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ABSTRACT 

 

 

Luu, Charles.T. M.S., Department of Neuroscience, Cell Biology and Physiology, Wright 

State University, 2019. TRPM7 as a bioassay of internal and external Mg2+. 

 

 

Magnesium is an important divalent metal cation that is involved in numerous 

cellular functions. The details of cellular Mg2+ regulation, homeostasis and transport 

remain unclear. Magnesium transporter protein (MagT1) is a Mg2+ transporter and 

deficiency of this protein has been reported to lead to impaired Mg2+ influx and a 

decreased cytoplasmic [Mg2+].  Transient receptor potential melastatin 7 (TRPM7) is a 

ubiquitously expressed membrane protein containing a channel pore and a C-terminal 

alpha-type serine/threonine protein kinase domain. Importantly, TRPM7 channel is 

believed to conduct both Mg2+ and Ca2+. In the present study, we investigated if TRPM7 

can be used as a bioassay of internal and external Mg2+ in Jurkat T cells.  We have 

investigated the long term effects of Mg2+ changes on TRPM7 channel activity.  Under 

physiological conditions, cytoplasmic Mg2+ concentrations of 0.1 – 0.3 mM are sufficient 

to inhibit the majority of TRPM7 channels. Extracellular Mg2+ blocks inward TRPM7 

currents carried by monovalent cations.  When the cytoplasmic Mg2+ concentration is 

reduced, TRPM7 channels open and produce an outwardly-rectifying current. We find 

that the extent of TRPM7 current activation can be used effectively to estimate changes 

of cytoplasmic Mg2+ concentration.  Our findings can be extended to cell types other than 

Jurkat T cells. 
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Introduction  

Magnesium is an essential divalent cation that has numerous roles in cellular 

functions such as signaling pathways, enzymatic functions, ion channels, metabolic 

cycles, DNA transcription, protein synthesis, proliferation and preventing cell death 

(Romani, 2011). The majority of cellular magnesium is bound to nucleic acids, 

nucleotides, chromatin, proteins, ATP and phospholipids (Romani, 2011). The amount of 

free cytosolic [Mg2+] is around 0.5 to 1 mM or approximately 5 % of the total 

concentration of Mg2+ in the cell (Feske et al., 2015; F. Y. Li et al., 2011; Romani, 2011). 

The details of magnesium regulation, homeostasis and transport remain a mystery. 

Recent studies suggest that magnesium has a more important role in cell signaling than 

previously appreciated.  

Activation of the T-cell receptor (TCR) will activate Magnesium transporter 1 

(MagT1) to induce transient Mg2+ influx. Loss-of-function mutations in MagT1 cause a 

decrease in the free intracellular Mg2+ concentration. By taking advantage of TRPM7 

unique ability to become inhibited or activated depending on the intracellular Mg2+ 

concentration, TRPM7 can be used as a bioassay for Mg2+ in Jurkat T cells.  

1.1 Background 

1.1.1 Ion channels in lymphocytes  

Cells of the innate and adaptive immunity express a variety of ion channels and 

transporters that function to allow the influx and efflux of ions across the plasma 

membrane and organellar membranes as shown in Figure 1 (Feske et al., 2015). Unlike 
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excitable cells (e.g neurons), cells of the immune system (e.g lymphocytes and 

macrophages) do not express significant levels of voltage-gated Na+ channels. The 

difference in the electrochemical gradients give rise to the driving force for the passive 

movement of ions. In addition, energy can be used to transport ions against their 

concentration gradient primarily using ATP as the energy source.  

Ion channels and transporters in lymphocytes are regulated by the membrane 

potential and cellular signaling (Figure 1). The membrane potential is generally regulated 

by monovalent cations, such as K+, which mediates secondary regulation of influx of 

calcium in immune cell signaling (Hou et al., 2014). Divalent cations, on the other hand, 

have a role in the regulation of intracellular signaling pathways.  

 

Figure 1: Illustration of ion channels in T-cells  

Ion channels, transporters and receptors of the T-cell and estimated concentrations of 

Ca2+ in various compartments (Reproduced from Trebak and Kinet, 2019 with 

permission). 
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1.1.2 TRP Channels 

Transient Receptor Potential (TRP) channels are members of a large family of ion 

channels that are located in the plasma membrane and organellar membranes of a variety 

of animal cells and respond to a wide variety of environmental and intracellular stimuli. 

TRP proteins are subdivided into 7 subgroups based on their primary sequences (TRPA, 

TRPC, TRPL, TRPM, TRPN, TRPP and TRPV). TRP channels function in controlling 

the movement of cations down their electrochemical gradient, which will cause an 

increase in intracellular concentrations of these cations and in some instances also 

depolarize the cell (Khalil et al., 2018; Ramsey et al., 2006). The membrane potential 

determines the driving force for cation entry into the cell and also the gating of voltage-

dependent channels. The influx of Ca2+ can be a cellular signaling event. The increase in 

intracellular Ca2+ concentration can cause effector proteins to begin a series of cellular 

events such as transcription, proliferation and migration (Khalil et al., 2018; Ramsey et 

al., 2006).  Multiple stimuli within the tissues are able to activate TRP channels. 

Examples of activators are G protein-coupled receptors (GPCRs), ligand-gated ion 

channels (LGIC) and direct activation by other mechanisms. (Ramsey et al., 2006). The 

main TRP channel in regards to this study, Transient receptor potential cation channel, 

subfamily M, member 7 (TRPM7), is ubiquitously expressed. Transient receptor potential 

cation channel, subfamily M, member 6 (TRPM6) is selectively expressed in the intestine 

and kidneys (Ramsey et al., 2006; Rude, Gruber, Wei, Frausto, & Mills, 2003; 
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Swaminathan, 2003; Visser, Middelbeek, van Leeuwen, & Jalink, 2014; Voets et al., 

2004; Walder et al., 2002). 

 TRPM6 and TRPM7 are tetrameric channels composed of a 6 transmembrane 

segment with the channel pore forming between S5 and S6. TRPM6 and TRPM7 can 

form functional homotetramers or heterotramers (Brandao, Deason-Towne, Zhao, 

Perraud, & Schmitz, 2014; Brauchi, Krapivinsky, Krapivinsky, & Clapham, 2008; 

Cabezas-Bratesco et al., 2015; M. Li, Jiang, & Yue, 2006). However, some studies 

strongly suggest the formation of functional TRPM6 channels in the cytoplasmic 

membrane could require coassembly with TRPM7 (M. Li et al., 2006; Ramsey et al., 

2006; Venkatachalam & Montell, 2007). On the cytoplasmic side of the plasma 

membrane, the kinase domain forms homo-dimers (M. Li et al., 2006; Yamaguchi, 

Matsushita, Nairn, & Kuriyan, 2001). The transmembrane segment is covalently linked to 

an alpha-type serine/threonine protein kinase domain located at the cytoplasmic C 

terminus. The kinase domain is a member of the eukaryotic elongation factor 2-kinase 

(eEF2-K) family and has structural homology with the zinc finger domain of other 

protein kinases (Middelbeek, Clark, Venselaar, Huynen, & van Leeuwen, 2010; 

Ryazanov, 2002). The alpha type kinase has the ability to phosphorylate the 

serine/threonine resides of TRP channels and other proteins such as annexin A1, myosins, 

eEF2-K, PLCγ2, tropomodulin and CREB. The kinase could have a role in subcellular 

localization, channel formation and structure (Cabezas-Bratesco et al., 2015; Clark et al., 

2008; Deason-Towne, Perraud, & Schmitz, 2012; Dorovkov, Beznosov, Shah, 
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Kotlianskaia, & Kostiukova, 2008; M. Li et al., 2006; Matsushita et al., 2005; Ogata et 

al., 2017; Perraud, Zhao, Ryazanov, & Schmitz, 2011; Ramsey et al., 2006; 

Venkatachalam & Montell, 2007). 

TRP domain consists of highly conserved ~20 amino acid residues found in all 

known TRP channels and is located next to S6 and the C-terminus (Ramsey et al., 2006; 

Venkatachalam & Montell, 2007). The TRP domain has been proposed to interact with 

PI(4,5)P2 for the regulation of the channel activity. The current understanding of PIP2 is 

that it has the ability to stimulate certain TRP channels and inhibit other TRP channels. 

However, the reason why certain channels are stimulated or inhibited remains uncertain 

(Ramsey et al., 2006; Rohacs, Lopes, Michailidis, & Logothetis, 2005; Xie et al., 2011). 

TRPM7 is stimulated by PIP2 (Zhelay et al., 2018). PIP2 is hydrolyzed upon ligand-TCR 

binding and may have an influence on TRPM7 stimulation.   

TRPM 6 and 7 contain a non-selective cation channel portion that is able to 

conduct various divalent cations such as Zn2+, Ca2+, Ni2+, Mg2+, Ba2+, Sr2+, Cd2+. There 

are some differences in the permeability between channels. TRPM6 and TRPM6/7 

heterotramers are least permeable to Ni2+ whereas Ni2+ is one of the most permeable 

divalent cations for TRPM7 channels (Cabezas-Bratesco et al., 2015; M. Li et al., 2006; 

Monteilh-Zoller et al., 2003; Ramsey et al., 2006; Venkatachalam & Montell, 2007; 

Voets et al., 2004). TRPM7 channel is also permeable to monovalent cations like Na+, 

K+, and H+. TRPM7 allows these monovalent cations to enter the cell in the absence of 

external divalent cations (Kozak, Kerschbaum, & Cahalan, 2002; Numata & Okada, 
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2008; Runnels, Yue, & Clapham, 2002). The ion channel has an outwardly-rectifying 

current-voltage relation in the presence of extracellular divalent cations as shown in 

Figure 2. Extracellular divalent cations are able to block the channel pore, thus reducing 

monovalent cation influx. In the presence of extracellular divalent cations, whole cell 

patch-clamp of TRPM7 shows a steeply outwardly-rectifying current. By contrast, 

without extracellular divalent cations, TRPM7 and TRPM6 currents are semi-linear. 

TRPM7 currents can be identified by using intracellular Mg2+ chelators (Ramsey et al., 

2006). Chelators are substances that have a high affinity to metal ions. Intracellular Mg2+ 

chelators will bind Mg2+ and decrease the intracellular concentration of Mg2+, allowing 

TRPM7 channels to open and produce a current. (Ramsey et al., 2006). The ionic 

interactions within the channel pore could explain the shape of the steady state TRPM 

current-voltage relations (Chokshi, Matsushita, & Kozak, 2012b; Kozak, Matsushita, 

Nairn, & Cahalan, 2005; Ramsey et al., 2006). The channel does not require the kinase 

domain to function (Faouzi, Kilch, Horgen, Fleig, & Penner, 2017; Matsushita et al., 

2005). 
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Figure 2: Whole-cell recording of TRPM7 current in a Jurkat T-cell. 

