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ABSTRACT 
 
 
Woods, Michaela J. M.S., Department of Biological Sciences, Wright State University, 
2018. Lonicera maackii alters decay dynamics of coarse woody debris. 
 
 

Since industrialization, anthropogenic carbon emissions have led to excess 

atmospheric carbon dioxide that may alter the stability of ecosystem processes. 

Microorganisms are essential in mitigating excess carbon and play a notable role in the 

breakdown of organic material. This process, decomposition, is essential in forested 

ecosystems where microorganisms can recycle nutrients and store carbon in soil organic 

matter or release it through respiration. Fungi participate in decomposition through the 

release of enzymes responsible for carrying out the chemical reactions that break down 

plant material. Species introductions have the potential to alter decomposition dynamics. 

In the Midwestern US, the invasive shrub species Lonicera maackii has overtaken many 

forests and is likely altering decay dynamics and the destiny of carbon within the region. 

Thus, it is essential to monitor the decay of woody debris under invasion pressures of L. 

maackii in order to monitor nutrient cycling in this region. I placed blocks of native 

Quercus rubra and economically important Pinus radiata in an L. maackii invaded forest 

for one year to determine environmental, enzymatic and fungal drivers of decomposition. 

Decomposition was faster for oak wood than pine wood, and decomposition rate was not 

directly altered by L. maackii. Instead, L. maackii increased the moisture of the 

decomposing wood, leading to higher amounts of hydrolytic enzyme activity which 



iv 

structured fungal communities within decaying wood. This insinuates that despite not 

altering decomposition rates directly, L. maackii is priming native woody debris for faster 

decomposition and therefore increasing the rate of nutrient turnover. Thus, L. maackii 

imposes shifts to fungal communities and their functionality and the soil environment. 

These changes could become especially important in later stage decay where there will 

likely be perceptible differences in decay rates as altered by L. maackii. The changes L. 

maackii imposes on decomposition will likely lead to faster carbon release from forested 

ecosystems and shorter retention times. Consequently, to ensure effective management 

strategies that mitigate excess carbon dioxide from the atmosphere, monitoring 

decomposition of woody material in invaded forests is imperative. 
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INTRODUCTION 

Anthropogenic carbon dioxide (CO2) emissions induce a warmer climate globally 

by adding excess CO2 into the atmosphere, leading to increased concern for the stability 

of ecosystem processes (IPCC 2014). In the span of 10 years, atmospheric CO2 has risen 

23 ppm to an average around 408 ppm in 2018 (Dr. Pieter Tans, NOAA/ESRL: 

www.esrl.noaa.gov/gmd/ccgg/trends and Dr. Ralph Keeling, Scripps Institution of 

Oceanography: www.scrippsco2.ucsd.edu). The role microorganisms play in mitigating 

this excess carbon is well documented (Allison et al., 2010; de Graaff et al., 2006; Lal, 

2008; Singh et al., 2010) but their role in contributing to increases in atmospheric CO2 is 

an area of developing research. In forest ecosystems, soil microorganisms play a 

particularly important role in the carbon cycle through the process of decomposition, 

which releases stored organic carbon via the breakdown of plant material. Outside of 

naturally occurring carbon release, additional carbon emissions from temperate forest soil 

processes have the potential to contribute 6.3 Gt of excess carbon to the atmosphere and 

therefore including them in carbon cycle modeling is important for accurate 

representations of the global carbon cycle (Guo and Gifford, 2002). However, achieving 

accurate estimates for soil carbon fluxes requires a global, systematic experiment 

controlling for confounding variables (Crowther et al., 2016). For my master’s thesis, I 

quantified decomposition in an internationally available pine substrate. This research was 

part of a global project, with a local component including decay of an oak substrate 
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for paired decomposition measurements. 

A key group of decomposers are fungi that live within the soil and break down 

plant material by releasing extracellular enzymes. The chemistry of decaying leaf litter or 

wood within forested ecosystems can alter fungal functionality, as can the living plant 

and animal communities within the environment. In Midwestern forests, there is a dense 

invasion of Lonicera maackii (Amur honeysuckle) which can greatly alter nutrient 

dynamics in the soil and understory. I monitored decomposition of angiosperm wood, 

Quercus rubra (red oak), in comparison to a gymnosperm wood, Pinus radiata 

(Monterey pine), in the Wright State woods to determine drivers of decay for coarse 

woody debris in a temperate Midwestern forest. I conducted a standard litter bag 

experiment and let wood decay for one year while monitoring canopy coverage. I 

measured decay rates, enzymatic activities, and fungal species within the decaying wood. 

Taken together, results from this work will be important for global models seeking to 

understand carbon dynamics but also for understanding the role L. maackii plays in 

altering decomposition of dead woody debris. 

Background 

Fungal Decomposer Guilds and Function 

Multiple fungal guilds, or fungi grouped by similar functionality, can partake in 

decomposition. The first species to establish in leaf litter are typically foliar fungi, or 

endophytes, from leaves of the forest canopy. These fungi obligately inhabit leaves in 

part of their life cycle (Carroll, 1988). When leaves senesce, the role of endophytes 

switches to that of a saprophyte, where they begin decaying the plant material. Several 

months after senescence, the overall species composition in leaf litter shifts to fungi that 



 

3 
 

were already present in the soil (Song et al., 2016). Thus, the decomposer community 

will shift over time, progressing from soil fungal saprophytes in the spring to endophytes 

in the fall, which may establish in decomposing litter as leaves senesce. I expected 

endophyte establishment within decaying wood during the fall season of this study, with 

the majority of decomposition driven by saprophytes. 

Saprophytes are the main contributors to decomposition, including a high number 

of fungi belonging to white rot and brown rot guilds. Unlike other decomposers, white rot 

breaks down the chemical compound lignin, a major component of woody materials 

(Zhang et al., 2016). In contrast, brown rot degrades two other large components of 

woody substrate, cellulose and hemicellulose, and can modify the structure of lignin (Ray 

et al., 2010). Together, these fungi decompose the majority of woody material or make it 

possible for other microbes to decompose the more labile substrates left behind. Species 

from these guilds are likely to be the most abundant in a survey of decomposer 

communities, though other fungi can participate in breaking down woody material using 

similar enzymes. 

Fungi that demonstrate similar enzymatic activities used for decay include 

mycorrhizas and pathogens. In particular, ectomycorrhizal (ECM) fungi harbor 

saprotrophic functionality by secreting enzymes to facilitate their symbioses and perform 

nutrient exchanges (Courty et al., 2005).  ECM fungi can change their function under 

varying nutrient availabilities by either emitting enzymes to obtain nutrients from plants 

in symbiosis, or by releasing enzymes to break down dead plant material for uptake of 

nutrients from decaying material (Bödeker et al., 2009).   
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ECM and saprophytic fungi demonstrate niche partitioning in the soil substrate, 

suggesting different strategies for degrading the same compounds and allowing for 

cohabitation in the same litter (Hobbie and Horton, 2007). Decaying wood can also 

harbor potential pathogenic fungi (van der Wal et al., 2017). While some pathogenic 

fungi obligately reside in living plants, others are facultative in that they can live in the 

soil or on decaying substrate using similar strategies as ECM and saprophytic fungi to 

participate in decomposition (Garbelotto, 2004). Together, these fungi are secreting 

extracellular enzymes to induce decay of plant material. 

