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ABSTRACT

Massé, Danielle D. M.S.M.E., Department of Mechanical and Materials Engineering, Wright State
University, 2019. Effects of Lubrication Starvation on Flash Temperature for Thermal Mixed Elas-
tohydrodynamic Gear Contacts.

Lubrication is provided to the gear trains in automotive and aerospace transmission

systems to prevent mechanical contact through the formation of a full lubricant film, which

in turn removes heat generated at the gear contact surfaces. When debris blocks the inlet

nozzle, the flow of lubricant is restricted and mechanical components experience lubrica-

tion starvation. Under starved lubrication the temperatures of the contact surfaces become

elevated which can lead to the formation of a weld between them, a catastrophic failure

mode called scuffing. For spur gears, the occurrence of scuffing is due to high sliding in

the vicinity of the root or tip, where the shear thinning effect decreases the lubrication film

thickness. This lubricant depletion increases the contact pressure and frictional heat flux

beyond a critical limit, resulting in weld formation. The weld is immediately torn apart by

the continuous relative motion of the components, causing extreme damage to the tooth sur-

faces. The objective of this study is to characterize the tribological behavior of high sliding

gear contacts under starved lubrication. This is achieved through numerical flow simula-

tions which utilize a generalized Reynolds equation with a non-Newtonian flow coefficient,

and incorporate the dependence of lubricant viscosity on pressure and temperature. In or-

der to study the effects of lubrication starvation a film fraction parameter is used in the

Reynolds equation, removing the need for measured or assumed inlet lubrication geome-

try. This work presents a parametric study of engineering surface profiles under different

operating conditions to show an asymptotic relationship between flash temperature and the

severity of the lubrication starvation, supported by an analysis of pressure, film fraction

parameter, friction coefficient, and power loss. The results of these investigations justify

further numerical and experimental studies of scuffing failure for gear contacts.
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Introduction

1.1 Background and Motivation

First established by an analysis presented by Heinrich Hertz in 1881, contact mechanics

is the study of the deformation of solids that make contact with each other. Since Hertz,

much progress has been made in the field of tribology concerning the design, performance,

production, and reliability of countless tribosystems. A tribosystem is a mechanical sys-

tem containing one or more triboelements, or solid bodies coming into contact with each

other via sliding, rolling, or abrasive contact [1]. The two portions of the triboelements

which make contact are typically referred to as the mating surfaces, or contact surfaces.

Today, many researchers in engineering and materials science focus on the microscopic

asperity interactions that occur on contact surfaces, with particular interest in expanding

the understanding of known failure modes and how they relate to operating and lubrica-

tion conditions. Before delving into the problem this work addresses, it is first necessary to

understand the fundamentals of lubrication and contact theory for generalized tribosystems.

1.1.1 Hertzian Contact Theory

In general, when any two curved surface with different radii of curvature are brought into

contact, they will touch at either a point or along a line. When a load is applied, elastic

deformation of the surfaces enlarges the initial point/line into a contact area across which

1



the load is distributed as pressure. In classical contact mechanics, the two solids coming

into contact and deforming are assumed to be isotropic and homogeneous [2]. As defined

by Bhushan et al. in [2], Hertzian theory is a subset of contact mechanics which further

assumes that:

i) The surfaces are continuous, smooth, nonconforming, and frictionless

ii) The size of the contact area is small compared to the size of the bodies, i.e., the strains

associated with the deformations are small

iii) Each solid can be considered to behave as an elastic half-space in the vicinity of the

contact zone

iv) The gap h between the undeformed surfaces can be approximated by an expression

of the form h = Ax2 + By2 where x and y are orthogonal coordinates lying in the

common tangent plane to the two surfaces

Hence, by assumption iv), Hertzian theory is applicable to the contact of spheres, cylinders,

and ellipsoids. Many mechanical components have such surface profiles including several

types of bearings and gears, and the types of contact can be separated into point contact

(sphere on sphere) or line contact (cylinder on cylinder). As expounded in detail in 1.1.4,

the contact made between involute spur gears is a line contact. To properly motivate the

modern areas of study for gear contacts, it is necessary to discuss the failure modes that

such a line contact under high load and relative velocities can experience.

1.1.2 Failure Modes of Tribosystems

Tribosystems can be subject to many types of failure related to the friction, lubrication,

and wear conditions of the triboelements which comprise them [2–5]. The most common

failure modes are fatigue, wear, and scuffing. Fatigue failures, such as bending, pitting,

and micropitting, are characterized as physical failures of the contact surface or larger
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mechanical component due to excessive, repeated loading and stress. Wear failure can be

defined as the gradual removal of material from a surface due to interaction with a mating

surface [2]. This work concerns spur gears under high speed and high sliding operating

conditions which are characterized by their susceptibility to scuffing failure, and so focus

will be placed on this failure mode.

Scuffing

Scuffing, also referred to as scoring or pressure-induced welding, is a failure mode fre-

quently observed in automotive and aerospace gearing applications which is characterized

by the roughening of the contact surfaces resulting from solid state weld formation. As

opposed to wear, scuffing roughens contact surfaces without any net loss of material. It

occurs when asperity contact is made under inadequate lubriction conditions, which leads

to extreme friction between the mating surfaces - under high loads, this friction generates

heat increasing the surface bulk temperature as the heat cannot be effectively removed by

lubrication. The increased surface bulk temperature and high contact pressure causes solid

welding of the contact surfaces. During successive rotations, the weld is broken and can

result in rough contact surfaces which continue to deplete the lubricant film thus continu-

ing the amount and severity of surface roughness. At the microscopic level, the metallic

bonding necessary to form the weld occurs in three stages:

1. Asperities on the contact surfaces deform and interlink, causing interfaces between

the contact surfaces.

2. Elevated temperature and pressure cause accelerated creep - grain boundaries de-

grade and gaps between contact surfaces are reduced to isolated pores.

3. Material diffuses across boundaries of adjacent surfaces, eliminating the boundary

and creating a bond.
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Scuffing occurs non-uniformly - in particular, it can spread across a contact surface

over many cycles of operation. If the clearance between contact surfaces is small such

that the weld cannot be broken, scuffing failure can lead to seizure. Scuffing damage to a

contact surface can be visualized with a scanning electron microscopes, but it is difficult

to quantify. Scuffing failure is also catastrophic - once scuffing has occurred, the contacts

quickly fail as damage increases on successive cycles of operation. Hence, the capability to

realistically model the conditions which can cause scuffing in order to better understand its’

causes and predict when it may occur is crucial to successful tribosystem design. One of

the most important factors necessary to understand failure in any tribosystem is lubrication.

1.1.3 The Role of Lubrication in Tribosystems

In the most general sense, lubrication is used to reduce friction and wear between contact

surfaces in a tribosystem. The level of protection that a lubricant layer provides to the con-

tact surfaces depends on the regime it operates under [2]. For contact surfaces in motion,

the fundamental lubrication regimes are:

– Full-film/Hydrodynamic (HL): the contact surfaces are completely separated by a

full, unbroken film of lubricant.

– Elastohydrodynamic (EHL): particularly for nonconforming surfaces or surfaces un-

der high loads, this regime is governed by a sudden reduction of lubricant film thick-

ness which causes an increase in the lubricant viscosity. When the lubricant film

becomes rigid, it causes temporary elastic deformation of the contact surfaces. This

deformation considerably alters the characteristics of the separating lubricant film.

– Mixed: denotes the transition region from hydrodynamic or elastohydrodynamic lu-

brication to boundary lubrication, where there is a mixture of asperity interaction and

lubrication separation between the contact surfaces
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– Boundary: the contact surfaces are close enough that substantial metal-to-metal con-

tact of opposing asperities occurs.

Ideally, the boundary lubrication regime is wholly avoided so contact surfaces are always

separated by lubricant, preventing asperity contact. In actuality, the lubricant layer can fail.

