
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2018

Examination of Gain Scheduling and Fuzzy Controllers with Hybrid Examination of Gain Scheduling and Fuzzy Controllers with Hybrid

Reachability Reachability

Aaron W. Fifarek
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Fifarek, Aaron W., "Examination of Gain Scheduling and Fuzzy Controllers with Hybrid Reachability"
(2018). Browse all Theses and Dissertations. 2226.
https://corescholar.libraries.wright.edu/etd_all/2226

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2226?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Examination of Gain Scheduling and Fuzzy
Controllers with Hybrid Reachability

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering

by

Aaron W. Fifarek
B.S.C.S., Wright State University, 2002

2018
Wright State University

Wright State University
GRADUATE SCHOOL

December 14, 2018

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Aaron W. Fifarek ENTITLED Examination of Gain Scheduling and Fuzzy
Controllers with Hybrid Reachability BE ACCEPTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Electrical Engi-
neering.

Kuldip S. Rattan, Ph.D.
Thesis Director

Fred Garber, Ph.D.
Interim Chair, Department of

Electrical Engineering

Committee on
Final Examination

Kuldip S. Rattan, Ph.D.

Matthew Clark, M.S.Egr.

Marian Kazimierczuk, Ph.D.

Barry Milligan, Ph.D.
Interim Dean of the Graduate School

ABSTRACT

Fifarek, Aaron W. M.S.E.E., Department of Electrical Engineering, Wright State University, 2018.
Examination of Gain Scheduling and Fuzzy Controllers with Hybrid Reachability.

Modern aircraft with nonlinear flight envelopes predominately utilize gain scheduled

controllers to provide stability of flight. Using gain scheduled control techniques, nonlin-

ear envelopes can be linearized into collections of linear systems that operate under various

system dynamics. Linear controllers approximate the nonlinear response over setpoints of

operating conditions which allow traditional linear theory to be applied to maintain stabil-

ity. Techniques to prove linear stability are well understood and realized in control systems,

but when controllers are switched, interpolation methods must be used. Interpolation is

necessary as gain scheduled systems do not have foundational switching paradigms as part

of their realization and therefore can not naturally guarantee smooth (or stable) transitions.

To ensure stability between linear controllers, empirical data must be obtained through test

and simulation which adds significant time and fiscal cost to development.

This work examines if fuzzy controllers can provide similar response to that of gain

scheduled controllers. By representing controllers as fuzzy representations, transitions be-

tween the designed linear setpoints can be smoothed by adding membership functions be-

tween defined linear controllers. However, fuzzy control lacks analytical tools to find the

stability margins to test the stability of fuzzy systems.

In order to provide assurance of stability and performance concerns, fuzzy controllers

are translated into hybrid automata representations. Hybrid Automata (HA) theory, which

is gaining popularity to represent cyber-physical systems (CPS), is an extension of finite

state machines (finite automata) which blends continuous dynamics with discrete switching

conditions. The hybrid representation of the fuzzy system allows reachability tools and

formal methods to examine stability and desired performance characteristics. This provides

evidence that a fuzzy controller can produce, at a minimum, an equally effective controller.

iii

The goal of this effort is to establish a process to use fuzzy controller design and reacha-

bility tools to provide evidence of control system key attributes. The work primarily focuses

on using two reachability tools which capture flow-pipe construction in linear models. The

first, SpaceEx, uses representations of continuous sets to compute an overapproximation

of the reachable states. The second, HyLAA, provides a simulation-equivalent reachability

representation. Through reachability evidence generated by these tools, the tested fuzzy

systems show that they maintain stability over the entire range of normalized input signal.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 3
1.3 Future Research . 4

2 Background 5
2.1 Why Advanced Control? . 5
2.2 Gain Scheduling . 6
2.3 Fuzzy Control . 10

2.3.1 What is Fuzzy Logic? . 10
2.3.2 Applications to Controls . 13
2.3.3 Building Fuzzy Controllers . 14
2.3.4 Example Fuzzy System . 15
2.3.5 Gain Scheduled to Fuzzy Conversion 25
2.3.6 Fuzzy to Piecewise Linear . 29

2.4 Hybrid Systems . 32
2.4.1 Finite State Machine . 33
2.4.2 Hybrid Automata . 34
2.4.3 Reachability . 36
2.4.4 Analysis Tools . 39
2.4.5 Processing Tools . 41
2.4.6 Hybrid Reachability Summary . 42

2.5 Summary . 44

3 Gain Schedule / Fuzzy Controllers 45
3.1 Gain Scheduled Proportional Controller 47
3.2 Fuzzy Logic Controller . 52
3.3 Response Improvement - Selective Damping 60

3.3.1 Simulink Representation . 66
3.4 Summary . 68

v

4 Hybrid System 70
4.1 ODE Dynamics Representation . 70
4.2 PFLC to Hybrid Automaton . 72

4.2.1 Hybrid Automaton Development 74
4.2.2 Configuration File . 77
4.2.3 Python Plot Response . 79

4.3 PselDFLC to HA: Inclusion of Selective Damping 79
4.3.1 Python Response . 82

4.4 Summary . 83

5 Reachability 84
5.1 Reachability Results for PFLC . 85

5.1.1 SpaceEx Zero Input PFLC . 86
5.1.2 Reachability using HyLAA . 89

5.2 Proportional Plus Derivative Reachability Results 92
5.2.1 SpaceEx Reachability Analysis 92
5.2.2 HyLAA Reachability Analysis . 96
5.2.3 Reachability Analysis Comparison 99

5.3 Summary . 100

6 Conclusion 101

Bibliography 103

A Calculations and Code 110
A.1 Piecewise Linear Fuzzy Representation 110

A.1.1 Mode 1 . 111
A.1.2 Mode 2 . 112
A.1.3 Mode j . 112

A.2 Proportional Fuzzy Control Using Simulink 113
A.3 Proportional Fuzzy Control Using ODE45 122
A.4 Proportional Single Mode Hybrid Automaton 125
A.5 KMLOGIC Material . 126
A.6 PFLC Python Response Modeling . 129
A.7 PFLC Zero Input Hybrid Representations 135
A.8 PselDFLC Python Response Modeling . 152
A.9 PselDFLC Zero Input Hybrid Representations 158

vi

List of Figures

2.1 The triangular and trapezoidal fuzzy membership [43]. 12
2.2 Fuzzy set continuous membership - age example 13
2.3 Traditional basic closed loop control system. 13
2.4 Fuzzy Logic Controller (FLC) Block Diagram. 14
2.5 Implementation of a FLC into the basic closed-loop diagram. 15
2.6 Linguistic variable and fuzzy inference. 15
2.7 Input fuzzy set with three triangular membership functions. 16
2.8 Output fuzzy set with three triangular membership functions. 16
2.9 The minimum fuzzy membership of each the active sets. 20
2.10 Min-Max inference with the aggregation to the fuzzy output set. 20
2.11 Scaling of the membership values of the output fuzzy set using the product-

sum methodology. 21
2.12 Product-Sum inference method with aggregation to a fuzzy output set. . . . 21
2.13 Product-Max inference method with shaded area under the enclosed. 22
2.14 Enclosed area of an aggregation of fuzzy output sets as defined by min-

max, product-sum, and product-max inference methods. 23
2.15 Scaling of the membership values using the weighted average inference

methodology. 24
2.16 Combined scaled memberships creating the output fuzzy set in the weighted

average methodology. 25
2.17 The generated control surface for the PFLC example fuzzy controller (one-

input, one-output). 26
2.18 Gain scheduled controller with (a) discrete gains Kp values over a specific

error (e) range and (b) linear interpolation of gain changes over the discrete
jump error (e) values. 27

2.19 Gain Surface Plot . 28
2.20 Input fuzzy membership set for the example PFLC with a gain scheduled

switch at ±0.2. 29
2.21 Output fuzzy membership set for the example PFLC with a gain scheduled

switch at ±0.2. 30
2.22 System response with a gain scheduled and fuzzy controller applied to

identical plants with identical step inputs. 31

vii

2.23 Simple finite state machine example of a turnstile [29]. 33
2.24 A simple heating thermostat hybrid automaton example [24]. 36
2.25 Representation of forward and backward reachable sets [51] 38
2.26 Using backward reachable sets to verify safety [51] 38
2.27 Development of a convex hull with overapproximation with two zonotopes [2] 39
2.28 Example 2-dimensional reachable set evolution that shows the predicate of

the initial and reachable sets are maintained [6]. 41
2.29 Reachability with unreachable areas . 43

3.1 Block diagram of a traditional proportional feedback control. 46
3.2 Proportional static gain comparison . 47
3.3 In a gain scheduled proportional system theKpGS block gain changes based

on the chosen dynamics. 48
3.4 Instant gain scheduled switching response 50
3.5 Gain scheduled proportional control with interpolated ranges. 50
3.6 Instantaneous vs Interpolated gain switching 52
3.7 A representative system using a Proportional Fuzzy Logic Controller (PFLC)

where the block gain changes based on the fuzzy rule set. 52
3.8 Proportional gain surface graph . 58
3.9 Matlab Simulink Gain Schedule and PFLC control. 59
3.10 Comparison of proportional responses to a step input by GS and PFLC. . . 60
3.11 Gain scheduled PCtrl, PFLC, PDFLC Simulink 67
3.12 Plot comparison of GS PCtrl, PFLC, and PDFLC 68

4.1 The plant represented by component blocks and feedback. 71
4.2 (A) Plot of the ODE representation of the PCtrl example system using

ODE45. (B) Plot of the ODE45, the GS interpolated control, and the PFLC
layered data sets. 72

4.3 PFLC Hybrid Automton modes Loc1 and Loc2 75
4.4 PFLC Hybrid Automaton . 76
4.5 SpaceEx configuration file (FPCtrl.cfg) to provide initial settings for a PFLC. 77
4.6 PySim response plot generation with initial conditions of (x1, x2, t) =

(0, 0, 0) for the PFLC. 80
4.7 PselDFLC Modes 4, 5, 6 . 82
4.8 PySim PselD Response . 83

5.1 PFLC Hybrid Automaton . 86
5.2 SpaceEx flowpipe representation of a zero input PFLC 87
5.3 SpaceEx flowpipe representation of a zero input PFLC 88
5.4 SpaceEx flowpipe representation of a zero input PFLC 89
5.5 SpaceEx flowpipe representation of a zero input PFLC 90
5.6 Hylaa flowpipe representation of the zero input PFLC 91
5.7 Hybrid automaton representing the system controller for the PselDFLC. . . 92
5.8 PDFLC SpaceEx Plot (9 iterations) . 93
5.9 PDFLC SpaceEx Iterations 18 to 63 . 94

viii

5.10 PDFLC SpaceEx Plot (78 iterations) . 95
5.11 Final HyLAA plot of the reachability of the system as controlled by the

hybrid automaton defined in fig. 5.7. 96
5.12 (A) Reachability of PselDFLC from all initial values of a mode. (B) Reach-

ability of PselDFLC as adjoining mode propagation is taken into account. . 97
5.13 (A,B,C) Example of the shape dynamics being calculated in the system and

(D) Completion of system reachability as the initial seeds of two adjoining
modes are taken into account. 98

ix

List of Tables

2.1 Input/Output fuzzy membership table. 19
2.2 System modes of the PFLC example system using piecewise linear calcu-

lations. 32

3.1 Scheduled proportional gains with respect to error (e) 49
3.2 Interpolated proportional gains with respect to error (e) 51
3.3 Setpoints of the input fuzzy set based on error (e). 54
3.4 Normalized output signal values (u) for the gain scheduled boundary con-

ditions. 55
3.5 Normalized output signal values (u) for the gain scheduled boundary con-

ditions. 55
3.6 Linguistic fuzzy rules using the input and output fuzzy membership sets. . . 56
3.7 System modes of the PCtrl system using piecewise linear calculations. . . . 57
3.8 PFLC definition of a gain scheduled three-gain controller. 59
3.9 Rule-base for the PselD controller. 61
3.10 Mode table by piecewise linear matrix calculations for the PDFLC. 65

x

Acknowledgment
I would like to take this opportunity to extend my thanks primarily to my wife, Ellen, for

everything that comes with being married to a spouse going back for a graduate technical

degree. She provided me comfort when disappointed, encouragement when frustrated,

and motivation when I needed it most. It was only with her ability to handle her own

professional challenges, be the rock of the family, and pick up all the items that I could not

handle while in study that I will achieve this honor.

I would like to thank my boys who were too young to understand the commitment our

family made to this process. They unknowingly sacrificed time with me to allow for this

degree. It is my hope that they will one day realize that I did the best I could to balance the

demands of professional, academic, and family life.

I would like to thank my thesis advisor, Dr. Kuldip Rattan, who I first met as an

undergraduate student in 1998. Although it was many years before I would pursue a grad-

uate degree, I remembered fondly his attitude toward his students as an inspiration to me.

Through this process, he has steered me towards material that I am proud to present.

I would like to thank Mr. Matthew Clark, who initially convinced me that returning

to achieve an engineering graduate degree in control theory was worthwhile. Mr. Clark’s

tutelage over the years has been critical to my professional growth. But beyond the pro-

fessional world, his frank discussions about personal challenges allowed me to realize that

others also experience balancing academic work with the demands of life are experienced

by others.

I would like to thank Dr. Stanley Bak whose expertise in hybrid systems has been

an inspiration to this work. Working with Dr. Bak to understand the current and future

capabilities of the tools available as well as gaining an understanding of hybrid system

reachablity enabled a significant aspect of this work.

Others I would like to thank include the following: Mr. Brian Hulbert, my direct su-

pervisor who approved my commitment to achieving this degree. Dr. Derek Kingston, my

xi

technical area lead whose guidance on my topic selection was influential. Ms. Erika Hoff-

man for working with me professionally and in the academic classes. Mr. Joseph Plantz

and Mr. Matthew Rickey for all of the hours that we spent working through challenging

course material and preparing for exams.

Finally, I would like to thank my parents who instilled upon me a will to succeed,

bragged about me more than I deserved, and always tried to understand when I would talk

about my study material.

xii

Dedicated to

My wife, Ellen

xiii

Chapter 1

Introduction

1.1 Motivation

Integration of advanced control techniques within modern safety critical systems continue

to encounter barriers that prevent widespread use. Although advanced analysis and ex-

perimentation has provided mathematical basis for capturing behavior of these systems,

certification processes are based about system behavior that must be completely specified

and verified prior to approval [9]. For instance, airworthiness standards in MIL-HDBK-

516C [1] is highly linear-centric specifically calling out gain margin of 6dB and a phase

margin of 45° for acceptable design parameters. For adaptive systems, this information is

not known in a manner to allow for meeting this certification criteria [19]. Furthermore,

MIL-HDBK-516C [1] also states that the controls laws must maintain “safe(ty) through-

out the entire flight envelope” which is problematic due to non-deterministic character-

istics of advanced controllers [19]. It is the contention of this author and experts in the

Verification and Validation community, that for systems where nondeterministic attributes

currently prevent certification, advanced capabilities must be considered in order to lever-

age cutting-edge control technology [18]. Systems that utilize adaptive control and/or any

neural-net/machine learning techniques are found to exist primarily in academic or military

1

domain due to the relaxation of safety critical concerns in such applications and even then

only in limited roles. Most often these control techniques are utilized on systems that do not

directly impact the safety of human operators such as on the Joint Direct Attack Munition

(JDAM) system [53]. In systems such as the F-16, whose airframe is inherently unstable

(relaxed stability, statically unstable), control authority is largely governed on gain schedul-

ing techniques that is highly reliant on experimentation and testing. Unfortunately, due to

this reliance, empirical evidence has provided the foundation of trust for gain schedul-

ing techniques. In order to provide mathematical and/or exhaustive evidence of stability

guarantees, nonlinear responses have to be designed and tested with linear representations

that are both time consuming and expensive. Advances in Lyapunov and Linear Matrix

Inequalities (LMI) techniques have helped close this gap but largely requires significant

human-in-the-loop effort to achieve. Work by [58] contends that even asymptotically sta-

ble systems can experience undesired responses due to wild start-up transients and therefore

a supervisor should monitor the performance of the control system.

Modern implementations of advanced control techniques includes a wide array of op-

tions including implementation of neural nets, learning algorithms, and genetic fuzzy trees.

Each produces attributes that have the potential to lessen the design time, improve the re-

sponse, and improve the robustness of traditional control system development. Regardless

of the advanced system type, they share a commonality of being classified as cyber-physical

systems (CPS). Cyber-physical systems is the term for the blending of computer based al-

gorithms that control or react to the physical environment. Although not a new concept,

this classification has gained recent momentum in many disciplines due to the inherited

benefits that computer integration allows: The integration of digital decision logic to allow

advance control techniques.

With the advances in cyber-physical systems (CPS) becoming widely utilized, meth-

ods to represent them in a manner that is analyzable has become critical for safety and

certification purposes. The challenge to represent such systems is centered around a sin-

2

gular challenge: the digital domain must discretize the continuous physical world in order

to be effective. It is this challenge that has led computer science and engineering fields to

refine automata theory to include hybrid automata (HA). Hybrid Automata allows for con-

tinuous dynamics to be encapsulated in discrete modes whose invariants dictate the mode

validity. It is this union of the continuous and discrete systems that has paved the way for

a new class of analysis tools that focus on Reachability.

Reachability analysis utilizes hybrid automata to aid reasoning on the current state of

a system and ways for which it can evolve over time. There are a number of techniques that

exist to aid this analysis and is an active research area. Most importantly, these tools provide

users insight into the capabilities of advanced CPS and how their operating response can

evolve over time as they interact with the physical domain.

1.2 Problem Description

In this thesis, the author intends to show that fuzzy controllers can create similar responses

to the gain scheduled controllers for a linear plant model. This is important for two aspects:

(1) previous work has demonstrated that fuzzy controllers can be directly converted to

hybrid systems [15] and (2) fuzzy controllers provide flexible and embedded representation

of controller switching conditions.

To show possible equivalency between these control techniques and demonstrate ad-

vantages of the alternate representation, the author will seek to answer the following re-

search questions:

1. Gain scheduled systems rely on empirical data between designed controllers to en-

sure that unsafe conditions do not arise as switching occurs. Can the use of rule-based

control paradigms (such as fuzzy controllers) reduce this reliance?

2. Can fuzzy control systems produce similar results as those of a gain scheduled control

systems, and if so, is there a process that can be used to ensure equivalent response?

3

3. Can reachability analysis of hybrid automata that originated from a fuzzy represen-

tation provide insight to system performance characteristics?

1.3 Future Research

Should the goals of this thesis be obtained, future efforts can focus on refinement and ex-

pansion of the research topic in many different thrust areas where advancement would be

beneficial to communities of interest. One such thrust is to convert current nonlinear sys-

tems using gain scheduling to be controlled using fuzzy systems. This would allow for

direct conversion into hybrid automata and thus enable use of reachability analysis tools on

current systems. It would also refine the process to characterize a class of nonlinear control

systems. Another thrust could be an examination of current empirical data requirements

for systems using gain scheduling. By using rule-based control, fuzzy systems may better

represent the switching mechanics necessary for aircraft flight envelope coverage. A re-

duction on the volume of test points would save on cost while reachability could provide

assurance of behavior.

4

Chapter 2

Background

2.1 Why Advanced Control?

Advancement in technology is a natural progression, but in order to bring value to society,

a need must be identified. Such is the case in control theory where advanced techniques are

being developed. Simply put, the exponential rise (and incorporation) of cyber-physical

systems (CPS) illustrate that benefits exist and should be identified. A few motivating

reasons that advanced control research continues today are seen below.

1. Plant Decay: Real world systems decay over time causing the designed controllers

to change effectiveness over time.

2. Catastrophic Damage: Modern aircraft often can still operate (at a reduced effec-

tiveness) with damage or failures that exceed any possible experimentation paradigm.

Unfortunately, since these failures cannot be easily quantified, the development of

explicit controllers are infeasible.

3. Expansion of Capability: Learning algorithms could refine control authority as a

vehicle is used in the field to supplement idealized design.

5

2.2 Gain Scheduling

With roots in the flight control and aerospace community [26], gain scheduling has been

utilized as a solution to complex control problems, especially in applications where the

response is nonlinear. In general, to implement gain scheduling is to utilize techniques to

change nonlinear problems into approximated sets of linear problems. Linear problems

are well understood by the control community and therefore can be analyzed extensively.

The fundamental flaw is that the physical world is rarely linear but is governed by phys-

ical properties that create nonlinear representations. Therefore as systems become more

complex these approximations become less precise.

In order to best understand the history of gain scheduling controllers, the influential

survey papers by Leith and Leithead [34] and by Rugh and Shamma [44] are often consid-

ered for coverage of the material. From these papers, it can be derived that the beginnings

of gain scheduling as it is known today began in the 1960s but has some roots in the similar

(but more simple) approaches in late World War II for V2 rocket control [26].

According to [26], there exists five primary categories of gain scheduling techniques:

Classical, Linear Parameter Varying (LPV), Linear Fractional Transformation (LFT), Fuzzy,

and modern techniques. In truth, these can be better grouped into two overarching cate-

gories of Classical and LPV gain scheduling with other techniques as refinements of each.

Classical gain scheduling

This technique is based on linearizations of a nonlinear system which is described as “Di-

vide and Conquer” gain scheduling design [34]. Also known as “linearization gain schedul-

ing,” where the design of the controller requires that linearized family of controllers are

paired with that of a linearized family of plants [44]. Using this method, the nonlinear

plant is replaced by a set of linearized approximations, each of which can be represented

by a linear controller. These designed linear controllers are built around equilibrium points

6

(also known as design points or set points) [44]. A major advantage of this technique is that

it is capable of directly leveraging the benefits of traditional linear control design methods

in both the time and frequency domains [26]. With direct linear control design techniques,

evaluation of equilibrium point performance can be treated independently using methods

that have been historically developed for linear systems. This includes development of PID

(Proportional plus Integral plus Derivative) design. Challenges that arise from classical

gain scheduling involves the behavior of the system away from the singular set points as

the system transitions through the nonlinear system. Specifically, guarantees of the per-

formance response of the system is only mathematically provable about the set points and

their asymptotically stable areas of attraction as defined in Lyapunov theory [9]. In systems

where the linearization is not appropriately dense, there can be transitional behavior that is

not guaranteed. This is noted by [44] that the literature on the classical linearization gain

scheduling assumes that controllers are able to be continuously interpolated. In the event

that this is not a valid assumption, the closed-loop stability may not be guaranteed. Another

challenge to the classical gain scheduling design methodology involves the development of

the control for multivariable systems. To properly define such a system, the number of

variables becomes a challenge to correctly capture, and even if properly captured, it takes

a great deal of effort in design [45].

Fuzzy Gain Scheduling In the development of classical gain scheduling control, how to

develop PID-based control is well understood about equilibrium point but lacks the ability

to bring in human expertise [58]. To maintain behavior about equilibrium points, there

has been a limitation of the slow variation requirement on gain scheduled systems. Fuzzy

gain scheduling has sought to relax such restrictions while maintaining the classical gain

schedule philosophy [34].

In the literature, typically Fuzzy Gain Scheduling is used to describe methods that

utilize fuzzy rules to generate on-line tuning of controller gains [28]. In works such as [27],

7

existing gain scheduled control set points are introduced to provide data to automatically

extract fuzzy rules. Such a technique leverages a Sugeno [50] fuzzy model translated to an

ANFIS (Adaptive Network based Fuzzy Inference System) architecture in order to identify

the necessary fuzzy rules [27].

Linear Parameter Varying (LPV) Gain Scheduling

According to Leith and Leithead [34], the earliest work on this technique originated from

Shamma and Athans in 1988 [47, 45]. This methodology introduced a capability to directly

synthesize the controller for a system which is in contrast to designing on a family of linear

controllers developed by linear time-invariant techniques [34]. This work sought to capture

two heuristic rules that emerged through ad hoc gain schedule development: (1) that the

scheduling variable should capture the plant’s nonlinearities, and (2) that the scheduling

variable should vary slowly [46]. Therefore, LPV gain scheduling control is effectively a

refinement of the classical gain scheduling paradigm in that it provides guidance on how to

isolate and design to the varying parameters. Furthermore, it is seen in many approaches

of LPV that norm based performance measures are utilized to structure frameworks, this

is especially true in the use of L2 norm [34]. Due to the ability of this technique to utilize

a priori information about a system as well as to capture the exogenous variables as time-

varying quantities, LPV has become widely utlized in the control community.

In LPV gain scheduling, most systems can be categorized into two distinct categories

on how the slow-varying variables are identified and represented. The two categories are

approaches that (1) utilize small-gains or (2) utilize Lyapunov-based techniques [34].

Small-gain Linear Fractional Transformation (LFT) Approaches This is a special

case of LPV is the LFT methodology that uses small gain theory to define the parameter-

dependent variables in the system [34, 44]. This refinement considered discrete-time sys-

tems in the work by Packard [38] and was extended to continuous-time systems by Ap-

8

karian and Gahinet [3]. In these LPV systems, the system is linear time-invariant with a

feedback loop that encloses the time-varying parameter θ [34]. The generalized form of the

plant is considered in eq. (2.1) with a feedback of β = θαwhere θ = blockdiag(θ1Ir1 · · · θKIrK)

and θi represents the ith time-varying parameter and Ir represents an identity matrix of

ri × ri [34].



ẋ

α

e

y


=



A11 A12 B11 B12

A21 A22 B21 B22

C11 C12 D11 D12

C21 C22 D21 D22





x

β

d

u


(2.1)

An advantage of LFT approaches is that, with a special case of LFT parameter depen-

dencies, solving linear matrix inequality (LMI) feasibility problems can construct a less

complex controller than that of a general LPV case [44]. The disadvantages include: the

representation assumption can be restrictive, parameter rate-of-variation bounds are not ex-

ploited, and robustness is achieved with gross overestimation of parameter trajectories [44].

Lyapunov-based Approaches In the Lyapunov based functions, design of LPV systems

is governed on the ability to prove exponential stability of a system [34]. Lyapunov ap-

proaches are typically either in the class of quadratic functions or parameter-dependent

functions [34]. In order to prove asymptotically stable systems, application of Barbalat’s

Theorem is applied to the nonlinear system to determine that change in the system will

approach 0 as time approaches infinity. Without such stipulation, that system is not guar-

anteed to converge to a controllable equilibrium. An advantage of Lyapunov based ap-

proaches is that the application of Barbalat’s provides strong evidence that the system is

controllable. This basis is also applied as a key aspect to adaptive control. As a disad-

vantage, such calculations can be time consuming to identify the appropriate Lyapunov

candidate equations to demonstrate stability. This disadvantage can further manifest itself

9

with an infinite numbers of constraints that meet the solvability conditions leading to the

development of techniques to attempt to mitigate this challenge [34].

2.3 Fuzzy Control

In 1965, Lotfi Zadeh authored a paper on the necessity of fuzzy sets and logic to be in-

cluded in the overall understanding of the uncertainties of the physical world [54]. The

central tenant was the belief that objects in the physical world typically lack disjoint crite-

ria of membership in representative sets. Therefore, attempting to constrain systems into

restrictive collections (sets) was an inherently flawed approach to capture complex (and

varied) systems. This premise established the concept that objects typically are found to

have degrees of membership in interconnected sets [55]. Zadeh’s concern was that devel-

opment of controls for the imprecise “complex large-scale systems” have been affected by

“mathematical intractability” [56]. With the evolution of advanced control techniques (i.e.

adaptive, genetic algorithms, etc.), efforts to overcome the mathematical challenges are

continuing in modern theory. The disadvantage of focusing on strict mathematical solu-

tions to overcome imprecise complex system control is two-fold: (1) physical systems can

be extremely complex to accurately characterize, and (2) the ability to leverage human-type

refinement of response is often lost. The advantage of fuzzy control allows a relaxation

of strict membership set theory to allow for “unsharp boundaries” found in the physical

world [54].

2.3.1 What is Fuzzy Logic?

Fuzzy logic is a type of many-valued logic [8] in which set membership is determined

to be between 0 and 1 effectively representing a membership percentage [37, 52]. This

allows greater flexibility in contrast to traditional Boolean logic [39] in which the system

10

set membership is defined in independent bins. This is known as “crisp” membership

where a value can belong only to true or false members [42]. This capability of multi-

valued logic enabled mathematical representation of two phenomena that becomes more

prevalent in systems as the complexity of real-world notions are modeled: uncertainty and

vagueness. Uncertainty emerges due to the lack of knowledge about the occurrence of some

event while vagueness raises due to the grouping together of objects with some ambiguous

property [37].

