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ABSTRACT 

 

 

 

Karki, Uttam. M.S. IHE, Department of Biomedical Industrial and Human Factors 

Engineering, Wright State University, 2019. Joint Determination of Rack Configuration 

and Shelf Space Allocation to Maximize Retail Impulse Profit 

 

 

 

For brick-and-mortar retailers to be successful, it is critical for them to optimally design 

their rack layout and place products in order to draw attention of shoppers. Literature 

suggests that racks placed at acute (or obtuse) angles to the main aisle frequented by 

shoppers can enhance visibility of products compared to racks placed orthogonally (i.e., 

90˚). Placing products with high impulse purchase potential in the resulting highly visible 

locations on the rack can increase shopper impulse purchases. However, placing racks at 

angles other than 90˚ can increase the required floor space. Additionally, while reducing 

the height of the racks just below eye-height enhances visibility, it, however, reduces the 

number of available locations per product and increases restocking costs.  

To effectively trade off the benefits of visibility (in turn, impulse profit) and 

limitations of space and restocking costs, we propose the Joint Rack Configuration and 

Shelf Space Allocation (JRC-SSA) problem. The JRC-SSA jointly determines rack 

decisions (orientation and height) and product decisions (placement and number of 

locations) in order to maximize a retailer’s impulse profit (after discounting for space and 

restocking costs). As JRC-SSA is an extension of the classical SSA that has been shown to 

be NP-hard, and that the visibility estimation is not in a closed analytical form, standard 



 

iv 

 

mathematical programming solvers are not suitable. Consequently, we employed the 

population-based Particle Swarm Optimization (PSO) framework and designed five 

subroutines to efficiently find a (near) optimal solution to the JRC-SSA.  

Using realistic data collected from a major US retailer and that available in the 

existing literature, we conducted a comprehensive experimental study to derive managerial 

insights. Results indicate that product decisions were impacted by the angle of the rack; if 

a high impulse product was placed on the front face near to the endcap in a 90˚ rack, the 

same product was now placed on the back face in an acute-angled rack. We also noticed 

that acute-angled racks increased impulse profit over 90˚ racks at low space costs; shorter 

racks were prominent for low restocking costs. Overall, configurations exist where a 

retailer can realize up to 8.2% increase in profit through the JRC-SSA compared to a 7 ft 

height rack placed at 90˚ orientation. 

We expect that these, and several other insights discussed in our study, will help 

retailers in quantitatively evaluating their current rack designs and product placements, and 

optimize them, to increase shopper experience and, in turn, impulse profit. 
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1. INTRODUCTION 

Although online retailing has increased in popularity in the recent years, nearly 90% of total retail 

purchases still come from the traditional brick-and-mortar stores (Levy, 2017).  Based on a survey 

of more than 1,000 shoppers, 70% of shoppers responded that they prefer to shop in physical store 

of one of the retail chains than its e-commerce (Timetrade, 2017.). Physical stores play a key role 

over e-commerce in meeting shopper needs for instant gratification, trying out and seeing the 

products, easy return policy, and spending time with friends and families (Jakovljevic, 2019).  

In a physical store, shopper’s experience is usually influenced by how they navigate and 

associate with products in a store (Bitner, 1992; Lu & Seo, 2015). This experience is usually 

determined by the extent to which products are exposed to them. Product exposure on a rack aids 

in shopper’s interaction with products and plays a prominent role encouraging stores’ revenue 

(Cairns, 1962; Cairns, 1963; Anderson, 1979), as shopper’s will only buy what they see (Ebster & 

Garaus, 2015).  

 

 

 

 

 

 

 

 

        

 (a) Traditional rack layout  

  
 (a) Traditional rack layout  (b) Racks placed at an angle at a leading retailer 
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One way to increase product exposure (and in turn retailer revenue) is to focus on the 

placement of products on the rack. This problem of placing products in the most visible locations 

on a rack and allocating appropriate number of locations increasing product visibility is often 

referred to as the shelf space allocation (SSA) problem (Cox, 1970; Borin et al., 1994; Amrouche 

& Zaccour, 2007; Flamand et al., 2016; Frontoni  et al.,  2017). Nearly all approaches to solve the 

SSA problem, however, assume the rack to be 7 ft high (above shopper eye-height) and placed at 

90˚ to the shopper’s travel path. This means that the high visibility areas on the rack are prespecified 

and assumed to be constant.  

Recent literature in retail layout suggests that rack design can be a key determinant of what 

shoppers see and experience during a store visit, and in turn, maximizes retailer revenue. 

Specifically, racks placed non-orthogonally to the shopper path can increase product visibility on 

the rack (Mowrey et al., 2018; Guthrie & Parikh, 2019). Additionally, reducing the rack height can 

reduce occlusion and further enhance visibility (Guthrie & Parikh, 2019). Such innovative rack 

designs can be seen at stores of several leading retailers; e.g., Walmart places racks at an angle in 

the Cosmetic section, Kroger uses curved racks, and DSW uses low-height racks (<4 ft).  

 

(c) Product placement on a rack height < 4 ft 

 

Figure 1: Rack layout and product assignment in retail stores 
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Clearly, while both the retail layout and SSA literature focuses on retailer’s revenue by 

better exposure of products, they take alternate paths. On one hand, the retail layout literature 

assumes that product decisions (placement and faces) are known a priori and solve for only the rack 

decisions (orientation and height). In contrast, nearly all SSA approaches assume that rack 

decisions are known a priori, and subsequently just solve the product assignment problem. This 

begs the following questions:  

• How do rack decisions (orientation and height) interact with product decisions (location and 

allocation)?  

• How much benefit would a joint determination of rack and product decisions garner to the 

retailer compared to the assumption of a standard rack (7 ft high at 90˚ to the shopper travel)? 

Through this study, we attempt to bridge the gap between these two streams of research in 

retail store planning (i.e., rack configuration and shelf space allocation) and, subsequently, explore 

the synergies that can further benefit a retailer. In so doing, we account for a small section of the 

entire store in which we consider a single rack located between two racks in an aisle. As the middle 

rack will have occlusion in exposure due to the rack placed in front and back side of it (see Figure 

2) and are less exposed to the shoppers. Hence, we picked one of those middle rack as a 

representative rack in our study and make the following contributions. First, we propose an 

optimization model that determines the optimal rack orientation and height, along with product 

placement and faces. The objective of this model is to maximize the total impulse profit after 

discounting for the rack area and restocking costs. We model impulse profit as a function of the 

visibility probability of the rack locations, along with product impulsivity and profit. Altering the 

orientation of rack alters the space required by the rack, which is captured by estimating the 

required area. Similarly, reducing the height of the rack would reduce the number of available 

product locations, in turn, impacting the total inventory of each product on the rack. This would 

impact the frequency of restocking, which is captured through the restocking costs. Second, 
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because the SSA problem has been shown to be NP-hard, and that the visibility estimation for 

impulse profit is not in a closed analytical form, we propose a heuristic based on Particle Swarm 

Optimization (PSO) to find the (near) optimal solutions. Third, using realistic data from existing 

literature and that available from a retailer, we conduct a comprehensive experimental study and 

identify key insights of practical relevance to a retailer. Finally, we demonstrate the benefits of our 

integrated approach with a traditional SSA approach that focuses only on the product decisions 

(assuming given rack orientation and height). 

Our experiments suggest that the location of products on the rack depends on the angle of 

the rack; if a high impulse product was placed on the front side near to the endcap in a 90˚rack, 

then the same product would be placed on the backside in an acute-angled rack due to substantially 

different visibility profiles. Further, the number of facings allocated to the products changed 

substantially with changes in the rack angle and height. We also noticed that acute-angled racks 

were more prominent than 90˚ racks when area cost was low; racks just below eye-height were 

more prominent for low restocking costs. We noticed up to 8.2% increase in profit through the 

JRC-SSA compared to solving the SSA assuming 7 ft height rack placed at 90˚ orientation. 