Lubrication Starvation

When not enough of the correct lubricant is supplied to a tribosystem, this is called lu-

brication starvation. The exact means of starvation can vary between applications and the

machinery involved. For gear contacts, the most common mode of lubrication starvation is

called inlet starvation, which occurs when the flow of lubricant into the contact is restricted

by some blockage or contaminant in the inlet. This is the mode of starvation that the re-

sults presented here pertain to since the implemented model allowed for the percentage of

blockage to be prescribed via a cavitation boundary condition. Hence, the results presented

here show how the behavior of line contacts changes as the severity of the inlet starvation

is increased.

1.1.4 Geometry of Involute Spur Gears in Mesh

With the understanding of Hertzian theory and the role of lubrication, it is now necessary

to consider the features of spur gears that would allow two meshed gears to be modeled as

a Hertzian line contact. The major components of spur gear geometry are shown in Figure

1.1, followed by Figure 1.2 which shows how some of these components relate to a pair of

spur gears in mesh [6]. The teeth of spur gears most commonly have an involute profile.

This profile dictates the area of the tooth which will make contact when in mesh, as shown

in Figure 1.1 by the start and end of the active profile. This active profile is traced out

by the point of contact when two gears are in mesh. At every point of contact, the tooth

surfaces are touching along a line with length equal to the face width. The pinion is the one

5



of the pair with fewer teeth which drives the motion, and the gear is larger and is driven

by the force applied to its teeth by the teeth of the pinion. The force that is applied by the

pinion tooth on the gear tooth is applied along the line of action. Due to the involute tooth

profile, the line of action always passes through the point of contact and is tangent to the

base circles of both the pinion and the gear. Since gears are generally made of isotropic, ho-

mogeneous materials and their contact occurs along a line, it can be modelled as a Hertzian

line contact and characterized by all of the properties presented in 2.1.
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Figure 1.1: Major components of involute spur gear geometry.
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Figure 1.2: Geometry of involute spur gear pair in mesh.
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1.2 Literature Review

Considering that scuffing failure is so catastrophic and undesirable, much research has

been done on a macroscopic scale to determine the operating conditions under which it oc-

curs, establishing some limits on operating and geometric parameters which have yielded

successful gear train designs for a vast variety of applications. However, there is a much

smaller subset of work which has actually focused on the physical causes of scuffing fail-

ure. Of these, relevant publications can be split into theoretical, experimental, and compu-

tational studies which focus on developing models to predict flash temperature and quantify

the effects of starved lubrication.

The first well-known effort to understand and characterize scuffing failure theoret-

ically was undertaken by Blok [7]. He proposed that scuffing occurred when a critical

maximum temperature was reached in the contact area between two sliding bodies. This

critical temperature was the sum of the bulk surface temperature and the instantaneous,

i.e. flash, temperature rise that occurs along an EHL contact. As a result of his assump-

tions, Blok’s model is valid for smooth, ideal surfaces and requires sufficient operation

time to allow the temperature distribution to reach its steady state. In [8], Dyson’s model

suggests that scuffing occurs due to EHL film breakdown. This breakdown is due to a

sudden decrease in the lubricant viscosity caused by frictional heating generated at a crit-

ical temperature, and causes the majority of the load to be transferred from the lubricant

to the asperities resulting in scuffing. Contrary to Blok’s model, Dyson’s model predicts

that the critical temperature occurs at the inlet of the contact area rather than the central

region [9]. The theory presented by Dyson was further developed and referred to as criti-

cal temperature-pressure theory, since the critical temperature is a function of the lubricant

pressure generated by the hydrodynamic action of the EHL contact. The validity of these

theories has been explored experimentally by many, showing varied conclusions [9–15].

Several reviews have been published which contain more detail about the development and
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validation of such earlier models [16–18], and even today theoretical explanations of scuff-

ing initiation and propagation along with experimental validations are still being presented

for increasingly complicated models [19–22].

With the rapid advancement of experimental and computational capabilities, publica-

tions in more recent decades have revealed through experimentation [10,23] and numerical

simulations [19, 24, 25] the importance of surface roughness in scuffing phenomenon. The

occurrence of scuffing failure can be reduced by polishing the surfaces to reduce any high

pressure or shear conditions within the contact zone that are induced by surface roughness.

As discussed earlier, the other factors that affect the likelihood of scuffing include:

i) the operating conditions, such as load, rolling (entrainment) velocity, severity of slid-

ing, and lubricant supply temperature

ii) lubricant properties such as viscosity, modeling of its non-Newtonian behavior (de-

pendence on pressure, temperature, and shear), and various additives

iii) inlet blockage due to the accumulation of small wear or fatigue debris which leads to

starved lubrication [14, 26]

The normal contact force between the rolling mechanical components is directly re-

lated to the contact pressure and shear applied to them. Some works [10, 19] have in-

vestigated the limiting-load for scuffing to occur (also called the scuffing load) by experi-

mentally increasing the load applied in a step-wise manner while leaving the other contact

parameters unchanged. Even under very high contact pressure, [10] showed that a scuffing

failure can be avoided if operated under a low sliding condition. This is because sliding

dictates not only the frictional heat which the contact surfaces will experience, but also the

shear thinning behavior of the lubricant. Further, this explains why the failure location of

gear teeth is consistently close to the tip or the start of the active profile (shown in Fig. 1.1)
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where sliding is high while the contact force may not be maximal.

Focusing on the effects of the lubricant properties on scuffing, Jackson et al. used a

disk contact machine to show that the scuffing load can be increased by using a low viscos-

ity lubricant [15]. Further, the experimental investigation by Ichimaru et al. demonstrated

that introducing certain additive combinations into the lubricant leads to the formation of

protective anti-scuffing tribo-films along the contact surfaces [27]. To get to the real source

of scuffing failure, Enthoven and Spikes used radiometry to visualize the onset of scuffing

failure of a contact between a steel ball and a sapphire disk [9, 14, 26]. They observed an

interesting mechanism - their recordings showed an accumulation of very fine wear and

fatigue debris in the inlet zone, blocking the entrainment of lubricant and leading to lu-

bricant starvation. Immediately following the debris buildup in the inlet, scuffing failure

took place and the scuffing failure temperature was measured using an infrared microscope

that continuously monitored the temperature distribution along the surface of the ball to be

above 400◦C [26].

There has been an extensive amount of research targeting the modeling and predic-

tion of flash temperature have been conducted under the fully-flooded lubrication condi-

tion. A group of studies examined the thermal EHL behavior for perfectly smooth sur-

faces, specifically point contacts [28] and line contacts [29–31]. However, in each of these

studies the predicted temperature increases were moderate and thus unable to explain the

onset of scuffing. Further studies which incorporated the surface roughness into the ther-

mal EHL analysis were able to deterministically predict significant flash temperature in-

creases [19,20,24,25,32–36]. In particular, Li et al. predicted the critical flash temperature

for scuffing to occur on the order of 475◦C, which is comparable to the in-situ tempera-

ture measurements of Enthoven and Spikes [19,26]; the reasonable difference is likely due

to material and lubricant deviations between the studies. Specifically, [19] used an espe-
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cially strong steel alloy common in aerospace applications and a modern additive lubricant

which both improve the resistance to scuffing. Experimentally, the optical interferometry

technique has been employed to measure the temperature distributions for smooth surface

contacts [37, 38] and artificial rough contacts [39].

Under starved lubrication, many early computational [40–42] and experimental [43,

44] works stayed within the isothermal domain, excluding the flash temperature descrip-

tion. In a later study, Yang et al. incorporated the energy equation into the governing

equations and presented a starved thermal EHL model for perfectly smooth surfaces lu-

bricated by an Eyring non-Newtonian fluid [45]. Even more recently, Pu et al. extended

the modeling effort to include the roughness effects on the flash temperature prediction

for a point contact operating under starved EHL; however, this study assumed Newtonian

behavior in the Reynolds equation which is not appropriate for gear contacts experienc-

ing high sliding [46]. Further, [46] utilized the Barus equation the model the lubricant

viscosity - considering that gears which are particularly vulnerable to scuffing failure are

those under a heavy load, such an approximation of the viscosity dependence on pressure

can substantially overestimate the viscosity and thus the viscous frictional heat. Hence,

although the scuffing failure of rough surfaces under the starved lubrication condition is

of great practical interest (for example, starvation caused by debris buildup [26] or by the

loss of lubricant [47]), little modeling work encompassing the most realistic models for all

aspects of the problem has been done.

