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ABSTRACT

Abraham, Isaac P., Ph.D., Electrical Engineering Ph.D. program, Wright State University,
2020. Logistic Function based Nonlinear Modeling and Circuit Analysis of the Bipolar

Vacancy Migration Memristor.

Memristor is an acronym for memory resistor. Memristors promise to be building blocks
for high density memory and analog computation. Hewlett Packard’s announcement in
2008 of having fabricated a memristor on an integrated circuit scale has created a tangible
excitement in this field. Understanding and exploiting the full potential of these devices
requires good compact models. Symbolic modeling provides a balance between achieving
accurate empirical fit and generating closed form expressions. This dissertation simplifies
the transport equation into a variable coefficient advection equation, very similar to a
Burgers’ equation traditionally used in fluid dynamics. The Burgers’-like model reveals
the dual variable resistance initially proposed by HP that has served as a gold standard to
date. The Burgers’ model also shows the emergence of an active phenomenon within the
device as some researchers have suspected. Results from this model are compared

favorably with independent experimental data.



The insight obtained from this computational ion transport model is the motivation for
proposing a simpler computational logistic function based memory resistance model. The
logistic model is a solution to the well-known logistic equation and map. This relationship
between functions and maps opens the door to understanding how the memristor can
exhibit sensitivity to initial conditions as claimed by some researchers. The logistic model
is validated by fitting to experimental data. The usability of the model in practical circuit
design is demonstrated with a relaxation oscillator implemented in LTSpice. The oscillator
implemented is power and reliability aware. A formal method to estimate the frequency
of such a nonlinear circuit is presented. Computationally estimated frequency is validated
against results from LTSpice. A variant of the oscillator is shown to function as a simple
offset voltage detector. Unlike numerical methods, the symbolic, closed form approach in
this dissertation provides an unparalleled perspective into the inner workings of the
memristor. The peer reviewed, published findings of this research invalidate the claim that
the memristor is a passive fundamental circuit element; an issue associated with the device

since its inception.
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1 Introduction

A two terminal resistor that retains its prior programmed resistance is called a memory
resistor. The phenomenon is called nonvolatile memory effect. In contemporary electrical
phraseology, resistance R is a phenomenological constant, defined as the ratio of voltage
to current. The phenomenological constant associated with memory resistance is
memristance M, defined as the ratio of electric flux to charge. Memristance is characterized
by hysteresis in the device output characteristic curve. Hysteresis causes a specific stimulus
to have two different responses depending on the direction of travel of the stimulus.
Memristive hysteresis appears in voltage-current coordinates, not in the coordinates of the

memristor’s constitutive relation which are flux and charge.

1.1 Historical Hysteretic Devices

The modern memristor was postulated as a theoretical fundamental device by Leon Chua
in 1971 [1]. However, the phenomenon of memristance has been observable in electrical
experiments from approximately two hundred years ago. Prodromakis et al. survey a
detailed collection of historical examples ranging from vacuum tubes, mercury vapor lamp,
silver sulfide-based thermistors and the voltaic pile [2]. Fig. 1.1 shows a sample from

Prodromakis’ survey.
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Fig. 1.1 Memristive current-voltage curves over the centuries.

Fig. 1.1 shows a variety of bipolar current-voltage (I-V) response curves transcribed from
historical literature into the review in [2] and other referenced documents. Panel (a) shows
a tungsten filament 1-V curve as reproduced in [2] from the original textbook
“Fundamentals of Discharge Tube Circuits” by V. J. Francis. Panel (b) shows Chua’s
conceptual I-V curves with frequency dependence as mentioned in [3]. Panel (c) is Argall’s
experimental titanium oxide I-V curves from [4] and panel (d) shows Williams et al.
demonstrating simulated and experimental |-V curves in [5].

If a pinched hysteresis curve is the signature of memristance, then it is also observable in
natural phenomena. The analemma curve which plots the year-round position of the sun
from a fixed geographical location and time looks very much like the bow-tie or pinched

hysteresis curves described above [6]. For a memristor this signature bowtie or pinched
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hysteresis 1-V curve is generated with a sinusoidal input applied to the two terminal

memristor device.

1.2 Contemporary Hysteretic Devices

1.2.1 Pre Hewlett-Packard

A more modern and often referenced experimental work that reveals memristive
characteristics in thin films is Argall [4]. Argall’s paper shows bowtie I-V curves generated
with anodized titanium dioxide film and copper electrodes. Switching is induced by voltage
cycling. Within three years in 1971 Chua published the theoretical framework to the
memristor, proposed a device symbol and set forth the basic abstract equations that should
describe any memristive device [1]. Chua and Kang later generalized the notion of
memristance to memristive systems [7]. The common, recurring idea among all memristive
systems is that the hysteretic effect of the memristive system decreases as the frequency
increases and hence it eventually degenerates into a purely resistive system without

memory.

1.2.2 The Hewlett Packard Memristor

The lull in memristor research since 1971 ended when researchers at Hewlett Packard (HP)
announced finding the missing memristor in their seminal paper [5]. The paper expounds
on experimental results from using a titanium dioxide thin film. The titanium dioxide in
proximity to the contacts was found to split into two layers, namely an oxygen deficient
layer of TiO2.xand stable TiO2. The oxygen deficient titanium dioxide layer functions as a
donor of electrons while the positive oxygen ions (O%*) are the mobile vacancies. The

associated I-V curves exhibit hysteresis along with bipolar switching. Bipolar switching
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requires voltage reversal to return the device to a prior state. The authors propose an ohmic
electronic conduction model where linear ionic drift in a uniform field controls the device
resistance. This first abstract circuit model has series dual variable resistors as sketched in
Fig. 1.3 (b). In late 2008, Williams writes in the IEEE Spectrum detailing the experimental
search for the (till then) “mythical” memristor [3]. The article in Spectrum visualizes
memristors in the role of nonvolatile memory elements and two-state field programmable

gate arrays with reduced area and lower power.

1.3 Structure and characteristic

1.3.1 Physical structure

The memristor has a metal-insulator-metal (MIM) structure [3], [8]. The metal end plates
form the device terminals. The end plates at each end can be made of different materials
and dimensions. The plates serve as the boundary to the “insulating” sandwich. The
“insulator” is the chemical that contains the mobile vacancies. The word insulator is used
only to help compare the memristor to a MIM structure. The chemical species between the
plates conducts electronic current. Titanium dioxide [9], copper oxide [10], nickel oxide
[11] etc. are used to form this chemical sandwich. Experimentalists work with end plates
of various sizes to investigate the impact of area, surface roughness etc. on the memristor
characteristic. The thickness of the sandwich is yet another variable that has a large range.
Memristors in literature can range from 500nm [12] down to about 50nm [3] or even 30nm
[13]. The theoretical limits might be around 10nm according to Strukov [5]. Fig. 1.2 shows

a cartoon of the ion migration under the action of an applied external voltage.



(a) Low Resistance (b) High resistance

44 b

% 4
@ sw.*w#q @

I R 2 o

Fig. 1.2 Free ion migration determines device resistance.

In Fig. 1.2 (a), the device is in low resistance. The metal end plates are marked M1 and
M2 and associated with device terminals a and b respectively. The large black circles are
the neutral TiO2; where the oxygen atoms are shown as white circles hugging the outline
of the black circles. From experiments it is known that only a small fraction of TiO2 can
generate free oxygen ions. Hence Fig. 1.2 (a) shows only some of the TiO2 with their
oxygen bonds — ready to break free.

In Fig. 1.2 (b) a voltage is applied between the pins a and b. From each of the previously
identified TiO2 locations, one positively charged oxygen ion breaks away. This leaves
behind a blue-colored negatively charged but immobile TiO. The attached oxygen is shown
as a white circle. The mobile positive oxygen ions are shown with a dotted red circle. These
ions have drifted to the negative plate of the device. Strukov identifies the oxygen as
positively charged [3]. This is also easily verified with an electron shell diagram. Electrons
attempting to transit the chemical species now face a large negative field of TiO. The

distribution profile of the positive and negative ions determines the device resistance.



1.3.2 Bipolar switching

Bipolar implies the need for a positive and negative voltage across the memristor to

program and reset the device. Fig. 1.3 shows the I-V and circuit model.

() i (b)

S

Bipolar I-V Curve Bipolar Circuit Model

Fig. 1.3 The bipolar (a) 1-V curve and (b) rheostat model [5].

