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ABSTRACT 

 

Stark, Baylee. M.S. Department of Earth and Environmental Sciences, Wright State 

University, 2019. Lead in Tap Water of Public Schools Near Dayton, Ohio. 

 

 

Lead (Pb) is a human-health concern, especially with regard to exposures of children. 

Lead contaminated drinking water is a primary route of exposure for children; however, 

water sampling for Pb is voluntary in schools with a public water supply. This study 

examined Pb in tap water from public schools around Dayton, OH. Schools were selected 

to span a range of ages (construction year) and community socioeconomic status. Of the 

28 schools contacted, seven responded “affirmatively” to sampling, two responded 

“negatively”, and 19 did not respond. None of the schools that were sampled had Pb 

concentrations exceeding the U.S. EPA guidelines for supplemental action, which is ≥ 

10% of plumbing fixtures exceeding 15 µg/L. Only four of 100 fixtures sampled had Pb 

exceeding 20 µg/L, the concentration recommended for fixture removal in schools. As 

expected, increased Pb levels were associated with warmer water temperatures. Water 

from sink faucets had greater Pb levels than water from drinking fountains, and Pb 

concentrations were greater in initial water sample draws versus samples collected after a 

5-minute flush. To combat the leaching of Pb into school tap water, older lead and brass 

containing fixtures should be replaced, and changes in physicochemical parameters 

should be monitored to identify risks of Pb exposure. 
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I. INTRODUCTION 

Lead (Pb) is a well-studied environmental and human health concern and toxin 

(U.S. EPA, 2019; Gidlow, 2015; Goyer, 1993). Widespread human use of Pb on an 

industrial scale has occurred for over 5,000 years (Gidlow, 2015; Centers for Disease 

Control and Prevention, 2012). Due to its low melting point and ductility, Pb has been 

used in various products, such as pipes, paints, gasoline, ceramics, and plastics (Flora et 

al., 2012). While some countries, such as the United States, have ceased using Pb in these 

products and others, many other nations are still utilizing Pb in manufacturing today 

(Gidlow, 2015; Centers for Disease Control and Prevention, 2012).  

Lead is primarily introduced to the human body through either: inhalation, via 

outdoor and indoor air, or ingestion, including drinking and eating (Boskabady et al., 

2018; Prüss-Ustün et al., 2011). Lead exposure of adult humans has been linked to 

multiple adverse effects, including, for example, cardiovascular disease, impaired bone 

formation and brittleness, decreased kidney function, cancer, hypertension, reproductive 

problems, and even death in extreme doses (Lanphear et al., 2018; Centers for Disease 

Control and Prevention, 2012; Prüss-Ustün et al., 2011; Goyer, 1993). Lead levels in 

human blood have been declining in the United States over the past 40 years (Centers for 

Disease Control and Prevention, 2019; Gilbert and Weiss, 2006), which has been 

attributed to increased environmental regulations on Pb-containing materials (e.g., 

gasoline, paint, and solder) and reduced Pb concentrations in tap water (U.S. EPA, 2018; 

Centers for Disease Control and Prevention, 2012; Gilbert and Weiss, 2006). However, 
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according to one population-based study, over 400,000 deaths annually in the United 

States are still attributed to health conditions caused by Pb exposure (Lanphear et al., 

2018).  

1.1 Children and Pb exposure 

Children exposed to Pb, even at low levels, can develop cognitive, behavioral, and 

developmental deficits. Between 2000 and 2004, Pb exposure was estimated to contribute 

to 600,000 new cases of children with intellectual deficiencies each year (Prüss-Ustün et 

al., 2011) Adolescents experiencing long-term exposure to Pb have also displayed a 

disadvantage in reaching academic learning goals (McCrindle et al., 2017). School-aged 

children with elevated Pb concentrations in blood have repeatedly scored lower on both 

in comparison to peers (McCrindle et al., 2017; Miranda et. al, 2007; Chiodo et al., 2004; 

Bellinger et al., 1997). In one study of children having blood Pb levels less than 10 

μg/dL, a 1.4-point decrease in IQ was observed for every 1 μg/dL increase in blood Pb 

(Canfield et al., 2003). In related studies with children, greater dose responses in the 

lowering of IQ were observed when blood Pb levels were less than 10 μg/dL, in 

comparison to blood Pb levels greater than 10 μg/dL (Tellez-Rojo et al., 2006; Canfield 

et al., 2003). These studies illustrate the importance of mitigating childhood Pb 

exposures, including at low levels, for which there is observed sensitivity to small 

changes in circulating Pb.  