1.3 Scope and Objectives

In view of the existing literature, a thermal EHL model with starved lubrication conditions

which is capable of an accurate description of the tribological behavior under typical op-

erating conditions for real gear surface profiles is missing. Although extensive work has
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been done numerically and computationally on starved lubrication, every other work has

excluded one of more practical aspect of real-world tribological conditions. Therefore, this

study aims to develop an extensive thermal EHL model with starved lubrication under high

sliding and high loading operating conditions for gear contacts with various engineering

surface roughness profiles resultant from industrial solutions. The main objectives of this

study can be summarized as:

1. Develop a numerical model based on the generalized Newtonian Reynolds equation

in the thermal EHL description, incorporating measured lubricant viscosity depen-

dencies on pressure, temperature and shear. To account for starvation, implement the

cavitation algorithm proposed by Elrod in [48] to determine the starvation boundary

condition.

2. Conduct simulations covering an extensive parameter space which would allow for

determination of the effects of surface roughness, severity of lubrication starvation,

and operating conditions on the resultant flash temperature, pressure, film thickness,

friction coefficient, and power loss, as well as the instantaneous distributions of these.

3. From these relationships, demonstrate the importance of understanding tribological

behavior of realistic gear profiles under different lubrication regimes and operating

conditions in the context of scuffing failure.

1.4 Thesis Outline

Following this introduction, Chapter 2 explains the formulation of the computational model

implemented. It covers the governing equations, relevant models, and necessary assump-

tions for the fluid and thermal aspects in detail. The design of the numerical simulations

conducted is also discussed at length, and a table of the covered parameter space is pro-

vided. After the theoretical foundation, chapter 3 presents and discusses the results of
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the simulations. It is broken into subsections which correspond to results for each ma-

jor physical quantity used to characterize the tribological behavior, including temperature,

film thickness, pressure, friction coefficient, power loss, and instantaneous distributions of

these. Finally, chapter 4 summarizes the original research presented here, asserts conclud-

ing remarks, and proposes a direction for future work.
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Model Formulation

2.1 Line Contact Equations

Consider two spur gears with base circles of radii R1 and R2, and applied load W as shown

in Figures 1.1, 1.2, and 1.3. There are many well-known properties about the size of and

pressure within the contact zone, given by:

reduced curvature: R′ =
R1R2

R1 +R2

reduced elastic modulus: E ′ =
2

1−ν21
E1

+
1−ν22
E2

pressure: p(x) = pmax
√

1−
(x
a

)2

maximum pressure: pmax =
2W

πaL

contact zone size: a =

√
8WR′

πE ′L
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With these, it is also possible to derive formulas for the rigid body approach of the contacts

as well as all principal and shear stresses experienced by the contacts as:

rigid body approach: h0 =
2W

πLE ′

(
1 + ln

(
2πE ′L3

WR′

))

maximum principal stresses: σx = −pmax
[(

2− 1(
z
a

)2
+ 1

)√(z
a

)2

+ 1− 2z

a

]

σy = −2νpmax

[√(z
a

)
− z

a

]

σz = −pmax
[

1√(
z
a

)2
+ 1

]

shear stress: τzx(z) =
∣∣∣σx − σz

2

∣∣∣
maximum shear stress: τmax ≈ 0.3pmax for ν = 0.3

where ν1, ν2 are the Poisson’s ratio and E1, E2 are the respective elastic modulii of the

gears. For more information about the derivation of these properties, refer to [2, 49]. Now,

with expressions for the physical parameters of the contact zone known, focus will shift

onto the fluid model for the lubricant.

2.2 Derivation of Reynolds’ equation from Navier-Stokes

First derived in 1886, the Reynolds’ equation is the differential equation governing the

pressure distribution in the fluid film lubrication. It can be derived as a special case of

the the Navier-Stokes equations for momentum conservation. The derivation will begin

following a traditional control volume analysis [50], the x-component of the Navier-Stokes
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equations for a Newtonian fluid is given by:

ρ
Du

Dt
= ρXa −

∂p

∂x
− 2

3

∂

∂x
(η∇ · u) + 2

∂

∂x

(
η
∂u

∂x

)
+

∂

∂y

[
η

(
∂u

∂y
+
∂v

∂x

)]
+

+
∂

∂z

[
η

(
∂u

∂z
+
∂w

∂x

)]
(2.1)

The governing equation given by (2.1) is valid for a viscous compressible flow with varying

viscosity. For many problems, an analytical solution is not possible and so it is necessary

to make assumptions such that (2.1) can be solved for fluid film lubrication. In general,

fluid film lubrication problems are a subset of slow motion viscous flow conditions and

so, through order-of-magnitude analysis of the non-dimensional form of the (2.1), it can be

shown that the pressure and viscous terms dominate [50]. To derive the Reynolds’ equation,

need to make some key assumptions as:

1. constant viscosity, Newtonian lubricant

2. thin film geometry

3. body forces are negligible

4. no-slip boundary conditions

Let l0, b0, and h0 be the characteristic lengths in the x, y, and z directions respectively.

Then, can use these along with other characteristic quantities to develop a non-dimensional

form of the (2.1). In this form, following an analysis comparing the magnitude of inertial

and viscous forces, all terms of O(h0
l0

) and O(h0
b0

) and higher order are neglected. This

leaves only the O(1) terms, reducing (2.1) to:

∂p

∂x
=

∂

∂z

(
η
∂u

∂z

)
=⇒ u =

z2

2η

∂p

∂x
+ A

z

η
+B

no-slip B.C.s: u|z=0 = u1 and u|z=h = u2

=⇒ u =
z2

2η

∂p

∂x
+
z

h

(
u2 − u1 −

h2

2η

∂p

∂x

)
+ u1
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Now, need to consider the continuity for unsteady flow in the x-direction for the mass

content per unit film area, ρhθ, given by:

∂(ρhθ)

∂t
+

∂

∂x
(ρhθu) = 0 (2.2)

It is more useful to consider the integral form as:∫ h

0

[
∂(ρhθ)

∂t
+

∂

∂x
(ρhθu)

]
dz = 0

Integrating gives the generalized Newtonian Reynolds equation as:

∂

∂x

(
ρh3

12η

∂p

∂x

)
= ur

∂(ρhθ)

∂x
+
∂(ρhθ)

∂t

A more generalized form which includes a fluid flow coefficient will be used in the follow-

ing sections in order to incorporate the lubricant’s non-Newtonian nature.

2.3 Fluid Film Flow Model

The contact of spur gears that have a small crown along the face width direction can be

modeled as a line contact. Following [51–54], the unsteady one-dimensional flow of the

lubricant film in the x direction between the mating surfaces is governed by the generalized

Newtonian Reynolds equation as:

∂

∂x

(
φ
∂p

∂x

)
= ur

∂(ρhθ)

∂x
+
∂(ρhθ)

∂t
(2.3)

where φ is the flow coefficient, θ is the film fraction parameter, p is pressure, h is the film

thickness, ρ is the fluid density, and t is time. The rolling velocity in the x direction is de-

fined as ur = u1+u2
2

where u1 and u2 are the tangential velocities of surfaces 1 and 2. Since

transient effects are introduced by the time-varying surface roughness topography within

the contact zone, the time related squeeze term is kept in (2.3) and t denotes time. The

lubricant density ρ is pressure and temperature dependent according to [19,20]. According
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to [55], the compressibility of the lubricant can be approximated as:

ρ = ρ0

(
1 + λ1p

1 + λ2p

)
(1− λ34Tf ) (2.4)

where λ1 = 2.266 GPa−1, λ2 = 1.683 GPa−1, λ3 is the thermal expansion coefficient asso-

ciated with the fluid temperature rise from the ambient temperature, which is denoted4Tf ,

and ρ0 is the fluid density under ambient pressure and temperature.