Fungal Enzyme Utilization 

Enzymes that fungi use to break down woody substrate include phenol oxidase, 

peroxidase, β-glucosidase, acid phosphatase and leucine aminopeptidase. Phenol oxidase 

and peroxidase perform oxidative reactions, oxidizing lignin and phenolic compounds, 

respectively (Talbot et al., 2015). Leucine aminopeptidase is responsible for polypeptide 

degradation, while β-glucosidase and phosphatase are observed in cellulose degradation 

with phosphatase being more prevalent where phosphorous is limited (Pritsch et al., 

2004; Talbot et al., 2015). White rot fungi produce higher amounts of phenol oxidase 

than ECM fungi and other saprophytes, and peroxidase is produced at similar rates 

among ECM fungi and saprophytes (Talbot et al., 2015). Saprophytes produce higher 

amounts of β-glucosidase and phosphatase than ECM fungi, while leucine amino 

peptidase is produced at a high rate by white rot and other saprophytes with little activity 

from ECM fungi (Talbot et al., 2015). This suggests that where there is a high prevalence 

of white rot fungi there will be more phenol oxidase and leucine aminopeptidase, and 

where there is more β-glucosidase, phosphatase, and peroxidase, there should be a higher 
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abundance of saprophyte. Since enzymes facilitate decomposition, the quantity of 

enzymes present in substrate should correlate to the decomposition rate of the substrate. 

Indeed, in an experiment conducted on woody decay of 13 tree species, enzyme 

quantities were one of the strongest predictors of wood decay (Kahl et al., 2017).  

Plant Species and Effect on Decomposition 

Characteristics of Decomposition with Angiosperm and Gymnosperm Coarse Woody 

Debris 

Decomposition of woody substrates occurs at different rates due to variation in 

their chemical composition. In a meta-analysis of wood decomposition rates, 

angiosperms decayed faster than gymnosperms despite the lower density of gymnosperm 

wood, possibly due to higher lignin concentrations in gymnosperms (Weedon et al., 

2009). The organic polymer lignin is found in woody litter where it protects cellulose and 

hemicellulose from the enzymatic processes of most decomposers (Kirk and Farrell, 

1987). Since Quercus spp.  have lower levels of lignin than Pinus spp. wood (Rahman et 

al., 2013), Quercus spp. decomposition should occur at a faster rate than Pinus spp. 

decomposition.  

The living organisms involved in decomposition also vary with species of woody 

substrate. While there is generally a similar biomass of fungal decomposers in 

angiosperm and gymnosperm wood, the community composition between these two 

wood types tend to be distinct. Previous studies have shown a greater prevalence of 

ascomycetes and endophytes on angiosperms and a higher prevalence of Boletales, which 

are typically ECM, on gymnosperm wood (Heilmann-Clausen et al., 2016). Additionally, 

more white rot and phenol oxidase will likely be present on Pinus spp. as these fungi are 
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well equipped to decay lignin. Introduced non-native species will change forest 

composition and the chemistry of introduced leaf litter will likely result in changes to the 

fungal communities.  

Decomposition in the Presence of Invasive L. maackii 

 Invasive species alter many ecosystem processes using a variety of mechanisms 

(Ehrenfeld, 2010). L. maackii, an invasive shrub, is a dominant component of the 

understory in southwestern Ohio (Runkle et al., 2005). This shrub has negative effects on 

native plants including reducing their overall size, decreasing their flowering potential, 

and stopping plant growth completely (Miller and Gorchov, 2004). It can also increase 

soil carbon and nitrogen, changing microbial ecosystems and nutrient availabilities 

(Kolbe et al., 2015).  L. maackii has the potential to release allelopathic chemicals 

belowground that change many biotic and abiotic factors of the soil and directly reduce 

the fitness of neighboring plants (Cipollini et al., 2008). Since L. maackii retains its 

leaves for a longer period of time than native plants, it reduces the amount of rain water 

that could saturate the forest floor, causing shifts in soil moisture with higher cation 

concentration and longer deposition of nutrients in the soil that would normally be 

washed away (McEwan et al., 2012). The measured soil moisture beneath honeysuckle 

shrubs is largely context dependent, however (Hartman and McCarthy, 2004; Kolbe et 

al., 2015; Pfeiffer and Gorchov, 2015; Woods et al. in prep) 

 In addition to altering the soil environment, L. maackii also changes 

decomposition rates through the input of its herbaceous litter. Across species, 

decomposition rates of invasive herbaceous litter is 117% higher than native species’ 

herbaceous litter (Liao et al., 2008). Limited work examining the role L. maackii plays in 
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altering decomposition in forest ecosystems suggests L. maackii  litter degrades more 

slowly directly underneath its shrubs than when placed further away from its shrubs 

(Arthur et al., 2012). Furthermore, litter from L. maackii exhibits higher decomposition 

rates by itself, but it does not synergistically increase decomposition rates of herbaceous 

litter from native trees when incubated together (Poulette and Arthur 2012). Despite these 

important effects on herbaceous litter decomposition, no published studies have 

examined how its own woody material decays, or how its herbaceous litter may shift 

decay of native wood. This is particularly important because L. maackii is likely 

introducing alternate nutrients and microorganisms into the soil community as well as the 

community residing in decaying wood within the ecosystem. 

Despite the important role fungi play in decomposition, there is not a definitive 

explanation for how L. maackii influences fungal decomposer communities. Preliminary 

work indicates a higher concentration of endophytic fungi present in the L. maackii 

leaves that began the process of decay during senescence before exposure to soil fungi; 

however, the total fungal biomass was the same overall (Arthur et al., 2012). This study 

was limited in that it used an older technique to measure fungal biomass, phospholipid 

fatty acid analysis, which is limited in its ability to provide species level community 

information. Further studies that utilize current technologies to quantify shifts in the soil 

microbial community due to the presence of L. maackii are needed in order to fully 

elucidate its effects on overall ecosystem function. 

Insect Alteration of Decomposition 

 Insects make up a large portion of fauna living within surface soil in forest 

ecosystems and are critically important in ecosystem processes including soil formation, 
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nutrient cycling and decomposition (Lavelle et al., 2006). Therefore understanding their 

role in decomposition is necessary to completely understand the processes occurring.  

Termites, in particular, are known for their ability to break down woody material. They 

have high activity in arid and semi-arid environments, such as tropical habitats, savannas, 

and deserts, and their mounds create a shift in local microbial communities (Jouquet et 

al., 2011). For example, insects can promote microbial decomposition by creating tunnels 

in the wood that increase the surface area for establishment of fungi and by carrying soil 

containing fungi (Ulyshen, 2016). Despite this importance, how insects contribute to 

overall decomposition rates of coarse woody debris is unclear. No difference to 

decomposing wood volume occurred when comparing specimens that were open to 

insects, partially excluded insects, or completely excluded insects, suggesting that insects 

may inhibit microbial decay and therefore leave the overall decomposition rate 

unchanged (Ulyshen and Wagner, 2014). Alternatively, insects could also increase 

decomposition rates by consuming fungal mycelia which causes saprophytes to increase 

their enzyme excretion (A’Bear et al., 2014a). In whole, insects may be an important 

driver of decay. 

Specific Research Aims: 

The overall goal of my MS thesis is to understand drivers of wood decay in a temperate 

deciduous forest. To do so, I addressed four specific research aims: 

1. Quantify decomposition rate using wood mass loss as a proxy. 

2. Identify which species of fungi are present during decay. 

3. Quantify decomposition rates as a function of fungal enzymatic activity based on 

hydrolytic and oxidative enzymes. 
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4. Quantify effect of insects on decomposition. 
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METHODS 

Global Survey 

This study was conducted as part of a global collaboration, Global Decay, led by 

Dr. Amy Zanne (George Washington University). For this experiment, I followed the 

standardized protocol of the global study for deployment of wooden baits (Cheesman et 

al., 2018). To ensure comparable data and results with the global study, P. radiata was 

used as the substrate bait. P. radiata is endemic to western North America but is now 

restricted to five isolated populations in California (USA) and two islands off Baja 

California (Mexico; Axelrod, 1986; Grotkopp et al., 2004) despite this restriction in its 

natural range, P. radiata has been widely planted as a timber species across many of 

world’s Mediterranean climates, including Chile, New Zealand, Australia, Spain, South 

Africa, Ecuador, Italy and Argentina (Mead, 2013). The global distribution of P. radiata 

further emphasizes the utility of understanding its decay dynamics across a variety of 

ecosystems. Furthermore, P. radiata has a consistent carbon concentration throughout 

decomposition, with 50% mass loss accounting for 49% carbon loss, making mass 

differences an appropriate proxy for carbon loss when this species is used as a substrate 

(Ganjegunte et al., 2004). Taken together, these two attributes make P. radiata an ideal 

species for understanding global patterns of decay. 

