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ABSTRACT

Chadha, Ankit., Ph.D., Department of Electrical Engineering, Wright State Uni-

versity, 2019. Tapped-Inductor Buck DC-DC Converter.

There is a high demand for low step-down dc voltage conversions. Many con-

ventional power converters that are currently being used have a moderate conversion

ratio and this may not be sufficient to meet the demand. This can be achieved by

either cascading power converters or using converters with a low step-down conver-

sion ratio. Cascading the convertors increases the power conversion stage complexity

and increase the order of the system, while also effecting the stability. Using con-

verters with high conversion ratio seem to be a more intelligent option to root. This

dissertation tackles to analyze one such converter, called tapped-inductor buck dc-dc

converter.

A tapped-inductor buck dc-dc converter, capable to produce higher conversion

ratios compared to the conventional converters is used. An analysis describing a

detailed steady-state operation of the converter is provided. The expected voltage

and current waveforms across different components at different point of time during

the entire operation of the converter are analytically derived. Design equations for the

converter have also been provided. Power lost across various converter components

are predicted. The overall converter efficiency is calculated.

The dynamics of the system are predicted. For this a model of the tapped-inductor

buck dc-dc converter is derived using circuit averaging technique. Transfer functions

relating the output to the input and the control voltages are derived. Various poles

and zeros effecting the system magnitude and phase plots were analytically defined.

A controller closed-loop system is implemented. Various time and frequency do-

main parameters effecting the system response are measured and compared to the

open-loop system.
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All the theoretically obtained responses are implemented using MATLAB and ver-

ified using saber circuit simulator. The verified model responses from the simulations

are also validated through hardware implementation.
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1 Introduction

Obtaining a sustainable energy production at lowered costs has always been a global

priority. This has lead to many improvements in technologies. Power electronic con-

verters with their many available topologies, which help interface different energy

sources is an example of one such technology. Power electronic converters use MOS-

FETs, driven by pulse width modulated (PWM) pulses, as switches to produce output

voltage. Hence, they are named switch-mode dc-dc converters. The turn-on time and

the turn-off time of these switches play an important role deciding the characteristics

of the converter as they provide conversion ratio for these converters.

Since power electronic converters provide good conversion ratio, a proper regula-

tion of the duty cycle can help in controlling the output voltage. A controller can be

employed for such application. The main task of a controller is to sense a change in a

required quantity and provide proper compensation, when the situations asks for it.

Power electronic converters like, a dc-dc buck or a dc-dc boost converter employ such

controllers to keep the output voltage in desired range. In this proposal the converter

in question in tapped-inductor current dc-dc converter. A type III controller will be

designed and implemented on this converter and analyzed through the remainder of

this document.

1.1 Motivation

Power convertors are rapidly used in many industries. My first hand experience for

the design and implementation of one such power converter would come to me during

internship at Delphi, Kokomo. The goal of our project was to develop a power supply

for a fully functional electrical vehicle. Multiple power converter topologies were used

for stepping up and down the voltages for different requirements. A single supply in

the form of a battery is used to run the vehicle and serve the remaining entertainment

1



and convenience in the vehicle. For the different levels of power conversions based on

the requirements are made. Even for charging the battery the power converters are

used for fast and efficient charging. Most of the converters in the project used were

conventional buck and boost converter which provide a good voltage conversions. But

the voltage conversion in these converters are linear in nature . If higher conversion

ratios are required, cascading the converters could help us achieve the task at hand.

This not only makes the power conversion complex but also adds to the circuit density.

As each convertor stage will require its own driver and control stage. But there are

many other topologies available in the market which can provide better conversion

ratios. One such converter is a tapped-inductor buck dc-dc converter. Having this

knowledge became a motivation for me to provide a good analytical background to

the scientific community to support the use of tapped-inductor buck dc-dc converter

and make it more convenient and easily available converter in the market.

1.2 Dissertation Objectives

• Analyse the operation and derive the design equations for tapped-inductor buck

dc-dc converter.

• Model the converter and characterize the tapped-inductor buck dc-dc converter

by deriving input voltage-output voltage transfer function (Mv) and control-to-

output voltage transfer function (Tp)

• Design and implement a controller for a designed converter. This helps obtain

a tuned and controlled output.

• Use SABER circuit simulator to implement the designed converter along with

controller and verify the obtained theoretical responses.

• Using hardware implementation to verify the SABER simulations.

2



1.3 Overview

The following proposal has been divided in to seven different chapters

• Chapter 2: Steady-state analysis of the tapped-inductor buck dc-dc converter

running in continuous-conduction mode (CCM) has been presented. The gain

offered by the converter is calculated. Design equations have been derived.

Mathematical equations to represent the converter waveforms have been pre-

sented. Power lost across each and every parasitic is calculated. An equation

representing the over all efficiency of the converter is derived. Design example

has been used to verify the designed converter using a circuit simulator and

hardware implementation.

• Chapter 3: Steady-state analysis of the tapped-inductor buck dc-dc converter

running in discontinuous-conduction mode (DCM) has been presented. The

gain offered by the converter is calculated. The effect of load on the dc gain

has also been represented. Mathematical equations to represent the converter

waveforms have been presented. Power lost across each and every parasitic is

calculated. An equation representing the over all efficiency of the converter is

derived. Design example has been used to verify the designed converter using

a circuit simulator and hardware implementation.

• Chapter 4: In this chapter a linearized-averaged model to analyze the converter

has been derived using circuit averaging technique.

• Chapter 5: The characteristics of the converter is presented. Frequency-

domain transfer functions have been derived for the same. MATLAB and circuit

simulations are used to obtain and verify the model. The model was also verified

by using the switching circuit during the hardware implementation.

3



• Chapter 6: Here the voltage mode control has been introduced. Loop-gain

of the converter in question is using to design the required controller. The

closed-loop was designed to satisfy common industrial standards for a controlled

converter.

• Chapter 7: The responses obtained from the over all closed-loop system

namely, the closed-loop input-to-output voltage response (Mvcl)and closed-loop

control-to-output voltage responses (Tpcl) were analytically derived and verified

using MATLAB, SABER circuit simulator and hardware implementation

4



2 Steady-State Analysis of the Power Stage in CCM

Wide voltage conversion ratio power electronic converters are in great demand, es-

pecially in applications such as data centers, point-of-load power supplies, renewable

energy sources, and battery-operated portable devices. The tapped-inductor buck

converter is capable of providing a much wider step-down than that produced by a

conventional buck converter[1]-[10]. Here a complete steady-state analysis for con-

verter operation in continuous-conduction mode is presented. The main objectives of

this chapter are:

1. To analyze the steady-state converter current and voltage waveforms during the

switch on and off intervals.

2. To determine the expressions required to design the converter components.

3. To derive the expression for the total power loss and hence the overall efficiency

of the converter.

Using a design example of a tapped-inductor buck converter, the theoretical pre-

dictions are validated through circuit simulations performed on SABER simulation

software.

2.1 Principle of Operation

The principle of operation of the tapped-inductor buck converter is similar to that

of a conventional buck converter. A circuit representing a tapped-inductor buck

dc-dc converter can be seen in Fig. 2.1. The tapped-inductor network provides a

wide voltage step down depending on the selected turns ratio n[1]. The input and

the output terminals of the tapped-inductor are hereby referred to as primary and

secondary, respectively. The magnetizing inductance is placed across the secondary

winding of the tapped-inductor. The magnetizing inductance performs the same task
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Figure 2.1: Circuit of a PWM tapped-inductor buck converter.

as the filter inductor in traditional buck converter. The primary and the secondary

voltages and currents of the tapped-inductor are related as[1]

vp

vs

= is
ip

= n− 1 = N1

N2
, (2.1)

where the turns ratio

n = N1

N2
+ 1. (2.2)

In (2.1), vp is the primary-winding voltage, vs is the secondary-winding voltage, N1

is the number of primary turns, and N2 is the number of secondary turns.

2.1.1 Time Interval: 0 < t ≤ DT

In this time interval, the switch S1 is on the diode is off. The sub-circuit rele-

vant to this time interval is shown in Fig. 2.2. The input voltage is in series with

the magnetizing inductance L of the tapped-inductor. Fig. 2.4 represents the ideal-

ized theoretical waveforms of PWM tapped buck dc-dc converter running in CCM.

Applying Kirchhoff’s voltage law, the voltage across L is

vL = vs = VI − VO − vp. (2.3)

Since vp = (n− 1)vs,

vs = VI − VO − (n− 1)vs. (2.4)
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Figure 2.2: Equivalent circuit of the tapped-inductor buck converter for the interval
0 < t ≤ DT .

Solving (2.4) for the secondary side voltage or the inductor voltage produces

vs = vL = VI − VO

n
. (2.5)

The current through the inductance L is

iL(t) = 1
L

∫ t

0
vLdt = VI − VO

nL
t+ iL(0). (2.6)

Therefore, the peak-to-peak value of the current through L is

∆iL = iL(DT )− iL(0) = VI − VO

nL
DT. (2.7)

Applying Kirchhoff’s current law, the relationship between the switch current, induc-

tor current and the secondary side current is given by

iS1(t) = iL(t)− is(t). (2.8)

Since ip = iS1 and is = (n− 1)ip, the secondary side current is related to the switch

current as

is = (n− 1)iS1. (2.9)

Substituting (2.9) into (2.84) produces

iS1(t) = iL(t)− (n− 1)iS1(t) = iL(t)
n

. (2.10)
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Figure 2.3: Equivalent circuit of the tapped-inductor buck converter for the interval
DT < t ≤ T .

Substituting (2.6) into (2.10), the instantaneous switch current is

iS1(t) = iL(t)
n

= VI − VO

n2L
t+ iL(0)

n
(2.11)

and the peak-to-peak value of switch current is

∆iS1 = iS1(DT )− iS1(0) = VI − VO

n2L
DT. (2.12)

The voltage across the switch vS1 and the current through the diode iD are zero. The

voltage across the diode vD is

vD = −(vs + VO). (2.13)

Substituting (2.5) into (2.13) produces

vD = −
(
VI − VO

n
+ VO

)
= −VI + (n− 1)VO

n
. (2.14)

2.1.2 Time Interval: DT < t ≤ T

In this time interval, the switch S1 is off and the diode is on. The sub-circuit relevant

to this time interval is shown in Fig. 2.3. The magnetizing inductance current flows

to the output and charges the capacitor. Using Kirchhoff’s voltage law, the voltage

8



across the secondary winding is

vS1 = VI − (vP + vS + VO). (2.15)

Using KVL on the output side loop to get

vS = −VO. (2.16)

Substitute (2.1) and (2.15) into (2.16) to get

vS1 = VI − (−(n− 1)VO − VO + VO) = VI + (n− 1)VO (2.17)

and the current through the switch iS1 is zero. The voltage across the inductor is

given by

vL = −VO. (2.18)

The current through the diode iD is equal to the sum of magnetizing inductance

current iL and secondary side cirrent iS.

iD(t) = iL(t) + is(t). (2.19)

Since the MOSFET switch is off the current flowing through the primary is zero. This

results in the current flowing through the secondary of the tapped-inductor buck to

also be equal to zero.

is(t) = 0. (2.20)

Therefore, the diode current flows through the inductor and is given by

iD(t) = iL(t) = 1
L

∫ t

DT
vLdt = −VO

L
(t−DT ) + iL(DT ). (2.21)

Therefore, the the peak-to-peak value of diode current is

∆iD = iD(T )− iD(DT ) = −VO

L
(1−D)T. (2.22)

The voltage across the diode vD is equal to zero.
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Figure 2.4: Key current and voltage waveforms of the tapped-inductor buck converter.
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2.2 DC Voltage and current Ratios

The principle of volt-second balance states that the average steady-state dc voltage

across the inductor is equal to zero. Applying this theory to L gives
∫ DT

0
vLdt =

∫ T

DT
vLdt. (2.23)

From (2.5), (2.18) and (2.23), we get

VI − VO

n
D = VO(1−D). (2.24)

Therefore, the dc input-to-output voltage transfer function of the tapped-inductor

buck converter in CCM is

MV DC = VO

VI

= D

D + n(1−D) . (2.25)

Fig. 2.5 shows the plot representing the variation in dc voltage gain with respect to

duty cycle. For an ideal converter, the input power is equal to the output power

VOIO = VIII . (2.26)

Therefore, the dc input-to-output current transfer function is

MIDC = IO

II

= D + n(1−D)
D

. (2.27)

2.3 Minimum Inductance

At the boundary between CCM and DCM, the maximum value of inductor current

for the converter to be in CCM as obtained from (2.6) is

∆iLmax = VI − VO

nLmin

DT = VO
1−MV DC

nLminMV DC

. (2.28)

The dc currents through the load can be obtained as

IOB = 1
T

∫ T

0
iLdt−IS = ∆iLmax

2 −II(n− 1). (2.29)
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Figure 2.5: DC voltage gain as a function of duty cycle at selected turns ratios.