To implement the starvation/cavitation description, the fluid film fraction parameter θ

proposed in [48] is implemented; this parameter represents the ratio of local fluid film den-

sity to the density under hydrodynamic pressure. To better understand how this parameter

can be used in (2.3) which encompasses both the fully-flooded and starved lubrication re-

gions, let ρh be the mass content per unit lubricant film area for a complete lubricant film at

hydrodynamic pressure. Within the zone that experiences cavitation, or starved lubrication,

the fluid has density ρc everywhere but the actual mass content is ρchθ per unit area. Within

the fully-flooded areas with a complete fluid film, the density varies due to fluctuations in

the pressure. Hence, by slight compression, the fluid film mass content exceeds the content

that would exist under hydrodynamic pressure and so θ = ρ
ρc

can be used to represent this

mass content fluctuation due to changes in the pressure. When the pressure drops below

ambient pressure, θ becomes the unknown to be solved for following with the implementa-

tions in [41, 42, 45, 46]. With this definition, it is possible to describe starvation/cavitation

without a specifying the geometry of the lubricant in the inlet of the contact zone.

For gear contacts, scuffing failure commonly takes place in the vicinity of the tooth

tip where the sliding is high. Under such circumstances, the reduction of the film thickness

due to the shear thinning effect is expected. Therefore, a Newtonian description of the

lubricant is not sufficient. Rather, as shown in [52–54], the non-Newtonian behavior of the
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lubricant can be incorporated into (2.3) through the flow coefficient φ as:

φ =
ρh3

12η

∫ 1/2

−1/2

ẑτ̂ f(τ̂)dẑ (2.5)

=
ρh3

12η

∫ 1/2

−1/2

ẑτ

G

(
1 + |τ̂ |β

) 1−n
βn dẑ (2.6)

where ẑ is the dimensionless coordinate defined by ẑ = z
h

with z pointing from surface 1 to

surface 2 across the film thickness direction. The origin of the z axis is set at the midpoint

along the film thickness such that z = −h
2
, ẑ = −1

2
at surface 1 and z = h

2
, ẑ = 1

2
at surface

2; the x axis goes along the length of the contact zone. The function f(τ̂) is referred to in

the literature as the shear-thinning function, and uses a modified Carreau model for the non-

Newtonian behavior of the lubricant. In (2.6), the lubricant low-shear viscosity, denoted η,

is dependent on the pressure and the temperature Tf and can be modeled according to [56]

as:

η = η0∞

(
1 +

α̂0p

q

)
exp

(
CFp

p∞ − p

)
exp

(
DFTf∞
Tf − Tf∞

)
(2.7)

where

α̂0 = a0 −
a1

Tf
+
a2

T 2
f

q = b0 +
b1

Tf

p∞ = c0 +
c1

Tf

To fully define and understand (2.6), also need the Newtonian limit shear stressG, the shear

rate sensitivity coefficient n, and the Yasuda parameter β. All of these constants involved

in (2.6) and the others involved in (2.7) are lubricant dependent parameters. For specific

values, refer to Table 8.1 in [57].
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2.4 Numerical Unification

For gear contacts, asperity interaction occurs frequently because of significant surface

roughness that results from machining of the gears. In the local asperity contact regions,

the Reynolds equation fails as the assumption of a continuum fluid is no longer valid.

Within these areas of asperity interaction, the hydrodynamic lubrication film is replaced by

a boundary lubrication one which is assumed to have constant thickness such that:

∂h

∂x
= 0 (2.8)

With the gradient of the film thickness along the x direction zero, it is possible to establish

a unified numerical system to solve the nonlinear governing equations robustly and accu-

rately as shown in [25, 46, 58–61]. The film thickness h in (2.3) and (2.8) is governed by

the rigid body approach of the two solid surfaces h0, the separation between the surfaces

before any elastic deformation takes place g0, the elastic deformation V , and the surface

roughness heights of surfaces 1 and 2, s1 and s2 respectively, as:

h = h0 + g0 + V − s1 − s2 (2.9)

as shown in [58, 59, 61]. The total elastic deformation V (x, t) induced by p(x, t) is given

by:

V (x, t) =

∫ xe

xs

K(x− x′)p(x′, t)dx′ (2.10)

where xs and xe are the start and end points of the computational domain of the contact

zone, and K(x) = −4 ln |x|
πE′

is the influence function [62]. This is called Boussinesq’s half

space formulation and assumes that the contact zone is relatively small and the surfaces are

smooth. Further, for the line contact under consideration the separation g0 is given by:

g0 =
x2

2R′
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The rigid body approach is determined by applying the equilibrium condition along the

normal force direction, equating the total contacting force due to the distributed pressure

over the entire contact zone to the applied normal load. Thus, the load balance equation is

given by

W =

∫
Γ

p(x, t)dx (2.11)

where Γ is the computational domain.The expression in (2.11) is used as a check for the

load balance convergence of the solution. The rigid body approach h0 in (2.9) is adjusted

within a load iteration loop until (2.11) is satisfied.

2.5 Heat Transfer Model

Considering that the lubricant density and viscosity is temperature dependent, as shown

by (2.4) and (2.7), the temperature distribution of the fluid within the contact zone is of

interest. To find this distribution, a simplified form of the fluid energy equation which

neglects heat convection across the fluid film. heat conduction along the rolling direction,

and compressive temperature fluctuations is used as:

kf
∂2Tf
∂z2

+ τ γ̇ = ρcf

(
u
∂Tf
∂x

+
∂Tf
∂t

)
(2.12)

where kf and cf are the lubricant thermal conductivity and specific heat respectively, and

the shear strain rate γ̇ is given by:

γ̇ =

(
τ

η

)
f(τ̂) =

(
τ

η

)(
1 + |τ̂ |β

) 1−n
βn

Since scuffing failure of gears is associated with high surface velocities, the shear flow

dominates and thus the variation of the fluid velocity along the film thickness direction can
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be approximated linearly as:

u = u1(1− ẑ) + u2ẑ

In order to reduce the necessary computational efforts, the parabolic relationship for the

fluid temperature distribution along the ẑ direction proposed by Kim and Sadeghi [63] is

adopted as:

Tf = (3T1 + 3T2 − 6Tm)ẑ2 − (4T1 + 2T2 − 6Tm)ẑ + T1

where Tm is the mean temperature of the fluid across the film thickness, Ti, i = 1, 2 is the

temperatures of surface i and is composed of the surface bulk temperature T bi and flash

temperature rise4Ti as:

T1 = T b1 +4T1

T2 = T b2 +4T2

The surface bulk temperature is assumed to be fixed as the lubricant supply temperature,

while the flash temperature rise is dictated by the frictional heat flux Qi according to [64]

as:

4Ti(x, t) =

∫
t

dt′
∫
x

exp

{
− [(x− x′)− ui(t− t′)]2

4κs(t− t′)

}
Qi(x

′, t′)dx′

2πks(t− t′)
(2.13)

where κs and ks are the thermal diffusivity and conductivity of the solid surface respec-

tively. The heat partition coefficient ϑ is used to partition the total heat flux Q into each of

the bounding surfaces. It is determined according to the boundary condition

T1 − T2 =
h

2kf
(1− 2ϑ)Q (2.14)
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presented by [24], and partition the heat flux such that

Q1 = ϑQ

Q2 = (1− ϑ)Q

Wherever the hydrodynamic fluid film breaks down (h = 0), (2.14) reduces to T1 = T2

implying a continuous temperature transition at the surface interface. Within the hydrody-

namic fluid areas, the total heat flux is obtained by performing integration as

Q =

∫ h/2

−h/2
τ γ̇dz

and within areas of asperity interaction, have

Q = µbp|u1 − u2|

where the boundary lubrication friction coefficient µb = 0.1 in this study following [19,32,

60, 65].
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Gear pair parameters
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Line contact thermal
mixed EHL model
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Bulk temperature