2A shows I-V relations of TRPM7 current in Jurkat T-cells. The black trace is the 

initial current upon rupturing the membrane (break-in). The red trace is the 

current developed after cytoplasmic Mg2+ depletion. 2B: the time course of 

TRPM7 current development in the same cell as 2A.  
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Both TRPM6 and TRPM7 have been suggested to have a role in cellular Mg2+ 

uptake (Figure 3). A unique feature of TRPM6 and TRPM7 is that they can be inhibited 

by low millimolar concentrations of internal Mg2+ (0.3-1 mM free) (Ramsey et al., 2006). 

A substitution of the serine residue bordering the TRP domain makes the channel 

constitutively active and largely insensitive to intracellular Mg2+ concentrations 

(Hofmann et al., 2014; Zhelay et al., 2018). In the presence of extracellular polyvalent 

cations, polyamines and protons, the channels can become inhibited through a 

mechanism that will block the pore via voltage-dependent blockage. There are non-

voltage dependent mechanisms that can inhibit the channels as well. Intracellular Mg2+, 

protons and various polyamines inhibit by electrostatic screening of negative charges of 

PIP2 (Chokshi, Matsushita, & Kozak, 2012a; Kozak et al., 2002; Kozak & Cahalan, 2003; 

Kozak et al., 2005; Zhelay et al., 2018). The majority of the time, TRPM7 channel is 

inhibited in physiological conditions.  

A variety of ions have different effects on TRPM7 channel and the kinase portion. 

TRPM7 channel activity becomes inhibited by Mg2+ while Mg2+ will increase the activity 

of TRPM7 kinase domain, suggesting that the TRPM7 channel portion and TRPM7 

kinase domain function in different conditions and cellular activities. The channel is also 

inhibited by intracellular Ca2+, however Ca2+ does not affect TRPM7 kinase activity 

(Matsushita et al., 2005). Under certain conditions, TRPM7 kinase domain can be 

cleaved from the TRPM7 channel domain, allowing the TRPM7 kinase domain to 

translocate into the nucleus to phosphorylate histones and regulate gene expression 
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(Krapivinsky, Krapivinsky, Manasian, & Clapham, 2014). In T cells, the TRPM7 kinase 

domain can undergo a caspase-mediated cleavage in response to Fas receptor induced 

apoptosis. The TRPM7 kinase domain is released from the TRPM7 channel and the 

truncated TRPM7 was found to have increased channel activity (Desai et al., 2012). 

Deletion of the kinase domain leads to inactivation of the channel, likely due to problems 

in the tetramerization and folding (Matsushita et al., 2005). 

Currently there are several different mechanisms proposed for the regulation of 

the TRPM7 channel gating. The changes in intracellular Mg2+ concentration is one 

regulatory mechanism. When the concentration of free intracellular Mg2+ is around 0.3-

0.4 mM, TRPM7 channel activity is inhibited. Under normal physiological conditions, 

the free intracellular Mg2+ concentration is thought to be in the 0.5-1 mM range. Thus, 

physiological Mg2+ concentrations are within the range to inhibit TRPM7 channel 

activity (Chokshi, Matsushita, & Kozak, 2012a; Matsushita et al., 2005; Sah, Mesirca, 

Van den Boogert et al., 2013). 

Intracellular pH is another regulatory mechanism of TRPM7. TRPM7 channel 

activity will decrease when intracellular pH becomes acidic or increase when intracellular 

pH becomes alkaline. The pH influence can be detected even when the free intracellular 

Mg2+ concentration is 0.5-1 mM (Chokshi, Matsushita, & Kozak, 2012a; Kozak et al., 

2005). The TRPM7 kinase reaches its optimal activity rate when intracellular pH is 

around 7.3. Fluctuations from the optimal pH to acidic pH of 4 - 5.6 or alkaline pH of 8.4 

- 9 can result in significant reduction of TRPM7 kinase activity (Kozak et al., 2005). On 
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the other hand, acidic extracellular pH of 4 will cause a 10 fold increase and an acidic 

extracellular pH of 6 have ~ 2 fold increase of TRPM7 currents. Protons will compete 

with Ca2+ and Mg2+ for binding sites in the conduction pathway (Jiang, Li, & Yue, 2005), 

resulting in divalent cations blocking the inward monovalent currents of TRPM7 (Jiang et 

al., 2005; Macianskiene, Almanaityte, Jekabsone, & Mubagwa, 2017). 

PIP2 appears to have a dual role in TRPM7 regulation (Kozak et al., 2005; 

Runnels et al., 2002). Ligands that bind to GPCRs activate PLC, which will begin to 

hydrolyze PIP2. Thus, PLC has an influence on the depletion of PIP2. The depletion of 

PIP2 has been shown to inhibit the TRPM7 channel activity (Runnels et al., 2002). 

Continuous PIP2 depletion inhibits both TRPM6 and TRPM7 currents (Xie et al., 2011). 

One group has found different ligands and subunit of G-proteins to activate TRPM7 

channels (Langeslag, Clark, Moolenaar, van Leeuwen, & Jalink, 2007). The overall 

significance of PIP2 sensitivity of TRPM7 in cellular function remains unknown. 

Mechanical forces were reported to influence TRPM7 channels (Visser et al., 

2014). When vesicles containing TRPM7 fused with the plasma membrane, TRPM7 are 

exposed to fluid flow resulting in an increase TRPM7 currents (Oancea, Wolfe, & 

Clapham, 2006). Osmotic cell swelling and stretching of the plasma membrane is another 

method to activate TRPM7 currents (Numata, Shimizu, & Okada, 2007; Wei et al., 

2009). However, other experiments have suggested osmotic swelling induced TRPM7 

current was caused by the dilution and decrease of intracellular Mg2+ concentrations 

instead of direct mechanical forces (Bessac & Fleig, 2007). 
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The phosphorylation state of TRPM7 may also have a regulatory role on TRPM7 

channel activity (Kim, Shin, Song, Lee, & Park, 2012). There are 46 autophosphorylation 

sites in TRPM7 primary sequence. However, not all of the possible phosphorylation sites 

are actually phosphorylated (Clark et al., 2008; Kim et al., 2012; Matsushita et al., 2005). 

Treating primary vascular smooth muscle cells with bradykinin causes an increase in the 

amount of phosphorylation of TRPM7 and intracellular Mg2+ concentration (Callera et 

al., 2009). The serine/threonine residues of TRPM7 were phosphorylated by TRPM6 

which had an effect on cellular growth (Brandao et al., 2014; Cai, Bai, Nanda, & 

Runnels, 2017). 
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Figure 3: Potassium, Orai and TRPM channels in T-cell calcium signaling. 

K+ efflux through Ca2+-dependent and voltage-dependent K+ channels (KCa and KV) will 

cause the membrane to hyperpolarize. Hyperpolarization increases the electrochemical 

driving force for Ca2+ influx through Orai and other Ca2+ permeable channels. The kinase 

domain of TRPM7 is known to regulate SOCE (Reproduced from Trebak and Kinet, 

2019 with permission). 
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1.1.3 Magnesium transport  

Mg2+ transporter (MagT1) is a highly selective Mg2+ transporter that is expressed 

in all mammalian cells (Figure 4). This membrane protein is 367 amino acid long and 

contains four transmembrane domains, a long N-terminus and a short C-terminus. MagT1 

is located on the X chromosome, at band Xq21.1. Mutations of MagT1 will result in sex-

linked diseases. MagT1 is evolutionarily conserved and does not have similarity with 

other proteins except with tumor suppressor candidate 3 (TUSC3). TUSC3 is a non-

selective Mg2+ transporter located on chromosome 8p22 and has been associated with 

Mg2+ uptake, glycosylation and development. MagT1 and TUSC3 share a 66% amino 

acid sequence and both of their genes predict a similar secondary structure. The 

physiological functions and mechanisms of MagT1 mostly remain unknown. In immune 

cells, MagT1 and TRPM7 have been shown to have a role in the proliferation and other 

functions.  
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Figure 4: Role of MagT1 during TCR stimulation. 

MagT1 is a highly selective Mg2+ transporter that is expressed in all mammalian cells. 

TCR stimulation was reported to activate MagT1 resulting in an influx of Mg2+ and 

increased free intracellular Mg2+ concentration and helps activate SOCE, PLCγ and alter 

NKG2D expression. The physiological mechanism of how TCR activates MagT1 and the 

role Mg2+ has in PLCγ activation remain largely unknown (Reproduced from Vaeth and 

Feske, 2018 with permission). 
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1.1.4 Calcium signaling 

Calcium ions have an important role in the biological function of various cell 

types. The role of calcium may range from allosteric regulation of proteins and enzymes, 

signal transduction from ion channel activation or second messenger in signaling 

pathways, oscillations of intracellular calcium concentrations, formation of 

immunological synapse or secretion of hormone-containing vesicles, expression of genes, 

development, proliferation, apoptosis and migration (Feske et al., 2015; Gwack, Feske, 

Srikanth, Hogan, & Rao, 2007; Hogan, Lewis, & Rao, 2010; Hogan, 2017; Ramsey et al., 

2006). Thus, calcium has critical roles in many functions and key cell controlling factors. 

In a normal resting cell, the intracellular concentration of calcium is usually 100 nM or 

lower (Hogan et al., 2010). 

The cell is able to maintain intracellular calcium levels due to two types of Ca2+-

ATPase enzymes: the plasma membrane Ca2+-ATPase (PMCA) pumps Ca2+ out of the 

cell and the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ to be 

stored in the lumen of the endoplasmic reticulum (ER). In addition, there are several 

secondary transporters of calcium such as the Na+/Ca2+ exchanger (Feske, 2009; Feske et 

al., 2015; Hogan et al., 2010). The cell regulates intracellular calcium concentrations 

using various ion channels in the plasma membrane and ER. Ca2+ can be released from 

the ER into the cytoplasm by inositol trisphosphate (IP3). 

Store-operated Ca2+ entry (SOCE) is the main pathway of Ca2+ influx in human 

peripheral blood lymphocytes (Figure 5) (Faouzi, Kilch, Horgen, Fleig, & Penner, 2017). 



16 
 

Ca2+ is released from the ER store when the T-cell receptor (TCR) or Fc receptor binds to 

its corresponding ligand (Feske et al., 2015). In Figure 2, the ligand-receptor interaction 

initiates a signaling cascade which leads to the activation of phospholipase C (PLC) 

gamma (γ) isoform. Once activated, PLCγ will hydrolyze phosphatidylinositol 4,5-

bisphosphate (PIP2) to produce second messengers 1,4,5-trisphosphate (IP3) and 

diacyglycerol (DAG). IP3 diffuses through the cytosol to bind IP3 receptors (IP3R) 

located in the ER membrane. IP3R-s are Ca2+-permeable channels gated by IP3. The 

binding of IP3 and opening of these channels causes ER Ca2+ stores to be emptied and the 

concentration of ER Ca2+ drops below the resting values of ~400-600 µM (Hogan et al., 

2010). Depletion of Ca2+ from the ER lumen is detected by STIM 1 and 2 proteins. 