Due to the potential cognitive, behavioral, and developmental deficits that can 

occur when children are exposed to elevated levels of Pb, a circulating blood reference 

level of 5 µg/dL has been established as a threshold for initiation of public health action 

(Centers for Disease Control and Prevention, 2019). This threshold is thought to be 
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conservative based on previous research studying dose responses, but other Pb studies, 

such as those mentioned previously, have revealed adverse effects on IQ and 

neurobehavioral development at blood Pb levels lower than 5 µg/dL (Tellez-Rojo et al., 

2006; Chiodo et al., 2004; Canfield et al., 2003). Due to cognitive defects, such as 

inattention and decreased academic performance occurring at such low levels, it is 

difficult to determine a threshold for response (Safruk et al., 2017; Prüss-Ustün et al., 

2011; Lanphear et al., 2005; Canfield et al., 2003). According to the U.S EPA, there is no 

safe level of Pb exposure, which is concerning because over 500,000 U.S. children aged 

1–5 years are estimated to have blood Pb levels greater than the 5 µg/dL reference 

concentration (U.S. Centers for Disease Control and Prevention, 2019). 

1.2 Lead in drinking water 

One of the major human exposure pathways to Pb is through drinking water 

(Chowdhurry et al., 2018; Deshommes et al., 2013). Lead can leach from water service 

lines, indoor plumbing, and plumbing fixtures into tap water in either particulate or 

soluble forms (Chowdhurry et al., 2018; Deshommes et al., 2010; Patch et al., 1998). 

Common sources of Pb leaching into tap water include Pb service lines, plumbing, solder, 

fixtures, and faucets (Lewis et al., 2017; Masters and Edwards, 2104; Deshommes et al., 

2010). Recent research has also revealed the dangers of Pb leaching from galvanized steel 

piping (Clark et al., 2015). During the galvanization process, steel is coated with a zinc 

mixture, that often contains Pb, to prevent corrosion. In one study spanning multiple 

states, the Pb content on the surface of galvanized steel water pipes was found to range 

from undetectable to 1.8% by weight, and in some locations, Pb concentrations in the 

water from a dump-and-fill study were greater than 100 μg/L (Clark et al., 2015). 
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Multiple underlying factors contribute to leaching of Pb from plumbing, with two 

major contributors being the age of water lines and their degree of corrosion. Lead 

service lines that transmit water from the utility water line into buildings, and Pb 

plumbing fixtures are fewer in residential areas where houses were built after 1986 and 

implementation of the first amendment of the U.S. EPA’s Safe Drinking Water Act 

(Cartier et al., 2011; Kimbrough, 2007; SDWA U.S. EPA, 1986). Therefore, it could be 

misconstrued that tap water from buildings constructed after 1986 is Pb-free, but highly 

leaded brass fixtures were not phased out of use in the U.S. until 1999, and many Pb-

soldered fittings, Pb pipes, and galvanized pipes remain and are still contributing Pb to 

tap water (U.S. EPA, 2019; Chowdhurry et al., 2018; Deshommes et al., 2010).  

The degree of leaching of Pb from service lines is influenced by water residence 

time, pH, temperature, maintenance repair, and abrupt changes in water chemistry, most 

commonly from either water source or treatment changes (Clark et al., 2015; Masters and 

Edwards, 2014; Cartier et al., 2011; Kim et al., 2011; Kimbrough, 2007; Edwards and 

Dudi, 2004). Corrosion and Pb leaching from pipes and fixtures are less when water is 

cooler and more alkaline compared to warmer and more acidic waters (Masters and 

Edwards, 2014; Kim et al., 2011; Schock, 1989). Concentrations of soluble Pb in tap 

water were positively correlated with water temperature (Kim et al., 2011). In the same 

study, corrosion of the protective scale lining in the pipe system was associated with 

lower pH. Stagnation times can also affect Pb leaching, as longer stagnation times are 

also associated with increased Pb concentrations in tap water (Dudi, 2004; Edwards et al., 

2004; Edwards et al., 2002). 
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Current research is exploring the contribution of an area’s socioeconomic status 

on the probability of Pb exposure through tap water (Balazs et al., 2012; Campbell et al., 

2016; Switzer, 2017; McDonald and Jones, 2018). The U.S. EPA describes 

environmental justice as “the fair treatment and meaningful involvement of all people 

regardless of race, color, national origin, or income, with respect to the development, 

implementation, and enforcement of environmental laws, regulations, and policies” 

(2019). The lack of environmental justice, environmental injustice, was one of the major 

factors of the Flint, Michigan Pb water contamination crisis (Campbell et al., 2016). 