Equation (2.29) can be simplified for ∆iLmax to get

∆iLmin = 2IOmin [1−MV DC(n− 1)] . (2.30)

Equating (2.28) to (2.30), the maximum inductance the tapped-inductor can offer to

maintain the converter in DCM is given by

Lmin= RLD (1−MV DC)
2nfsMV DC [1+MV DC (n− 1)]=

RLD(1−D)
2nfsMV DC

. (2.31)

A plot representing the boundary between CCM and DCM can be seen in Fig. 2.6
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2.4 Filter Capacitance

The ac components of the currents through the secondary winding and the magne-

tizing inductance flow through the filter capacitor and expressed as

ic = ∆iO
dt

t− ∆iO
2 . (2.32)

Assuming rC is the equivalent series resistance of the filter capacitor, the voltage

across rC is given by

vrc = rCiC = rC∆iO
(

t

DT
− 1

2

)
. (2.33)

The voltage across the capacitor is

vc = 1
C

∫ t

0
iCdt+ vC(0) = ∆iO

C

∫ t

0

(
t

DT
− 1

2

)
dt+ vc(0) = ∆iO

2C

(
t2

DT
− t

)
+ vc(0).

(2.34)
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Figure 2.7: Circuit of tapped-inductor buck converter including the parasitic compo-
nents.

In steady-state vc(DT ) = v(0) making the voltage waveform a parabolic function.

As the ac component is responsible for the ripple. The total voltage across the filter

capacitor is expressed as

vo = vrc + vc = ∆iO
[

t2

2CDT +
(
rC

DT
− 1

2C

)
t− rC

2

]
+ vc(0). (2.35)

The rate of change of capacitor voltage is

dvo

dt
= ∆iO

(
t

CDT
+ rC

DT
− 1

2C

)
. (2.36)

Setting this to zero. The minimum ac output voltage occurs at

tmin = DT

2 − rCC. (2.37)

Therefore, the minimum filter capacitance is

Cmin = D

2fsrC

. (2.38)

2.5 Power Losses and Efficiency

An equivalent circuit representing a lossy tapped-inductor buck dc-dc converter is

shown in Fig. 2.7. The resistor rDS represents the MOSFET on-resistance, RF is the
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diode forward resistance, VF is the diode threshold voltage, and rL and rC are ESRs

of the tapped-inductor and the filter capacitor, respectively. During the time interval

0 < t ≤ DT , from Fig. 2.7, the inductor current on the primary winding is

iL = iS1 + iS (2.39)

and the secondary winding current is

iL = iO + iS. (2.40)

Using (2.1), (2.39), and (2.40), the switch current is

iS1 =
{
IO 0 < t ≤ DT
0 DT < t ≤ T.

(2.41)

The rms value of switch current is

IS1rms =
√

1
T

∫ T

0
i2S1dt =

√
1
T

∫ T

0
I2

Odt = IO

√
D. (2.42)

The conduction loss in the switch is

PrDS = rDSI
2
S1rms = rDSI

2
OD = rDSD

RL

PO. (2.43)

The switching loss is expressed as

Psw = fsCoV
2

o

M2
V DC

= fsCoRL

MV DC

PO, (2.44)

where Co is the transistor output capacitance. Therefore, the total switch power loss

is

PF ET = PrDS + Psw

2 , (2.45)

By substituting (2.43) and (2.44) into (2.45) results in

PF ET =
[
rDS(n− 1)2D

RL

+ fOCORL

2M2
V DC

]
PO. (2.46)

The diode current is

iD =
{

0 0 < t ≤ DT
IO DT < t ≤ T.

(2.47)
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The rms diode current is

IDrms =
√

1
T

∫ T

0
i2Ddt =

√
1
T

∫ T

0
I2

Odt = IO

√
1−D. (2.48)

The power loss in RF is

PRF = RF I
2
Drms = (1−D)RF I

2
O = (1−D)RF

RL

PO. (2.49)

The average diode current is

ID = 1
T

∫ T

0
iDdt = 1

T

∫ T

DT
IOdt = (1−D)IO. (2.50)

The power loss associated with the forward diode voltage VF is

PV F = VF ID = VF (1−D)IO = (1−D)VF

VO

PO. (2.51)

The total power loss in the diode is

PD = PRF + PV F = (1−D)
(
VF

VO

+ RF

RL

)
PO. (2.52)

The magnetizing inductance current during each switching sub-interval is

iL =


n

D + (1−D)nIO 0 < t ≤ DT

IO DT < t ≤ T.
(2.53)

The rms magnetizing inductance current is

ILrms =
√

1
T

∫ T

0
i2Ldt =

√√√√ 1
T

(∫ DT

0

n2

(D + (1−D)n)2 I
2
Odt+

∫ T

DT
I2

Odt

)

= IO

√√√√( n2

(D + (1−D)n)2 − 1
)
D + 1.

(2.54)

The power loss in rL is

PrL = rLI
2
Lrms = rL

[(
n2 − 1

)
D + 1

]
I2

O = rL

((
n2

D + (1−D)n − 1
)
D + 1

)
PO

RL

.

(2.55)
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The current through the capacitor is

iC =



∆io
DT

t− ∆io
2 0 < t ≤ DT

∆io(t−DT )
(1−D)T − ∆io

2 DT < t ≤ T.

(2.56)

The rms capacitor current is

ICrms =
√

1
T

∫ T

0
i2Cdt = ∆io√

12
. (2.57)

The ac component of the magnetizing inductance and the secondary winding currents

flow through the filter capacitor power resulting in its conduction loss given by

PrC = rCi
2
Crms = rC

∆i2o
12 = rC

[∆iL − (n− 1)∆iS1]2
12 . (2.58)

Substituting (2.7) and (2.12) into (2.58), we get

PrC = rCRL(1−D)2

12L2f 2
o

PO. (2.59)

The total power loss is

PLS = PrDS
+ Psw + PD + PrL + PrC . (2.60)

Substituting (2.43), (2.44), (2.52), (2.55), and (2.59) into (2.60) yields the total power

loss as a function of the output power as

PLS =

rDSD

RL

+ fsCoRL

MV DC

+ (1−D)
VF

VO

+ RF

RL



+
rL

[(
n2

(D + (1−D)n)2 − 1
)
D + 1

]
RL

+ rCRL(1−D)2

12L2f 2
o

PO.

(2.61)

Therefore, the overall efficiency of the converter is

η = PO

PO + PLS

= 1

1 + PLS

PO

. (2.62)

The voltage gain of the non-ideal converter is given by

MV DClossy = ηD

D + n(1−D) . (2.63)
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2.6 Simulation Validation of the Analysis of the Power Stage
Running in CCM in Time-Domain

A tapped-inductor buck converter with the following specifications is considered: VI =

12 V, fs = 100 kHz, PO = 2.5 W, and VO = 5 V. The tapped-inductor turns ratio is

n = 2. The parasitic of the components are rL = 0.5 Ω, rDS = 55 mΩ, RF = 25 mΩ,

and VF = 0.7 V.

The load resistance is

RL = V 2
O

PO

= 10 Ω. (2.64)

The required voltage gain from the specification is

MV DC = VO

VI

= 0.42. (2.65)

The duty cycle required for this gain can be calculated from (2.25)

D = nMV DC

1 + (n− 1)MV DC

= 0.59. (2.66)

The minimum inductance required for the converter to run in CCM can be calculated

from (2.31)

Lmin = RL(1−D)D
2nfsMV DC

= 14.38 µH. (2.67)

Let L = 115 µH/500 mΩ

The maximum inductor ripple current is

∆iLmax = VO(1−D)
2fsL

= 0.13 A. (2.68)

The ripple voltage is assumed to be 2% of VO

Vr = VO

100 = 0.5 mV. (2.69)

The maximum ESR of the filter capacitor is given by

rCmax = Vr

∆iLmax

= 0.72 Ω. (2.70)
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The minimum filter capacitor is given by

Cmin = D

2fsrC

= 29.41 µF (2.71)

Let C = 160 µF/rC = 50 mΩ. The selected MOSFET and diode were IRF540 and

MBR10100 by vishay semiconductors.

The conduction loss in the switch is

PrDS = rDSD

RL

PO = 8.25 mW. (2.72)

The switching loss is expressed as

Psw = fsCoRL

MV DC

PO = 0.72 mW, (2.73)

where Co = 100 pF is the transistor output capacitance.

The total power loss in the diode is

PD = (1−D)
(
VF

VO

+ RF

RL

)
PO = 0.1496 W. (2.74)

The power loss in rL is

PrL = rL

((
n2

D + (1−D)n − 1
)
D + 1

)
PO

RL

= 0.20 W. (2.75)

The power loss in the filter capacitor is

PrC = rCRL(1−D)2

12L2f 2
o

PO = 6.07 µW. (2.76)

The total power loss is

PLS = PrDS
+ Psw + PD + PrL + PrC = 0.35 W. (2.77)

Therefore, the overall efficiency of the converter is

η = 100× PO

PO + PLS

= 87.55%. (2.78)
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The voltage gain of the non-ideal converter

MV DClossy = ηMV DC = 0.37. (2.79)

Thus, the output voltage under loss operation is VO = 4.59 V. The new duty cy-

cle to achieve VO = 5 V is D = 0.62. The theoretical results were verified using

SABER circuit simulator. Fig. 2.8 shows the dc voltage transfer function MV DC as

a function of duty cycle using (2.63) and was verified through simulations. Fig. 2.9

shows the simulated waveforms of the gate-to-source voltage, drain-to-source voltage,

magnetizing inductance current, and output voltage. Fig. 2.10 shows the simulated

waveforms of the drain-to-source voltage, switch current, diode current, and diode

voltage. The average output voltage is VO = 4.49 V. The maximum switch and diode

voltage stresses were VS1 = 17.6 V and VD = −8.35 V, respectively. The inductor

voltage, when the switch is on was VL = 3.57 V. The peak-to-peak switch current was

∆iS1 = 87 mA. The peak-to-peak value of the diode current was ∆iD1 = 189 mA. The

peak-to-peak value of the magnetizing inductance current was ∆iL = 185 mA. The

theoretical and simulation results were in good agreement with each other. Fig. 2.11

shows the simulated input power and output power waveforms of the tapped-inductor

buck converter. The average input power was PI = 2.36 W and the average output

power was PO = 2.11 W. Therefore, the overall efficiency was η = 0.89, which was in

agreement with the theoretical calculations.

The steady-state analysis of the pulse-width modulated (PWM) tapped-inductor buck

dc-dc converter in continuous-conduction mode has been performed. The steady-state

waveforms have been analyzed and the expressions to design the converter compo-

nents have been derived. The expressions for the total power loss and the overall

converter efficiency have been derived. An example tapped-inductor buck converter

was designed and simulated using SABER simulation software. The tapped-inductor

provides a much wider step-down than the traditional buck topology in single-stage
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voltage conversion.
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Figure 2.9: Simulated waveforms of the gate-to-source voltage, drain-to-source volt-
age, inductor current, and output voltage.
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Figure 2.10: Simulated waveforms of the drain-to-source voltage, switch current, diode
current, and diode voltage.
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Figure 2.11: Simulated waveforms of input and output powers.
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2.7 Experimental Validation of the Analysis of the Power
Stage Running in CCM in Time-Domain.

For the validation of the theoretical findings in previous section a tapped inductor

buck dc-dc converter was design and implemented for an input voltage of VI = 12

V, switching frequency of fs = 100 kHz, output power of PO = 2.5 W and output

voltage VO = 5 V. The measured parasitic resistances across the capacitor, MOSFET

drain-to-source and the tapped-inductor are rC = 0.5 Ω, rL = 0.5 Ω, rDS = 55

mΩ. The tapped-inductor is designed for a turns ratio of n = 2. Knowing the gain

required from the converter the required duty cycle can be obtained by using (2.25).

The minimum capacitance required to make sure that the ripples are well with in

the 1% of the output voltage can be obtained from (2.38). The selected capacitor

has a capacitance of C = 150 µF. The Inductance required from the tapped-inductor

for the converter to run in continuous-conduction mode can be obtained from (2.31).

To obtain this required inductance from the tapped-inductor 0 42515IC has been

selected. The type of coil used is AWG20, with a total of 36 turns in the primary and

the secondary. The test set up can be seen in Fig. 2.12. The dc output voltage can

be measured by using a multimeter and is measured to be equal to VO = 4.5 V. at

D = 0.59. A dc current probe can be used to measure dc values of output current,

input current and diode current and are measured to be II = 0.21 A, IO = 0.45 A

and ID = 0.24 A. From (2.17), the voltage across the switch is given by

vS1 = VI + (n− 1)VO = 16.5 V. (2.80)

As seen in Fig. 2.13, the experimental results are in good agreement with theoretical

results. From (2.14), the voltage across the diode is given by

vD = −VI + (n− 1)VO

n
= 8.25 V. (2.81)

As seen in Fig. 2.14, the experimental results are in good agreement with theoretical

results. When the switch is on, the voltage across the magnetizing inductance as seen
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Figure 2.12: Tapped-inductor buck dc-dc converter on zero board to test its steady-
state characteristics.