 

 



 

11 
 

Sample Sites 

 This study took place in the Wright State University’s (WSU) Woods in Dayton, 

Ohio (39.785253 oN, 84.05424 oW) from April 2017 to April 2018. This area received 

128.016 cm of precipitation in 2017 with an average high temperature of 28.89 ℃ in the 

summer of 2017 and a low of 3.89 ℃ in the winter of 2018 (Wright Patterson Air Force 

Base Weather Station). WSU’s woods are dominated by oak and maple with no natural 

conifers (Runkle et al., 2005). L. maackii is found at varying densities throughout the 

woods at WSU and scales in growth from small shrubs to thicker more tree-like plants 

(Runkle, personal observation). 

Transects 

To evaluate differences in decomposition among L. maackii invasion status, I 

placed two transects of wooden block bait stations in an E-W orientation in the WSU 

woods. Bait stations were covered with 70% green 

shade cloth (Easy Gardener, Waco, TX, USA) to reduce 

UV exposure. Each station consisted of two baits of P. 

radiata (one insect partial exclosure and one complete 

exclosure) and one bait of Q. rubra (complete insect 

exclosure) per shade-cloth cover (Figure 1). Transect 

one was placed in a densely invaded area of L. maackii 

that had more bait stations within one square meter 

of a L. maackii shrub than transect two. Transects were 

95 m in length with 20 bait stations pegged to the 

ground with tent stakes every 5 m along the transect. I placed stations directly on the 

Figure 1: Bait station with one Q. rubra bait and two 
P. radiata blocks, one an insect partial exclosure. (The 
three other blocks will be examined another year past 
this experimental time frame.) 
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Figure 2: Nylon bag for 
wooden baits 

transect unless there was coarse woody debris, exposed rocks, or substantial water flow 

in the location of a station, then stations were placed 0.5 m or less from the transect. 

While placing the baits, leaf litter was removed from the forest floor and the duff layer 

was homogenized through scraping. In the event of coarse woody debris falling onto bait 

stations or water displacing bait stations over the course of the project, stations were left 

intact at their original location since these events are natural occurrences which happen in 

forest ecosystems during decay.  

Wood Baits and Bait Stations 

 Each bait station along each transect contained two wooden baits of P. radiata 

(hereafter referred to as pine wood) and one bait of Q. rubra (hereafter referred to as oak 

wood). Planed and untreated baits were purchased from Home Depot. Each bait had 

dimensions of 2.9 cm X 8.8 cm X 12.7 cm and 1.905 cm X 8.89 cm X 12.7 cm 

respectively. To remove phenolic volatiles which are otherwise 

unpalatable to certain genera of nasute termites, baits were dried at 

120 oC for 48 hours and then cooled to room temperature in a lab 

environment before deployment. Prior to deployment, each bait was 

weighed for future calculation of decomposition rates and placed 

into 300 µm nylon mesh (Industrial Netting Inc, Minneapolis, MN) 

with the edges rolled and stapled to create a standard litter bag (Figure 2). Forty bags 

used for decay of pine wood had 10 holes 5-7 mm in diameter on the underside to allow 

for termite access (‘partial insect exclosures’). 
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Data Collection 

 To quantify the density and size of L. 

maackii along each transect, each shrub growing 

within a meter radius of each bait station was 

counted and basal diameter recorded. From this, 

basal radius was used to calculate basal area by 

squaring the radius and multiplying by π. If no 

shrubs were present in a square meter radius, an 

absence was recorded for that bait station. Light 

availability for each bait station was assessed using fish eye lens photos of the tree 

canopy taken monthly at each station (Figure 3) and processed with Gap Light Analyzer 

(GLA; Simon Fraser University, Cary Institute of Ecosystem Studies).  

Figure 3: Photo of forest canopy to be analyzed with 
GLA. 

Table 1: Insect and fungal damage assessment (Davies et al., 1999) 
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One half of the baits were collected one year after deployment (20 of each 

treatment from each transect, 120 baits total). Each bait was removed from the ground 

and placed into a zip lock plastic bag and stored at -20 oC until processed, between one 

and three weeks after retrieval. For processing, baits were removed from nylon bags and 

excess soil was eliminated. Insect and fungal damage were then identified using standard 

assessment methods (Table 1, Davies et al. 1999).  A power drill with a 3/8-inch drill bit 

was used to extract approximately 5 g wet weight of saw dust from each bait. Half of the 

saw dust (~2.5 g) was stored at -20 oC for enzyme reactions and half was stored at -80 oC 

for DNA extractions. The wet mass of the saw dust extracted from each bait as well as 

the mass of each bait after it was drilled was recorded. Drilled baits were then dried at 

105 oC for 72 hours, cooled to room temperature and weighed for their final dry mass. 

The percent moisture of each drilled bait was calculated using the wet weight of the 

drilled bait and its dry weight. Using the percent moisture, the dry weight of the extracted 

saw dust was calculated and added to the dry weight of the bait to which it belonged to 

account for the total dry weight after decay. 

Decomposition Rate  

Decomposition rate (k) was assessed as a function of collection time in years (t), 

initial dry mass of substrate (Wo) and dry mass at collection time (Wt; Equation 1; Olson 

1963). 

𝑘 = −
ln ቀ

𝑊௧

𝑊௢
ቁ

𝑡
 

    Equation 1 
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Fungal Sequencing 

 DNA was extracted in triplicate from each bait (120 baits X 3 extractions) using 

50 mg dry weight of saw dust with a Qiagen PowerPlant Pro Kit (Qiagen, Carlsbad, CA) 

following standard protocol. DNA was quantified using a Qubit 3.0 dsDNA BR assay 

(ThermoFisher, Waltham, MA), and quality was assessed using a Nanodrop One 

Microvolume UV-Vis Spectrophotometer (ThermoFisher, Waltham, MA). DNA was 

considered sufficient quantity when extractions were greater than 20 ng/ml. DNA was 

then stored at -80 oC for up to three weeks, pooled, and cleaned using DNeasy 

PowerCleanPro Kit (Qiagen, Carlsbad, CA) two times with two additional ethanol wash 

steps using ethanol at 4 oC. Cleaned DNA was diluted to 5 ng/ul using molecular grade 

water and loaded randomly into 96 well plates. Each sample was loaded into the plates in 

triplicate with samples from each bait station loaded onto the same plate. Plates were 

sealed and stored at -80 oC until hand delivery to the Ohio State University Molecular and 

Cellular Imaging Center (MCIC; Wooster, OH) for MiSeq library preparation with the 

ITS1F and ITS2R region amplified.  

 Amplification of the ITS1 locus was completed with unique Nextera indices for 

sample indexing. Samples were amplified in two rounds of PCR with the initial round 

attaching the Illumina adapted sequence, and the second round to complete the sequence. 

PCR was conducted on Eppendorf epMotion5075 (Hauppauge, NY) with initial 

denaturation at 96 oC for three minutes, then 25 cycles between 96 oC for 30 seconds of 

denaturation, 55 oC for 30 seconds of annealing, and 72 oC for 30 seconds of elongation. 

Samples were then cleaned with Agencourt AMPure XP beads (Beckman Coulter Life 

Sciences, Indianapolis, IL) at room temperature where samples were incubated with 
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beads for five minutes and then placed on the magnetic stand for three minutes. 

Supernatant was removed from samples, and then samples were washed with 200 µl of 

80% ethanol, incubated for 30 seconds and removed. This step was repeated once more. 