Several studies in California have also found that populations composed of minorities and 

members with lower socioeconomic status were more affected by unsafe drinking water 

than other populations (Balazs et al., 2012; Switzer, 2017; McDonald and Jones, 2018). 

The U.S. EPA regulates materials used to manufacture pipes, solder, and flux (a 

material applied to metal to help bonding while soldering) for water systems under the 

SDWA (U.S. EPA, 1986). Under the 2011 amendment of this act, these materials needed 

to be “lead-free”; that is, containing a weighted average of no more than 0.25% in the 

wetted surface material (U.S. EPA, 2011). In (1991), the U.S. EPA established the Lead 

and Copper Rule (LCR), a regulation establishing action level concentrations for Pb and 

copper in drinking water and corrosion control techniques for remediation (Goovaerts et 

al. 2017). With this rule, action is required to mitigate Pb leaching if concentrations in 

10% of collected water samples exceed the action level of 15 µg/L (U.S. EPA, 1991), and 

in schools, it is recommended that a fixture be removed from service if Pb in water 

exceeds 20 µg/L. The LCR requires monitoring of community water systems, such as a 

municipal drinking water treatment plants, and non-community non-transient public 
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water systems, such as a church or hospital that has its own water system. However, the 

rule does not require routine testing of Pb concentrations in publicly sourced tap water at 

schools and childcare facilities (U.S. EPA, 1991). Schools and childcare facilities are 

regulated under the SDWA only if they produce and distribute potable water from their 

own source. This regulatory loophole has resulted in 98,000 public schools and 500,000 

childcare facilities in the U.S. that are not regulated under the SDWA (U.S. EPA, 2019; 

U.S. EPA, 1991). Due to this, almost all assessment of Pb in tap water of schools and 

childcare facilities is voluntary. In the context of childhood exposure to neurotoxic Pb, 

there is a need for greater information about Pb concentrations in school tap water.  

I examined Pb in tap water from elementary and primary schools around the city 

of Dayton in southwest Ohio. Public schools targeted for this study included those listed 

in the Acknowledgments. The objective of this study was to assess relationships between 

Pb concentration in tap water and various common Pb leaching factors in elementary and 

primary schools (Chowdhurry et al., 2018;  Clark et al., 2015; Masters and Edwards, 

2014; Cartier et al., 2011; Deshommes et al., 2010; Kimbrough, 2007; Edwards and 

Dudi, 2004; Patch et al., 1998). I hypothesized that school buildings either built or 

renovated after the 1986 amendment of the SDWA was enacted (i.e., phase-out of Pb 

pipes and solder) would have lower Pb levels in tap water than older buildings. I also 

hypothesized that Pb concentrations would be related to water temperature and pH, with 

cooler water having lower Pb concentrations than warmer water, and more alkaline water 

having lower Pb concentrations than less alkaline water. With regard to median 

household income (MHI), I hypothesized that more affluent school districts would have 

lower Pb levels compared to less affluent school districts. 
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II. METHODS 

2.1 Background 

Dayton is the urban center of the Miami Valley and the fourth largest 

metropolitan region in Ohio (U.S. Census, 2010). Dayton was founded in the early 1800s, 

and as of 2010, the metropolitan region had a population of 1.1 million people (U.S. 

Census, 2010). Dayton is surrounded by many suburban cities and towns, having a 

variety of socioeconomic conditions and ages of infrastructure. The school districts in 

this study were chosen, in part, to reflect that diversity.  

The tap water for the school districts in this study is supplied from the Great 

Miami River Basin, including the Little Miami River Buried Valley Aquifer, Mad River 

Buried Valley Aquifer, and the Great Miami Buried Valley Aquifer. These aquifers are 

comprised of glacial sand and gravel deposits (Dumouchelle, 1998). The aquifer system 

is lined with shale and limestone beds, which contribute to the high mineral and calcium 

content of the ground water in this area (Dumouchelle, 1998). The ground water from the 

aquifers representing 6 of the 7 sampled schools have an average hardness greater than 10 

grains/gallon, which is considered “very hard” water (USGS 2019).  