There are two primary forms of fuzzy logic named for their foundational authors:

(1) Mamdani and (2) Sugeno. The Mamdani methodology of fuzzy logic seeks to emu-

late the human expert through the application of a generated set of if-then rules [27, 36].

According to [27], the Mamdani technique has difficulties in formalization due to the de-

sign being application-specific. Therefore, it is highly reliant on the input from a human

mental model. Even with this challenge, the ability to directly leverage the human expert

logical decisions provides flexibility necessary in complex systems. The Sugeno method-

ology (also labeled as Takagi-Sugeno in some texts) uses the linear design methods such

as linear quadratic and robust control techniques as an integral aspect of the fuzzy design

method [27, 50]. Consequently, a lessened reliance of the human expert is achieved through

alternative control design methodologies. Research to leverage the strengths of both tech-

niques have been presented by [27] through the use of ANFIS (Adaptive Network based

Fuzzy Inference) to systematically compute gradient vectors. Work by [41] introduced a

new algorithm (KM-LOGIC) to lessen the computational time in order to avoid geometric

explosion of calculating fuzzy rules for increasing number of inputs.

It is often best to define a fuzzy set in the mathematical representation. First, let U

be the universe of discourse or the universal set which contains all possible elements of

concern in a particular context or application. It is characterized by a membership function

µA(x) that takes values in the interval [0, 1] [43]. Therefore, since the set can take any value

between 0 and 1, it is a continuous membership function.

11

A set A in U may be represented as ordered pairs with a generic element x as seen in

eq. (2.2) [43].

A = {X,µA(x)|x ∈ U} (2.2)

Fuzzy sets are typically defined either by a list method or by a rule method. The

rule method representation is more prevalent due to its natural association with the use of

fuzzy sets to capture rules on a membership set. Furthermore, fuzzy sets can exist in many

different shapes, chosen in order to best fit the evolution of the set away from the center

(the mean value of the set). Some examples of set shapes include triangular, trapezoidal,

etc. as seen in fig. 2.1. Due to computational complexity when dealing with higher order

set representations, it is typical that triangular and trapezoidal functions are most often

utilized.

Figure 2.1: The triangular and trapezoidal fuzzy membership [43].

Fuzzy rules define the relationship between the domain of the antecedent U and the

domain of the consequent W whether through implication or through functional approxi-

mation. To illustrate this relationship, observe an example given in the literature [57, 55]

where the age of person is categorized into three bins: young, middle-aged, and old (2.2).

In crisp set descriptions, a person would only be considered in one of the ranges at an time

and that a universal understanding of the line between young and middle-aged would be

necessary. These categories are not universally known, but gradually one transitions from

12

young to old throughout life.

Figure 2.2: Representation of young, middle-aged, and old triangular membership func-
tions.

2.3.2 Applications to Controls

Figure 2.3: Traditional basic closed loop control system.

In control theory, a system (plant) is desired to operate in a specific way given specific

input. This plant can represent systems that are not designed or accessible to an engineer,

so to achieve specific behavior, a controller is introduced to change the input to the plant

in a way for plant to provide desired output. To further enhance this paradigm, feedback

is introduced that can provide the amount of error from the desired reference to that of

the actual system output. Challenges emerge when designers move away from the static

theoretical plants to those of the physical world with a number of non-trivial realizations:

(1) the real-world is rarely captured via linear representation, (2) that a plant can change

over its lifecycle, and (3) desired response must be able to handle flawed or imprecise

input [57].

13

History demonstrated that gain scheduling attempted to handle a number of these chal-

lenges but it fundamentally encounters barriers by not having a mechanism to blend transi-

tions between designed responses. Therefore, challenges such as switching between linear

controls made it necessary to interpolate between differing design points. By using the

fuzzy logic paradigm, control systems could introduce an explicit understanding of how to

control transitions between membership sets while providing a mechanism to incorporate

human design expertise into the control itself [57].

2.3.3 Building Fuzzy Controllers

Figure 2.4: Fuzzy Logic Controller (FLC) Block Diagram.

In the basic closed loop control design, an input reference is compared with an output

signal. A controller uses the difference in the signals to produce a signal that, when directed

to a plant, will build a correlation between the output and reference signal. In order to

implement a fuzzy control system, a Fuzzy Logic Controller (FLC) (fig. 2.4) must represent

the controller in the closed-loop system (fig. 2.5). As a best practice, the FLC is surround by

an input scaling block and a denormalization block. The input scaling block normalizes the

input error signal (e) to a range of [−1, 1] which closely matches the degree of membership

in a fuzzy membership function. After the FLC provides a modification to error (e) by

generating a control signal (u), the signal needs to be denormalized. The denormalization

block returns the resulting control signal (u) to the appropriate range for the plant input.

This best-practice is also demonstrated in figs. 2.4 and 2.5.

14

Figure 2.5: Implementation of a FLC into the basic closed-loop diagram.

In order to build a FLC, there are three steps that have to be followed (fig. 2.6):

1. Fuzzification: Identify the membership center points to generate an input fuzzy set.

2. Specify a Rule Base and Inference Procedure: Determine a set of rules and how

they will be applied to the system. This rule base is used by the inference procedure

to provide output fuzzy sets.

3. Defuzzification: Determine the procedural method to convert the output fuzzy sets

to a crisp output.

Figure 2.6: Linguistic variable and fuzzy inference.

In order to illustrate the steps defined, an example of a 1-input, 1-output fuzzy con-

troller will be discussed.

2.3.4 Example Fuzzy System

In fuzzy systems, there is a correlation between the number of inputs with the number of

input fuzzy sets as well as the number of outputs with the output fuzzy sets. In a single

input, single output (SISO) fuzzy system, there is one input fuzzy set and one output fuzzy

set which makes up the system knowledge base. Using these sets, as well as inference of

15

how they relate, allows the construction of an output fuzzy set which is defuzzified into a

crisp value representation. One common representation of that SISO fuzzy system is that

of a Proportional Fuzzy Logic Controller (PFLC) [43].

In this example, let us define three fuzzy membership functions to represent both the

input (fig. 2.7) and output (fig. 2.8) fuzzy sets of a PFLC; Negative, Zero, and Positive.

Figure 2.7: Input fuzzy set with three triangular membership functions.

Figure 2.8: Output fuzzy set with three triangular membership functions.

Fuzzification

Fuzzification allows for smooth transitions between neighboring subspaces. It converts the

crisp measured values into membership values in fuzzy membership functions. In fig. 2.7,

16

the input fuzzy sets are defined as N, Z, P (negative, zero, positive) membership func-

tions with respect to the input variable e in a fuzzy partitioning arrangement normalized in

[−1, 1]. The center membership function, zero (Z) is centered at zero, the negative (N) is

centered at -1, and finally positive (P) is centered at 1. In a fuzzy partitioning system it is

assumed that the width of an input membership values functions extends to the center point

(also known as the peak value) of adjacent membership functions [42]. One advantage of

using such a technique is that any input in the universe of discourse has membership in only

two membership functions with a sum of membership values equal to one. To determine

membership, let it be supposed that e(j) is the center-point of the membership function

E(j) and e(j + 1) would represent the center point of the adjacent fuzzy set E(j + 1).

Therefore, the membership values are then calculated using eqs. (2.3) and (2.4).

µE(j) =
e1(j + 1)− e1
e1(j + 1)− e1(j)

(2.3)

µE(j+1) =
e1 − e1(j)

e1(j + 1)− e1(j)
(2.4)

Analysis of fig. 2.7 for an input fuzzy set shows a case where e = 0.75. When this

value of e is provided to the input fuzzy set, the amount of membership in each triangular

fuzzy function can be determined. At the aforementioned value of e, the following mem-

bership values can be identified with respect to the negative (N), zero (Z), and postive (P)

input membership functions:

• Value e has no membership in N (µE(1) = 0).

• Value e has partial membership in Z (µE(2) = 0.25).

• Value e has partial membership in P (µE(3) = 0.75).

17

This membership can be represented in matrix form:

µe =

[
µN µZ µP

]
︸ ︷︷ ︸

InputSet

=

[
0 0.25 0.75

]
(2.5)

Moving away from crisp gain values allows greater flexibility in control by introducing

“continuous evolution” of gains. This more closely resembles what would be encountered

in the physical world where data is often imprecise. With fuzzification, imprecision can be

better tolerated since adjacent gains can partially contribute to the value necessary for the

response. Furthermore, smooth transitions provide mathematical protection against issues

with discrete switching. Fuzzification formalizes the continuous subspace transistions.

Linguistic Rules and Inference Design

Fuzzification allows for continuous transitions of input in input fuzzy sets, but the inference

design enables generation of a rule base to describe the relationship between input and

output fuzzy sets. Humans use relational rule sets often. Inference based on a knowledge

base provides a mathematical way to enable control systems to relate input and output fuzzy

sets [57].

Returning to the PFLC already introduced, the defined input and output fuzzy sets

provide the rule base for a single input single output. It is important to note that each

rule is considered a piece of information and the results are combined with the logical OR

conjunction of the statements as seen below.

• If input e is N then the output u is N -OR-

• If input e is Z then the output u is Z -OR-

• If input e is P then the output u is P

This forms the general case of the rules as “R(j) : If input e is E(j) then output u is U(j).”

18

These rules not only emulate how humans reason but has the flexibility to take on multiple

inputs. The rules can be written in a table form as shown table 2.1.

Table 2.1: Input/Output fuzzy membership table.
input E(j)
N Z P

ouput U(j) N Z P

Fuzzy inference generates the fuzzy output set which combines the strength of each

rule with the output membership function [42, 43]. In a fuzzy system, the input fuzzy set

provides the antecedent of the rules with the output fuzzy set providing the consequent.

There are many fuzzy inference methods. Two of the most popular methods used

for fuzzy inference include min-max and product-sum. In the min-max method (mathe-

matically shown in eq. (2.6)) the union (by OR statements) of the resulting set of min-

imums fig. 2.9 generates the output fuzzy set by generating the maximum combined set

area fig. 2.10.

U(x) = max[min(µe(index1), U(index1)),min(µe(index1 + 1), U(index1 + 1))]

(2.6)

This technique creates a shape in a generated output fuzzy set which is enclosed. The area

of this enclosed region can be calculated (in the defuzzification step) to produce the crisp

output value. A disadvantage of this inference technique emerges in the defuzzification

step because of the computational cost of determining the area of the region.

In the product-sum method (eq. (2.7)), this inference technique scales the individual

fuzzy sets according to their membership values (fig. 2.11). After the individual member-

ships are scaled, they are then summed together to form the output fuzzy set curve that will

19

Figure 2.9: The minimum fuzzy membership of each the active sets.

Figure 2.10: Min-Max inference with the aggregation to the fuzzy output set.

be used in the defuzzification process fig. 2.12.

U(x) = µe(index1)× U(index1) + µe(index1 + 1)× U(index1 + 1) (2.7)

An additional inference technique which is used in the PFLC example is that of a

product-max method. Shown mathematically in eq. (2.8), this technique uses similar as-

pects of the previous two methods (min-max and product-sum). Again, the first step in the

20

Figure 2.11: Scaling of the membership values of the output fuzzy set using the product-
sum methodology.

Figure 2.12: Product-Sum inference method with aggregation to a fuzzy output set.

inference is the product scaling of the individual fuzzy membership (recall fig. 2.11). The

next step is to use the maximum of the aggregation of the active fuzzy sets fig. 2.13.

U(x) = max[µe(index1)× U(index1), µe(index1 + 1)× U(index1 + 1)] (2.8)

21

Figure 2.13: Product-Max inference method with shaded area under the enclosed.

Defuzzification

This step in the fuzzy control implementation involves the translation of the resulting output

fuzzy set back into a crisp value for use of the system. To best illustrate in a proportional

controller, the gain (Kp) is a single value. There are many ways to obtain the precise

value from the union of adjoining membership sets. Leekwijck-Kerre states that the most

applicable method to defuzzify depends highly on the underlying stucture of the universe

for which a system is based [33]. With respect to control systems, two often used techniques

are that of the center of gravity(area) (eq. (2.9)) and the weighted average (eq. (2.10)) [43].

In the center of gravity defuzzfication method, the aggregation of the area of adja-

cent output membership functions are combined in the output fuzzy set to determine the

center of gravity. This as summarized in fig. 2.14 where the min-max, product-sum, and

product-max inference techniques provide bounded areas. In order to calculate the center

of gravity, the area under the memberships are combined and scaled to the degree of mem-

bership. This combined area produces a crisp output value at the center that is used for the

system (eq. (2.9)).

output =
∫
u µu(u) du∫
µu(u) du

(2.9)

Although this technique, as in any of aforementioned inference techniques, will produce

proper crisp output, the computational load is complicated by the need to integrate to find

22

Figure 2.14: Enclosed area of an aggregation of fuzzy output sets as defined by min-max,
product-sum, and product-max inference methods.

the area. It was this limitation that led to the second of the defuzzication techniques,

Weighted Average.

The weighted average inference technique (eq. (2.10)) uses a version of the product-

sum method to defuzzifiy the sets (see figs. 2.15 and 2.16).

output =
∑n

i=1 c
o
iµe(i)∑n

i=1 µe(i)
(2.10)

This improves efficiency by averaging the scaled centers of the fuzzy memberships while

eliminating the denominator from calculation (it is always 1). Furthermore, it allows use of

matrix operations. In matrix form, as seen in eq. (2.11), the value to e = 0.75 will produce

a row vector of the input fuzzy set membership with a column vector of the rule vector

(output fuzzy membership functions). The values in the row vector describes the degree of

23

membership which is only active in two adjacent input sets. Coupled with the adjacent sets

of the output membership sets, the matrix multiplication can be simplified with a reduction

to a (1 × 2)(2 × 1) calculation through elimination of the N term that has no membership

in this value of u (eq. (2.12)).

u =

[
N Z P

]
︸ ︷︷ ︸

InputSet

×


Nout

Zout

Pout


︸ ︷︷ ︸
OutputSet

=

[
0 0.25 0.75

]
×


−1

0

1

 = 0.75 (2.11)

Simplified representation:

u =

[
0.25 0.75

]
×

 0

1

 = 0.75 (2.12)

This simplification to only active membership sets becomes more critical as the number of

input membership functions increases.

Figure 2.15: Scaling of the membership values using the weighted average inference
methodology.

24

Figure 2.16: Combined scaled memberships creating the output fuzzy set in the weighted
average methodology.

Control Surface Generation

To further describe the output of the fuzzy control system, the generation of a control sur-

face provides insight on how the system evolves dependent on its membership variables. In

the case of the three fuzzy set example, this is a relationship between the input e (horizontal

axis) and that of the output u (vertical axis). For an equally spaced input fuzzy set (one-

input, one-output), the control surface will appear as a single line over the domain of the

output fuzzy set (fig. 2.17). If the there are additional input fuzzy sets (greater than three)

demonstration of piecewise linear visualization can be realized throughout the surface. This

will be demonstrated in greater detail in the gain schedule to fuzzy system example. With

the increase in the number of input fuzzy sets that define a system, this surface changes

from that of a line (1-input, 1-output) to that of a surface (2-input, 1-output).

2.3.5 Gain Scheduled to Fuzzy Conversion

When converting from a gain scheduled controller to that of a fuzzy control, it is important

to maintain switch gains based on the “slow dynamics” of the system. This is critical

because these dynamics establish the gain tables. For example, in aircraft control, altitude

and mach number are two of the primary “slow dynamics” utilized to generate the flight

envelope trim conditions. These trim conditions define the linear set points of the system

25

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 2.17: The generated control surface for the PFLC example fuzzy controller (one-
input, one-output).

which are resilient to a level of noise when active. As previously established, transitions

between linear set points are typically handled with linear interpolation to gradually change

the gain over some range instead of utilizing dramatic jumps.

Converting from an established gain scheduled controller to an equivalent fuzzy con-

troller requires that the interpolation between setpoints is maintained in the translation. In

order to demonstrate the conversion the following linear plant in eq. (2.13) will be analyzed

using only proportional control as a PFLC.

G(s) =
10

s2 + 3.6s+ 10
(2.13)

In this theoretical gain scheduled controller, the two different setpoints are defined

with gains of Kp1 = 3 and Kp2 = 30 with disjoint jumps between the Kp values at ±0.2

(see fig. 2.18a).

Here, the gain scheduled controller is linearly interpolated by e = ±0.05 about the

switching condition (see fig. 2.18b). Using this interpolation technique lessens the risk

of instability during the transition by reducing the variability between the two gains. The

26

gains here need to be maintained when conversion to the fuzzy controller.

Figure 2.18: Gain scheduled controller with (a) discrete gains Kp values over a specific
error (e) range and (b) linear interpolation of gain changes over the discrete jump error (e)
values.

Now that the gain scheduled controller is defined with linear interpolation, an equiv-

alent triangular fuzzy controller can be generated for this PFLC example. The horizontal

areas of the graph show areas within the error (e) range which the gain values remains con-

stant. The necessary gain value at the specific error values (as seen in fig. 2.18b) provides

the basis of the knowledge base that is used to create the input and output membership

fuzzy sets. To create the knowledge base, the input and output fuzzy membership functions

are defined. The process to establish these sets in a proportional control deals with finding

the correlation between the necessary gain for the error range. This will create a control

surface that can be examined. Upon inspection of fig. 2.18b, identifying the correlation of

the error value input to the output gain value is done by building a control surface. Since

this is a proportional control system, there is only a continuous line between the error range.

27

In surface construction, the slope is defined by the gain that is present in that line segment.

Therefore, by using the gain (Kp) as the associated slope of the line, a correlated output

value can be determined for each piecewise section of the controller. One method to find

the piecewise affine line segment is that of traditional slope-intercept form (y = mx + b)

with a change terms with respect to the axes. These axes are based on the error (e) and

the output (u) terms substituting for x and y. The constant term (b) is also relabeled as C.

Implementing the changes in terminology changes the equations to u = me+C. Using the

point-slope calculations the generated surface plot is shown in fig. 2.19. The relationship

Figure 2.19: Gain surface plot for the 2 gain system.

between the control input error e and the control output u, input fuzzy set fig. 2.20 and

output fuzzy rule base fig. 2.21 can be obtained.

The generation of these set point values establish the centers of the triangular fuzzy

output set. Furthermore, graphing of these center values as a 2d surface shows the relation-

ship between the error e from the closed loop systema and the output u from the controller.

28

Figure 2.20: Input fuzzy membership set for the example PFLC with a gain scheduled
switch at ±0.2.

input E(j)

NB NBtoNS NS PS PStoPB PB

output U(j) NM NS NB PB PS PM

For example, when referring to section 2.3.5 with a value of e = 0.12 crisp input

is presented to the fuzzification block of the knowledge base to realize membership in

negative-small (NS) and positive-small (PS) for the input fuzzy membership set. Using the

product-sum inference technique, it is shown that the output fuzzy membership aligns input

NS to output NB and input PS to output PB.

Now that the inference is established, the defuzzification either by center of gravity

or weighted average can be done. In order to ensure that the systems are functionally

equivalent, Simulink was used to examine the response to a step input. Each technique was

able to provide an identical response (see fig. 2.22).

2.3.6 Fuzzy to Piecewise Linear

In order to examine the behavior of cyber-physical systems, utilizing hybrid automata to

embed continuous dynamics with discrete switching conditions has possibilities to conduct

29

Figure 2.21: Output fuzzy membership set for the example PFLC with a gain scheduled
switch at ±0.2.

various analysis techniques such as system reachability. Hybrid systems are explained in

greater detail in section 2.4. First, let us introduce a relationship between particular fuzzy

set design and that of hybrid automata.

As a foundation to translate systems from fuzzy control to hybrid automata, previous

authors have noted that a relationship between such systems exist [10, 35], even identifying

that a fuzzy control system as a special class of hybrid dynamical systems [21]. Examina-

tion by [48] showed that piecewise linear hybrid systems may cover a hybrid system with

over-approximation. Work by [12] showed that a fuzzy controller can be represented by

piecewise affine (PWA) hybrid automata [15, 17].

In order to translate a fuzzy controller into a PWA hybrid system, each fuzzy inference

rule would have to be represented by an equivalent affine controller [15].

• The affine controller can be represented within the closed loop system as a vector

field of continuous dynamics.

• The finite set of discrete variables are represented by the regions between each fuzzy

input inference vectors.

• The center points of the fuzzy input inference vectors represent guard conditions.

30

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Kp Fuzzy
Kp GS Linear

Figure 2.22: System response with a gain scheduled and fuzzy controller applied to identi-
cal plants with identical step inputs.

It has been shown that an equally spaced input fuzzy set is equivalent to a classical

controller with constant gain, i.e., linear controller [11]. The center point of the input mem-

bership functions is placed at the transition points of the gain. The value of gain determines

the center points of the output fuzzy set membership function. To switch smoothly from

one gain to another, a membership function is added at the transition points. The duration

of the membership function is kept small to quickly transition between gains. It has been

shown that during transition, the output of the controller is a linear function of the input

with an additional constant term.

With a representation of original gain scheduled controller as a fuzzy controller, ac-

cessibility to a hybrid representation can be achieved. Work previously conducted by Clark

and Rattan [15] demonstrate that fuzzy sets can be directly converted to hybrid systems.

In the example, the input fuzzy sets (defined in fig. 2.20), determine the continuous

dynamics that each hybrid state should hold valid. Therefore the invariants of states should

not violate the conditions as defined in table 2.2.

Each mode represents a single location in the hybrid system. To determine the piece-

31

Table 2.2: System modes of the PFLC example system using piecewise linear calculations.
Mode e range

1 e < −0.25
2 −0.25 ≤ e < −0.15
3 −0.15 ≤ e ≤ 0.15
4 0.15 < e ≤ 0.25
5 e > 0.25

wise linear representation of the hybrid system from the fuzzy controller, solve for y(m)

(eq. (2.14)) using k(m) (eq. (2.15)) and c(m) (eq. (2.16)) where m is the mode number.

The mode number is determined by the a pair of input fuzzy membership functions. In the

example, the fuzzy membership function at mode 1 defines the input membership function

the mode that spans NB (m) and NStoNB (m+ 1).

y(m) = k(m)x1 + c(m) (2.14)

k(m) =
u(m+ 1)− u(m)

x1(m+ 1)− x1(m)
(2.15)

c(m) =
x1(m+ 1)u(m)− x1(m)u(m+ 1)

x1(m+ 1)− x1(m)
(2.16)

2.4 Hybrid Systems

To capture the increasing interactions between the natural world (which is continuous) and

the digital systems (which are discrete), use of hybrid systems have come to the forefront.

The notation for such systems defined Hybrid Automata which characterizes the related

behavior of such systems [24].

32

2.4.1 Finite State Machine

To understand Hybrid Automata, familiarity with Finite State Machine (FSM) notation

is beneficial. A finite state machine captures an abstract representation of how specific

changes applied to a machine state that evolves the overall behavior of a system. In this

nomenclature, states represent the general condition of the machine with specific (finite) in-

puts that can transition to alternate states. Through such a representation, abstract behavior

is represented by allowing common inputs to represent different effects on the system.

An example of a finite state machine can be seen in “Discrete Mathematics with Ap-

plications” which describes a turnstile [29]. In the example, the finite state machine is

made of two finite states: locked and unlocked. A user wishing to move through the turn-

stile must insert a token which would allow the individual to pass. Initially, the turnstile is

locked where, no matter how often the user attempts to push the bar, it will not move. If the

user was to insert a token, the state of the machine would transition to an unlocked state.

Should additional tokens be inserted, the state of the machine would still remain unlocked.

Once a user does proceed through the turnstile (pushes the bar) the system transitions back

to the locked state where it will remain until another token is inserted.

This example establishes that there are two finite states of the system: (1) locked(L)

and (2) unlocked(UL). These states are directly influenced by two different inputs: (1) push-

ing the turnstile bar and (2) inserting a token. The FSM is represented in fig. 2.23.

L UL

Insert Token

Push Bar

Push Bar Insert Token

Figure 2.23: Simple finite state machine example of a turnstile [29].

Reflecting on fig. 2.23, note that there are no dynamics attributed to the states of the

turnstile. At each state the system is either locked or unlocked. A limitation here is that

33

many systems exist where the evolution of the states will change over a time horizon. For

such systems, the basis of a FSM design must be extended to include continuous dynamics.

2.4.2 Hybrid Automata

A hybrid automaton is a formal model which models both the continuous and discrete

components of a system [24]. An extension of finite state machines, hybrid automaton

adds continuous dynamics to the modes (states) of the system while maintaining the dis-

crete transitions between each state. Continuous state dynamics allow for more complex

behavior than that what is possible in a finite state machines with applications into cyber-

physical systems. In cyber-physical systems, digital controllers (computers, etc.) govern

discrete transitions between the interpreted states of the system. The states themselves are

not bound by discrete dynamics but are able to evolve in a continuous fashion. These sys-

tems require a formal model to analyze the relationship between the continuous change of

state with discrete decisions to alter the state. In the notation of hybrid automata, continu-

ous evolutions of state are considered flows while the discrete state changes are considered

jumps [24].

The main aspects of a hybrid automaton H are as follows [24]:

1. Variables: A finite set X = {x1, ...xn} of real numbers where n is the dimension of

H . The dervatives of variables are written Ẋ = {ẋ1, ...ẋn}. For primed (values at

the conclusion of discrete steps) it is written X ′ = {x′1, ...x′n}

2. Control Graph: This is a finite directed multigraph (V,E) where the vertices in V

are called control modes and the edges in E are called control switches.

3. Initial, invariant, flow conditions: These are the three predicates that define each

control mode (v ∈ V). These define the conditions in which a mode is valid in the

continuous domain.

34

• init(v): The initial condition is the entry state of the automaton where execution

begins. It is a predicate whose free variables are from X

• inv(v): The invariant condition is the acceptable range of variables that allow

the state to be active. It is a predicate whose free variables are from X

• flow(v): The flow conditions is the continuous dynamics that are active at each

state. It is a predicate whose free variables are from Ẋ
⋃
X

4. Jump conditions: Assigned to edges (control switches) e ∈ E to represent the

discrete transitions. Each edge jump condition (jump(e)) is a predicate of whose

free variables are in X
⋃
X ′

5. Reset A command to return the automaton to the initial state.

In hybrid automata, there are numerous introductory examples that aid in understand-

ing the concepts and provide insight on how they are extended from finite state machines.

One often used example is that of a heater thermostat which contains two modes (see

fig. 2.24). In mode Off the heater is off while in mode On the heater is on. While the

heater is Off, the temperature of the environment will be falling according to the flow con-

dition ẋ = −0.1x. While the heater is On, the temperature of the environment will rise

according the flow condition ẋ = 5− 01.x. Initially, the heater is Off and the temperature

of the environment is at 20 degrees. The jump (also known as the guard) condition states

that when the temperature is less than 19 degrees the system can transition (or jump) to a

different continuous dynamics (different mode). Observe the invariant of the Off mode. It

is defined as the room temperature must be greater than or equal to 18 degrees (x >= 18)

meaning that once the dynamics reach 18 degrees, a transition (jump) must occur [24].

In hybrid automata, the relationship between mode invariants and jump conditions

(guards) represents a source of nondeterminism. A guard only provides an opportunity for

modes to transition, it is the mode invariants that force transitions. As long as the current

mode invariant remains valid, the system does not need to transition from that mode. It is

35

only when the invariant is violated must a jump occur. This can be seen in the thermostat

example (fig. 2.24). If the system is currently in the Off mode, the temperature (x) variable

can demonstrate the nondeterminism. For instance, when (x = 18.5) the transition can be

taken (since the guard allows a jump at x < 19) but it also can remain in the Off mode

since the invariant of x >= 18 is not violated.

Figure 2.24: A simple heating thermostat hybrid automaton example [24].

2.4.3 Reachability

With hybrid automata as a formal representation of hybrid systems, analysis tools can be

used to check system properties that are important to the safety critical domain. Reach-

ability of hybrid automata is an analysis technique where a known initial set of system

states is provided to the algorithm. The initial set of states is then propagated over a step

(often known as a timestep) by the dynamics represented by Ordinary Differential Equa-

tions (ODEs) to construct a possible set of states in that step. This process is repeated

allowing for representation of how the system can evolve over time. In systems with linear

dynamics, this construction may take on polyhedral characteristics but this is not necessar-

ily the case for systems with nonlinear dynamics. As these techniques propagate from a

known initial set, each calculated reach set also includes an error term of that grows as the

delta time from the known initial set grows. This error creates a conservative error bound

36

that may not be reached in actual system implementation. If interesting regions do not exist

in the calculated region actual plus error set growth (known as a flowpipe), then reachabil-

ity tools maintain those regions are unreachable (given correct dynamics representation).