 

 

Representative rack 

Figure 2: Representative rack on a given store layout 
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With these foundations, we now present details of our study organized as following outline. Review 

of the relevant literature is presented in section 2. Our proposed optimization model for JRC-SSA 

problem and particle swarm optimization approach to solve JRC-SSA model are discussed in 

section 3 and 4 respectively. We present our experimental design in section 5 and section 6 

summarizes our key findings and discuss potential future research. 
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2. LITERATURE REVIEW 

Retail rack design and shelf space allocation are two isolated streams of research in retail planning. 

While the former focuses on optimizing the rack-level decisions, the latter focuses on product-level 

decisions. Considering that our study spans across both these streams of literature, we now 

summarize key research in each of these streams and the corresponding gaps that form the basis of 

our study. 

Literature on retail facility layout has traditionally focused on optimizing the retailer’s 

revenue by optimizing the department placements and rack configuration. Peters, Klutke, and 

Botsali (2004) were the first to propose a department location assignment model considering three 

different types of retail layouts; aisle, hub-and-spoke, and serpentine. Although they maximized 

the impulse revenue generated from the layout, they assumed that a product will only be considered 

as visible if a shopper is standing next to the product along their path. To address the department 

sizing and placement problem, Yapicioglu and Smith (2012) proposed a bi-objective model where 

they maximized the store revenue. They determined the exposure based on fixed customer traffic 

zones. They assumed that high traffic zones will have high number of shoppers in those areas, thus 

making department highly visible; i.e., they considered visibility as a function of those traffic zone 

and department sizes. Recently, Hirpara and Parikh (2019) proposed a model to optimally place the 

departments in a store by explicitly accounting for changes in the shopper path with changes in the 

department layout. They derived up to k-shortest paths to pick products in a shopper’s planned 

purchase list and considered department as visible if it was along the shopper path. 

While the above approaches used a high-level measure of visibility, more recent 

approaches have taken a more fundamental approach by using a shopper’s field of vision to develop 

refined estimates of visibility and use it towards optimizing rack configurations. Mowrey and 

Parikh (2018) proposed the Retail Rack Layout Problem that optimized the rack orientation and 

number of columns across multiple racks. In their proposed non-linear optimization model, they 
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used a visibility measure by considering shopper’s horizontal field of view. They observed that, for 

a given space constraint, acute-angled racks can substantially increase visibility with only a 

marginal decrease in rack locations. Depending on the duration of exposure, acute or obtuse-angled 

rack can increase product exposure from 213-226% in small head turn and 17-18% in large head 

turn over 90° rack orientation. Guthrie and Parikh (2019) extended this visibility measure by 

considering both horizontal and vertical field of vision, and considering curved racks and racks of 

varying heights. The resulting 3D estimation problem was solved using an analytical-computational 

approach. They later use these estimates in solving the Rack Orientation and Curvature Problem of 

identifying the optimal rack angle and curvature to maximize impulse profit, after discounting for 

space cost (Guthrie and Parikh, 2019). Depending on the system parameters, an angled rack 

orientation that increase floor space by 18% can increase exposure by 530% while moderate 

increment in floor space (<5%) can still increase exposure by 48% (Guthrie, 2018). They found 

that rack height, orientation, and curvature, in that order, affected the visibility and, in turn, impulse 

profit. However, this work was limited in that it assumed a prespecified set of product decisions 

(placement and number of locations). 

Another related area in retail planning is Shelf Space Allocation (SSA), which employs the 

fact that high impulse potential products are sensitive to changes in the shelf space (Curhan, 1972; 

Desmet and Renaudin, 1998). Accordingly, the objective of the SSA problem is to determine the 

best placement and location assignment across multiple products, along limited shelf space, in order 

to maximize expected revenue (Murray, 2010). Hwang, (2009) proposed a model to design shelf 

space and product allocation problem to maximize the retailer’s profit and solved it using genetic 

algorithm. Ghoniem et al. (2014a) proposed a mixed-integer nonlinear model optimizing product 

assortment and pricing decision in order to maximize retailer’s profit. They found that jointly 

planning retail categories can save 5%-65% of profit and prevent suboptimal assortments. Ghoniem 

et al. (2014b) proposed a mixed-integer programming model to maximize the average impulse 
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buying profit per customer by determining the shelf space allocation for individual products 

categories. Zhao et al. (2016) proposed a joint optimization model to solve shelf space allocation 

and product display location problem, where they also accounted for multi-item replenishment; 

items replenished individually, and items replenished jointly. A simulated annealing based hyper-

heuristic algorithms was proposed and found that joint replenishment policy leads to a higher profit 

than that of the model for the individual replenishment policy.  

Flamand et al. (2016) solved an optimization problem with product location and shelf-

space allocation as decision variables in order to maximize the impulse profit per basket. They 

found that assigning products with high impulse purchase along high customer traffic densities 

increases the average impulse profit per basket. In an extension to this work, Flamand et al. (2018) 

considered the product affinity and disaffinity constraint to maximize the overall store’s profit 

proposing a store-wide shelf space allocation model. Similarly, Frontoni, (2017) proposed a model 

to minimize the out of stock cases by optimally re-allocating the shelf space. They proposed an 

integer linear programming model with a space elastic demand function. 

Although the SSA literature is fairly matured, almost all of the proposed approaches 

assumed a 7 ft, 90° rack. But the retail rack configuration literature suggests that the visibility 

profile on a rack can alter significantly based on the rack orientation and height. No known models 

or analysis exist that suggest what may happen to these product decisions if the rack configuration 

was altered.  

Our study fills this exact gap by proposing a novel, joint approach towards identifying the 

optimal rack and product decisions. We do this by accounting for changes in the area requirement 

for non-90˚ racks and changes in the restocking costs for shorter racks. We now present our 

proposed model for JRC-SSA. 
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3. AN OPTIMIZATION MODEL FOR THE JRC-SSA PROBLEM 

Our proposed optimization model determines the (i) rack height, (ii) rack orientation, (iii) product 

sequence, and (iv) number of product locations on a given rack. The objective is to maximize the 

marginal impulse profit after offsetting the cost of area and restocking of the products on the 

shelves. We make the following assumptions in building our model: 

• We solve the problem for a single rack which is a representative rack that is an intermediate 

and the visibility of the locations on it are known.  

• All product categories have already been allocated to the rack and must be assigned. 

• The shopper is walking along the main aisle heading towards a planned purchase list when 

encountering the rack under consideration; the visibility of a product on this rack is 

considered from the main aisle. 

Table 1 and 2 shows the parameters and decision variables used in the optimization model, which 

are also illustrated in Figure 3. 

 

 

Figure 3: Representative rack with parameters and decision variable 
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Table 1: Parameters used in the model 

Notation Definition 

𝐼 Set of allowable rack heights; 𝑖 ∈  𝐼   

𝐿 Set of locations on the rack; 𝑙 ∈  𝐿   

𝐹 Set of rack faces; 𝑓 ∈  𝐹   

𝑃 Set of product categories;  𝑝 ∈  𝑃   

𝑅𝑙 , 𝑅𝑤 Length and width of the rack (ft) 

𝐿𝑝
𝑚𝑎𝑥 ,  𝐿𝑝

𝑚𝑖𝑛 Maximum and minimum shelf locations that can be assigned to product category 𝑝 

𝐴𝑐  Distance between two successive racks (ft) 

𝐴𝑤 Width of the main aisle (ft) 

𝑂𝑙 , 𝑂𝑤 Length and width of a location (ft) 

𝐼𝑝 Probability of products to be purchased from category 𝑝 if seen 

𝑃𝑝 Profit generated from the product in category 𝑝 

𝑁𝑝 Number of products in category 𝑝 that can be stacked in a location 𝑙  

𝐷 Number of days the store is open annually 

𝑆 Number of shoppers per day visiting the store 

𝑆𝑒 Shopper’s eye height (ft) 

𝛺ℎ , 𝛺𝑣 Horizontal and vertical field of regard of a shopper 

𝐷𝑂𝑉 Shopper’s depth of vision (ft) 