I selected 14 school districts with public drinking water sources in Montgomery, 

Greene, and Clark Counties for sampling and analysis of Pb in tap water. These districts 

would not be subject to the LCR and would only be monitoring water voluntarily, if at 

all. These districts are located within a 20-mile radius of downtown Dayton and were 
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chosen to span a range of school construction dates and average community 

socioeconomic status, as indicated by the MHI of district residents (Table 1).  

2.2. Sampling inquiry 

School district superintendents were contacted by email and asked whether they 

would facilitate water sampling from multiple tap water sources in particular school 

buildings at a prearranged date and time. Letters to superintendents indicated the identity 

of their schools would be kept anonymous to the public and identified numerically for the 

purpose of this study. Affirmative, negative, and no responses were recorded within 21 

days from inquiries to sample water. School districts that were contacted for potential 

water sampling are listed in the Acknowledgments.  

2.3 Water sampling bottles  

Sampling bottles were made of either polytetrafluoroethylene (PTFE) or low-

density polyethylene (LDPE), that were rigorously cleaned (Hammerschmidt et al., 

2011). In contrast to the 1-L bottles described in the LCR, 500 mL bottles were utilized 

for water collection. Aside from the bottle size, water was sampled following LCR 

techniques (U.S. EPA, 1991). Sample bottles were acid cleaned by rinsing five times with 

ultrapure Milli-Q water, followed by a minimum six-day storage in 10% hydrochloric 

acid (HCl), and finished with a second 5x rinse with ultrapure Milli-Q water reagent 

grade water. Acid cleaned bottles were stored in doubled plastic zip bags prior to 

sampling events to prevent potential contamination.  
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Table 1. Physical and socioeconomic characteristics of school buildings examined in this 

study, including building construction year, median household income (MHI) of school 

district zip code, and date of water sampling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

School ID Year built MHI ($) Date sampled 

1 1963 88,939 3/4/2018 

2 1960 88,939 5/18/2018 

3 1932 107,705 5/31/2018 

4 1958 59,706 5/31/2018 

5 1961 39,137 7/18/2018 

6 1956 70,070 7/18/2018 

7 1997 59,108 1/2/2019 
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2.4 Water sampling 

Tap water was sampled between May 2018 and January 2019 following LCR 

guidelines (U.S. EPA, 1991) (Table 1). Sampling that occurred during the summer break 

of the school district was conducted during daytime hours (08:00–15:00). Sampling 

during the academic year occurred either before school hours (prior to 08:00) or during 

weekends and academic holidays. These sampling periods were chosen to best satisfy the 

LCR requirement of a minimum 6-hour water stagnation period prior to sampling. Tap 

water sources were assumed to meet the ≥ 6-hour stagnation period due to students and 

staff not being present during the time prior to sampling. 

In each school, an initial 500 mL water draw sample was collected from all 

drinking water fountains and also faucets in the kitchen, nurse’s office, and teacher’s 

lounge, if access was available. For the delayed draw sample, water was allowed to run 

from the source for five minutes before a 500 mL aliquot was collected. Delayed draw 

water samples were collected at one faucet per school to investigate Pb contributions 

from water service lines to the school. Delayed draw samples were taken from sink 

fixtures at each location due to ease of flushing. Temperature, specific conductance, and 

pH were measured immediately after sampling initial draws by collecting water in a 

graduated cylinder and measuring with a YSI Professional Plus sonde. The sonde was 

calibrated for pH and specific conductance using traceable standards from the U.S. 

National Institute of Standards and Technology (NIST). Field blanks were used to 

evaluate potential contamination during sampling. Field blanks consisted of reagent-

grade water in acid cleaned sampling bottles that were transported with tap-water 



11 
 

sampling bottles during sampling. Double-bagged water samples were stored in a 

laboratory cooler during transport back to Wright State University. 

2.5 Laboratory analysis 

Water samples and field blanks were returned to the laboratory and acidified to 

2% with high-purity 16 M HNO3 (J.T. Baker Instra-Analyzed). Acidified (>24 hours) 

water samples and field blanks were homogenized by inverting the sample bottle three 

times and then transferred from sample bottles into acid-cleaned, 15-mL polyethylene 

tubes for analysis. Aqueous calibration standards (0–25 µg/L Pb) were prepared by 

diluting a U.S. NIST traceable solution with 2% Instra-Analyzed 16 M HNO3. A U.S. 