The combination of this set propagation can form a flowpipe that encapsulates the possible

trajectories of the hybrid automaton. This is not the case for timed or rectangular dynamics

that can be analyzed exactly.

It is important to point out that hybrid systems reachability is an active research area

with a variety of sub-topics. For instance, it can be claimed that safety verification and

reachability analysis are not decidable [23]. Decidability in the logic domain is based upon

the capability to effectively answer decision problems (yes/no questions of input values

to an algorithm). This was extended by [25] to state that a system will always be able to

visit all its modes and reach a terminated condition. But the undecidable aspect only refers

to the exact reachable set computation in all cases (for any system model). Some models

(algorithms) may allow for the reachable set to be exactly computed (exact union compu-

tations) while others opt to do an overapproximation (convex hull operations). Regardless

of which method is utilized, reachability can provide insight into hybrid system stability as

long as the dynamics are correctly captured.

The challenge of undecidablity is not unique solely to hybrid systems but to other for-

mal methods tools such as model checking of software. This is mitigated in those domains

by bounding loops; i.e. if a system is deemed safe for a certain depth then it is acceptably

safe. Similarly, this technique has been applied to hybrid systems in the continuous input

domain [51] and the discrete domain [13] [23].

In the work by Tomlin [51], the concept of forward and backward reachable sets were

introduced as a methodology to verify hybrid systems. These concepts use set information

of unsafe states for which the system cannot exist should safety considerations be main-

tained. With this knowledge and reachability analysis, flowpipe propagation in the forward

and backward direction can provide insight of system safety (fig. 2.25). Summary of the

37

definitions of forward and backward reachable sets are as follows: [51]

• Forward reachable sets: Is where the initial set of states is propagated forward in

order to show all trajectories that originate from the initial set. This is traditionally

how the flowpipe paths of hybrid automaton from an initial set are defined.

• Backwards reachable sets: This is an a priori defined set that would be considered

“unsafe” for the system. Using this defined set as the initial set and propagating

backwards can determine a union of sets that would lead to the “unsafe” initial set

(fig. 2.26).

Figure 2.25: Representation of forward and backward reachable sets [51]

Figure 2.26: Using backward reachable sets to verify safety [51]

Other work on reachability included that of Althoff et.al [2] whose team examined

computing reachable sets for uncertain time-varying linear systems then applying the tech-

nique to gain scheduled controllers. This methodology used set propagation which formed

38

zonotopes (a class of polyhedra) as the flowpipes generation (fig. 2.27). This was possible

because their application to nonlinear and hybrid systems used overapproximated unions of

convex hulls to encapsulated the reachable. The caveat here was the uncertain parameters

applied to the system provided the flexibility to overapproximate the more complex sets.

It is necessary to realize that overapproximation may present a more restrictive reachablity

answer than other propagation techniques. Conversely, since nonlinear and hybrid system

representations are encapsulated within the overapproximated convex hull, there can be a

risk that the overapproximate not be sufficient.

Figure 2.27: Development of a convex hull with overapproximation with two zonotopes [2]

2.4.4 Analysis Tools

In order for analysis to be conducted on hybrid automata, there has been a variety of tools

that have been developed [22, 5, 14, 40, 20] to name a few. Many of these tools have made

significant progress in the advancement of hybrid systems analysis allowing investigation

into safety-critical systems. Here the author will briefly discuss two tools that will be

significant for the examination in this thesis.

39

SpaceEx

SpaceEx is a tool platform developed out of Verimag in France as the next iteration of the

work produced from PHAVer [30]. When initial development took place, there was a need

for a platform for which new algorithms on hybrid automata could be examined for reach-

ability (which consequently would lead to safety verification). Therefore, SpaceEx sought

to fulfill this need for a platform while implementing polyhedra (often as zonotopes) based

solutions for the generation of flowpipes for piecewise-linear systems [22, 30]. Analysis is

limited to linear systems (nonlinear systems would require linearization) but advancements

in the efficiency of propagation techniques using support functions and refinements of these

algorithms proved to make SpaceEx well known in the hybrid systems community.

One benefit that SpaceEx brought to the overall hybrid community was the establish-

ment of a XML format (SpaceEx XML Format) to define the hybrid automata accepted by

its analysis engine. This, coupled with a configuration file format, defined the model and

inputs necessary to execute system analysis. The development of the SpaceExMOE [31]

used this format to enable practitioners in the community to generate visual representations

of the hybrid automata through a Java-based program.

HyLAA

HyLAA (HYbrid Linear Automata Analyzer) is a tool that uses simulation-equivalent

reachability to analyze hybrid systems over bounded time [5]. Previous work in hybrid

systems used variations of the traditional reachability algorithms which propagated a set of

a viable states forward within the evolution of a system. The algorithm generally alternates

between calculation of reachable sets by discrete dynamics to that of reachable sets for

continuous dynamics [32]. The traditional reachability algorithms, while powerful due to

its ability to capture how a convex set evolves, can be extremely expensive, especially in

systems with a high degree of state variables.

Simulation-equivalent reachability in HyLAA instead leverages the superposition prop-

40

erty of linear systems. By using superposition, evolution of reachable sets from an initial

set maintains the same predicate throughout. In [6], this is illustrated with a 2-dimensional

system which executes three simulations. These simulations define a center point and two

external boundaries. Bak and Duggirala introduced the generalized star concept which

uses the three simulations to determine the reachable set after a given time [6, 7]. This is

demonstrated in their diagram in fig. 2.28.

Figure 2.28: Example 2-dimensional reachable set evolution that shows the predicate of
the initial and reachable sets are maintained [6].

2.4.5 Processing Tools

HYST

HYST (HYbrid Source Transformer) is a tool that was designed to aid in the overall anal-

ysis of hybrid systems by allowing the community to evaluate its collection tools with a

variety of strengths. Unfortunately, even with previous attempts to create a uniform input

syntax, the existing tools were still too varied to allow for single problems to be examined

by more than the hybrid tool for which it was developed [4]. This limited the ability to

objectively benchmark the tool landscape to most clearly idenitfy the strengths and weak-

nesses of different approaches. Therefore, HYST was developed to be able to (1) accept

the different input formats of hybrid system tools, (2) translate and transform these input

formats into a universal format, and (3) output equivalent system formats for a number of

41

hybrid system analysis engines [4]. The universal input format file type used by HYST

is the SpaceEx XML format (as previously mentioned) as it became a generalized rep-

resentation that could aid conversion from one format to another. HYST could translate

and transform the format to work with many tools including dReach, Flow*, PySim, and

HyCreate [4]. Another advantage is that HYST is architecturally designed to accept new

translation capabilities as new innovations arise. It works with a scripted “printer” system

that can be expanded and refined over time.

2.4.6 Hybrid Reachability Summary

The author chose to use SpaceEx and HyLAA as the reachability analysis tools for this

thesis. SpaceEx provides a solid foundation of piecewise linear reachability analysis that

many tools can trace their lineage. The ability of SpaceEx to be able to generate flowpipes

of convex hulls with limited error growth allowed the author to make general observations

of a number of control responses. The most significant to this work is a visualization

of system stability. Should a system be unstable, the flowpipe show expands indefinitely

without being bound to a steady state region. SpaceEx should be able to demonstrate this

capability given the proper definition of the system.

Although SpaceEx does provide visualization of flowpipes that can aid in stability

conclusions, it has been found to be sensitive to system complexity over extensive iter-

ations. Many times, the fidelity of the engine is adjusted to compensate for scalability

issues such as lessening the flowpipe error tolerance, lessing the maximum iterations, etc.

HyLAA, on the other hand, is specifically designed to leverage the advances in simulation-

based reachability to handle higher dimensionality over longer analysis periods. This work

will leverage HyLAA to confirm that the basis of SpaceEx is maintained while propagating

forward reachability flowpipes to a resolution that the author can feel confident claiming

that system stability is maintained.

The significance of reachability analysis, particularly with HyLAA, allows examina-

42

tion of control systems that could not be as readily analyzed for demonstrable characteris-

tics. An added benefit is that reachability can be used to better focus or reduce the numbers

of required tests of a system. The flowpipes provide an evolution of all the reachable sys-

tem states allowing tests to be directed into regions where the system is shown to enter

rather than areas where the tools show are inaccessible. Observe fig. 2.29 reachability plot

of a proportional controller. The gray areas are shown to be unreachable by the system, and

therefore, testing resources can be moved to other parts of the system response.

Figure 2.29: A proportional control reachability response with areas that are unreachable
by the system in gray.

43

2.5 Summary

In this chapter, the author introduced concepts that are necessary for the stated thesis. First,

an introduction of various gain scheduling techniques were presented based off of the re-

searched work in the control community. The author then proceeded to present a foundation

of understanding for fuzzy control systems. By introducing fuzzy control with a simple ex-

ample, the author presented the reader a simplified version of techniques that would be

later used in the examination. The chapter contained a discussion on hybrid automata (HA)

which included background for the reader on finite state machines and a number of tools

to analyze these constructs. Finally, the chapter closed with an introduction to reachabil-

ity analysis of hybrid automata and the tools (used in this thesis) that are used to examine

reachability.

44

Chapter 3

Gain Schedule / Fuzzy Controllers

As previously discussed, gain scheduling is a necessary control implementation for two

primary reasons. The first is that modern systems under control often are best represented

by nonlinear equations. Nonlinear equations are difficult to analyze for performance and

stability characteristics. The second is that nonlinear system representations can be parti-

tioned into linear approximations that are valid under certain dynamics. This is often the

case in aircraft dynamics where speed (in the form of mach number) and altitude form

the basis of gain scheduled tables. The advantage of representing a nonlinear system as

a collection of linear systems is that each linear system can use traditional linear control

techniques to determine the characteristics desired by design.

Unfortunately, the associated cost of this linear separation is that switching from one

linear controller to another does not carry guarantees of performance and stability. Given

the physical realization of such a system, this switching region also must not be completely

abrupt to avoid instability. In a gain scheduled switching range, instantaneous switching

could introduce mathematically infinite acceleration to the system. In practice, the heavy

use of testing and simulation provides evidence that the conditions are suitably close to

prevent instability. Techniques to ensure smooth transitions between controllers can in-

clude development of various mathematical splines that can also introduce nonlinearity. In

45

practice, it is often popular to linearly interpolate between the linear controllers testing at a

tight range of input values. Should instability be detected, additional linear controllers are

added to the controller and tuned to provide the desired response characteristics.

To mimic the nonlinear representation and to establish a process for alternate repre-

sentations of the controllers with similar performance characteristics, this work will use

a linear control system with multiple gains. The plant system to be tested is shown in

eq. (3.1).

G(s) =
75

s2 + 3.6s+ 10
(3.1)

Kp
75

s2 + 20s+ 75

ur e y

−

ym

Figure 3.1: Block diagram of a traditional proportional feedback control.

In a traditional proportional control feedback system, the block diagram representation

is shown in fig. 3.1 where the proportional gain (Kp) is static. To test the response to

a proportional controller, the author chose three gains to examine the response to a step

input. The following gains were chosen in order to provide a range of response attributes;

Kp = (1, 2, 12.5). Using these gains (with a scaling gain of 5) the responses were modeled

as seen in fig. 3.2;

Upon examination of the response set in fig. 3.2, the following general characteristics

can be observed. First that the higher gains produced lessened steady state error but caused

extreme overshoot and oscillation in the response. The lower gains were slow and unable

to achieve near desired steady-state error (observe Kplow = 1). These attributes were

expected as typical with proportional controllers. If the multiple gains are able to be utilized

46

Figure 3.2: Various proportional gain controllers implemented with the example plant.

as a set, then the response could be improved. This will be done with a gain scheduled

proportional controller.

3.1 Gain Scheduled Proportional Controller

Gain Scheduling is a control technique where complex plant models are sectioned off into

multiple control zones and can be represented by a linear approximation. Such zones en-

able, with some variance of asymptotic stability, that the linear approximation will ensure

a controlled desired response. In order to achieve such a technique, a methodology must

be used to determine two aspects: (1) how to separate the nonlinear response curve and

(2) the linear approximation of that section of the curve. Separation of a nonlinear curve

or envelope is often done using slow dynamics. In aircraft, this is done with a correlation

between altitude and speed which affect the wing lift dynamics (the control “plant”). As

these dynamics change, so can the required gains to stabilize the system. The second as-

pect uses the discovered separation boundaries to approximate a linear response for each

zone. This linear approximation is then subjected to the traditional control techniques (as

47

KpGS
75

s2 + 20s+ 75

ur e y

−

ym

Figure 3.3: In a gain scheduled proportional system the KpGS block gain changes based on
the chosen dynamics.

previously discussed) to control that specific state of the overall system. It is important

to note that control of these zones is purposely designed to have an acceptable asymptotic

range for which the system will be resistant to noise and external influences. This is to be

most accommodating to the approximation of the zone.

In gain scheduling, switching between linear approximations does not guarantee that

stability is maintained. At the edge zones, the approximation contains the largest error

ranges within the system. In aircraft design practice, empirical evidence of the zone bound-

aries are identified to categorize the resulting response. If the approximation is not close

enough, risk of infinite acceleration vectors can occur. In theoretical gain scheduling, tech-

niques such as spline development can mitigate such a concerns. But in traditional practice,

an additional linear zone approximation is often preferred due to the breadth of tools for

examining and tuning linear control systems.

In order to demonstrate gain scheduling in this work, eq. (3.1) will again be used but

this time with proportional controllers with switching conditions built upon the loop error

value. To demonstrate the gain scheduled system design, let us modify the previous block

diagram with the gain being defined in a new block.

Recall in fig. 3.2, the static proportional gain values of Kp = (1, 2, 12.5) with a static

gain multiplier of five. These gain values were shown to provide insufficient characteristics

throughout the entire range of the response. Let us observe the effect on the overall response

should these gain values be applied to signal error (e) ranges. An error range in this gain

scheduled controller is based on the feedback loop value of the system. When a normalized

48

step input is applied to a system that starts with no initial value, the distance from the target

value is the greatest. Similarly, should the normalized response settle from value twice

that of the target, it represents an equally large distance from the target. Therefore, the

total error range of the system can reasoned as e = (−1, 1). In traditional proportional

control, the static gains are applied throughout this range. To demonstrate a gain scheduled

proportional control (GS PCtrl), gains are assigned to the continuous range of error in the

system. Here the ranges for each gain value is shown in table 3.1.

Table 3.1: Proportional gains (Kp) for gain scheduled control dependent on the error value
(e).

error range Kp

e < −0.50 1
−0.50 ≤ e < −0.08 2
−0.08 ≤ e ≤ 0.08 12.5
0.08 < e ≤ 0.5 2

e > 0.50 1

The step response of the system with the gain scheduled controller is shown in fig. 3.4.

Note the improvement of the overall response by using the error signal to switch between

the different gain values. More complex systems may utilize different states to determining

switching actions (such as in aircraft). Here, with respect to linear response, this feedback

signal error provides an effective switching condition.

Unfortunately, the response simulated in this system with instantaneous switching is

unrealistic in actual application. Abrupt changes can cause unsafe conditions to emerge.

In a physical system, instantaneous changes of gains can provide mathematical instability

by the creation of infinite acceleration. In this example, since this is a second-order linear

system, stability should be maintained in switching, but other systems, this is not guaran-

teed. To ensure that this is represented, interpolation between the linear controllers should

be included. Therefore, between each Kp value over an error range there is a linearly in-

terpolated region where a smooth gain is achieved. This error (e) range uses the previously

49

Figure 3.4: System step response with instantaneous switching between the gain values.

defined ranges (recall table 3.1) with a interpolation value of e = 0.01 as shown in fig. 3.5.

To calculate the interpolated representations, a gain surface plot of the system can be gen-

erated. This is done by calculating the slope of the surface using a point-slope equation

over the interpolated region connecting two static regions.

Figure 3.5: Gain scheduled proportional control with interpolated ranges.

To demonstrate the interpolation calculation consider the region where the error range

is [0.5, 0.51] and Kp = [2, 1]. First, the slope (m) is determined using the boundary points

50

(see eq. (3.2)).

m =
Kp2 −Kp1

e2 − e1
=
−1
0.01

= −100 (3.2)

Next, one of the boundary points is utilized to calculate the equation of the line as

shown in eq. (3.3).

Kp −Kp1 = m(e− e1) = m(e)−m(e1) +Kp1 = m(e) + C

C = −m(e1) +Kp1 = −100(0.5) + 2 = 52

Kp = −100e+ 52 (3.3)

Completing these calculations for all the entire possible error range of the system

produces the control surface as shown in table 3.2. Now that the system is defined with

interpolation between the gain scheduled linear controllers, the response can be compared

to that of the previous instantaneous gain system (fig. 3.6). Note that the response between

the interpolated and instantaneous switching is similar.

Table 3.2: Proportional gains with interpolated regions dependent on the error value (e).
error range Kp

e < −0.51 u = e
−0.51 ≤ e < −0.5 100e + 52
−0.5 ≤ e < −0.09 2
−0.09 ≤ e < −0.08 1050e + 96.5
−0.08 ≤ e ≤ 0.08 12.5e
0.08 < e ≤ 0.09 -1050e + 96.5
0.09 < e ≤ 0.5 2
0.5 < e ≤ 0.51 -100e + 52

e > 0.51 1

51

Figure 3.6: Comparison between instantaneous switching of gains vs a linear interpolated
switching region over e = 0.05.

3.2 Fuzzy Logic Controller

The process to utilize a gain scheduled controller was previously shown to improve a re-

sponse to input by utilizing only proportional manipulation. This section will show the

process to build an equivalent fuzzy controller. The basic fuzzy control system will be

represented with a block diagram as seen in fig. 3.7. The inclusion of a Proportional Fuzzy

Logic Controller (PFLC) allows for the input signal (u) to the plant to be adjusted with

respect to the incoming error (e) signal.

PFLC
75

s2 + 20s+ 75

ur e y

−

ym

Figure 3.7: A representative system using a Proportional Fuzzy Logic Controller (PFLC)
where the block gain changes based on the fuzzy rule set.

In order to make the conversion from a gain scheduled controller to a fuzzy based

52

system, the existing gains associated with the established error ranges are used to generate

the input and output fuzzy sets. In order to capture the multiple gains in the system through

fuzzy representation, the use of triangular fuzzification was used. Triangular fuzzy sets

enforce that there exists only a singular value of the membership set where full membership

occurs. Any set membership value that is not a singular point represents a contribution of

the adjoining input ranges to that of the membership set.

Building the Input Fuzzy Membership Set

Using triangular fuzzy set representation, the first step is to build the input fuzzy set. To

build the input fuzzy set, the gain scheduled error (e) ranges are used. Each area of static

gain is represented by a singular membership set whose setpoint is the error value at a gain

boundary. To illustrate this, observe the error range of [0.51, 1] in the gain scheduled con-

troller. The triangular input membership set is defined at e = 0.51 as the full membership

value. Due to the rules of the input membership paradigm (triangular sets), each side of the

triangle proceeds toward the adjoining setpoint via linear progression to zero membership.

Therefore, the two sides of the error 0.51 membership setpoint connects to the error 0.5

setpoint (left side) and the error 1.0 setpoint (right side) both at zero membership at those

points. Triangular membership continues infinitely when no other membership functions

are present as seen at the error setpoint at 1.0. The left side connects to the zero member-

ship at error of 0.51 while the right side has no additional setpoints and therefore continues

at full membership. This can be seen in the input fuzzy membership set in table 3.3.

With the process defined to establish the input fuzzy membership set, the full input

set can be illustrated. To coincide with the gain schedule error ranges the membership

setpoints will exist at the following values as seen in table 3.3. Furthermore, the setpoints

will be labeled for ease of reference using a semi-descriptive encoding: (P = positive, N =

negative, S = Small, M = Medium, B = Big, Z = Zero).

53

Table 3.3: Setpoints of the input fuzzy set based on error (e).
NB NMB NM NMS NS Z PS PMS PM PMB PB

e -1 -.51 -.5 -.09 -.08 0 0.08 0.09 0.5 0.51 1

Building the Output Fuzzy Membership Set

The next step to creating the fuzzy representation of the gain scheduled controller is to

generate the output fuzzy set. This set will associate the output signal (u) to the input

fuzzy set (error) membership setpoints. There are two methods to approach construction

of the output fuzzy set: (1) through piecewise linear calculations or (2) through point-slope

calculations. This work will focus on the piecewise linear representation but also include

in Appendix A the point-slope calculations. In a Single-Input Single-Output (SISO) fuzzy

system, these techniques will produce equivalent results.

The first step is to normalize the gain values of the system. Although this is not

required, it often aids the practitioner by removing the large magnitude representation. It

allows for a constant gain valued to be added to the system design. Adding a static gain

multiplier is often much more economical than trying to provide the full gain value. By

normalizing on that gain, the decision block sees a maximum gain of 1 (Kp = 1) with the

static gain added later. Therefore, in the calculations for the output fuzzy membership set,

the provided gains (KpGS = [1, 2, 12.5]) will normalize to KpnGS = [0.08, 0.16, 1].

To construct the output fuzzy set, first calculate the output signal value (u) at each of

the gain schedule boundary conditions. A gain schedule boundary point here is any point

where the linear representation of the gains slope changes. An example of this is at error

point where (e = −0.51). Here the static gain value is going to encounter an interpolation

region. Progressing from the negative range of the system, the point where error is −1 has

a gain value of Kp = 0.08. The u term is determined as the product of the error and the

gain. This is expected as by definition as u = Kpe. Hence, the first output membership

function is u = Kpe = 0.08(−1) = −0.08.

Let us examine the next setpoint where error is −0.51. The gain value at that point

54

is still Kp = 0.08 but now the error term affects the output signal term. Here, by again

resolving u = Kpe the resulting output fuzzy set value is u = Kpe = 0.08(−0.51) =

−0.0408.

Continuing through each of the boundary points, the following output signal values

(u) is calculated as proceeding from the negative to the positive error range in the gain

scheduled set as seen in table 3.4.

Table 3.4: Normalized output signal values (u) for the gain scheduled boundary conditions.
u -0.08 -0.0408 -0.08 -0.0144 -0.08 0 0.08 0.0144 0.08 0.0408 0.08

The values shown in table 3.4 are unordered because their magnitudes are not aligned

numerically. To make the output fuzzy membership set properly, these have to be reordered

by value and then a similar labeling, as was present in the input fuzzy set, can be applied as

seen in table 3.5. Because of the construction of this example, the output fuzzy set contains

multiple instances of the same value. This is easily handled within a fuzzy control system

as we can eliminate the extra cases in the output set.

Table 3.5: Normalized output signal values (u) for the gain scheduled boundary conditions.
NB NM NS Z PS PM PB

u -0.08 -0.0408 -0.0144 0 0.0144 0.0408 0.08

Now that the input and output fuzzy sets are defined, the correlation between the

sets can establish the rules of the PFLC. Return to the unordered table (table 3.4). As

previously mentioned these values are obtained by the setpoint boundary conditions and

therefore provide a mapping of the rule set. Defining the rules for the system provides

the following statements in table 3.6. Recall that the linguistic rules are phrased as: “If

[the] input value is [in this] input membership set then [the] output value is [in this] output

membership set.”

55

Table 3.6: Linguistic fuzzy rules using the input and output fuzzy membership sets.
If e is NB then u is NB or
If e is NMB then u is NM or
If e is NM then u is NB or
If e is NMS then u is NS or
If e is NS then u is NB or
If e is Z then u is Z or
If e is PS then u is PB or
If e is PMS then u is PS or
If e is PM then u is PMB or
If e is PMB then u is PMS or
If e is PB then u is PM

With the correlation defined, matrix operations can characterize the gain surface plot.

We are able examine an number of error (e) points in the input fuzzy membership set, and

the total output signal value (u) can be calculated using the simplified weighted technique.

The process to calculate the gain surface plot [15] is generalized in the following eq. (3.4)

where j is the index region, u(j) is the output signal of the index region, Kpe(j) is the

equivalent gain of the index region, and cons(j) is the constant offset value.

u(j) = Kpe(j)× x+ cons(j) (3.4)

The general form of the terms where U(j) denotes the index of the output fuzzy mem-

bership function as seen in eqs. (3.5) and (3.6).

Kpe(j) =
U(j + 1)− U(j)
x(j + 1)− x(j)

(3.5)

cons(j) =
x(j + 1) ∗ U(j)− x(j) ∗ U(j + 1)

x(j + 1)− x(j)
(3.6)

To solve these equations for the entire system (thus providing a complete gain surface)

the following use of the weighted average system was refined in [17, 16] where eqs. (3.5)

56

and (3.6) are refined to eqs. (3.7) and (3.8).

Kpe(j) =
1

x(j + 1)− x(j)

[
−1 1

] u(j)

u(j + 1)

 (3.7)

cons(j) =
1

x(j + 1)− x(j)

[
x(j + 1) −x(j)

] u(m)

u(m+ 1)

 (3.8)

The work to develop the mode equations and a Matlab script that calculated the piece-

wise linear can be found in Apendix A. The resulting values can be seen for the system

under consideration in table 3.7.

Table 3.7: System modes of the PCtrl system using piecewise linear calculations.
Mode error range u

1 e < −0.51 u = e
2 −0.15 ≤ e < −0.5 u = -49e - 25.5
3 −0.5 ≤ e < −0.09 u = 2e
4 −0.09 ≤ e < −0.08 u = -82e - 7.56
5 −0.08 ≤ e ≤ 0.08 u = 12.5e
6 0.08 < e ≤ 0.09 u = -82e + 7.56
7 0.09 < e ≤ 0.5 u = 2e
8 0.5 < e ≤ 0.51 u = -49e + 25.5
9 e > 0.51 u = e

Using the defined equations for u, a proportional gain surface graph can be con-

structed. The column labeled Mode in table 3.7 provides the reader a linguistic represen-

tation of the modes. Graphing the PFLC surface plot based on the table produces fig. 3.8.

57

Figure 3.8: Gain surface of PFLC.

Matlab Fuzzy Representation

The first step to implement such this system is to build the Simulink model as shown in

fig. 3.9. This example,uses the same represented plant that was previously described in

(eq. (3.1)) and uses the same three proportional gains (Kp = (1, 2, 12.5)). In fig. 3.9, there

are two separate systems that are excited by a step input. The top system, labeled GS PCtrl,

is the representation of the gain scheduled controller. Since it has been established that

the gain schedule controller is using linear interpolation, in Simulink the author chose to

represent the characterization of the controller using a Lookup Table (LUT) block as seen

in fig. 3.9. In Simulink, the LUT block will automatically perform interpolation between

any changes in the values over a range.

The bottom system, labeled PFLC in fig. 3.9, is the implemented fuzzy controller. The

internal structure of the PFLC is a function block discussed in Appendix A that produces

the PFLC response. There are two inputs that proceed into the PFLC function block, the

first is the error (e) term and the second is that of the derivative of the error term (ė). In the

case of this system, since it is proportional control only, the error input line is used. The

58

Figure 3.9: Simulink that plots the gain scheduled proportional control and the PFLC re-
sponses.

function is designed to leverage additional inputs of derivative (Kd) if desired, but it was not

chosen for this example. Internal to the function, the vectors “centers” and “rule vector”

define input and output sets that define the fuzzy controller.

As seen in section 2.3 in chapter 2, the process to design a fuzzy controller requires

the use of input and output fuzzy sets to define the system. In order to find the centers

and the rule vector, the calculation was done with the weighted average technique with the

results shown in table 3.8.

Table 3.8: PFLC definition of a gain scheduled three-gain controller.
centers -1 -.51 -.5 -.09 -.08 0 .08 .09 .5 .51 1

rule vector -1 -0.51 -1 -0.18 -1 0 1 0.18 1 .51 1

By showing equivalence in responses between the gain scheduled and fuzzy con-

trollers, the author decided to move ahead with the transition to hybrid automaton rep-

resentation for reachability analysis of the PFLC.

59

Figure 3.10: This is a comparison of the gain schedule and fuzzy proportional controllers.

3.3 Response Improvement - Selective Damping

As seen in fig. 3.10, there is desire to improve the overshoot and settling time (remove

oscillations) in the system. This is due to the large gain in the final phase of the designed

controller where the system is near the target settling value. To eliminate the steady-state

error, a high gain is introduced. The most direct way in traditional control is to introduce

an ability to further dampen the system and the same holds true with in the fuzzy control

representation.