Fig. 1.3 (a) shows the I-V curve of the bipolar memristor. When the input voltage is zero,
response current is also zero; suggesting that there is no permanent energy storage or
generator element within. Assuming the device was parked in the low resistance state, the
curve traces o-p where it switches to the high resistance state along p-q, with lower current.
When the stimulus voltage is reduced, the current traces back to the origin along g-o. If the
voltage were to increase without an excursion to the negative voltage, the current will be
low and trace back and forth along 0-qg. The device will never exit the high resistance state
if the polarity of the voltage does not reverse. When the applied voltage traverses to the
negative, the current will trace o-r and eventually switch to the low resistance state along

r-s. When the voltage increases to zero and crosses over to positive, the locus traces s-0-p.



In short, a bipolar memristor can only switch states while transiting the origin, into
quadrants one or three.

The popular and accepted model for the memristor was proposed by HP’s Strukov and
Williams. A sketch is shown in Fig. 1.3 (b). The discussion associates (R, Ry;) with
(Ron, Ropr). The input and output pins are labeled a and b. The two terminal model has
two resistors Ryy and R,pr With a short-circuiting slider in between. The slider can short
circuit Rpy, Ropp Or parts of both emulating resistance switching between the low R,y
and high R, . The variable w associated with the slider indicates the time dependent state
variable that stores information about the positioning of the slider, which in turn determines

the device resistance.

1.3.3 Fingerprints of the Memristor

Adhikari and Chua have codified a set of three simple qualities to identify memristive

behavior [14]. The sketched Fig. 1.2 (b) exhibits all the three fingerprints stated below.

1.3.3.1 Fingerprint 1: Pinched hysteresis loop
A pinched hysteresis loop is defined as one that passes through the point (v, i) = (0, 0). The

pinched at the origin phenomenon is universal to all memristors independent of the
stimulus applied to the device. This definition requires that the device cannot store energy.

All the plots in Fig. 1.1 exhibit pinched hysteresis.

1.3.3.2 Fingerprint 2: Hysteresis loop area is inversely proportional to frequency
A memristor will exhibit shrinking lobe area as the frequency of excitation increases. The

reason for this is that with increasing excitation frequencies, the mobile ions do not depart
from their initial positions farther enough to enter a higher or lower resistance state. Fig.

1.1 (b) shows the lobe area shrinking with increasing excitation frequency.
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1.3.3.3 Fingerprint 3: Pinched hysteresis loop shrinks to a single valued function at
infinite frequency

Fingerprint 3 is a follow-on to fingerprint 2. When the excitation frequency is very high,
the I-V curve resembles a line without any lobe. This line may be linear or nonlinear. Fig.

1.1 (b) shows the case where the collapsed lobe is linear.

1.4  Memristors and Computing

Memristors are potential candidates to implement high density, low power and nonvolatile
memory elements. In memory circuits, a logic “1” or “0” can be stored as a high or low
resistance. Some research is focused on crossbar structures composed of hybrid
CMOS/memristor circuits; although most studies generally focus on single memristors.
This is starting to change with more researchers experimenting with their own choice of
differently sized end plates and sandwich materials integrated into arrays.

Logic applications are an area of interest for researchers. Field Programmable Gate Array
(FPGA) circuits may benefit from storing the microprocessor circuit configuration before
powering down or to assist recovery, in a smaller and lower power memristor array rather
than a traditional flash memory or static random access memory (RAM) [15]. Batas and
Fiedler present a digital AND circuit using only memristors [16].

The use of hysteretic devices for analog computing can be traced to the 1960s. Memristors
can implement the resistance switching component in mixed signal computing [15] and
artificial neural networks [17]. Arithmetic operations can also be performed with device
conductance representing the quantities being operated upon [18], [19]. An appropriately

mature device model is desirable to support circuit design for such applications.



1.5 Survey of Models

An understanding of the current state of memristor modeling is essential for placing this
dissertation’s symbolic model in context. Modeling can be broadly classified as discrete
and continuous time. Each of these major categories may have uniquely distinguishable

methods as sub categories.

1.5.1 Discrete Time

1.5.1.1 Piecewise
An early piece wise linear (PWL) model proposes to define the important segments of the

Lissajous figure (or the bowtie curve) as straight lines. The result is an ideal bowtie [20].
Itoh and Chua present chaotic circuits based on PWL models in [21]. The main topic in
that paper is bifurcation and chaos rather than the modeling aspect itself. Nevertheless, it
develops on PWL modeling that Chua originally proposed in [1]. PWL models are not very
interesting in themselves. However, they are easy to use, very suitable for modeling two-

state circuit behavior and have low computational complexity.

1.5.1.2 Numerical
Traditional numerical models rely on solving a problem by discretizing fundamental

equations and solving them based on initial and boundary conditions. Most real-life
problems are only tractable in this way. Numerical solutions however do not provide a
closed form solution to readily reveal the characteristics of the device. Closed form or
symbolic solutions are computable expressions. A thorough numerical study on memristive
phenomenon is presented by Nardi et al. in [22] and [23]. Part | [22] presents the empirical
data collected by the authors. Part Il [23] creates a numerical model that is used to fit the

experimental data. The drift-diffusion equation, Arrhenius law, Einstein relation and the
9



steady state Fourier equation are solved self-consistently using numerical methods, leading
to dopant density, temperature and potential maps. The authors show relatively good
agreement between modeling and the experiments. Each numerical simulation is just that
one simulation. The user will have no idea about how a device state will evolve under
different input conditions, unless a suite of simulations is performed under varying

conditions.

1.5.2 Continuous Time

Continuously differentiable ordinary differential equations (ODE) are also used for
memristor modeling. Many ODE models can only be solved numerically even if their
governing equations are specified in continuous time. Inclusion in this section does not

imply that a closed form solution exists.

1.5.2.1 The HP model
This commonly referenced memristor model is the dual variable resistor (DVR) model

from HP [5]. It has closed form solutions. Their model consists of two series connected
resistors and a slider that short circuits portions of the two resistors. Fig. 1.4 relates
vacancy migration to resistance. The black circles are stable TiO2. The blue circles depict
negatively charged, immobile TiO. Positively charged oxygen vacancies are depicted in

red dots.
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(a) Low Resistance (b) High resistance
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b
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Fig. 1.4 Vacancy migration and dual variable resistance.

Fig. 1.4 (a) shows a cartoon of the vacancy distribution in the top panel along with the low
resistance state of the device in the lower circuit diagram. In Fig. 1.4 (b), the vacancies
have migrated to one end of the device and the associated circuit diagram shows the
rheostat in its high resistance state. The DVR is an improvised circuit abstraction and does
not reveal any specifics about vacancy dynamics. The presence of these two resistances
cannot be inferred from the solution to HP’s governing equations [5]. Equation (1-1) is an

algebraic relation and it cannot be solved without the simple ODE in (1-2).

w(t) = (RON ? + Ropp (1 _ @)) i®) (-1
dw(t Ryy _
O e B iy (-2

In (1-1) and (1-2),
v(t) is the time dependent voltage across the device,

Ron and R,y are the low and high resistance,

11



w(t) is the time-dependent position of the slider representing the boundary between the
ion-rich and ion-poor regions of the device,

d is device length,

i(t) is the time-dependent current in the device and

wy is the mobility of the vacancies or ions.

The original HP model (1-2) assumes a linear movement of the rigid boundary between
device regions that have different vacancy concentrations. Integrating (1-2) with respect to

(w.r.t) time t results in w(t) in terms of charge q(t).

R (1-3)
w(t) =y —= q(t)

Inserting (1-3) into (1-1) results in the equation for memristance. Assuming Rony < Rogr,

equation (1-1) simplifies as follows.

R (1-4)
M(q) = Rorr (1 - Uy % Q(t))

Equation (1-4) is used by many authors to show memristive characteristics. It is a
simplification that presents memristance as a function of charge which is in turn a function
of time. The presence of time varying charge in (1-4) makes it inconvenient for
manipulation in circuit design. Therefore, a solution relating memristance to voltage as a
forcing function is desired.