𝐶 Cost of floor space ($/ft2) 

𝑅 Restocking cost ($/restock) 

 

Table 2: Decision variables used in the model 

Notation Definition 

ℎ Height of the rack (ft) 

𝜃 Rack orientation (°) 

𝑦ℎ  1, if height of the rack is h; 0, otherwise  

𝑧𝑝𝑙𝑓𝑖  1, if product category p is assigned to location l on face f at height h; 0, otherwise 

𝑙𝑝 Locations allocated to product category 𝑝 

𝑟𝑝 Number of visits made for restocking product category p 

𝑙𝑡𝑜𝑡 Total number of locations on the rack 

𝑣𝑝 Probability of visibility for product p during the shopping path 

𝑎 Required floor space (ft2) 
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We now propose the following optimization model to jointly solve the retail rack layout 

and shelf space allocation problem (JRC-SSA). 

maximize        𝑆𝐷 ∑ (𝐼𝑝𝑃𝑝𝑧𝑝𝑙𝑓𝑖𝑣𝑝 −  𝑅𝑟𝑝)𝑝𝑙𝑓𝑖  − 𝐶𝑎 

 

 

subject to 

𝑣𝑝 = 𝑓1( 𝑧𝑝𝑙𝑓𝑖, 𝑙𝑝, 𝑔(𝜃, ℎ, 𝑅𝑙 , 𝑅𝑤 , 𝐴𝑐 , 𝐴𝑤 , 𝑆𝑒 , 𝑂𝑙 , 𝑂𝑤 , 𝐷𝑂𝑉, 𝛺ℎ , 𝛺𝑣))  (1) 

𝑎 = 𝑓2(𝜃, 𝑅𝑙 , 𝑅𝑤 , 𝐴𝑐 , 𝐴𝑤 , 𝑂𝑙 , 𝑂𝑤)  (2) 

∑ 𝑧𝑝𝑙𝑓𝑖 = 1
𝑝𝑓𝑖

    ∀ 𝑙 (3) 

𝐿𝑝
𝑚𝑖𝑛 ≤ ∑ 𝑧𝑝𝑙𝑓𝑖 ≤ 𝐿𝑝

𝑚𝑎𝑥 
𝑙𝑓𝑖

    ∀ 𝑝 (4) 

∑ 𝑧𝑝𝑙𝑓𝑖 ≤  𝑦ℎ
𝑝𝑙𝑓

    ∀ 𝑖 (5) 

∑ 𝑦ℎ
ℎ

= 1   (6) 

∑ 𝑖𝑦𝑖
𝑖

= ℎ                                                                                                                                                  (7) 

𝑙𝑡𝑜𝑡 =  2ℎ (
𝑅𝑙

𝑂𝑙
) + 2(4ℎ)                      ∀ 𝑖|ℎ > 4 (8) 

𝑙𝑡𝑜𝑡 = 2ℎ (
𝑅𝑙

𝑂𝑙
) + 2(ℎ + 2) + 𝑅𝑤 (

𝑅𝑙

𝑂𝑙
)        ∀ 𝑖|ℎ ≤ 4 (9) 

𝑟𝑝  ( 
𝑣𝑝𝐼𝑝

𝑁𝑝𝑙𝑝
)  ∀ 𝑝 (10) 

𝜃 ∈ [300, 1500]  (11) 

0 ≤ 𝑣𝑝 ≤ 1 ∀ 𝑝 (12) 

𝑎 ≥ 0  (13) 

𝑦ℎ , 𝑧𝑝𝑙𝑓𝑖  {0,1}                ∀ 𝑖, 𝑝, 𝑙, 𝑓 (14) 

 

The objective of JRC-SSA is to maximize the marginal impulse profit generated by the model. 

Notice the nonlinearity in the first term (zplfi ∙ vp). To estimate marginal impulse profit, we first 

calculate the impulse profit and subtract total space cost and restocking cost from the impulse profit 

generated. Constraint (1) calculates the product’s visibility based on number of locations allocated 

to a product and their location’s visibility. Constraint (2) calculate the required floor space and 
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constraint (3) ensures every location on a rack needs to be assigned with a certain product category 

𝑝. Constraint (4) bounds the number of locations allocated to a product category 𝑝. Constraint (5) 

ensure the rack should have a certain height in order to assign the product category and Constraint 

(6) and (7) ensures only one rack height can be selected from the allowable set of rack heights. 

Constraint (8) and (9) calculates the total number of locations on a rack for a given rack height, 

which the non-linear. Constraint (10) calculates total number of minimum annual restocks to be 

made for each product category 𝑝. Constraint (11) bounds the rack orientation between 30°and 

150°. Constraint (12) bounds 𝑣𝑝  values between 0 and 1. Constraint (13) describe that the required 

floor space is non-negative and constraint (14) explains the binary decision variables in the 

optimization model. 

Recall that JRC-SSA integrates key decisions related to rack configuration (height and orientation) 

and shelf space allocation. Existing literature to address the SSA problem suggests that it is a NP-

hard problem, for which no known exact procedures are available (Flamand et al., 2016; Murray et 

al., 2010). Similarly, recent literature in optimizing rack configuration points to the lack of a closed-

form expression to estimate product visibility, vp (Guthrie & Parikh, 2019). Both these 

observations, along with the non-linearity in the objective function and a constraint, compound the 

complexity of the JRC-SSA and render it difficult to be solved using state-of-the-art mathematical 

programming approaches. In light of this, we propose a metaheuristic approach based on the 

particle swarm optimization (PSO) framework to solve the JRC-SSA problem. 
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4. A PARTICLE SWARM OPTIMIZATION BASED HEURISTIC 

4.1 PSO Description 

The Particle Swarm Optimization framework mimics the social behavior of flocks of birds, swarm 

of bees, and fish schools (Sun et al., 2004; Prasannavenkatesan and Kumanan, 2011). A number of 

successful applications of PSO have been reported; e.g., facility layout (Ohmori, 2010; Kundu, 

2012; Mowrey and Parikh, 2018) and supply chain (Prasannavenkatesan and Kumanan, 2011; Park 

and Kyung, 2013). A finite number of particles are initialized in PSO to find the best possible 

solution in the search space. After each iteration, a particle’s position and velocity are updated 

based on the particle’s previous velocity, previous position, and global best position (discussed 

later in this section).  

In our proposed PSO procedure, a solution is represented as a vector of the decision 

variables ordered as rack height (h), rack orientation (), sequence in which product categories will 

be placed on the rack, and their corresponding facings. An example representation with 5 product 

categories would be as follows: {h, , 4, 2, 1, 5, 3, 11, 16, 22, 14, 15}, where positions #3-#7 

indicate the sequence of product categories and positions #8-#12 indicate their corresponding 

number of locations on the rack. 

We enhanced the standard PSO framework by incorporating five subroutines to effectively 

search the solution space and evaluate the candidate solutions: Rack Design subroutine, Product 

Assortment subroutine, Product Assignment subroutine, Product Visibility subroutine, and Impulse 

subroutine. At each iteration, the candidate solution (represented by a particle) goes through all 

these subroutines yielding a potential global best solution. The below pseudo-code summarizes the 

overall algorithm. We now explain each subroutine. 
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4.1.1 Rack design subroutine: This subroutine determines both the rack height and rack orientation. 

For these, we use the smallest position value (SPV) rule to convert a real-valued number into a 

feasible integer value between prespecified lower and upper bounds on the height and orientation 

(Kaur and Tiwari, 2012).  