Beads were then air dried and removed from magnet. Thirteen µl of nuclease free water 

was used to suspend beads which were incubated for two minutes and then supernatant 

transferred to a new plate without any beads. PCR was repeated with the same conditions 

as the first round, but with 8 cycles instead of 25. Amplification of the ITS region was 

verified with gel electrophoresis. Samples were cleaned again following the same 

protocol as the first cleaning, and then were assessed for primer dimers using the Pippen 

Prep size selection (Sage Science, Beverly, MA) by running on 1.5% agarose gel. If there 

were primer dimers present, a cleaning step was repeated. Before sequencing, purified 

amplicon libraries were pooled in equimolar ratios.  

Sequencing was performed on the Illumina MiSeq platform with PhiX mixed in 

the amplicon libraries to a final concentration at 14.3 pM. Libraries were sequences using 

300PE MiSeq kit with standard Illumina primers and the run was clustered to 681 ± 

k/mm2. The MiSeq instrument also conducted image analysis, base calling, and quality 

assessment. Finally, sequences were demultiplexed and adapters removed. 

Bioinformatics 

 I analyzed sequences using the bioinformatics pipeline Quantitative Insights Into 

Microbial Ecology 2 (QIIME2; http://qiime2.org; Caporaso et al. 2010). Heterogeneity 

spacers were removed from the sequences with cutadapt trim-paired function in cutadapt 

(Martin, 2011), then sequences were denoised, chimeras removed, paired ends merged, 

and exact sequence variants (ESV) were identified with the dada2 denoise-paired 
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function of DADA2 (Callahan et al., 2016). ESVs were used as a proxy for fungal 

species. Replicates of each sample were pooled into one sample using feature-table 

group function from feature-table. I assigned taxonomy to ESVs using 0.70 confidence 

threshold in feature-classifier classify-sklearn (Pedregosa et al., 2011). RDP classifier 

was trained with UNITE v. 2.3 database (https://doi.org/10.15156/BIO/587481; Koljalg 

et al. 2005) using feature-classifier fit-classifier-naïve-bayes function from feature-

classifier to determine sequence identity based on 100% similarity as ESVs. After 

removing sequences which were not assigned to at least phylum level, sequences were 

rarefied to the least amount of sequences per sample using feature-table rarefy from 

feature-table for standardized values in statistical analyses. ESVs were then classified 

into functional guild using an online version of FUNGuild (http://funguild.org, accessed 

June 5, 2018; (Nguyen et al., 2016). All ESVs were parsed into functional guild. If ESVs 

were parsed into multiple guilds, sequences were assigned proportionally to each guild 

they represented. To determine richness of fungal communities at the ESV and the 

functional guild levels of each block, I calculated Shannon’s diversity using diversity 

function, observed richness using specnumber function, and Chao1 richness using 

specpool function, each from the vegan package in R v 3.5.1 (Oksanen et al., 2017; R 

Core Team, 2018).  

Enzyme Assays 

 To assess microbial function, the enzymes phenol oxidase, peroxidase, β-

glucosidase phosphatase, and leucine-aminopeptidase were assayed to find their 

maximum potential activities. Each assay was conducted using homogenate slurries made 

with saw dust and 50 mM sodium acetate buffer at pH of 5.6 and were incubated in the 
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dark at room temperature (~22 °C). Incubation times were determined by measuring 

activities incrementally until the maximum potential enzymatic activity was attained. 

Assay absorbance and fluorescence values were measured using a BioTek Synergy HT 

microplate reader (BioTek, Winookski, VT, USA). 

 The oxidative reactions of phenol oxidase and peroxidase were conducted using 

of 3,4-Dihydroxyphenylalanine (L-DOPA). Each oxidative assay included eight 

replicates of each of the following: substrate blank, buffer blank, wood homogenate 

blank, and wood homogenate with substrate for each sample.  The phenol oxidase 

reaction required 50 µl of a 25 µM L-DOPA mixed with 50 mg dry weight of each 

sample and 15 ml of sodium acetate buffer and were incubated for 5-7 days. Several 

samples required only 5 days before reaching peak activity, yet most required a full 7 

days for peak reactive activity. Peroxidase assays also required 50 µl of a 25 µM solution 

of L-DOPA as well as 10 µl of 3% hydrogen peroxide but was instead mixed with 100 

mg dry weight of each sample in 15 ml of sodium acetate buffer. The buffer and sample 

were incubated at 4 ℃ while shaking on a Labline 3520 orbital shaker (Marshall 

Scientific, Hampton, NH, USA) for 16 hours prior to use in reaction. Peroxidase activity 

reached maximum potential after 24 hours of incubation. After absorbance measurement 

on microplate reader at 450 nm, enzyme activities were calculated in µmol h-1 g-1. 

 Hydrolytic enzyme reactions of β-glucosidase, phosphatase and leucine 

aminopeptidase were conducted using 50 mg dry weight of saw dust in 15 ml of 50 mM 

sodium acetate buffer incubated at room temperature. Each assay included eight 

replicates of a substrate blank, buffer blank, wood homogenate blank, and wood 

homogenate reaction as well as standard curves of either methylcoumarin for leucine 
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aminopeptidase or methylumbelliferyl for β-glucosidase or phosphatase with each wood 

sample and with buffer. β-glucosidase was assayed using MUB linked substrate, 100 µM 

MUB β-D-glycopyranoside, and was incubated at 22 ℃ for 30 minutes in the dark. 

Phosphatase was assayed with 250 µM MUB-phosphate and incubated in the dark at 22 

℃ for 1 hour. Leucine aminopeptidase was assayed using methylcoumarin linked 

substrate, 100 µM L-Leucine-7-amido-4-methylcoumarin hydrochloride and incubated in 

the dark at 22℃ for four days. After incubation of fluorescent assays, 10 µl of 1M NaOH 

was added to each well and plates were then read at 360 nm excitation and 450 nm 

emission on microplate reader 10 minutes after addition. Using a standard curve, 

excitation coefficients and fluorescent measurements, enzyme activities were calculated 

in µmol h-1 g-1. 

Statistical Analysis 

Data Transformations 

Prior to analysis, all variables were tested for normality. L. maackii was 

represented by two metrics: abundance (count of L. maackii per meter radius from bait) 

and average basal area of shrubs within a square meter radius (cm2/m2). L. maackii 

abundance and L. maackii basal area were square root transformed for normality. Canopy 

coverage was measured monthly and then averaged to accommodate variability 

throughout the year. Abiotic variables of slope (degree of elevation facing East), canopy 

coverage (% cover) and bait moisture (% water content) were normal without 

transformation. Phosphatase activity was normal without transformation. β-glucosidase, 

phenol oxidase and leucine amino peptidase activities were square root transformed for 

normality. Peroxidase was zero inflated with over dispersion and was represented by 
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generalized linear models with a negative binomial distribution. Shannon diversity, 

Chao1, and observed abundance of guilds and Shannon diversity and Chao1 of ESVs 

were normal, while observed richness of ESVs required log transformation. All analyses 

were conducted in the statistical programming environment R v.3.5.1 (R Core Team, 

2018). All statistics were visualized using ggplot2 unless otherwise noted (Wickham, 

2009). 

 To account for differences in the amount of L. maackii along each transect, I 

conducted two sample t-tests examining L. maackii abundance and basal area. In the 

same fashion, I performed two sample t-tests to determine differences between canopy 

coverage, slope and bait moisture across both transects. T-tests were created using lm 

function from the base package (R Core Team, 2018). 

 Linear regressions were used to determine direct relationships between L. maackii 

parameters and abiotic factors. Thus, separate linear regressions were conducted for L. 

maackii basal area and L. maackii abundance, both as functions of canopy coverage, 

slope, and bait moisture. Interactions between abiotic factors were tested using ANOVA 

and Tukey’s post hoc analysis with function lsmeans from emmeans (Lenth, 2018).   