Writing q(t) = [ i(t) dt, (1-4) becomes M(t) = Ropr (1— uy *2 [i() dt). Differentiating
each side w.r.t time,

(1-5)

am(t) _ _ uv Ron RorF i(t) = — Uy Ron Rorr v(t)

dt dz dz M(t)

This is equivalent to a first order nonlinear ODE of the form y y' = —k f; where y is the

desired solution, f is the stimulus, both are functions of time and k is a constant [24].
12
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Fig. 1.5: HP model response.
For v(t) = sin (w t), the solution to (1-5) is
(1-6)

w

M(t) = +\/M(0)2 w+2 k cos(w t)—2 k.
In (1-6), M(0) is known from design or calibration of a product and k = £/ ~0N"0FF RO";ROFF.
d

Consider the response from the HP model using (1-6) as shown in Fig. 1.5. The plots were

2
generated using an arbitrary u, = 10714 % Roy = 109, Ropr = 1kQ,d =32nmanda

forcing function v(t) = sin (w t). Under these conditions the natural frequency of the

device is estimated to be f, = % = 9.77 Hz. Each panel of Fig. 1.5 is generated at a

fraction % of the device natural frequency; where f; is the stimulus frequency. Fig. 1.5 (a)
0

shows that when the stimulus frequency is smaller than the natural frequency, the I-V lobe
is incorrectly collapsed. There is no significant change in Fig. 1.5 (b) when the stimulus is

13



an order of magnitude larger. Fig. 1.5 (c) shows that the lobe size has incorrectly increased
when the stimulus is 100-times the device natural frequency. It is impossible for the lobe
to appear as stimulus frequency increases; this contradicts fingerprint 2. In Fig. 1.5 (d) at
1000-times the device’s natural frequency, the 1-V curve has correctly collapsed to a
straight line. In addition to these mixed correct and incorrect responses, the device model
transitions from a collapsed nonlinear resistor at very low frequencies to a collapsed linear
resistor at very high frequencies. This transition from linear to nonlinear is unexpected and
incorrect.

Meuffels and Soni [25] present a strong case for why the modeling in [5] is insufficient in
describing a real system. The authors point out that the notion of a rigid boundary between
two regions with sparse and dense vacancies is conceptually weak. They also object to the
idea of a linearly moving boundary, although Williams and Strukov circumvent the non-
ideality by subsequently employing window functions to modify the movement of the
boundary toward the device ends.

Window functions are arbitrary polynomials that modulate the equation for accumulation
boundary movement, such that the boundary slows down and asymptotically approaches
the end plates of the memristor. Window functions come in many forms. The expression
f(w) = w(1 —w)/d? [5] is HP’s version of a windowing function. Here variable w is a
function of time as in w(t). Joglekar et al. propose f(w) =1 — (2w — 1)??,p > 1 [26].
Biolek uses f(x) =1— (x —stp(—i))??,p>1 with a step defined as stp(i) =

{1,1’20

0 i<0 [27]. Corinto et al. discuss a Boundary Condition Model (BCM) that uses HP’s
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basic model, modulated by a variety of window functions [28]. The resulting model almost
always can only be solved with numerical methods.

Publications [28], [29] and [30] that promise a symbolic approach invariably uses HP’s
basic equation paired with HP’s-own window functions or that of Joglekar; providing no
originality and are solved numerically. Without the manual insertion of nonlinearity, the
raw HP model exhibits inconsistent behaviors presented in Fig. 1.5.

Nonetheless equations (1-1) and (1-2) satisfy Chua’s definitions for a general memristive
system and the ideal generic memristor. The generalized equations are shown below in
(1-7) and (1-8) [5].

v(t) = R(w(t),i) i -7)

dw(t) 1-8)

= fw®.D

1.5.2.2 The shockwave model

The shockwave model approaches modeling with a generalization of the Burgers’ equation
[31]. In (1-9), u is mobile ion concentration, D is diffusion coefficient and f(u) is the
concentration wave velocity as a function of ion concentration.
diu+ f(w) d,u =D 0y, u (1-9)

Important assumptions in (1-9) are that nonlinear drift dominates diffusion, transverse
currents are neglected and local resistance is a function of vacancy concentration. The ideas
presented by Tang et al. result in a sharp and discontinuous shock wave front. However,
this is at variance with the smoother sigmoid type vacancy evolution that Waser has

presented in his surveys [12]. Similarly a discontinuous front is the very objection raised
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by Meuffels and Soni. This shockwave model therefore serves to demonstrate that even
among symbolic methods that seem similar there can be differences in how vacancy profile
evolves; yet all of them exhibiting memristive qualities. Tang et al. observe the quadratic
dependence of switching speed to device length and the existence of two distinct temporal

phases during switching.

1.6 Objectives of Dissertation

The objectives of this dissertation are as follows.

e Develop a simplified transport-based differential equation and symbolic solution.
The simplified governing differential equation is the variable coefficient advection
(VCA) equation. The VCA, its solution and inferences will be referred to as the
computational ion transport model.

e Validate the computational model against independent experimental data. The
computational model is further simplified to a form suitable for implementation in
the Simulation Program with Integrated Circuit Emphasis (SPICE) and used in
circuit simulations.

e Associate the computational ion transport compact model with a computational
logistic differential equation (LDE). The LDE and its solution will be referred to as
the logistic model. The LDE will be implemented in SPICE and used in circuit

simulations.
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Use the computational and logistic models to tackle fundamental issues with the
definition of the memristor. This dissertation examines if the memristor can be a

fundamental passive circuit element.

The units in this dissertation adhere to the SI units [32].

1.7 Organization of Dissertation

The dissertation is organized as follows.

Chapter 1 is this chapter which serves as an introduction to the topic of memristors.
It contains a survey of contemporary models. This sets the background for the state
of the art in the field and places this dissertation in context. Chapter 1 also details
the objectives and organization of this dissertation.

Chapter 2 presents the derivation that transforms the basic transport equation into
a variable coefficient equation and presents a symbolic solution. The computational
model is used to derive a variety of expressions that demonstrate memristive
characteristics. The output of the model is compared against empirical results from
independent researchers.

Chapter 3 associates the computational ion transport model with the computational
logistic equation. Memristive characteristics are demonstrated with the logistic
model.

Chapter 4 demonstrates SPICE circuit simulations using the computational and

logistic model. A relaxation oscillator that is unique to this dissertation is presented.
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Simulations that explore the scope and versatility of the logistic model are
presented and discussed.

e Chapter 5 is a review of fundamental findings from this research. This chapter
reviews the memristor in the context of the three existing fundamental passive
elements namely the resistor, capacitor and inductor. Our findings are demonstrated
to be comparable with that of independent researchers. Significant findings that are
divergent from the view of some researchers in the memristor community are
explained clearly. Such findings are also published in high quality journals.

e Chapter 6 concludes this dissertation and suggests future work.

1.8 Chapter Summary

The memristor is not an invention [2]. It belongs in the class of devices that exhibit a
transient lag between applied stimulus and response or cause and effect. The contribution
by the researchers at HP is the repeatable rendering of the phenomenon at the nanometer
scale. Memristors may find application in implementing binary memory, logic and analog
functions. Each application area is nascent and holds potential for discovery and
innovation. The progress in each field however will depend on the availability of
satisfactory models that can used with the tool suites appropriate for each field. Memristor
device modeling is mostly incremental fine-tuning of the HP model with few other original
approaches. This dissertation models the memristor with a single governing PDE. The
results are abstracted to a logistic functional form. Memristor based computing is explored
mathematically and in SPICE, using both the VCA model, its derived simplifications and

the logistic model.
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2 Computational Ion Transport Model

This chapter presents a simplification to the transport partial differential equation (PDE),
resulting in the VCA PDE and a symbolic solution. The solution is validated by back-
substitution into the PDE. The discussion in this chapter is substantially drawn from [33]

and [34], where we first reported the development and evaluation of this technique.

2.1 Memristor Life Cycle

Prior to deriving a computational transport model, Fig. 2.1 shows a proposed memristor
life cycle. This is the framework for understanding the main ion evolution mechanisms

considered in this dissertation.

LOWEST RESISTANCE

<
FRS[STO] %
Active Transport Active Transport
»
[ LRS[ST2’] LRS[ST2] ]
LOW RESISTANCE ) o LOW RE \l%l ANCE
N Passive Diffusion
[ HRS[ST1’] |HRS[STI]
HIGH RESISTANCE HIGH RESISTANCE

Fig. 2.1 Memristor life cycle.
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Consider a device in its fresh and lowest resistance state FRS (ST0). The application of a
programming voltage causes the vacancies to migrate either left or right. This results in
mirror symmetric states ST[1, 2] and ST[1’, 2’]. The highest possible resistance along
either path is ST1 (or ST1’). State ST2 (or ST2’) is some intermediate low resistance state.
The mechanism that motivates programming is active transport in the presence of an
electric field.