Stromal interaction molecule 1 and 2 (STIM1 & STIM2) are single-pass transmembrane 

proteins that are primarily localized in the membrane of the ER. (Hogan et al., 2010; 

Roos et al., 2005). STIM1 and STIM2 function by sensing the depletion of Ca2+ in the 

ER lumen and communicating the ER store Ca2+ concentration to plasma membrane Ca2+ 

channels. Upon Ca2+ depletion, STIM1 and STIM2 will undergoe a conformational 

change to assemble into oligomers and translocate underneath the cell membrane. Then 

STIM1 and STIM 2 will directly interact with ORAI1. ORAI1 is a transmembrane 

protein that assembles to form the pore subunit of CRAC channel (Hogan et al., 2010). 

STIM1 and STIM2 will bind and activate ORAI1 to form the Ca2+ release-activated Ca2+ 

(CRAC) channel, which will allow Ca2+ influx through these channels (Feske, 2009; 

Feske et al., 2015; Hogan et al., 2010).  
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The influx of Ca2+ through CRAC channels will rapidly elevate the concentration 

of Ca2+ in the cytoplasm. The increased intracellular Ca2+ will activate calmodulin, 

causing in turn the activation of the phosphatase calcineurin. Calcineurin will 

dephosphorylate NFAT which will then be able to translocate to the nucleus where it can 

bind to DNA (Gwack et al., 2007; Hogan, 2017). NFAT is able to form cooperative 

transcriptional complexes with a variety of transcription factors to transcribe the genes 

required for activation and proliferation such as interleukin genes like IL-2 (Gwack et al., 

2007; Hogan, 2017; Smith-Garvin, Koretzky, & Jordan, 2009). Thus, during the 

activation of T cells, there is an increased expression of both STIM1 and ORAI1 

(Lioudyno et al., 2008).  

K+ channels promote the continuous influx of Ca2+ through CRAC channels by 

altering the membrane potential through voltage-gated and Ca2+ -activated channels 

KV1.3 and KCa3.1 (Figure 3). Calcium entry is promoted by the efflux of potassium 

through KV1.3 channels and resulting hyperpolarization (Feske et al., 2015; Gwack et al., 

2007; Hou et al., 2014). The membrane hyperpolarization will increase the 

electrochemical driving force for Ca2+ influx through CRAC and other Ca2+ permeable 

channels. In addition to KV1.3, intracellular Ca2+ bound to calmodulin will be able to 

interact and open KCa3.1 channels. Overall, the driving force for Ca2+ is increased when 

membrane potential hyperpolarization occurs due to KV1.3 and KCa3.1 channels opening, 

thus maintaining a substantial continuous influx of Ca2+ that is required for T cell 

function (Feske et al., 2015; Hogan et al., 2010; Hou et al., 2014; Pegoraro et al., 2009). 



18 
 

 

Figure 5: Ca2+ and Mg2+ signaling pathways and store-operated Ca2+ entry  

Activation of TCR initiates a signaling cascade resulting in the activation of PLCγ, which 

hydrolyzes PIP2 to produce second messengers IP3 and DAG. IP3 diffuses through the 

cytosol and binds IP3R-s located in the ER membrane. IP3R-s open, allowing ER Ca2+ 

stores to be emptied and simultaneously transiently increasing the cytoplasmic Ca2+ 

concentration. STIM1 detects the depletion of Ca2+ from the ER lumen and undergoes a 

conformational change and translocates to areas close to ORAI1 transmembrane protein. 

STIM1 interacts with ORAI1 allowing Ca2+ influx into the cell. The increased Ca2+ 

concentration in the cytoplasm activates calmodulin, which in turn activates the 

phosphatase calcineurin. NFAT is dephosphorylated by calcineurin and translocates to 

the nucleus to promote expression of genes required for T cell activation and proliferation 

(Reproduced from Cahalan and Chandy, 2009 with permission). 
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1.1.5 T-cell receptors 

CD3 T-cell co-receptor consists of a protein structure composed of CD3ε, CD3γ 

and CD3δ chains. The transmembrane region of the CD3 chains is negatively charged to 

allow the chains to associate with positively charged TCR. The cytoplasmic tail region 

contains an ITAM which is a conserved sequence of two tyrosine residues flanking an 

isoleucine or leucine series of amino acid residues. (Smith-Garvin et al., 2009) TCR 

ligation by a cognate antigen induces a conformational change in the cytoplasmic tail 

region, allowing lymphocyte-specific protein tyrosine kinase (lck) to phosphorylate 

ITAMs (El Hentati, Gruy, Iobagiu, & Lambert, 2010; F. Y. Li et al., 2011; Smith-Garvin 

et al., 2009). ZAP-70, which is a cytoplasmic tyrosine kinase, will be able to bind, thus 

allowing lck to phosphorylate and activate ZAP-70. Activated ZAP-70 will then 

phosphorylate the transmembrane protein, linker of activated T cells (LAT) which 

functions as a scaffolding protein in the signaling cascade for the activation of PLC and 

other downstream effectors such as NFAT and NF-kB (El Hentati et al., 2010; F. Y. Li et 

al., 2011; Smith-Garvin et al., 2009). 

NKG2D is a type 2 transmembrane protein of C-type lectin-like receptors 

expressed on the surface of all natural killer (NK), all CD8+ T cells and subsets of CD4+ 

T cells. NKG2D is encoded by KLRK1 gene which is located within NK-gene complex 

on chromosome 12 (Lanier, 2015; Raulet, Gasser, Gowen, Deng, & Jung, 2013; Verneris, 

Karimi, Baker, Jayaswal, & Negrin, 2004). NKG2D receptor complex is stabilized and 

expressed on the cell surface by associating with DAP10 adapter protein. The receptor is 
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able to recognize a wide range of induced-self proteins. Upon binding the corresponding 

ligand, DAP10 will recruit phosphatidylinositol 3-kinase (PI3K) and other signaling 

adapter proteins (Burgess et al., 2008; Lanier, 2015; Raulet et al., 2013). Different 

NKG2D ligands will vary considerably in their sequences as well as their affinities 

(Burgess et al., 2008; Lanier, 2015; Raulet et al., 2013; Wiemann et al., 2005). 

Overall, NKG2D signaling is complex and the mechanisms remain unknown. The 

interaction between NKG2D ligand and NKG2D receptor on resting CD8+ T cells and 

NK cells is insufficient to induce cytokine production and cytotoxicity. In addition to the 

interaction, NK cells require IL2 and IL15 to begin cytokine production and cytotoxicity. 

In CD8+ T cells, NKG2D functions more as a T-cell costimulatory molecule and is 

unable to induce Ca2+ influx, cytokine production or cytotoxicity in resting CD8+ T cells. 

NKG2D signaling in antigen-activated CD8+ T cells will enhance cytotoxicity, cytokine 

production and proliferation of active CD8+ T cells (Burgess et al., 2008; Chaigne-

Delalande et al., 2013; Lanier, 2015; Raulet et al., 2013; Verneris et al., 2004; Wiemann 

et al., 2005). 

T cells require both IL-2 and CD3 or CD3/CD28 antibodies for stimulation. CD3 

or CD3/CD28 antibodies will promote an increase of cell surface NKG2D. T cells that 

are exposed to high concentration of IL-2, will express DAP10 for signaling and are able 

to perform cytolysis. Without DAP10, T cells are unable to perform cytotoxicity. Thus, 

IL-2 could have a key role in NKG2D-DAP10 signaling pathway regarding activation 
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and protein expression (Burgess et al., 2008; Chaigne-Delalande et al., 2013; Lanier, 

2015; Raulet et al., 2013; Verneris et al., 2004; Wiemann et al., 2005). 

In addition, NKG2D expression are reduced in natural killer cells and CD8+ T 

cells with nonfunctional MagT1. Without MagT1, the intracellular free Mg2+ 

concentrations are decreased resulting in reduction of NKG2D expressions. When 

magnesium was supplemented in natural killer cells and CD8+ T cells with nonfunctional 

MagT1, the intracellular free Mg2+ was restored and NKG2D expressions was increased 

(Chaigne-Delalande et al., 2013). Suggesting the Mg2+ influx of MagT1 has a role in 

NKG2D expression. 

1.1.6 Sodium-magnesium antiporter 

Sodium-magnesium antiporter is a type of non-electrogenic transporter that 

exchange two extracellular Na+ for a single intracellular Mg2+. The antiporter has been 

proposed to direct Mg2+ efflux from the cell. The extracellular electrochemical 

concentration gradient of Na+ is the main driving force for their movement. Altering the 

membrane potential could reverse the direction of the exchanger if the sodium gradient 

was also reversed. Intracellular Mg2+ has a strong allosteric effect on Na+/Mg2+ antiporter 

causing its activation. Amiloride has an inhibitory effect on Na+/Mg2+ antiporters at 

submillimolar concentrations (Gunther, 2006; Long & Romani, 2014; Standley & 

Standley, 2002). 
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1.2 Significance of TRPM7 and Mg2+ 

The importance role of TRPM7 in the cell was confirmed by generating TRPM7 

knock-out animals. Macrothrombocytopenia was seen in mice with megakaryocyte and 

platelet TRPM7 knock out (Stritt et al., 2016). If TRPM7 was deleted in the T cell 

lineage, thymopoiesis was interrupted and T cell development terminated at the double 

negative stage. An acceleration of thymic involution was also observed (Jin et al., 2008). 

Mutation in the pore region of TRPM7 in developing T cells interferes with development 

(F. Y. Li et al., 2011). 

In cardiac cells, deletion of TRPM7 before E9 results in congestive heart failure 

and death. When deletion of TRPM7 occurred between E9 and E11.5, 50% of the mice 

had cardiomyopathy and arrhythmias. After E13, the mice had normal heart function 

without any defects (Sah, Mesirca, Mason et al., 2013; Sah, Mesirca, Van den Boogert et 

al., 2013). TRPM7 deletion in metanephric mesenchymal cells at E11.5 caused defects in 

nephrogenesis such as smaller kidneys, fewer glomeruli and larger renal cysts. TRPM7 

appears to have a role in the development of neural crest during various embryonic 

stages. In the absence of TRPM7 the neural crest-derived pigment cells are unable to 

develop. These nonfunctional cells will cause the hind legs to become paralyzed as well 

as a loss of large-diameter sensory neurons in the lumbar dorsal root ganglion (Jin et al., 

2012). The loss of TRPM7 will interrupt melanogenesis, skeletogenesis, nephropgenesis, 

exocrine pancreatic organogenesis and touch response in zebrafish (Jansen et al., 2016). 