Initialize population of particles with random positions and velocities 

Do 

   For each particle: 

        Evaluate feasibility of the encoded solution 

        If Feasible: 

             Convert encoding to rack layout (Rack Design subroutine) 

             Convert encoding to product category assortment (Product Assortment subroutine) 

             Place products on a rack based on assignment rule (Product Assignment subroutine) 

             Estimate 𝑣𝑝 (Product Visibility subroutine) 

             Evaluate fitness function (Impulse subroutine) 

     If fitness value is greater than global best: 

         Set current solution as global best 

     If fitness value is greater than neighborhood best: 

         Set current solution as neighborhood best 

     If fitness value is greater than particle best: 

         Set current solution as particle best 

 Else: 

     Reject solution 

         Else: 

  Reject solution 

   End 

   For each particle: 

          Update particle velocity 

          Update particle position 

    End 

Until termination criteria is met 
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For instance, let the value of position #2 (representing  in the particle) be -25. We first 

generate a sequence from 𝑋𝑚𝑖𝑛 to 𝑋𝑚𝑎𝑥 of length equal to the number of possible solutions as 

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

(𝑁−1)
 , where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the upper and lower bounds of the search space. Here, N is 

the number of possible parameter values; N for rack orientation = 181 (i.e., {0˚, 1˚, …, 180˚}). An 

example calculation of a sequence of length 181 to encode rack orientation for Xmax = 50 and Xmin 

= -50 can written as {-50, -49.44, -48.44, …, 49.44, 50}. 

We then subtract the position value (i.e., -25) from this sequence and take the absolute 

value of each position in this sequence yielding a new non-negative sequence. The position of the 

smallest value index in this non-negative sequence represents the solution of that parameter in that 

iteration. Continuing with the previous example, after subtracting the position value of  = -25 

from sequence and considering the absolute value, we get {25, 24.44, 23.89, …, 0.55, 0.00, 0.55, 

……, 74.44, 75}. In this new non-negative sequence, 0.00 is the smallest value and its position 

index is #45. Hence, we set  = 45˚ as our rack orientation in current solution. It is easy to place 

bounds on this sequence by assigning a big number M for values outside the bound to ensure that 

the chosen position is within the bounds. 

4.1.2 Product assortment subroutine: This subroutine determines the sequence of product 

categories to be assigned on a rack and the corresponding number of locations. We again use the 

SPV rule to convert real-valued numbers into integers. 

To understand this better, suppose the values from position #3 - #7 (representing product 

assignment sequence for 5 product categories) are {10.02, -15.9, 35.61, -45.11, 21.35}. In the 

sequence, position index that has the smallest value is chosen as the first product to be assigned, 

second smallest as the second product and so on. For example, the 4th position index (-45.11) is the 

smallest value in the sequence, and hence product category 4 is assigned first. Similarly, 2nd position 

index (-15.9) is the second smallest value in the sequence and product category 2 is assigned 
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second. Hence the final product assignment sequence will look like {4, 2, 1, 5, 3}. Table 3 shows 

the position vector and product assignment sequence for 5 product categories. 

Table 3: Generating product category sequence based on position vector 

Position vector 10.02 -15.9 35.61 -45.11 21.35 

Product category sequence  3rd  2nd 5th  1st  4th  

 

To encode the number of locations, suppose the total number of locations (ltot) is 616 and 

the value from position #8 - #12 is represented by {-37, 44, -10, 18, -35}. First, we determine the 

multiplication factor by taking the ratio of 𝑙𝑡𝑜𝑡 to the sum of the absolute value of position #8-#12. 

Then we multiply the absolute value of each position by the calculated multiplication factor giving 

us a real number that represents the number of locations to be assigned to the product sequence 

generated above. Since the number of locations cannot be fractional, we round all the positions and 

get the integer value of the number of locations for the product sequence. In above case, 

multiplication factor was found to be 4.278 and the final number of locations would be {158, 188, 

43, 77, 150}. If rounding exceeds the total number of locations on the rack, then we reduce the 

locations allocated to product category with the lowest 𝐼𝑝𝑃𝑝 value. Similarly, if rounding leads to 

not utilizing all the rack locations, then we first assign locations to product categories with locations 

less than minimum locations (if such is the case due to rounding) and then to a product category 

with the highest 𝐼𝑝𝑃𝑝 value.  

4.1.3 Product assignment subroutine: This subroutine assigns product categories to the rack based 

on the sequence and locations determined in the above subroutine. To do this, we use space-filling 

curve to facilitate product adjacency and reduce the chance of irregular shapes. Consider an 

example for rack height of 7 ft as shown in Table 4 and a prespecified space-filling curve (based 

on the preference of the retailer) shown in Figure 4. In Figure 4, the filling pattern for space-filling 
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curve is determined by the integer number from 1 to 𝑙𝑡𝑜𝑡 ; shown in Figure 4 itself. In Figure 4, “1” 

represent the starting position of space-filling curve and moves towards 𝑙𝑡𝑜𝑡 in increasing order. 

This subroutine assigns product categories to this rack in the form shown in Figure 4. 

 Table 4: Product categories and locations allocation 

 

 

 

 

 

 

Figure 4: Space filling curve on 4 ft and 7 ft rack height 

4.1.4 Product category visibility subroutine: For a given particle (which represents the assignment 

of product categories on a rack placed at a specified angle and height), this subroutine calculates 

𝑣𝑝 (the probability a product category 𝑝 is seen at least once by the shopper). From expression (1) 

in our proposed optimization model, the probability a product category 𝑝 to seen at least once by 

the shopper, 𝑣𝑝 = 𝑓1 ( 𝑧𝑝𝑙𝑓𝑖, 𝑙𝑝, 𝑔(𝜃, ℎ, 𝑅𝑙 , 𝑅𝑤, 𝐴𝑐 , 𝐴𝑤 , 𝑆𝑒 , 𝑂𝑙 , 𝑂𝑤 , 𝑆ℎ, 𝐷𝑂𝑉, 𝛺ℎ , 𝛺𝑣)). We employ 

the approach presented in Guthrie and Parikh (2019) to derive the function f1, which uses 

Product categories 1 2 5 12 11 8 7 4 6 10 9 3 

Number of locations 22 32 31 59 80 23 77 80 71 80 29 32 

 

 

 

 

(a) Space filling curve on 4 ft rack height (b) Space filling curve on 7 ft rack height 
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information about the location of product category p (zplfi and lp) and the probability of a location 

seen at least once by the shopper (which depends on the rack decisions, aisle widths, and shopper 

attributes) as given by  𝑔(𝜃, ℎ, 𝑅𝑙 , 𝑅𝑤 , 𝐴𝑐 , 𝐴𝑤 , 𝑆𝑒 , 𝑂𝑙 , 𝑂𝑤 , 𝑆ℎ , 𝐷𝑂𝑉, 𝛺ℎ, 𝛺𝑣).  

 

4.1.5 Impulse subroutine: This subroutine calculates the expected marginal impulse profit for each 

particle as 𝑆𝐷 ∑ (𝐼𝑝𝑃𝑝𝑧𝑝𝑙𝑓𝑖𝑣𝑝 −  𝑅𝑟𝑝)𝑝𝑙𝑓𝑖  − 𝐶𝑎. Area cost is determined based on the rack height 

and orientation obtained using the procedure described by Guthrie and Parikh (2019). Essentially, 

that approach creates a bounding box around the rack and incorporates cross-aisle and main aisle 

area. Restocking cost for each product category (in each particle) is estimated based on the annual 

demand of that product category, number of locations assigned to it, and the quantity per location, 

𝑟𝑝  ( 
𝑣𝑝𝐼𝑝

𝑁𝑝𝑙𝑝
)  ∀ 𝑝. 

4.2 Solution Updating 

At each iteration 𝑖, the position of the particle is represented by 𝑋𝑖𝑗
𝑡  and velocity by 𝑉𝑖𝑗

𝑡 . The position 

and velocity of particles are updated as of equation (1) and (2). 