Decay rates and enzyme activities 

 Decay rates were zero inflated without over dispersion and were best represented 

by a Poisson distribution. To evaluate if L. maackii size or abundance affected decay 

rates, I used a generalized linear model with logit link and the glm function from the stats 

package. To determine if L. maackii size or abundance influences enzyme activities, 

variables were subject linear models using the lm function from the stats package. To 

inform if there were differences between decay rates and enzyme activities across 
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transects, data were assessed individually with a two-sample t-tests. I used a generalized 

linear model with a logit link to assess if abiotic factors (wood type, moisture, slope, 

canopy coverage) affected decay rates, and a linear model for enzyme activities as a 

function of the measured abiotic factors. Interactions between abiotic factors were also 

tested using ANOVA and Tukey’s post hoc analysis. Finally, to determine if decay rates 

varied by enzyme activities, variables were subject to generalized linear models with 

logit link. 

Fungal community: univariate 

 To determine if richness (Shannon, Chao1, observed) of ESVs were altered by 

abiotic variables, I used a linear regression with canopy coverage, slope, moisture, and 

wood type as predictor variables. To assess the effect of abiotic variables on abundance 

of fungal guilds (endophyte, mycorrhizae, pathogen, saprophyte), I used generalized 

linear models with logit links. Similarly, linear models were used to examine possible 

relationships between richness and L. maackii abundance, size, and transect and 

generalized linear models to examine relationships between guild abundance with L. 

maackii abundance, size, and transect. To evaluate the role fungal richness and 

communities play in altering decay rates, generalized linear models with logit links were 

applied. To evaluate the role fungal richness and communities play in altering enzyme 

activities, linear models were used.  

Abiotic variables: multivariate 

 Principal component analysis (PCA) was applied to condense enzyme activities 

into linear principal components (PC) to determine if there was any grouping in space 

corresponding to wood type or transect using prcomp from the stats package (R Core 
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Team, 2018). Similarly, I applied PCA to the abiotic variables to examine possible 

grouping in space by the same predictors. To visualize PCAs, I used ggplot2 and ggbiplot 

(Vu, 2011) with groupings based on a 95% confidence interval. To evaluate if any 

grouping in space was due to the predictor variables, I used analysis of similarity with the 

ANOSIM function with 999 permutations from the vegan package (Oksanen et al., 2017).  

Fungal communities: multivariate 

 Differences in fungal communities at the family and guild level by L. maackii 

presence, transect, and wood type were visualized in two ways: stacked bar charts and 

non-metric multidimensional scaling (NMDS). Stacked bar charts for relative abundance 

values were created using melt function from data.table package (Dowle and Srinivasan, 

2018) and visualized in ggplot (Wickham, 2009). NMDS was used to condense fungal 

communities at the ESV, family and the guild levels into linear components with 

metaMDS from vegan (Oksanen et al., 2017). I used ANOSIM to determine if grouping in 

space was significant by predictor variables, and to parse out which species were driving 

differences, I used SIMPER from the vegan package. 

 Canonical correspondence analysis was used to compare a matrix consisting of β-

glucosidase, phenol oxidase, and leucine amino peptidase activities to the abiotic matrix 

including slope, canopy coverage, and block moisture using cca in vegan (Oksanen et al., 

2017). Peroxidase was excluded from this analysis since 56 out of 120 samples with zero 

activity, as these reported zeros could not be used in the CCA matrix without eliminating 

data from each other variable. To determine if there were significant relationships 

between these matrices, ANOVA was performed using the anova.cca function from 
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vegan package with 999 permutations. Ggplot2 was used to visualize groupings by either 

transect, wood type, or L. maackii presence using a 95% confidence interval. 
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RESULTS 

Environmental characteristics and L. maackii metrics 

 Transect two had more abundant L. maackii overall (F1,38 = 4.169, P = 0.048, R2 = 

0.075) with larger and more variable basal area than transect one (F1,38 = 8.72, P = 0.008, 

R2 = 0.15; Figure 4). Neither bait moisture (P > 0.05), slope (P > 0.05), nor canopy 

coverage (P > 0.05) differed between transects. Thus, the variable transect can be used to 

represent differences in L. maackii abundance and size alone.  

 Bait moisture was higher in oak wood than in pine wood (P < 0.001, F2,117 = 

37.28; Figure 5). Bait moisture was weakly and negatively correlated with canopy 

coverage (P = 0.031, F2,118 = 4.793, R2 = 0.04; Figure 5), without interactions with either 

L. maackii size (P > 0.05) or L. maackii abundance (P > 0.05). Bait moisture increased 

with L. maackii size alone (P = 0.044, F2,118 = 4.11, R2 = 0.03; Figure 6), but not with L. 

maackii abundance (P > 0.05). Slope had no effect on moisture of the baits (P > 0.05) or 

L. maackii basal area or abundance (P > 0.05). L. maackii variables were also not 

correlated to canopy coverage (P > 0.05). 
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Figure 4. Boxplot representing differences between L. maackii abundance and L. maackii 
basal area between transect one and two. Transect one had a lower abundance of L. 
maackii (P = 0.048) and L. maackii was larger with more variation on transect two (P = 
0.008). 

 

Figure 5. Linear regression of percent moisture of blocks by percent canopy coverage 
colored by wood type with pink representing pine wood and blue representing oak wood 
(P = 0.031, R2 = 0.04). Shaded area represents 95% confidence interval. 
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Figure 6. Linear regression of percent moisture of blocks by L. maackii basal area (P = 
0.044, R2 = 0.03). Shaded area is 95% confidence interval.  

Decay rates by L. maackii and environmental characteristics  

 Neither L. maackii abundance (P > 0.05), size (P > 0.05) nor presence (P > 0.05) 

predicted decay rates. Oak wood decomposition rate (x̄ = 0.019) was higher than pine 

wood decomposition rate (x̄ = 0.007) overall (F1,118 = 3.84, P = 0.052, R2 = 0.02), 

regardless of insect access (P > 0.05). There was no significant relationship between 

decay rates and bait moisture (P > 0.05), canopy coverage (P > 0.05), or slope (P > 0.05). 
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Figure 7. Box plot representing decay rates by wood type with pine wood in pink and 
oak wood in blue where oak wood decayed faster than pine wood (P = 0.052). 
Enzyme activities as predicted by L. maackii and environmental characteristics 

 β-glucosidase (F1,118 = 11.99, P < 0.001, R2 = 0.09) and phosphatase activities 

(F118 = 4.402, P = 0.038, R2 = 0.03; Figure 8) increased with increases in L. maackii basal 

area. Phosphatase activity was lower on pine wood on transect one than transect two but 

was the same on oak wood despite transect placement (F1,116 = 10.08, P = 0.003, R2 = 

0.19; Figure 9A). There was no relationship between β-glucosidase activity and transect 

(P > 0.05), or L. maackii abundance (P > 0.05). Leucine aminopeptidase activity was 

driven by an interaction between the transect and the wood type, such that pine wood on 

transect two had higher activities than pine wood on transect one, regardless of insect 

access, and pine wood had higher activities than oak wood on both transects (F5,107 = 

6.903, P = 0.002; Figure 9B). Leucine aminopeptidase activity was not explained by L. 

maackii abundance (P > 0.05), size (P > 0.05), or presence (P > 0.05). Phenol oxidase 
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activities were related to the interaction between wood type and transect (F2,112 = 15.15, P 

< 0.001; Figure 10), where pine wood, regardless of insect access, was not significantly 

different between transects, but oak wood had higher phenol oxidase activity on transect 

one than on transect two.  

 

Figure 8. Linear regression demonstrating the increase of β-glucosidase activity (A; P = 
0.008, R2 = 0.06) and phosphatase activity (B; P = 0.038, R2 = 0.03) with increasing L. 
maackii basal area. Shaded area represents 95% confidence interval. 

 

 

 

Figure 9. Box plots representing enzyme activities by transect and wood type. A: 
Leucine aminopeptidase activity increased on pine wood on transect two but remained 
the same on oak wood on each transect (P = 0. 002). B: Phosphatase activity was lower 
on pine wood on transect one, but the same as oak wood on transect two with no change 

A B 
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in activity on oak wood despite transect (P = 0.003). Pine wood is in pink and oak wood 
is in blue. 

 

Figure 10. Boxplot showing peroxidase activity by wood type on each transect. Neither 
control pine wood (pink) nor insect pine wood (green) changed by transect, but oak wood 
(blue) had higher phenol oxidase activity on transect one than on transect two (P < 
0.001).  