In Xenopus, the gastrulation phase was affected (Yee, Kazi, & Yee, 2014). TRPM7 is 
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involved in the fusion of cholinergic vesicles with the plasma membrane to release 

neurotransmitters into the cholinergic synapses for sympathetic neurons (Brauchi et al., 

2008; Krapivinsky, Mochida, Krapivinsky, Cibulsky, & Clapham, 2006). It is unknown if 

TRPM7 kinase domain or the complete TRPM7 mediate these effects, since the complete 

TRPM7 deletion was lethal.  

TRPM7 has a regulator role in cellular magnesium homeostasis (Ryazanova et al., 

2010). A deletion was made in the kinase domain of TRPM7. Embryonic stem cells from 

homozygous TRPM7 kinase dead mice were unable to proliferate and stopped at the G0 

stage of the cell cycle (Romani, 2011; Ryazanova et al., 2010). The cell would normally 

synthesize molecules in the next stage of the cell cycle and required additional 

magnesium for binding ATP, RNA, proteins and other molecules. The dysfunctional 

TRPM7 caused a reduction of the intracellular concentrations of magnesium that was 

available for binding the newly synthesized molecules thus halting the cell in the G0 stage 

(Jin et al., 2008). Mouse heterozygous embryonic stem cells survive, however, these cells 

had a reduction in TRPM7 channel activity.  
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Table 1: TRPM7 role during development 

Model 

Organism 

TRPM7 Mutation 

type and in cell type  Effects References 

Mouse  

Megakaryocyte & 

Platelet  Macrothrombocytopenia  Stritt et al., 2016 

  T cell lineage Interrupt thymopoiesis  Jin et al., 2008 

    Thymic involution    

  Cardiac cells Congestive heart failure and death 

Sah, Mesirca, 

Mason et al., 2013 

    Cardiomyopathy 

Sah, Mesirca, Van 

den Boogert et al., 

2013 

  

Metanephric 

mesenchymal cells Defects in nephrogenesis  Jin et al., 2008 

  

Neural crest-derived 

pigment cells  Impaired development  Jin et al., 2008 

    Paralyzed hindlimbs    

    

Loss of sensory neurons in lumbar 

doesal root ganglion    

  

Homozygous 

deletion  

Embryonic death between E6.5 - 

E7.5 

Yee, Kazi, & Yee, 

2014 

Zebrafish 

TRPM7 loss of 

function Defects in Melanogenesis     Jansen et al., 2016 

    Defects in Skeletogenesis   

    Defects in Nephropgenesis   

    Defects in Exocrine pancreatic   

    Defects in Organogenesis   

    Defects in Touch response   

Xenopus 

Homozygous 

deletion  Defects in Gastrulation phase  

Yee, Kazi, & Yee, 

2014 
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TRMP7 is highly expressed in T cells. The physiological role of TRPM7 is 

believed to be involvement with the regulation of lymphocyte proliferation and growth 

via sustaining the activation of PI3 pathways (Sahni & Scharenberg, 2008; Sahni, 

Tamura, Sweet, & Scharenberg, 2010). TRPM7 is responsible for fas receptor induced 

apoptosis in T cells upon constant TCR stimulation. Without TRPM7, T cells would be 

unable to respond to fas receptor induced apoptosis (Desai et al., 2012). TRPM7 has 

some unknown physiological mechanism regarding these pathways. It is believed to 

involve the entry of Ca2+ or Mg2+ into the cell.  

Magnesium may have an influence in the embryonic development. MagT1 and 

TUSC3 are two gene products that appear to be important mechanisms in Mg2+ influx. 

Without one of these genes, there is a decrease in the concentration of intracellular Mg2+ 

(Zhou & Clapham, 2009). However, when both of these genes are deleted, the mutant 

cells are unable to survive (Jin et al., 2008; Jin et al., 2012; Zhou & Clapham, 2009).    

1.3 Medical Importance 

1.3.1 X-linked immunodeficiency with magnesium defect, Epstein-Barr Virus (EBV) 

infection, and neoplasia (XMEN) disease 

XMEN disease has demonstrated that free intracellular magnesium in immune 

cells has an important role in development, proliferation and activation. X-linked 

immunodeficiency with magnesium defect, Epstein-Barr Virus (EBV) infection, and 

neoplasia (XMEN) disease is a rare genetic sex-linked disease that is a form of combined 

immune deficiency (CID). XMEN is caused by loss-of-function mutations in MagT1 
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DNA sequence. Due to changes in the DNA sequence, there are several MagT1 

mutations. All of the mutations will result in premature translational termination and 

nonsense-mediated decay of mRNA. XMEN is believed to be phenotypically 

heterogeneous. XMEN patients have a wide range of ages (3 to 45 years). In addition, the 

age of exposure to EBV and environmental variables could also have an influence and 

remains unknown. Since the gene encoding for the transporter is located on the X 

chromosome, it follows the x-linked inheritance and appears in both males and females as 

carriers.  

XMEN disease is characterized by CD4 lymphopenia, chronic viral infections, 

decreased expressions of natural killer (NK) cells and CD8+ T cells. EBV infections 

appear to be regulated by intracellular Mg2+ in immune cells. Patients with XMEN 

disease have a lower concentration of free intracellular Mg2+ in their NK and CD8+ T 

cells. However, the concentration of bound Mg2+ is not altered from the physiological 

concentration. Therefore, XMEN patients tend to have a higher concentration of EBV, 

increased EBV infected B-cells, and increased susceptibility to EBV related 

lymphoproliferative diseases. (Kornreich, 2007; Ran et al., 2013; Ravell, Chaigne-

Delalande, & Lenardo, 2014). 

 The activation of T-cell receptors (TCR) induces influx of Mg2+ via MagT1 

protein. Mg2+ is proposed to increase the efficiency of T-cell activation. With the loss of 

MagT1, T-cell activation becomes impaired since there is no longer a rapid influx of 

Mg2+, resulting in a delay in the activation of PLCγ1 (F. Y. Li et al., 2011). The 
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downstream signaling pathways are suggested to be affected resulting in a reduction of 

IP3 and DAG generation (Kornreich, 2007; F. Y. Li et al., 2011; Ran et al., 2013; Ravell 

et al., 2014). The pathway between TCR stimulation, MagT1 induced rapid Mg2+ to 

increase the concentration of free intracellular Mg2+ and activation of PLCγ1 remains 

unknown (Kornreich, 2007; Ran et al., 2013; Ravell et al., 2014). MagT1 could have an 

upstream role in this pathway mechanism.  

 Intracellular Mg2+ has an effect on NKG2D receptors on NK cells and CD8+ T 

cells. NK and CD8+ T cells of XMEN patients have a reduction in the expression of 

NKG2D receptors. The reduction of expressed NKG2D receptor may why there are high 

levels of EBV and higher susceptibility to EBV related illness. MagT1 might have a 

regulation in the basal levels of free intracellular Mg2+ in XMEN, which is required to 

maintain the expression of cytotoxicity activating receptors. Previous studies have shown 

supplementation of Mg2+ is able to restore the basal levels of free intracellular Mg2+ in 

the T-cell of XMEN patients, restoring NKG2D expressions on NK cells and CD8+ T 

cells.   

1.3.2 Disturbances of blood magnesium 

 Magnesium tends to be a forgotten electrolyte until the concentration of blood 

magnesium falls to an extremely low range and rare symptoms appear. Some studies have 

indicated that about three-fourth of Americans do not acquire the recommended daily 

amount of magnesium. The total range for intracellular magnesium is around 10 - 30 mM 

and free internal magnesium is around 0.5 – 1.2 mM (Ahmed & Mohammed, 2019; Long 



28 
 

& Romani, 2014). Maintaining the normal serum magnesium concentration is the daily 

intake function of the intestinal and renal ability to take up magnesium. The kidneys filter 

about 70 % of serum magnesium. A magnesium-deficient diet will cause the serum 

magnesium to drop to a concentration of around 0.1 – 0.4 mM, and it is called 

hypomagnesemia. Severe cases of hypomagnesemia have the concentration dropping 

under 0.05 mM. Overall, the causes of hypomagnesemia have been divided into three 

categories: increased losses of magnesium from renal or gastrointestinal systems, 

redistribution of extracellular magnesium to intracellular and an overall decrease in 

magnesium intake.  

 Hypomagnesemia can cause a variety of illnesses and diseases ranging from 

asymptomatic to life-threatening. The lack of magnesium affects neuromuscular and 

nervous, cardiovascular system, endocrine systems and cellular biochemical functions. 

(Ahmed & Mohammed, 2019; Swaminathan, 2003). Currently, the clinical and 

experimental data are contradictory.  

 Hypomagnesemia could be linked to osteoporosis. The magnesium content in 

trabecular bone is reduced in osteoporosis patients, however, the connection between low 

magnesium and osteoporosis remains uncertain (Ahmed & Mohammed, 2019; Long & 

Romani, 2014; Rude et al., 2003). 

 Type 2 diabetes patients have been reported to lack magnesium. Around 13 - 48 

% of type 2 diabetes patients are hypomagnesemic compared to about 3 - 15% of patients 

without type 2 diabetes. Magnesium deficiency has an inverse relationship with glycemic 
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regulation and magnesium deficiency will alter glucose transport, reduce insulin secretion 

and post-receptor insulin signaling. In addition, indication of hypomagnesemia appears to 

predict post-transplant development of diabetes in kidney transplant recipients (Ahmed & 

Mohammed, 2019; Dasgupta, Sarma, & Saikia, 2012; Long & Romani, 2014; Rosanoff, 

Weaver, & Rude, 2012).  

 Hypomagnesemia patients tend to also have hypokalemia. Magnesium 

concentration has to be restored before resolving potassium depletion (Ahmed & 

Mohammed, 2019). In magnesium deficiency conditions, the hypokalemia can be a 

secondary effect due to multiple mechanisms. The activity of renal outer medullary 

potassium (ROMK) channel is regulated by magnesium. ROMK channel is located on the 

apical surface of the distal tubule and is an inwardly rectifying potassium channel which 

will conduct potassium outward (Ahmed & Mohammed, 2019; Huang & Kuo, 2007; 

Long & Romani, 2014). Normally, high intracellular magnesium concentrations will 

prevent potassium efflux by inhibiting the channels. When the concentration of 

intracellular magnesium is reduced, ROMK channel will be unblocked and potassium 

efflux occurs. In addition, there are other mechanisms linked to Na-K ATPase, Na-K 

cotransporters and other magnesium transport processes (Ahmed & Mohammed, 2019; 

Ryan, 1993). 

Hypomagnesemia with secondary hypocalcemia can develop if the mutations 

occur in TRPM6 genes (Ramsey et al., 2006; Schlingmann et al., 2002; Swaminathan, 

2003; Venkatachalam & Montell, 2007; Viering, de Baaij, Walsh, Kleta, & Bockenhauer, 
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2017; Walder et al., 2002). Magnesium supplementation therapy is able to resolve 

hypocalcemia in hypomagnesemia patients. There are several mechanisms that are 

believed to be involved for hypocalcemia conditions in hypomagnesemia. These range 

from PTH metabolism, PTH secretion, reduction of vitamin D and organ resistances to 

PTH (Ahmed & Mohammed, 2019; Long & Romani, 2014; Rude et al., 2003). 