When a programmed device is left on the shelf for an extended time period, the ions
naturally diffuse throughout the volume of the device. This passive diffusion is shown in
dotted lines. Passive diffusion occurs from regions of high ion concentration toward

regions of low ion concentration without any external voltage.

2.2 Definitions

Consider a one-dimensional model of an ideal memristor to be a MIM sandwich with
thickness d m. Let the ion concentration at any point within the sandwich be represented
by u m?3. This is visualized in Fig. 2.2 which can locate an arbitrary distance along the

device length on the x-axis and space time dependent ion concentration along the y-axis.

(a) (b) Accumulation boundary
u(x,t) u(x,t)
xp(t)
: e o
Xp X7 Xo . ¢
a Yy e ooy a .o;

‘ F X —° x
X1 X9 X1 Xg

- d | ) d .

Fig. 2.2 Model of ion migration in the memristor.
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Fig. 2.2 (a) shows the device in its low resistance state and has an equal concentration a
at all positions. Fig. 2.2 (b) shows the same device after the ions have evolved in the
presence of an applied voltage. This evolution profile is qualitatively consistent with the
expectation from Williams [3], Waser [12] and Tang [31] among others. The new feature
in Fig. 2.2 (b) is the labeled location x; (t). This is the boundary that separates the ion-
rich from the ion-poor region of the memristor; alternatively referred to as w in Williams
and Strukov’s works. Fig. 2.2 (b) shows that this point always has a concentration equal
to the initial distribution a. An expression is later derived to compute the location of x;, (t).
To account for ion migration, let the mobility of the positively charged ions be uniform
within this cross-section and represented by u m?s*/V. lon velocity in the presence of a
voltage IV will be represented by the Greek character upsilon, v m/s. The derivation of the
simplified VCA PDE follows.

The key assumptions in the derivation are,

e vacancy and electric field are uniform within the device and

e Vvacancies do not exit the device boundaries.

2.3 Governing Variable Coefficient Advection PDE
2.3.1 Model derivation

Consider the basic transport equation which models the movement of particles under the
action of an applied stimulus.

U+ @Wu)y, =0 (2-1)
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In (2-1) all variables are functions of (x, t). Subscripting indicates taking the derivative
w.r.t the specified subscript. From Fig. 2.2 it is observed that the concentration u depends
on the distance of a location x from the accumulation boundary x;(t). Therefore, apply

the transformation u(x, t) - u(x — x,(¢)) and v - v(x — x,(¢)) and operate.

a 0 (2-2)
(a + av(x - xb(t))> u(x - xb(t)) =0
0 0 0 d
—u — xi —_— o —y = (2_3)
atu xb(t)axu+vaxu+uaxv 0
U+ (v=2x,"()uy +uv, =0 (2-4)
ur+9u,+uv, =0 (2-5)

The velocity of the traveling point with constant concentration is termed the characteristic
velocity [35]. Applying the transformation (v — x;(t)) - 9,
U +9u, +u (19 + x;,(t))x =0. (2-6)

U +9u+ud, +uxp(t), =0 (2-7)

Since x;, (t) is a function only of time, x; (t), must equal zero. The fourth term of (2-7) is

eliminated.

u+d9u,+ud, =0 (2-8)
Equation (2-8) has two unknowns u and 9. One of the unknowns must be known to find

the other. If the third term is retained, there is no symbolic solution. Assume for the moment
that u 9, is insignificant compared to the first and second terms giving the simplified PDE.

u+9u, =0 (2-9)
The experimental and theoretical work of Williams [5], Waser [12], Larentis [23], Biolek

[30] and Tang [31] suggest that a sigmoidal function can satisfy the ion evolution profile.
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2.3.2 Solution

In order to develop intuition about the structure of the solution, consider the sample
equation u; + 9 u,, = 0 with 9 = (x/t). One solution among many others is u(x,t) =
1/(1 + e~*/t). This form is chosen for its ability to demonstrate a sigmoidal temporal ion
evolution. Since it resembles a Heaviside step function [36], the mobility u and electric
field E are used to modulate the slope of the sigmoid. The (x — xb(t)) term models the
movement of the ion boundary. The structure of the solution was inferred from the

representation of the Heaviside step [36] and the sigmoid function [37].

1

e e

u(x,t) = (2-10)

In (2-10),

a is a constant that can be evaluated from initial conditions,
d is the device length,

w is ion or vacancy mobility in m2v~1s71,

E is the electric field within the device, defined as voltage per unit device length v/d,
x is any location within the device,

xp, (t) is the moving ion boundary and

t is time.
Defining electric flux ¢ = ftho v(t)dt, the solution can be expression in its normalized
form where concentration is 0 <u <1 and 0 <n <1 with n= 2, the normalized

distance.

1
1+4+a e_fl) ¢ (n_nb(t))

u(n,t) = (2-11)
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2.3.3 Error term

From (2-8), the characteristic velocity is constrained to always obey
9 = —(u;/u,). With the expression for u from (2-10), an expression for characteristic
velocity can be found using basic rules of differentiation.
9 = xj () + 29, (2-12)

From (2-12) it is clear that when the reference point x = x,(t) then the characteristic
velocity is 9 = x;,(t) as expected. Therefore, the proposed approximate PDE in (2-9) can
represent ion-migration accurately for an observer located at the accumulation boundary
xp (1).

The third term in (2-8) that has been ignored in the simplification is the single, quantifiable
source of error. Fig. 2.3 visualizes the exact and approximate model regions for the PDE

in (2-9). The governing equation (2-9) models the ion-boundary exactly. The evolution of

ions around the ion-boundary will be approximate.

Accumulation boundary ® Exact
# Approximate
u(x,t)
xp(t) &
X0 u . :
a \L‘ e’ :
— b v ; 2
e b A
L, - >l9
P d |

Fig. 2.3 Exact and approximate regions of vacancy evolution.
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With the expression for 9 from (2-12), the error (third) term can be deduced as,

ud, = -2 (2-13)

The error term becomes small for any reason that causes simulation time to be large such
as,

e large device length,

e low ion mobility or

e low programming voltage.
The first two conditions can be enforced through manufacturing restrictions and the third
can be achieved by limiting test voltage.

2.3.4 Solution verification

This sub section verifies the proposed solution (2-10) in the context of the PDE (2-9).

Constants are also evaluated by using known initial and boundary conditions.

2.3.4.1 Determining a
It is known that u(x, 0) = a; which is a fundamental assumption in the derivation. The

flux or integral of programming voltage is zero. Substituting this information into (2-10)

produces u = (1 + a e~/ ° (*-7(9)) =1 which can be equated to a.

1
a=— (2-14)

T 1+d’

l-a (2-15)

2.3.4.2 Boundary conditions
The boundary condition requires that at t — oo, the ions should accumulate toward an end

plate, yielding zero at the evacuating side and the maximum normalized concentration of

unity at the accumulating side. Equation (2-16) checks the ion concentration at infinite time
25



at the evacuating (left) side of the device and (2-17) evaluates ion concentration at the

accumulating (right) side of the device.

1 1
—foo(0-np®) ~ 1+ae®

u(O, OO) =

=0 (2-16)

1+ae

1 1
1’ = = =1 (2-17)
u(l, o) 14 qgefoo(l-mp®) 1+ae

The boundary conditions stand validated.

2.3.4.3 Dimensionality
The dimensions check ensures that the expression for the solution is balanced and unitless

in this case. Assigning dimensions within square brackets as is convention and with

reference to (2-11),

_ 1 _ [] _ )
un,t) = 1+a e—f(,(p(n—nb(t)) T j4[ jelrTrs T s 1T [ ] (2-18)

The solution is dimensionless as expected.

2.3.4.4 Back substitution
Back substitution is guaranteed to pass because of the modeling approach that the

characteristic velocity 9 is always computed from —=t. For the model to be reasonable,

Uy
the only requirement is that the function that represents « must be chosen such that it
satisfies empirical observation.

2.4 Expressions for Memristor Characteristics

This subsection derives expressions for memristor characteristics, from the computational

model.
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2.4.1 Computational framework

In order to plot the derived expressions, variable values are needed. To ensure consistency,
the following values are always used. Only values that differ from these nominal

assignments are called out where necessary.

Table 2.1 Table of default parameter values.