NIST certified solution, CLMS-2A, was also diluted using Milli-Q water to 

concentrations of 0.0, 0.5, 1.0, 5.0, 10.0, and 25.0 µg/L Pb, and acidified. All samples 

and standards were analyzed for Pb by inductively coupled plasma mass spectrometry 

(ICPMS). Samples were analyzed following U.S. EPA method 6020A. The method 

detection limit for Pb was 0.002 µg/L and was determined from precision of replicate 

analysis of a low sample (APHA, 1995). Recovery of known standard additions for Pb 

averaged 98.4 % ± 2.9 % (n = 14). After every 10 samples, a randomly selected sample 

was analyzed in triplicate for quality control. The average standard deviation of triplicate 

analysis for Pb was 0.8 ± 0.8 % relative standard deviation (n = 8 triplicate sets).  

2.6 Statistical analysis 

Analytical and physicochemical data was analyzed using SAS University Edition 

software, and Microsoft Excel. Relationships and comparisons explored included: Pb and 

temperature, Pb and pH, Pb from buildings built pre-LCR and post-LCR, Pb and MHI, 
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MHI and school district response to sampling, Pb and fixture type, and Pb in initial water 

draw versus Pb in water after a 5-minute flush. Lead concentrations followed a non-

normal distribution and were thus transformed logarithmically to satisfy model 

assumptions of normality and constant variance. Linear regression and parametric 

comparisons were used to examine influences of the following parameters on Pb in tap 

water: water temperature and specific conductivity, building age, fixture type, MHI, and 

MHI and response to sampling. Lead versus temperature, Pb versus pH, Pb vs specific 

conductance, and Pb vs MHI were analyzed using regression models to model 

relationships between the two variables. Lead and fixture type, and school response to 

sampling compared to MHI, were analyzed using a t-test. Lead in the initial water draw 

sample compared to Pb in the 5-minute flush sample was assessed using a paired t-test. 

An analysis of Pb in the tap water of buildings built pre-LCR versus post-LCR, could not 

be completed due to the small sample size. An x-value of 0.05 was used to judge the 

significance of statistical tests, p-values and R2 values are based on transformed Pb data.
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III. RESULTS AND DISCUSSION 

3.1 Tap water 

Lead concentrations from single fixtures across the schools ranged from 0.007– 

33.37 µg/L, and Pb averages of school buildings ranged from 0.86–7.42 µg/L (Table 2). 

Among all seven schools, only four of 100 total fixtures had Pb concentrations in water 

that exceeded the U.S. EPA school fixture removal recommendation of 20 µg/L. 

Although individual fixtures exceeded the LCR school fixture removal recommendation, 

none of the schools surpassed the LCR guidelines of 10% or more fixtures exceeding the 

15 µg/L threshold. Thus, none of the sampled schools would fall under EPA guidelines 

for further corrective action under the LCR. pH of the sample set ranged from 7.53 to 

9.07, temperatures ranged from 8.7 to 27.7 °C, and specific conductance ranged from 437 

to 1640 µS/cm. There was no relationship between Pb and specific conductance in this 

data set (p = 0.967, ln Pb). Physicochemical readings were not collected at school 1. Of 

the 7 schools sampled, only one was built after 1990. The other six schools were built 

between 1930 and 1970.  

3.2 MHI and Sampling Response 

Only four of the 14 school districts contacted (including seven schools) agreed to 

facilitate water sampling. Three of the districts allowed sampling of multiple schools for 

a total of seven schools sampled in this study. In a comparison of response type to 

sampling inquiry (“yes” or “no”/no response), school districts that allowed sampling had  
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Table 2. Mean physicochemical characteristics, mean tap water Pb and standard 

deviation, and highest single fixture tap water Pb of school buildings examined in this 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pb (µg/L)   Specific 

School ID All fixtures 

Highest 

fixture  pH 

Temperature 

(°C) 

conductance 

(µS/cm) 

1 2.78 ± 4.29 15.9 - - - 

2 4.0 ± 2.5 7.38 8.1 19.6 1007 

3 0.98 ± 1.78 5.77 8.1 19.9 886 

4 3.12 ± 5.44 20.6 7.9 20.2 823 

5 7.42 ± 11.5 33.3 8.5 21.7 489 

6 2.13 ± 2.0 6.19 8.8 18.2 564 

7 0.86 ± 1.21 2.98 7.9 12.0 862 
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a higher MHI than those who responded “no” or gave no response (p = 0.006, t-test, 

Figure 1). Previous studies have explored the influence of socioeconomic status on water 

contaminant exposure. In a study in California, groups with lower socioeconomic status 

and minority groups had increased potential for both initial and repeat violations of 

drinking water quality standards (McDonald and Jones, 2018). In a nation-wide review, 

SDWA violations are more common in low-income communities with higher populations 

of black and Hispanic individuals than high-income communities with lower populations 

of black and Hispanic individuals (e.g., Switzer, 2017).  