Figure 2.13: Steady-state plots of switch voltage vS1 .
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Figure 2.14: Steady-state plots of diode voltage vD .

in (2.5) is

vL = VI − VO

n
= 3.75 V. (2.82)

When the switch is off the voltage across the magnetizing inductance as seen in (2.16)

is

vS = −VO = −4.5 V. (2.83)

As seen in Fig. 2.15, the experimental results are in good agreement with theoretical

results. From (2.11), the slope of the switch current is given by

iS1slope = VI − VO

n2L
= 16× 103. (2.84)

As seen in Fig. 2.16, change in current over 1 µs is 16 mA. Therefore, the slope is

16× 103, which is in good agreement with the theoretical calculations. From (2.21),
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Figure 2.15: Steady-state plots of voltage across magnetizing inductor vL .

the slope of the switch current is given by

iDslope = −VO

L
= 40× 103. (2.85)

As seen in Fig. 2.17, change in current over 1 µs is 50 mA. Therefore, the slope is

50× 103, which is in good agreement with the theoretical calculations.

PrDS = rDSD

RL

PO = 22 mW. (2.86)

The switching loss is expressed as

Psw = fsCoRL

MV DC

PO = 4.4 mW, (2.87)
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Figure 2.16: Steady-state plots of switch current iS1.

where Co = 180 pF is the transistor output capacitance.

The total power loss in the diode is

PD = (1−D)
(
VF

VO

+ RF

RL

)
PO = 0.720 W. (2.88)

The power loss in rL is

PrL =
rL

((
n2

D + (1−D)n − 1
)
D + 1

)
RL

PO

RL

= 0.20 W. (2.89)

The power loss in the filter capacitor is

PrC = rCRL(1−D)2

12L2f 2
o

PO = 0.77 mW. (2.90)

The total power loss is

PLS = PrDS
+ Psw + PD + PrL + PrC = 947.17 mW. (2.91)
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Figure 2.17: Steady-state plot of diode current iD.

Therefore, the overall efficiency of the converter is

η = 100× PO

PO + PLS

= 84%. (2.92)

From the measured values of input and output voltages and current the measured

efficiency of the converter is 80 % The plot representing the variation of lossy voltage

gain MV DClossy for the change in duty cycle can be seen in Fig. 2.18. The practical,

simulation and the theoretical results are in good agreement with each other. It

can also be noted that even thought the simulation and experimental results are in

good agreement with each other the experimental results have high ringing due to the

non-ideal inductance of the tapped-inductor. This could be compensated by using a

snubber circuit for a more practical implementations.
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Figure 2.18: Plot representing lossy voltage gain as obtained from theoretical equa-
tions, practical implementation and circuit simulation.
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3 Steady-State Analysis of the Power Stage in DCM

For applications which do not require a continuous flow of the inductor current or for

low loads, discontinuous-conduction mode can be a good option for power conversion.

In this scenario the required inductance to maintain the required output power can

be low. This helps build small compact components with lower losses. This chapter

is sorted with following the objectives in mind

1. To perform steady-state analysis of the converter in DCM and produce its cur-

rent and voltage waveforms

2. To derive the design equations for the converter components.

3. To determine the expression for the total power loss and hence the overall

efficiency of the converter.

4. To validate the converter operation and derived equations through SABER

circuit simulation.

5. To validate the converter operation and derived equations through hardware

implementation.

3.1 Principle of Operation

The circuit representing a tapped-inductor buck dc-dc converter working in DCM

can be seen in Fig. 3.1. An input voltage VI provides a input current II . The

converter produces an output voltage VO across the load resistance RL, with load

current IO flowing through it. The tapped-inductor used for storing energy has a

secondary side inductance of L. The turns on the primary and secondary sides are

N1 and N2 respectively. The voltages across the primary and secondary are vp and

vs respectively. The currents flowing through the primary and secondary side of the
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Figure 3.1: Circuit of a tapped-inductor buck PWM dc-dc converter.

tapped-inductor are ip and is respectively. The relationship between the voltages,

currents and the turns ratio is given by

vp

vs

= is
ip

= n− 1. (3.1)

The converter also has semi-conductive switches like MOSFET S1 and diode D0.

These semi-conductive switches along with the tapped-inductor help in the power

conversion. To understand and analyze the working of the converter in DCM, the

converter operation is broken down into three different time intervals. These time

intervals are divided based on the operating states of the two MOSFET and diode

switches. The following section help breakdown the operation of the convertor in

different time intervals

3.1.1 Time Interval: 0 < t ≤ DT

During this time interval the gate-to-source voltage to the MOSFET switch S1 is

high. Therefore, the switch is in on-state. As the MOSFET is shorted the voltage

across it is zero. This also leaves the cathode of the diode with high voltage, while

the anode is grounded. This causes the diode to reverse bias. The diode switch is
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now in off-state. The circuit representing the convertor during this time interval

can be seen in Fig. 3.2. Applying the Kirchhoff’s voltage low the voltage across the

inductor L is given by

vL = vs = VI − VO − vp = VI − VO

n
. (3.2)

The current flowing through the magnetizing inductance L is

iL(t) = 1
L

∫ t

0
vLdt = VI − VO

nL
t, iL(0) = 0. (3.3)

The peak-to-peak value of the inductance current is

∆iL = iL(DT )− iL(0) = VI − VO

nL
DT. (3.4)

Since the switch is in on-state during this time interval, the voltage across the mosfet

vS1 is zero. The instantaneous value of switch current is

iS1(t) = iL(t)
n

= VI − VO

n2L
t, iS1(0) = 0, (3.5)

and the peak-to-peak value of the current through the switch is

∆iS1 = iS1(DT )− iS1(0) = VI − VO

n2L
DT. (3.6)

Applying Kirchhoff’s voltage law, the voltage across the diode D0 is

vD = −(vs + VO) = VI + (n− 1)VO

n
. (3.7)

Since the diode switch is open, no current flows through it. Therefore, iD = 0.

3.1.2 Time Interval: DT < t ≤ (D +D1)T

During this time interval the gate-to-source voltage of the MOSFET switch S1 is

low. Therefore, the switch is in off-state. As the MOSFET is open no current will

be flowing through it therefore, the current iS1 = 0. The diode is for forward biased

and this causes the cathode to ground. Now the diode is shorting and the voltage
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across the diode is zero. The circuit representing the converter in this time interval

can be seen in Fig. 3.3. Applying the Kitchhoff’s voltage law across the inductor.

vL = −VO. (3.8)

Since, the MOSFET is open, no current flows through the primary and the secondary

turns of the tapped-inductor buck. The current flowing through the magnetizing

inductor is equal to the current flowing through the diode and is given by

iD(t) = iL(t) = 1
L

∫ t

DT
vLdt=−

VO

L
(t−DT ) + iL(DT ). (3.9)

The peak value of inductance current for the converter in DCM can be measured at

time t=DT and is equal to the initial or peak value of diode current. Substituting

(3.4) into (3.9).

iD(t) = iL(t) = −VO

L
(t−DT ) + VI − VO

nL
DT. (3.10)

The peak-to-peak value of diode current is

∆iD = ∆iL = VO

L
D1T. (3.11)

Since the diode is in on-state and the mosfet is in off-state, the voltage vD across

the diode is zero and the current flowing through the mosfet iS1 is zero. Applying

Kirchhoff’s voltage law, the voltage across S1 is

vS1 = VI − (vP + vS + VO) = VI + (n− 1)VO. (3.12)

3.1.3 Time Interval: (D +D1)T < t ≤ T

During this time interval the gate-to-source voltage across the MOSFET continues

to stay low. The current in the inductor drains completely to the output side of the
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Figure 3.2: Sub-circuit of the tapped-inductor buck converter for the interval 0 < t ≤
DT .

Figure 3.3: Sub-circuit of the tapped-inductor buck converter for the interval DT <
t ≤ (D +D1)T .

converter and no current flows through the inductor nor the diode. This discontinuity

in the inductor current lead to the discontinuous conduction mode of the converter.

Both the MOSFET and diode switches are open and no current flows through them.

Kirchhoff’s voltage law can be used to calculate the voltage across the switch.

vS1 = VI − VO. (3.13)

The voltage cross the diode vD is

vD = −VO. (3.14)
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Figure 3.4: Sub-circuit of the tapped-inductor buck converter for the interval (D +
D1)T < t ≤ T .

Using the derived equations, the voltage and current waveforms of the tapped-inductor

buck dc-dc converter can be predicted as seen in Fig. 3.5.

3.2 DC Voltage and Current Ratios

The average steady-state voltage across an inductor is zero, as stated by the principle

of volt-second balance. ∫ DT

0
vLdt =

∫ (D+D1)T

DT
vLdt. (3.15)

From (3.2) and (3.8), we get

VI − VO

n
D = VOD1. (3.16)

Therefore, the dc input-to-output voltage transfer function of the tapped-inductor

buck converter in DCM is

MV DC = VO

VI

= D

D + nD1
. (3.17)

For an ideal converter, the input power is equal to the output power

VOIO = VIII . (3.18)
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Figure 3.5: Key current and voltage waveforms of the tapped-inductor buck converter.

38



Therefore, the dc input-to-output current transfer function for a tapped-inductor

buck in DCM is

MIDC = IO

II

= D + nD1

D
. (3.19)

Applying Kirchhoff’s current law, at the output node of the tapped-inductor current

IO = 1
T

∫ T

0
iLdt− IS = (D +D1)∆iL

2 − II(n− 1). (3.20)

Substituting (3.4), (3.17), and (3.19) into (3.20), IO is obtained as

IO = VOD
2(1−MV DC)

2n2LfsM2
V DC

. (3.21)

This can be rearranged to form

D =

√√√√2n2LfsM
2
V DCIO

(1−MV DC)VO

. (3.22)

At the boundary between CCM and DCM[13].

MV DCB = DB

DB + n(1−DB) . (3.23)

Substituting (3.23) into (3.22), the duty cycle at boundary condition is a quadratic

equation given by

(n− 1)D2
B − (2n− 1)DB + n

(
1− 2fsL

RL

)
= 0. (3.24)

The duty cycle at boundary condition is

DB =
2n−1−

√√√√(2n− 1)2 + 4n(n− 1)
(

2fsL

RL

− 1
)

2(n− 1) . (3.25)

A plot on the effect of the normalized load on the duty cycle to maintain the required

voltage gain can be seen in Fig. 3.6. As can be noted unlike in the continuous

conduction mode, the output is no longer independent of the load in discontinuous

conduction mode. The increase in load requires a increase in duty cycle to maintain

the required voltage gain.

39



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I
O

/(V
O

/2n
2
f
s
L)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 D

0.7

0.6

0.4

0.5

0.3

0.2

0.1

0.8

 M
VDC

=0.9

DCM

CCM

Figure 3.6: Duty cycle as a function of normalized load IO/(VO/2n2fsL) at different
valuers of MV DC .

3.3 Power Losses and Efficiency

To calculate the overall power lost in the converter, the parasitic losses across the

components are represented as seen in Fig. 3.7. The parasitic on-resistance of the

MOSFET is rDS. The parasitic resistive loss in the tapped-inductor is rL. The ESR

of the filter capacitor is represented as rC . The parasitic resistance of the diode D0

is RF and the forward diode voltage is VF . The power lost across each and every

component can be calculated by first calculating the rms value of the current flowing

through these parasitic. The power is then calculated as the product of squared

current flowing through the parasitic and the resistance offered by each of them. The
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Figure 3.7: Circuit of tapped-inductor buck converter including the parasitic compo-
nents.

rms value of switch current is

IS1rms =
√

1
T

∫ T

0
i2S1dt

= VODT

n2L

( 1
MV DC − 1

)√
D

3 .
(3.26)

Substituting (3.6) into (3.26), we obtain

IS1rms = IO

√√√√2RLMV DC

3n

√
2 (1−MV DC)

LfsRL

. (3.27)

The conduction loss in the switch is

PrDS =rDSI
2
S1rms = 2rDSMV DC

3n

√
2 (1−MV DC)

LfsRL

PO. (3.28)

The switching loss is expressed as

Psw = fsCoV
2

o

M2
V DC

= fsCoRL

MV DC

PO, (3.29)

where Co is the transistor output capacitance. Therefore, the total switch power loss

is

PF ET = PrDS + Psw

2 . (3.30)

Substituting (3.27) and (3.29) into (3.30) results in

PF ET =
2RLMV DC

3n

√
2 (1−MV DC)

LfsRL

+ fOCORL

2M2
V DC

PO. (3.31)
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Using (3.10), the rms value of diode current is

IDrms =
√

1
T

∫ (D1+D)T

D
i2Ddt = VOD1

Lfs

√
D1

3 . (3.32)

Substituting (3.19) and (3.21) into (3.32)

IDrms = VO

√√√√√ 1
3RL

√√√√8(1−MV DC)3

LfsRL

. (3.33)

The power loss across RF is

PRF =RF I
2
Drms =RF

3

√√√√8(1−MV DC)3

LfsRL

PO. (3.34)

The average diode current is

ID = 1
T

∫ (D+D1)T

DT
iDdt = VOD

2

2n2fsL

( 1
MVDC

− 1
)2
. (3.35)

Substituting (3.21) into (3.35), we get

ID = IO(1−MV DC). (3.36)

The power loss associated with the diode forward voltage VF is

PV F = VF ID = VF

VO

(1−MV DC)PO. (3.37)

The total power loss in the diode is

PD = PRF +PV F =
RF

3

√√√√8(1−MV DC)3

LfsRL

+VF

VO

(1−MV DC)
PO.

