow rate and temperature; and 2) 2D 

MoS2 grain size and areal coverage are correlated with grow time as well as the distance 

from the PTAS (perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt) resource.   

A growth time of 3 minutes and a carrier gas flow rate of 500 sccm has provided the 

largest grain size of MoS2 films.  Existence of large-area (that have an edge length of 
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over one hundred up to several hundreds of micrometers) monolayer and multilayer 

MoS2, in the presence of PTAS promotor, have been successfully grown on clean Si 

substrate in the presence of PTAS promotor vapor in the vicinity.  

Future work should be focused on maintaining a monolayer film deposition and impact of 

MoS2 nucleation on different substrates.  Factors likely to affect include the use two or 

three zone CVD system to better control the growth temperature, capable of inserting 

precursor to control the growth time well, alternative seeding promoters and their 

appropriate applications.   

In the field of thin film electronics, other 2D materials could be studied using a similar 

process as the optimized CVD setup used in this study.  As previously discussed, 

advancements in electronics will derive, at least, partially from the advancement in the 

electronic materials and their capabilities.  Further studying of these materials and 

methods of synthesizing will create the possibility to make many advancements in 

electronics and technologies that are used in day to day lives. 
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