Figure 2.1: Modeling methodology for scuffing failure simulations of line contact.
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Initial fluid temperature ← Inlet oil temperature
Initial pressure ← Hertzian pressure

(Tm,1)tn ← (Tm,1)tn−1

(Tm,2)tn ← (Tm,2)tn−1

(p)tn ← (p)tn−1

Compute surface elastic deformation (V )tn

Determine (h)tn
Determine (η)tn and (ρ)tn
Solve for (p)tn and (θ)tn

Check load balance:∣∣W ′−W
W

∣∣ < 10−3

Check pressure convergence:∑ ∣∣(p)′tn−(p)tn

∣∣∑
(p)tn

< 10−4

(h0)tn = (h0)tn + ωh(W −W ′)

Yes

No

Determine (T1)tn , (T2)tn , and (Tm)tn

Yes

(p)′tn = (p)′tn + ωp[(p)tn − (p)′tn ]
No

Check temperature convergence:
max

∣∣(Tm)tn − (Tm)′tn
∣∣ < 10−4(Tm)′tn = (Tm)′tn + ωT [(Tm)tn − (Tm)′tn ]

No

Complete time step tn

Yes

Figure 2.2: Flowchart of thermal mixed EHL computation.
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2.6 Simulation Design and Discussion
This study models the lubrication behavior of a line contact characterized by a reduced
radius of curvature of r′ = 7.5 mm, under the operating conditions shown by Table
2.1. The normal force density and the inlet lubricant temperature are kept unchanged at
W = 590 N/mm and Tin = 100◦C respectively, which correspond to the Hertzian pressure
of ph = 1.7 GPa and the Hertzian half width ah = 0.22 mm. A total of four velocity
conditions are considered; two rolling velocities of ur = 7.5 and 15 m/s together with two
slide-to-roll ratios of SR = −1 and −0.5. These operating conditions were chosen be-
cause they are typical of high speed gearing applications which are potential candidates for
scuffing failure.

For all simulations the computational domain is xs = −2.5ah ≤ x ≤ 1.5ah = xe
where ah is the half the width of the Hertzian contact area. To investigate the effects of
lubrication starvation on the tribological behavior with respect to the flash temperature,
the fluid film fraction parameter θin takes on ten values as θin = 1, 0.5, 0.15, 0.09, 0.05,
0.03, 0.02, 0.015, 0.01, and 0.005, where θin = 1 represents the full flooded lubrication
condition (i.e. no starvation) and θin = 0.05 represents an extremely starved lubrication
condition. To better understand the physical meaning of the fluid film fraction parameter,
Figure 2.3 shows the shape of the lubrication film between the contact surfaces, where the
film of lubricant attached to each surface at the beginning of the computational domain has
thickness hin1 and hin2 for surfaces 1 and 2 respectively. Air takes up the space between
these two fluid layers in the inlet and outlet zones. With the gap between the solid surfaces
at the beginning of the computational domain defined as gin as shown in Figure 2.3, the
fluid film fraction parameter is defined as

θin =
hin

gin
(2.15)

where

hin = hin1 + hin2

gin = h0 +
x2
s

2r′

From this, the rigid body approach h0 is numerically determined following [58–61]. Cor-
responding to the extremes of the selected θin range, the inlet fluid film thickness varies
as 0.07µm ≤ hin ≤ 14.03µm. The final parameter which varied between simulations was
the surface roughness. In order to analyze the effects of increased asperity presence, four
surface roughness profiles were used: a ground surface, a polished surface, a highly pol-
ished surface, and an idealized, smooth surface. The profiles of the three surfaces with
differing asperity magnitudes are shown in Figure 2.4. The operating conditions described
and shown in Table 2.1 yield a total of forty combinations, which were repeated for the
four surface roughness conditions yielding one hundred and sixty total simulations. The
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velocity values and terminology used to refer to different operating conditions are shown
in Table 2.2.

The roughness profiles shown in Figure 2.4 were measured from cylindrical roller
specimens along the circumferential direction using a Form Talysurf surface profiler. The
root mean square roughness amplitudes are Rq = 0.3, 0.11, 0.06 µm for the ground, pol-
ished, and highly polished surfaces respectively. This study also utilizes a typical tur-
bine fluid, MIL-L23699, whose viscosity dependencies on pressure, temperature, and shear
stress were fully characterized by experimental measurements [52, 53].
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Figure 2.3: Schematic view of thin lubrication film for EHL contacts.
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Figure 2.4: Surface roughness profiles of ground, (top, Rq = 0.3µm), polished, (middle,
Rq = 0.11µm), and highly polished (bottom, Rq = 0.06µm) surfaces.
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Force density, W [ N
mm

] 590

Hertzian pressure, ph[GPa] 1.7

Hertzian half width, ah[mm] 0.22

Inlet lubricant temperature, Tin[◦C] 100

Rolling velocity, ur[ms ] 7.5, 15

Slide-to-roll ratio, SR -1, -0.5

Film fraction boundary condition, θin 1, 0.5, 0.15, 0.09, 0.05,

0.03, 0.02, 0.015, 0.01, 0.005

Surface roughness ground, polished, highly polished, and smooth

Table 2.1: Simulation matrix.
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terminology ur (m/s) SR u1 (m/s) u2 (m/s)

high speed, high sliding 15 -1 7.5 22.5

high speed, low sliding 15 -0.5 11.25 18.75

low speed, high sliding 7.5 -1 3.75 11.25

low speed, low sliding 7.5 -0.5 5.625 9.375

Table 2.2: Velocity values and terminology corresponding to different operating conditions.
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Simulation Results and Discussion

Due to the evolution of the surface roughness profiles, the tribological behavior within the
contact zone is transient and hence so are the physical quantities which characterize it such
as the distributions of the temperature, pressure, film thickness, friction coefficient, and
power loss. Methods of data analysis for each quantity and discussion of their physical
implications follow in the next sections.

3.1 Effects of Starvation on Temperature
In order to study how temperature changed with asperity interaction resultant from the dif-
ferent surface roughness profiles, the maximum temperature of surface 1, T max

1 , is shown
as a function of the asperity contact force ratio χW in Figure 3.1. The asperity contact ratio
is defined as the ratio of the force supported by the asperity contacts to the total normal
force. In particular, Figure 3.1 shows results corresponding to the ground surface finish
under the operating conditions ur = 15 m/s and SR = −1. Remark that these are the
operating conditions which induce the most sliding between the surfaces and will be used
repeatedly to show the extremes of the tribological behavior. As covered in the literature
review, experimental results show that surface flash temperatures above 400◦C can be used
a criteria to establish the onset of scuffing failure. This is the motivation behind the red
dashed lines on Figures 3.1, 3.2, and 3.3 indicating 400◦C. In 3.1, there are multiple in-
stances where the maximum surface temperature rises above the scuffing criteria - in fact,
it happens for every operating condition where θ in ≤ 0.05. For comparison, Figures 3.2
and 3.3 show the same quantities for the polished and highly polished surfaces respec-
tively under the same operating conditions. Observe that the temperatures in Figure 3.1
are relatively high compared to Figures 3.2 and 3.3, and neither of the latter figures show
any occurrence of temperatures high enough to pass the scuffing threshold. The maximum
value of T1 with respect to both temporal and spatial resolutions is shown in 3.4 - this fur-
ther highlights that the maximum temperature is ∼ 440◦C for θ in ≤ 0.05.

With respect to the surface roughness profiles, the substantial variations of T max
1 with

χW over time shown in Figure 3.1 can be attributed to the significant surface roughness
height fluctuations of the ground surface. The other trend of interest in both Figures 3.1
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and 3.3 is the change in T max
1 as the severity of lubrication starvation is increased. The

most starved case where θin = 0.05 shows a substantial increase in the maximum sur-
face temperature as compared to the fully flooded case, i.e. θin = 1. Both figures show
a dramatic increase in the asperity contact activity as θin is decreased, contributing to the
increase of T max

1 . Another way to examine the flash temperature variation is through the
statistical analysis proposed by Li et al. which constructs the probability density distribu-
tion of T max

1 to better visualize the variations with starvation severity [19].