𝑉𝑖𝑗
𝑡 =  𝐾(𝑉𝑖𝑗

𝑡−1 +  𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖𝑗
𝑡−1 − 𝑋𝑖𝑗

𝑡−1) +  𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑗
𝑡−1 − 𝑋𝑖𝑗

𝑡−1))   (1) 

𝑋𝑖𝑗
𝑡 =  𝑋𝑖𝑗

𝑡−1 +  𝑉𝑖𝑗
𝑡          (2) 

In equation (1), 𝑟1 and 𝑟2 are the uniform random number between [0, 1] and determine the rate of 

movement towards local best or personal best solution. 𝐶1 and 𝐶2 are the acceleration constant and 

𝐾 is the constriction coefficient. Preliminary experiments suggested that dynamically raising the 

value of 𝐶2 in comparison to 𝐶1 improved solution quality and convergence. While we set 𝐶1=2.05 

per suggestion by Clerc and Kennedy (2002), we initiate 𝐶2= 0.4 and increase it by 0.2 after first 

1000 iterations and then after every 500 iterations. We set 𝐾 set to 0.7282 (Clerc and Kennedy, 

2002). The randomness in velocity might cause the particle’s velocity to move towards infinity, 
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hence we incorporated limits on velocity as -50≤  𝑉𝑚𝑎𝑥 ≤50. When particle’s velocity crosses 

these bounds, its velocity value is set to its nearest bounds. Similarly, for a particle’s position, limits 

were added as -50≤  𝑋𝑚𝑎𝑥 ≤50. We used no further improvement (> 0.05%) in global solution for 

1000 iterations and maximum iterations of 10,000 as the stopping criteria. 
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5. EXPERIMENTAL STUDY 

In order to understand the sensitivity of solutions generated by the PSO for various system 

configuration parameters and generate managerial insights, we conducted a comprehensive 

experimental study using realistic data, as discussed below. 

5.1 Data collection 

Data for our experiments were collected from two nearby retail stores. Details about type of 

products assigned, assignment locations, number of locations, rack dimensions and orientation 

were recorded from both the retailers. Since the data collected were at the product level, we 

screened the product information and grouped them into a product category level. For instance, 

sugar from Domino and Great Value were combined under product category Sugar. 

             Table 5: Data from Retailer 1 

Table 6: Data from Retailer 2 

 

 

 

 

A total of 20 products from Retailer 1 were grouped into 12 product categories and 18 

products from Retailer 2 into 8 product categories. Impulse purchase rates of the product categories 

were obtained from (Flamand et al., 2016). Similarly, per unit profit for each product categories 

Product category Impulse 

purchase rate 

Profit per 

unit ($) 

Baking/chocolate 0.2600 2.91 

Kraft spreads 0.2793 2.05 

Chili 0.4450 0.70 

Pasta sauce 0.2625 1.05 

Biscuits/rolls 0.2601 1.03 

Jell-O 0.2468 1.06 

Canned fruit 0.4490 0.57 

Cat food 0.0794 3.08 

Japanese food 0.2633 0.76 

Macaroni 0.2554 0.39 

Sugar 0.0705 1.09 

Beans 0.2541 0.27 

Product category Impulse 

purchase rate 

Profit per 

unit ($) 

Taco seasoning 0.0759 2.35 

Rice 0.0782 2.25 

Precooked beans 0.2271 0.26 

Beans 0.2541 0.27 

Spaghetti 0.0678 4.65 

Tuna 0.2570 0.92 

Ranch dressing 0.2604 0.74 

Mayonnaise 0.2554 0.39 
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are based on estimates used in (Guthrie and Parikh, 2019). Tables 5 and 6 summarize this data from 

the two retailers. 

Table 7 summarizes the layout and shopper parameters we used in our analysis. The 

shopper field of regard (horizontal and vertical) and eye-height were per Guthrie and Parikh (2019).  

Table 7: Layout parameters 

Parameter Value 

Shopper’s vertical field of regard, up and down from center, (𝜙𝑣 + 𝛺𝑣) 45° 

Shopper’s horizontal field of regard, left and right from center, (𝜙ℎ +  𝛺ℎ) 45° 

Shopper’s depth of view (DOV) 50 ft 

Shopper eye-height (𝑆𝑒) 5 ft 

Cross aisle and main aisle width (𝐴𝑐 and 𝐴𝑚) 8 ft and 10 ft 

Rack length and width (𝑅𝑙 and 𝑅𝑤) 40 ft and 5 ft 

 

5.2 PSO Performance 

Preliminary experiments with the above data suggested that 40 particles – each particle is a 

candidate solution – was sufficient to get high-quality solutions in a reasonable time. We coded the 

PSO based meta-heuristic in R programming language with parallel implementation. All the 

experiments were implemented on Intel(R) Core™ i7-8750H CPU@2.20 GHz, 12 cores 16 GB 

RAM personal computer.   

We used two metrics to evaluate the PSO performance; variation in the objective function 

‘within particles of a run’ and ‘between runs.’ To do so, we ran 5 instances of the model with 

parameter values; $20/ft2 annual space cost, $4/restock as restocking cost, 100% profits per product 

and 1000 as shopper’s volume. Additionally, store opening days was assumed to be 365 days. All 

5 instances were run for stopping criteria of maximum 10,000 iterations or no improvement in 

objective function (greater than 0.05%) by 1,000 iterations. Table 8 summarizes the results for all 

5 instances with variation in objective function and computational time.  
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Table 8: Comparison of PSO solutions and computational time 

Instance Best layout Objective Iterations Computational 

time (hours) 

Within particle 

variation in this run 
h  

1 4 ft 30° $1,144,765 1100 1.51 0% 

2 4 ft 30° $1,147,138 1036 1.37 0% 

3 4 ft 30° $1,152,321 1037 1.52 0% 

4 4 ft 30° $1,150,394 1117 1.62 0% 

5 4 ft 30° $1,150,389 1057 1.54 0% 

 

Notice in Table 8 that all the particles converged to a global best solution in each of the 5 

runs. The variation ‘within particles of a run’ was 0% and ‘between runs’ ranged from 0.167-

0.656%. The mean objective function across the 5 runs was $1,149,001 with a standard deviation 

of $3,013. The average computation time was 1.512 hours. These findings provided sufficient 

evidence that our PSO was robust. We, therefore, used this PSO implementation to conduct our 

experiments and generate managerial insights. 

5.3 Experimental Factors 

We considered three levels of annualized space cost/ft2. Based on our literature, the annual floor 

space cost ranges from $16/ft2 in Cleveland, OH to $293.02/ft2 in Los Angeles, CA. Hence, we 

used $20/ft2, $50/ft2, $100/ft2 as representative values. In addition, three different values of 

restocking cost; $4, $10, $80 per restock (including labor and equipment cost) were considered for 

experimental study.  

We also considered two levels of profit per products. While 100% represented the data we 

had collected, 50% tried to emulate situations when the products had a lower profit margin. For 

instance, beauty products, phone accessories, activewear, and similar are the high-profit products 

(Widmer, 2019), whereas milk and bread are examples of low-profit margin products. The facings 

of each product category are bounded between 20 and 80. To evaluate stores with low and high 
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customer traffic, we used 250 and 1000 shoppers per day, with the assumption that the store open 

365 days in a year. Table 9 summarizes these parameters and their values.  

Table 9: Parameters values used in experimental study 

Parameters Levels Values 

Space Cost 3 $20, $50, $100 

Restocking Cost 3 $4, $10, $80 

Profit per product 2 100%, 50% 

Number of Shoppers 2 250, 1000 

 

Impulse profit per product category was calculated by taking a product of impulse purchase 

rate and unit profit; i.e., 𝐼𝑃𝑃𝑃. We grouped the product categories in Table 5 into three different 

levels; high, medium and low, based on impulse profit. Table 10, 11, 12 and 13 summarizes the 

solutions from the 36 experiments we conducted. In these table, “Assignment” column represents 

the product categories assigned to different faces on a rack. The top row in this column represents 

product categories and bottom row (italic font and highlighted in light grey) denotes number of 

locations assigned to those product categories. The last column “7ft, 90°” indicates the objective 

function of such a layout with optimized product assignment; we do this by fixing θ = 90 and h = 

7ft in the PSO; the “%-diff” indicates the %-increase in the objective function realized through a 

rack that is either short, angled, or both. Notice that increase of up to 8.2% can be realized using 

our proposed JRC-SSA approach. Key observations that explain such increases are discussed 

below.
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Table 10: Summary of results from 250 shoppers and 100% profit level 