A comparison of school district MHI to Pb levels had no statistical significance (p 

= 0.634, linear regression, Figure 2). This may have been influenced by small sample size 

and a repeating MHI for two school districts. Future analysis of how this variable is 

related to Pb levels may give better insight into potential environmental inequality of 

school districts in the Dayton area. 

3.3 Influence of temperature 

Lead concentration in tap water was weakly correlated to water temperature in 

initial water samples (p < 0.001, linear regression, Figure 3). Although Pb samples 

ranged almost four orders of magnitude among samples, water temperatures varied only 

by a factor of two in this study. This range is typical of water stagnating at ambient 

temperature or arriving slightly cooled in the case of water fountains. This relationship is 

in agreement with previous research on the influence of water temperature on measured  
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Figure 1. Median household income of school districts that responded “yes” and that 

responded “no” (or no response) (p = 0.006). Error bars are one standard error of the 

mean. 
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Figure 2. Correlation between mean Pb concentration (µg/L) and the median household 

income of each school district (p = 0.634, ln Pb). 
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Figure 3. Correlation between Pb concentration (µg/L) and the temperature of tap water 

samples. Water from sink fixtures are denoted by black markers, water from water 

fountains are denoted by grey markers (p < 0.001, ln Pb). 
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Pb concentrations. Higher water temperatures can accelerate reaction and dissolution 

rates in plumbing and fixtures (Kim et al., 2011; Bryant, 2004). The temperature of water 

samples drawn from sink fixtures were warmer than 18° C (Black markers, Figure 3), 

while temperatures of water samples drawn from water fountains spanned the entire 

temperature range (Grey markers, Figure 3). This is due to the water from sink faucets 

sitting at ambient temperatures within the fixtures, and water from water fountains being 

either ambient or chilled. Due to water sitting stagnant in the plumbing, Pb 

concentrations can also fluctuate seasonally, with higher concentrations in warm summer 

months compared to winter (Kim et al., 2011). In this study, water was sampled during 

only one sampling event at each school. Seasonal changes within each water system 

could not be determined, but seasonal variation in Pb concentration may also be present 

within these schools. 

3.4 Influence of pH 

Tap water was alkaline (range = 7.53–9.07) and Pb concentrations in tap water 

were unrelated to pH (p = 0.834, linear regression, Figure 4). Formation and dissolution 

of protective carbonate films on pipes is dependent on pH (Schock, 1989). Water that is 

more alkaline is more efficient at forming protective films, and a pH of 8–10 can inhibit 

leaching (Schock, 1989). According to the U.S. EPA, a non-corrosive water system is 

defined as having a pH > 7.8 and alkalinity between 30 and 100 mg CaCO3/L. The 

relatively high alkalinity of tap water samples in this study (range = 7.53–9.07) likely 

helped prevent Pb leaching from pipes and fixtures into the water systems (U.S. EPA, 

2003). The water samples in this study were unfiltered, so particulate inorganic species of 

Pb may also be present. The samples that had higher Pb concentrations in this study may 
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Figure 4. Correlation between Pb concentration (µg/L) and the pH of tap water samples 

(p = 0.834, ln Pb). 
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 also contain lead-carbonate, which can leach from the protective scale that lines the 

plumbing. Pb leaching is often increased with greater acidity in a water distribution 

system, and most metal leaching from plumbing occurs when there are changes to pH 

(Clark et al., 2015; Cartier et al., 2011; Kimbrough, 2007; Schock, 1989). 

3.5 Fixture type 

Water samples were collected from water fountains and sink faucets. Lead 

concentrations were higher in initial draw water samples from sink faucets (n = 25) than 

initial draw water samples from drinking fountains (n = 75) (p = 0.007, t-test, Figure 5). 