(3.38)

The rms value of current flowing through the inductor parasitic is

IL1rms =

√√√√ 1
T

(∫ DT

0
i2S1dt+

∫ (D+D1)T

DT
i2Ldt

)

= ∆iL

√
nD +D1

3 .

(3.39)
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Substituting (3.19) and (3.21) into (3.39), we obtain

IL1rms = VO

√√√√(n2 − 1)MV DC + 1
RL

√
8(1−MV DC)

9fsLRL

. (3.40)

The power loss in rL is

PrL =rLI
2
Lrms

=rL

[
(n2 − 1)MV DC + 1

]√8(1−MV DC)
9fsLRL

PO.
(3.41)

The total power loss is

PLS = PrDS
+ Psw + PD + PrL. (3.42)

Therefore, the overall efficiency of the converter is

η = PO

PI

= PO

PO + PLS

= 1

1 + PLS

PO

. (3.43)

The average value of input current is

II=
1
T

∫ DT

0
iS1dt=

D2(VI−VO)
2n2fsL

= D2VO

2n2fsL

( 1
MV DC

−1
)
. (3.44)

The required power from the input is

PI = VIII = D2VOII

2n2fsL

( 1
MV DC

− 1
)
. (3.45)

The reflected power at the output is

PO = V 2
O

RL

. (3.46)

The efficiency can now be defined as

η = PO

PI

= 2n2fsLM
2
V DC

D2RL(1−MV DC) . (3.47)

For a lossy converter, the required duty cycle is

D =

√√√√ 2n2LfsM
2
V DCIO

η(1−MV DC)VO

. (3.48)
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Figure 3.8: Duty cycle as a function of normalized load IO/(VO/2n2fsL) for a lossy
converter.

For a lossy converter, the duty cycle at boundary condition is

DB =
2n+η−2−

√
η2+[n2+n (η−2)−η+1] 8Lfsη

RL

2
(
n+ η − 2− η

n
+ 1
n

) . (3.49)

A plot representing the effect of the normalized load on the duty cycle for a lossy

converter is shown in Fig. 3.8.
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3.4 Simulation Validation of the Analysis of the Power Stage
Running in DCM in Time-Domain.

To validate the obtained theoretical results a SABER circuit simulator was used. A

tapped-inductor buck for the following specification was considered: An input voltage

of VI = 12 V, converter switching frequency fs = 100 kHz, output power PO = 2.5

W and output voltage of VO = 5 V. The tapped-inductor turns ratio is n = 2. The

parasitic of the components are rL = 0.5 Ω, rDS = 55 mΩ, RF = 25 mΩ, and VF = 0.7

V.

The load resistance is

RL = V 2
O

PO

= 10 Ω. (3.50)

The required voltage gain from the specification is

MV DC = VO

VI

= 0.42. (3.51)

The maximum duty cycle required at the boundary between CCM and DCM for this

gain can be calculated from (2.25)

DB = nMV DCB

1 + (n− 1)MV DCB

= 0.59. (3.52)

The maximum inductance required for the converter to run in DCM can be calculated

from (2.31)

Lmax = RL(1−D)D
2nfsMV DC

= 14.38 µH. (3.53)

Let L = 5 µH/55 mΩ

The duty cycle required for the required normalized load and for an efficiency ζ = 0.9

is

D =

√√√√ 2n2LfsM
2
V DCIO

η(1−MV DC)VO

= 0.37. (3.54)

The maximum inductor ripple current is

∆iOmax = (VI − VO)D
n2Lfs

= 1.3 A. (3.55)
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The ripple voltage is assumed to be 1% of VO

Vr = VO

100 = 50 mV. (3.56)

The maximum ESR of the filter capacitor is given by

rCmax = Vr

∆iOmax

= 0.04 Ω. (3.57)

The minimum filter capacitor is given by

Cmin = D

2fsrC

= 46.25 µF (3.58)

Let C = 47 µF/rC = 30 mΩ. The selected MOSFET and diode were IRF540 and

MBR10100 by vishay semiconductors.

The conduction loss in the switch is

PrDS = 2rDSMV DC

3n

√
2 (1−MV DC)

LfsRL

PO = 9.27 mW. (3.59)

The switching loss is expressed as

Psw = fsCoRL

MV DC

PO = 0.59 mW, (3.60)

where Co = 100 pF is the transistor output capacitance.

The total power loss in the diode is

PD =
RF

3

√√√√8(1−MV DC)3

LfsRL

+VF

VO

(1−MV DC)
PO = 0.215 W. (3.61)

The power loss in rL is

PrL =rL

[
(n2 − 1)MV DC + 1

]√8(1−MV DC)
9fsLRL

PO = 1.726 mW. (3.62)

The total power loss is

PLS = PrDS
+ Psw + PD + PrL = 0.23 W. (3.63)
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Therefore, the overall efficiency of the converter is

η = 100× PO

PO + PLS

= 91%. (3.64)

The voltage gain of the non-ideal converter

MV DClossy = ηMV DC = 0.38. (3.65)

Thus, the output voltage under loss operation is VO = 4.56 V. The new duty cycle to

achieve VO = 5 V is D = 0.62. The obtained simulated drain-to-source voltage, diode

voltage and voltage across inductor waveforms can be seen in Fig. 3.9. The measured

value of the voltages across the MOSFET drain-to-source, diode and the magnetizing

inductor during the first time interval are zero, vD = −8.49 V and vL = 3.42 V

respectively. The calculated values from equation (3.7) and (3.2) are zero vD = −8.5

V and vL = 3.5 V. During the second time interval the voltages are vS1 = 16.89 V,

zero and vL = −5.35 V respectively. The calculated values as obtained from equations

(3.12) and (3.8) are vS1 = 17 V, zero and vL = −5 V respectively. During the third

time interval the measured values of voltages are vS1 = 6.87 V, vD = −5.07 V and

zero respectively. The calculated values as obtained from equations (3.13) and (3.14)

are vS1 = 7 V, vD = −5 V and zero respectively. The inductor current, MOSFET

and diode switch currents can be seen in Fig. 3.10. During the first time interval the

measured slope of the current flowing through the MOSFET, diode and the inductance

are 0.345 A/µs, zero and 0.679 A/µs respectively. The calculated values as obtained

from equations (3.6) and (3.4) are 0.345 A/µs, zero and 0.679 A/µs respectively.

During the second time interval the current slopes are zero, 1.063 A/µs, 1.097 A/µs

respectively. The calculated values as obtained from equation (3.11) are zero, 1.063

A/µs, 1.097 A/µs respectively In the third time interval no current flows through any

of the switch nor the inductance and thus, they are zero in all the three cases. The

measured efficiency of the converter is 90 %. The obtained simulated results are in

good agreement with the theoretical calculations
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Figure 3.9: Simulated waveforms of the drain-to-source voltage, gate-to-source volt-
age, diode voltage, and voltage across inductance.
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Figure 3.10: Simulated waveforms of the inductor current, switch current, and diode
current.
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Figure 3.11: Simulated waveforms of input and output powers.
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3.5 Experimental Validation of the Analysis of the Power
Stage Running in DCM in Time-Domain.

For the experimental validation of the converter running in DCM the similar spec-

ification from the previous section is used. To maintain the converter in DCM a

tapped-inductor is designed for 5 µH inductance. To maintain the required amount

of current a P-type 18/11 core ferrite core was used. The primary to secondary turns

ratio was maintained at N1/N2 = 1. The measured DC parasetic was rL = 0.5 Ω. The

selected capacitor to maintain the output ripple is 47 µF. The measured DC parasitic

across the capacitor is rC = 0.5 Ω. To withstand the stresses across the switches the

selected semi conductive switches are IRF640 and MUR10100. A high bandwidth

driver IR2117 was used for switching the MOSFET. HP6266B DC power supply was

to power up the the converter and can be used to provide input voltage between 0-40

V and currents between 0-5 A. A Tektronix AFG3251 function generator was used to

produce pulses for the driver input and HP E3631A power supply was used to power

up the driver. The voltage and current profile can now be verified as seen in Figs.

3.13, 3.14 and 3.15. The voltages and current profile in the first time interval are as

follow. From (3.7), the voltage across the diode is given by

vD = −VI + (n− 1)VO

n
= −8.5 V. (3.66)

Since the diode is in off state the current flowing though it is zero. When the MOSFET

switch is on the voltage across the switch is zero. The slope of the current flowing

through the MOSFET is given by

iS1slope = VI − VO

n2L
= 0.35 A/µs. (3.67)

Voltage across the magnetizing inductance as seen in (3.2) is

vL = VI − VO

n
= 3.42 V. (3.68)
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The slope of the current flowing through the magnetizing inductor is

iLslope = VI − VO

nL
= 0.7 A/µs. (3.69)

During the second time interval the MODFET is off and the diode is on. Therefore,

the voltage across the diode and the current flowing through the MOSFET are zero.

The voltage across the MOSFET switch is given by

vS1 = VI + (n− 1)VO = 17 V. (3.70)

The slope of the current flowing through the diode and the magnetizing inductance

is given by

iLslope = iDslope = −VO

L
= 1 A/µs. (3.71)

During the third time interval both the MOSFET and the diode switches are off. No

current flows thoug the switches. The voltage across the MOSFET is

vS1 = VI − VO = 7 V (3.72)

and the voltage across diode is

vD = −VO = −5 V. (3.73)

The bench setup required for the measurements can be seen in Fig. ??. The

measured voltage profiles can be seen in Fig. ??. The measured profiles of the

current flowing through the MOSFET switch and the output load can be sen in Figs.

3.14 and 3.15 respectively. The output current profile is also a representation of

current flowing through the inductor and the diode during different time intervals.

During the first time interval the measured values of voltages across MOSFET, diode

and magnetizing inductor are zero, −8.4 V and 3.2 V respectively. The slope of the

currents flowing through the MOSFET and diodes are 0.30 A/µs and zero respectively.

During the second time period the measured values of voltages across MOSFET, diode
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Figure 3.12: Experimental setup.

and magnetizing inductor are 7.2 V, zero and 0.4 V respectively. The measured slope

of the currents flowing through the MOSFET and diodes are zero and 0.88 A/µs

respectively. During the third time interval, the voltages across the MOSFET and

diode switches are 7.2 V and −5 V respectively. The measured efficiency of the

converter can be calculated by measuring the output power by using a multimeter. It

was observed to be equal to 90 %. The measured values are in good agreement with
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Figure 3.13: Experimental waveforms of the drain-to-source voltage, gate-to-source
voltage, diode voltage, and voltage across inductance.
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Figure 3.14: Experimental waveforms of the current flowing through mosfet.

55



Figure 3.15: Experimental waveforms of the current flowing to the output of the
converter
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4 Small-Signal Modeling of Power Stage in CCM

This chapter presents the small-signal analysis of the power stage of a tapped-inductor

pulse-width modulated (PWM) buck dc-dc converter operating in continuous-conduction

mode(CCM). Using circuit averaging technique, the small-signal model of the power

stage is derived. The derivation of duty cycle-to-output voltage and input-to-output

voltage transfer functions are presented. An example tapped inductor buck dc-dc

converter is considered. The time-domain and frequency-domain characteristics of

the converter are analyzed and discussed. The theoretical results are validated using

circuit simulations.

The steady-state analysis of the common-diode tapped-inductor buck converter

was analyzed in previous chapter. Here the derivation of its small-signal model and

subsequently, its power stage transfer functions such as duty cycle-to-output voltage

and input voltage-to-output voltage. The small-signal model of the converter has been

derived using circuit averaging technique, where the nonlinear switching network is

replaced by a linearized two-port network of controlled voltage and current sources.

The transient and frequency-domain characteristics of the converter are analyzed

using the design of an example tapped-buck circuit topology and are verified circuit

simulations.

4.1 Average Model

4.1.1 Average Switch Model

The relationship between the dc input and the dc output side current as seen in (2.27)

is given by

II = D

D + n(1−D)IO. (4.1)
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The average value of switch current is the dc input current, while the value of the

current flowing though the output impedance is equal to the dc output current.