# Parameter Symbol Units Nominal value
1 | lon concentration a m3 0.2
2 | lon mobility U m? 10715
Vs
3 Device length d nm 32
4 Fresh device resistance y [0) 100
5 Computational aid n - 0
6 Computational aid p - 0.99
7 | Computed flux ¢ Vs T
f v(t) dt
t=0
8 Calculated natural frequency fo Hz 0.977

In Table 2.1, the natural frequency of the default memristor is calculated using f;, = % =

2
0.977~1 Hz. The dimensions of % [% Liz] is Hz/V. However, it is possible to cancel the

V~1 dimension with the voltage dimension of flux @ [V s]; thereby enabling f, to be
written as a pure frequency.

2.4.2  Accumulation boundary

In order to use (2-11) as a solution for ion evolution, n, (t) must be known. Integrating
(2-11) over the length of the device at any time will yield the total vacancy count within
the device; which must equal the original . Equating the integral to a and solving for the

only unknown results in an expression for n;, (t). In (2-19), all quantities are known except

ny (t).

1
1 (2-19)
J;l=0 1 +a e_fO(P(n_nb(t)) dt -a

The computer algebra system (CAS) Mathematica is used to find the solution.
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ny (@) = iln @ _elodt—eh? (2-20)
b fodp \a—1 ehda—1

In (2-20), ¢ = v t with v representing a DC voltage and t is time. Fig. 2.4 plots the
evolution of (2-20). Variable values used for the plot are the normalized « = 0.2, f, =1
and v = 1. Around the origin, each half of the plot shows the ion boundary evolving
asymptotically toward either end. This is equivalent to transiting from STO to ST1” or ST1
in Fig. 2.1. The initial entry of the ion-boundary into device is shown within the grey
bounding box and the direction of travel is shown with the arrow. The significance of the
direction reversal of ny,(t) after initial entry into the device is that it contributes to the
transient active nature of this seemingly passive device; as will be explained in later in 5.7
Negative resistance explained.

1.0

0.8

0.6

nb(l)

0.0
-30 -20 -10 0 10 20 30

time, S

Fig. 2.4 lon boundary evolution
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2.4.3 Vacancy concentration

Solution (2-11) works with (2-20) to generate the ion evolution profile. Fig. 2.5 plots ion
evolution in a device with 1V applied across the terminals. The y-axis is normalized
concentration 0 < u < 1, while the x-axis is the normalized length along the device 0 <
n < 1 where n = x/d. Each plot marks the location of the accumulation boundary with a

dot. The device progressively enters high resistance in the sequence Fig. 2.5 (a) — ().

(a) 1.0— (b) 1.0—— () 1.0
0.8 t=0.001s | 0.8 t=10s 0.8

= 0.6 0.6 :j 0.6

o e

= 0.4 0.4 = 0.4

0.2 . ' 0.2 0.2

t=100s

u(x.t)

0.0 - - - ! 0.0 —— - 0.0 - - —
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

n n n

Fig. 2.5 lon evolution along the normalized length of the memristor device.
244  Resistance

This subsection derives the device resistance from ion migration. Low resistance is
associated with ions distributed evenly throughout the device. The resistance at any

location within the device is defined as,

)4

r(xt) = 1+n-p u(xt)

(2-21)
In (2-21), y is the resistance of a fresh device with no vacancies or ions, n is a
computational knob to prevent the expression from evaluating to infinity in case p u(x, t)
evaluates to unity, and p is a computational knob to guarantee that u(x, t) is constrained
to less than unity. The resistance across the device terminals can be determined by

integrating (2-21) over 0 < x < d or its normalized form 0 <n < 1.
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1
R(t) = f r(n,t) dn (2-22)

=0
The computation was done with Mathematica. The result can be expressed as the sum of

two resistors R, (t) and R, (t) quite simply by partial fraction decomposition.

afod
p? In(p? <—eT) +efo?® 4 p2—1) ) (2-23)
Ry(t) = B
l(t) fO (pZ — 1)¢ pz -1
fod (@-p)
pZIOg(((l —p*elo? — 1) e 4+ p?) (2-24)
R,(t) = —
0 fo @2 - D
R(t) = Ry(t) + Rz (D) (225

Equations (2-23) and (2-24) usey =1, 1 =0, ¢ = (vt) and % = f,. Although in this

case ¢ = (vt), the general representation must be ¢ = ch=0 v(t) dt. Equation (2-25)

represents the composite device resistance and is the sum of the individual components.

Fig. 2.6 plots (2-25) with p = 0.99.
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Fig. 2.6 Device resistance as a function of time.
Fig. 2.6 shows resistance evolving from a high value to low and back to high resistance as
proposed in Fig. 2.1. The notable result is that the expression for resistance derived from

(2-9) has two computable parts (2-25), like the DVR based rheostat from HP.

245 1-V curves
Current-voltage curves are almost always presented as a signature of memristance.

Memristance manifests as lobes in the 1-V curve where a specific stimulus results in two
responses depending on the direction in which the voltage sweep occurs. Fig. 2.7 plots the
simulated current through the device, for a sinusoidal forcing function of v(t) = 0.1 +

0.5 sin (w t) and all nominal values from Table 2.1. The unfilled dot indicates the start of

while the black filled dot indicates the end of the trace.
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Fig. 2.7 Simulated memristor I-V curves demonstrating the three fingerprints.

Fig. 2.7 (a) shows the I-V plot for 1.3 cycles of the input stimulus which has a dc offset
v.m 0f 100mV. The device natural frequency is about 1 Hz and the forcing frequency is
indicated by the variable f; in the figures. The dc offset is obvious from the asymmetry of
the trace along the x and y axis. The first lobe in quadrant 1 is large and shows the device
starting in the low-resistance state and entering high resistance. The second lobe in
quadrant 3 is much smaller because the dc offset causes the device resistance to increase
even when the stimulus is negative. The third lobe in quadrant 1 has a low resistance that
is higher than the low resistance associated with the first lobe. The simulation is terminated
just prior to reaching the origin. Fig. 2.7 (a) exhibits fingerprint 1 which expects a pinched
hysteresis loop as detailed in sub section 1.3.3.1.

Fig. 2.7 (b) uses a stimulus at 10 times the natural frequency of the device; common-mode
and amplitude unchanged from Fig. 2.7 (a). The pinched loop has decreased in area
compared to panel (a) satisfying fingerprint 2 from sub section 1.3.3.2. In this case the I-V
curve has completely collapsed to a straight line, also satisfying fingerprint 3 from sub

section 1.3.3.3.
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Given that the resistance of a fresh device is about 100 Q; the plots correctly demonstrate

a maximum current of 4 mA in agreement with the calculationi = 0.5 %Q. The simulated

maximum current is lower because the device is always responding to the 100 mV common

mode that constantly pushes it into the high resistance state.

In summary, the computational model can demonstrate the three fingerprints of

memristors.

2.4.6 Switching time

Switching or transition time is the time it takes for a memristive device to transition from

low resistance to high resistance or vice versa. Symbolic evaluation of transition time from

(2-22) is impossible. Therefore, an approximate but novel approach is adopted to estimate

the transition time. Assume that Fig. 2.8 shows the evolved state of vacancies in a device.

Accumulation boundary

u(x,t)
np(t)
1 (\ ':."
& =

no e i T

] & ‘

a ~
0 b iy ' 1

nq Ng

e Exact

& Approximate

Fig. 2.8 Model for estimating transition time.
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It is proposed that the time it takes for the ion concentration at the position n = 1 to evolve
from its original value of u(1,0) = a to u(1,7) = 1 is the transition time 7. Constraining
the model to work with the resistance at a single position enables the calculations to use
(2-21). Low resistance is estimated by setting u = a. For convenience assume that the
computational aids are assignedn = 0 and p = 1.

14 (2-26)
-

Similarly, the high resistance is estimated by,

7”L0=1

Tur = —u(io) (2-27)

Defining resistance ratio as rr,

e G0 _
m= rLo  1-u(17)’ (2-28)

1 .
1+g o9 (1-mp®@)’

1
1+q e~ fod(n-np(®)

From (2-11), u(n,t) =

. It follows that, u(1,7) =

where n,(t)~(1 — «). Because the concept of transition time applies only with DC
excitation, ¢ = V 7. Substitute for u(1, t) in (2-28) and simplify.
m=0—-a)+ae*hV? (2-29)

Transition time is obtained after simple algebraic manipulation.