S Profit C 

$/ft2 

R    

$ 

h  JRC-SSA 

Objective 

Assignment 7ft, 90° 

A/E B/F C/G D/F Objective % Diff from 

JRC-SSA 

 

 

 

 

 

 

 

 

250 

 

 

 

 

 

 

 

 

100% 

 

 

$20 

$4 4 ft 30° $256,475.5 5 

32 

5, 3, 10, 11, 12 

32, 80, 80, 80, 80 

12 

80 

12, 7, 6, 9, 4, 1, 8, 2  

80, 66, 42, 22, 22, 21, 21, 22 

$249,744.3 2.6% 

$10 4 ft 30° $245,152.2 4 

31 

4, 8, 12, 10, 11 

31, 61, 80, 80, 60 

11, 7 

60, 80 

7, 6, 5, 3, 2, 9, 1 

80, 41, 35, 25, 25, 25, 25 

$243,264.9 0.8% 

$80 7 ft 90° $176,076.6 1 

33 

1, 9, 6, 7, 12, 8, 11 

33, 31, 51, 80, 31, 80, 31 

11 

31 

11, 10, 5, 3, 4, 2 

31, 59, 80, 77, 31, 22 

- - 

 

 

$50 

$4 7 ft 90° $229,004.6 2, 3 

20, 20 

3, 6, 5, 8, 11,12 

20, 20, 54, 80, 80,80 

12 

80 

12, 10, 9, 7, 4, 1  

80, 80, 80, 62, 20, 20 

- - 

$10 7 ft 90° $222,761.9 7, 1 

20, 20 

1, 8, 6, 5, 9, 12 

20, 20, 39, 80, 80, 80 

12 

80 

12, 11, 10, 3, 4, 2 

80, 79, 80, 74, 24, 20 

- - 

$80 7 ft 90° $159,362.1 1 

30 

1, 8, 4, 5, 6, 12 

30, 29, 33, 80, 79, 80 

12, 7 

80, 80 

7, 10, 11, 3, 9, 2 

80, 29, 33, 79, 34, 30 

- - 

 

 

$100 

$4 7 ft 90° $195,073.1 1, 2 

20, 20 

2, 5, 3, 8, 9, 12 

20, 20, 31, 80, 80, 80 

12, 11 

80, 80 

11, 10, 7, 6, 4 

80, 80, 77, 28, 20 

- - 

$10 7 ft 90° $182,955.7 3, 2 

21, 21 

2, 6, 8, 10, 12 

21, 31, 80, 80, 80 

12, 11 

80, 80 

11, 9, 7, 5, 4, 1 

80, 80, 80, 21, 21, 21 

- - 

$80 7 ft 90° $125,080 1 

30 

1, 8, 4, 6, 7, 10 

30, 29, 30, 74, 79, 80 

10, 12 

80, 29 

12, 5, 11, 9, 3, 2 

29, 80, 29, 66, 60, 30 

- - 
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Table 11: Summary of results from 250 shoppers and 50% profit level 

S Profit C 

$/ft2 

R    

$ 

h  JRC-SSA 

Objective 

Assignment Result for 7ft 90° 

A/E B/F C/G D/F Objective % Diff 

 

 

 

 

 

 

 

 

250 

 

 

 

 

 

 

 

 

50% 

 

 

$20 

$4 4 ft 90° $117,626.4 1,2 

20, 21 

2, 8, 9, 5, 10, 12 

21, 24, 34, 74, 78, 77 

12 

77 

11, 7, 6, 4, 3 

80, 80, 38, 21, 21 

$116,966.2 0.6% 

$10 7 ft 90°  $110,723.6 4, 1 

20, 20 

1, 8, 3, 5, 11, 12 

20, 20, 35, 80, 80, 80 

12, 10 

80, 80 

10, 9, 7, 6, 2 

80, 80, 75, 26, 20 

- - 

$80 7 ft 90° $64,633.47 1 

48 

1, 2, 3, 9, 7, 12 

48, 57, 80, 29, 80, 28 

12, 11 

28, 28 

11, 5, 10, 6, 4, 8 

28, 70, 28, 80, 55, 33 

- - 

 

 

$50 

$4 4 ft 90° $95,724.9 2, 6 

20, 20 

6, 8, 4, 7, 9, 11 

20, 21, 37, 67, 80, 80 

11, 10 

80, 77 

10, 12, 5, 3, 1 

77, 37, 64, 38, 27 

$94,952.6 0.8% 

$10 7 ft 90° $88,510.3 4, 1 

20, 20 

1, 3, 8, 6, 9, 11 

20, 21, 23, 73, 80, 80 

11, 12 

80, 80 

12, 10, 5, 7, 2 

80, 80, 80, 38, 21 

- - 

$80 7 ft 90° $43,859.5 1 

55 

1, 8, 3, 9, 5, 10 

55, 39, 80, 28, 80, 27 

10, 12 

27, 27 

11, 7, 6, 4, 2 

27, 79, 80, 53, 41 

- - 

 

 

$100 

$4 7 ft 90° $59,597.3 1, 2  

20, 20 

2, 8, 3, 7, 10, 11 

20, 20, 42, 80, 80, 80 

11 

80 

11, 12, 9, 5, 6, 4 

80, 75, 80, 75, 24, 20 

- - 

$10 7 ft 90° $52,426.6 9, 1 

20, 20 

1, 8, 4, 5, 7, 11 

20, 20, 31, 77, 80, 80 

11, 12 

80, 80 

12, 10, 3, 6, 2 

80, 80, 80, 28, 20 

- - 

$80 7 ft 90° $8,310.3 2 

45 

2, 4, 3, 6, 10, 12 

45, 44, 80, 80, 51, 24 

12, 5 

24, 25 

5, 11, 7, 9, 1, 8 

25, 24, 80, 68, 64, 31 

- - 
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Table 12: Summary of results from 1000 shoppers and 100% profit level  

S Profit C 

$/ft2 

R    

$ 

h  JRC-SSA 

Objective 

Assignment Result for 7ft 90° 

A/E B/F C/G D/F Objective % Diff 

 

 

 

 

 

 

 

 

1000 

 

 

 

 

 

 

 

 

100% 

 

 

$20 

$4 4 ft 30° $1,144,765 7 

32 

7, 3, 4, 11, 10 

32, 80, 80, 80, 80 

10 

80 

10, 5, 12, 8, 6, 1, 2, 9 

80, 53, 33, 36, 26, 25, 25, 25 

$1,051,370.3 8.2% 

$10 4 ft 30° $1,105,375 1 

25 

1, 5, 8, 12, 11 

25, 80, 80, 80, 80 

11 

80 

11, 6, 10, 7, 3, 4, 2, 9 

80, 53, 33, 36, 26, 25, 25, 25 

$1,020,944.5 7.6% 

$80 7 ft 30° $780,033.3 12 

80 

12, 6, 8, 7, 9 

80, 80, 23, 68, 78 

9, 4 

78, 80 

4, 11, 1, 2, 3, 5, 10 

80, 51, 31, 23, 43, 36, 23 

$779,189.5 0.1% 

 

 

$50 

$4 4 ft 30° $1,086,466 3 

25 

3, 9, 10, 11, 12 

25, 67, 70, 77, 80 

12, 5 

80, 80 

5, 6, 7, 4, 2, 8, 1 

80, 44, 29, 24, 24, 24, 24 

$1,033,494.2 4.9% 

$10 4 ft 30° $1,042,947 8 

26 

8, 4, 11, 12, 10 

26, 80, 57, 80, 80 

10, 7 

80, 65 

7, 3, 9, 2, 6, 1, 5 

65, 44, 27, 27, 27, 28, 27 

$996,799 4.4% 

$80 7 ft 90° $760,499.6 1 

32 

1, 8, 3, 5, 9, 11 

32, 31, 53, 80, 79, 44 

11, 12 

44, 31 

12, 10, 7, 6, 4, 2 

31, 41, 80, 80, 32, 33 

- - 

 

 