Little research has specifically explored the influence of water fountains versus water 

fixtures on Pb concentration. While certain components of fixtures are known to 

contribute to Pb in water, such as brass fittings, Pb solder, galvanization in the 

manufacturing process, and the use of Pb containing alloys in fittings (Lewis et al., 2017; 

Masters and Edwards, 2104; Deshommes et al., 2010), research focusing specifically on 

the differences between water fountains and other types of faucets was not found during 

the literature review.  

Based on the findings in this study, along with previous research linking water 

temperature to Pb levels (Kim et al., 2011; Bryant, 2004), concentrations may be lower in 

water fountains in part due to the water being chilled, as cooler water inhibits dissolution 

rates. The composition (e.g. pipe material, fittings, and solder type) of the water fountains 

may also play a role in the reduced Pb levels.  
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Figure 5. Lead concentration in tap water samples from sink fixtures (µg/L) (n = 25) and 

water fountains (µg/L) (n = 75) (p = 0.007). Error bars are one standard error of the 

mean.  
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3.6 School building construction year 

The construction year of the school buildings had no influence on Pb 

concentration in tap water samples (p = 0.892, linear regression, Figure 6). After the first 

amendment of the SDWA was passed in 1986, restrictions were placed on lead 

containing plumbing materials for tap water (SDWA U.S. EPA, 1986). This sample set 

had only one school building built after the onset of those restrictions. The schools in this 

study may also have had renovations since initial construction, replacing pipes and 

fixtures over time. Due to the limited school age range, and potential updates to school 

building plumbing, school construction year was not a representative indicator of Pb 

concentration in this study. With a larger sample size, building construction year may be 

more significant. 

3.7 Stagnation 

Much of the pb in school tap water is derived from intra-school sources as 

opposed to the water service line. Water samples from the initial water draw had higher 

concentrations of Pb than those collected after a 5-minute flush (p = 0.001, paired t-test, 

Figure 7, Table 3). Therefore, the majority of Pb leaching into the tap was from the 

fixtures, as opposed to the school building service lines, which may or may not contain 

Pb. As stated previously, samples collected after a 5-minute flush are indicative of metals 

originating from either the source or service lines, as opposed to in-home plumbing and 

fixtures (Goovaerts et al. 2017; U.S. EPA, 2013). Due to the initial draw samples being 

elevated, the schools sampled in this study could likely observe a reduction in Pb 

concentrations at the tap by replacing their old fixtures, or by flushing their water before 

use. This solution is also more cost effective than replacing the school water service line. 
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Figure 6. Correlation between mean Pb concentration and school construction year (p = 

0.892, ln Pb). 
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Figure 7. Lead concentration in first draw samples (µg/L) and 5-min flush samples (µg/L) 

(p = 0.001). Error bars are one standard error of the mean.  
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Table 3. Lead concentration in initial water draw and 5-minute flush by school. 

 

 

 

 

 

 

 

School ID 

Initial draw 

(µg/L) 

5-min flush 

(µg/L) 

1 2.3 0.2 

2 3.7 0.7 

3 5.8 1.1 

4 8.6 0.7 

5 20.5 0.2 

6 1.8 0.4 

7 3.0 0.4 



 

27 
 

IV. SUMMARY 

Lead exposure of children and adolescents is a continuing problem across the United 

States and globally. Tap water is still one of the major sources of Pb exposure. The 

prevalence of Pb in school tap water is largely unknown, as water testing for Pb in public 

school facilities that do not have their own water supply is voluntary and not regulated 

under the LCR. In this study of seven community schools, four fixtures surpassed the 

LCR school fixture removal recommendation of 20 µg/L. Fixture type and water 

temperature were both significant factors in elevated Pb levels. In a comparison of first 

draw samples versus a 5-minute flush, indoor plumbing and fixtures were the major 

contributors of Pb, rather than the service line. In a comparison of school district MHI to 

response to sampling, school districts that responded yes to sampling had higher MHIs 

than those that responded no (or did not respond). In a future study, a comparison of the 

MHI of school districts to the Pb concentration in their tap water could reveal if 

environmental inequality is a contributing factor to Pb levels in the Dayton area. To 

assess potential exposure risks at school facilities, water testing should be carried out at 

all non-regulated schools and childcare facilities across the United States. A larger study 

encompassing more school districts would also improve strength of correlations between 

these drivers, as other factors may also be contributing.  
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VI. APPENDIX 

 

 

Figure A1. Example of the email sent to school superintendents inquiring about school 

sampling access.  
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Table A1. School ID, Pb concentration, pH, temperature and fixture type (WF = water 

fountain, S= sink fixture) of each individual water sample. 