)

Expression (2-30) is the first time in literature that a relationship between transition time

vacancy concentration has been quantified [33] and discussed in additional detail in [34].

The salient observations from (2-30) follow.
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= Switching time is inversely proportional to the programming voltage. A device can
benefit from being operated at a higher voltage to increase its operating speed;
limited by the breakdown voltage across the MIM sandwich.

= Switching time is inversely proportional to the device natural frequency f.
Recalling that natural frequency itself is f, = %, the inference is that switching is
inversely proportional to ion mobility and directly proportional to the square of
device length. These findings agree with the linear estimation by Strukov et al. [38],

Biolek et al. [27] and Batas et al. [16].

The additional term in (2-30) reveals the influence of ion concentration on transition.

= The nonlinear dependence of switching time is dominated by ion concentration a.

= Switching time is inversely proportional to a [34], except at bounding values of «a.

and 1, = ﬁ This

Consider (2-30) with the substitution rr = ~2L: where 1y, = ———
TLO 1-p u(n,1)

leads to an expression entirely in p and a.
1 /1 p l-a
= (ZIn(—/— (2-31)
t fOV(aln<1—p a ))

Although p is usually assumed to be 1 for convenience, it is a computational assist that

tunes the model for Coulomb repulsion or van der Waals forces that disallow u(1,0) = 1
[38]. A practical setting for p may be 0.8 < p < 1. Similarly, (2-29) can be expressed in
only p and a. Fig. 2.9 plots (2-31) and (2-32).

1—«a
rr = (2'32)
1-p
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Fig. 2.9 Relationships between ion concentration, switching time and resistance ratio.

The data points in Fig. 2.9 are annotated with (a,rr,7) in that order. When ion
concentration a increases, the resistance ratio and transition time decrease. Therefore, it is
not possible to decrease transition time without impacting the resistance switching range
for a given chemical species unless ion-mobility, device length or programming voltage

are manipulated [33].

2.4.7 Switching energy
Energy awareness is paramount in any modern analog or digital application. From (2-25),

t; V2 T V2
= —_— = —_— 2-
E fto 0 dt=[_, 0 dt. (2-33)
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2.4.8 Shelf life

A memristor is referred to as being on the shelf or unused whenever it has zero volts across
the device terminals. The computational model in this dissertation assumes that vacancies
accumulate and dissipate in time, with some spatial distribution profile along the device
length. This is similar to the heat redistribution in a thermally insulated rod. The insulation
is analogous to enforcing vacancy conservation which guarantees that vacancies cannot
exit the memristor.
Shelf life is modeled with the following “heat” equation.

U+ Dy, =0 (2-34)
The second term in (2-34) models ion dispersal due to concentration gradients. Coefficient
D is the diffusion constant. This PDE can be solved symbolically using Fourier analysis
[33].

i x) e_(%n) Dt (2-39)

u(x, t) = A, +2Ancos<7

i=1
In (2-35) A, and A, are coefficients that can be determined using a knowledge of the initial
conditions. Variable i is the iterator, D is diffusion coefficient, d is device length. Literature
suggests that memory resistance retention can stretch from 5 to 11 years [39], [40], [41].

Consider Fig. 2.10 which demonstrates the dissipation of ions during shelf time. The initial

distribution of vacancies was described by f(n) = . Given that the device must

1_|_es (n—nb(t))
be in its high resistance state at the start of the simulation, n,(t) = 1 — a. The variable s
represents slope of the vacancy profile. This slope is a function of the accumulated flux

from prior programming, namely s = f; ¢.
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Fig. 2.10 lons dissipating during shelf time.

The three panels of Fig. 2.10 demonstrate that vacancies dissipate over time solely due to
the concentration gradient. Normalized simulation parameters were D/d? = 100y, a =
0.2ands =100V -s.

While an ideal device modeled by (2-9) is non-volatile, a more practical volatile device can
be modeled by combining terms of (2-9) and (2-34).

u+9u, +Duy, =0 (2-36)

From the discussions up to this point, it should be clear that during programming of a
memristor, the active transport of ions can be modeled by the first two terms of (2-36).
Memristive un-programming due to disuse can be modeled by equating the sum of the first

and third terms to zero.

2.5 Model Validation

Switching time is a convenient and often reported parameter against which the model in
this dissertation can be benchmarked. Switching speed is a function of ion mobility,
temperature, voltage and device length. Second order effects like surface roughness at the
interfaces, nonuniformity of the electric field between the plates, local heating effects that
affect mobility etc. are expected to play a significant role in determining device switching

time. Only a numerical approach can tackle the problem when second order effects are
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considered. Such methods are outside the scope of this dissertation. The following

calculations assume room temperature, since it is not usually reported. The following

results based on (2-30) are published [33].

Table 2.2 Validation of transition time against independent empirical data.

Transition time z(s)

# | Reference Oxide Volts(V) | *Mobility | Reported | This dissertation | % Error
la | [23] Nardi HfO, 1.2 108 04 pu 03.20 u -20

1b |« “ 1.0 0.22x108 | 15 u 20.00 u 33

lc | “ 0.8 0.19x108 | 20 u 21.70 u 8.5

2 | [5] Strukov Tio, 1.0 1014 10 m 10.00 m 0.0

3 | [42] Lu Ag/a 3.2 108 12 m 1.180 m 1.6

—Si
4 | [29] Biolek Tio, 1.0 104 500 m 448.0 m 10.4

1 Mobility was estimated from among various sources. Rows 1b and 1c used arbitrarily scaled mobility to accommodate the dependence
on electric field.

2.6 Chapter Summary

The computational ion transport model presented in this chapter is derived from the
traditional transport equation. Long channel length, low mobility or programming voltage
are the justifications for ignoring a term in the PDE that computes the gradient of the
characteristic wave velocity. This simplification permits a Heaviside step or logistic
function like symbolic solution. This solution to the governing equation is validated against
the PDE. The solution is then used to demonstrate and derive expressions for a variety of
memristor characteristics; each showing good correlation to the works of independent
researchers. The problem of memory volatility is addressed by observing a correspondence
between the popular heat dissipation problem in physics and ion dissipation in a
concentration gradient. The heat equation is reformulated with variables appropriate to
vacancy migration and solved symbolically. The resulting solution is shown to exhibit ion
dissipation as expected. Largely, this chapter quantified the memristor life cycle with

governing equations and solutions.
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3 Computational Logistic Model

This chapter presents the transition from ion transport to abstract logistic modeling. The
discussion is substantially drawn from [43] where we first reported the development and

evaluation of this technique.

3.1 Background

Expressions such as (2-10) in the computational ion transport model are very similar to a
smooth Heaviside step function [36] or the logistic/sigmoid function [37]. These functions
take on the same shape as the ion evolution profile. Abstract functions have the advantage
that they decouple a model from the underlying operating mechanism. The focus is on
generating life-like responses with none of the physics. Abstract models can be
computationally simpler than physical models, provide a level of generality and sometimes
clarity.

Model abstraction is not new. In their work associating memristive response to Abel,
Riccati and Bernoulli dynamics, Biolek et al. propose that sigmoidal functions may be
useful in representing memristor behavior [30]. A sigmoidal model from Saminathan et
al. is also known [44]. Saminathan uses the sigmoid like a window function f(w(t)) to
modulate the HP equations as shown in (1-8). Ascoli et al. study local-activity in

memristors as observed by HP, using polynomial functions [45].
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Corinto et al. have presented hypergeometric and gamma function solutions to the HP
equations [28]. These researchers have laid the foundations for studying memristors from

a non-linear dynamics perspective using abstract modeling.

3.2 Motivation

Memristors have been reported to exhibit chaotic response even in contemporary literature
[46], [47], [48]. This property has purportedly been used in secure communications [48].
Although the computational ion transport model does exhibit the presence of an active
phenomenon within the device the solution is well behaved and being first order, does not
exhibit any chaotic response. While fractional calculus has been used to demonstrate
memristive chaos [49], [50], these techniques tend to be deeply mathematical and are
inaccessible to the general circuit design community. Miranda et al. have demonstrated
memristive hysteresis using a double diode based logistic model [51], [52]. Corinto et al.
have presented some research based on traditional nonlinear dynamics [53], [54]. With
these efforts as backdrop, this dissertation explores the ability of the standalone logistic

equation to exhibit memristive qualities including chaotic response.