Activities of β-glucosidase (F1,118 = 68.81, P < 0.001, R2 = 0.36) and leucine 

aminopeptidase (F1,111 = 34.25, P < 0.001, R2 = 0.23) were increased with bait moisture 

(Figure 11). Neither of these enzyme activities were affected by canopy coverage (P > 

0.05), slope (P > 0.05), or wood type (P > 0.05). There was an interaction between 

moisture and wood type predicting phosphatase activity such that activity increased with 

bait moisture in pine wood but decreased in activity with increasing bait moisture in oak 

wood (F3,116 = 8.424, P = 0.004, R2 = 0.16; Figure 12). Phosphatase activity was higher in 

oak wood overall (F2,117 = 8.424, P < 0.001, R2 = 0.149), with insects contributing to a 
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higher activity than pine wood alone (F2,117 = 8.424, P = 0.013, R2 = 0.15; Figure 13B). 

The oxidative enzymes, phenol oxidase and peroxidase, had no relationship with bait 

moisture (P > 0.05), canopy coverage (P > 0.05) or wood type (P > 0.05). Phenol oxidase 

activity, however, was affected by slope, where activity was higher on flatter bait stations 

as opposed to those on a larger incline (F1,116 = 13.08, P < 0.001, R2 = 0.09; Figure 14). 

Peroxidase was not correlated with slope (P > 0.05). Alone, wood type was an important 

driver of β-glucosidase, leucine aminopeptidase and phenol oxidase activities. Both β-

glucosidase (F2,117 = 7.23, P = 0.001) and leucine aminopeptidase (F2,111 = 11.6, P < 

0.001) activities were higher in oak wood than pine wood, regardless of insect access 

(Figure 15). Phenol oxidase demonstrated higher activities where insects had access to 

pine wood compared to pine wood without insects and oak wood (F2,115 = 10.02, P < 

0.001; Figure 13A). There was no difference in peroxidase activity as predicted by wood 

type (P > 0.05).   

 

Figure 11. Bait moisture as a driver of β-glucosidase activity (P > 0.01, R2 = 0.36) and 
leucine aminopeptidase activity (P > 0.01, R2 = 0.23) in linear regression with the grey 
area indicating a 95% confidence interval. 
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Figure 12. Linear regression of phosphatase activity and bait moisture with pine wood in 
pink and oak wood in blue where activity decreases with increasing moisture in oak but 
increases in activity with increasing moisture on pine wood (P = 0.004, R2 = 0.16). 
Shaded area represents 95% confidence interval.  

 

Figure 13. Phenol oxidase (A; P < 0.001) and phosphatase (B; P = 0.013) activities based 
on wood type where pine control is pink, insect pine is green, and oak is blue.  

 

B A 
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Figure 14. Phenol oxidase activity increased as landscape slope increased (P < 0.001, R2 
= 0.09). The shaded area represents a 95% confidence interval. 

 

Figure 15. β-glucosidase activity (P = 0.001) and leucine aminopeptidase activity (P < 
0.001) were higher on pine wood (pink) than oak wood (blue). 

Enzyme activity as a predictor of decay rates 

 No enzyme activities measured in this study were able to predict decay rates (P > 

0.05). 
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PCAs of enzyme activity and environmental variables  

 In the environmental PCA which condensed slope, moisture and canopy coverage 

into linear PCs, PC1 accounted for 39.4% of the variation, while PC2 accounted for 

35.0%, in sum accounting for 74.4% of total variation (Figure 16). Canopy coverage 

scaled positively with PC1 and PC2, while moisture scaled negatively with PC1 and 

positively with PC2. Slope scaled negatively with PC1. There was a week relationship 

between environmental variables and wood type (R = 0.13, P = 0.001) and environmental 

variables with transect (R = 0.09, P = 0.001; Figure 16).  

 

Figure 16. PCAs of environmental variables as grouped by wood type (R = 0.13, P = 
0.001) or transect (R = 0.09, P = 0.01). 
 The enzyme activity PCA condensed peroxidase, phenol oxidase, phosphatase, 

leucine aminopeptidase and β-glucosidase activities into PCs. PC1 explained 46.3% of 

the variation and PC2 explained 27.3% of the variation in the enzymatic activity PCA, 

totaling 73.6% of the variation within the data being explained by this PCA (Figure 17). 

Peroxidase activity scaled positively with PC2, while phenol oxidase activity scaled 

negatively with both PC1 and PC2. β-glucosidase and leucine aminopeptidase scaled 
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negatively with PC1 and slightly positively with PC2. Grouping by wood type weakly 

yielded differences in enzyme activities (R = 0.10, P = 0.001), but grouping by transect 

did not expose differences (R = 0.02, P = 0.056; Figure 17). 

  

Figure 17. PCAs of enzymatic activities grouped by either wood type (R = 0.10, P = 
0.001) or transect (R = 0.02, P = 0.056). 
Fungal Communities 

Rarefaction and taxonomy assignment 

A total of 10,766,005 sequences were recovered. After quality filtering and 

chimera removal, 795,376 sequences were assigned taxonomic fungal ESVs from the 

UNITE database. Assigned sequences were rarefied to a sampling depth of 109 

sequences per wooden bait, with an end total of 8,829 sequences accounting for 74 ESVs 

(Figure 18). Finally, only the top 99% of sequences were used in analysis to remove 

singletons and PCR artifacts which resulted in the use of 8,743 sequences and 49 ESVs. 

Remaining ESVs were classified into functional groups of either saprophyte, pathogen, 

endophyte, or mycorrhiza based on FUNGuild. Relative abundance values were 

calculated at the functional guild, ESV, and family levels to use in further analysis.  
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Figure 18. Rarefaction curve with each line representing the sequencing depth of each 
block. The dotted line represents 109 sequences of which depth was used to rarefy 
sequence abundance across data for use in further analysis. Pine wood with insects was 
represented in pink, pine without insect in blue, and oak wood in green. 

Fungal community by environmental variables 

Fungal guild relative abundance, Shannon’s diversity, Chao1, and observed 

richness were not predicted by canopy coverage (P > 0.05), slope (P > 0.05), or bait 

moisture (P > 0.05). These fungal community representations were also not driven by 

wood type (P > 0.05), transect (P > 0.05), L. maackii size (P > 0.05) or abundance (P > 

0.05).  

The fungal families Marasmiaceae, Hyaloscyphaceeae, Tricholomataceae, 

Leotiaceae, Orbiliaceae, and Ceratobasidiceae drive differences in community 

composition by transect (R = 0.10, P = 0.007; Figure 19; Figure 21). Transect placement 
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may also drive differentiation between fungal ESVs (R = 0.07, P = 0.049; Figure 20; 

Figure 21) with Arachnopeziza1, Pezoloma ericae, and Arachnopeziza aurata driving this 

difference. Neither fungal families (P >0.05) nor ESVs (P > 0.05) differ based on wood 

type. Neither wood type nor transect significantly differentiated fungal guilds (P > 0.05; 

Figure 19).  

 

Figure 19. Relative abundance of fungal families by transect and wood type. 
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Figure 20. Relative abundance of fungal ESVs by transect and wood type. 
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Figure 21. NMDS of fungal guilds (stress = 0.087; A), families (stress = 0.185; B), and 
ESVs (stress = 0.099; C). NMDS ordinations were grouped by either wood type with 
pine without insect in pink, pine with insect in green, and oak in blue; or ordinations were 
grouped by transect, with transect one in pink and transect 2 in blue. There is 
differentiation by fungal families (R = 0.097, P = 0.01) and ESVs by transect (R = 0.071, 
P = 0.049), but no other grouping is significant (P > 0.05). 