IS1 = D

D + n(1−D)IZ2 . (4.2)

The non-linear large-signal equation that can be represented from the dc equation

iS1 = dT iZ2

dT + n(1− dT ) , (4.3)

where

iS1 = IS1 + is1, (4.4)

iZ2 = IZ2 + iz2 , (4.5)

and

dT = D + d. (4.6)

The non-linear larger-signal model of the switch can now be represented as seen in

Fig. 4.1. Substituting (4.4), (4.5) and (4.6) into (4.3), the non-linear equation can

be represented as

IS1 + is1 = (D + d)(IZ2 + iz2)
D + d+ n(1−D − d) . (4.7)

Rearranging the equation produces

(IS1 + is1)[D + d+ n(1−D − d)] = (D + d)(IZ2 + iz2). (4.8)

Simplification yields

DIS1 + nIS1 − nDIS1 + IS1d− nIS1d+ is1D + is1d+ nis1 − nDis1 − nis1d

= DIZ2 +Diz2 + IZ2d+ iz2d.
(4.9)

The above mentioned equation is non-linear in nature due to the presence of higher

order small-signal ac components. This can be linearized by considering the following

is1d� IS1d, (4.10)
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Figure 4.1: Non-linear large-signal model of the MOSFET switch used in PWM
tapped-inductor buck converter.

is1d� Dis1, (4.11)

is1d� nis1, (4.12)

is1d� Diz2 , (4.13)

is1d� IZ2d, (4.14)

iz2d� IS1d, (4.15)

iz2d� Dis1, (4.16)

iz2d� nis1, (4.17)

iz2d� Diz2 , (4.18)

and

iz2d� IZ2d. (4.19)

The linear equation obtained by using the above inequality is

DIS1 + nIS1 − nDIS1︸ ︷︷ ︸
dc

+ IS1d− nIS1d+Dis1 + nis1 − nDis1︸ ︷︷ ︸
ac

= DIZ2︸ ︷︷ ︸
dc

+Diz2 + IZ2d︸ ︷︷ ︸
ac

.
(4.20)

The circuit representing the above mentioned equation can be seen in Fig. 4.2. Since

this equation is linear in nature theory of superposition can be used to split the dc

and ac equations to get
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Figure 4.2: Linear large-signal model of the MOSFET switch used in PWM tapped-
inductor buck converter.

Figure 4.3: Dc model of the MOSFET switch used in PWM tapped-inductor buck
converter.

DIS1 + nIS1 − nDIS1 = DIZ2 . (4.21)

The obtained relationship between the dc quantities is

IS1 = IZ2D

D + n(1−D) = k1IZ2 , (4.22)

where

k1 = D

D + n(1−D) . (4.23)

The circuit representation of the above mentioned equation can be seen in Fig. 4.3

and is called the dc model. The other part of the equations (4.20) can be used to

obtain the relationship between the ac quantities

IS1d− nIS1d+Dis1 + nis1 − nDis1 = Diz2 + IZ2d. (4.24)
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Figure 4.4: Small-signal model of the MOSFET switch used in PWM tapped-inductor
buck converter.

Simplification helps obtain

is1 = D

D + (1−D)niz2 + IZ2

D + (1−D)nd−
IS1(1− n)

D + (1−D)nd. (4.25)

Substituting (4.22) into (4.25) and simplifying further produces the relationship be-

tween the ac components

is1 = D

D + (1−D)niz2 + nIZ2

[D + (1−D)n]2d = k1iz2 + k2d, (4.26)

where

k1 = D

D + (1−D)n, (4.27)

and

k2 = nIZ2

[D + (1−D)n]2 = nIO

[D + (1−D)n]2 , (4.28)

where the average value of the current flowing through the output impedance is

equivalent to the dc output current. The Fig. representing the small-signal model of

the switch can be seen in Fig. 4.4.

4.1.2 Average Diode Model

From Fig. 2.1, when the switch is on and the diode is off the kirchhoff’s voltage

law can be used to obtain

vp + VD = VI (4.29)
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and

vs + VO = VD. (4.30)

From (2.1), (4.29) and (4.30), the diode voltage when the switch is on is given by

VD = −VI + (n− 1)VO

n
. (4.31)

From (2.25) and (4.31), the diode voltage is given by

VD = − VI

D + n(1−D) . (4.32)

The voltage across the diode at different time intervals is

vD =


VI

D + n(1−D) 0 < t ≤ DT

0 DT < t ≤ T.

(4.33)

The average value of voltage across the diode is

VD = − 1
T

∫ DT

0

VI

D + n(1−D)dt = − DVI

D + n(1−D) . (4.34)

The non-linear large-signal equation that can be represented from the DC equation

are

vD = − dTvI

dT + n(1− dT ) , (4.35)

where

vD = VD + vd, (4.36)

vI = VI + vi, (4.37)

and

dT = D + d. (4.38)

The non-linear larger-signal model of the diode can now be represented as seen in

Fig. 4.5. Substituting (4.36), (4.38) and (4.38) into (4.35), the non-linear voltage

equations can be represented as

VD + vd = − (D + d)(VI + vi)
D + d+ n(1−D − d) . (4.39)
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Figure 4.5: Non-linear large-signal model of diode used in PWM tapped-inductor
buck converter.

Rearranging the equation produces

(VD + vd)[D + d+ n(1−D − d)] = −(D + d)(VI + vi). (4.40)

Simplification yields

DVD + nVD − nDVD + VDd− nVDd+ vdD + vdd+ nvd − nDvd − nvdd

= −DVI −Dvi − VId− vid.
(4.41)

The above mentioned equations are non-linear in nature due to the presence of higher

order small-signal ac components this can be linearized by considering the following

vdd� VDd, (4.42)

vdd� Dvd, (4.43)

vdd� nvd, (4.44)

vdd� Dvi (4.45)

vdd� VId. (4.46)

vid� VDd, (4.47)

vid� Dvd, (4.48)

vid� nvd, (4.49)

vid� Dvi (4.50)
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Figure 4.6: Linear large-signal model of diode used in PWM tapped-inductor buck
converter.

Figure 4.7: Dc model of diode used in PWM tapped-inductor buck converter.

and

vid� VId. (4.51)

The linear equation obtained by using the above inequality is

DVD + nVD − nDVD︸ ︷︷ ︸
dc

+VDd− nVDd+Dvd + nvd − nDvd︸ ︷︷ ︸
ac

= −DVI︸ ︷︷ ︸
dc

−Dvi − VId︸ ︷︷ ︸
ac

.
(4.52)

The circuit representing the above mentioned equation can be seen in Fig. 4.6. Since

the above mentioned equation is linear in nature theory of superposition can be used

to split the dc and ac equations to get

DVD − nDVD + nVD = −VID. (4.53)
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Figure 4.8: Small-signal model of diode used in PWM tapped-inductor buck converter.

The obtained relationship between the dc quantities is

VD = − VID

D + n(1−D) = −k1VI . (4.54)

The circuit representing the above mentioned equation can be seen in Fig. 4.7and is

called the dc model. The other part of the equations (4.52) can be used to obtain the

relationship between the ac quantities

VDd− nVDd+ vdD + nvd − nDvd = −Dvi − VId. (4.55)

Simplifying it further for vd gives us

vd = − Dvi

D + (1−D)n −
VId

D + (1−D)n + VD(1− n)d
D + (1−D)n. (4.56)

Substituting (4.53) into (4.56) and simplifying further produces the relationship be-

tween the ac components

vd = − D

D + (1−D)nvi −
nVI

[D + (1−D)n]2d = −k1vi − k3d, (4.57)

where

k3 = nVI

[D + (1−D)n]2 (4.58)

The figure representing the small-signal model of the switch can be seen in Fig. 4.8.
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4.1.3 Average Tapped-Inductor Model

The voltage across the primary winding at different time intervals as seen in equation

(2.1), (2.4), and (2.18) is given by

VP =


n− 1
n

(VI + VO) 0 < t ≤ DT

−(n− 1)VO DT < t ≤ T.

(4.59)

The average value across the primary is given by

VP = 1
T

∫ T

0
vPdt = 1

T

∫ DT

0

n− 1
n

(VI + VO)dt+ 1
T

∫ T

DT
−(n− 1)VOdt (4.60)

Simplifying the integration and substituting (2.25) into (4.60) produces

VO(1−D)(n− 1)− VO(1−D)(n− 1) = 0. (4.61)

Since the average voltage across the primary of the tapped-inductor buck is zero, the

average model can be represented as a short circuit.

vp = (n− 1)vs. (4.62)

The average value of current flowing through the MOSFET is equal to the average

value of current in the primary of the tapped-inductor buck dc-dc conductor as seen

in (4.26). The relationship between the primary and secondary current is given in

(2.1). Using the above mentioned relationships the average value of current flowing

through the secondary of the tapped-inductor buck is given by

IS = (n− 1)IZ2D

D + n(1−D) = k1(n− 1)IZ2 , (4.63)

For dc, the inductor in parallel to the secondary winding is a short circuit and thus

leaving with just a wire representing the secondary. the dc model of the tapped-

inductor can be seen in Fig. 4.9 A large-signal equation representing the transformer

secondary given by
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Figure 4.9: Dc model of the tapped-inductor used in the tapped-inductor buck con-
verter.

iS = (n− 1)iZ2dT

dT + n(1− dT ) , (4.64)

where

iS = IS + is, (4.65)

iZ2 = IZ2 + iz2 , (4.66)

and

dT = D + d. (4.67)

The circuit representing non-linear large-signal model of a tapped-inductor can be

seen in Fig. 4.10. The circuit representing a linear version can be seen in Fig. 4.11.

The small-signal equation can be obtained from (4.26) as

is = (n− 1)D
D + (1−D)niz2 + n(n− 1)IZ2

[D + (1−D)n]2d

= k1(n− 1)iz2 + k2(n− 1)d.
(4.68)

The circuit representing a small-signal model of a tapped-inductor as seen in Fig.

4.12 The equivalent averaged resistance r connected in series with the inductor is

r = DrDS + (1−D)RF + rL, (4.69)
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Figure 4.10: Non-linear large-signal model of the tapped-inductor used in PWM
tapped-inductor buck converter.

Figure 4.11: Linear large-signal model of the tapped-inductor used in PWM tapped-
inductor buck converter.

where D is the duty cycle, rDS is the ON-resistance of the switch, RF is the diode

forward resistance, and rL is the parasitic resistance of the inductance. The non-linear

large-signal model of the switch, the diode and the tapped-inductor as obtained in

sub section 4.1.1, 4.1.2 and 4.1.3 can now be used to obtain the large signal model

of the tapped-inductor buck dc-dc converter as seen in Fig. 4.13. This model can

be reduced by using the linearized models of the switch and the diode to obtain the

linear large-signal model of the converter as seen in Fig. 4.14. The equivalent dc and

ac model can also be seen in Figs. 4.15 and 4.16 respectively.
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Figure 4.12: Small-signal model of the tapped-inductor used in PWM tapped-inductor
buck converter.

Figure 4.13: Non-linear large-signal model of a PWM tapped-inductor buck converter.
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Figure 4.14: Linear large-signal model of a PWM tapped-inductor buck converter.