 Hypermagnesemia is characterized by an increase of serum magnesium above 

1.07 mmol/L (Jahnen-Dechent & Ketteler, 2012). It is an uncommon clinical condition 

and is related to patients with kidney diseases and elderly individuals. In addition, 

hypermagnesemia is often undiagnosed since magnesium concentration is not measured 

routinely and the initial symptoms are nonspecific. Hypermagnesemia could result in a 

wide range of neuromuscular impairment such as hypotonia, areflexia, respiratory 

dysfunction, drowsiness and coma in extreme conditions. Cardiovascular system is also 

affected and ranges from atrial fibrillation, asystole, heart blockage, bradycardia and 

uncharacteristic electrocardiogram.  
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1.4 Hypothesis and specific aims 

 Given the importance of magnesium in immune functions; numerous medical 

issues with magnesium derangement, and the lack of knowledge of magnesium regulation 

and homeostasis, there is a requirement for a method to monitor magnesium 

concentrations in living cells.     

 

Hypothesis: TRPM7 can be used as a bioassay for Mg2+ in Jurkat T cells. 

Specific aims: 

1. Determine if endogenous TRPM7 current can act as a bioassay for external Mg2+ 

2. Test if the internal concentration of Mg2+ is lowered when MagT1 is knocked out 

by using TRPM7 channel activity as a readout. 
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II. Materials and Methods 

2.1 Materials 

2.1.1 Fura-2 AM 

Fura-2-acetoxymethyl ester (Fura 2-AM) is a ratiometric calcium indictor used in 

intracellular calcium imaging. It has a distinct fluorescence spectrum when calcium is 

bound vs. not bound. The acetoxymethyl ester converts Fura-2 into a lipophilic molecule 

and allows Fura 2-AM to diffuse across the cell membrane. Cytosolic esterases cleave the 

–COOH groups off Fura 2-AM, regaining the negative charge of Fura-2 (Paredes, Etzler, 

Watts, Zheng, & Lechleiter, 2008). Esterification allows Fura-2 to bind Ca2+ and also 

prevent charged Fura-2 from diffusing across the cell membrane.  

When calcium concentration is low, most Fura 2-AM molecules do not bind 

calcium and the excitation peak is around 370 nm. The excitation peak of Fura 2-AM 

changes to about 340 nm when there is a high concentration of free calcium. When Fura 

2 binds to calcium and is excited there is an increase in the fluorescence at 510 nm. The 

process is monitored at ~510 nm and both wavelengths are excited in a rapid succession 

to allow the observation of the change in Fura 2-AM binding to calcium.  The ratio of the 

two wavelengths allows the values to be normalized to provide an accurate measurement 

of the intracellular concertation of calcium. Importantly, ratiometric dyes also account for 

unequal loading of cells.  
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2.1.2 Cyclopiazonic Acid  

Cyclopiazonic acid (CPA) is an inhibitor of sarco-endoplasmic reticulum calcium 

transport ATPase (SERCA). Since CPA has a high affinity for SERCA, it has been 

demonstrated to primarily affect SERCA in cells (Laursen et al., 2009). CPA functions to 

inhibit SERCA by inducing the emptying of ER Ca2+ stores. In the presence of CPA, the 

concentration of cytoplasmic calcium will continue to increase as the ER Ca2+ stores are 

depleted. A Ca2+-free external solution with an added Ca2+ chelator (i.e. EGTA) is used 

with CPA for superfusion. Since CPA is membrane- permeable, the inhibition of SERCA 

by CPA occurs quickly after adding the drug (several seconds). After several minutes, a 

Ca2+ containing solution is superfused. By using CPA first, ER Ca2+ stores are depleted. 

Any resulting increase in the concentration of intracellular calcium in presence of 

extracellular Ca2+ is therefore due to influx of calcium entering the cell from the external 

solution. The Ca2+ influx can be identified using this method.  

2.1.3 Ionomycin 

Ionomycin is a type of lipid-soluble ionophore that is capable of reversibly 

binding ions. It is able to function as an ion carrier to rapidly transport divalent cations 

across the cell membranes. Ionomycin is highly specific for Ca2+. In addition, ionomycin 

is able to transport Ca2+ in a one to one stoichiometry thus making ionomycin an 

effective Ca2+ ionophore (Liu & Hermann, 1978). Ionomycin is perfused at the end of 

intracellular calcium imaging as a dye loading control. 
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2.1.4 Ethylene glycol tetraacetic acid (EGTA) 

 Ethylene glycol tetraacetic acid (EGTA) is a cation chelator that has a higher 

affinity towards Ca2+ than other common biological cations such as Na+, K+ and Mg2+. 

EGTA is used in the external solutions to bind any free Ca2+ and in less proportion other 

divalent cations to prevent it entering the cell. In external solutions containing EGTA any 

observed increase in concentration of internal calcium would be due to the intracellular 

store Ca2+ release.  

2.1.5 Amphotericin B 

 Amphotericin B is an antifungal antibiotic and functions by forming ion channels 

in the plasma membrane. When the plasma membrane is exposed to amphotericin B, it 

inserts itself into the lipid portion of membrane and self-assembles into an ion channel 

that traverses the membrane. The ion channels created by amphotericin B, then allow 

ions to leak across the membrane resulting in the reduction of the membrane electrical 

resistance. Amphotericin is often used in electrophysiology for perforated patch 

recording, where amphotericin channels formed in plasma membrane are used to 

establish electrical connection with cell interior. This approach is useful for keeping 

cytosolic Mg2+ and Ca2+ intact since amphotericin channels do not conduct divalent 

cations (Kiryakova, Dencheva-Zarkova, & Genova, 2014). 
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2.1.6 Amiloride 

 Amiloride is a drug that affects the cellular pH by inhibiting sodium-hydrogen 

exchangers (NHE1-3) (Frelin et al., 1988; Masereel, Pochet, & Laeckmann, 2003). It is 

also a known inhibitor of Na+-Mg2+ transporter.  

2.1.7 Jurkat T cells 

Jurkat cells are an immortalized cell line generated from leukemic human T-

lymphocytes. They are widely used to study T-cell signaling (Abraham & Weiss, 2004; 

Imboden, Weiss, & Stobo, 1985). Jurkat cell lines used were from ATCC and two cell 

lines were provided by NIH called WT92 and J1022 lines. Both the Jurkat ATCC and 

Jurkat WT92 are wild type cell lines and the only difference is the supplier. The J1022 

Jurkat cell line has a point mutation in its magnesium transporter protein 1 (MagT1) 

resulting in a nonfunctional protein.  

The J1022 Jurkat cell line was created from the WT92 Jurkat cell line by using 

CRISPR-Cas system, which is an accurate genetic modification tool. Cas endonuclease 

uses a synthetically created guide RNA to combine with Cas endonuclease. The guide 

RNA will direct the Cas endonuclease to vicinity of the desire DNA sequence to allow 

editing of the target DNA sequence (Kornreich, 2007; Ran et al., 2013). The MagT1 KO 

and WT92 Jurkat cell lines were created and provided by Dr. Michael Lenardo, NIAID, 

National Institutes of Health, Bethesda, MD.  
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2.1.8 Chelex-RPMI 

Chelex is a chelating material that is used to bind and remove transition metal 

ions in RPMI-1640 medium. After removing the transition metal ions, the RPMI could be 

supplemented with different concentrations of Mg2+ and Ca2+. Chelex RPMI was 

produced using RPMI-1640, 25 mM HEPES, 45 mL of heat inactivated FBS, 5 ml of 

100x P/S and 5% chelex 100 sodium. 5 grams of chelex 100 sodium form was added to 

the RPMI-1640 with 25 mM HEPES, 10 % FBS and 100x P/S. The solution was stirred 

at room temperature for 1.5 hrs. Afterwards, the solution was filter-sterilized, pH to 7.3 

and filtered again. A total of 500 mL of chelex RPMI was produced. MgCl2 and CaCl2 

were added to Chelex-RPMI medium at various concentrations depending on the 

experiments. 

2.2 Methods 

2.2.1 Maintenance of Jurkat cell line 

Jurkat cells are kept in a suspension culture using RPMI-1640 media which was 

supplemented with 10 % heat-inactivated fetal bovine serum. The suspended Jurkat cells 

in RPMI-1640 media were kept in a cell culture incubator at 37ºC and 5% CO2. 

2.2.2 Patch clamp electrophysiology 

There are several different types of voltage clamp methods used depending on the 

type of data to be obtained (Figure 6). Most of these voltage clamp methods begin with 

the cell attached configuration. This configuration begins with the lowering of the 

recording pipette to allow the tip to make contract with the cell membrane. A small 
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negative pressure (i.e. suction) is applied to the recording pipette to form a gigaseal 

between the glass pipette and the membrane of the cell. This will prevent any ion 

movement between the recording pipette in the bath and the membrane of the cell. 

Therefore, any type of ion movement has to occur through the ion channels in the 

membrane when the voltage changes. This method allows current through the ion 

channels, within the recording pipette, to be measured. 

  After the formation of the cell-attached configuration, the whole-cell patch 

configuration can be created. Applying negative pressure or a short high voltage pulse to 

the recording pipette can cause the contacting cell membrane patch to rupture. The 

internal pipette solution will be in contact with the intracellular solutions which will 

diffuse. Any type of substances can enter the cell and its effect can be measured. The 

recording electrode in the pipette will record all the ion channels that are present in the 

cell membrane (Alansary, Kilch, Holzmann, Peinelt, Hoth, & Lis, 2014a; Alansary, 

Kilch, Holzmann, Peinelt, Hoth, & Lis, 2014b; Kornreich, 2007; Lippiat, 2008; 

Wickenden, 2014). 

 The perforated-patch configuration also begins with the cell-attached 

configuration. The internal solution of the recording pipette contains an ionophore, such 

as amphotericin B or nystatin, to form ion-permeable pores in the cell membrane while 

keeping the membrane intact. Small charged monovalent ions are able to pass through 

these pores. Since there is a flow of charge, these ions carry a current. This allows the 

study of the activity of all the ion channels in the cell membrane without damaging the 
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membrane and losing intracellular components, such as Ca2+, Mg2+ and ATP (Alansary, 

Kilch, Holzmann, Peinelt, Hoth, & Lis, 2014a; Alansary, Kilch, Holzmann, Peinelt, Hoth, 

& Lis, 2014b; Kornreich, 2007; Lippiat, 2008; Wickenden, 2014). 