3.3 The Logistic Function

The ion evolution profile along the device resembles a traveling logistic function as seen
in Fig. 2.5, where a shallower distribution is associated with low resistance and a steeper
distribution maps to high resistance. Consider the following textbook logistic function

which has been slightly modified to include memristor parameters.
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Rmax (3_1)

R(t,n,(t)) =s
(e (6) 1 +Ce_mfonb(t)f;0v(t) dt

In (3-1), R(t, n,(t)) is the memory resistance as a function of time and the location of the
accumulation boundary, R, IS the maximum possible resistance of the device from
empirical observations, c is an arbitrary constant is determined by the minimum resistance,

m and s are free variables that can tune the device response, f; is the natural frequency of
the device and f;ov(t) dt calculates electric flux. Variable ¢ can be determined by
equating R(t, nb(t))|t=0to a numerical value for R,,;,, and solving. Variable m can be

arbitrarily chosen to match the device’s temporal response from empirical data. Variable s
is useful for arbitrary scaling of the amplitude of the function.
It was determined through simulations that computations can be simplified by disregarding

ny, (t) and relying on m to tune the model.

R
R(t) =S maxT (3_2)
14 ce ™o fi—pv®)dt

Equation (3-2) is identical to (3-1) except for the discarded n, (t) term in the exponent of
e in the denominator. Consider Fig. 3.1 wherein the temporal response of (2-25), (3-1)
and (3-2) are compared. Fig. 3.1 used Ryqx = 2.5k Q, fo=1Hz,c=2,a=0.2,p =
0.9 and a programming voltage of 1 VV DC. A careful choice of tuning parameters m and
s produced an acceptable match between the computational ion transport and the two
variations on the computational logistic model. The conclusion is that the logistic form in
(3-2) without any reference to the ion boundary is sufficient to demonstrate memristive
characteristics. It is also possible to relate some of the free variables to the computational
ion transport model. For example ¢ can be found by equating R(0)3.2)t0 R(0)(2.21); Where
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. . - R
the subscript are equation numbers. Solving s%=£, for ¢ produces c =

M. Additionally, if Rg, = ﬁ, then it is possible to reduce further as ¢ =

1-a . - . . . .
—El_p; — 1. Validation with an 1-V curve is reserved for the SPICE modeling section.
4 u Ry p)  :(2-25 > , : ¢ ] :
VCA(®)  :(2-25), Computational ion transport model.
Rty (1) (3-1), m=0.07,s=0.0010 Logistic with 7 (1)
B R(1) ((3-2), m=0.08, s=0.0011 Logistic without ny(t).
3

= 2 . [ " .
| |
.1

im =l

1 | I |
|

0
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time.s

Fig. 3.1: Transient resistance-time curves comparing computational ion transport, logistic and simplified logistic

models.
3.4 The Logistic Equation

The sigmoid function is a solution to the ODE y' = u y(1 — y) [37] where y is a function
of time and u is an arbitrary constant. Associate y with R and evaluate the left-hand side
(LHS) of the said ODE for R from (3-2).

cm s fo Rmax v(t) e™ S0 Jv@)at

r_
R = (c+emfo w0 at )2

(3-3)
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The RHS can be evaluated similarly.

SR
US Ryax (1 - 1+¢ e—mn}gva(t) dt) &9

14+ce™mh fv()dt

LR(1—R) =

To be valid, equations (3-3) and (3-4) must be identical for some value of u that can be
solved for. The governing logistic equation can be written as follows.

cm fyv(t) (3-5)

R'=uR(1-R):p=
HRC )i ¢+ (1 =5 Rpqy) emfo Jrat

The leading term u is sometimes called the Malthusian parameter. Equation (3-5) is shown
with a general u(t) which simplifies to a constant if the programming voltage is DC.
Biolek’s research into the Bernoulli Parameter State Map (PSM) resembles (3-5). For

v(t) =1and s = 1/Rpqy, 1 evaluates to u = m f,, a constant.

3.5 The Logistic Map

Memristor models to date such as the HP [5], VCA [33], [34], VTEAM [55] etc. are
differential equations of the first order. First order models do not readily exhibit sensitive
dependence on initial conditions. Memristive circuits on the other hand have been reported
to exhibit a rich variety of dynamics by Strukov [5], Petras [49] and Corinto et al. [53],
[54]. The logistic map makes it feasible to model the memristor’s purported sensitivity to
initial conditions. A map is a discretized version of a continuous function. Consider the

following first step where the function is replaced by the nt" iterate.

Rni1 —R -
S R, - Ry) @)

Simple algebraic manipulation produces an expression for R, .

Ryps1 = Ry(1 + p At) — u R} At (3-7)
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Let i = (1 + p At) from which it follows that At = % Substituting these into (3-7),
1
= —_ —_—— (3_8)
Ry = R (1= (1) Ra)
Let R, = (1 —%) R,. Then it also follows that R, = ﬁﬁn; implying that R,,, =
@A%l)iénﬂ. Make these substitutions into (3-9).
ﬁn+1 = [2 ﬁn(l - ﬁn) (3-9)

Equation (3-9) is the discrete analogue of (3-5) and is a textbook study for chaotic
responses [56]. Parameter /i elicits oscillations for different values. Traditionally an orbit
diagram accompanies (3-9). The orbit diagram plots R,,..; against the independent variable
/1. Due to sensitivity to initial conditions, any given g will display many R,,., for the first
few iterations, subsequently settling down to a more finite set as the number of iterations
increase. Consider the orbit plot in Fig. 3.2 generated with a normalized seed of R,, =
0.99, where the first 30 of 300 iterations were discarded. With s = 1/R,,0x, A = m [},
where 1 will be influenced by the physical parameters that determine the device natural
frequency; namely device length, localized and variable ion mobility and potential
gradients. Therefore, the variability in /i is a source of the chaotic response.

Fig. 3.2 shows that the device is single valued until g = 3, with period doubling after.
When i > 3.4, the device takes on one among four values, and for 4 > 3.57 the map is
chaotic. The plot itself is the same as found in any introductory textbook on dynamical
systems and shows the orbit plot of the discretized logistic equation, adapted to the context

of memristor modeling.
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Fig. 3.2 Orbit plot for (3-9).

3.6 Relation to fluid dynamics

The logistic form relates to other well-known equations that find application in fluid
dynamics. The Abel ODE of the firstkind y’ = f, + f; y + f> y? appears in Biolek’s study
[30]. With f, = 0 and f, = —f;, the ODE reduces to the logistic differential equation. May
discusses the logistic equation from the perspective of the “simplest nonlinear difference
equation” with applications in studying fluid turbulence [57]. lon transport resembles fluid
flow, suggesting the use of fluid dynamics techniques to be applied to uncover memristor
dynamics.

Fig. 3.3 is a phase plot of the logistic difference equation. The plot shows the response of

a memristor that has been parked at some arbitrary resistance by the application of a
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voltage. The programming voltage determined the value of u. Each of the two panels
shows the key parameter values as insets. Panel (a) shows a very stable normalized
resistance of 0.5 for all iterations. Panel (b) on the other hand shows that the resistance
exhibits what might be characterized as a “flicker” over each iteration. The plot is to be
interpreted to mean that during a programming, there can be no expectation that the same
deterministic resistance will be achieved at a given iteration. This is the unpredictability
with programming memristors that is addressed by Naous et al. with specific emphasis on
the variability in switching time [58]. The authors point out the disparate needs of digital
design and neuromorphic designs. Digital design prefers repeatability where accurate
thresholds translate into a measure of robustness. Neuromorphic implementations thrive
on unpredictability. The authors suggest that the innate stochasticity of memristors can
prove to be an alternative to external noise injection in the cases where unpredictability is
an advantage. The general topic of stochasticity, probabilistic switching and its importance

in neural networks is discussed by the same authors in [59].

@) (b)
1.0 1.0
R=0.99, i=2. R=0.99, /i=3.88
0.5 0.5
0.0 0.0
05 / ~0.5
90 =05 00 05 10 Yo o5 00 05 10

Fig. 3.3 Phase plot of R evolution.
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3.7 Origin of oscillatory response

It is well known that it requires a second order differential equation to have any oscillatory
solutions. Second order systems can transfer energy between orthogonal states. Consider
the ordinary logistic equation in the continuous domain.

R'= uR(1—R) (3-10)
Multiply the outer terms into the bracketed terms.