A 

B 

C 
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Fungal community by enzymatic variables 

Pathogen and saprophyte relative abundances predicted phenol oxidase activities 

with an interaction by wood type. Phenol oxidase activity on oak wood with increasing 

pathogen abundance while pine, with or without insects, changed with pathogen 

abundance (F5,73 = 5.375, P = 0.041, R2 = 0.22; Figure 22A). Additionally, greater 

saprophyte abundance decreased phenol oxidase activity in the oak without changing 

activity in pine despite insect access (F5,73 = 7.504, P = 0.011, R2 = 0.294; Figure 22B). 

Neither mycorrhiza (P > 0.05) or endophyte (P > 0.05) abundance nor diversity or 

richness metrics (P > 0.05) influenced phenol oxidase activity. No fungal community 

metrics altered the activities of β-glucosidase (P > 0.05), leucine aminopeptidase (P > 

0.05), phosphatase (P > 0.05), or peroxidase (P > 0.05). The fungal community metrics 

also did not influence decay rates (P > 0.05). 

 

  

Figure 22. Phenol oxidase as a function of pathogen abundance (P = 0.041, R2 = 0.219) 
and saprophyte abundance (P = 0.011, R2 = 0.294) in linear regression where blue 
represents oak wood, pink represents pine wood without insect access, and green 

B A 
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represents pine wood with insect access and the shaded area conveys a 95% confidence 
interval.  
CCA of fungal community with environmental and enzymatic variables 

CCA at the ESV level demonstrated a significant relationship between 

environmental characteristics, enzymatic activities and fungal ESVs (F7,62 = 1.22, P = 

0.006). Phenol oxidase activity was a driver of community structure (F1,61 = 1.38, P = 

0.034), and moisture (F1,61 = 1.31, P = 0.058) and phosphatase activity (F1,61 = 1.31, P = 

0.071) may also contribute to structuring the community (Figure 23). Particularly 

important to differences in community were the ESVs Orbilia aristata (F1,36 = 2.44, P = 

0.040), Coniochaeta1 (F1,36 = 2.53, P = 0.034), Tomentella stuposa (F1,36 = 2.60, P = 

0.030), and possibly Exophiala1 (F1,36 = 2.25, P = 0.053; Figure 23). CCA at the family 

level determined a relationship between environmental and enzymatic activities and 

fungal families present (F7,62 = 1.395, P = 0.006). Moisture (F1,61 = 1.73, P = 0.012), 

phenol oxidase activity (F1,61 = 1.51, P = 0.39) and phosphatase activity (F1,61 = 1.66, P = 

0.028) were significant in structuring fungal families, particularly Coniochaetaceae (F1,47 

=  3.58, P = 0.007), Didymosphariaceae (F1,47 =  2.56, P = 0.035), and the 

Amylocorticiaceae families (F1,47 =  2.34, P = 0.047; Figure 24). There was no 

relationship between fungal guilds and environmental or enzymatic variables (P > 0.05).  
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Figure 23. CCA comparing fungal ESVs to enzymatic activities and environmental 
factors. Environmental variables are represented in orange with Phenol oxidase activity 
was a driver of community structure (F1,61 = 1.38, P = 0.034), and moisture (F1,61 = 1.31, 
P = 0.058) and phosphatase activity (F1,61 = 1.31, P = 0.071) may also contribute to 
structuring the ESV community represented in purple. 
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Figure 24. CCA comparing fungal families to enzymatic activities and environmental 
factors. Environmental variables are represented in orange with moisture (F1,61 = 1.73, P 
= 0.012), phenol oxidase activity (F1,61 = 1.51, P = 0.39) and phosphatase activity (F1,61 = 
1.66, P = 0.028) structuring family composition represented in purple. 
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DISCUSSION 

 Anthropogenic carbon emissions have been rising dramatically due to 

industrialization (IPCC 2014), but the role of microorganisms, which are critical in 

mitigating carbon cycling (Allison et al., 2010; de Graaff et al., 2006; Lal, 2008; Singh et 

al., 2010), remains largely unknown. While forested ecosystems are enormous carbon 

stocks that can store excess carbon through microorganism driven processes, the role that 

introduced species play in further altering carbon cycling is an area of developing 

research. Here, I show that L. maackii alters the soil environment, fungal community 

composition, and their enzymatic activities possibly resulting in increased rates of wood 

decay. Through these changes, L. maackii may harbor the ability to foster quicker carbon 

cycling within invaded forests, leading to faster CO2 release and less carbon storage 

within the soil. Thus, measuring environmental properties, enzymatic activities, and 

fungal community structure during coarse woody debris in invaded forests is an essential 

step in elucidating ways that the invasive shrub is altering carbon cycling.  

 One of the most well established introduced species in Midwestern forests, L. 

maackii, has been well documented to alter ecosystem processes and patterns within 

forests (Cipollini et al., 2008b; Kolbe et al., 2015; McEwan et al., 2009). This is reflected 

in the work presented here such that larger L. maackii shrubs increased bait moisture 

(Figure 6), which is important for decomposition because higher substrate moisture 

increases decay rate (Van Der Wal et al., 2015). While the impact of L. maackii on soil 

moisture is highly context dependent (Hartman and McCarthy, 2004; Kolbe et al., 2015; 



 

44 
 

Pfeiffer and Gorchov, 2015), it has demonstrated an ability to increase soil moisture in 

the WSU woods where this study was conducted (Woods et al. in prep) and thus creates 

an overall wetter environment for decay on the forest floor. Furthermore, the relationship 

between L. maackii and bait moisture was driven by particularly large shrubs that are 

tree-like in size (basal area > 9 cm2). This suggests that as honeysuckle establishes and 

thrives, it will continue to alter the microhabitat of the forest floor by increasing moisture 

of decaying litter. 

 Despite these changes in environmental conditions, L. maackii did not 

significantly alter wood decay rates in this study. Since leaf litter has reduced decay rates 

underneath shrubs (Arthur et al., 2012), wood decay was suspected to have lower decay 

rates in response to close proximity with shrubs. Alternatively, a synergistic relationship 

wherein the quick decay rate of  L. maackii’s leaf litter could increase the decay rate of 

surrounding litter has been proposed (Poulette and Arthur, 2012). Neither of these 

hypotheses were supported by data in this study which did not detect direct effects of L. 

maackii on decomposition rates. Perhaps with a longer decay period, the changes to 

enzymatic activity and fungal community composition as imposed by L. maackii would 

become apparent and be represented by decay rates of the woody debris. 

 Even though L. maackii did not explain decay rates, it did alter enzymatic activity. 

Both β-glucosidase and phosphatase increase in activity with increasing L. maackii size 

(Figure 8). In addition, there was higher leucine aminopeptidase and phosphatase activity 

on pine wood on transect two than transect one (Figure 9), suggesting that the larger and 

more abundant shrubs on this transect were driving faster release of these enzymes. 

Alternatively, there was higher phenol oxidase on oak wood on transect one than transect 
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two (Figure 10), and there was no change in peroxidase activity due to L. maackii, 

suggesting that L. maackii may have a stronger effect on hydrolytic enzymes than 

oxidative enzymes. Interestingly, similar results were found in L. maackii removal areas 

where L. maackii presence increased β-glucosidase activities and decreased or did not 

affect phenol oxidase or peroxidase activities (Woods et al. in prep). Perhaps this 

relationship is due to the lability of L. maackii leaf litter, in that it has high amounts of 

nitrogen and is easily broken down (Poulette and Arthur, 2012; Trammell et al., 2012). 

Additionally, the seasonal pulses of nutrients from this litter could stimulate higher β-

glucosidase, leucine aminopeptidase and phosphatase activities by relieving nutrient 

limitations and thus priming the decay environment with fungi that are better equipped to 

utilize these enzymes.  

 In conjunction to altering enzymatic activities directly, L. maackii induced 

enzymatic activity mediated through increased bait moisture. β-glucosidase and leucine 

aminopeptidase activities increase with bait moisture (Figure 11). Similarly, phosphatase 

activity increased with moisture on pine wood, but this relationship was not true on oak 

wood (Figure 12). This is likely because oak wood retained more moisture than the pine 

wood making it able to sustain phosphatase release. Cases of hydrolytic enzymes 

increasing in activity with higher moisture are common (A’Bear et al., 2014b; 

Machmuller et al., 2016), though the trend does not extend into oxidative enzymes. 