To accomplish the additional damping of the system, a selective fuzzy PDFLC (PselD)

will be constructed to introduce limited system damping when the response nears the

steady-state. The primary benefit of this technique is that it ensures that the rise time of the

system is not increased.

In order to construct the PDFLC controller, the first step is to develop a new rule

base that is two-dimensional. Recall the rule base defined in table 3.8 which defines a

proportional fuzzy logic controller (PFLC). Adding the second dimension to the rule set

represents the change of error ė term. In this example, a three membership fuzzy second

60

input (change of error) is selected with center values at [−1, 0, 1]. This is a deliberate

design decision to select a constant derivative input during the modes when the output is

near the steady-state region. A gain of 0.15 was selected for the change of error input (ė),

since the amount of derivative use will be limited to the near steady-state which will be

described later.

In order to develop the 2-input/1-output rule base, the switching gain conditions need

to be maintained. Therefore, the constant gain regions in the controller are characterized in

the piecewise linear representation. For instance, observe the PFLC rule base (table 3.8),

the output during the steady-state region u = 12.5e is selected.

To maintain the PFLC capability but to add derivative refinement to modes near the

steady-state of the response, the methodolgy in [17, 16] is desired. The first step in this

process is the decision to only add derivative control to selected number of modes when

building a hybrid automaton. The output of the fuzzy control system for a two-input system

is defined in eq. (3.9).

u = Kpne+Kdnė+Knneė+ C (3.9)

To add the derivative input during the steady-state region, the rule-base given in table 3.9

is selected.

Table 3.9: Rule-base for the PselD controller.

ė
e

-1 -.51 -.5 -.09 -.08 0 .08 .09 .5 .51 1

-1 -1 -0.51 -1 -0.18 -2 -1 0 0.18 1 .51 1
0 -1 -0.51 -1 -0.18 -1 0 1 0.18 1 .51 1
1 -1 -0.51 -1 -0.18 0 1 2 0.18 1 .51 1

In table 3.9, the steady-state region of the system is designed to be symmetrical about

the positive and negative response and therefore will not need a zero input membership

set. The zero case here is maintained only for these explanation but will not be directly

represented in the hybrid automaton. To show that a constant derivative gain is added to

61

the PselD controller the following modes are computed. In these calculations, the input x1

defines the error input fuzzy set while the input x2 defines the ė input fuzzy set. For the

steady-state mode error index values are x1(j) = −0.08 and x1(j + 1) = 0.08 while the ė

index values are x2(k) = −1 and x2(k + 1) = 0. To calculate the common denominator of

these equations refer to eq. (3.10).

Den = [x2(k + 1)− x2(k)] ∗ [x1(j + 1)− x1(j)] = 0.16 (3.10)

The values for Kpn, Kdn, Knn, and C are determined as transformations.

Kpn =
1

Den

[
x2(k + 1) −x2(k)

]


[
−1 1

] u(L1)

u(L3)


[
−1 1

] u(L2)

u(L4)




(3.11)

Solving for the mode (let us label it as Mode 5), one will find the calculation to result

in Kp5 = 12.5 as shown in eq. (3.12).

Kp5 =
1

Den

[
0 1

]


[
−1 1

] −2
0


[
−1 1

] −1
1




=

1

0.16

[
0 1

]2
2

 =
2

0.16
= 12.5 (3.12)

62

The Kdn term is given by eq. (3.13).

Kdn =
1

Den

[
−1 1

]


[
x1(k + 1) −x1(k)

] u(L1)

u(L3)


[
x1(k + 1) −x1(k)

] u(L2)

u(L4)




(3.13)

Solving for Kdn with the appropriate substitutions for Mode 5 produces the following

result as see in eq. (3.14). It is important to note that the resulting Kd5 = 1 is leveraged

in the Simulink design by allowing the ė input to be affected by a scaled multiplier (see

fig. 3.11). This allowed tuning outside of maintaining the proportional input membership

set.

Kd5 =
1

Den

[
−1 1

]


[
0.08 −(−0.08)

] −2
0


[
0.08 −(−0.08)

] −1
1




=

1

0.16
∗ (0.16 + 0) = 1 (3.14)

Referring back to eq. (3.9), the next term to be defined is the Knn term. This term rep-

resents a nonlinear element that may be introduced into the system. To solve the nonlinear

63

aspect in the two-input/one-output system matrix, calculations are used in eq. (3.15).

Knn =
1

Den

[
−1 1

]


[
−1 1

] u(L1)

u(L3)


[
−1 1

] u(L2)

u(L4)




(3.15)

As expected in this system, the resulting nonlinear term effectively falls out of the

system as shown in eq. (3.16).

Kn5 =
1

Den

[
−1 1

]


[
−1 1

] −2
0


[
−1 1

] −1
1




=

1

0.16
∗ (−2 + 2) = 0 (3.16)

The final term in eq. (3.9) is that of the constant term (C)in the equation. Solved also

by matrix calculation it is shown in eq. (3.17).

Cn =
1

Den

[
x2(k + 1) −x2(k)

]


[
x1(k + 1) −x1(k)

] u(L1)

u(L3)


[
x1(k + 1) −x1(k)

] u(L2)

u(L4)




(3.17)

64

Substituting the values for Mode 5 the value for C5 is found in eq. (3.18).

Cn =
1

0.16

[
0 −(−1)

]


[
0.08 −(−0.08)

] −2
0


[
0.08 −(−0.08)

] −1
1




=

1

0.16
∗ (0) = 0 (3.18)

The aforementioned calculations allow for the definition of u5 defined in eq. (3.9) to

be completed for Mode 5. Furthermore, using the same calculation steps, there are eighteen

modes full u values can be determined. Note that nine modes are represented in a Hybrid

Automaton which is possible due to the symmetry built into this example system. Should

symmetry not exist, then this example system would have to be represented as eighteen

modes and necessitate switching on both the error (e) and change of error (ė) terms. This

symmetry also allowed for the derivative term (Kd) to be selectively applied. Therefore the

fully designed mode table is defined in table 3.10. With the mode table fully developed and

the rule vector defined in table 3.9, a Simulink representation of the PDFLC is generated.

Table 3.10: Mode table by piecewise linear matrix calculations for the PDFLC.
Mode Cn Kdn Kpn Nonlinear

1 0 0 1.0 0
2 -25.5 0 -49.0 0
3 0 1.2195 2.0 2.439
4 -7.56 1.0 -82.0 0
5 0 1.0 12.5 0
6 7.56 1.0 -82.0 0
7 0 1.2195 2.0 -2.439
8 25.5 0 -49.0 0
9 0 0 1.0 0

65

3.3.1 Simulink Representation

In order to represent a selective addition of the derivative control aspect to the system, the

feedback loop will include both the e and ė inputs to the PDFLC function. Within the

PDFLC function block, the centers of each input membership set is defined along with a

rule vector that associates those memberships with the output membership set. The combi-

nation of this information produces the output signal as determined in table 3.10.

Observe that the difference in this Simulink diagram between the PFLC and the PDFLC

is that the ė feedback loop is multiplied by a 0 gain. This eliminates the derivative term in

the PFLC. Since the designed Kd in the selective terms (Modes 4,5,6) are all Kd = 1 and

the Kd term is not used in Modes 3 and 7, then the elimination of the ė feedback produces

the same response as the PFLC.

Note that in the PDFLC (PselDFLC) representation, the ė gain multipier is 0.15 which

is a designed value, tuned to improve the results. It is able to be further adjusted should it

be deemed necessary.

66

Figure 3.11: Representation of the GS PCtrl, the PFLC, and the PDFLC.

With a representation in Simulink now defined, response examination can be done

on the system as shown in fig. 3.12. First, notice that the plots for the gain scheduled

proportional controller and the PFLC are not both visible in the response. This is due to

the equivalence seen in the behavior that was shown earlier in this chapter. Therefore, the

responses are layered on top of each other, the last drawn only being visible. The next item

to notice in the response is that of the PselDFLC line (PDFLC with selective derivative

control). The derivative term allowed for improvement of the response by nearly removing

the oscillations of the system and reducing the experienced overshoot. Furthermore, it

maintains the same steady-state error that is seen in the gain scheduled and PFLC. These

67

Figure 3.12: Response comparison of the GS PCtrl, the PFLC, and the PDFLC.

improvements show the value of selectively adding the derivative term into this PDFLC.

3.4 Summary

In this chapter the author introduced a gain scheduled (GS) controller to control a second-

order plant system. This example demonstrated that a system response can be better tuned

with a combination of three separate proportional gains. How to use each of the gains

was determined by the feedback error to a step function. Upon demonstration of the im-

proved response with the gain scheduled controller, the author then implemented a process

to convert the gain scheduled controller into a proportional fuzzy logic control (PFLC).

This process demonstrated that the responses can be made equivalent and therefore the

advantages of fuzzy control can be made available to many GS applications.

The author then expanded upon the example system by adding selective damping to

both the GS representations of the controller and that of the fuzzy controller. This fuzzy

controller became a version of a proportional-plus-derivative fuzzy logic control that the

author termed as PselD or PselDFLC. These terms were used because the derivative term

68

was selectively applied to remove effect on the rise-time response of the system. This

chapter concluded with evidence that the GS control with selective derivative and the PselD

control system are also equivalent.

69

Chapter 4

Hybrid System

With a fuzzy controller added to the system, a conversion to hybrid automaton is now

directly possible. Previously established by Clark and Rattan [17], the conversion of fuzzy

systems to hybrid automata provides a method to leverage the growing array of hybrid

analysis tools in the community. Specific to this work, reachability of controlled systems

can be examined.

4.1 ODE Dynamics Representation

Before conducting reachability analysis on a fuzzy control system, a direct representation

of the gain scheduled controller is implemented. This representation, converted into an

ordinary differential equation (ODE) would utilize a lookup table (LUT) to represent the

linear changes in gains. In order to ensure that the ODEs are properly calculated and

to ensure that the tooling that is later used functions properly, the system is tested using

Matlab’s ODE45 representation.

Recall that system transfer function is defined as G(s) = 75/(s2 + 20s + 75). In

order to convert the system to an ODE, the standard proportional controller is defined in

fig. 3.1. We can isolate the plant representation (G(s)) as an output/input relationship in

70

s−1 s−15

−20

−75

+
ÿ ẏ y

x1

u

Figure 4.1: The plant represented by component blocks and feedback.

the frequency domain (Y/U) shown in eq. (4.1). When converted from a transfer function

to that of an ODE, the equation is set in the terms of ÿ eq. (4.2). The transfer function of

the plant is given by eq. (4.1).
Y

U
=

75

s2 + 20s+ 75
(4.1)

Y (s2) + 20 ∗ Y (s) + 75 ∗ Y (0) = 75 ∗ U(s)

ÿ + 20ẏ + 75y = 75u

ÿ = −20ẏ − 75y + 75u (4.2)

Using the representation of eq. (4.2), the plant can be realized in an alternate form that

will provide more direct access to the position and previous velocity of the system as seen

in fig. 4.1. Finally, the terms are converted to an ODE for the reachability tools where x1 is

the position, x2 is the previous velocity of the system, and u is the input of the system as

shown in eq. (4.3).

ẋ1 = x2

ẋ2 = −20x2 − 75x1 + 75u (4.3)

Simulink block diagrams that were used previously model the response characteris-

tics. In the reachability analysis tools instead of a graphical representation, the direct math-

71

ematical ODE representation is used. Therefore, using eq. (4.3), the system is functionally

expressed. It is important to note that the error (e) term in the system was determined with

the following characteristics: the target value is a normalized step function and the system

will not exceed twice the target. Specifically, the operating range of x1 = [0, 2] with an

initial starting point of the system would be zero. Using the ODE45 technique, the calcula-

tion of the error value is e = 1− x1. This is the case as the error value is the distance from

the normalized target of the step function represented by the x1 position variable. Plotting

the system showed similarities to that of the proportional gain scheduled interpolation in

Simulink and PFLC responses. This was confirmed when all three responses (Fuzzy P Ctrl,

PFLC, GS ODE45)were displayed on a single plot fig. 4.2.

Figure 4.2: (A) Plot of the ODE representation of the PCtrl example system using ODE45.
(B) Plot of the ODE45, the GS interpolated control, and the PFLC layered data sets.

4.2 PFLC to Hybrid Automaton

In order to construct the hybrid automaton from a fuzzy system, let us refer back to the ODE

representation to provide the continuous dynamics of the system as seen in eq. (4.3). In the

system block diagram fig. 3.7, the controller aligns a fuzzy rule set to make an association

72

between the incoming error (e) signal and that of the desired output signal (u). This is the

same association made in the gain surface plot in fig. 3.8 and the subsequent output (u)

equations found in table 3.7. In standard proportional control, this controller output signal

is represented as u = Kpe + C where Kp is the proportional gain, e is the incoming error

signal, and C is a constant adjustment term.

With all the necessary information available, the construction of the hybrid automaton

is undertaken by use of the continuous dynamics (eq. (4.3)) and use of table 3.7. The

significance of table 3.7 is as follows.

Mode This column is used to label each the hybrid modes (locations). Although not

necessary to process the behavior of the HA, labeling the modes is important for tracking

purposes. Each of these modes are accessible by discrete jumps.

error range There are two pieces of information critical here to the automaton. The first

is the generation of the mode invariants. Recall in automata theory, the invariants of a mode

is the conditions for which a mode is valid. Should the mode invariant conditions become

invalid (such as e is no longer in an acceptable range) the system must transition out of the

mode. If the mode can not transition, then it is not properly formed. Also, recall that mode

invariants in HA are the only way that mode must be existed. The second is the generation

of the jumps which uses the same information as the invariants. Jumps only provide an

opportunity to leave or enter a mode, it does not force mode changes. This allows for the

inclusion of nondeterministic elements if desired. In the HA constructed in this work, the

invariants and jumps are in full agreement as nondeterministic elements were not desired.

Input (u) The input (u) column in table 3.7 includes the static gain of 12.5, therefore,

in order to properly represent the block output signal, a gain of 12.5 would need to be

included. In addition, the PFLC gain value is then scaled with a multiple of five to further

refine the control signal. For example, using the normalized u column the ẋ2 dynamics

73

would be as follows for mode Mode 1 in eq. (4.4).

ẋ2 = −20x2 − 75x1 + 75 ∗ 12.5 ∗ 5 ∗ 1e (4.4)

Even with the information provided by table 3.7, there still exists the need for def-

inition of the state variables of the hybrid automaton. The choice of the number of state

variables is significant as the number of these variables each add a dimension of calcula-

tions to the analysis tools that will be examined later in the text. For the HA representation

of the PFLC, there are three state variables that must be defined: ẋ1, ẋ2, and ṫ. The vari-

ables ẋ1 and ẋ2 represent the position and velocity of the system and originates directly

from eq. (4.3). The third variable, ṫ = 1 in the system denotes time often thought of in

seconds. Technically, the ṫ term is used to provide response tracking and is not necessary

should a user have an intrinsic view of the graphed relation of ẋ1 and ẋ2. In practice, the

graphed result of the response over time (x1 over t) is ideal for the system examination in

this work and worth the increased dimensional burden. It should be observed that eq. (4.4)

is not completely correct for the HA representation. This is because we did not include a

state variable for e which is not an oversight. Recall that the error term can be realized as

e = 1 − x1 and therefore is not necessary as a unique state variable saving a dimensional

complexity. Furthermore, later use of the analysis tools will illustrate that the formulation

for e is not optimal when looking at the full input range. This will be discussed in detail in

chapter 5.

4.2.1 Hybrid Automaton Development

In order to build the hybrid automata (HA) representation, the generation of a SpaceEx

XML input file format is used. This is done graphically through the SpaceEx Model Ed-

itor [30] which was developed as hybrid automata authoring tool in Java. The images in

this work shows the HA represented in that tool. Although this tool can be used to build

74

the automaton, it is not necessary as the tool encodes a SpaceEx XML file format which

can be directly edited. In the HA community, particularly with the Hybrid Reachability

community, the SpaceEx XML file format has become a standard representation for many

different tools. Therefore, building the system in this format provides the flexibility in anal-

ysis tools. In particular, using Hyst [4], a HA made in the SpaceEx format can be translated

into alternate formats. This allows for direct comparison of tools, ensuring equivalent rep-

resentations of the same model and its configuration. It is the use of Hyst that allows the

comparison of the analysis results in chapter 5 and also the testing the simulation response

in python.

Before showing the entire hybrid automaton, let us first examine the Loc1 and Loc2

modes in fig. 4.3, their invariants, continuous dynamics, state variables, and jumps.

Figure 4.3: Partial representation of the PFLC hybrid automaton modes Loc1 and Loc2.

It can be seen in fig. 4.3 that invariant of mode Loc1 is e < −0.51. By leaving the

invariant as e < −0.51, should a situation arise where the e is less than −1.0 will be

handled by the same application of gain. The continuous dynamics are a conjunction (&)

of all the state variables. The most significant of the state variables being ẋ2 (which is

denoted as x2'). For the ẋ2 dynamics recall that the Loc1 block output must be included for

75

u(table 3.7) making the dynamics in eq. (4.5).

ẋ2 = −20 ∗ x2 − 75 ∗ x1 + 75 ∗ 5 ∗ 1 ∗ (1− x1) (4.5)

In the event that the invariant is no longer valid there is only one direction that the system

can progress, on the jump condition (guard) that e >= −0.51. This is the arrow that

goes from mode Loc1 to mode Loc2. The mode Loc2 is constructed in a similar fashion

as Loc1. To return to mode Loc1 from mode Loc2, the error (e) must evolve to violate

the Loc2 invariant and take the jump condition (guard) that returns to (points to) Loc1 of

e < −0.51. With this process defined, the entire automaton can be constructed and can be

seen in fig. 4.4

Figure 4.4: The hybrid automaton representation of the PFLC.

76

1 system = Example1
2 initially = "x1 == 0.0 & x2 == 0 & t == 0"
3

4 # Image FPCtrl_xxx_v1.png settings
5 set-aggregation = chull
6 scenario = stc
7 directions = box
8 sampling-time = 0.001
9 time-horizon = 3.5

10 iter-max = 20
11 output-variables = "t, x1"
12 output-format = GEN
13 rel-err = 1.0E-6
14 abs-err = 1.0E-5
15 flowpipe-tolerance = 0.01

Figure 4.5: SpaceEx configuration file (FPCtrl.cfg) to provide initial settings for a PFLC.

4.2.2 Configuration File

In SpaceEx, the configuration file (labeled as a .cfg), defines the initial values of the state

variables, set aggregation techniques, the flowpipe growth preference, propagation limita-

tions, etc. necessary to enable the system to produce acceptable results. In fig. 4.5 the

complete configuration file for the three-gain system is defined. Descriptions of each line

is explained in the following listing. It is worth noting that there are other configuration

file entries that are acceptable and have an influence on the generated results. This subset

is geared toward the three-gain system in this example. Additional result formulations may

discuss these settings later in this work.

• system - The name of the automaton within the SpaceEx model file that this config-

uration applies.

• initially - This defined the initial values of the state variables. This field can include

ranges of values if the initial value is to be chosen by a sudo-random selection.

• scenario - This is the type of algorithms to propagate the system states.

supp - support functions

77

stc - refined support functions algorithm with better error control

sim - a single simulation of the dynamics

phaver - basic phaver tool algorithm

• directions - This is the number of discrete dimensions to grow the containing set. The

higher the order number, the more processing intensive the calculations.

box - Four directions of growth from a bounded center point

oct - Eight directions of growth from a bounded center point

• set-aggregation - Defines the method on how to build the resulting set after each

iteration.

chull - Ensures that a convex hull is generated from the propagation of the set.

If the hull is not convex (concave) and over-approximation is executed to ensure the

convex set.

• sampling-time - This is the discrete time step of the system to sample the evolution

of the state variables.

• time-horizon - The maximum time for which to sample the system. This is one of two

settings (the other being “iter-max”) that can govern the attempted execution length

of the analysis. The analysis is concluded whichever of these two settings occurs

first.

• iter-max - This is that maximum number of sampling iterations for the system. This

is the other setting that governs the execution length of the analysis. The analysis is

concluded when this setting is reached or the “time-horizon” is reached.

• output-variables - These are the state variables to output for the system.

• output-format - The output format of the analysis.

gen - Generates a graph of the output variables

78

• rel-err - An error tuning field.

• abs-err - Another error tuning field.

• flowpipe-tolerance - This is a tolerance level used to define how the exact the cal-

culation of the flowpipe construction is to be completed. For instance, a flowpipe

tolerance of 0.001 will calculate the tolerance within this defined range. Increas-

ing the precision of this tolerance can have significant implications on the runtime

capability of the models.

4.2.3 Python Plot Response

To verify that the PFLC hybrid automaton is properly configured prior to analysis and

to ensure that the response behavior is correct, a simulation visualization is encouraged.

Using Hyst [4], the SpaceEx XML file and the SpaceEx configuration files are translated

into a python script. This allows PySim to be run on the HA which should create a similar

response plot as we have previously seen in Matlab. The raw files can be seen in Appendix

A under section A.7.

Running PySim generated the response as seen in fig. 4.6. When compared with the

output generated from Matlab in (fig. 3.10) the response curves show agreement. This is an

expected result as the same gain surface plot that was implemented in the PFLC was used

to generated the hybrid automaton.

4.3 PselDFLC to HA: Inclusion of Selective Damping

As previously shown, the response can be further improved with the inclusion of the deriva-

tive term in the response. This is shown through the Simulink response where improvement

of the overall system oscillations and overshoot are both better managed. Adding a deriva-

79

Figure 4.6: PySim response plot generation with initial conditions of (x1, x2, t) = (0, 0, 0)
for the PFLC.

tive term to the entire hybrid automaton can add significant additional modes and com-

plexity to the system representation. This is because each transition must now be done on

both the e and ė terms. For instance, the product of membership functions minus one of

each input is the largest number of modes that needs to be created in the system. In this

example, the error fuzzy set has eleven membership functions making the error (e) mode

dimension equal to ten. In the change of error (ė) dimension, the total of three membership

functions provides two modes. Therefore, the total number of modes possible in the system

is modenum = 10 ∗ 2 = 20. In the error (e) dimension, due to the symmetry of the gain

about 0, the zero mode can be removed reducing the set of modes to nine in that dimension

and therefore 18 total.

Before building a HA with 18 modes, let us consider an alternate approach to still

only switch on the e dimension, thus using only nine modes. This can be done in a hybrid

automaton since the added derivative terms are constant and are restricted to specific modes

in the system. Since each mode’s continuous dynamics are independently defined, the re-

sponsibility to ensuring that the dynamics are correct fall to that of the designer. Therefore,

80

should the continuous dynamics be changed to only include Kd in specific modes that is

possible and is desired in this example system. Note is table 3.10 the Kd = 1 terms exist

in Modes 4,5,6. Such a design choice allows a constant Kd input multiplier on the ė feed-

back loop gain of 0.15. Therefore, adding the Kd term can improve the system response

by changing the dynamics of ẋ2 in those modes. This is done by changing the controller

output to u = Kpe +Kdė + C as seen in eq. (4.6). Also note that the constant multiplier

(0.15) is introduced to the Kd value.

ẋ2 = −20x2 − 75x1 + 75 ∗ 5 ∗ (Kpe+ 0.15 ∗Kdė+ C) (4.6)

With the derivative defined for these modes, it is now incorporated into the HA as seen

in fig. 4.7.

81

Figure 4.7: Modes 4, 5, and 6 of the PselDFLC HA that adds the derivative damping.

4.3.1 Python Response

To ensure that the representation as a hybrid automaton is comparable, again PySim is uti-

lized to simulate the response. Here, the system is not a zero-input system and therefore

uses initial x1 = 0 input to replicate the step response characteristics. The resulting re-

sponse, as seen in fig. 4.8, maps well in comparison to the PselD representation built in

Matlab (fig. 3.12). The only difference in the response is that of the extents of the time

horizon on the horizontal axis. Therefore, the representation of the hybrid automaton of

the PselD controller is determined to be correct for reachability analysis.

82

Figure 4.8: PySim response plot generation with initial conditions of (x1, x2, t) = (0, 0, 0)
for the PselD (PDFLC).

4.4 Summary

In this chapter the author used the previously defined example (both the PFLC and PselD-

FLC) to translate the control systems to hybrid automata (HA) representations. As a key

part of the thesis, this process was described in detail so the reader may be able to recreate

the process in the future. With the defined fuzzy representations, the first step to convert to

hybrid automata representations was redefining the plant continuous dynamics as ordinary

differential equations. This formulation of the dynamics is necessary for tool use later in

the thesis and therefore the author used response modeling to ensure that various formu-

lations agreed. The author then constructed HA representations using previously defined

linear piecewise affine calculations from the work of Rattan and Clark [17]. After generat-

ing the HA representations, the author then leveraged PySim to model the response of the

new representation. Through inspection, agreement of the responses (GS, PFLC, HA) is

demonstrated. As before, the author also executed the process with the selective derivative

controller systems.

83

Chapter 5

Reachability Analysis

It has now been established that the original linear gain scheduled controller first described

in chapter 3 was able to be converted to a PFLC using linear piecewise calculations. These

same linear piecewise calculations were used to change the PFLC representation into a

hybrid automaton by methods described in [17, 16]. Demonstrating that response charac-

teristics were maintained through each translation provided evidence that system is able to

be equivalently represented.

As described in chapter 2, the ability to capture the dynamics of cyber-physical sys-

tems (CPS) in automata theory provides capabilities to examine dynamics beyond the tradi-

tional methods. This work uses reachability analysis to analyze the example system. Recall

that reachability analysis provides capability to examine the evolution of a system from a

defined set of states. This defined set of states, known as the initial states, provides a real-

ization of a system within a state space (not to be confused with state-space in the controls

community). A state-space is the dimensional domain that state variables can evolve often

with each independent state-space variable occupying a single dimension of the space.

The significance of this analysis is realized when applied to system evolution over

time. The initial states are realizations of the overall system state at some instance. Reacha-

bility tools allow for forward or backward evolution from that initial realization providing a

84

visualization of how a the initial states can evolve. This evolution of sets that move forward

or backward in a time-horizon from the initial set can be stitched together to form flowpipes.

A significant benefit of reachability analysis is that it evolves the system bounded only by

computational resources; the base algorithms do not artificially limit the propagation of the

set of states. Current research into reachability tools have made advancements at improving

the computational limitations of this analysis.

Two analysis methods include forward or backward reachability [51]. Forward reach-

ability starts from an initial set of states, guaranteed to be safe and progresses the evolution

forward in time. The goal is to be able to claim that any evolution (flowpipe) that originated

from that set of states will not enter and state-space regions deemed to be unsafe. Back-

ward reachability reverses the process to defining a set of states that encompasses an unsafe

region. This region can be characterized and progressed back in time to find all regions that

could lead to the unsafe state.

This work focuses on the use of forward reachable sets in order to confirm various

system characteristics, specifically statements about stability. This is significant for the

controls community as it provides for an analysis technique that is not bounded by many

of the linear system limitations. Therefore, evidence of the applicability to the example

linear problem will provide confidence in expansion to more complex nonlinear systems.

To accomplish analysis of stability, this work will discuss results from two specific hybrid

reachability tools: SpaceEx [32] and Hylaa [5].

5.1 Reachability Results for PFLC

With the control output signal (u) defined for the system, and the invariants and jump

conditions also defined, a hybrid automaton was constructed as seen in fig. 4.4. In order to

ease reachability calculation, the error (e) term was to be calculated against energy being

taken out of the system. Therefore, the initial input range of [−1, 1] covers the ±100%

85

overshoot/undershoot assumption. As a simplification, e = 0 − x1 = −x1 for the zero

input as seen in fig. 5.1.

Figure 5.1: The hybrid automaton representation of the PFLC controlled system with zero
input.

Using the zero input system lets the user analyze a number of traits to determine

the performance characteristics. Most importantly, the overall system reachability can be

observed.

5.1.1 SpaceEx Zero Input PFLC

In order to visualize the system reachability, the author chose to build up the number of

iterations for flowpipe propagation. The first resulting plot was set to nine iterations, as

seen in fig. 5.2, to demonstrate flows from initial values that originate within the specific

modes. It shows that each flow evolves to the boundary condition without possibility to

exhibit uncontrolled aspects. This is seen by all polytope growth ending in a flowpipe to

the boundary extent.

86

Figure 5.2: SpaceEx flowpipe representation of a zero input PFLC controlled system for 9
iterations.

The next case increased the target iterations to 18. This resulted in evidence that

the system begins to build the pipes from the previous mode boundaries that were seen.