School ID Lead 
(µg/L) 

pH Temperature 
(°C) 

Fixture type 

1 0.424 
  

WF 

1 0.630 
  

WF 

1 1.492 
  

S 

1 1.819 
  

WF 

1 0.339 
  

WF 

1 1.442 
  

WF 

1 0.174 
  

WF 

1 1.726 
  

S 

1 2.118 
  

WF 

1 2.339 
  

S 

1 0.214 
  

WF 

1 0.495 
  

WF 

1 0.528 
  

WF 

1 0.254 
  

WF 

1 0.203 
  

WF 

1 9.186 
  

WF 

1 5.406 
  

WF 

1 14.34 
  

WF 

1 15.93 
  

WF 

1 3.411 
  

S 

1 5.271 
  

WF 

1 0.321 
  

WF 

1 0.447 
  

WF 

1 0.444 
  

WF 

1 0.449 
  

WF 

2 7.376 7.82 22.8 WF 

2 3.757 7.75 22.8 WF 

2 0.795 8.05 14.1 WF 

2 2.379 7.90 13.0 WF 

2 6.141 7.53 22.9 S 

2 6.888 7.47 22.3 S 

2 4.153 7.79 22.8 WF 

2 6.881 8.21 21.4 S 

2 1.958 8.66 17.1 WF 

2 6.610 7.87 23.0 S 
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2 0.623 8.45 9.40 WF 

2 0.755 8.07 14.0 WF 

2 0.917 8.48 12.0 WF 

2 3.696 8.26 21.2 S 

2 3.633 8.04 25.9 WF 

2 7.204 8.09 25.1 S 

2 4.730 8.00 23.0 S 

2 2.296 8.20 23.9 S 

2 5.677 8.57 21.1 S 

2 6.946 8.57 21.8 S 

2 0.618 8.46 12.6 WF 

3 5.766 8.50 22.6 S 

3 0.085 8.01 22.6 S 

3 0.098 8.17 15.1 WF 

3 2.748 8.30 23.2 S 

3 0.800 8.16 23.0 WF 

3 0.081 8.12 21.6 WF 

3 0.091 8.13 15.0 WF 

3 0.721 7.99 24.3 WF 

3 0.128 8.14 14.5 WF 

3 0.073 7.99 21.8 WF 

3 0.109 8.05 16.1 WF 

4 0.419 7.93 14.6 WF 

4 0.222 7.95 24.7 WF 

4 20.64 8.10 23.0 S 

4 8.570 8.10 23.5 S 

4 2.340 8.01 24.4 WF 

4 0.105 7.87 16.5 WF 

4 0.128 7.98 16.4 WF 

4 0.824 8.07 12.8 WF 

4 4.146 7.99 23.0 WF 

4 5.638 7.97 23.8 S 

4 0.997 8.05 23.1 WF 

4 0.008 7.83 16.0 WF 

4 0.007 7.83 15.1 WF 

4 0.774 8.09 22.8 WF 

4 1.910 8.02 23.3 WF 

5 0.174 8.64 14.8 WF 

5 0.309 8.46 23.6 WF 

5 9.194 8.48 23.3 WF 

5 0.558 8.46 23.5 WF 



35 
 

5 0.111 8.51 12.7 WF 

5 1.799 8.61 20.4 WF 

5 0.063 8.59 23.6 WF 

5 0.022 8.61 23.3 WF 

5 31.73 
  

WF 

5 33.37 8.53 23.0 WF 

5 20.46 8.57 23.6 S 

5 2.617 8.46 23.2 WF 

5 5.029 8.51 23.7 WF 

5 0.190 8.53 22.2 S 

5 5.568 8.48 23.7 WF 

6 1.769 8.85 24.2 S 

6 0.123 8.73 24.2 WF 

6 1.264 9.07 23.1 S 

6 1.051 8.76 13.5 WF 

6 6.191 8.77 11.8 WF 

6 0.401 8.69 22.6 WF 

6 3.658 8.80 13.2 WF 

6 2.560 8.80 13.0 WF 

7 2.980 7.85 18.6 S 

7 0.154 8.29 8.70 WF 

7 0.133 7.93 9.70 WF 

7 0.267 7.79 10.7 WF 

7 0.782 7.72 12.5 WF 
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