Indeed, the only environmental variable to drive changes in phenol oxidase activity was 

the slope of the landscape, where flatter land leads to higher activity (Figure 14). 

Previous work suggests that this is common for phenol oxidase in that it is lower in 

sloped regions (Wickings et al., 2016). 
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 Changes to fungal associated enzyme activities were directly altered by the size 

and/or abundance of L. maackii shrubs and indirectly through L. maackii’s alterations to 

the environment, suggesting that changes to functional guilds of fungi (endophytic, 

saprophytic, pathogenic, or mycorrhizal) may be driven by L. maackii invasion. 

Unfortunately, we did not detect a change in fungal guild abundance due to 

environmental differences, transect, or type of wood being decayed. On the whole, 

saprophytes comprised the majority of fungi present. While imperative to wood decay, 

brown rot and white rot were not well represented in this survey, though brown rot fungi 

from the family Amylocorticiaceae were important in community structure; however, the 

low abundance of these fungi prevented further exploration (Figure 24). Interestingly, 

phenol oxidase activity was higher with pathogen abundance on oak wood, but lower 

with saprophyte abundance on oak wood. Perhaps pathogenic fungi in this forest are 

better equipped to establish on more labile oak wood, increasing competition with 

saprophytes and decreasing their establishment success (Figure 22). This would indicate 

that saprophytes and pathogens have a similar ability to establish on pine wood. While 

endophytes specific to L. maackii shrubs were identified in a previous study (Arthur et 

al., 2012), the abundance of endophytes in this study was not representative of such 

changes. 

Since the enzymes measured in this study are produced by decomposer fungi, the 

environmental variables that predicted enzymatic activity could also be responsible for 

structuring fungal communities. On the family and ESV levels, fungal communities were 

weakly structured by transect placement of the baits, and thus L. maackii size and 

abundance (Figure 21). Moisture was an important influence on community composition 
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at both the family and ESV level as well, indicating that L. maackii’s amendments to the 

environment are also important in structuring decomposer communities. In particular, 

moisture was tightly linked to abundance of members of the Coniochaetaceae family 

(Figure 24), which typically function as endophytes or pathogens, further supporting that 

L. maackii may alter the abundance of these functional groups.  

Again, since these enzymes are fungal derived, enzymatic activity likely predicts 

the structure of fungal community composition. Thus, community composition at the 

family and ESV levels were structured by phenol oxidase and phosphatase activities 

(Figure 23, 24). There was an association between phosphatase activity and the 

abundance of members of the Didymosphariaceae family, suggesting that members of 

this saprophytic family may demonstrate alternate enzymatic activities than other fungal 

families established on these baits. This could imply a potential for niche partitioning by 

nutrient use. The only ESV to demonstrate a significant association with enzyme activity, 

Orbilia aristata, was associated with phenol oxidase activity, which is perhaps 

unsurprising as it is a saprophyte and therefore able to breakdown recalcitrant material.  

The conclusion that more ESVs were not related to enzyme activities may reflect 

the low number of ESVs recovered here (49 ESVs) which likely constrained my ability to 

adequately determine associations between fungi and the environment. The limited 

number of fungi recovered in this study may reflect the relatively short period of time this 

study covers (one year). With a longer decay period, changes to fungal abundances may 

become more apparent. In particular, with more fall seasons that would allow L. maackii 

leaf litter to interact with woody decay, more endophytes that are specific to L. maackii 

would have opportunity to establish. Additionally, changes to the microhabitat of the 
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wood as imposed by L. maackii may become more defined with a longer period of wood 

decay. This would lead to further niche partitioning and competition between fungi, 

potentially causing divergent community composition that would be perceptible in later 

stage wood decay. While the differences in fungal community composition by L. maackii 

may not be completely clear, it is apparent that the shrub is causing changes to enzymatic 

activities during decay. The differences in enzymatic activities caused by L. maackii are 

suggestive that fungal community composition may account for differences in 

functionality. A longer decay period would allow for more fungal establishment on the 

wood that would aid in a larger sample size of established fungi in which to compare to 

L. maackii metrics.  

 While transect, and therefore honeysuckle size, was able to weakly explain fungal 

community composition, wood type did not structure fungal communities (Figure 23). 

This was unexpected, as fungal groups such as white rot may be more suited for lignin 

heavy pine wood, but it suggests that the early establishment of fungi on woody litter is 

similar among species despite chemical makeup of woody material. Over a longer time 

period, community composition may become distinct between the two wood types based 

on the success of species in acquiring nutrients (Prewitt 2014).  

Despite a lack of effect of wood type on fungal community composition, we did 

detect differences in enzyme activities based on wood type. Though oak wood did decay 

faster than pine wood overall (Figure 7), leucine aminopeptidase and β-glucosidase were 

higher on pine wood (Figure 9). This is likely because of the recalcitrance of the pine 

wood (Weedon et al., 2009). Fungi may have needed to secrete larger quantities of these 

enzymes on the pine wood to release the same amount of nutrients that a smaller quantity 
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of enzymes would release on oak wood. In contrast were phenol oxidase and phosphatase 

which were higher on oak wood than pine wood without insect access (Figure 13). 

Perhaps phenol oxidase activity is more indicative of early wood decay rates in that it can 

degrade recalcitrant carbon material and is necessary in breaking down the large carbon 

polymers present in the wood (Talbot et al., 2015). Phosphatase may be higher on the oak 

wood because it is tightly linked to faster carbon and nitrogen cycling (Ratliff and Fisk, 

2016), which is induced by phenol oxidase and perhaps in part by leucine aminopeptidase 

and β-glucosidase on the oak wood. While enzyme activities were not significantly 

related to overall wood decay rates in this study, they may become increasingly important 

drivers of later stages of wood decay (Kahl et al., 2017). 

 Insect access to decaying pine wood was not dependent on environmental 

conditions, nor did it predict fungal community composition. Further, insect access was 

only indicative of increased phenol oxidase and phosphatase activities (Figure 13). This 

could be due to insects being mycophagus, eating the hyphae of the fungi producing these 

enzymes and stimulating enzyme release (A’Bear et al., 2014a). It was not surprising that 

insects did not alter the decay rates of wood in this ecosystem as there were no wood 

boring decomposer insects, such as termites, present in this survey. Instead, insects in this 

ecosystem may alter decay either by being mycophagus or by dispersing fungal spores 

onto decaying material (Ulyshen, 2016). L. maackii may increase the abundance of 

insects by providing habitat and increased food availability (Loomis et al., 2014), so 

perhaps with a longer time period of decay there could be a discernable difference in the 

ways insects alter decay dynamics as an interaction with L. maackii. 
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 In summary, decomposition of coarse woody debris is being altered by L. maackii 

both by the shrubs’ ability to increase environmental moisture and hydrolytic enzyme 

activity, and by potentially modifying the fungal communities responsible for decay. L. 

maackii’s size is particularly important, with larger shrubs driving the changes to 

moisture and enzyme activities. The prolonged effect of L. maackii on forest ecosystems 

may become especially problematic as land managers shift from removal efforts to 

allowing shrubs to grow into larger tree-like shrubs. Continuing to monitor the effects 

these larger L. maackii shrubs have on important ecosystem processes like decomposition 

is imperative for management strategies which aim to mitigate potential carbon release 

from forested ecosystems. L. maackii is not alone in its ability to drastically alter 

ecosystem function (Dornbush, 2014; Tamura et al., 2017; Tamura and Tharayil, 2014; 

Zhang et al., 2010), other invasive plant species may transform functionality of forests, 

reducing carbon storage capacity by inducing increased rates of decay. To more fully 

understand the effects of invasive species on ecosystem processes, it is imperative that we 

continue to monitor the effects of invasive species on coarse woody decay to inform 

management strategies that best conserve ecosystem processes.  
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