Unfortunately, fig. 5.3 shows that doubling the iterations was insufficient to fully evolves

reachability representation. It is shown that the iterations only propagated the modes that

started from negative initial inputs.

After observing the previous system results, the author continued to increase the max

iterations of the system by nine each time resulting in continued refinement of the flow-

pipes. This is seen in fig. 5.4 where at 27 iterations the flowpipe has generated expanded

initial started values for adjacent modes. At 36 iterations, this expanded initial set is further

propagated throughout the system. Notice that after 36 iterations, there still appears to be

flowpipe elements that continue to expand. This is evident by the -0.51 to -0.5 mode (Loc2)

where the propagation has not achieved symmetry with that of the 0.51 t0 0.5 mode.

The final reachability graph generated by SpaceEx included 41 iterations on the sys-

tem and can be seen in fig. 5.5. Although it appears to have full symmetry as intended by

the designed system, the flowpipe construction does not appear complete. In Mode 3 and 7

87

Figure 5.3: SpaceEx flowpipe representation of a PFLC controlled system for 18 iterations.

([±0.51, ±0.5)], there appears to be adjacent mode initial values that is not propagated for-

ward. Unfortunately, limitations on how the system was being generated prevented further

iteration examination. This could be a limitation on the capability of the solver technique,

the fidelity of the system with respect to system resources, or even an inability of the solver

to handle zeno behavior. Zeno behavior occurs when flowpipes continually propagated

without making progress on refining the set. Similar to infinite loop behavior in program-

ming, the solver can not determine how to resolve the pipe evolution.

Even though the system was not able to be fully resolved with SpaceEx, there are a

number of positive aspects to consider. First, the reachability between the modes appear to

be more complete as iterations increased. Observe the difference between figs. 5.2 and 5.3,

the abrupt terminations at the mode boundaries evident in nine iterations are starting to be

reasoned about in 18 iterations. This demonstrated that the number of iterations needed to

be increased overall to enable more complete analysis. When increasing the iterations to

41 in fig. 5.5, many of the abrupt mode boundaries are propagated, and therefore, it can be

deduced that the reachability is more complete.

Second, notice the complete steady-state range in fig. 5.5. Within this steady-state

88

Figure 5.4: SpaceEx flowpipe representation of a PFLC controlled system for (A) 27 itera-
tions and (B) 36 iterations.

area, there appears to be a number of boxes that propagate forward growing in size then

stops. Then another box layer becomes defined. This is expected, especially in the PFLC,

due to an inability to achieve zero steady state error with only the proportional element.

What is being shown is that the oscillation may exist for a longer period of time that causes

the flowpipe to be generated, a new flowpipe boundary condition being exposed, and then

a new propagation from that exposed condition forward in time. This may be reason to

believe that the time horizon is significant as in the last flowpipe appears to start right

before that boundary and is propagated forward. Depending on computing resources and

tool limitation max-iterations and time horizon terms could be refined to attempt to gain

further insight through SpaceEx.

5.1.2 Reachability using HyLAA

With the successful representation of the system in SpaceEx, the choice was to examine the

system with Hylaa so to see if the results were found to be similar. The author used Hyst [4]

89

Figure 5.5: SpaceEx flowpipe representation of a zero input PFLC for 41 iterations.

to convert the SpaceEx representation of the system into a Hylaa compatible model. Since

Hylaa leverages traditional control dynamics representation, the first step in this conversion

is to change the continuous dynamics into ẋ = Ax+Bu. Since the system was already rep-

resented as an ODE, this conversion was well handled by Hyst. Hyst did require use of the

Python Simplify package in order to properly represent the system dynamics. This is likely

due to the representation of the error (e) in the system. The author, after simplification, saw

no negative impacts on the expected dynamics.

Note that Hylaa leverages simulation-equivalent reachability which can handle higher

orders of magnitude of the system. This was evident in the reachability generation as the

execution time was reduced although exact numbers were not maintained. More impor-

tantly, fig. 5.6 shows a complex and well developed representation of the propagation of

the flows while in each mode.

Notice in fig. 5.6 that Modes 3 and 7 experience a number of oscillations before set-

tling prior to 0.25 seconds. Given that these zones do not have any derivative control and

that the gains are rather small prior to the near target, this flow is not unexpected. Fur-

thermore, recall previously that there is some nonlinear aspect to these zones that is not

90

Figure 5.6: Hylaa flowpipe representation of the PFLC controlled system.

included in these mode dynamics which could also create this resulting propagation. This

provides evidence that the system first moves away from the steady-state only to recover

in these modes as the flowpipe evolves. One can observe that this effect is desired to be

removed from the system. It can also be reasoned that this effect points to insufficient

blending of the adjacent memberships in this case.

The resulting Hylaa plot proved not only beneficial to evaluation of the characteristics

of the system but also was straight-forward to interpret. The coloring of the overall flow

allowed for the author to visually decipher how the modes contributed to the entire reach-

ability. The system also identified modes (such as 3 and 7) that may be primed for further

refinement to tighten the response.

91

5.2 Proportional Plus Derivative Reachability Results

In order to improve the response of the example system, a derivative term was added to

improve the damping of the system near steady-state. This designed improvement in the

PDFLC is converted to a hybrid automaton as described in the previous chapter resulting

in fig. 5.7.

Figure 5.7: Hybrid automaton representing the system controller for the PselDFLC.

Recall that the difference between the PFLC and the PDFLC is that the Kd term was

added to the continuous dynamics of modes 4,5,6. The other system modes are still only

using proportional control. As previously discussed, this provided the benefit of only uti-

lizing the derivative term when it would be most beneficial to the system. In this system,

the derivative term is only added near steady-state.

5.2.1 SpaceEx Reachability Analysis

Using the hybrid automaton defined in fig. 5.7, the initial reachability work was done using

SpaceEx [30]. In order to verify if the reachability of all of the the hybrid automaton modes,

92

the input range to the system was set as −1.0 <= e <= 1.0. This range, defined as the

assumed lower/upper bound of the system in the zero input representation, illustrated the

extent of the range.

Using a similar technique as conducted in the PFLC HA analysis, the author first

started with nine max iterations of the PselD controlled system as shown in fig. 5.8.

Figure 5.8: Selective PDFLC controlled system HA over 9 iterations using SpaceEx

It can be seen in fig. 5.8 that the initial set of modes are propagated from the initial

set of values. One difference from that of the PFLC is evident in the central modes (4,5,6)

which exist around the steady-state about the 0.0 value. In the PFLC controlled system,

there were a number of set boxes that demonstrated that the flowpipe was being calculated.

In the PDFLC, this area reduces quickly to the steady-state behavior. This shows that there

is less uncertainty in the evolution of the response.

In a similar process as that of the PFLC, the author increased the number of iterations

by nine until the system flowpipe was fully defined or until the solving engine could no

longer execute. This process illustrated of the reachability flowpipe through the mode

transitions. The maximum iteration results for the sets of 18, 27, 36, 45, 54, and 63 are

93

shown in fig. 5.9.

Figure 5.9: The resulting PDFLC controlled system flowpipe from SpaceEx for various
maximum iterations: (A) 18, (B) 27, (C) 36, (D) 45, (E) 54, (F) 63.

Again the evolution of the flowpipes can be seen in the images first starting at 18 it-

erations (A) and continuing on to a maximum of 63 iterations (F). One may notice that

the maximum number of iterations here exceeded that which was possible with the PFLC

controller. This is not unexpected for one of the ways that reachability algorithms have

difficulties is in the scaling the error bounds of a flowpipe. As a flowpipe evolves, the

amount of error in the system grows from the initial set. In the PDFLC controlled sys-

tem, the derivative term reduced the overshoot and oscillation present and thus reduced the

amount of accumulated error that must be reasoned about. This allowed the solver to more

efficiently progress and therefore system resource limitations were reduced allowing for

94

deeper execution.

Also notice in fig. 5.9 how many of the adjacent modes provide initial conditions to

that of the next node toward the steady-state. In many of the modes, these appear nearly

fully realized with no expanded flows that are not resolved forward with the exception

of those near the steady-state. Since 63 iterations did not overload the solver, the author

proceeded until computation failure at 78 iterations as seen in fig. 5.10.

Figure 5.10: elective PDFLC controlled system HA over 78 iterations using SpaceEx.

Achieving 78 maximum iterations in the flowpipe construction of the PDFLC sys-

tem is a significant achievement for the SpaceEx engine. This level of development shows

nearly all mode value propagation and provides a robust reachability realization. Nearly all

modes are fully evolved by 0.2 seconds into the generated flowpipe and has little evolved

error after that time horizon. This result provides strong evidence that the additional deriva-

tive term in the steady-state modes is significant to the calculations. As before in the PFLC,

the system does again exceed computational limits by the 79th iteration. Regardless, this

result show the power of reachability analysis by providing evidence that this system sta-

bility is maintained. To further examine the system and to see if these results are verified

in another reachability engine, the author then utilized HyLAA.

95

5.2.2 HyLAA Reachability Analysis

Leveraging the HYST tool [4], the SpaceEx hybrid automaton input file was converted into

a HYLAA representation in Appendix D. HyLAA leverages traditional state space form

(ẋ = Ax + Bu) to define the continuous dynamics of the modes. In the included HyLAA

script, the resulting simulation fig. 5.11 appears to produce a similar result from that seen in

SpaceEx after 78 iterations (see fig. 5.10). This shows that these tools, although calculating

the flowpipe in different ways, are both able to achieve comparable results. One difference

involved the processing improvement in HyLAA. The resulting graph was generated where

termination conditions were met and flowpipe propogation was complete. In SpaceEx, the

flowpipe generation at the higher numbers of iterations was not able to fully explore the

grown boundary conditions of each propagation.

Figure 5.11: Final HyLAA plot of the reachability of the system as controlled by the hybrid
automaton defined in fig. 5.7.

96

In HyLAA, the simulation reachability algorithm [5] conducts mulitple rounds of

propagation in order to ensure that the system’s full reachability envelope is constructed.

The first iteration of this algorithm (fig. 5.12A) is shown where only the initial values that

start within the mode invariants are shown. Observing the results in comparison to those

generated by SpaceEx (fig. 5.8), there are strong similarities in the results. This provides

agreement between both tools at the early stage of the reachability examination. Construc-

tion of the reachability envelope is continued from what is seen in fig. 5.12A. In fig. 5.12B,

the first neighbor adjoining modes build onto the possible initial sets of the neighboring

mode. For example, in moving from modes loc9 (e ≥ 0.51) to loc8 (0.50 ≤ e < 0.51)

there is a significant range of values in time where loc8 would also propagate. This stage in-

corporates the range and ensures it is covered in a recursive manner: this process continues

until the terminated mode is fully evaluated.

Figure 5.12: (A) Reachability of PselDFLC from all initial values of a mode. (B) Reacha-
bility of PselDFLC as adjoining mode propagation is taken into account.

The next pass in the algorithm expands the reachability growth to the next neighboring

mode as seen in fig. 5.13A,B,C. This is captured to show that the simulation reachability

97

calculation is itself propagating a bounding shape in its calculations. In SpaceEx, a box

(square) propagation shape was used while in Hylaa a hexagonal shape appears to be lever-

aged. Additional surfaces on the shape propagation can add complexity in the evaluation.

At the end of the iteration, fig. 5.13D shows how the system has evolved with propagating

the two neighbored modes initial values through the system. The final pass completes the

Figure 5.13: (A,B,C) Example of the shape dynamics being calculated in the system and
(D) Completion of system reachability as the initial seeds of two adjoining modes are taken
into account.

98

reachability area to combine all the flow from the initial seeded input range. The reacha-

bility result from HyLAA was previously shown in fig. 5.11.

5.2.3 Reachability Analysis Comparison

It can be seen from the SpaceEx and HyLAA reachability diagrams that the flowpipe prop-

agation demonstrates the system is stable and will not experience unstable response. This

conclusion is illustrated through the flowpipe evolution over time. As it progresses, the

flowpipe became more settled at the steady-state region of the response. Even in the PFLC,

a bounded region evolved naturally from the response representing an extent of the settling

oscillations. Should the system have been made unstable, the flowpipes generated would

grow in an unbounded fashion to the extent of the time horizon. Critical to the flowpipe

validity, the accuracy of system dynamics ensured that undecidable aspects of the solution

can be mitigated and hence the results can be trusted. It is only inaccuracies in the dynamics

that can introduce flaws in the calculation of the reachable sets. To further strengthen the

stability claim, additional techniques can be leveraged, such as, work to identify unstable

zones, describe zones mathematically, and run simulations to ensure that these “keep out”

zones can not be entered by the system evolution.

It is also worth noting that the benefits of simulation reachability with respect to the

completeness of the system flow. In SpaceEx, the complexity of propagating past the ini-

tial mode stimuli was a significant challenge where adjoining mode propagation could not

be taken into account. HyLAA navigated past this issue and produces a more complete

representation of the effect of the entire hybrid automaton on the system.

99

5.3 Summary

In this chapter, the author used the hybrid automata representation constructed in the pre-

vious chapter to do reachability analysis of the systems. The author first used SpaceEx to

analyze the PFLC system and described the resulting generated flowpipes of the system.

Then the same PFLC system is analyzed with HyLAA which uses simulation based reach-

ability. This tool demonstrated improved functionality to determine reachability bringing

the community closer to using such a tool and analysis on actual systems.

As before, the author also included analysis on the PselD system. The inclusion of

the derivative term proved to improved performance of both tools (SpaceEx and HyLAA)

in the analysis capabilities. This was especially evident in SpaceEx where the number of

iterations that were analyzed increased significantly over the PFLC. A likely reason for this

improvement is that the derivative term improved the continuous dynamics calculations

which cause less error to be propagated in the system.

100

Chapter 6

Conclusion and Future Research

This thesis demonstrated a process to convert represented gain scheduled controller into

comparable fuzzy controller for a simple system. Gain scheduled controllers have tradi-

tionally necessitated empirical data to ensure that disjoint control representations converge

to a stable transition range. Using process conversions, the gain scheduled controllers were

implemented as triangular fuzzy system controllers. This allowed for smooth transitions

between designed controller setpoints, thus eliminating the disjoint representation that is

typically represented in gain scheduled control. Smooth control transitions also provide for

a continuous system representation that allow for fuzzy control systems to be represented as

hybrid automata. Many modern systems are being represented by hybrid automata which

allow for continuous and discrete dynamics captured in a unifying construct. Due to this

advancement, reachability tools, such as SpaceEx [30], HyLAA [5] and others, have been

advancing the boundaries of the capabilities to represent and analyze hybrid system. The

process in this thesis leveraged this hybrid automata reachability research to provide evi-

dence of fuzzy system stability and performance not previously accessible.

To continue to explore the feasibility of this process, translations of known (and more

complex) gain scheduled control systems should be undertaken. One example of a complex

gain scheduled control system is that which governs the flight dynamics of the Lockheed

101

Martin F-16 fighter aircraft. A version of the flight controller, published in the public

domain [49], includes a number of sub-components that would be applicable to this process.

Evidence to show these more complex nonlinear control realizations can be implemented

using this process and would be valuable to the overall control community.

102

Bibliography

[1] Mil-hdbk-516c. Technical report, United States Department of Defense, 2014.

[2] Matthias Althoff, Colas Le Guernic, and Bruce H Krogh. Reachable set computation

for uncertain time-varying linear systems. In Proceedings of the 14th international

conference on Hybrid systems: computation and control, pages 93–102. ACM, 2011.

[3] Pierre Apkarian and Pascal Gahinet. A convex characterization of gain-scheduled

h/sub/spl infin//controllers. IEEE Transactions on Automatic Control, 40(5):853–864,

1995.

[4] Stanley Bak, Sergiy Bogomolov, and Taylor T Johnson. Hyst: a source transformation

and translation tool for hybrid automaton models. In Proceedings of the 18th Inter-

national Conference on Hybrid Systems: Computation and Control, pages 128–133.

ACM, 2015.

[5] Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool for computing simulation-

equivalent reachability for linear systems. In Proceedings of the 20th International

Conference on Hybrid Systems: Computation and Control, pages 173–178. ACM,

2017.

103

[6] Stanley Bak and Parasara Sridhar Duggirala. Rigorous simulation-based analysis of

linear hybrid systems. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 555–572. Springer, 2017.

[7] Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reachability of

large linear systems with inputs. In International Conference on Computer Aided

Verification, pages 401–420. Springer, 2017.

[8] J. Y. Beziau. What is many-valued logic? In Proceedings 1997 27th International

Symposium on Multiple- Valued Logic, pages 117–121, May 1997.

[9] Siddhartha Bhattacharyya, Darren Cofer, D Musliner, Joseph Mueller, and Eric En-

gstrom. Certification considerations for adaptive systems. In Unmanned Aircraft

Systems (ICUAS), 2015 International Conference on, pages 270–279. IEEE, 2015.

[10] Michael S Branicky. Topology of hybrid systems. In Decision and Control, 1993.,

Proceedings of the 32nd IEEE Conference on, pages 2309–2314. IEEE, 1993.

[11] Thomas Brehm and Kuldip Rattan. A classical controller: a special case of the fuzzy

logic controller. In Fuzzy Logic and Intelligent Systems, pages 125–155. Springer,

1995.

[12] Thomas Brehm and Kuldip S Rattan. Proportional fuzzy logic controller: classi-

cal proportional-plus-derivative like response. In Systems, Man and Cybernetics,

1995. Intelligent Systems for the 21st Century., IEEE International Conference on,

volume 3, pages 2029–2033. IEEE, 1995.

[13] Franck Cassez, Thomas A Henzinger, and Jean-François Raskin. A comparison of

control problems for timed and hybrid systems. In International Workshop on Hybrid

Systems: Computation and Control, pages 134–148. Springer, 2002.

104

[14] Xin Chen, Sriram Sankaranarayanan, and Erika brahm. Flow*: A verification tool for

cyber-physical systems.

[15] Mathhew A Clark and Kuldip S Rattan. Piecewise affine hybrid automata represen-

tation of a multistage fuzzy pid controller. In 2014 AAAI Spring Symposium Series,

2014.

[16] Matthew Clark, Kuldip Rattan, Nicholas Ernest, Tim Arnett, and Kelly Cohen. Veri-

fication and validation of a genetic fuzzy tree for ucav control. 2017.

[17] Matthew A Clark and Kuldip S Rattan. Hybrid representation of rule-based systems.

In Proceedings of the 18th International Conference on Hybrid Systems: Computation

and Control, pages 287–288. ACM, 2015.

[18] Department of Defense (DoD) Autonomy Community of Interest (COI). Department

of defense research & engineering autonomy community of interest (coi) test and

evaluation, verification and validation (tevv) working group technology investment

strategy. Technical report, Office of the Assistant Secretary of Defense, 2015.

[19] Matthew Dillsaver, Matthew Clark, and Xiaodong Zhang. Military Airworthiness

Certification of Autonomous Air Vehicles with Adaptive Controllers. AIAA Infor-

mation Systems-AIAA Infotech @ Aerospace. American Institute of Aeronautics

and Astronautics, 01/05; 2017 2017; 2017. M1: 0; doi:10.2514/6.2017-0564; M3:

doi:10.2514/6.2017-0564.

[20] Georgios Fainekos, Sriram Sankaranarayanan, and Bardh Hoxha. Keymaera: A hy-

brid theorem prover for hybrid systems.

[21] Rafael Fierro, Frank L Lewis, and Kai Liu. Hybrid control system design using a

fuzzy logic interface. Circuits, systems, and signal processing, 17(3):401–419, 1998.

105

[22] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

Spaceex: Scalable verification of hybrid systems. In International Conference on

Computer Aided Verification, pages 379–395. Springer, 2011.

[23] Herv Guguen, Marie-Anne Lefebvre, Janan Zaytoon, and Othman Nasri. Safety ver-

ification and reachability analysis for hybrid systems. Annual Reviews in Control,

33(1):25 – 36, 2009.

[24] Thomas A Henzinger. The theory of hybrid automata. In Verification of Digital and

Hybrid Systems, pages 265–292. Springer, 2000.

[25] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya. What’s de-

cidable about hybrid automata? In Proceedings of the twenty-seventh annual ACM

symposium on Theory of computing, pages 373–382. ACM, 1995.

[26] Adrain Ilka. Gain-Scheduled Controller Design. PhD thesis, 2015.

[27] J. S. R. Jang and N. Gulley. Gain scheduling based fuzzy controller design. In Fuzzy

Information Processing Society Biannual Conference, 1994. Industrial Fuzzy Control

and Intelligent Systems Conference, and the NASA Joint Technology Workshop on

Neural Networks and Fuzzy Logic,, pages 101–105, Dec 1994.

[28] C. S. Kang, C. H. Hyun, Y. T. Kim, J. Baek, and M. Park. A design of equivalent pid

structure control using fuzzy gain scheduling. In 2013 10th International Conference

on Ubiquitous Robots and Ambient Intelligence (URAI), pages 354–356, Oct 2013.

[29] Thomas Koshy. Discrete mathematics with applications. Elsevier, 2004.

[30] Verimag Labs. About spaceex, 2010.

[31] Verimag Labs. Spaceex downloads, 2010.

106

[32] Colas Le Guernic and Antoine Girard. Reachability analysis of linear systems using

support functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262, 2010.

[33] Werner Van Leekwijck and Etienne E. Kerre. Defuzzification: criteria and classifica-

tion. Fuzzy Sets and Systems, 108(2):159 – 178, 1999.

[34] Douglas J Leith and William E Leithead. Survey of gain-scheduling analysis and

design. International journal of control, 73(11):1001–1025, 2000.

[35] John Lygeros. A formal approach to fuzzy modeling. IEEE Transactions on Fuzzy

Systems, 5(3):317–327, 1997.

[36] Ebrahim H Mamdani and Sedrak Assilian. An experiment in linguistic synthesis with

a fuzzy logic controller. International journal of man-machine studies, 7(1):1–13,

1975.

[37] Vilém Novák, Irina Perfilieva, and Jiri Mockor. Mathematical principles of fuzzy

logic, volume 517. Springer Science & Business Media, 2012.

[38] Andy Packard. Gain scheduling via linear fractional transformations. Systems &

Control Letters, 22(2):79 – 92, 1994.

[39] Alan P. Parkes. Boolean Logic and Propositional Logic, pages 275–290. Springer

London, London, 2002.

[40] Andr Platzer. Keymaera: A hybrid theorem prover for hybrid systems.

[41] Kuldip Rattan and Matthew Clark. Km-logic: A computationally efficient, real-time

mimo fuzzy inference system. Technical report, Air Force Research Laboratory, 2015.

[42] Kuldip Rattan and Matthew Clark. Introduction to fuzzy control. 2017.

[43] Kuldip S Rattan. Ee619 course notes. University Lecture, 1997.

107

[44] Wilson J Rugh and Jeff S Shamma. Research on gain scheduling. Automatica,

36(10):1401–1425, 2000.

[45] J. S. Shamma and M. Athans. Analysis of gain scheduled control for nonlinear plants.

IEEE Transactions on Automatic Control, 35(8):898–907, Aug 1990.

[46] J. S. Shamma and M. Athans. Gain scheduling: potential hazards and possible reme-

dies. IEEE Control Systems, 12(3):101–107, June 1992.

[47] Jeff S Shamma. Analysis and design of gain scheduled control systems. PhD thesis,

Massachusetts Institute of Technology, 1988.

[48] Cory Firmin Snyder. Provable run time safety assurance for a non-linear system,

2013. ID: wright1369443661.

[49] Brian L Stevens, Frank L Lewis, and Eric N Johnson. Aircraft control and simulation:

dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015.

[50] Michio Sugeno and GT Kang. Structure identification of fuzzy model. Fuzzy sets and

systems, 28(1):15–33, 1988.

[51] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational techniques for

the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, July

2003.

[52] Wikipedia. Fuzzy logic — Wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=Fuzzy%20logic&oldid=

767030743, 2017. [Online; accessed 25-March-2017].

[53] Kevin A. Wise and Eugene Lavretsky. Robust adaptive control for the joint direct

attack munition. 2011.

[54] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353, 1965.

108

http://en.wikipedia.org/w/index.php?title=Fuzzy%20logic&oldid=767030743
http://en.wikipedia.org/w/index.php?title=Fuzzy%20logic&oldid=767030743
http://en.wikipedia.org/w/index.php?title=Fuzzy%20logic&oldid=767030743

[55] L.A Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,

1(1):3 – 28, 1978.

[56] Lofti A Zadeh. A rationale for fuzzy control. Journal of Dynamic Systems, Measure-

ment, and Control, 94(1):3–4, 1972.

[57] Lotfi A. Zadeh. Is there a need for fuzzy logic? Information Sciences, 178(13):2751

– 2779, 2008.

[58] Z. Y. Zhao, M. Tomizuka, and S. Isaka. Fuzzy gain scheduling of pid controllers.

In [Proceedings 1992] The First IEEE Conference on Control Applications, pages

698–703 vol.2, Sep 1992.

109

Appendix A

Calculations and Source Code

A.1 Piecewise Linear Fuzzy Representation

Recall the input fuzzy membership set table 3.3 and output fuzzy membership set table 3.5

defined in chapter 3. Using the established rule set that associates the membership sets (ta-

ble 3.6), the modes are defined.

Kpe(j) =
1

x(j + 1)− x(j)
[−1 1]

 u(j)

u(j + 1)

 (A.1)

cons(j) =
1

x(j + 1)− x(j)

[
x(j + 1) −x(j)

] u(m)

u(m+ 1)

 (A.2)

110

A.1.1 Mode 1

j = 1 (A.3)

DEN(j) = x(j + 1)− x(j) = −0.8− (−1) = 0.2 (A.4)

Kpe(1) =
1

DEN(j)

[
−1 1

] −0.024
−0.0192

 (A.5)

=
1

0.2
(0.024 + (−0.0192)) = 1

0.2
(0.0048) (A.6)

= 0.024 (A.7)

cons(1) =
1

DEN(j)

[
−0.8 −(−1)

] −0.024
−0.0192

 (A.8)

=
1

0.2
(0.0192 + (−0.0192)) = 0 (A.9)

∴ (A.10)

u(1) = Kpe(1)e+ cons(1) (A.11)

u(1) = 0.024e (A.12)

111

A.1.2 Mode 2

j = 2 (A.13)

DEN(j) = x(j + 1)− x(j) = −0.75− (−0.8) = 0.05 (A.14)

Kpe(2) =
1

0.05

[
−1 1

] −0.024
−0.0192

 (A.15)

= −0.696 (A.16)

cons(2) =
1

0.05

[
−0.75 −(−0.8)

]−0.0192
−0.054

 (A.17)

= −0.576 (A.18)

∴ (A.19)

u(2) = Kpe(2)e+ cons(2) (A.20)

u(2) = −0.696e− 0.576 (A.21)

A.1.3 Mode j

From the previous calculations, the pattern to calculate the u(j) modes is seen. Therefore,

the author constructed a Matlab script to calculate the entire surface using the piecewise

linear method.

1 %% Calculate the Piecewise Linear Representations of the Example ...

PCtrl

2 % Date: 20181215

3 % Calculating by using

4 % - The defined Input Fuzzy Membership Set (ifms)

5 % - The rule-ordered (not magnitude ordered) Output Fuzzy ...

Membership Set

112

6 % (ofms)

7 % - Removed the zero since it passes through the origin

8 % - KpeCSet is the effective gain (Kpe) and the Constant (C) for ...

all modes

9 % --> Similar to slope-intercept form

10 % --> Each row index denotes a mode

11

12 ifms = [-1 -0.8 -0.75 -0.2 -0.15 0.15 0.2 0.75 0.8 1];

13 ofms = [-0.024 -0.0192 -0.054 -0.0144 -0.15 0.15 0.0144 0.054 ...

0.0192 0.024];

14 % KpeCSet = [];

15 KpeCset = zeros((length(ifms)-1), 2);

16

17

18 for j=1:(length(ifms)-1)

19 den = ifms(j+1) - ifms(j);

20 KpeCset(j,1) = (1/den)*[-1 1]*[ofms(j) ofms(j+1)]';

21 KpeCset(j,2) = (1/den)*[ifms(j+1) -ifms(j)]*[ofms(j) ofms(j+1)]';

22 % Kpe = (1/den)*[-1 1]*[ofms(j) ofms(j+1)]';

23 % cons = (1/den)*[ifms(j+1) -ifms(j)]*[ofms(j) ofms(j+1)]';

24 % KpeCSet = [KpeCSet; [Kpe cons]];

25 end

26

27 KpeCset

28 KpeCset_50 = 50 * KpeCset

A.2 Proportional Fuzzy Control Using Simulink

1 function [y] = PFLC(x, centers, rulevector)

2 %UNTITLED3 Summary of this function goes here

3 % Detailed explanation goes here

4

5 out = [];

113

6 out = fuzzify(x, centers);

7 y = out*rulevector';

8 end

1 %---

2 % m-file to determine kpe(j) and const(j) for a PFLC

3 %---

4 %

5 %---

6 % input: center points of input fuzzy set (centers)

7 % For example for 7 input fuzzy sets

8 %---

9 %centers = [-1 0 1];

10 centers = [-1 -.8 -.75 -.7 -.65 -.3 -.25 -.2 -.15 0 .15 .2 .25 .3 ...