$100 

$4 4 ft 90° $1,004,133 1, 3 

20, 21 

3, 4, 7, 9, 12 

21, 22, 37, 71, 80 

12 

80 

12, 10, 11, 6, 8, 2 

80, 80, 20, 80, 36, 21 

$984,377.5 2.0% 

$10 7 ft 90° $952,346.1 2, 3 

21, 21 

3, 9, 5, 4, 11, 12 

21, 21, 41, 80, 80, 80 

12 

80 

12, 10, 7, 6, 8, 1 

80, 80, 80, 69, 22, 21 

- - 

$80 7 ft 90° $714,437.5 4 

31 

4, 1, 6, 7, 9, 12 

31, 36, 80, 80, 73, 31 

12, 10 

31, 31 

10, 5, 11, 3, 8, 2 

31, 80, 31, 80, 31, 32 

- - 
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Table 13: Summary of results from 1000 shoppers and 50% profit level 

S Profit C 

$/ft2 

R    

$ 

h  JRC-SSA 

Objective 

Assignment Result for 7ft 90° 

A/E B/F C/G D/F Objective % Diff 

 

 

 

 

 

 

 

 

 

1000 

 

 

 

 

 

 

 

 

 

50% 

 

 

 

$20 

$4 4 ft 30° $541,476.2 2 

32 

2, 7, 9, 12, 10 

32, 80, 80, 80, 80 

10 

80 

10, 5, 6, 11, 8, 3, 4, 1 

80, 68, 33, 23, 23, 23, 23, 23 

$503,712.4 6.4% 

$10 4 ft 30° $506,355 1 

32 

1, 5, 6, 10, 12 

32, 80, 76, 80, 54 

12, 7 

54, 74 

7, 11, 3, 8, 4, 9, 2 

74, 28, 29, 28, 29, 29, 29 

$481,931.6 4.8% 

$80 7 ft 90° $303,767 8 

29 

8, 2, 3, 6, 5, 12 

29, 46, 74, 73, 80, 29 

12, 10 

29, 29 

10, 11, 9, 7, 1, 4 

29, 30, 30, 80, 80, 36 

- - 

 

 

 

$50 

$4 4 ft 90° $492,941.2 1, 8 

20, 20 

8, 4, 6, 9, 5, 11, 12 

20, 20, 32, 48, 74, 66, 79 

12 

79 

12, 10, 7, 3, 2 

79, 71, 80, 37, 21 

$484,357.7 1.7% 

$10 7 ft 90° $459,162.1 1, 2 

20, 20 

2, 8, 5, 7, 11 

20, 26, 68, 80, 68 

11, 12  

68, 79 

12, 10, 9, 3, 6, 4 

79, 80, 80, 52, 23, 20 

- - 

$80 7 ft 90° $284,621.1 8 

39 

8, 1, 3, 9, 10, 12 

39, 80, 80, 80, 21, 21 

12, 5 

21, 21 

5, 11, 7, 6, 4, 2 

21, 21, 80, 80, 49, 44 

- - 

 

 

 

$100 

$4 7 ft 90° $448,238.9 1, 2 

21, 21 

2, 3, 5, 9, 10, 12 

21, 25, 61, 80, 80, 80 

12 

80 

12, 11, 7, 8, 6, 4 

80, 80, 80, 46, 21, 21 

- - 

$10 7 ft 90° $411,120.2 1, 8 

22, 22 

8, 5, 4, 11, 9, 12 

22, 42, 80, 22, 80, 80 

12 

80 

12, 10, 7, 3, 6, 2 

80, 80, 80, 61, 25, 22 

- - 

$80 7 ft 90° $245,285.1 2 

40 

2, 8, 4, 6, 10, 5, 12 

40, 27, 48, 79, 27, 80, 27 

12, 11 

27, 27 

11, 7, 9, 3, 1 

27, 80, 43, 80, 58 

- - 
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Observation 1: The orientation of rack impacts the location of high impulse potential products. 

We observed that, in all 36 instances, rack orientation affected the location of the high impulse 

potential products. Product category with the highest 𝐼𝑃𝑃𝑃 values were located on highly visible 

faces; i.e., face A and B when θ = 90°, and face A and D when θ = 30°.  

To understand this further, consider Table 11 that summarizes the product categories with 

their 𝐼𝑃𝑃𝑃 in a non-ascending order. 

Table 11: Product categories and their IpPp values 

Order Product category 𝐼𝑃𝑃𝑃 

1 Baking/chocolate 0.7567 

2 Kraft spreads 0.5740 

3 Chili 0.3131 

4 Pasta sauce 0.2748 

5 Biscuits/rolls 0.2673 

6 Jell-O 0.2621 

7 Canned fruit 0.2549 

8 Cat food 0.2442 

9 Japanese food 0.1995 

10 Macaroni 0.1008 

11 Sugar 0.0770 

12 Beans 0.0682 

Figure 5 shows the example allocation of product categories on a rack placed at two 

different orientations,   = 90˚ and   = 30˚, both at height 7 ft.  The visibility index of rack locations 

is represented by darker and lighter shades; darker region being the most visible and lighter being 

the least. We can observe that when rack orientation is 90°, face A and part of faces B and D (closer 

to face A) tend to be the most visible areas on a rack. Clearly, the assignment of product categories 

#1-#4 (high 𝐼𝑃𝑃𝑃 values) on highly visible faces will produce high impulse profit. However, these 

assignments change when =30˚; notice that product category #1. Further, product categories #2 

and #3 are now on face D (which were previously on faces A and B). A number of other product 



 

29 

 

categories also moved across the faces. This is because when =30˚, face D is a lot more visible 

compared to when =90˚. Similarly, face C has increased visibility, while faces A and B have 

decreased visibility, which resulted in product category #10 now placed on face C (as 𝐼𝑃𝑃𝑃 for #10 

> 𝐼𝑃𝑃𝑃 for #12).  
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Shopper travel (forward) 

 

 

(a) Product assignment on a 7 ft rack oriented at 90° 

(b) Product assignment on a 7 ft rack oriented at 30° 

A A 

B D 

C 

 

Shopper travel (reverse) Shopper travel (forward) 

Shopper travel (reverse) 

30° 30° 

Figure 5: Product assignment on a rack at different orientation (arrows indicate the direction of 

shopper travel) 
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Observation 2: High expected impulse profit products are often assigned number of locations 

closer to their lower bound. 

We observed that high expected impulse profit products (product categories #1, #2 and #3) are 

often assigned number of locations closer to their lower bound. Recall that, impulse profit generated 

is highly dependent on visibility of the products across shopper’s path. But the number of such 

highly visible location on a rack face are limited. Consequently, products with high IpPp values 

compete across such limited space, whereby each gets facings closer to their lower bound to allow 

for the other products to access space in order to maximize the objective value. This can be noticed 

in Table 10 - 13 where product categories #1-#3 frequently have facings in the range of 20-40 (in 

the second row of assignment column); recall, we use 20 as the lower bound on the number of 

facings per product category.  

So, why not assign maximum number of locations to high IpPp values? To better understand this, 

recall constraint (1) in the proposed optimization model, where vp is probability of visibility for 

product p during the shopping path (0≤vp≤1). Clearly, assigning visible locations to a product 

increases vp, which in turn increases expected impulse profit generated by that product category. 

However, increasing the number of highly visible locations to product category p has diminishing 

returns in terms of increases in vp (see Figure 6). That is, while assigning more visible locations 

will increase vp, the rate of such an increase in vp is much lower. However, if this product category 

is still assigned higher number of highly visible locations, then this would decrease the available 

number of highly visible locations for other product categories with reasonably high 𝐼𝑃𝑃𝑃 values. 

This will result in lower vp for those products and a reduced overall objective function value. Our 

proposed PSO is able to effectively trade-off the number of locations across product categories 

with high 𝐼𝑃𝑃𝑃 in an attempt to maximize the objective function value.  
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Figure 6: Products vp values at different number of facings allocation 

To verify the above proposition empirically, we compared our solution to a greedy 

approach where we set the locations for three high 𝐼𝑃𝑃𝑃 to their upper bound and the three lowers 

𝐼𝑃𝑃𝑃 products to their lower bound. The resulting solution was 14% lower than the objective value 

obtained via the PSO (see Table 12). 