Figure 4.15: Dc model of a PWM tapped-inductor buck converter.
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Figure 4.16: Small-signal model of a PWM tapped-inductor buck converter.
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5 Derivation of Power Stage Transfer Functions in
CCM

5.1 DC Transfer Functions

A dc model of a tapped-inductor buck dc-dc converter as seen in Fig. 4.15 is derived

by replacing the switching components with averaged components. Since this is dc

model the inductor is shorted and the capacitor is replaced with an open circuit. The

kirchhoff’s voltage law can be used to obtain

VO = k1VI = D

D + (1−D)nVI . (5.1)

The dc input-to-output voltage transfer function is given by

MV DC = VO

VI

= k1VI = D

D + (1−D)n. (5.2)

The dc control-to-output voltage transfer function is given by

TP DC = VO

D
= k1VI = VO

D + (1−D)n. (5.3)

5.2 Duty Cycle-to-Output Voltage Transfer Function Tp

The small-signal model of the PWM buck-boost converter is shown in Fig. 4.16. The

resulting state equations required to derive the transfer functions are as follows. The

impedance in the inductor and the capacitor branch are lumped and represented as

Z1 = sL (5.4)

and

Z2 = RL||
(
rC + 1

sC

)
=
RL

(
rC + 1

sC

)
RL + rC + 1

sC

. (5.5)

The duty cycle-to-output voltage transfer function is obtained by setting vi = 0 in

Fig. 4.16. The simplified circuit can be seen in Fig. 5.1. The current through the

magnetizing inductance is
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Figure 5.1: Simplified small-signal model of a PWM tapped-inductor buck converter
to obtain transfer function Tp, when io=0 and vi=0 .

il = iz2 + (n− 1)k1iz2 + (n− 1)k2d. (5.6)

Applying Kirchof’s voltage law

k3d = ilZ1 + iz2(r + Z2). (5.7)

This can be simplified to obtain il as

il = 1
Z1

[
k3d−

vo

Z2
(r + Z2)

]
. (5.8)
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From (5.4), (5.5), (5.6), and (5.8), the control-to-inductor current transfer function

in s-domain is

Tp(s) = vo(s)
d(s) |vi=io=0

= −

(
k2(n− 1)RLrC

(RL + rC)(1 + (n− 1)k1)

)(
s− k3

L(n− 1)k2

)(
s+ 1

rCC

)
s2 + L(1 + (n− 1)k1) + C(RLr + rrC +RLrC)

LC(RL + rC)(1 + (n− 1)k1) s+ (r +RL)
LC(RL + rC)(1 + (n− 1)k1)

= Tpx
(s+ ωzn)(s− ωzp)
s2 + 2ξω0s+ ω2

0
= Tpo

(
1 + s

ωzn

)(
1− s

ωzp

)
(
s

ω0

)2
+ 2ξs

ω0
+ 1

,

(5.9)
where the dc gain Tpo is

Tpo = RLk3

RL + r
= RLVO

RL + r

n

D[D + (1−D)n] . (5.10)

The gain Tpx is

Tpx = − k2(n− 1)RLrC

(RL + rC) [1 + (n− 1)k1] = − VOrC

RL + rC

n− 1
[D + (1−D)n] , (5.11)

the angular corner frequency or the angular undamped natural frequency is

ω0 =

√√√√ (r +RL)
LC(RL + rC)(1 + (n− 1)k1) =

√√√√ r +RL

LC(RL + rC)
D + (1−D)n

n
, (5.12)

the damping ratio is

ξ = L(1 + (n− 1)k1) + C[rRL + rC(r +RL)]
2
√
LC(RL + rC)(r +RL)(1 + (n− 1)k1)

= Ln+ C[rRL + rC(r +RL)][D + (1−D)n]
2
√
nLC(RL + rC)(r +RL)[D + (1−D)n]

,

(5.13)

the angular frequency of the left-half plane zero is

ωzn = 1
rCC

, (5.14)

and the angular frequency of the right-half plane zero is

ωzp = k3

L(n− 1)k2
= RL

L

D + (1−D)n
D(n− 1) . (5.15)
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Figure 5.2: Simplified small-signal model of a PWM tapped-inductor buck converter
to obtain transfer function Mv.

5.3 Input Voltage-to-Output Voltage Transfer Function Mv

The input voltage-to-output voltage transfer function is obtained by setting d = 0

in Fig. 4.16. The simplified circuit can be seen in Fig. 5.2. The current through

magnetizing inductance is

il = iz2 + (n− 1)k1iz2 . (5.16)

Applying Kirchhoff’s voltage law

k1vi = ilZ1 +
(
r

Z2
+ 1

)
vo. (5.17)

This can be simplified to obtain il as

il = 1
Z1

[
k1vi −

vo

Z2
(r + Z2)

]
. (5.18)
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From (5.4), (5.5), (5.16), and (5.18), the input voltage-to-output voltage transfer

function in s-domain as

Mv(s) = vo(s)
vi(s)

|d=io=0

=

(
k1RLrC

L(RL + rC)(1 + (n− 1)k1)

)(
s+ 1

rCC

)
s2 + L(1 + (n− 1)k1) + C(RLr + rrC +RLrC)

LC(RL + rC)(1 + (n− 1)k1) s+ (r +RL)
LC(RL + rC)(1 + (n− 1)k1)

= Mvx
s+ ωzn

s2 + 2ξω0s+ ω2
0

= Mvo

1 + s

ωzn(
s

ω0

)2
+ 2ξs

ω0
+ 1

,

(5.19)

where the dc gain Mvo is

Mvo = k1RL

r +RL

= RL

r +RL

D

D + (1−D)n, (5.20)

the gain Mvx is

Mvx = k1RLrC

L(RL + rC [1 + (n− 1)k1] = RLrC

L(RL + rC)
D

n
, (5.21)

the angular corner frequency or the angular undamped natural frequency is

ω0 =

√√√√ (r +RL)
LC(RL + rC)(1 + (n− 1)k1) =

√√√√ r +RL

LC(RL + rC)
D + (1−D)n

n
, (5.22)

the damping ratio is

ξ = L(1 + (n− 1)k1) + C[rRL + rC(r +RL)]
2
√
LC(RL + rC)(r +RL)(1 + (n− 1)k1)

= Ln+ C[rRL + rC(r +RL)][D + (1−D)n]
2
√
nLC(RL + rC)(r +RL)[D + (1−D)n]

(5.23)

the angular frequency of the left-half plane zero is

ωzn = 1
rCC

, (5.24)
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5.4 Simulation Validation of the Power Stage

The design example used in Section 2.6 can be used to obtain the frequency response

of the transfer functions derived in this chapter.

5.4.1 Frequency Response of Tp using MATLAB and SABER Circuit Sim-
ulator

Equation (5.9) can be used to obtain the frequency response of control-to-output

voltage transfer function on MATLAB. The magnitude plot of this transfer function

can be seen in Fig. 5.3 and the phase response can be seen in Fig. 5.4. The dc gain

as obtained from

Tpo = RLk3

RL + r
= RLVO

RL + r

n

D[D + (1−D)n] = 11.50, (5.25)

on the decibel scale this is equal to 21.21 db. High frequency gain can be calculated

from 5.11

Tpx = − k2(n− 1)RLrC

(RL + rC)(1 + (n− 1)k1) = − VOrC

RL + rC

n− 1
[D + (1−D)n] = −0.0175, (5.26)

on the decibel scale this is equal to −35.07 db. The angular corner frequency or the

angular undamped natural frequency is

ω0 =

√√√√ (r +RL)
LC(RL + rC)(1 + (n− 1)k1)

=

√√√√ r +RL

LC(RL + rC)
D + (1−D)n

n
= 20.95× 103 rad/sec.

(5.27)

The corner frequency is

f0 = ω0

2π = 3.33 KHz. (5.28)

The damping ratio is

ξ = L(1 + (n− 1)k1) + C[rRL + rC(r +RL)]
2
√
LC(RL + rC)(r +RL)(1 + (n− 1)k1)

= Ln+ C[rRL + rC(r +RL)][D + (1−D)n]
2
√
nLC(RL + rC)(r +RL)[D + (1−D)n]

= 0.45.
(5.29)
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The angular frequency of the left-half plane zero is

ωzn = 1
rCC

= 70.92× 103 rad/sec, (5.30)

frequency of this left-half plane zero is given by

fzn = ωzn

2π = 11.28 kHz. (5.31)

The angular frequency of the right-half plane zero is

ωzp = k3

L(n− 1)k2
= RL

L

D + (1−D)n
D(n− 1) = 675× 103 rad/sec, (5.32)

and frequency of this right-half plane zero is

fzp = ωzp

2π = 107 kHz. (5.33)

This can also be verified by using SABER circuit simulator to obtain the plots as

seen in Fig. 5.5 and Fig. 5.6.
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Figure 5.3: Magnitude plot of the Tp transfer function as obtained on MATLAB.
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Figure 5.4: Phase plot of the Tp transfer function as obtained on MATLAB.
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Figure 5.5: Magnitude plot of the Tp transfer function as obtained on SABER.
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Figure 5.6: Phase plot of the Tp transfer function as obtained on SABER.
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5.4.2 Frequency Response of Mv using MATLAB and SABER Circuit
Simulator

The equation (5.19) can be used to obtain the frequency response of input-to-output

voltage transfer function on MATALB. The magnitude plot of this transfer function

can be seen in Fig. 5.7 and the phase response can be seen in Fig. 5.8. The dc gain

can be obtained from

Mvo = k1RL

r +RL

= 0.40, (5.34)

on the decibel scale this is equal to −8 db. The gain Mvx is

Mvx = k1RLrC

L(RL + rC)(1 + (n− 1)k1) = RLrC

L(RL + rC) = 127.62, (5.35)

on the decibel scale this is equal to 42.12 db. This can also be verified by using

SABER circuit simulator to obtain the plots as seen in Fig. 5.9 and Fig. 5.10.
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Figure 5.7: Magnitude plot of the Mv transfer function as obtained on MATLAB.
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Figure 5.8: Phase plot of the Mv transfer function as obtained on MATLAB.
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Figure 5.9: Magnitude plot of the Mv transfer function as obtained on SABER.
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Figure 5.10: Phase plot of the Mv transfer function as obtained on SABER.
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5.4.3 Response of Output Voltage for a Step Change in Duty Cycle

The step responses of transfer function Tp can be obtained by implementing ∆D = 0.1

on MATLAB and can be seen in Fig. 5.11. The measured values of overshoot, rise

time and settling time are 5 %, 70 µsec, 0.3 msec respectively.

5.4.4 Response of Output Voltage for a Step Change in Input Voltage

The step responses of the transfer function Mv for a step change of ∆VI = 1 V as

obtained on MATLAB and SABER can be seen in Figs. 5.13 and 5.14 respectively.

The measured values of overshoot, rise time and settling time are 1.7 %, 69.3 µsec,

0.4 msec respectively.
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Figure 5.11: Step response of Tp as obtained on MATLAB.
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Figure 5.12: Step response of Tp as obtained on SABER.
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Figure 5.13: Step response of Mv as obtained on MATLAB.
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Figure 5.14: Step response of Mv as obtained on SABER.
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5.5 Experimental Validation of Tapped-Inductor Buck DC-
DC Converter in Frequency-Domain.

A gain-phase analyzer by HP, will be used to validate the magnitude and phase plots

as obtained from theoretical calculations and SABER circuit simulators. A 4194A

Impedance/gain-phase analyzer by HP works for a frequency range of 10 Hz - 100

MHz. This is a wide enough bandwidth to accommodate the converters switching

frequency and should be capable enough to validate the responses. A block diagram

representing the gain-phase analyzer can be seen in Fig. 5.15. The analyzer produces

an ac output which varies its frequency over time. It also accepts two input signals

called a test input and reference input. To test a specific input-to-output transfer

function, the output from the system analyzer is first induced into the test equipment

to produce perturbation in the test setup. The reference input from the analyzer

can be connected to the input part of the transfer function the test input can be

connected to the output part of the transfer function. The analyzer calculated the

gain and phase difference between the test and reference inputs and provides the

information on its display over a wide frequency range. The obtained data can then

be noted and plotted by using MATLAB. The drawback of using this gain-phase

analyzer is that the input does not accept any signal higher than ±5 V DC. But for

the small signal operation the dc can be blocked out by adding bulk capacitors at

the input of the gain-phase analyzer. A 47 µF/650VDC, with a flat gain over the

required frequency range is used to block any DC voltage trying to enter the gain-

phase analyzer. For testing the equipment simulation specifications with VI = 12 V,

fs = 100 kHz, PO = 2.5 W, and VO = 5 V was selected. The tapped-inductor turns

ratio is n = 2. To obtained the required output a coupled inductor DRQ125-330-R

by with magnetizing inductance 35 µH was used. The selected MOSFET and diode

were IRF540 and MBR10100 by Vishay semiconductors. The complete PCB circuit
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can be seen in Fig. 5.16.

Figure 5.15: Block diagram representing a system analyzer.

Figure 5.16: Final Product.

5.5.1 Frequency Response of Tp using 4194A Impedance/gain-phase an-
alyzer

The bench set up required to verify the derived transfer function Tp from Section 5.2

can be seen in Fig. 5.17. An LT1630 high bandwidth op-amp is used to produce

pulses for MOSFET switching. It also helps superimpose a sinusoidal voltage, with
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varying frequency over the control voltage. The triangular voltage with an amplitude

VT m is used to produce the pulse voltage. More on the working of the PWM will be

discussed in Section 6.2. The gain offered by the PWM is Tm = 0.2 V/V = −14 dB.

Followed by the PWM output is IR2117 high bandwidth high side MOSFET driver,

with bootstap capacitor and diode. The output of the gain-phase analyzer is added in

series with the PWM control voltage by using a current transducer with 0.001 gain.

The secondary has 50 turns. The total gained offered by the transducer is 0.05 V/V

or −26 dB. The reference input is connected in parallel to the gain-phase analyzer

output. The gain-phase test input is connected to the output of the converter. The

total transducer and PWM gain of −40 dB is added to the obtained magnitude and

phase plot on gain-phase analyzer. This gives the magnitude and phase plot of the

transfer function Tp. The obtained magnitude and phase plots and its comparison

with the theoretical results can be seen in Figs. 5.18 and 5.19 respectively. The

obtained responses from the gain-phase analyzer is in good agreement with theoretical

responses.

5.5.2 Frequency Response of Mv using 4194A Impedance/gain-phase an-
alyzer

The bench set up required to verify the derived transfer function Mv from Section

5.3 can be seen in Fig. 5.20. The output of the gain-phase analyzer is added in series

with the input voltage for the converter by using a current transducer with 0.001 gain.