.65 .7 .75 .8 1];

11 %%---

12 % input: rule_vector containing the center points of the output ...

fuzzy sets

13 %---

14 %rule_vector = [-1 0 1];

15 rule_vector = [-.12 -.096 -.09 -.252 -.234 -.108 -.09 -.384 -.288 ...

0 ...

16 .288 .384 .09 .108 .234 .252 .09 .096 .12];

17 % rule_vector = [-1 -.8 -.75 -1.05 -.975 -.45 -.375 -.6 -.45 ...

0 ...

18 % .45 .6 .375 .45 .975 1.05 0.75 .8 1];

19 e = centers;

20 U = rule_vector;

1 %Fuzzify.m %

2 %Sameep Singh %

3 % EE 619 Lab 2%

4

114

5 function [y]=fuzzify(x,centers)

6 %returns length of vectox 'centers')

7 d = length(centers);

8 %'ZEROS' Zeros all the arrays

9 y=zeros(1,d);

10 %test for extremes of Universe of discourse and for values within ...

universe of discourse'

11 if x ≤ centers(1)

12 y(1) = 1;

13 elseif x ≥ centers(d)

14 y(d)=1;

15 else

16 for i=1:d

17 if (x≥centers(i)) & (x ≤ centers(i+1));

18 y(i)=(centers(i+1)-x)/(centers(i+1)-centers(i));

19 y(i+1)=(x-centers(i))/(centers(i+1)-centers(i));

20 end;

21 end;

22 end;

1 %% Plot for PFLC Surface and Gain Schedule graph

2 % Plot for the running thesis example

3 % Plot thesis Example with the plant: 75/(sˆ2 + 20s + 75)

4

5 % Kp = [1, 2, 12.5, 2, 1]

6

7 centers = [-1 -0.51 -0.5 -0.09 -0.08 0.08 0.09 0.5 0.51 1.0];

8 gains = [1 2 12.5];

9 kps = gains;

10

11

12 %% PFLC Surface Plot

13 % Run the initial section to execute

14

115

15 mbVect = [];

16

17 % Draw the three plot lines

18 fullRng = -1:0.01:1;

19 kpLow = kps(1)*fullRng;

20 kpMid = kps(2)*fullRng;

21 kpHgh = kps(3)*fullRng;

22 figure(1)

23 plot(fullRng,kpLow,':k',fullRng,kpMid,':k',fullRng,kpHgh,':k','HandleVisibility','off')

24 hold on

25

26 % Surface line for NB

27 xNB = -1:0.01:-0.51;

28 yNB = kps(1)*xNB;

29 mbVect = [mbVect; [kps(1) 0]];

30

31 % Surface line for NMtoNB

32 xNMtNB = -0.51:0.001:-0.5;

33 xPt1 = -0.51;

34 xPt2 = -0.5;

35 eqNMtNB = polyfit([xPt1,xPt2],[(kps(1)*xPt1),(kps(2)*xPt2)],1);

36 yNMtNB = eqNMtNB(1)*xNMtNB + eqNMtNB(2);

37 mbVect = [mbVect; eqNMtNB];

38

39 % Surface line for NM

40 xNM = -0.5:0.001:-0.09;

41 yNM = kps(2)*xNM;

42 mbVect = [mbVect; [kps(2) 0]];

43

44 % Surface line for NM to NS

45 xNStNM = -0.09:0.001:-0.08;

46 xPt1 = -0.09;

47 xPt2 = -0.08;

48 eqNStNM = polyfit([xPt1,xPt2],[(kps(2)*xPt1),(kps(3)*xPt2)],1);

49 yNStNM = eqNStNM(1)*xNStNM + eqNStNM(2);

50 mbVect = [mbVect; eqNStNM];

116

51

52 % Surface line for NSPS

53 xNSPS = -0.08:0.001:0.08;

54 yNSPS = kps(3)*xNSPS;

55 mbVect = [mbVect; [kps(3) 0]];

56

57 % Surface line for PS to PM

58 xPStPM = 0.08:0.001:0.09;

59 xPt1 = 0.08;

60 xPt2 = 0.09;

61 eqPStPM = polyfit([xPt1,xPt2],[(kps(3)*xPt1),(kps(2)*xPt2)],1);

62 yPStPM = eqPStPM(1)*xPStPM + eqPStPM(2);

63 mbVect = [mbVect; eqPStPM];

64

65 % Surface line for PM

66 xPM = 0.09:0.001:0.5;

67 yPM = kps(2)*xPM;

68 mbVect = [mbVect; [kps(2) 0]];

69

70 % Surface line for PMtoPB

71 xPMtPB = 0.5:0.001:0.51;

72 xPt1 = 0.5;

73 xPt2 = 0.51;

74 eqPMtPB = polyfit([xPt1,xPt2],[(kps(2)*xPt1),(kps(1)*xPt2)],1);

75 yPMtPB = eqPMtPB(1)*xPMtPB + eqPMtPB(2);

76 mbVect = [mbVect; eqPMtPB];

77

78 % Surface line for PB

79 xPB = 0.51:0.01:1;

80 yPB = kps(1)*xPB;

81 mbVect = [mbVect; [kps(1) 0]];

82

83 % x = [xL x1 xR];

84 % y = [yL y1 yR];

85

86 % figure(2)

117

87 plot(xNB,yNB,xNMtNB,yNMtNB,xNM,yNM,xNStNM,yNStNM,xNSPS,yNSPS,...

88 xPStPM,yPStPM,xPM,yPM,xPMtPB,yPMtPB,xPB,yPB,'LineWidth',2);

89

90 %

91 % plot(x,y,'linewidth',2);

92 ax = gca;

93 ax.Box = 'off';

94 ax.XAxisLocation = 'origin';

95 xlabel('e','Interpreter','latex','FontSize',12);

96 % xticks(centers);

97 xticks([-1 -0.5 -0.08 0.08 0.5 1]);

98 ax.XLim = [-1.1 1.1];

99 ax.YAxisLocation = 'origin';

100 ylabel('u','Interpreter','latex','FontSize',12);

101 % ylabel('K_{p}','Interpreter','latex','FontSize',12);

102 % ax.YLim = [-0.1 0.1];

103 yticks([-1 -0.51 -0.18 0.18 0.51 1]);

104 ax.YLim = [-1.2 1.2];

105

106 title('Proportional Gain Surface Plot')

107 % legend('NB','NMtNB','NM','NStNM','NSPS','PStPM','PM','PMtPB','PB')

108 legend({'Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode ...

6','Mode 7','Mode 8','Mode 9'},'Location','northwest')

109 hold off

110

111 % % Output the normalized slope/intercept vector

112 diary('./PCtrl_mbVect.txt')

113 diary ON

114 %

115 gains

116 kps

117 mbVect

118 %

119 % % Re-multiple by 12.5

120 % % mbVect * 12.5

121 diary OFF

118

122 % Plot dashes for sets

123 % -- TODO --

124

125 fig = gcf;

126 fig.PaperUnits = 'inches';

127 fig.PaperPosition = [0 0 10 5];

128 print('./PCtrl_GainSurfacePlot','-dpng','-r300') % Save figure ...

as png

129

130 set(gcf, 'PaperPosition', [0 0 16 10]); %Position plot at left ...

hand corner with width 5 and height 5.

131 set(gcf, 'PaperSize', [16 10]); %Set the paper to have width 5 ...

and height 5.

132 saveas(gcf, './PFLC_Ctrl_Surface', 'pdf') %Save figure as pdf

133

134 %% Plot for Proportional Gain Schedule interpolated values.

135 mbVectGS = [];

136

137 % Surface line for NB

138 xNB = -1:0.01:-0.51;

139 yNB = kps(1)*ones(size(xNB));

140 mbVectGS = [mbVectGS; [0 kps(1)]];

141

142 % Surface line for NMtoNB

143 xNMtNB = -0.51:0.001:-0.5;

144 xPt1 = -0.51;

145 xPt2 = -0.5;

146 eqNMtNB = polyfit([xPt1,xPt2],[kps(1),kps(2)],1);

147 yNMtNB = eqNMtNB(1)*xNMtNB + eqNMtNB(2);

148 mbVectGS = [mbVectGS; eqNMtNB];

149

150 % Surface line for NM

151 xNM = -0.5:0.001:-0.09;

152 yNM = kps(2)*ones(size(xNM));

153 mbVectGS = [mbVectGS; [0 kps(2)]];

154

119

155 % Surface line for NM to NS

156 xNStNM = -0.09:0.001:-0.08;

157 xPt1 = -0.09;

158 xPt2 = -0.08;

159 eqNStNM = polyfit([xPt1,xPt2],[kps(2),kps(3)],1);

160 yNStNM = eqNStNM(1)*xNStNM + eqNStNM(2);

161 mbVectGS = [mbVectGS; eqNStNM];

162

163 % Surface line for NSPS

164 xNSPS = -0.08:0.001:0.08;

165 yNSPS = kps(3)*ones(size(xNSPS));

166 mbVectGS = [mbVectGS; [0 kps(3)]];

167

168 % Surface line for PS to PM

169 xPStPM = 0.08:0.001:0.09;

170 xPt1 = 0.08;

171 xPt2 = 0.09;

172 eqPStPM = polyfit([xPt1,xPt2],[kps(3),kps(2)],1);

173 yPStPM = eqPStPM(1)*xPStPM + eqPStPM(2);

174 mbVectGS = [mbVectGS; eqPStPM];

175

176 % Surface line for PM

177 xPM = 0.09:0.001:0.5;

178 yPM = kps(2)*ones(size(xPM));

179 mbVectGS = [mbVectGS; [0 kps(2)]];

180

181 % Surface line for PMtoPB

182 xPMtPB = 0.5:0.001:0.51;

183 xPt1 = 0.5;

184 xPt2 = 0.51;

185 eqPMtPB = polyfit([xPt1,xPt2],[kps(2),kps(1)],1);

186 yPMtPB = eqPMtPB(1)*xPMtPB + eqPMtPB(2);

187 mbVectGS = [mbVectGS; eqPMtPB];

188

189 % Surface line for PB

190 xPB = 0.51:0.01:1;

120

191 yPB = kps(1)*ones(size(xPB));

192 mbVectGS = [mbVectGS; [0 kps(1)]];

193

194 % x = [xL x1 xR];

195 % y = [yL y1 yR];

196

197 figure(2)

198 plot(xNB,yNB,xNMtNB,yNMtNB,xNM,yNM,xNStNM,yNStNM,xNSPS,yNSPS,...

199 xPStPM,yPStPM,xPM,yPM,xPMtPB,yPMtPB,xPB,yPB,'LineWidth',2);

200

201 %

202 % plot(x,y,'linewidth',2);

203 ax = gca;

204 ax.Box = 'off';

205 ax.XAxisLocation = 'origin';

206 xlabel('e','Interpreter','latex','FontSize',12);

207 % xticks(centers);

208 xticks([-1 -0.5 -0.08 0.08 0.5 1]);

209 ax.XLim = [-1.1 1.1];

210 ax.YAxisLocation = 'origin';

211 ylabel('K_p','Interpreter','latex','FontSize',12);

212

213 % ax.YLim = [-0.1 0.1];

214 yticks([1 2 12.5]);

215 ax.YLim = [-1 14.0];

216

217 title('Proportional Gain Schedule Linear Interpolation Plot')

218 % legend('NB','NMtNB','NM','NStNM','NSPS','PStPM','PM','PMtPB','PB')

219 legend({'Mode 1','Mode 2','Mode 3','Mode 4','Mode 5','Mode ...

6','Mode 7','Mode 8','Mode 9'},'Location','northwest')

220 hold off

221

222 % % Output the normalized slope/intercept vector

223 diary('./PCtrl_mbVectGS.txt')

224 diary ON

225 %

121

226 gains

227 kps

228 mbVectGS

229 %

230 % % Re-multiple by 12.5

231 % % mbVect * 12.5

232 diary OFF

233 % Plot dashes for sets

234 % -- TODO --

235

236

237 %print -r500

238 fig = gcf;

239 fig.PaperUnits = 'inches';

240 fig.PaperPosition = [0 0 8 3];

241 print('./PCtrl_GainScheduleInterpPlot','-dpng','-r300') % Save ...

figure as png

242

243 set(gcf, 'PaperPosition', [0 0 16 10]); %Position plot at left ...

hand corner with width 5 and height 5.

244 set(gcf, 'PaperSize', [16 10]); %Set the paper to have width 5 ...

and height 5.

245 saveas(gcf, './PCtrl_GainScheduleInterp', 'pdf') %Save figure as pdf

A.3 Proportional Fuzzy Control Using ODE45

1 %% Solve the GS_PCtrl Example with ODE45

2 % Date: 20190102

3 % This is to prove the system dynamics are properly maintained

4

5

6 initCond = [0 0];

7 tspan = [0,1];

122

8

9 rng = [-1 -0.51 -0.5 -0.09 -0.08 0.08 0.09 0.5 0.51 1];

10 kpGs = [1 1 2 2 12.5 12.5 2 2 1 1];

11

12 mbVect = [1 0; -49 -25.5; 2 0; -82 -7.56; 12.5 0; -82 7.56; 2 0; ...

-49 25.5; 1 0];

13

14 % Set the initial condition on x

15 x = 0;

16

17

18 [t,x] = ode45(@PCtrlGS_v2,tspan,initCond,x,rng,kpGs);

19 figure(5)

20 plot(t,x(:,1),'r-')

21 grid

22

23 title('Response Plot Comparisons')

24 xlabel('time (s)')

25 ylabel('response (y)')

26 legend('GS PCtrl (ODE45)')

27

28 print('./GS_PCtrl_ODE_Plot','-dpng')

29

30 %% Get comparison plot

31 % Run the simulink (GSP_PFLC_PselDFLC_Ctrl_Compare.slx), will ...

populate

32 % simout_FLC

33 % Plot data set 1 (GS Interpolated) and set 2 (Fuzzy PFLC)

34

35 hold on

36 plot(simout_FLC.Time,simout_FLC.Data(:,1),'bx',simout_FLC.Time,simout_FLC.Data(:,2),'go',simout_FLC.Time,ones(size(simout_FLC.Time)),'k--')

37 legend('GS PCtrl (ODE45)','Kp Interpolated','Fuzzy P ...

Control','location','southeast')

38

39 print('./GS_PCtrl_ODE_Interp_PFLC_Plot','-dpng')

123

1 function xdot = PCtrlGS_v2(t,x,rng,kpGs)

2 %PCtrlGS ODE45 calculation function

3 % This function utilizes ODE45 to determine the response of a ...

control

4 % system based on a scheduled gain. The schedule gain is set ...

through the

5 % parameter u and where the error is associated with the -1 to ...

1 range.

6

7 e = 1 - x(1); % target at 1, change if not the target

8 static_gain = 5;

9

10 % u = e * interp1(rng,kpGs,e)

11 % u = u*static_gain;

12

13 row = 1; % Temp starting value

14

15 mbVect = [1 0; -49 -25.5; 2 0; -82 -7.56; 12.5 0; -82 7.56; 2 ...

0; -49 25.5; 1 0];

16

17 for lcv = 2:length(rng)-1 % will explicitly test extremes

18 if e < rng(2) % low end

19 row = 1;

20 break;

21 elseif e > rng(length(rng)-1) % high end

22 row = length(rng)-1;

23 break;

24 elseif e ≥ rng(length(rng)/2) && e ≤ ...

rng((length(rng)/2)+1) % middle

25 row = (length(rng)/2);

26 break;

27 elseif e < 0 && e ≥ rng(lcv) && e < rng(lcv+1) % negative ...

side

28 row = lcv;

29 break;

124

30 elseif e ≥ 0 && e > rng(lcv) && e ≤ rng(lcv+1) % positive ...

side

31 row = lcv;

32 break;

33 else

34 continue;

35 end

36 end

37

38 u = mbVect(row,1)*e + mbVect(row,2);

39

40 xdot = zeros(size(x));

41 xdot(1) = x(2);

42 xdot(2) = -20*x(2) - 75*x(1) + static_gain*75*u;

43

44 end

A.4 Proportional Single Mode Hybrid Automaton

1 function xdot = PCtrlGSRefine(t,x,rng,kpGs)

2 %PCtrlGS ODE45 calculation function

3 % This function utilizes ODE45 to determine the response of a ...

control

4 % system based on a scheduled gain. The schedule gain is set ...

through the

5 % parameter u and where the error is associated with the -1 to ...

1 range.

6

7 e = 1 - x(1); % target at 1, change if not the target

8

9 u = interp1(rng,kpGs,e);

10

11 xdot = zeros(size(x));

125

12 xdot(1) = x(2);

13 xdot(2) = -3.6*x(2) - 10*x(1) +10*u;

14

15 end

A.5 KMLOGIC Material

1 function g = KMLOGIC(n,input,Test1,R,MFM)

2 %%

3 % Find the two adjacent membership fvalues [y1 y2]

4 % and the index value (j) of the first active membership function

5 [y1, y2, j]=Rec_Fuzzify(input(n),1,length(Test1{n}),Test1{n});

6 %%

7 % Find the grouping of rules needed for the next input of n inputs

8 sindex1 = ((j-1)*MFM)+1;

9 sindex2 = (sindex1-1)+MFM;

10 eindex = sindex2+MFM;

11 R1 = R(sindex1:sindex2);

12 R2 = R(sindex2+1:eindex);

13

14 %%

15 if n > 1

16 MFM2=MFM/(length(Test1{n-1}));

17 g=[y1 ...

y2]*[KMLOGIC(n-1,input,Test1,R1,MFM2);KMLOGIC(n-1,input,Test1,R2,MFM2)];

18 else

19 g = [y1 y2]*[R1;R2];

20 end

1 function out = pdflcnew(Input1,Input2)

2 % centers=[-1.0 -0.51 -0.50 -0.09 -0.08 0.0 0.08 0.09 0.50 0.51 1.0;

126

3 % -1.0 -0.75 -0.50 -.375 -0.25 0.0 0.25 .375 0.50 0.75 1.0];

4

5 centers1 = [-1.0 -0.51 -0.50 -0.09 -0.08 0.0 0.08 0.09 0.50 0.51 ...

1.0];

6 centers2 = [-1 0 1];

7

8 Test1{1} = centers1;

9 Test1{2} = centers2;

10

11 % R=[-1.00 -0.51 -1.00 -0.18 -2.00 -1.00 0.00 0.18 1.00 0.51 ...

1.00 ...

12 % -1.00 -0.51 -1.00 -0.18 -1.75 -0.75 0.25 0.18 1.00 0.51 ...

1.00 ...

13 % -1.00 -0.51 -1.00 -0.18 -1.50 -0.50 0.50 0.18 1.00 0.51 ...

1.00 ...

14 % -1.00 -0.51 -1.00 -0.18 -1.375 -.375 .625 0.18 1.00 0.51 ...

1.00 ...

15 % -1.00 -0.51 -1.00 -0.18 -1.25 -0.25 0.75 0.18 1.00 0.51 ...

1.00 ...

16 % -1.00 -0.51 -1.00 -0.18 -1.00 0.00 1.00 0.18 1.00 0.51 ...

1.00 ...

17 % -1.00 -0.51 -1.00 -0.18 -0.75 0.25 1.25 0.18 1.00 0.51 ...

1.00 ...

18 % -1.00 -0.51 -1.00 -0.18 -0.625 .375 1.375 0.18 1.00 0.51 ...

1.00 ...

19 % -1.00 -0.51 -1.00 -0.18 -0.50 0.50 1.50 0.18 1.00 0.51 ...

1.00 ...

20 % -1.00 -0.51 -1.00 -0.18 -0.25 0.75 1.75 0.18 1.00 0.51 ...

1.00 ...

21 % -1.00 -0.51 -1.00 -0.18 0.00 1.00 2.00 0.18 1.00 0.51 ...

1.00];

22 %%

23 R = [-1.00 -0.51 -1.00 -0.18 -2.00 -1.00 0.00 0.18 1.00 0.51 ...

1.00 ...

24 -1.00 -0.51 -1.00 -0.18 -1.00 0.00 1.00 0.18 1.00 0.51 ...

1.00 ...

127

25 -1.00 -0.51 -1.00 -0.18 0.00 1.00 2.00 0.18 1.00 0.51 ...

1.00];

26 %%

27 % Find the total number of fuzzy sets in all inputs except the last

28 n = 2;

29 MFM=1;

30 for i = 1:n-1

31 % MFM=MFM*length(centers(i,:));

32 MFM=MFM*length(Test1{i});

33 end

34 %%

35 input = [Input1, Input2];

36 out = KMLOGIC(n,input,Test1,R,MFM);

1 %Fuzzify.m %

2 %

3 % ...

*-- ...

*

4 % Copyright Kuldip S Rattan and Matthew Clark

5 % ...

*-- ...

*

6 % ...

*-- ...

*

7 % This m-file computes the membership values of the fuzzy sets ...

(defined

8 % over a normalized universe of discourse between -1 and 1) for a ...

given

9 % input . centers is a vector containing the center points or ...

peak points

10 % of the triagular fuzzy sets whose membership values are being ...

determined

128

11 % for the given input x, Fuzzy partitioing is assumed. y is the ...

output

12 % vector. It is also assumed that the membership values for ...

inputs greater

13 % than and less than -1 is 1 is [0 1] or [1 0], respectively..

14 % ...

*-- ...

*

15 %

16 function [y1, y2, j]=Rec_Fuzzify(x,i,d,centers)

17 if (i==1) && (x < centers(1));

18 y1 = 1;

19 y2 = 0;

20 j = 1;

21 elseif (i==d) && (x > centers(d));

22 y1 = 0;

23 y2 = 1;

24 j = i-1;

25 elseif (x≥centers(i)) && (x ≤ centers(i+1));

26 y1=(centers(i+1)-x)/(centers(i+1)-centers(i));

27 y2=(x-centers(i))/(centers(i+1)-centers(i));

28 j=i;

29 else

30 [y1, y2, j]=Rec_Fuzzify(x,i+1,d,centers);

31 end;

A.6 PFLC Python Response Modeling

1 '''

2 Created by Hyst v1.4

3 Hybrid Automaton in PySim

4 Converted from file: /home/verivital/Desktop/fuzzyP_v2/prop_p.xml

129

5 Command Line arguments: -tool pysim "" -output ...

/home/verivital/Desktop/fuzzyP_v2/python/prop_p_pysim.py ...

-input /home/verivital/Desktop/fuzzyP_v2/prop_p.xml ...

/home/verivital/Desktop/fuzzyP_v2/prop_p.cfg

6 '''

7

8 import hybridpy.pysim.simulate as sim

9 from hybridpy.pysim.simulate import init_list_to_q_list, ...

PySimSettings

10 from hybridpy.pysim.hybrid_automaton import HybridAutomaton, ...

HyperRectangle

11

12 def define_ha():

13 '''make the hybrid automaton and return it'''

14

15 ha = HybridAutomaton()

16 ha.variables = ["x1", "x2", "t"]

17

18

19 loc2 = ha.new_mode('loc2')

20 loc2.inv = lambda state: 1.0 - state[0] > -0.51 and 1.0 - ...

state[0] ≤ -0.5

21 loc2.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 18375.0 * (1.0 - state[0]) - 9562.5, 1.0]

22 loc2.der_interval_list = [[0, 0], [0, 0], [0, 0]]

23

24 loc3 = ha.new_mode('loc3')

25 loc3.inv = lambda state: 1.0 - state[0] > -0.5 and 1.0 - ...

state[0] ≤ -0.09

26 loc3.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 750.0 * (1.0 - state[0]), 1.0]

27 loc3.der_interval_list = [[0, 0], [0, 0], [0, 0]]

28

29 loc4 = ha.new_mode('loc4')

30 loc4.inv = lambda state: 1.0 - state[0] > -0.09 and 1.0 - ...

state[0] ≤ -0.08

130

31 loc4.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 30750.0 * (1.0 - state[0]) - 2835.0, 1.0]

32 loc4.der_interval_list = [[0, 0], [0, 0], [0, 0]]

33

34 loc1 = ha.new_mode('loc1')

35 loc1.inv = lambda state: 1.0 - state[0] ≤ -0.51

36 loc1.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 375.0 * (1.0 - state[0]), 1.0]

37 loc1.der_interval_list = [[0, 0], [0, 0], [0, 0]]

38

39 loc5 = ha.new_mode('loc5')

40 loc5.inv = lambda state: 1.0 - state[0] > -0.08 and 1.0 - ...

state[0] < 0.08

41 loc5.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 4687.5 * (1.0 - state[0]), 1.0]

42 loc5.der_interval_list = [[0, 0], [0, 0], [0, 0]]

43

44 loc6 = ha.new_mode('loc6')

45 loc6.inv = lambda state: 1.0 - state[0] ≥ 0.08 and 1.0 - ...

state[0] < 0.09

46 loc6.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 30750.0 * (1.0 - state[0]) + 2835.0, 1.0]

47 loc6.der_interval_list = [[0, 0], [0, 0], [0, 0]]

48

49 loc7 = ha.new_mode('loc7')

50 loc7.inv = lambda state: 1.0 - state[0] ≥ 0.09 and 1.0 - ...

state[0] < 0.5

51 loc7.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 750.0 * (1.0 - state[0]), 1.0]

52 loc7.der_interval_list = [[0, 0], [0, 0], [0, 0]]

53

54 loc8 = ha.new_mode('loc8')

55 loc8.inv = lambda state: 1.0 - state[0] ≥ 0.5 and 1.0 - ...

state[0] < 0.51

56 loc8.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 18375.0 * (1.0 - state[0]) + 9562.5, 1.0]

131

57 loc8.der_interval_list = [[0, 0], [0, 0], [0, 0]]

58

59 loc9 = ha.new_mode('loc9')

60 loc9.inv = lambda state: 1.0 - state[0] ≥ 0.51

61 loc9.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 375.0 * (1.0 - state[0]), 1.0]

62 loc9.der_interval_list = [[0, 0], [0, 0], [0, 0]]

63

64 t = ha.new_transition(loc2, loc1)

65 t.guard = lambda state: 1.0 - state[0] ≤ -0.51

66 t.reset = lambda state: [None, None, None]

67

68 t = ha.new_transition(loc2, loc3)

69 t.guard = lambda state: 1.0 - state[0] > -0.5

70 t.reset = lambda state: [None, None, None]

71

72 t = ha.new_transition(loc3, loc4)

73 t.guard = lambda state: 1.0 - state[0] > -0.09

74 t.reset = lambda state: [None, None, None]

75

76 t = ha.new_transition(loc3, loc2)

77 t.guard = lambda state: 1.0 - state[0] ≤ -0.5

78 t.reset = lambda state: [None, None, None]

79

80 t = ha.new_transition(loc4, loc5)

81 t.guard = lambda state: 1.0 - state[0] > -0.08

82 t.reset = lambda state: [None, None, None]

83

84 t = ha.new_transition(loc4, loc3)

85 t.guard = lambda state: 1.0 - state[0] ≤ -0.09

86 t.reset = lambda state: [None, None, None]

87

88 t = ha.new_transition(loc1, loc2)

89 t.guard = lambda state: 1.0 - state[0] > -0.51

90 t.reset = lambda state: [None, None, None]

91

132

92 t = ha.new_transition(loc5, loc6)

93 t.guard = lambda state: 1.0 - state[0] ≥ 0.0801

94 t.reset = lambda state: [None, None, None]

95

96 t = ha.new_transition(loc5, loc4)

97 t.guard = lambda state: 1.0 - state[0] ≤ -0.0801

98 t.reset = lambda state: [None, None, None]

99

100 t = ha.new_transition(loc6, loc7)

101 t.guard = lambda state: 1.0 - state[0] ≥ 0.09

102 t.reset = lambda state: [None, None, None]

103

104 t = ha.new_transition(loc6, loc5)

105 t.guard = lambda state: 1.0 - state[0] < 0.08

106 t.reset = lambda state: [None, None, None]

107

108 t = ha.new_transition(loc7, loc8)

109 t.guard = lambda state: 1.0 - state[0] ≥ 0.5

110 t.reset = lambda state: [None, None, None]

111

112 t = ha.new_transition(loc7, loc6)

113 t.guard = lambda state: 1.0 - state[0] < 0.09

114 t.reset = lambda state: [None, None, None]

115

116 t = ha.new_transition(loc8, loc9)

117 t.guard = lambda state: 1.0 - state[0] ≥ 0.51

118 t.reset = lambda state: [None, None, None]

119

120 t = ha.new_transition(loc8, loc7)

121 t.guard = lambda state: 1.0 - state[0] < 0.5

122 t.reset = lambda state: [None, None, None]

123

124 t = ha.new_transition(loc9, loc8)

125 t.guard = lambda state: 1.0 - state[0] < 0.51

126 t.reset = lambda state: [None, None, None]

127

133

128 return ha

129

130 def define_init_states(ha):

131 '''returns a list of (mode, HyperRectangle)'''

132 # Variable ordering: [x1, x2, t]

133 rv = []

134

135 rv.append((ha.modes['loc2'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

136 rv.append((ha.modes['loc3'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

137 rv.append((ha.modes['loc4'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

138 rv.append((ha.modes['loc1'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

139 rv.append((ha.modes['loc5'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

140 rv.append((ha.modes['loc6'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

141 rv.append((ha.modes['loc7'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

142 rv.append((ha.modes['loc8'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

143 rv.append((ha.modes['loc9'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

144 return rv

145

146

147 def define_settings():

148 '''defines the automaton / plot settings'''

149 s = PySimSettings()

150 s.max_time = 0.5

151 s.step = 0.001

152 s.dim_x = 2

153 s.dim_y = 0

154

134

155 return s

156

157 def simulate(init_states, settings):

158 '''simulate the automaton from each initial rect'''

159

160 q_list = init_list_to_q_list(init_states, center=True, ...

star=True, corners=False, rand=0)

161 result = sim.simulate_multi(q_list, settings.max_time)

162

163 return result

164

165 def plot(result, init_states, image_path, settings):

166 '''plot a simulation result to a file'''

167

168 draw_events = len(result) == 1

169 shouldShow = False

170 sim.plot_sim_result_multi(result, settings.dim_x, ...

settings.dim_y, image_path, draw_events, legend=True, ...

title='Simulation', show=shouldShow, init_states=init_states)

171

172 if __name__ == '__main__':

173 ha = define_ha()

174 settings = define_settings()

175 init_states = define_init_states(ha)

176 plot(simulate(init_states, settings), init_states, ...