 The glass pipettes used were made by Harvard Apparatus PG1207-10 and split in 

half using a Sutter P-1000 micropipette puller. Each pipette was fire polished to 3 – 5 

mOhm resistances using a Narishige MF-830 microforge. The pH of the solutions was 

maintained at ~7.3 pH measured with a Mettler Toledo SevenCompact pH meter S220.  

 TRPM7 channel currents were recorded using a HEKA EPC 10 amplifier and 

HEKA PatchMaster software. The PatchMaster software would apply voltage ramps 

from -100 to +85 mV every 2.5 seconds during recordings. Since Jurkat cells are free 

floating, the Jurkat cells were placed on a glass chamber plate and allowed to settle on the 

bottom for around 10 minutes.  The external and internal solutions were chosen in order 

to isolate currents from TRPM7 channel A standardized external solution contained 140 

mM Na-Aspartate, 10 mM HEPES-Na, 0.5 mM D-(+)- Glucose, 2 mM CaCl2, 4.5 mM 

KCl, 3 mM CsCl, pH 7.3, 300 mOsm. External cesium reduces contamination from the 

inward rectifier potassium channels. Aspartate and glutamate were used in both external 

and internal solution to reduce the conductance of chloride channels. The internal 

solution would vary depending on the experiment and type of cell configuration. The 

internal solution had a pH of 7.3 and 290 mOsm. MgCl2 was supplemented to the 

solutions to obtain a certain amount of free Mg2+ concentration. The amount of free Mg2+ 
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concentration was estimated using MaxChelator software, located at 

http://web.stanford.edu/~cpatton/maxc.html 
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Figure 6: Patch clamp configurations.  

A fire polished glass pipette makes contact with the cell membrane and a small negative 

pressure is applied to achieve a gigaohm seal between the pipette and cell membrane, 

forming the cell-attached configuration. Whole-cell configuration can be formed from 

cell-attached by applying a negative pressure or brief high voltage pulses, the contacting 

cell membrane patch will rupture. The pipette solution will then mix with intracellular 

solutions. In the perforated-patch configuration an antibiotic such as amphotericin B that 

can form ion channels in the plasma membrane without rupturing it, is included in the 

pipette solution. Only monovalent ions are small enough to pass through these pores. 

Perforated-patch configuration allows the recoding and measurement of ion channels 

without damaging the membrane and losing intracellular components or altering 

intracellular Mg2+ (Reproduced from Petkoy, 2009 with permission). 
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2.2.3 Intracellular Ca2+ imaging 

 The Ca2+ imaging experiments used extracellular solutions shown in Table 2. The 

primary solution is the 2 Ca2+ basal solution which contains: 2 mM CaCl2, 140 mM 

NaCl, 4 mM KCl, 10 mM D-(+)-Glucose and 10 mM HEPES-Na, pH 7.3 and osmolarity 

300. The second solution was Ca2+-free solution containing: 1 mM EGTA, 10 mM 

HEPES-Na, 10 mM D-(+)-Glucose, 4 mM KCl, 140 mM NaCl, pH 7.3 and osmolarity 

300. 20 µM of CPA and 20 µM of ionomycin were used. The cells were loaded with 4 

µM Fura-2 AM ratiometric calcium dye indictor in the 2 Ca2+ basal recording solution 

supplemented with 20% Pluronic in DMSO. 

 The 35 mm glass-bottom chambers were cleaned using 70% ethanol along with 

gently scraping the glass with a pipette tip, rinsed with ddH2O and wiped clean with a 

kimwipe sprayed with 70% ethanol. Since the Kimwipe can leave fibers, the glass-bottom 

chambers were rinsed off with ddH2O and any remaining liquid aspirated off. Next, the 

glass-bottom chambers were double coated using a high molecular weight poly-d-lysine. 

The glass is covered with poly-D-lysine solution and allowed to sit for 15-20 minutes. 

Poly-d-lysine is aspirated off and the glass portion is recovered for an additional 15 

minutes. After 15 minutes, the poly-D-lysine is aspirated off until it is dry. About 250-

300 µL of cells were used to cover the glass portion. The cells were allowed to adhere to 

the chambers for 20 minutes at room temperature.  

 Once the cells adhered to the chambers, they were loaded with the dye solution in 

a dark room. The culture media was removed and the dye-containing solution is 
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immediately added. About 250-300 µL of dye solution is used to cover the chambers. 

Then the chambers are placed in a dark incubator at 37º C for ~45 minutes. This provides 

enough time for Fura 2-AM to diffuse into the cell. After 45 minutes, the dye solution is 

removed and the 2 Ca2+ basal solution is added. The cells will remain in the 2 Ca2+ 

solution for about 20 minutes to allow cytosolic esterases to cleave the -COOH groups of 

Fura 2-AM, thus allowing Fura 2 to regain its charge to bind calcium and be unable to 

diffuse out of the cell.  

 To perform Ca2+ imaging, an Olympus CKX41 inverted microscope was 

connected to a Dell Optiplex 745C computer with InCytIM 2 imaging program 

(Intracellular Imaging, Cincinnati, OH) installed. 175 W Xenon arc lamp provided the 

UV light source and the filters in Lambda 10-B SmartShutter allowed selections of the 

wavelength. After the cleavage step, the cells are positioned on the stage of the 

microscope. The perfusion rate was ~20 ml per minute using the corresponding solutions 

for the different experiments. Throughout the designated time frame, the cells were 

exposed to 340 mm and 380 mm wavelengths with a switch rate of 40 milliseconds. 

InCytIM 2 imaging program was recording the emitted light at 510 nm.  

 Ca2+ imaging was able to measure from up to 99 cells per experiment. Each cell 

would produce its own data and wavelength trace. Selecting which cell to use was based 

on a few behaviors: (i) the initial 2 Ca2+ perfusion maintain a relatively stable base line 

over time; (ii) the 340 nm and 380 nm wavelength traces moved in opposite directions 

from each other during the course of the recording; (iii) when CPA was perfused, the cell 
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was able to respond to CPA; (iv) the cell was not lost during the recording.  v) ionomycin 

elicited a robust Ca2+ increase. 
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Table 2: Ca2+ Imaging solutions 

Salts & Solutions  Concentration in “2 Ca2+ solution” Concentration in “Ca2+ free solution” 

CaCl2  2 mM   

NaCl  140 mM 140 mM 

KCl 4 mM 4 mM 

D-(+)-Glucose  10 mM 10 m 

HEPES-Na  10 mM 10 mM 

EGTA    1 mM 

CPA 20 µM 

Ionomycin 20 µM 
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2.2.4 Vi-Cell viability analyzer 

 A Beckman Vi-Cell cell viability analyzer is able to perform single cell 

measurements to give the size and number of the cells in the sample, provide the percent 

of viable cells and take real-time cell images (Gibson, Beesetty, Sulentic, & Kozak, 

2016). The Vi-cell uses trypan blue dye to determine cell viability. Trypan blue is able to 

be taken up by dead cells since the membrane of dead cells becomes permeable. The non-

viable cells are stained with the trypan blue becoming darker than the viable cells. The 

analyzer is able to do 15 samples within an hour. After collecting the data, the software 

will export the data in a spreadsheet and save the pictures of each measurement. If there 

is debris in the sample, the analyzer may treat the debris as viable cells. There are some 

drawbacks of using the Vi-Cell viability analyzer. When the sample is mixed with trypan 

blue and loaded into the analyzer, air bubbles may form during this process. The air 

bubbles will cause distortion when the analyzer takes pictures of the cell which will have 

an effect on the measurement of the cell diameters. Samples with air bubbles were 

omitted. In addition, the software analyzer forms circles around the cells during 

measurement. Non-spherical cells will have issues due to the method of measurement. 

The resulting data obtain may be skewed towards the long axis.  

2.2.5 Osmolality of solutions 

 The osmolality of the solutions was measured using a Precision System Inc. 5004 

MICRO-OSMETTE Automatic High Sensitivity 50 µL Osmometer. Three different 

disposable sample tubes was filled with 50 µL solution, then each was measured in rapid 
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succession to determine the average osmolarity of the solution. If the osmolarity was too 

low, the appropriate amount of D-mannitol was added to increase the osmolarity. An 

osmolality of 300 was used for the external solutions. The internal solution osmolality 

was around 285 to 300.  

2.2.6 Data Analysis 

 OriginLab 8 software was used to analysis the data and create the graphs. The 

statistical analysis was determined using ANOVA and Student’s t-test. The data was 

considered to be significant difference if p<0.05. The standard error of the mean is shown 

as the error bars in the graphs. 
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III. Results 

3.1 Endogenous TRPM7 channels of Jurkat T cells can be used as a bioassay of 

external Mg2+ concentration.  

 TRPM7 is inhibited by intracellular concentrations of free Mg2+ ranging from 0.3 

to 1 mM and the cell has around 0.5 to 1 mM of free cytosolic Mg2+. Under physiological 

conditions, TRPM7 channels are rendered inactive in intact Jurkat cells. Since depletion 

of magnesium should result in the activation of TRPM7 channel, Jurkat cells were grown 

in low magnesium conditions to determine if the TRPM7 has the ability to become 

activate and produce a current. Chelex-100 was used to remove divalent metal cations 

such as calcium and magnesium from RPMI-1640. Then the cation depleted RPMI was 

supplemented with a 6 µM MgCl2 and 1.4 mM MgCl2 to simulate magnesium deficiency 

conditions, while the initial RPMI-1640 Ca2+ concentration of 0.4 mM remain constant. 

Over time, the internal magnesium concentrations of the Jurkat cells is expected to be 

depleted. Jurkat cells were allowed to grow in the chelex RPMI with different magnesium 

concentrations from 24 hours to 48 hours or longer.  

 Vi-Cell viability analyzer was used to confirm the viability of the cells and 

average diameters of the cells as well (Figure 13). Patch clamp was performed to obtain 

the break-in current before the pipette solution diffuses into the cell and the maximum 

current at 83.47 mV. Dividing the break in current over the maximum current was used to 

obtain the preactivation index, which allows the comparison of the degree of activation in 

intact cells. The preactivation index of the Jurkat cells grown in 6 µM MgCl2 and 1.4 mM 
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MgCl2 was different from each other. The Jurkat cells grown in lower Mg2+ concentration 

had a larger preactivation index (Figure 7).  
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Figure 7: TRPM7 channel activity during Mg+ loading and depletion. 

Jurkat cells cultured for 24 to 48 hours in Chelex RPMI supplemented with 6 µM MgCl2, 

10 µM HEDTA or 1.4 mM MgCl2 and at constant 0.42 mM CaCl2. Box graph was 

plotted using TRPM7 preactivation index. Error bars represented as mean ± SEM 

(p<0.05). 
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  The Jurkat cells were cultured in different concentrations of Mg2+ ranging from 

400 nM to 1.4 mM for 24 – 48 hours (Figure 8). Over time, a decrease in external Mg2+ 

concentration will be reflected in the intracellular Mg2+ concentration. Without Mg2+ 

inhibition, TRPM7 channel will become activated and the current value should show a 

relation to the amount of external Mg2+. The preactivation index shows that the Jurkat 

cells grown in lower Mg2+ concentrations were associated with a larger preactivation 

index and the preactivation index value decreased as the external Mg2+ concentration was 

increased (Figure 8A). The does-response relation in OriginLab software was used to fit 

the data to obtain the IC50 and Hill coefficients. The IC50 was 54 µM (Figure 8B). 