The secondary has 50 turns. The total gained offered by the transducer is 0.05 V/V

or −26 dB. The reference input is connected in parallel to the gain-phase analyzer

output. The gain-phase test input is connected to the output of the converter. The

transducer gain is added to the obtained magnitude and phase plot on gain-phase

analyzer. This gives the magnitude and phase plot of the transfer function Mv. The

obtained magnitude and phase plots and its comparison with the theoretical results
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Figure 5.17: Bench setup to obtain control-to-output voltage transfer function.
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Figure 5.18: Magnitude plot comparing the theoretical and practical results of transfer
function Tp.

can be seen in Figs. 5.21 and 5.22 respectively. The obtained responses from the

gain-phase analyzer is in good agreement with theoretical responses.

5.5.3 Response of Output Voltage for a Step Change in Duty Cycle

The step change in duty cycle is produced by changing the duty cycle from the

function generator by 10%. The obtained step response can be seen in Fig. 5.23. The

measured values of overshoot, rise time and settling time are 2.7 %, 4.8 msec, 4 msec

respectively.
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Figure 5.19: Phase plot comparing the theoretical and practical results of transfer
function Tp.

5.5.4 Response of Output Voltage for a Step Change in Input Voltage

The step change in duty cycle is produced by changing the supply voltage by 1 V. The

obtained step response can be seen in Fig. 5.24. The measured values of overshoot,

rise time and settling time are 0.7 %, 2 msec, 2 msec respectively.
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Figure 5.20: Bench setup to obtain input-to-output voltage transfer function.
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Figure 5.21: Magnitude plot comparing the theoretical and practical results of transfer
function Mv.
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Figure 5.22: Phase plot comparing the theoretical and practical results of transfer
function Mv.
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Figure 5.23: Step response of Tp as obtained on the test bench.
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Figure 5.24: Step response of Tp as obtained on the test bench.
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6 Voltage-Mode Control

A voltage-mode controller for the tapped-inductor buck dc-dc converter is designed in

this section. The required transfer functions are taken as reference from the previous

section. Loop gains for an uncompensated system is used to design a controller to

control this specific converter. The stable system will required a phase margin of

60◦ and a gain margin of 15 db. A type III controller namely, an integral-double-

lead controller as referred in [1] is used in this instant. Frequency and time-domain

response representing a stable closed loop response is presented analytically using

MATLAB and verified through SABER circuit simulations.

6.1 Circuit Diagram of the Power Stage with Voltage-Mode
Control

A voltage control of a tapped-buck dc-dc converter can be seen in Fig. 6.1. Here

the output voltage is being sensed by the sense feedback resistance and is compared

to a reference voltage VR. The control signal produced by the controller is then

sent to a pulse width modulator to produce pulses. These pulses are further used

to drive the MOSFET and therefore, help maintain the output voltage. As seen in

previous chapter the required transfer functions involved in representing a buck dc-dc

converter are Tp, Mv, Zo. In the implemented control scheme the output is being

sensed to create required duty cycle, which further controls the converter output.

Therefore, the closed-loop small-signal low-frequency model of a tapped-buck dc-dc

converter can be seen in Fig. 6.2, where Tc is the controller transfer function, Tm is

the PWM transfer function, β is the transfer function of the feedback network, as

seen in Fig. 6.1 the value of the feedback resistor is decided by the feedback resistance

given by

β = RB

RA +RB

, (6.1)
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Figure 6.1: Circuit of a closed-loop PWM tapped-inductor buck converter.
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Figure 6.2: Block diagram of a closed-loop PWM tapped-inductor buck converter.

vf is the ac component of the feedback voltage, vc is the ac component of the control

voltage, vr is the ac component of the reference voltage. The voltage gain of the

forward path is given by

A = vo

ve

= TcTmTp, (6.2)
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Figure 6.3: Simplified block diagram of a closed-loop PWM tapped-inductor buck
converter.

the loop gain is given by

T = vo

vf

= βA = βTcTmTp. (6.3)

The ac component of the output voltage is given by

vo = A

1 + T
vr + Mv

1 + T
vi −

Zo

1 + T
io = Tclvr +Mvclvi − Zoclio, (6.4)

where Tcl, Mvcl and Zocl are the closed-loop transfer functions of Tp, Mv and Zo

respectively. The simplified block diagram can be seen in Fig. 6.3. Henceforth

each and every block as seen in Fig. 6.2 will be derived and explained in detail

starting with the PWM, followed by the error amplifier and finally the derivation and

implementation of the selected integral-double-lead controller.

6.2 Pulse-Width Modulator

A pulse-width modulator is used to digitize the control signal and use this digitized

signal to drive the converter MOSFET. A PWM consists of an op-amp with its non-

inverting terminal connected to control signal vc and the inverting terminal connected

to a ramp voltage vt. Any change in the control signal due to any disturbance in the

system causes the control signal to increase VC + vc, which intern changes the duty
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Figure 6.4: Circuit of an op-amp as a comparator used for PWM.

cycle D + d of the op-amp’s digitized output. An op-amp used as a PWM can be

seen in Fig. 6.4. The ramp input and the pulse output can be seen in Fig. 6.5. The

slope of the ramp input is given by

M = tanγ = vc

dTs

= VT m

Ts

, (6.5)

Rearranging (6.5) gives the control voltage-to-duty cycle transfer function.

Tm = d

vc

= 1
VT m

= 1
MTs

= fs

M
. (6.6)

6.3 Loop Gain without Controller Compensation

The block diagram of the closed-loop system can be seen in Fig. 6.2. The transfer

functions required to obtain the loop gain have been derived in (5.9) and (6.6). The

transfer function of the feedback is β. The loop gain is

Tk = vf

vc

= TmTpβ. (6.7)
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Figure 6.5: Ramp signal for pulse width modulator.

Substituting (5.9) and (6.6) into (6.7), we get

Tk(s) = vf (s)
vc(s)

= −

(
βk2(n− 1)RLrC

VT m [1 + k1(n− 1)] (RL + rC)

)(
s− k3

Lk2(n− 1)

)(
s+ 1

rCC

)
s2 + L(1 + k1(n− 1)) + (RLr + rrC +RLrC)C

LC[1 + k1(n− 1)](RL + rC) s+ r +RL

LC[1 + k1(n− 1)](RL + rC)

= Tkx
(s+ ωzn)(s− ωzp)
s2 + 2ξω0s+ ω2

0
= Tko

(
1 + s

ωzn

)(
1− s

ωzp

)
(
s

ω0

)2
+ 2ξs

ω0
+ 1

,

(6.8)
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where the dc gain Tko is

Tko = Tk(0) = − βRLk3

VT m (RL + r) = 0.23 = −12.77 db, (6.9)

6.4 Loop Gain Design Example

For the specification used in designing the tapped-inductor buck dc-dc converter the

closed-loop can be implemented by sensing the output voltage using a voltage divider,

while making sure the transfer function of the feedback is β = 0.1.

Selecting RA for the feedback resistance to be 5 kΩ. The value of RB can be obtained

from (6.1)

RB = β

1− βRA = 555.55 Ω. (6.10)

The amplitude of the triangular wave used for the PWM can be selected to be 5 V.

The control to duty cycle transfer function is given by

Tm = 1
VT m

= 1
5 . (6.11)

From (6.9) The dc gain of Tk is

Tk(0) = − βRLk3

VT m(RL + r) = −0.23 (6.12)

which in decibel scale is equal to −12.77 db. Using (6.7) and (5.9). The magnitude

and phase plots can be seen in Figs. 6.6 and 6.7 respectively.

6.5 Integral-double-lead Controller

As seen in Fig. 6.6, the magnitude of Tk is below zero for entire frequency range. This

can be avoided by adding compensator network into the closed loop to maintain the

magnitude and phase margin of the loop gain. This helps obtained a controlled and

faster response. This controller adds in a pole at origin two pole-zero pairs into the

closed loop. This helps reduces the phase difference at the crossover frequency and
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Figure 6.6: Frequency effecting the magnitude of the tapped-inductor buck converter’s
loop gain without controller compensation.

this help obtain higher phase margins. An circuit of a integral-double-lead controller

is connected as shown in Fig. 6.8.The impedance of the feedback network is given by

Zf =

1
sC2

(
R2 + 1

sC1

)
R2 + 1

sC1
+ 1
sC2

=
s+ 1

R2C1

sC2

(
s+ C1 + C2

R2C1C2

) , (6.13)

The impedance in the forward path of the controller is given by

Zi = h11 +
R1

(
R3 + 1

sC3

)
R1 +R3 + 1

sC3

=
(
h11 + R1R3

R1 +R3

) s+ R1 + h11

C3 [R3 (R1 + h11) + h11R1]

s+ 1
C3 (R1 +R3)

,

(6.14)
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Figure 6.7: Frequency effecting the phase of the tapped-inductor buck converter’s
loop gain without controller compensation.

Figure 6.8: Circuit diagram of a integral-double-lead controller with two pole-zero
pairs.

where

h11 = RARB

RA +RB

. (6.15)
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The controller gain is given by

Av(s) = vc(s)
ve(s)

= −Zf

Zi

= − R1 +R3

C2 [R1R3 + h11 (R1 +R3)]

×

(
s+ 1

R2C1

) [
s+ 1

C3 (R1 +R3)

]

s
(
s+ C1 + C2

R2C1C2

){
s+ R1 + h11

C3 [R1R3 + h11 (R1 +R3)]

} . (6.16)

The control voltage transfer function is given by

Tc(s) = −vc(s)
ve(s)

= −Av(s) = B(s+ ωzc1)(s+ ωzc2)
s(s+ ωpc1)(ωpc2) , (6.17)

where

B = R1 +R3

C2 [R1R3 + h11(R1 +R3)] , (6.18)

ωzc1 = 1
R2C1

, (6.19)

ωzc2 = 1
C3(R1 +R3) , (6.20)

ωpc1 = C1 + C2

R2C1C2
= ωzc1

(
C1

C2
+ 1

)
, (6.21)

and

ωpc2 = R1 + h11

C3 [R1R3 + h11 (R1 +R3)] = ωzc1

(
C1

C2
+ 1

)
. (6.22)

Assuming the two poles are places at the same frequency and two zeros are places at

the frequency.

ωzc1 = ωzc2 = ωzc and ωpc1 = ωpc2 = ωpc. (6.23)

The poles and zero gains ratio is now given by

K = ωpc1

ωzc1
= ωpc2

ωzc2
= ωpc

ωzc

= C1

C2
+ 1 = (R1 + h11) (R1 +R3)

R1R3 + h11 (R1 +R3) . (6.24)

Hence the controller transfer function is given by

Tc(s) = vc(s)
ve(s)

= B (s+ ωzc)2

s (s+ ωpc)2 =
Bω2

zc

(
1 + s

ωzc

)2

ω2
pcs

(
1 + s

ωpc

)2 =
B
(

1 + s

ωzc

)2

K2s

(
1 + s

ωpc

)2 (6.25)
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6.6 Loop Gain

Knowing the controller compensation the loop gain of the converter is given by

T (s) = vf (s)
ve(s)

∣∣∣∣∣
vi=io=0

= Tc(s)Tmp(s)β

= Tx (s+ ωzc)2 (s+ ωzn) (s− ωzp)
s(s+ ωpc)2(s2 + 2ξω0s+ ω2

0) ,

(6.26)

where

Tx = − βBVOrC

VT m(1−D)(RL + rC) . (6.27)
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6.7 Simulation Validation of Loop-Gain

6.7.1 Frequency Response of Tc using MATLAB and SABER Circuit Sim-
ulator

The selected controller can be designed to compensated the tapped-inductor buck

converter and provide good gain and phase margins are the cross over frequencies.

The cross over frequency for the selected system can be selected to be at fc = 3 kHz.

The task of the controller is to compensate the system gain at the crossover frequency.

|Tc(fc)Tk(fc)| = 1. (6.28)

This can be simplified to obtain

|Tc(fc)| =
1

Tk(fc)
= 1
β|Tmp(fc)|

= 0.8143 = −1.7843 db. (6.29)

The phase at the loop gain without controller compensation at the crossover frequency

is given by

φTk
(fc) = −180◦ + arctan

(
fc

fzn

)
− arctan

(
fc

fzp

)
− arctan


(

2ξfc

f0

)

1−
(
fc

f0

)2

 = −94.74◦.

(6.30)

Since the systems is to be designed to maintain a phase margin of 60◦, the required

phase boost is given by

φm = PM − φTk
(fc)− 90 = 64.74◦, (6.31)

and the K factor is

K = tan2
(
φm

4 + 45◦
)

= 3.30. (6.32)

From equation 6.18 and 6.29

B = ωcK|Tc(fc)| = 2π × 3000× 3.30× 1.7843 = 7.2× 104(rad/s). (6.33)
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Assuming the resistance in the forward path to be R1 = 100 kΩ. From 6.32, one can

obtain

R3 = R1 [R1 − h11 (K − 1)]
(K − 1) (R1 + h11) = 39.89 kΩ. (6.34)

Pick R3 = 3.3 kΩ.