In contrast, product categories with low 𝐼𝑃𝑃𝑃 values were assigned locations closer to their 

upper bound in order to increase their 𝑣𝑃 and, in turn, increase the objective function value; e.g., 

product categories #11 and #12 were each assigned 80 locations (see Figure 7). 

 

Figure 7: Number of facings assigned to high and low impulse potential products 
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Table 12: Comparison between number of locations assigned to different product categories 

 Rack layout Objective Assignment 

h  A/E B/F C/G D/F 

PSO 4 ft 30° $245,152 4 

31 

8, 12, 10, 11, 7, 

61, 80, 80, 60, 80 

6 

41 

5, 3, 2, 9, 1 

35, 25, 25, 25, 25 

Greedy 4 ft 30° $211,529 

(-14%) 

4 

45 

4, 8, 12, 10, 11, 7, 6, 5, 3 

45, 45, 20, 20, 20, 45, 44, 44, 80 

3 

80 

3, 2, 9, 1 

80, 80, 45, 80 

 

Observation 3: Rack orientation is sensitive to area cost; acute angles favored for lower area cost. 

Table 13 summarizes the rack layout at varying space and restocking cost for 1,000 

shoppers and 100% product profit.  

Table 13: Rack layout at varying area and restocking cost 

  Restocking cost 

Area cost 

 $4/restock $10/restock $80/restock 

$20/ft2 4 ft, 30° 4 ft, 30° 7 ft, 30° 

$50/ft2 4 ft, 30° 4 ft, 30° 7 ft, 90° 

$100/ft2 4 ft, 90° 7 ft, 90° 7 ft, 90° 

 

For a fixed restocking cost, we observed that as the space cost increases,  switches from 

30˚ to 90°; see Table 13. To understand this, consider Figure 8 that illustrates floor space at different 

rack orientations, . When  changes from acute (30°) to orthogonal (90°), the required floor space 

decreases with the minimum occurring at =90°. Similarly, changing rack orientation from 90° 

towards obtuse (150°) again increases the floor space. However, the opposite effect is realized with 

respect to visibility, where it increases as  moves from 90° to 30°. Clearly, there exists a trade-off 

between total space cost and total visibility; see Figure 8.  

Also notice that the profile of the objective function with changes in  and prespecified 

area ($20/ft2 and $50/ft2) and restocking ($4/restock) costs is shown in Figure 9 rack height h and 

product decisions (placement and number of locations) were still decision variables. Observe the 
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W-shaped tri-modal nature of the objective function, with two primary peaks at =30˚ and 150˚ 

and a secondary peak at  =90˚. We also observed that as the area cost changes, the  =90˚ becomes 

the primary peak, and thus the optimal rack orientation (figures not shown). 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

0

500

1000

1500

2000

2500

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

1
2
6

1
3
2

1
3
8

1
4
4

1
5
0

S
u
m

 v
is

ib
il

it
y
 a

cr
o

ss
 a

ll
 r

ac
k
 f

ac
es

F
lo

o
r 

sp
ac

e 
(f

t2
)

 (°)

Floor space

Visibility (7 ft)

 

Figure 9: Objective function at different rack orientation for 250 shoppers, 100% profit level and 

$4/restock 

Figure 8: Area and total number of visible locations for varying  
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Observation 4: Rack height is sensitive to restocking cost; shorter racks favored for lower 

restocking costs. 

A similar trend was observed with changing restocking costs on the optimal rack height (see Table 

13). At low restocking costs, rack height of 4 ft was observed to be the optimal height. To 

understand this, recall that as the rack height decreases, the number of available locations for the 

product categories on the rack reduces. This means that for the same expected demand of a product 

category, the number of restocks increases, which increases the restocking cost. However, in case 

of racks lower than eye-height, the top faces (E, F, and G) are now exposed. Further, accordingly 

to Guthrie and Parikh (2019), in a layout with shorter racks, the occlusion created by racks prior to 

a given rack is much less (resulting in higher visibility of locations) compared to that created by 

racks above eye-height (see Figure 10). Both these effects, availability of top faces and lower 

occlusion, increase the number of visible locations on the rack and, in turn, the potential for higher 

impulse profit. So in the case when restocking cost is low, the increase in the number of restocks 

is offset by the increase in the available number of visible locations (with some locations having 

higher visibility due to the reduced occlusion effect mentioned earlier).  
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Figure 10: Shopper's field of vision at different rack height 
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We also compared the amount of loss in the benefits if a 7 ft high rack was used instead of 

the optimal 4 ft rack on a specific configuration. Table 14 summarizes the results of the PSO-

generated solution and that of a 7 ft high rack (in which the height was fixed, and all other decisions 

were derived). A loss of over 5% was observed when not using the optimal height. 

However, as the restocking cost increased, additional visibility gained through a 4 ft rack 

could not offset the increase in the restocking cost, leading to a 7 ft high rack as being optimal. 

(b) 4 ft rack height at 90° orientation 

 Figure 11: Rack orientation at changing area and restocking cost 
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(a) 7 ft rack height at 90° orientation 
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Table 14: Comparison between 7 ft and 4 ft rack height at $20/ft2 area cost and $4/restock 

 Rack 

layout 

Objective Assignment 

h  A/E B/F C/G D/F 

Result 

from PSO 

4 ft 30° $255,559.5 9 

25 

6, 12, 10, 11 

72, 65, 79, 79 

11, 7 

79, 80 

7, 3, 8, 2, 1, 4, 5 

80, 46, 24, 25, 25, 24, 24 

Height 

fixed to 7 ft 

7 ft 30° $242,027.2 

(-5.29%) 

8, 3 

21, 80 

3, 10, 12, 11 

80, 80, 80, 80 

11 

80 

11, 7, 6, 4, 1, 5, 2, 9 

80, 80, 60, 25, 30, 36, 

22, 22 
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6. CONCLUSIONS AND FUTURE RESEARCH 

Deciding the rack configuration and allocating products on a rack are two key decisions frequently 

encountered by retailers. These decisions have a direct effect on what shopper see (and experience) 

in the store and, in turn, impulse profit. Realizing that the two streams of literature, rack layout and 

shelf space allocation, have evolved separately and that there is a gap in our understanding of the 

interaction between these two decisions, we proposed the Joint Rack Configuration and Shelf Space 

Allocation (JRC-SSA) problem. The objective of JRC-SSA is to determine the optimal retail rack 

layout (height and orientation) and product decisions (placement and number of locations) in order 

to maximize the potential marginal impulse profit after accounting for space and restocking costs. 

To this extent, we proposed an optimization model and adopted the particle swarm optimization 

framework to solve JRC-SSA efficiently. 

Our experiments suggested up to 8.2% increase in the marginal impulse profit increase 

with the JRC-SSA compared to only solving SSA problem assuming a 7 ft, 90° oriented rack. 

Further, the placement of products on the rack altered considerably with changes in the rack 

orientation. For instance, at 90° orientation, high impulse potential products were placed on Faces 

A and B on the rack, whereas the same products were now placed on Faces A and D when the rack 

was orientated at 30°. We also observed that while rack orientation gravitated to acute angles for 

low area costs, rack height gravitated towards shorter heights for low restocking cost.  

This research can be extended in many ways. First, to keep the problem complexity 

manageable and effectively derive insights, we assumed a single representative rack in our study. 

It would be worthwhile to extend our model to a layout with multiple racks, with each identical to 

the other or each allowed to have its own optimal orientation and height. Doing this, however, will 

increase the problem complexity and the proposed PSO must be enhanced or another algorithm 

may need to be designed. Second, while we considered a shopper passing by our representative 

rack on her way to a planned purchased elsewhere, incorporating the shopper’s travel into the aisle 
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of this rack and accounting for the exposure of products in the overall visibility probability would 

be worthwhile. 
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