 Splenic T cells were obtained from a WT mouse and KD mutant mouse. The T 

cells were grown in chelex RPMI supplemented with an increasing Mg2+ concentration 

and a constant CaCl2+ concentration at 0.424 mM. Then the T cells were stimulated with 

PMA/ionomycin. The proliferation rates of the T cells were measured using MTS 

colorimetric assay at 24 hours and 48 hours after activation of the T cells. Figure 9A 

shows the proliferation rate of the KD T cells was reduced compared to the WT T cells 

proliferation after 24 hours after activation. When the T cells were allowed to proliferate 

for 48 hours (Figure 9B), the proliferation increased for both the WT and KD T cells. 

However, the KD T cells proliferation rate was significantly decreased compared to the 

WT T cells. At 48 hours, the IC50 value of the KD T cells were 52 µM and the Hill 

coefficient was 1.46 (from Beesetty et al, 2018).  
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Figure 8: Extracellular Mg2+ does-response relation. 

A dose response relation was plotted using Jurkat cells grown in 5 different extracellular 

Mg2+ concentrations, ranging from 400 nM to 1.4 mM, for 24 - 48 hours. Patch-clamp 

electrophysiology was performed to obtain the preactivation index from the each Jurkat 

cell. 8A is a box graph plotted with the preactivation index against external [Mg2+]. Error 

bars represent mean ± SEM. 8B is dose-response relation of external [Mg2+]. Error bars 

are represented as mean ± SEM. Numbers of cells are in parentheses. 
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Figure 9: Proliferation of WT and kinase-dead (KD) mouse T cells in increasing 

external Mg2+ concentrations 

Proliferation rate of activated KD T cells and WT T cells was compared. Both T cell 

groups were grown in an increasing external Mg2+ concentrations from 0.001 – 0.4 mM 

MgCl2 while the Ca2+ concentration remained constant at 0.424 mM. Proliferation 

measurements were taken at 24 hours in Figure 9A and 48 hours in Figure 9B. Error bars 

are represented as mean ± SEM (p<0.01, p<0.05).  (After Beesetty et al, 2018  
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 The Mg2+ depletion and loading in the Jurkat T cells is proposed to be governed 

by Na+/Mg2+ antiporter. Jurkat cells were cultured in chelex RPMI supplemented with 1.4 

mM MgCl2, 10 µM HEDTA and 0.42 mM CaCl2 for 24 hours. Then these Jurkat cells 

were switched to two different RPMI conditions for 24 hours – 48 hours. In the first 

condition, the Jurkat cells was treated with 10 µM HEDTA, 10 µM MgCl2 and 300 µM 

amiloride. In the second condition, a control group of Jurkat cells was grown without the 

300 µM amiloride treatment. Patch clamp experiments were performed on those Jurkat 

cells at 24 hours and 48 hours to obtain the initial break-in current and maximum current. 

After 24 hours, there was a significant difference between the amiloride treated Jurkat 

cells and the Jurkat cells without amiloride treatment. The amiloride treated Jurkat cells 

had a smaller break-in current shown in Figure 10A. In Figure 10B after 48 hours, the 

break-in current was reduced in Jurkat cells treated with and without amiloride. However, 

the amiloride treated cells still retain the smaller break-in current when compared to the 

Jurkat cells without amiloride treatment. The maximum current was similar to the break-

in current, in which the amiloride treated Jurkat cells also had a lower maximum current 

when compared to the Jurkat cells without amiloride treatment after 24 hours in Figure 

10C and after 48 hours in Figure 10D. The preactivation index indicates there was a 

significant difference between the Jurkat cells with the amiloride treatment and without 

amiloride, shown in Figure 11A and Figure 11B.  

 The reversed experiment was performed using the Jurkat cells cultured in low 

Mg2+. The low Mg2+ Jurkat cells were treated with 1.4 mM MgCl2, 10 µM HEDTA and 



54 
 

0.42 CaCl2 RPMI with and without 300 µM amiloride. After 24 hours, the preactivation 

index was obtained. Figure 11C reveals there was no significant difference between the 

two conditions. The preactivation index of the Jurkat cells without amiloride was reduced 

to a similar value of the amiloride treatment. 

Jurkat cells were cultured in chelex RPMI with 10 µM MgCl2, 10 µM HEDTA 

and 0.42 CaCl2 for a 48 hours. Perforated patch configuration was performed using an 

internal pipette solution containing 7 mM MgCl2. The internal Mg2+ concentration was 

depleted and a large current was observed. A current-voltage relation and time course 

was plotted in Figure 12. Figure 12B shows the time course in the same cell as Figure 

12A. The Jurkat cell was membrane was ruptured in to confirm the perforated patch 

configuration. Upon the membrane rupture, the pipette Mg2+ will diffuse into the cell and 

inhibit the TRPM7 channel. The inhibition of TRPM7 is shown as the drop in the current.  
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Figure 10: Amiloride sensitivity of TRPM7 currents  

The break-in and maximum current was plotted in amiloride treated and untreated Jurkat 

cells. 10A shows that there was a significant difference between the break-in currents of 

control and amiloride grown cells after 24 hours. At 48 hours, there was a reduction in 

the break-in currents for both conditions in 10B. The maximum current was reduced by 

amiloride treatment for 24 hours in 10C and 48 hours in 10D. Error bars represent mean 

± SEM (p<0.05). 
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Figure 11: Amiloride sensitivity of Mg2+ efflux and influx in Jurkat T cells. 

There was a significant difference between cells treated with or without 300 µM 

amiloride. The preactivation index of the 300 µM amiloride treated Jurkat cells was 

lower compared to the control cells in 11A. 11B was measured after 48 hours. The 

amiloride treated Jurkat cells had a smaller preactivation index compared to the non-

treated Jurkat cells. In 11C cells were loaded with Mg2+ after being depleted in 8 µM lead 

to reduced preactivation index which was insensitive to amiloride. Error bars are mean ± 

SEM (p<0.05). 
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Figure 12: I-V and time dependence of TRPM7 current in Mg2+-depleted Jurkat T 

cells. 

12A shows current-voltage relation of TRPM7 current from Jurkat cells grown in chelex 

RPMI with 10 µM MgCl2, 10 µM HEDTA and 0.42 CaCl2 for 48 hours. Internal Mg2+ 

was depleted and a large current was observed in perforated patch (black trace). The red 

trace is the current measured after the cell membrane was ruptured and whole-cell patch 

clamp configuration formed. 12B shows the time course of the TRPM7 in the same cell 

as 12A. The rupture of the membrane occurred at the break-in mark.  

 

 

 

 

 



58 
 

3.2 MagT1 knock-out (KO) Jurkat T cells have lower cytoplasmic concentrations of 

Mg2+ as determined by TRPM7 channel activity.  

Due to the nonfunctional MagT1 of MagT1 KO Jurkat cells, the influx of Mg2+ 

and free cytosolic Mg2+ concentration should be reduced when compared to the WT92 

Jurkat cells. The Mg2+ concentration could be reduced enough to allow the activation of 

TRPM7. The WT92 Jurkat cell and MagT1 KO Jurkat cell lines are used. Both cell lines 

were culture in RPMI with 30 µM MgCl2 and 1 mM MgCl2 for a few days to determine 

the viability and proliferations of the cells. After 96 hours, a Vi-Cell viability analyzer 

shows both cell lines were viable and able to proliferate and in both RPMI conditions 

without any issues (Figure 13).  

The K+ current has an influence to promote Ca2+ influx and since MagT1 

mechanism remains unknown, the influence of MagT1 on K+ channels was investigated. 

The Jurkat cells were cultured in RPMI supplemented with a low concentration of Mg2+ 

to deplete the cells. Perforated patch clamp was performed using a K+ based internal 

solution containing 55 mM KCl, 70 mM K2SO4, 7 mM MgCl2, 1 mM CaCl2 and 10 mM 

HEPES. Two different K+ based external solutions were used; a low K+ external solution 

of 140 mM Na-aspartate, 2 mM CaCl2, 10 mM HEPES-Na, 4.5 KCl and a high K+ 

external solution with 140 mM K-aspartate, 2 mM CaCl2, 10 mM HEPES-Na, 4.5 NaCl. 

During the patch clamp recording, the K+ based external solution was perfused at a late 

time frame. The I-V relation was plotted in Figure 14. 
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Figure 13: Viability and diameters of Jurkat cells grown in chelex RPMI 

supplemented with Mg2+ for 96 hours. 

Histogram of the Jurkat cell diameters cultured in Mg2+ supplemented chelex RPMI for 

96 hours. Vi-Cell viability analyzer was used to measure cell viability and diameters of 

Jurkat cells. 
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Figure 14: I-V relations using K+-based internal in WT and MagT1 KO Jurkat cells  

I-V relation of WT and MagT1 KO Jurkat cells. The black trace indicates the perfusion of 

low K+ external solution late in the patch clamp measurement. The brown trace indicates 

the perfusion of the high K+ external solution late in the patch clamp recording.   
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 Since Ca2+ entry and CRAC are both required for T-cell proliferation, Ca2+ 

imaging was performed to look into the effects MagT1 might have on Ca2+. Ca2+ imaging 

was performed. Fura-2 AM calcium indicator dye was loaded into the T Jurkat cells and 

MagT1 KO Jurkat cells to measure the intracellular Ca2+ levels (Figure 15). A baseline 

intracellular Ca2+ level was recorded with external 2 mM Ca2+ solution. During the 

recording, different solutions were perfused at set time intervals. The next solution to be 

perfused contains 20 µM CPA, 1 mM EGTA and 0 mM Ca2+. CPA inhibits the SERCA 

pump, resulting in the depletion of ER Ca2+ stores and activation of SOCE. The 

intracellular Ca2+ will decrease below the baseline intracellular Ca2+ level. Since the ER 

Ca2+ stores are depleted, CRAC channels will form. Then a solution containing 20 µM 

CPA, 1 mM EGTA and 2 mM Ca2+ is perfused. There is an influx of Ca2+, which is the 

sudden spike in the ratios in Figure 15. And the last solution of 20 µM ionomycin and 2 

mM Ca2+ was perfused to obtain a positive control. The baseline intracellular Ca2+ levels 

were similar in both WT Jurkat cells and MagT1 KO Jurkat cells. Upon depletion of ER 

Ca2+ stores and activation of CRAC, the Ca2+ influx was similar in the both the MagT1 

KO Jurkat cells (Figure15B) and the WT92 Jurkat cells (Figure 15A).  