C2 = β|Tmp(fc)|
ωc (R1 + h11) = 474.63 pF. (6.35)

Pick C2 = 500 pF.

C1 = C2(K − 1) = 1.15 nF. (6.36)

Pick C1 =1.58 nF

R2 =
√
K

ωcC1
= 45.78 kΩ. (6.37)

Pick R2 = 68 kΩ.

C3 = R1 + h11

ωc

√
K [R1R3 + h11 (R1 +R3)]

= 610.29 pF. (6.38)

Pick C3 = 750 pF. The magnitude and phase plot of the designed controller can be

seen in Figs. 6.9 and 6.10 respectively. The magnitude and phase plot of the designed

controller on SABER circuit simulator can be seen in Figs. 6.11 and 6.12 respectively.
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Figure 6.9: Magnitude plot of the designed controller compensation.
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Figure 6.10: Phase plot of the designed controller compensation.
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Figure 6.11: Magnitude plot of the designed controller compensation on SABER
circuit simulator.
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Figure 6.12: Phase plot of the designed controller compensation on SABER circuit
simulator.
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Figure 6.13: Magnitude plot of loop gain with controller compensation.

6.7.2 Frequency Response of T using MATLAB and SABER Circuit Sim-
ulator

The magnitude and the phase plot can be seen in Figs. 6.13 and 6.14 respectively.

The crossover frequency is fc = 4.5 kHz. The obtained gain margin of the obtained

loop gain is 21.7 db and the phase margin is 54◦. The respective magnitude and

phase plots of the loop-gain on SABER circuit simulator can be seen in Figs. 6.15

and 6.16.
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Figure 6.14: Phase plot of loop gain with controller compensation.
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Figure 6.15: Magnitude plot of loop gain with controller compensation on SABER
circuit simulator.
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Figure 6.16: Phase plot of loop gain with controller compensation on SABER circuit
simulator.
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6.8 Experimental Validation of Loop-Gain

6.8.1 Frequency Response of Tc using 4194A Impedance/gain-phase an-
alyzer

To analyzed the controller magnitude an phase plot. The reference input of the

network analyzer is connected to the inverting terminal of the controller op-amp. The

test input is connected to the output of the op-amp and the injection is connected at

the input of the op-amp controller. The inverting input of the op-amp is also virtually

grounded. The measured gain-phase plot of the double-lead integral controller when

compared to the theoretical plot can be seen in Figs. 6.17 and 6.18. Both the

theoretical and practically obtained responses are in good agreement with each other.
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Figure 6.17: Magnitude plot comparing the theoretical and practical results of transfer
function Tc.
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Figure 6.18: Phase plot comparing the theoretical and practical results of transfer
function Tc.

6.8.2 Frequency Response of T using 4194A Impedance/gain-phase ana-
lyzer

Similar to the open-loop analysis a 4194A impedance/gain-phase analyzer by HP will

be used. To inject the changing frequency and amplitude input an injecting resistor

Rin is used. A low resistance for Rin is selected. This low resistance will not effect

overall loop-gain. The setup required to measure the loop-gain can be seen in Fig.

6.19. The injection resistor is inserted between the output and the feedback. This is

done so that the input side of the network analyzer has higher impedance compared

to the output side of the network analyzer. Now the reference input from the network

analyzer is connected to the feedback and the test input is connected to the output of
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the converter. The obtained magnitude response compared to the theoretical response

can be seen in Fig. 6.20. The phase response compared tot he theoretical response

can be seen in Fig. 6.21. The obtained responses are in good agreement with the

theoretical response.
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Figure 6.19: Bench setup to obtain loop-gain transfer function.
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Figure 6.20: Magnitude plot comparing the theoretical and practical results of transfer
function T .
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Figure 6.21: Phase plot comparing the theoretical and practical results of transfer
function T .
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7 Closed-loop Responses

7.1 Closed-loop Control-to-output Voltage Transfer Function

The closed-loop control-to-output voltage transfer function is given by

Tcl(s) = vo(s)
vr(s)

=
∣∣∣∣∣
vi=io=0

= A(s)
1 + βA(s) = Tc(s)TmTp(s)

1 + βTc(s)TmTp(s)

= Tx

β

(s+ ωzc)2 (s+ ωzn) (s− ωzp)
s(s+ ωpc)2(s2 + 2ξω0s+ ω2

0) + Tx (s+ ωzc)2 (s+ ωzn) (s− ωzp)

(7.1)

7.2 Closed-loop Input-to-output Voltage Transfer Function

The closed-loop input-to-output voltage transfer function is given by

Mvcl(s) = vo(s)
vi(s)

=
∣∣∣∣∣
vr=io=0

= Mv(s)
1 + T (s) = Mv(s)

1 + βTc(s)TmTp(s)

= Mvxs (s+ ωzn) (s+ ωpc)2

s(s+ ωpc)2(s2 + 2ξω0s+ ω2
0) + Tx (s+ ωzc)2 (s+ ωzn) (s− ωzp)

(7.2)
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Figure 7.1: Magnitude plot of the Tcl transfer function as obtained on MATLAB.

7.3 Simulation validation of the closed-loop Tapped-Buck
DC-DC Converter

7.3.1 Frequency Response of Tpcl using MATLAB and SABER Circuit
Simulator

The magnitude and phase plots as seen on MATLAB can be seen in Figs. 7.1 and

7.2. The dc gain as observed in Fig. 7.1 is 20 dB. This is equivalent to 10 V.

7.3.2 Frequency Response of Mvcl using MATLAB and SABER Circuit
Simulator

The magnitude and phase plots as seen on MATLAB can be seen in Figs. 7.5 and

7.6. As seen in the magnitude response the magnitude is way lower than 0 dB. This

means that any perturbations in the system die to the input of the converter will get
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Figure 7.2: Phase plot of the Tcl transfer function as obtained on MATLAB.

attenuated and thus would not reflect on the output voltage.

7.3.3 Response of Output Voltage for a Step Change in Reference Voltage

For a step change in reference voltage of δvr = 0.1 the output voltage should increase

by 1 V. The time-domain responses of the closed-loop control-to-output voltage trans-

fer function can be seen in Fig. 7.9 and The measured values of overshoot, rise time

and settling time are 0 %, 77 µsec, 1 msec respectively. The response is in good

agreement with the frequency-domain response.

7.3.4 Response of Output Voltage for a Step Change in Input Voltage

It can be observed that the closed-loop response is better as compared to the open-

loop response as the response has an overshoot of around 4.5 %, the settling time
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Figure 7.3: Magnitude plot of the Tcl transfer function as obtained on SABER Sim-
ulator.

Figure 7.4: Phase plot of the Tcl transfer function as obtained on SABER Simulator.

has dropped down to 1.14 msecs and rise time has dropped down to almost 0.The

time-domain responses of the closed-loop input-to-output voltage transfer function

can be seen in Fig. 7.11, as seen in this response the output voltage auto-corrects

itself and prevents any effect on the output voltage.
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Figure 7.5: Magnitude plot of the Mvcl transfer function as obtained on MATLAB.
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Figure 7.6: Phase plot of the Mvcl transfer function as obtained on MATLAB.
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Figure 7.7: Magnitude plot of the Mvcl transfer function as obtained on SABER
Simulator.
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Figure 7.8: Phase plot of the Mvcl transfer function as obtained on SABER Simulator.
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Figure 7.9: Step Response of closed-loop control-to-output voltage transfer function.
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Figure 7.10: Step Response of closed-loop control-to-output voltage transfer function.

139



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 t (msec)

5

5.05

5.1

5.15

5.2

5.25

 v
O

 (
V

)

Figure 7.11: Step Response of closed-loop input-to-output voltage transfer function.
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Figure 7.12: Step Response of closed-loop control-to-output voltage transfer function.
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7.4 Experimental validation of the closed-loop Tapped-Buck
DC-DC Converter

The designed converter can be made to run over different frequencies to check for

its magnitude and phase responses between the inputs and outputs using a 4194A

Impedance/gain-phase analyzer. This equipment is designed to measure transmission

characteristics of a plant for a wide frequency ranges. This specific model is capable

of testing the equipment is capable of testing the plant between the frequency range

of 10 Hz - 100 MHz. This is fully capable of handling the designed converter over

the required frequency ranges. The obtained plots is then used to validated the ones

obtained using MATLAB and SABER circuit simulations. The Drawback of using

this equipment is that, it can not read any dc values at its input. This will required

an additional circuit modifications which requires huge bulk capacitors at the input

of the instrument to eliminate any dc component running into the instrument.

7.4.1 Frequency Response of Tpcl Using 4194A Impedance/gain-phase An-
alyzer

For the transfer function in question, the change in the reference voltage of the con-

troller can be taken as the input of the transfer function and is connected reference

input of the network analyzer. This input is also connected in series with the output

of the network analyzer. This is made possible by using an isolating transformer with

50:1 turns ratio. This reduces the magnitude of the response by −26 dB. The output

voltage of the converter is considered as the output of the transfer functions. This

is connected to the test input of the network analyzer. The 4194A can now be used

to produce required frequency plots and as mentioned earlier. The setup required to

obtained transfer function can be seen in Fig. 7.13. The obtained magnitude and

phase response of the closed-loop converter compared to the theoretically obtained

response can be seen in Figs. 7.14 and 7.15 respectively.
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Figure 7.13: Bench setup to obtain closed-loop control-to-output voltage transfer
function.
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Figure 7.14: Magnitude plot comparing the theoretical and practical results of transfer
function Tcl.

7.4.2 Frequency Response of Mvcl Using 4194A Impedance/gain-phase
Analyzer

For the transfer function in question the change in the input voltage of the converter

can be taken as the input of the transfer function. An isolating transformer with

50:1 turns ratio is used to add the output of the network analyzer in series with

the input of the dc-dc converter. This adds a −26 dB magnitude of the output

response. The network analyzer’s reference inputs is also connected to the output

of the isolating transformer. The output voltage of the converter can be considered

as the output of the transfer functions. The test input of the network analyzer is

connected to the output of the converter. The required test setup can be seen in Fig.
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Figure 7.15: Phase plot comparing the theoretical and practical results of transfer
function Tcl.

7.16. The obtained magnitude and phase response can be seen in Figs. 7.17 and 7.18

respectively.

7.4.3 Response of Output Voltage for a Step Change in Duty Cycle

The non-inverting input of the op-amp can be connected to a step-input. By produc-

ing a step voltage at the input of the op-amp will help produce a step response at the

output voltage. The obtained response on oscilloscope can be seen in Fig. 7.19. The

measured values of overshoot, rise time and settling time are 0 %, 13 µsec, 1.7 msec

respectively.
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Figure 7.16: Bench setup to obtain closed-loop input-to-output voltage transfer func-
tion.
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Figure 7.17: Magnitude plot comparing the theoretical and practical results of transfer
function Mvcl.

7.4.4 Response of Output Voltage for a Step Change in Reference Voltage

A step input can be connected to the reference of the controller. By producing a

step voltage at the input of the controller a step response at the output voltage is

produced. The obtained response can be seen in Fig. 7.20. The measured values of

overshoot, rise time and settling time are 10 %, 0 µsec, 1.7 msec respectively.
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Figure 7.18: Phase plot comparing the theoretical and practical results of transfer
function Mvcl.
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Figure 7.19: Step response of Tpcl as obtained on the test bench.
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Figure 7.20: Step response of Mvcl as obtained on the test bench.
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8 Conclusion

• Tapped-inductor buck dc-dc converter provides higher step down at the output

voltage due to the presence of turns ratio in the tapped-inductor.

• This can help simplify higher stage for power conversion, utilizing a single stage

instead of multiple conversion stages.

• The steady-state analysis of the pulse-width modulated (PWM) tapped-inductor

buck dc-dc converter in continuous-conduction mode has been performed.

• The expressions to design the converter components and over all efficiency have

been derived. There is a loss in efficiency due to the higher losses observed in

tapped-inductor.

• An averaged small-signal model for a tapped-inductor buck dc-dc converter has

been derived.

• The obtained small-signal model is used to derive the power stage transfer

functions. It is observed that the control-to-output voltage transfer function

has a right half plane zero, which is not present in a conventional buck dc-dc

converter. This makes the controller is little more complex.

• An integral-double-lead controller for the voltage mode control has also been

derived and implemented. All the theoretical expressions have been validated

through MATLAB, saber circuit simulations and hardware implementation.
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9 Future Work

This dissertation already provides the waveform of the converter during different

time intervals, when the converter is running in DCM. This can be expanded upon

by averaging the waveforms to obtain an averaged circuit model for the tapped-

inductor buck dc-dc converter running in DCM. This should help eliminate the non-

linear components in the circuit and thus making the characterization of the converter

much simpler. Since a tapped-inductor has been implemented for storing the energy, a

multi-output tapped-inductor buck can also be analyzed and implemented depending

on the applications.
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