Figures 3.5, 3.6, and 3.7 show the probability density distributions of T max
1 for all

starvation conditions, operating at ur = 15 m/s and SR = −1, for the ground, polished,
and highly polished surfaces respectively. Each of these show that T max

1 approximately
follows a Gaussian or normal distribution; this was supported by a lack of rejection by
Kolmogorov-Smirnov tests with α = 0.05 level of significance. The associated standard
deviations generally increase as θin decreases and the surface roughness becomes more se-
vere. This is a result of the increased asperity interaction as both the roughness amplitude
and the starvation severity increases.

To fully characterize the flash temperature variation with the starvation severity, the
median of the T max

1 distribution, denoted T̄ max
1 , is shown as a function of θin in Figure

3.8 for all operating condition and surface profile combinations. It is shown that the high
rolling velocity (ur = 15 m/s) and high slide-to-roll ratio (SR = −1) yield higher flash
temperatures as compared to the low rolling (Ur = 7.5 m/s) and low slide-to-roll ratio
(SR = −0.5) cases. This is a direct result of the elevated shear rate in the lubricated
areas and the increased sliding velocity in the asperity contact areas, which contribute to
the viscous and boundary friction heat flux respectively. For the three engineering surface
finishes (ground, polished, and highly-polished), the ground surface which has the highest
roughness amplitude produces the highest flash temperature. When the surface is polished,
reducing Rq from 0.3 µm to 0.11 µm, the flash temperature decreases substantially; the
reduction is much less when the surface is highly polished toRq of 0.06 µm. Figure 3.8 also
shows that the median maximum temperature of surface 1 does not increase immediately
as θin decreases; rather, a dramatic increase is shown beyond θin = 0.09, 0.05, and 0.03 for
the ground, polished, and highly-polished surfaces respectively. This trend is replaced by
asymptotic behavior for θin = 0.03, 0.01, and 0.005 for the ground, polished, and highly-
polished surfaces respectively.

3.2 Effects of Starvation on Film Thickness
To investigate the underlying cause of the relationship between T̄ max

1 and θin shown in
Figure 3.8, the average film thickness within the nominal Hertzian zone, defined as:

havg =

∫ ah

−ah

h

2ah
dx
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Figure 3.1: Variations of T max
1 with χW for all film fraction boundary conditions for the

ground surface under operating conditions ur = 15 m/s and SR = −1.

36



Figure 3.2: Variations of T max
1 with χW for all film fraction boundary conditions for the

polished surface under operating conditions ur = 15 m/s and SR = −1.
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Figure 3.3: Variations of T max
1 with χW for all film fraction boundary conditions for the

highly polished surface under operating conditions ur = 15 m/s and SR = −1.
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Figure 3.4: Worst-case scenario: maximum value of T max
1 against theta in for all film

fraction boundary conditions for the ground surface under operating conditions ur = 15
m/s and SR = −1.
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Figure 3.5: Probability density distribution of T max
1 for all film fraction boundary condi-

tions under operating conditions ur = 15 m/s, SR = −1, and the ground surface.
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Figure 3.6: Probability density distribution of T max
1 for all film fraction boundary condi-

tions under operating conditions ur = 15 m/s, SR = −1, and the polished surface.
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Figure 3.7: Probability density distribution of T max
1 for all film fraction boundary condi-

tions under operating conditions ur = 15 m/s, SR = −1, and the highly polished surface.
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Figure 3.8: Variations of T̄ max
1 with θin under various operating conditions.
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was calculated. Then, the median of havg, denoted h̄avg, was found and plotted as a function
of θin and the inlet film thickness hin in Figure 3.9. This figure shows the contact for all
different operating condition and surface roughness profiles. Under the fully flooded con-
dition, i.e. θin = 1, the median average film thickness, denoted h̄fldavg was found to decrease
as the roughness amplitude decreased for each operating condition as shown in Table 3.1.
The larger median average film thickness for the ground surface, i.e. the roughest surface,
is due to the larger peak to valley height of the surface profile as shown by Figure 2.4. The
larger peak to valley height keeps the two surfaces separated and prevents them from com-
ing too close to each other, which would create excessive contact pressures thus allowing
the equilibrium condition to be reached along the normal force direction.

To better understand the dependencies at play, consider the ground surface under the
highest sliding operating conditions shown in the top left subplot in Figure 3.9. It is shown
that when θin = 0.15, the supply lubrication film thickness hin = 2.1 µm which is much
larger than h̄fldavg = 0.43µm. As a result, h̄avg remains unchanged in Figure 3.9 which
explains why T̄ max

1 is not affected when θin decreases from 1 to 0.15 in Figure 3.8. Con-
tinuing to decrease θin to 0.09, 0.05, and 0.03, Figure 3.9 shows a reduction in hin to 1.3,
0.7, and 0.4 µm respectively, approaching h̄fldavg. Under these circumstances, the starvation
impacts the lubrication film thickness resulting in a substantial drop in h̄avg which corre-
sponds to the large flash temperature increase in the top left subplot of Figure 3.8. However,
as θin is further reduced, Figure 3.9 shows that the median average film thickness maintains
its value, even as hin becomes 0.07 µm at θin = 0.05 which is much smaller than h̄fldavg.

This second region of flatness in h̄avg when θin is small is due to the small roughness
heights of the two mating surfaces which do not permit further rigid body approach to en-
sure that the equilibrium condition is satisfied. The same behavior is observed for the other
two engineering surfaces. The median average film thickness decreases slightly when θin

decreases below 0.05, 0.03, and 0.01 for the polished, highly polished, and smooth sur-
faces respectively. The marked decrease of h̄avg for the smooth surface under all operating
conditions is due to the absence of surface roughness which allows for the most rigid body
approach. An interesting behavior to remark is that the values of hin that correspond to the
second region of flatness in h̄avg as θin becomes small are 0.4, 0.14, and 0.07 µm for the
ground, polished, and highly polished surfaces respectively; these are very similar to the
corresponding composite surface roughness RMS amplitudes, Rc

q for the three engineering
surfaces which are Rc

q = 0.42, 0.16, and 0.08 µm respectively.
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h̄fldavg ur = 15 m/s ur = 15 m/s ur = 7.5 m/s ur = 7.5 m/s

(µm) SR = −1 SR = −0.5 SR = −1 SR = −0.5

ground 0.43 0.42 0.39 0.38

polished 0.24 0.25 0.18 0.18

highly polished 0.22 0.22 0.15 0.15

smooth 0.20 0.21 0.13 0.13

Table 3.1: Median average film thickness under fully flooded lubrication condition, h̄fldavg,
for each surface roughness and operating condition.

45



Figure 3.9: Variations of h̄avg with θin and hin under various operating conditions.
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3.3 Effects of Starvation on Pressure
Considering the time varying surface roughness profiles within the contact zone, the max-
imum contact pressure, pmax, is unsteady and its probability density distribution is also
Gaussian similar to that of T̄ max

1 . Following Figures 3.5, 3.6, and 3.7, the probability den-
sity distributions of maximum contact pressure for the ground, polished, and highly pol-
ished surface profiles under the operating conditions ur = 15 m/s and SR = −1 are shown
in Figures 3.10, 3.11, and 3.12 respectively. The median of the maximum contact pressure,
p̄ max, follows in Figure 3.13. It is observed that the pressure increases as the starvation
severity is increased, i.e. as θin in decreased. Since the contact pressure dictates the rolling
contact fatigue failure, the relationship observed between p̄ max qualitatively explains the
experimentally measured asymptotic relationship between contact fatigue life and lubri-
cant flow rate shown in [66]; in their experiments, Querlioz et al. controlled the flow rate
to arrive at different starvation conditions. Figure 3.13 also shows that the pressure is sig-
nificantly elevated under high sliding operating conditions since both cases with SR = −1
show higher magnitude pressures as compared to those where SR = −0.5. This shows an
important shear thinning effect - as the viscosity of a shear thinning lubricant decreases, the
film thickness height will decrease thus increasing the contact pressure. Comparing across
the different surface roughness profiles, it is clear that the ground surface results in much
larger contact pressure than the other surfaces; further, the pressure difference between the
polished and highly-polished surfaces is relatively small. This is also shown by Figures
3.14, 3.15, and 3.16 which allow for comparison of changes in the behavior of pmax with
θin for the different surface roughness profiles. In comparison to the smoother surfaces,
the contact pressure in Figure 3.14 is relatively elevated and the most dependent on the
asperity interaction for all values of θin. For the polished and highly-polished surfaces, the
contact pressure profile remains largely unchanged for the larger values of θin and only
shows slight change for θin < 0.05. For all surface roughness profiles it is clear that as the
starvation severity is increased the asperity interaction becomes more important and hence
more closely dictates the contact pressure behavior.