The CRAC current was measured using patch clamp. The I-V relations of the 

CRAC current in WT Jurkat cells (Figure 16A) and MagT1 KO Jurkat cells (Figure 16B) 

was obtained using a Ca2+ based solution. When the I-V relations was compared, there 

was no significant difference between the cell lines (Figure 17).  
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Figure 15: Ca2+ imaging in WT and MagT1 KO Jurkat cells. 

Fura-2 AM calcium indicator dye was loaded into Jurkat cells to perform intracellular 

Ca2+ imaging and measure SOCE. Error bars are represented as mean ± SEM.  
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Figure 16: Store-operated CRAC currents in WT and MagT1 KO Jurkat cells. 

I-V relations of CRAC currents in WT92 Jurkat cell in 16A and MagT1 KO Jurkat cell in 

16B. 

 

Figure 17: Bar graphs of CRAC amplitudes in WT and MagT1 KO Jurkat cells. 

17A is bar graph comparing the initial break- in currents. The maximum current of the 

CRAC current on compared in 17B. There were no significant differences between the 

initial break in currents or maximum currents in WT vs. MagtT1 KO cells. Error bars are 

mean ± SEM (p<0.05). 
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The MagT1 KO Jurkat cell is expected to have a lower concentration of 

intracellular Mg2+ and the TRPM7 should be expected to produce a larger current than 

the WT92 Jurkat cells. The outwardly rectifying I-V relation of TRPM7 current was 

measured using whole cell patch clamp in Figure 18. The internal solution of the pipette 

contained 30 µM of free Mg2+, which would diffuse into the cell and was sufficient 

enough to allow activation of TRPM7 channels. When the I-V relation was compared, 

there was a significant difference between the WT92 Jurkat Cells (Figure 18A) MagT1 

KO Jurkat cells (Figure 18B). The concentration of free Mg2+ in the internal solution was 

increased to 400 µM. The I-V relation of TRPM7 current in the WT92 Jurkat cells 

(Figure 18C) and MagT1 KO Jurkat cell (Figure 18D) was plotted.  
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Figure 18: TRPM7 I-V relations of WT92 and MagT1 KO Jurkat cells. 

I-V relations of WT92 and MagT1 KO Jurkat cells using a pipette internal solution of 

free 30 µM MgCl2 and free 400 µM MgCl2. The internal solution of the pipette contains 

free 30 µM MgCl2 in 18A and 18B. The MagT1 KO Jurkat cell in 18B produced a larger 

TRPM7 current than the WT92 Jurkat cell in 18A. When the internal solution of the 

pipette contained 400 µM MgCl2 in 18C and 18D, the TRPM7 current of MagT1 KO in 

18D was reduced. The WT92 TRPM7 current in 18C was similar to 18A.  

 



66 
 

IV. Discussion  

 Mg2+ is the one of the most abundant cations and has important roles within the 

body, ranging from functioning as an enzyme cofactor to development. However, Mg2+ 

physiology and homeostasis remain relatively unknown for such an important metal 

cation. TRPM7 is believed to be a key component of cellular Mg2+ homeostasis. MagT1 

is a highly selective Mg2+ transporter but its precise physiological function remains 

unknown as well. The activation of T cell receptor (TCR) was reported to result in 

activation of MagT1 by an unknown pathway, causing rapid Mg2+ influx. Without proper 

MagT1 function, Mg2+ influx may become impaired and the cell development and 

proliferation will be negatively affected. 

 Jurkat cells were cultured in low Mg2+ RPMI conditions to determine if 

endogenous TRPM7 has the ability to act as a bioassay for external Mg2+. Experiments 

were performed using Jurkat cells grown in different concentrations of Mg2+, ranging 

from 400 nM to 1.4 mM for 24 – 48 hours (Figure 7 and 8A). When the extracellular 

Mg2+ concentration was reduced for 1-2 days, the intracellular Mg2+ was depleted. 

Without intracellular Mg2+ inhibition, the TRPM7 channels would become pre activated 

and produce a current. The preactivation of the current showed a relation to the amount of 

external Mg2+. As the extracellular Mg2+ concentration was increased, the Jurkat cells had 

less preactivation of TRPM7 channels when compared to the Jurkat cells cultured in 

lower Mg2+ concentration (Figure 8A). Conversely, incubation in elevated Mg2+ is 

sufficient to eliminate TRPM7 channel activity at break-in, corresponding to the situation 
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in an intact cell. Using this approach, extracellular Mg2+ dose-response relation can be 

constructed for TRPM7 channels (Figure 8B). The does-response relation in OriginLab 

software was used to fit the data to obtain the IC50 and Hill coefficients. The IC50 was 54 

µM which shows that half of the channels in the membrane are closed at that Mg2+ 

concentration (Figure 8B).   

  The IC50 of the Mg2+ dose response in Figure 8B was similar to the IC50 of the 

proliferation rate of murine T-cells in Figure 9. The resting TRPM7 KD mutant T cells 

diameters were slightly larger than WT T cells (Beesetty et al, 2018). Upon stimulation of 

the resting TRPM7 KD mutant T-cells, the proliferation and cell diameters grew less 

compared to the WT T-cells. A similar effect has been seen in the low magnesium grown 

Jurkat cells compared to the high magnesium grown Jurkat cells. There is a possibility 

the changes in blastogenesis and proliferation could occur through the same mechanism. 

While the resting TRPM7 mutant T-cells involved a kinase dead mutation in Figure 9, a 

dose-response was performed to investigate the influences of ions. The internal 

magnesium concentrations could be affected through an unknown mechanism that has a 

role in proliferation. The data suggest T-cell proliferation may be dependent on the 

degree of TRPM7 current activation. These changes could occur due to the low 

magnesium environment. 

 Overall the free cytoplasmic Mg2+ concentration is similar to extracellular Mg2+ 

concentration (Chokshi, Matsushita, & Kozak, 2012a). The membrane potential of Jurkat 

T cells is around -55 to -65 mV (Verheugen, Vijverberg, Oortgiesen, & Cahalan, 1995). 
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The calculations for the Nernst potential indicate that the concentration of intracellular 

Mg2+ must be much higher since there is an inward electrogenic driving force. However, 

the data in Figure 11 suggest the external and internal Mg2+ concentration are essentially 

the same. Mg2+ efflux in Jurkat cells is amiloride sensitive, while the Mg2+ influx is not 

amiloride sensitive. The amiloride sensitivity effect is most likely due to Na+/Mg2+ 

antiporter becoming inhibited by amiloride (Romani, 2011). The membrane potential 

does not have an influence on the accumulation of Mg2+.  

The use of TRPM7 for estimating cellular Mg2+ has several advantages over 

fluorescent Mg2+ dyes, one of which is a much broader dynamic range. Overall, we find 

that endogenous TRPM7 channels of Jurkat T cells can be used as a bioassay of external 

Mg2+ concentrations. 

MagT1 knocked out Jurkat T cells will prevent Mg2+ influx and appear to have 

lower internal cytoplasmic concentrations of Mg2+. The WT92 Jurkat cells and MagT1 

Jurkat cells were cultured in chelex RPMI supplemented with 30 µM MgCl2 and 1 mM 

MgCl2 at 96 hours. Then Vi-Cell viability analyzer was used to determine the viability 

and proliferation of the cells. Both cell lines were able to survive and proliferate in 

different Mg2+ conditions (Figure 13). The influences of MagT1 on K+ channels and 

CRAC (ORAI/STIM) channels were looked into by performing patch clamp and Ca2+ 

imaging. The K+ channels were expressed and functioning in the MagT1 KO cells 

(Figure 14). MagT1 does not appear to have any influences on K+ currents and the 

membrane potential of the MagT1 KO Jurkat cells is not expected to be any different 
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from the WT92 Jurkat cells. There was no significant difference in the Ca2+ imaging 

(Figure 15) and I-V relation of CRAC (Figure 16). Thus, impaired Mg2+ influx does not 

appear to affect the K+ channels and CRAC channels functionality, suggesting MagT1 or 

Mg2+ does not have any role in function of K+ channels and CRAC channels.  

When the cytoplasmic concentration of Mg2+ is reduced, TRPM7 channels should 

become activate and a TRPM7 current would be observed. An internal solution of 30 µM 

of free Mg2+ was used in patch clamp on the WT92 Jurkat cells and MagT1 KO Jurkat 

cells. The MagT1 KO Jurkat cells show higher pre-activated current, indicating that there 

is less Mg2+
i and therefore less inhibition of TRPM7 current (Figure 18B). The sensitivity 

of TRPM7 could have been affected in the MagT1 KO Jurkat cells. In order to check the 

sensitivity of TRPM7, the concentration of free Mg2+ in the internal solution was 

increased to 400 µM and the I-V relations of both Jurkat cells were obtained. The 

TRPM7 current in the MagT1 KO Jurkat cell was reduced (Figure 18D), indicating the 

Mg2+ sensitivity of TRPM7 was not affected in the MagT1 KO Jurkat cells. The TRPM7 

channel was able to reflect the internal concentration of Mg2+.   

In addition, Jurkat cells cultured in low external Mg2+ conditions resulted in the 

depletion of intracellular Mg2+. With the reduction of intracellular Mg2+, TRPM7 currents 

should produce a large current, as shown in Figure 12A. Jurkat cells cultured in normal 

Mg2+ conditions (Figure 3) were unable to produce a large TRPM7 current. 

The nonfunctional MagT1 did not allow Mg2+ influx in the MagT1 KO cells, 

which appears to have an effect by reducing the intracellular concentration of Mg2+. We 
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showed that the TRPM7 channel became activated, demonstrating that TRPM7 can to be 

used to determine the intracellular Mg2+ concentrations.  

V. Conclusion.  

Endogenous TRPM7 channel activity can be used as a bioassay for cytoplasmic 

concentration of Mg2+ in Jurkat T cells, due to the unique ability of TRPM7 to be 

inhibited by cytoplasmic free Mg2+. This feature will allow the amount of cytoplasmic 

Mg2+ to be represented as the degree of TRPM7 activation or inhibition. The external 

Mg2+ environment will influence the internal concentrations of Mg2+ in Jurkat T cells. 

Eliminating MagT1 will affect the internal Mg2+ concentration, suggesting MagT1 could 

be an important pathway for Mg2+ entry. The reduction of internal Mg2+ will result in the 

activation of TRPM7 channel and higher pre-activated current, while the reduction of 

cytoplasmic Mg2+ does not appear to have an effect on the function of Ca2+ and K+ 

channels. Internal Mg2+ concentrations and the degree of TRPM7 activation could have a 

role in T cell proliferation. Overall Mg2+ physiology function and pathways remain a 

mystery and TRPM7 can be used as a bioassay for cytoplasmic concentration of Mg2+ in 

Jurkat T cells which will aid in uncovering the physiological roles of intracellular Mg2+. 
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