'plot.png', settings)

A.7 PFLC Zero Input Hybrid Representations

1 system = state_diagram

2

3 initially = "-1.0 ≤ x1 ≤ 1.0 & x2 == 0 & t == 0"

4

135

5 set-aggregation = chull

6 scenario = stc

7 directions = box

8 sampling-time = 0.01

9 time-horizon = 0.5

10 #iter-max = 15

11 #iter-max = 30

12 output-variables = "t, x1"

13 output-format = GEN

14 rel-err = 1.0E-6

15 abs-err = 1.0E-5

16 flowpipe-tolerance = 0.01

17

18 # New attempt 20190103 - prop_p_zi_spx_im09.png

19 # - If don't want reactivate the above fields

20 #time-horizon = 0.5

21 #iter-max = 9

22 #flowpipe-tolerance = 0.01

23

24 # New attempt 20190103 - prop_p_zi_spx_im18.png

25 # - If don't want reactivate the above fields

26 #time-horizon = 0.5

27 #iter-max = 18

28 #flowpipe-tolerance = 0.01

29

30 # New attempt 20190103 - prop_p_zi_spx_im27.png

31 # - If don't want reactivate the above fields

32 #time-horizon = 0.5

33 #iter-max = 27

34 #flowpipe-tolerance = 0.01

35

36 # New attempt 20190103 - prop_p_zi_spx_im36.png

37 # - If don't want reactivate the above fields

38 #iter-max = 36

39

40 # New attempt 20190103 - prop_p_zi_spx_im45.png

136

41 # - If don't want reactivate the above fields

42 #iter-max = 45

43 # - Too large - Errored on the 42 iteration

44

45 # New attempt 20190103 - prop_p_zi_spx_im41.png

46 # - If don't want reactivate the above fields

47 iter-max = 41

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <sspaceex ...

xmlns="http://www-verimag.imag.fr/xml-namespaces/sspaceex" ...

version="0.2" math="SpaceEx">

3 <component id="state_diagram">

4 <param name="x1" type="real" local="false" d1="1" d2="1" ...

dynamics="any" />

5 <param name="x2" type="real" local="false" d1="1" d2="1" ...

dynamics="any" />

6 <param name="t" type="real" local="false" d1="1" d2="1" ...

dynamics="any" />

7 <location id="2" name="loc2" x="478.0" y="136.0" ...

width="294.0" height="110.0">

8 <note>75</note>

9 <invariant>(0-x1) >-0.51& (0-x1)<=-0.5</invariant>

10 <flow>x1'== x2&

11 x2'== -75*x1-20*x2-375*49*(0-x1)-375*25.5&

12 t'== 1</flow>

13 </location>

14 <location id="3" name="loc3" x="803.0" y="208.0" ...

width="234.0" height="94.0">

15 <note>75</note>

16 <invariant>(0-x1) >-0.5 & (0-x1) <=-0.09</invariant>

17 <flow>x1'== x2&

18 x2'== -75*x1-20*x2+375*2*(0-x1)&

19 t'==1</flow>

137

20 </location>

21 <location id="4" name="loc4" x="1123.0" y="108.0" ...

width="374.0" height="98.0">

22 <note>75</note>

23 <invariant>(0-x1) >-0.09 & (0-x1) <=-0.08</invariant>

24 <flow>x1'== x2&

25 x2'== -75*x1-20*x2-375*82*(0-x1)-375*7.56&

26 t'==1</flow>

27 </location>

28 <location id="6" name="loc1" x="141.0" y="231.0" ...

width="220.0" height="98.0">

29 <note>5555</note>

30 <invariant>(0-x1) <= -0.51</invariant>

31 <flow>x1'== x2&

32 x2'== -75*x1-20*x2+375*(0-x1)&

33 t'== 1</flow>

34 </location>

35 <location id="1" name="loc5" x="1151.0" y="354.0" ...

width="336.0" height="98.0">

36 <note>75</note>

37 <invariant>(0-x1) >-0.08 & (0-x1)<0.08</invariant>

38 <flow>x1'== x2&

39 x2'== -75*x1-20*x2+375*12.5*(0-x1)&

40 t'== 1</flow>

41 </location>

42 <location id="5" name="loc6" x="1149.0" y="586.0" ...

width="384.0" height="94.0">

43 <note>75</note>

44 <invariant>(0-x1)>= 0.08 & (0-x1)<0.09</invariant>

45 <flow>x1'== x2&

46 x2'== -75*x1-20*x2-375*82*(0-x1)+375*7.56&

47 t'== 1</flow>

48 </location>

49 <location id="7" name="loc7" x="798.0" y="478.0" ...

width="258.0" height="108.0">

50 <note>75</note>

138

51 <invariant>(0-x1)>= 0.09 & (0-x1)<0.5</invariant>

52 <flow>x1'== x2&

53 x2'== -75*x1-20*x2+375*2*(0-x1)&

54 t'== 1</flow>

55 </location>

56 <location id="8" name="loc8" x="452.0" y="588.0" ...

width="296.0" height="92.0">

57 <note>75</note>

58 <invariant>(0-x1)>= 0.5&(0-x1)<0.51</invariant>

59 <flow>x1'== x2&

60 x2'== -75*x1-20*x2-375*49*(0-x1)+375*25.5&

61 t'== 1</flow>

62 </location>

63 <location id="9" name="loc9" x="144.0" y="410.0" ...

width="228.0" height="98.0">

64 <note>5555</note>

65 <invariant>(0-x1)>=0.51</invariant>

66 <flow>x1'== x2&

67 x2'== -75*x1-20*x2+375*(0-x1)&

68 t'== 1</flow>

69 </location>

70 <transition source="6" target="2">

71 <guard>(0-x1)>-0.51</guard>

72 <labelposition x="-98.0" y="-69.0" width="116.0" ...

height="64.0" />

73 <middlepoint x="284.0" y="152.0" />

74 </transition>

75 <transition source="2" target="6">

76 <guard>(0-x1)<=-0.51</guard>

77 <labelposition x="-19.0" y="-2.0" width="108.0" ...

height="62.0" />

78 <middlepoint x="315.0" y="238.5" />

79 </transition>

80 <transition source="2" target="3">

81 <guard>(0-x1)>-0.5</guard>

139

82 <labelposition x="-45.0" y="-81.0" width="124.0" ...

height="78.0" />

83 <middlepoint x="678.0" y="144.5" />

84 </transition>

85 <transition source="3" target="4">

86 <guard>(0-x1)>-0.09</guard>

87 <labelposition x="-88.0" y="-55.0" width="86.0" ...

height="50.0" />

88 <middlepoint x="898.5" y="120.0" />

89 </transition>

90 <transition source="4" target="1">

91 <guard>(0-x1) > -0.08</guard>

92 <labelposition x="6.0" y="-36.0" width="100.0" ...

height="54.0" />

93 <middlepoint x="1176.0" y="262.0" />

94 </transition>

95 <transition source="1" target="5">

96 <guard>(0-x1)>=0.0801</guard>

97 <labelposition x="2.0" y="-35.0" width="104.0" ...

height="64.0" />

98 <middlepoint x="1186.0" y="480.0" />

99 </transition>

100 <transition source="5" target="7">

101 <guard>(0-x1)>=0.09</guard>

102 <labelposition x="-41.0" y="-43.0" width="98.0" ...

height="50.0" />

103 <middlepoint x="992.0" y="513.0" />

104 </transition>

105 <transition source="7" target="8">

106 <guard>(0-x1)>=0.5</guard>

107 <labelposition x="-41.0" y="-62.0" width="80.0" ...

height="60.0" />

108 <middlepoint x="614.5" y="504.0" />

109 </transition>

110 <transition source="8" target="9">

111 <guard>(0-x1)>=0.51</guard>

140

112 <labelposition x="-11.0" y="-53.0" width="104.0" ...

height="50.0" />

113 <middlepoint x="321.0" y="458.0" />

114 </transition>

115 <transition source="3" target="2">

116 <guard>(0-x1)<=-0.5</guard>

117 <labelposition x="-119.0" y="2.0" width="96.0" ...

height="70.0" />

118 <middlepoint x="630.0" y="232.5" />

119 </transition>

120 <transition source="4" target="3">

121 <guard>(0-x1)<=-0.090</guard>

122 <labelposition x="-55.0" y="-8.0" width="102.0" ...

height="50.0" />

123 <middlepoint x="992.0" y="190.5" />

124 </transition>

125 <transition source="1" target="4">

126 <guard>(0-x1)<=-0.0801</guard>

127 <labelposition x="-89.0" y="-5.0" width="122.0" ...

height="54.0" />

128 <middlepoint x="1081.0" y="248.0" />

129 </transition>

130 <transition source="5" target="1">

131 <guard>(0-x1)<0.08</guard>

132 <labelposition x="-71.0" y="-59.0" width="82.0" ...

height="50.0" />

133 <middlepoint x="1077.5" y="475.5" />

134 </transition>

135 <transition source="7" target="5">

136 <guard>(0-x1)<0.0900</guard>

137 <labelposition x="-93.0" y="9.0" width="102.0" ...

height="50.0" />

138 <middlepoint x="910.5" y="580.0" />

139 </transition>

140 <transition source="8" target="7">

141 <guard>(0-x1)<0.5</guard>

141

142 <labelposition x="-37.0" y="5.0" width="96.0" height="52.0" />

143 <middlepoint x="642.5" y="598.5" />

144 </transition>

145 <transition source="9" target="8">

146 <guard>(0-x1)<0.51</guard>

147 <labelposition x="-51.0" y="3.0" width="118.0" ...

height="50.0" />

148 <middlepoint x="243.0" y="524.0" />

149 </transition>

150 </component>

151 </sspaceex>

1 '''

2 Created by Hyst v1.5

3 Hybrid Automaton in Hylaa2

4 Converted from file: ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyP_v2/prop_p_zi.xml

5 Command Line arguments: -tool hylaa2 "" -passes simplify ...

-python_simplify -output ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyP_v2/prop_p_zi.py ...

-input ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyP_v2/prop_p_zi.xml ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyP_v2/prop_p_zi.cfg

6 '''

7

8 from hylaa.hybrid_automaton import HybridAutomaton

9 from hylaa.settings import HylaaSettings, PlotSettings

10 from hylaa.core import Core

11 from hylaa.stateset import StateSet

12 from hylaa import lputil

13

14 def define_ha():

15 '''make the hybrid automaton and return it'''

16

142

17 ha = HybridAutomaton()

18

19 # dynamics variable order: [x1, x2, t, affine]

20

21 loc2 = ha.new_mode('loc2')

22 a_matrix = [\

23 [0, 1, 0, 0], \

24 [18300, -20, 0, -9562.5], \

25 [0, 0, 0, 1], \

26 [0, 0, 0, 0], \

27]

28 loc2.set_dynamics(a_matrix)

29 # -x1 > -0.51 & -x1 ≤ -0.5

30 loc2.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.51, ...

-0.5,])

31

32 loc3 = ha.new_mode('loc3')

33 a_matrix = [\

34 [0, 1, 0, 0], \

35 [-825, -20, 0, 0], \

36 [0, 0, 0, 1], \

37 [0, 0, 0, 0], \

38]

39 loc3.set_dynamics(a_matrix)

40 # -x1 > -0.5 & -x1 ≤ -0.09

41 loc3.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.5, ...

-0.09,])

42

43 loc4 = ha.new_mode('loc4')

44 a_matrix = [\

45 [0, 1, 0, 0], \

46 [30675, -20, 0, -2835], \

47 [0, 0, 0, 1], \

48 [0, 0, 0, 0], \

49]

50 loc4.set_dynamics(a_matrix)

143

51 # -x1 > -0.09 & -x1 ≤ -0.08

52 loc4.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.09, ...

-0.08,])

53

54 loc1 = ha.new_mode('loc1')

55 a_matrix = [\

56 [0, 1, 0, 0], \

57 [-450, -20, 0, 0], \

58 [0, 0, 0, 1], \

59 [0, 0, 0, 0], \

60]

61 loc1.set_dynamics(a_matrix)

62 # -x1 ≤ -0.51

63 loc1.set_invariant([[-1, 0, 0, 0],], [-0.51,])

64

65 loc5 = ha.new_mode('loc5')

66 a_matrix = [\

67 [0, 1, 0, 0], \

68 [-4762.5, -20, 0, 0], \

69 [0, 0, 0, 1], \

70 [0, 0, 0, 0], \

71]

72 loc5.set_dynamics(a_matrix)

73 # -x1 > -0.08 & -x1 < 0.08

74 loc5.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.08, ...

0.08,])

75

76 loc6 = ha.new_mode('loc6')

77 a_matrix = [\

78 [0, 1, 0, 0], \

79 [30675, -20, 0, 2835], \

80 [0, 0, 0, 1], \

81 [0, 0, 0, 0], \

82]

83 loc6.set_dynamics(a_matrix)

84 # -x1 ≥ 0.08 & -x1 < 0.09

144

85 loc6.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], ...

[-0.08, 0.09,])

86

87 loc7 = ha.new_mode('loc7')

88 a_matrix = [\

89 [0, 1, 0, 0], \

90 [-825, -20, 0, 0], \

91 [0, 0, 0, 1], \

92 [0, 0, 0, 0], \

93]

94 loc7.set_dynamics(a_matrix)

95 # -x1 ≥ 0.09 & -x1 < 0.5

96 loc7.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], ...

[-0.09, 0.5,])

97

98 loc8 = ha.new_mode('loc8')

99 a_matrix = [\

100 [0, 1, 0, 0], \

101 [18300, -20, 0, 9562.5], \

102 [0, 0, 0, 1], \

103 [0, 0, 0, 0], \

104]

105 loc8.set_dynamics(a_matrix)

106 # -x1 ≥ 0.5 & -x1 < 0.51

107 loc8.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [-0.5, ...

0.51,])

108

109 loc9 = ha.new_mode('loc9')

110 a_matrix = [\

111 [0, 1, 0, 0], \

112 [-450, -20, 0, 0], \

113 [0, 0, 0, 1], \

114 [0, 0, 0, 0], \

115]

116 loc9.set_dynamics(a_matrix)

117 # -x1 ≥ 0.51

145

118 loc9.set_invariant([[1, -0, -0, -0],], [-0.51,])

119

120 trans = ha.new_transition(loc2, loc1)

121 # -x1 ≤ -0.51

122 trans.set_guard([[-1, 0, 0, 0],], [-0.51,])

123

124 trans = ha.new_transition(loc2, loc3)

125 # -x1 > -0.5

126 trans.set_guard([[1, -0, -0, -0],], [0.5,])

127

128 trans = ha.new_transition(loc3, loc4)

129 # -x1 > -0.09

130 trans.set_guard([[1, -0, -0, -0],], [0.09,])

131

132 trans = ha.new_transition(loc3, loc2)

133 # -x1 ≤ -0.5

134 trans.set_guard([[-1, 0, 0, 0],], [-0.5,])

135

136 trans = ha.new_transition(loc4, loc5)

137 # -x1 > -0.08

138 trans.set_guard([[1, -0, -0, -0],], [0.08,])

139

140 trans = ha.new_transition(loc4, loc3)

141 # -x1 ≤ -0.09

142 trans.set_guard([[-1, 0, 0, 0],], [-0.09,])

143

144 trans = ha.new_transition(loc1, loc2)

145 # -x1 > -0.51

146 trans.set_guard([[1, -0, -0, -0],], [0.51,])

147

148 trans = ha.new_transition(loc5, loc6)

149 # -x1 ≥ 0.0801

150 trans.set_guard([[1, -0, -0, -0],], [-0.0801,])

151

152 trans = ha.new_transition(loc5, loc4)

153 # -x1 ≤ -0.0801

146

154 trans.set_guard([[-1, 0, 0, 0],], [-0.0801,])

155

156 trans = ha.new_transition(loc6, loc7)

157 # -x1 ≥ 0.09

158 trans.set_guard([[1, -0, -0, -0],], [-0.09,])

159

160 trans = ha.new_transition(loc6, loc5)

161 # -x1 < 0.08

162 trans.set_guard([[-1, 0, 0, 0],], [0.08,])

163

164 trans = ha.new_transition(loc7, loc8)

165 # -x1 ≥ 0.5

166 trans.set_guard([[1, -0, -0, -0],], [-0.5,])

167

168 trans = ha.new_transition(loc7, loc6)

169 # -x1 < 0.09

170 trans.set_guard([[-1, 0, 0, 0],], [0.09,])

171

172 trans = ha.new_transition(loc8, loc9)

173 # -x1 ≥ 0.51

174 trans.set_guard([[1, -0, -0, -0],], [-0.51,])

175

176 trans = ha.new_transition(loc8, loc7)

177 # -x1 < 0.5

178 trans.set_guard([[-1, 0, 0, 0],], [0.5,])

179

180 trans = ha.new_transition(loc9, loc8)

181 # -x1 < 0.51

182 trans.set_guard([[-1, 0, 0, 0],], [0.51,])

183

184 return ha

185

186 def define_init_states(ha):

187 '''returns a list of StateSet objects'''

188 # Variable ordering: [x1, x2, t, affine]

189 rv = []

147

190

191 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

192 mode = ha.modes['loc2']

193 mat = [[-1, 0, 0, 0], \

194 [1, 0, 0, 0], \

195 [0, 1, 0, 0], \

196 [-0, -1, -0, -0], \

197 [0, 0, 1, 0], \

198 [-0, -0, -1, -0], \

199 [0, 0, 0, 1], \

200 [-0, -0, -0, -1],]

201 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

202 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

203

204 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

205 mode = ha.modes['loc3']

206 mat = [[-1, 0, 0, 0], \

207 [1, 0, 0, 0], \

208 [0, 1, 0, 0], \

209 [-0, -1, -0, -0], \

210 [0, 0, 1, 0], \

211 [-0, -0, -1, -0], \

212 [0, 0, 0, 1], \

213 [-0, -0, -0, -1],]

214 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

215 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

216

217 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

218 mode = ha.modes['loc4']

219 mat = [[-1, 0, 0, 0], \

220 [1, 0, 0, 0], \

221 [0, 1, 0, 0], \

222 [-0, -1, -0, -0], \

223 [0, 0, 1, 0], \

148

224 [-0, -0, -1, -0], \

225 [0, 0, 0, 1], \

226 [-0, -0, -0, -1],]

227 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

228 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

229

230 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

231 mode = ha.modes['loc1']

232 mat = [[-1, 0, 0, 0], \

233 [1, 0, 0, 0], \

234 [0, 1, 0, 0], \

235 [-0, -1, -0, -0], \

236 [0, 0, 1, 0], \

237 [-0, -0, -1, -0], \

238 [0, 0, 0, 1], \

239 [-0, -0, -0, -1],]

240 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

241 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

242

243 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

244 mode = ha.modes['loc5']

245 mat = [[-1, 0, 0, 0], \

246 [1, 0, 0, 0], \

247 [0, 1, 0, 0], \

248 [-0, -1, -0, -0], \

249 [0, 0, 1, 0], \

250 [-0, -0, -1, -0], \

251 [0, 0, 0, 1], \

252 [-0, -0, -0, -1],]

253 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

254 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

255

256 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

149

257 mode = ha.modes['loc6']

258 mat = [[-1, 0, 0, 0], \

259 [1, 0, 0, 0], \

260 [0, 1, 0, 0], \

261 [-0, -1, -0, -0], \

262 [0, 0, 1, 0], \

263 [-0, -0, -1, -0], \

264 [0, 0, 0, 1], \

265 [-0, -0, -0, -1],]

266 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

267 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

268

269 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

270 mode = ha.modes['loc7']

271 mat = [[-1, 0, 0, 0], \

272 [1, 0, 0, 0], \

273 [0, 1, 0, 0], \

274 [-0, -1, -0, -0], \

275 [0, 0, 1, 0], \

276 [-0, -0, -1, -0], \

277 [0, 0, 0, 1], \

278 [-0, -0, -0, -1],]

279 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

280 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

281

282 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

283 mode = ha.modes['loc8']

284 mat = [[-1, 0, 0, 0], \

285 [1, 0, 0, 0], \

286 [0, 1, 0, 0], \

287 [-0, -1, -0, -0], \

288 [0, 0, 1, 0], \

289 [-0, -0, -1, -0], \

290 [0, 0, 0, 1], \

150

291 [-0, -0, -0, -1],]

292 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

293 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

294

295 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

296 mode = ha.modes['loc9']

297 mat = [[-1, 0, 0, 0], \

298 [1, 0, 0, 0], \

299 [0, 1, 0, 0], \

300 [-0, -1, -0, -0], \

301 [0, 0, 1, 0], \

302 [-0, -0, -1, -0], \

303 [0, 0, 0, 1], \

304 [-0, -0, -0, -1],]

305 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

306 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

307

308 return rv

309

310

311 def define_settings():

312 '''get the hylaa settings object

313 see hylaa/settings.py for a complete list of reachability ...

settings'''

314

315 # step_size = 0.01, max_time = 0.5

316 settings = HylaaSettings(0.001, 0.5)

317 settings.plot.plot_mode = PlotSettings.PLOT_IMAGE

318 settings.plot.xdim_dir = 2

319 settings.plot.ydim_dir = 0

320

321 return settings

322

323 def run_hylaa():

151

324 'runs hylaa, returning a HylaaResult object'

325 ha = define_ha()

326 init = define_init_states(ha)

327 settings = define_settings()

328

329 result = Core(ha, settings).run(init)

330

331 return result

332

333 if __name__ == '__main__':

334 run_hylaa()

A.8 PselDFLC Python Response Modeling

1 '''

2 Created by Hyst v1.4

3 Hybrid Automaton in PySim

4 Converted from file: ...

/home/verivital/Desktop/fuzzyPselD_v2/prop_pd.xml

5 Command Line arguments: -tool pysim "" -output ...

/home/verivital/Desktop/fuzzyPselD_v2/prop_pd_pysim.py -input ...

/home/verivital/Desktop/fuzzyPselD_v2/prop_pd.xml ...

/home/verivital/Desktop/fuzzyPselD_v2/prop_pd.cfg

6 '''

7

8 import hybridpy.pysim.simulate as sim

9 from hybridpy.pysim.simulate import init_list_to_q_list, ...

PySimSettings

10 from hybridpy.pysim.hybrid_automaton import HybridAutomaton, ...

HyperRectangle

11

12 def define_ha():

13 '''make the hybrid automaton and return it'''

152

14

15 ha = HybridAutomaton()

16 ha.variables = ["x1", "x2", "t"]

17

18

19 loc2 = ha.new_mode('loc2')

20 loc2.inv = lambda state: 1.0 - state[0] > -0.51 and 1.0 - ...

state[0] ≤ -0.5

21 loc2.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 18375.0 * (1.0 - state[0]) - 9562.5, 1.0]

22 loc2.der_interval_list = [[0, 0], [0, 0], [0, 0]]

23

24 loc3 = ha.new_mode('loc3')

25 loc3.inv = lambda state: 1.0 - state[0] > -0.5 and 1.0 - ...

state[0] ≤ -0.09

26 loc3.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 750.0 * (1.0 - state[0]), 1.0]

27 loc3.der_interval_list = [[0, 0], [0, 0], [0, 0]]

28

29 loc4 = ha.new_mode('loc4')

30 loc4.inv = lambda state: 1.0 - state[0] > -0.09 and 1.0 - ...

state[0] ≤ -0.08

31 loc4.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 30750.0 * (1.0 - state[0]) - 2835.0 - ...

state[1] * 0.15 * 375.0, 1.0]

32 loc4.der_interval_list = [[0, 0], [0, 0], [0, 0]]

33

34 loc1 = ha.new_mode('loc1')

35 loc1.inv = lambda state: 1.0 - state[0] ≤ -0.51

36 loc1.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 375.0 * (1.0 - state[0]), 1.0]

37 loc1.der_interval_list = [[0, 0], [0, 0], [0, 0]]

38

39 loc5 = ha.new_mode('loc5')

40 loc5.inv = lambda state: 1.0 - state[0] > -0.08 and 1.0 - ...

state[0] < 0.08

153

41 loc5.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 4687.5 * (1.0 - state[0]) - state[1] * ...

0.15 * 375.0, 1.0]

42 loc5.der_interval_list = [[0, 0], [0, 0], [0, 0]]

43

44 loc6 = ha.new_mode('loc6')

45 loc6.inv = lambda state: 1.0 - state[0] ≥ 0.08 and 1.0 - ...

state[0] < 0.09

46 loc6.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 30750.0 * (1.0 - state[0]) + 2835.0 - ...

state[1] * 0.15 * 375.0, 1.0]

47 loc6.der_interval_list = [[0, 0], [0, 0], [0, 0]]

48

49 loc7 = ha.new_mode('loc7')

50 loc7.inv = lambda state: 1.0 - state[0] ≥ 0.09 and 1.0 - ...

state[0] < 0.5

51 loc7.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 750.0 * (1.0 - state[0]), 1.0]

52 loc7.der_interval_list = [[0, 0], [0, 0], [0, 0]]

53

54 loc8 = ha.new_mode('loc8')

55 loc8.inv = lambda state: 1.0 - state[0] ≥ 0.5 and 1.0 - ...

state[0] < 0.51

56 loc8.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] - 18375.0 * (1.0 - state[0]) + 9562.5, 1.0]

57 loc8.der_interval_list = [[0, 0], [0, 0], [0, 0]]

58

59 loc9 = ha.new_mode('loc9')

60 loc9.inv = lambda state: 1.0 - state[0] ≥ 0.51

61 loc9.der = lambda _, state: [state[1], -75.0 * state[0] - ...