3.4 Effects of Starvation on Friction Coefficient
The friction coefficient µ is the ratio of the friction force between surfaces 1 and 2 to the
normal load applied to them. In all cases, the same normal load of W = 590 N/mm was
applied so Figures 3.17, 3.18, and 3.19 show the differences in the friction force generated
under different operating conditions and surface roughness profiles. In general, the friction
force can be calculated via surface area integral as

f =

∫
As

τdS

As before, it is clear that the ground surface results in the most asperity interaction as in-
dicated by the elevated χW ; accordingly, the amount of asperity interaction decreases as
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Figure 3.10: Probability density distribution of pmax for all film fraction boundary condi-
tions under operating conditions ur = 15 m/s, SR = −1, and the ground surface.
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Figure 3.11: Probability density distribution of pmax for all film fraction boundary condi-
tions under operating conditions ur = 15 m/s, SR = −1, and the polished surface.
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Figure 3.12: Probability density distribution of pmax for all film fraction boundary condi-
tions under operating conditions ur = 15 m/s, SR = −1, and the highly polished surface.

50



Figure 3.13: Variations of median maximum contact pressure with θin under various oper-
ating conditions.
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Figure 3.14: Variations of maximum contact pressure with χW for all film fraction bound-
ary conditions under operating conditions ur = 15 m/s, SR = −1, and the ground surface.
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Figure 3.15: Variations of maximum contact pressure with χW for all film fraction bound-
ary conditions under operating conditions ur = 15 m/s, SR = −1, and the polished sur-
face.

53



Figure 3.16: Variations of maximum contact pressure with χW for all film fraction bound-
ary conditions under operating conditions ur = 15 m/s, SR = −1, and the highly-polished
surface.
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the surface is made smoother by polishing. Since friction force originates from asperity
interaction, the friction coefficient µ varies directly with χW in all cases. This is distinctly
evident in Figure 3.17 where the plots of µ and χW with time have the same profile for all
lubrication starvation conditions, with both quantities increasing as the starvation severity
is increased. In Figures 3.18 and 3.19, the same behavior is observed but the magnitude of
both µ and χW are decreased due to the smoother surfaces.

Similarly to the analysis of temperature and pressure, the median friction coefficient
µ̄ was found and plotted for each possible combination of surface roughness profiles and
operating conditions. This plot shows that for all operating conditions, the friction coeffi-
cient is lowest for the fully flooded lubrication condition and increases as the severity of
the lubrication starvation is increased. It is also shown that for all operating conditions the
three engineering surfaces arrive at very similar values of µ̄ for the most starved condition.
Generally, the ground surface is shown to have the most dramatic increase in µ̄ and remains
elevated above the values of µ̄ corresponding to all of the other engineering surfaces. An
interesting trend which was not evident in similar plots of flash temperature and pressure
is the elevation of µ̄ in the cases with lower magnitude sliding velocity. Since this holds
for both values of ur and SR = us

ur
, this indicates that increasing the sliding velocity us

results in an increase in the friction coefficient µ. This is supported by Figure 3.21 which
shows that µ is elevated in all starvation cases for the ground surface with ur = 15 m/s,
SR = −0.5 as compared to Figure 3.17 where the only difference is in the operating con-
dition SR = −1. This increase in µ for the cases with SR = −0.5 are a result of the more
balanced surface velocities for these cases as shown by Table 2.2. When the slide-to-roll
ratio is decreased in magnitude, which corresponds to “low sliding”, the difference in the
surface velocities u1 and u2 is smaller. This results in longer periods of more severe as-
perity interaction, as shown by comparing Figures 3.17 and 3.21, which leads to increased
friction force generated between the surfaces and thus higher friction coefficient.

3.5 Effects of Starvation on Power Loss
The power loss due to sliding between the solid surfaces can be calculated simply as:

P = fus

Following the previous analysis, the plots of power loss P for all lubrication conditions un-
der the high velocity, high sliding operating conditions are shown in Figures 3.22, 3.23, and
3.24 for the ground, polished, and highly polished surface roughness profiles respectively.
Figure 3.22 shows that the power loss varies proportionally with the amount of asperity
interaction, and increases as the lubrication starvation is increased. Comparing this with
Figures 3.23 and 3.24, it is clear that the power loss has the greatest magnitude and amount
of variation for the ground surface and both of the characteristics decrease accordingly with
the surface roughness.
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Figure 3.17: Variations of friction coefficient with χW for all film fraction boundary con-
ditions under operating conditions ur = 15 m/s, SR = −1, and the ground surface.
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Figure 3.18: Variations of friction coefficient with χW for all film fraction boundary con-
ditions under operating conditions ur = 15 m/s, SR = −1, and the polished surface.
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Figure 3.19: Variations of friction coefficient with χW for all film fraction boundary condi-
tions under operating conditions ur = 15 m/s, SR = −1, and the highly-polished surface.
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Figure 3.20: Variations of median friction coefficient with θin under various operating
conditions.
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Figure 3.21: Variations of friction coefficient with χW for all film fraction boundary con-
ditions under operating conditions ur = 15 m/s, SR = −0.5, and the ground surface.
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The median power loss for all surface roughness profiles under all operating conditions
is shown in Figure 3.25. Here, it is clear that the high velocity, high sliding operating
conditions produce the most power loss with the highest overall occurring for the ground
surface. There is less variation between the surface loss of different surfaces for the cases
with lower rolling velocities (bottom row). This indicates that a higher rolling velocity,
which by definition means a higher average of the surface velocities, creates conditions
which are more strongly influenced by asperity interaction. Since in the previous section
it was discussed that the highest friction force is actually generated in the cases with lower
slide-to-roll ratios, the highest power loss corresponding to the high velocity, high sliding
case must be due to it having the largest magnitude rolling and sliding velocities.

3.6 Analysis of Single Time Instant
Considering that a great deal of the results discussed were produced by time-series analy-
sis, it was also important to investigate the tribological behavior for one time instant with
respect to spatial variations. In order to give an overarching view, the distributions of
pressure, film thickness, temperatures (of surfaces 1 and 2 as well as the average fluid tem-
peratures), and the film fraction parameter are shown for one time instant and the ground,
polished, and highly-polished surfaces in Figures 3.26, 3.27, and 3.28 respectively. Each of
these plots are for the highest sliding operating conditions of ur = 15 m/s and SR = −1. It
was previously shown that as the lubricant starvation severity is increased, so is the asperity
interaction. This is supported by the elevated contact pressure shown in Figure 3.26 for the
most severely starved case (top right subplot) as compared to the fully flooded condition
(top left subplot). The elevated contact pressure results in the increase in fluid temperature
as well as the temperatures of each solid surface as shown by the right middle subplot.

Recall that the film fraction parameter θ represents the mass content fluctuation due
to changes in pressure which cause slight compression of the fluid. When θin = 1, the film
fraction parameter θ maintains a value of 1 until the outlet cavitation occurs. As θin is
reduced to introduce the starved lubrication condition, Figure 3.26 shows that θ increases
slowly in the inlet zone and within the nominal Hertzian zone frequently drops to very
small values indicating severe local cavitation. For the other engineering surfaces, the in-
stantaneous distributions of the polished and highly polished surfaces are shown in Figures
3.27 and 3.28 respectively. These two smoother surfaces show that fully flooded lubrica-
tion is replaced by mixed lubrication as θin is reduced, increasing the contact pressures as
well as lubricant and surface temperatures. The plots of θ for these smoother surfaces show
that although there is local cavitation occurring in the nominal Hertzian zone indicated by
θ falling below 1, the occurrence is less frequent than for the ground surface and the val-
ues of θ are not as small. Comparing the top rows of Figures 3.26, 3.27, and 3.28, it is
clear that the film thickness for the ground surface profile is the largest due to it having
the most significant surface roughness fluctuations. When these surface roughness fluctu-
ations are reduced via polishing, the film thickness decreased accordingly; this is due to
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Figure 3.22: Variations of power loss with χW for all film fraction boundary conditions
under operating conditions ur = 15 m/s, SR = −1, and the ground surface.
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Figure 3.23: Variations of power loss with χW for all film fraction boundary conditions
under operating conditions ur = 15 m/s, SR = −1, and the polished surface.
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Figure 3.24: Variations of power loss with χW for all film fraction boundary conditions
under operating conditions ur = 15 m/s, SR = −1, and the highly-polished surface.
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Figure 3.25: Variations of median power loss with θin under various operating conditions.
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the equilibrium condition between the contact pressure and the applied normal force, i.e.
W =

∫
pdx, which allows the two surfaces with reduced surface roughness to come closer

together without producing excessive contact pressure.
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Figure 3.26: The distributions of pressure and film thickness (top), temperature (middle),
and film fraction (bottom) at one time instant for the ground surface operating under ur =
15 m/s and SR = −1. The left, middle, and right columns correspond to θin = 1, 0.5, and
0.05 respectively.
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Figure 3.27: The distributions of pressure and film thickness (top), temperature (middle),
and film fraction (bottom) at one time instant for the polished surface operating under
ur = 15 m/s and SR = −1. The left, middle, and right columns correspond to θin = 1, 0.5,
and 0.05 respectively.
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Figure 3.28: The distributions of pressure and film thickness (top), temperature (middle),
and film fraction (bottom) at one time instant for the highly-polished surface operating
under ur = 15 m/s and SR = −1. The left, middle, and right columns correspond to θin =
1, 0.5, and 0.05 respectively.

69



Summary and Conclusion

4.1 Summary
This thesis presents a parametric study of the effects of lubrication starvation on a spur gear
line contact via numerical simulation. The overall goal of this work is to computationally
examine the effects of lubrication starvation and high speed operating conditions on the
flash temperature of the contact surfaces, and to draw conclusions about the likelihood of
scuffing failure in the different scenarios considered. The first challenge in developing this
work lies in understanding the numerical approach.

In order to accurately account for the mass content fluctuations that occur with changes
in the pressure, the θ approach taken in [48] is used. The variable of highest interest in these
simulations is the flash temperature on the surface of the contact. This is found by further
implementing a heat transfer model between the lubricant and contact surfaces which ac-
counts for conductive heat transfer across the fluid film, the work done on the lubricant
by viscous forces, the net outflow of thermal and internal energy in the rolling direction,
and the rate of storage of internal energy. Realistic models are used for all major physical
characteristics of the lubricant. All simulations were conducted for lubricant flow modeled
by the generalized Newtonian Reynolds equation, with the non-Newtonian behavior of the
lubricant included through the flow coefficient which utilizes a modified Carreau model.
The compressibility of the lubricant is taken into account by an approximate formulation
which includes dependencies of the density on both pressure and temperature; similarly,
the viscosity also follows a pressure and temperature dependent model. Numerical conver-
gence is reached by applying an equilibrium condition at each time step which demands
that the load applied to the system be equal to the distributed pressure over the contact
zone. Further, it is required that the pressure and temperatures approach a consistent value
at each time step.

In addition to the numerical complexity of the line contact model presented here, the
surface profiles of the contact surfaces are real. They were measured using a surface pro-
filer, and in total four surfaces were used corresponding to three real gear tooth surfaces
and one idealized (perfectly flat) surface. The three engineering surfaces used correspond
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to different levels of polishing; overall, ground, polished, and highly polished surfaces were
used with the ground surface begin the roughest, i.e. having the most variation. Each sur-
face was subjected to different operating and starvation conditions.

The load applied was the same for all simulations - the operating conditions which var-
ied were the rolling and sliding velocities, which together determine the velocities of the
contact surfaces. Each velocity was given two different values, making 16 different com-
binations. The chosen values correspond to realistic operating conditions for spur gears
in aerospace applications, a situation which is well-known to be particularly susceptible to
scuffing failure.

The final complexity in this study is the lubrication starvation. The formulation was
implemented intentionally such that knowledge of the inlet cavitation geometry was not
necessary - instead, the severity of the starvation was able to be provided explicitly. In all,
10 different starvation levels were used to represent the range from fully-flooded lubrication
conditions to an extremely starved situation, which is known to occur prior to scuffing
failure when debris blocks the lubrication inlet. Hence, all told the results here correspond
to 160 total tribological simulations.

4.2 Conclusions
Considering the results presented in Chapter 3, the following conclusions can be reached
regarding the effects of lubrication starvation and high speed operating conditions on scuff-
ing failure of spur gears:

• Flash temperatures of the same magnitude as those established in the literature as a
criteria for the occurrence of scuffing failure were observed for the ground surface
under the high sliding and high rolling operating conditions for lubrication starvation
≥ 50%.

• As the severity of lubrication starvation is increased, it is observed that:

– the median maximum surface temperature increases

– the amount of asperity interaction increases

– the median average film thickness decreases

– the median maximum contact pressure increases

– the friction coefficient increases

– the median power loss increases

Overall this suggests that as the lubrication starvation severity is increased, the oper-
ation becomes less efficient in terms of power loss and increased frictional heating,
which is the mechanism that leads to the occurrence of scuffing failure. Hence, spur
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gears subjected to starved lubrication are more likely to experience scuffing failure,
with extreme starvation corresponding to the highest chances.

• Under the high sliding and high rolling operating conditions, it is observed that:

– the median maximum surface temperature is maximal for all engineering sur-
face profiles

– the median average film thickness is slightly elevated

– the median maximum contact pressure is maximal for all engineering surface
profiles; it is especially elevated in the high sliding cases

– the median friction coefficient is minimal for all engineering surface profiles

– the median power loss is maximal for all engineering surface profiles

These results suggest that operating at high velocities (rolling and sliding) lead to tri-
bological conditions which are most susceptible to scuffing failure. This supports the
observation of such failures in industrial applications, and further provides evidence
that spur gears under high speed operating conditions - particularly high sliding con-
ditions - require special considerations considering the higher likelihood of scuffing
failure.

• As the RMS roughness amplitude is decreased, it is observed that:

– the median maximum surface temperature decreases

– the median average film thickness decreases

– the median maximum contact pressure decreases

– the variation of the friction coefficient decreases

– the median power loss decreases

These results support using polishing compounds to mitigate the chances of scuffing
failure since the highly polished surface was the least likely to experience high flash
temperatures or marked increases in frictional heating.

4.3 Recommendations for Future Work
The numerical results presented here have offered a lot of information about the effects of
lubrication starvation on gear contacts an their susceptibility to scuffing failure for realistic
engineering surfaces under high speed operating conditions, with robust models used for all
lubricant properties. Still, many aspects could be better understood with further numerical
and experimental investigations.

In particular, a significant assumption is made in the heat transfer model concerning
the boundary lubrication friction coefficient µb. For the results presented here, a constant
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value of µb = 0.1 was used which is reasonable for the boundary layer lubrication regime.
However, it is well-known that the friction coefficient increases as the amount of lubrica-
tion decreases and so it is not certain whether the chosen constant friction coefficient is the
most accurate for differing amounts of lubrication starvation. To increase the fidelity of
the model, future work could focus on experimental characterization of different lubricants
under a range of lubrication starvation severity and the results could then be incorporated
into the computational model.
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