20.0 * state[1] + 375.0 * (1.0 - state[0]), 1.0]

62 loc9.der_interval_list = [[0, 0], [0, 0], [0, 0]]

63

64 t = ha.new_transition(loc2, loc1)

65 t.guard = lambda state: 1.0 - state[0] ≤ -0.51

66 t.reset = lambda state: [None, None, None]

154

67

68 t = ha.new_transition(loc2, loc3)

69 t.guard = lambda state: 1.0 - state[0] > -0.5

70 t.reset = lambda state: [None, None, None]

71

72 t = ha.new_transition(loc3, loc4)

73 t.guard = lambda state: 1.0 - state[0] > -0.09

74 t.reset = lambda state: [None, None, None]

75

76 t = ha.new_transition(loc3, loc2)

77 t.guard = lambda state: 1.0 - state[0] ≤ -0.5

78 t.reset = lambda state: [None, None, None]

79

80 t = ha.new_transition(loc4, loc5)

81 t.guard = lambda state: 1.0 - state[0] > -0.08

82 t.reset = lambda state: [None, None, None]

83

84 t = ha.new_transition(loc4, loc3)

85 t.guard = lambda state: 1.0 - state[0] ≤ -0.09

86 t.reset = lambda state: [None, None, None]

87

88 t = ha.new_transition(loc1, loc2)

89 t.guard = lambda state: 1.0 - state[0] > -0.51

90 t.reset = lambda state: [None, None, None]

91

92 t = ha.new_transition(loc5, loc6)

93 t.guard = lambda state: 1.0 - state[0] ≥ 0.0801

94 t.reset = lambda state: [None, None, None]

95

96 t = ha.new_transition(loc5, loc4)

97 t.guard = lambda state: 1.0 - state[0] ≤ -0.0801

98 t.reset = lambda state: [None, None, None]

99

100 t = ha.new_transition(loc6, loc7)

101 t.guard = lambda state: 1.0 - state[0] ≥ 0.09

102 t.reset = lambda state: [None, None, None]

155

103

104 t = ha.new_transition(loc6, loc5)

105 t.guard = lambda state: 1.0 - state[0] < 0.08

106 t.reset = lambda state: [None, None, None]

107

108 t = ha.new_transition(loc7, loc8)

109 t.guard = lambda state: 1.0 - state[0] ≥ 0.5

110 t.reset = lambda state: [None, None, None]

111

112 t = ha.new_transition(loc7, loc6)

113 t.guard = lambda state: 1.0 - state[0] < 0.09

114 t.reset = lambda state: [None, None, None]

115

116 t = ha.new_transition(loc8, loc9)

117 t.guard = lambda state: 1.0 - state[0] ≥ 0.51

118 t.reset = lambda state: [None, None, None]

119

120 t = ha.new_transition(loc8, loc7)

121 t.guard = lambda state: 1.0 - state[0] < 0.5

122 t.reset = lambda state: [None, None, None]

123

124 t = ha.new_transition(loc9, loc8)

125 t.guard = lambda state: 1.0 - state[0] < 0.51

126 t.reset = lambda state: [None, None, None]

127

128 return ha

129

130 def define_init_states(ha):

131 '''returns a list of (mode, HyperRectangle)'''

132 # Variable ordering: [x1, x2, t]

133 rv = []

134

135 rv.append((ha.modes['loc2'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

136 rv.append((ha.modes['loc3'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

156

137 rv.append((ha.modes['loc4'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

138 rv.append((ha.modes['loc1'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

139 rv.append((ha.modes['loc5'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

140 rv.append((ha.modes['loc6'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

141 rv.append((ha.modes['loc7'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

142 rv.append((ha.modes['loc8'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

143 rv.append((ha.modes['loc9'],HyperRectangle([(0, 0), (0, 0), ...

(0, 0)])))

144 return rv

145

146

147 def define_settings():

148 '''defines the automaton / plot settings'''

149 s = PySimSettings()

150 s.max_time = 0.3

151 s.step = 0.01

152 s.dim_x = 2

153 s.dim_y = 0

154

155 return s

156

157 def simulate(init_states, settings):

158 '''simulate the automaton from each initial rect'''

159

160 q_list = init_list_to_q_list(init_states, center=True, ...

star=True, corners=False, rand=0)

161 result = sim.simulate_multi(q_list, settings.max_time)

162

163 return result

164

157

165 def plot(result, init_states, image_path, settings):

166 '''plot a simulation result to a file'''

167

168 draw_events = len(result) == 1

169 shouldShow = False

170 sim.plot_sim_result_multi(result, settings.dim_x, ...

settings.dim_y, image_path, draw_events, legend=True, ...

title='Simulation', show=shouldShow, init_states=init_states)

171

172 if __name__ == '__main__':

173 ha = define_ha()

174 settings = define_settings()

175 init_states = define_init_states(ha)

176 plot(simulate(init_states, settings), init_states, ...

'plot.png', settings)

A.9 PselDFLC Zero Input Hybrid Representations

1 system = state_diagram

2

3 initially = "-1.0 ≤ x1 ≤ 1.0 & x2 == 0 & t == 0"

4

5 set-aggregation = chull

6 scenario = stc

7 directions = box

8 sampling-time = 0.01

9 time-horizon = 0.3

10 #iter-max = 15

11 #iter-max = 30

12 output-variables = "t, x1"

13 output-format = GEN

14 rel-err = 1.0E-6

15 abs-err = 1.0E-5

158

16 flowpipe-tolerance = 0.01

17

18 # New attempt 20190103 - prop_pd_zi_spx_im09.png

19 # - If don't want reactivate the above fields

20 #iter-max = 9

21

22 # New attempt 20190103 - prop_pd_zi_spx_im18.png

23 # - If don't want reactivate the above fields

24 #iter-max = 18

25

26 # New attempt 20190103 - prop_pd_zi_spx_im27.png

27 # - If don't want reactivate the above fields

28 #iter-max = 27

29

30 # New attempt 20190103 - prop_pd_zi_spx_im36.png

31 # - If don't want reactivate the above fields

32 #iter-max = 36

33

34 # New attempt 20190103 - prop_pd_zi_spx_im45.png

35 # - If don't want reactivate the above fields

36 #iter-max = 45

37

38 # New attempt 20190103 - prop_pd_zi_spx_im54.png

39 # - If don't want reactivate the above fields

40 #iter-max = 54

41

42 # New attempt 20190103 - prop_pd_zi_spx_im63.png

43 # - If don't want reactivate the above fields

44 #iter-max = 63

45

46 # New attempt 20190103 - prop_pd_zi_spx_im90.png

47 # - If don't want reactivate the above fields

48 #iter-max = 90

49 # - Error on iteration 79

50

51 # New attempt 20190103 - prop_pd_zi_spx_im78.png

159

52 # - If don't want reactivate the above fields

53 iter-max = 78

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <sspaceex ...

xmlns="http://www-verimag.imag.fr/xml-namespaces/sspaceex" ...

version="0.2" math="SpaceEx">

3 <component id="state_diagram">

4 <param name="x1" type="real" local="false" d1="1" d2="1" ...

dynamics="any" />

5 <param name="x2" type="real" local="false" d1="1" d2="1" ...

dynamics="any" />

6 <param name="t" type="real" local="false" d1="1" d2="1" ...

dynamics="any" />

7 <location id="2" name="loc2" x="478.0" y="136.0" ...

width="294.0" height="110.0">

8 <note>75</note>

9 <invariant>(0-x1) >-0.51& (0-x1)<=-0.5</invariant>

10 <flow>x1'== x2&

11 x2'== -75*x1-20*x2-375*49*(0-x1)-375*25.5&

12 t'== 1</flow>

13 </location>

14 <location id="3" name="loc3" x="803.0" y="208.0" ...

width="234.0" height="94.0">

15 <note>75</note>

16 <invariant>(0-x1) >-0.5 & (0-x1) <=-0.09</invariant>

17 <flow>x1'== x2&

18 x2'== -75*x1-20*x2+375*2*(0-x1)&

19 t'==1</flow>

20 </location>

21 <location id="4" name="loc4" x="1123.0" y="108.0" ...

width="374.0" height="98.0">

22 <note>75</note>

23 <invariant>(0-x1) >-0.09 & (0-x1) <=-0.08</invariant>

160

24 <flow>x1'== x2&

25 x2'== -75*x1-20*x2-375*82*(0-x1)-375*7.56-x2*0.15*375&

26 t'==1</flow>

27 </location>

28 <location id="6" name="loc1" x="141.0" y="231.0" ...

width="220.0" height="98.0">

29 <note>5555</note>

30 <invariant>(0-x1) <= -0.51</invariant>

31 <flow>x1'== x2&

32 x2'== -75*x1-20*x2+375*(0-x1)&

33 t'== 1</flow>

34 </location>

35 <location id="1" name="loc5" x="1151.0" y="354.0" ...

width="336.0" height="98.0">

36 <note>75</note>

37 <invariant>(0-x1) >-0.08 & (0-x1)<0.08</invariant>

38 <flow>x1'== x2&

39 x2'== -75*x1-20*x2+375*12.5*(0-x1)-x2*0.15*375&

40 t'== 1</flow>

41 </location>

42 <location id="5" name="loc6" x="1149.0" y="586.0" ...

width="384.0" height="94.0">

43 <note>75</note>

44 <invariant>(0-x1)>= 0.08 & (0-x1)<0.09</invariant>

45 <flow>x1'== x2&

46 x2'== -75*x1-20*x2-375*82*(0-x1)+375*7.56-x2*0.15*375&

47 t'== 1</flow>

48 </location>

49 <location id="7" name="loc7" x="798.0" y="478.0" ...

width="258.0" height="108.0">

50 <note>75</note>

51 <invariant>(0-x1)>= 0.09 & (0-x1)<0.5</invariant>

52 <flow>x1'== x2&

53 x2'== -75*x1-20*x2+375*2*(0-x1)&

54 t'== 1</flow>

55 </location>

161

56 <location id="8" name="loc8" x="452.0" y="588.0" ...

width="296.0" height="92.0">

57 <note>75</note>

58 <invariant>(0-x1)>= 0.5&(0-x1)<0.51</invariant>

59 <flow>x1'== x2&

60 x2'== -75*x1-20*x2-375*49*(0-x1)+375*25.5&

61 t'== 1</flow>

62 </location>

63 <location id="9" name="loc9" x="144.0" y="410.0" ...

width="228.0" height="98.0">

64 <note>5555</note>

65 <invariant>(0-x1)>=0.51</invariant>

66 <flow>x1'== x2&

67 x2'== -75*x1-20*x2+375*(0-x1)&

68 t'== 1</flow>

69 </location>

70 <transition source="6" target="2">

71 <guard>(0-x1)>-0.51</guard>

72 <labelposition x="-98.0" y="-69.0" width="116.0" ...

height="64.0" />

73 <middlepoint x="284.0" y="152.0" />

74 </transition>

75 <transition source="2" target="6">

76 <guard>(0-x1)<=-0.51</guard>

77 <labelposition x="-19.0" y="-2.0" width="108.0" ...

height="62.0" />

78 <middlepoint x="315.0" y="238.5" />

79 </transition>

80 <transition source="2" target="3">

81 <guard>(0-x1)>-0.5</guard>

82 <labelposition x="-45.0" y="-81.0" width="124.0" ...

height="78.0" />

83 <middlepoint x="678.0" y="144.5" />

84 </transition>

85 <transition source="3" target="4">

86 <guard>(0-x1)>-0.09</guard>

162

87 <labelposition x="-88.0" y="-55.0" width="86.0" ...

height="50.0" />

88 <middlepoint x="898.5" y="120.0" />

89 </transition>

90 <transition source="4" target="1">

91 <guard>(0-x1) > -0.08</guard>

92 <labelposition x="6.0" y="-36.0" width="100.0" ...

height="54.0" />

93 <middlepoint x="1176.0" y="262.0" />

94 </transition>

95 <transition source="1" target="5">

96 <guard>(0-x1)>=0.0801</guard>

97 <labelposition x="2.0" y="-35.0" width="104.0" ...

height="64.0" />

98 <middlepoint x="1186.0" y="480.0" />

99 </transition>

100 <transition source="5" target="7">

101 <guard>(0-x1)>=0.09</guard>

102 <labelposition x="-41.0" y="-43.0" width="98.0" ...

height="50.0" />

103 <middlepoint x="992.0" y="513.0" />

104 </transition>

105 <transition source="7" target="8">

106 <guard>(0-x1)>=0.5</guard>

107 <labelposition x="-41.0" y="-62.0" width="80.0" ...

height="60.0" />

108 <middlepoint x="614.5" y="504.0" />

109 </transition>

110 <transition source="8" target="9">

111 <guard>(0-x1)>=0.51</guard>

112 <labelposition x="-11.0" y="-53.0" width="104.0" ...

height="50.0" />

113 <middlepoint x="321.0" y="458.0" />

114 </transition>

115 <transition source="3" target="2">

116 <guard>(0-x1)<=-0.5</guard>

163

117 <labelposition x="-119.0" y="2.0" width="96.0" ...

height="70.0" />

118 <middlepoint x="630.0" y="232.5" />

119 </transition>

120 <transition source="4" target="3">

121 <guard>(0-x1)<=-0.090</guard>

122 <labelposition x="-55.0" y="-8.0" width="102.0" ...

height="50.0" />

123 <middlepoint x="992.0" y="190.5" />

124 </transition>

125 <transition source="1" target="4">

126 <guard>(0-x1)<=-0.0801</guard>

127 <labelposition x="-89.0" y="-5.0" width="122.0" ...

height="54.0" />

128 <middlepoint x="1081.0" y="248.0" />

129 </transition>

130 <transition source="5" target="1">

131 <guard>(0-x1)<0.08</guard>

132 <labelposition x="-71.0" y="-59.0" width="82.0" ...

height="50.0" />

133 <middlepoint x="1077.5" y="475.5" />

134 </transition>

135 <transition source="7" target="5">

136 <guard>(0-x1)<0.0900</guard>

137 <labelposition x="-93.0" y="9.0" width="102.0" ...

height="50.0" />

138 <middlepoint x="910.5" y="580.0" />

139 </transition>

140 <transition source="8" target="7">

141 <guard>(0-x1)<0.5</guard>

142 <labelposition x="-37.0" y="5.0" width="96.0" height="52.0" />

143 <middlepoint x="642.5" y="598.5" />

144 </transition>

145 <transition source="9" target="8">

146 <guard>(0-x1)<0.51</guard>

164

147 <labelposition x="-51.0" y="3.0" width="118.0" ...

height="50.0" />

148 <middlepoint x="243.0" y="524.0" />

149 </transition>

150 </component>

151 </sspaceex>

1 '''

2 Created by Hyst v1.5

3 Hybrid Automaton in Hylaa2

4 Converted from file: ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyPselD_v2/prop_pd_zi.xml

5 Command Line arguments: -tool hylaa2 "" -passes simplify ...

-python_simplify -output ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyPselD_v2/prop_pd_zi_hylaa_new.py ...

-input ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyPselD_v2/prop_pd_zi.xml ...

/home/awf/Thesis/MastersThesis/linux/WorkingDesktop/fuzzyPselD_v2/prop_pd_zi.cfg

6 '''

7

8 from hylaa.hybrid_automaton import HybridAutomaton

9 from hylaa.settings import HylaaSettings, PlotSettings

10 from hylaa.core import Core

11 from hylaa.stateset import StateSet

12 from hylaa import lputil

13

14 def define_ha():

15 '''make the hybrid automaton and return it'''

16

17 ha = HybridAutomaton()

18

19 # dynamics variable order: [x1, x2, t, affine]

20

21 loc2 = ha.new_mode('loc2')

165

22 a_matrix = [\

23 [0, 1, 0, 0], \

24 [18300, -20, 0, -9562.5], \

25 [0, 0, 0, 1], \

26 [0, 0, 0, 0], \

27]

28 loc2.set_dynamics(a_matrix)

29 # -x1 > -0.51 & -x1 ≤ -0.5

30 loc2.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.51, ...

-0.5,])

31

32 loc3 = ha.new_mode('loc3')

33 a_matrix = [\

34 [0, 1, 0, 0], \

35 [-825, -20, 0, 0], \

36 [0, 0, 0, 1], \

37 [0, 0, 0, 0], \

38]

39 loc3.set_dynamics(a_matrix)

40 # -x1 > -0.5 & -x1 ≤ -0.09

41 loc3.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.5, ...

-0.09,])

42

43 loc4 = ha.new_mode('loc4')

44 a_matrix = [\

45 [0, 1, 0, 0], \

46 [30675, -76.25, 0, -2835], \

47 [0, 0, 0, 1], \

48 [0, 0, 0, 0], \

49]

50 loc4.set_dynamics(a_matrix)

51 # -x1 > -0.09 & -x1 ≤ -0.08

52 loc4.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.09, ...

-0.08,])

53

54 loc1 = ha.new_mode('loc1')

166

55 a_matrix = [\

56 [0, 1, 0, 0], \

57 [-450, -20, 0, 0], \

58 [0, 0, 0, 1], \

59 [0, 0, 0, 0], \

60]

61 loc1.set_dynamics(a_matrix)

62 # -x1 ≤ -0.51

63 loc1.set_invariant([[-1, 0, 0, 0],], [-0.51,])

64

65 loc5 = ha.new_mode('loc5')

66 a_matrix = [\

67 [0, 1, 0, 0], \

68 [-4762.5, -76.25, 0, 0], \

69 [0, 0, 0, 1], \

70 [0, 0, 0, 0], \

71]

72 loc5.set_dynamics(a_matrix)

73 # -x1 > -0.08 & -x1 < 0.08

74 loc5.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [0.08, ...

0.08,])

75

76 loc6 = ha.new_mode('loc6')

77 a_matrix = [\

78 [0, 1, 0, 0], \

79 [30675, -76.25, 0, 2835], \

80 [0, 0, 0, 1], \

81 [0, 0, 0, 0], \

82]

83 loc6.set_dynamics(a_matrix)

84 # -x1 ≥ 0.08 & -x1 < 0.09

85 loc6.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], ...

[-0.08, 0.09,])

86

87 loc7 = ha.new_mode('loc7')

88 a_matrix = [\

167

89 [0, 1, 0, 0], \

90 [-825, -20, 0, 0], \

91 [0, 0, 0, 1], \

92 [0, 0, 0, 0], \

93]

94 loc7.set_dynamics(a_matrix)

95 # -x1 ≥ 0.09 & -x1 < 0.5

96 loc7.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], ...

[-0.09, 0.5,])

97

98 loc8 = ha.new_mode('loc8')

99 a_matrix = [\

100 [0, 1, 0, 0], \

101 [18300, -20, 0, 9562.5], \

102 [0, 0, 0, 1], \

103 [0, 0, 0, 0], \

104]

105 loc8.set_dynamics(a_matrix)

106 # -x1 ≥ 0.5 & -x1 < 0.51

107 loc8.set_invariant([[1, -0, -0, -0], [-1, 0, 0, 0],], [-0.5, ...

0.51,])

108

109 loc9 = ha.new_mode('loc9')

110 a_matrix = [\

111 [0, 1, 0, 0], \

112 [-450, -20, 0, 0], \

113 [0, 0, 0, 1], \

114 [0, 0, 0, 0], \

115]

116 loc9.set_dynamics(a_matrix)

117 # -x1 ≥ 0.51

118 loc9.set_invariant([[1, -0, -0, -0],], [-0.51,])

119

120 trans = ha.new_transition(loc2, loc1)

121 # -x1 ≤ -0.51

122 trans.set_guard([[-1, 0, 0, 0],], [-0.51,])

168

123

124 trans = ha.new_transition(loc2, loc3)

125 # -x1 > -0.5

126 trans.set_guard([[1, -0, -0, -0],], [0.5,])

127

128 trans = ha.new_transition(loc3, loc4)

129 # -x1 > -0.09

130 trans.set_guard([[1, -0, -0, -0],], [0.09,])

131

132 trans = ha.new_transition(loc3, loc2)

133 # -x1 ≤ -0.5

134 trans.set_guard([[-1, 0, 0, 0],], [-0.5,])

135

136 trans = ha.new_transition(loc4, loc5)

137 # -x1 > -0.08

138 trans.set_guard([[1, -0, -0, -0],], [0.08,])

139

140 trans = ha.new_transition(loc4, loc3)

141 # -x1 ≤ -0.09

142 trans.set_guard([[-1, 0, 0, 0],], [-0.09,])

143

144 trans = ha.new_transition(loc1, loc2)

145 # -x1 > -0.51

146 trans.set_guard([[1, -0, -0, -0],], [0.51,])

147

148 trans = ha.new_transition(loc5, loc6)

149 # -x1 ≥ 0.0801

150 trans.set_guard([[1, -0, -0, -0],], [-0.0801,])

151

152 trans = ha.new_transition(loc5, loc4)

153 # -x1 ≤ -0.0801

154 trans.set_guard([[-1, 0, 0, 0],], [-0.0801,])

155

156 trans = ha.new_transition(loc6, loc7)

157 # -x1 ≥ 0.09

158 trans.set_guard([[1, -0, -0, -0],], [-0.09,])

169

159

160 trans = ha.new_transition(loc6, loc5)

161 # -x1 < 0.08

162 trans.set_guard([[-1, 0, 0, 0],], [0.08,])

163

164 trans = ha.new_transition(loc7, loc8)

165 # -x1 ≥ 0.5

166 trans.set_guard([[1, -0, -0, -0],], [-0.5,])

167

168 trans = ha.new_transition(loc7, loc6)

169 # -x1 < 0.09

170 trans.set_guard([[-1, 0, 0, 0],], [0.09,])

171

172 trans = ha.new_transition(loc8, loc9)

173 # -x1 ≥ 0.51

174 trans.set_guard([[1, -0, -0, -0],], [-0.51,])

175

176 trans = ha.new_transition(loc8, loc7)

177 # -x1 < 0.5

178 trans.set_guard([[-1, 0, 0, 0],], [0.5,])

179

180 trans = ha.new_transition(loc9, loc8)

181 # -x1 < 0.51

182 trans.set_guard([[-1, 0, 0, 0],], [0.51,])

183

184 return ha

185

186 def define_init_states(ha):

187 '''returns a list of StateSet objects'''

188 # Variable ordering: [x1, x2, t, affine]

189 rv = []

190

191 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

192 mode = ha.modes['loc2']

193 mat = [[-1, 0, 0, 0], \

194 [1, 0, 0, 0], \

170

195 [0, 1, 0, 0], \

196 [-0, -1, -0, -0], \

197 [0, 0, 1, 0], \

198 [-0, -0, -1, -0], \

199 [0, 0, 0, 1], \

200 [-0, -0, -0, -1],]

201 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

202 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

203

204 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

205 mode = ha.modes['loc3']

206 mat = [[-1, 0, 0, 0], \

207 [1, 0, 0, 0], \

208 [0, 1, 0, 0], \

209 [-0, -1, -0, -0], \

210 [0, 0, 1, 0], \

211 [-0, -0, -1, -0], \

212 [0, 0, 0, 1], \

213 [-0, -0, -0, -1],]

214 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

215 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

216

217 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

218 mode = ha.modes['loc4']

219 mat = [[-1, 0, 0, 0], \

220 [1, 0, 0, 0], \

221 [0, 1, 0, 0], \

222 [-0, -1, -0, -0], \

223 [0, 0, 1, 0], \

224 [-0, -0, -1, -0], \

225 [0, 0, 0, 1], \

226 [-0, -0, -0, -1],]

227 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

171

228 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

229

230 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

231 mode = ha.modes['loc1']

232 mat = [[-1, 0, 0, 0], \

233 [1, 0, 0, 0], \

234 [0, 1, 0, 0], \

235 [-0, -1, -0, -0], \

236 [0, 0, 1, 0], \

237 [-0, -0, -1, -0], \

238 [0, 0, 0, 1], \

239 [-0, -0, -0, -1],]

240 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

241 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

242

243 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

244 mode = ha.modes['loc5']

245 mat = [[-1, 0, 0, 0], \

246 [1, 0, 0, 0], \

247 [0, 1, 0, 0], \

248 [-0, -1, -0, -0], \

249 [0, 0, 1, 0], \

250 [-0, -0, -1, -0], \

251 [0, 0, 0, 1], \

252 [-0, -0, -0, -1],]

253 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

254 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

255

256 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

257 mode = ha.modes['loc6']

258 mat = [[-1, 0, 0, 0], \

259 [1, 0, 0, 0], \

260 [0, 1, 0, 0], \

172

261 [-0, -1, -0, -0], \

262 [0, 0, 1, 0], \

263 [-0, -0, -1, -0], \

264 [0, 0, 0, 1], \

265 [-0, -0, -0, -1],]

266 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

267 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

268

269 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

270 mode = ha.modes['loc7']

271 mat = [[-1, 0, 0, 0], \

272 [1, 0, 0, 0], \

273 [0, 1, 0, 0], \

274 [-0, -1, -0, -0], \

275 [0, 0, 1, 0], \

276 [-0, -0, -1, -0], \

277 [0, 0, 0, 1], \

278 [-0, -0, -0, -1],]

279 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

280 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

281

282 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

283 mode = ha.modes['loc8']

284 mat = [[-1, 0, 0, 0], \

285 [1, 0, 0, 0], \

286 [0, 1, 0, 0], \

287 [-0, -1, -0, -0], \

288 [0, 0, 1, 0], \

289 [-0, -0, -1, -0], \

290 [0, 0, 0, 1], \

291 [-0, -0, -0, -1],]

292 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

293 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

173

294

295 # -1.0 ≤ x1 & x1 ≤ 1.0 & x2 = 0.0 & t = 0.0 & affine = 1.0

296 mode = ha.modes['loc9']

297 mat = [[-1, 0, 0, 0], \

298 [1, 0, 0, 0], \

299 [0, 1, 0, 0], \

300 [-0, -1, -0, -0], \

301 [0, 0, 1, 0], \

302 [-0, -0, -1, -0], \

303 [0, 0, 0, 1], \

304 [-0, -0, -0, -1],]

305 rhs = [1, 1, 0, -0, 0, -0, 1, -1,]

306 rv.append(StateSet(lputil.from_constraints(mat, rhs, mode), ...

mode))

307

308 return rv

309

310

311 def define_settings():

312 '''get the hylaa settings object

313 see hylaa/settings.py for a complete list of reachability ...

settings'''

314

315 # step_size = 0.01, max_time = 0.3

316 settings = HylaaSettings(0.001, 0.3)

317 settings.plot.plot_mode = PlotSettings.PLOT_INTERACTIVE

318 settings.plot.xdim_dir = 2

319 settings.plot.ydim_dir = 0

320 settings.plot.label.title = "Fuzzy PselD Controller"

321 settings.plot.label.axes_limits = (-0.01, 0.4, -1.1, 1.1)

322 settings.stdout = HylaaSettings.STDOUT_VERBOSE

323

324 return settings

325

326 def run_hylaa():

327 'runs hylaa, returning a HylaaResult object'

174

328 ha = define_ha()

329 init = define_init_states(ha)

330 settings = define_settings()

331

332 result = Core(ha, settings).run(init)

333

334 return result

335

336 if __name__ == '__main__':

337 run_hylaa()

175

	Examination of Gain Scheduling and Fuzzy Controllers with Hybrid Reachability
	Repository Citation

	Abstract
	Introduction
	Motivation
	Problem Description
	Future Research

	Background
	Why Advanced Control?
	Gain Scheduling
	Fuzzy Control
	What is Fuzzy Logic?
	Applications to Controls
	Building Fuzzy Controllers
	Example Fuzzy System
	Gain Scheduled to Fuzzy Conversion
	Fuzzy to Piecewise Linear

	Hybrid Systems
	Finite State Machine
	Hybrid Automata
	Reachability
	Analysis Tools
	Processing Tools
	Hybrid Reachability Summary

	Summary

	Gain Schedule / Fuzzy Controllers
	Gain Scheduled Proportional Controller
	Fuzzy Logic Controller
	Response Improvement - Selective Damping
	Simulink Representation

	Summary

	Hybrid System
	ODE Dynamics Representation
	PFLC to Hybrid Automaton
	Hybrid Automaton Development
	Configuration File
	Python Plot Response

	PselDFLC to HA: Inclusion of Selective Damping
	Python Response

	Summary

	Reachability
	Reachability Results for PFLC
	SpaceEx Zero Input PFLC
	Reachability using HyLAA

	Proportional Plus Derivative Reachability Results
	SpaceEx Reachability Analysis
	HyLAA Reachability Analysis
	Reachability Analysis Comparison

	Summary

	Conclusion
	Bibliography
	Calculations and Code
	Piecewise Linear Fuzzy Representation
	Mode 1
	Mode 2
	Mode j

	Proportional Fuzzy Control Using Simulink
	Proportional Fuzzy Control Using ODE45
	Proportional Single Mode Hybrid Automaton
	KMLOGIC Material
	PFLC Python Response Modeling
	PFLC Zero Input Hybrid Representations
	PselDFLC Python Response Modeling
	PselDFLC Zero Input Hybrid Representations