R'= uR—uR? (3-11)
The term in R is a function of time as in R(t). Differentiating w.r.t time and transposing
terms,

R"— uR"+2uRR =0. (3-12)

In this form, the following observations can be made.

e The proposed logistic equation is second order due to the R’ term. This second
order nature allows oscillatory solutions that are essential for representing chaotic
evolution.

e The proposed logistic equation is nonlinear due to the R R’ term. This nonlinearity
is essential to reproducing memristor characteristics such as asymptotic approach
to high and low resistances, development of a negative differential resistance

during state transitions and hard switching.

3.8 Chapter Summary

This chapter presented the case for transitioning from ion-transport PDE based modeling

into an abstract nonlinear ODE domain. This proposed transition is supported by
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simulations showing that the logistic differential equation and function can represent
memristive behavior as fairly as the ion transport model. The logistic model has the
advantage that it is used extensively for approximating fluid flow problems, making prior
and continuing developments in the field available for use with memristors. In addition to
generating memristive characteristics, the logistic form has been shown to reproduce the
chaotic and oscillatory response that empiricists have claimed. Contemporary research has
had to resort to fractional order modeling to mimic the rich dynamical behavior of
memristors. Fractional order models are very inaccessible to circuit designers. In this
context, logistic based modeling can be much more mature, easier to understand and

accessible to the circuit design community.
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4 SPICE Model

This chapter presents SPICE modeling of the memristor. The discussion is substantially
drawn from [60] and [43] where we first reported these developments. The purpose is to
present the transition from the computational ion transport model through an intermediate
Abel differential equation model to finally the logistic model. The Abel and logistic models

are implemented in SPICE.

4.1 Background

Computational models require a mathematical program for implementing them. Circuit
designers however work with SPICE to simulate electrical networks consisting of devices.
Therefore, the model in this dissertation is implemented in SPICE to allow testing in circuit
networks. One of the first memristor SPICE models by Biolek et al. implements HP’s DVR
model modulated by window functions [27]. Batas et al. present a behavioral two-terminal
SPICE model using only independent sources [16]. Batas et al. demonstrate their model in
a memristor-only AND gate. Mahvesh et al. present a similar SPICE model and
demonstrate a low pass filter and an integrator [61]. Berdan et al. demonstrate a model that
combines nonvolatile and volatile characteristics [62]. Their model is abstract and does not
relate directly to physical parameters of the device. To be relevant for circuit designers,

SPICE based modeling is the next logical step for any physical or abstract model.
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4.2 Simplified Computational lon Transport

The theoretical model for resistance in 2.4.4 is still too complicated for implementing in
SPICE. A major contributor to this complexity is the expression for accumulation boundary
(2-20); which can be simplified.

Consider the reasonable approximation a <« 1. Starting from (2-20),

n
fod

n
fod

n,(9) = = In

« efo¢a_efo¢) 1 (a efnd>a(1_e-fn<b(a—1))) 1 (a (1_e—f0¢(a—1)))
fo '

a-1 efoda_y a-1 efoda(1-e~foda) = a-1 (1-e~foda)

(4-1)
For a «< 1, ﬁe —a. During any programming, flux is expected to be large, hence
efo? > 1. Using these two relations, consider replacing the numerator 1 —
e~fobla—1) L1 _ gfob~ — fo? |nthe denominator, e/o? * is being moderated by the small

a; suggesting a more linear replacement e/o # @ — 1~¢; similar to the linear approximation

for a diode curve beyond the diode threshold voltage V.

1 —efod 1 1 1
=—In|[- =] — In(efo®) — —1 (4-2)
nb(¢) fod n( ¢ ¢ ) o n(a) + 0@ n(e ) fo n(ql))

Given that ¢ « 1, the first term iln(a) is small for large f,¢ and can be ignored. The
0

remaining terms form the approximation to the ion boundary, referred to henceforth as

iy, (t) or i, ().

1 1 1
n = — fod) - =1-— (4'3)
iy, (¢) f0¢ln(e ) f0¢1n(¢) 1 f0¢1n(¢)

The term 1/f, can be replaced by an arbitrary constant g,,, to control the inflection, and

an arbitrary overall scaling factor s, has been added to control the final asymptote.

iy (@) = sy, (1 - %ln@)) (4-4)
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Consider Fig. 4.1 comparing the ion boundary from the full computational model and the

approximate model, generated with s,,, ) = 0.2 and gy, ;) = 1.025.

(a) (b)
1 1.0

0.8

0.6

(1)

P 0.4

0.0
30 20 10 0 10 20 30

times. s

Fig. 4.1 lon boundary evolution from (a) full ion transport model (2-20) and (b) simplified expression (4-4).

In Fig. 4.1 (a), the ion boundary is seen to very rapidly approach from infinity, reverse
direction and asymptotically approach the final position. The same desirable response is
observed in Fig. 4.1 (b). This simplified expression for 7, (t) can be used to evaluate the

total resistance across the device; starting from (2-21).

1

I S R @s)
RO = | Ty O~ @0

Setting variables that are inconsequential in this context to 0 or 1 as appropriate; n = 0,

{.v,d,8,,,4n,} = 1and V t = ¢ results in the following final expression.

BRLICY)) )
pln(ae¢( ¢ )_P+1> pln(%—p+1) 1 *9
R@) = @ - D¢ T o-D  p-1
In its general form.
1
R(@) = €= f(@)ny(®)~1 = FIn(9) (“-7)
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While simple, (4-7) is informative. It confirms that memristors are devices with a resistance
proportional to the amount of accumulated flux [34]. Equation (4-7) opens memristor
modeling to any function that satisfies the general form as long as the results can be tuned

to match memristive characteristics.

4.3 Structure of SPICE Model

The implementation in SPICE is generic as shown in Fig. 4.2 and uses behavioral
components for the computations. Fig. 4.2 (a) shows a voltage-controlled resistor, where
the device resistance is modulated by electric flux. The electric flux is generated by a
behavioral component that calculates the difference in voltage between the two pins, and a
second component that integrates this voltage to generate flux. A capacitor Cp is attached
to each of the device pins to model parasitic lead capacitance. Parasitic lead inductance is
expected to be insignificant at the low kHz natural frequency of the device and therefore
excluded from the modeling. Device resistance R(¢) can be defined as any appropriate
function. Fig. 4.2 (b) is the symbol view. It consists of the two device pins (a,b) and
additional debug pins. Pin ¢ allows the user to view the flux. The pin-mode toggles in
binary to indicate if the flux is positive (1) or negative (0). The pin-vy, offers visibility
into the voltage difference between the input pins. As indicated in the symbol, the ion
boundary can be moved toward either end plate and the model user must ensure that the
stimulus is controlled such that the device is operated between low and any one of the two
high resistances only. The modeling expression for R(¢) in the rest of the discussion in

this section is the logistic form with minor enhancements.
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Rmax (4_8)
R(¢) = max (Rmin’s 1+cemh (¢+¢o))

The only new term in (4-8) compared to (3-2) is ¢, which stores any initial flux from prior
programming. The max() function ensures that the resistance can never compute to a
negative number in the event of any errors in setting up the expression. The basis for this

structural modeling was published in [34].

(a) ®)
a |
Cp R((f)) CF
Vab (Tb
Vab
0 0 ¢ M — 1 mode

Fig. 4.2 Generic SPICE model.

4.4 Relaxation oscillators

4.4.1 Background

This dissertation has explored a variety of circuits in the computational and SPICE
domains. A first exploration in computational circuit modeling showed the expected
automatic bandwidth reduction and noise suppression in a memristive low pass filter [33].

The first SPICE model exploring the proposed modeling construct from Fig. 4.2 was used
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to implement an R-M-R relaxation based multifunction oscillator [60]. That circuit used

the justification provided by (4-7) to implement R(t) = R, + abs (@ ¢),

Relaxation oscillators are nonlinear and produce square waves. Triangular waveforms may
be obtained as an intermediate output. Relaxation oscillators find application in digital
clock generation, monostable pulse generation, pulse width modulation etc. Memristor
based relaxation oscillators are an active area of research. This is because using a memristor
allows constructing time-constant generators using only scalable memory resistors without
needing capacitors. Capacitors tend to take up large layout area in CMOS.

Zidan et al. presented one of the initial memristor based reactanceless oscillator designs
[63]. Zidan et al. employ an architecture where the output of a digital AND gate drives the
memristor whose output is compared to a specified threshold by two comparators. Lu et al.
present an active current conveyor-based emulator that functions as an oscillator [64].
Ranjan et al. present a Chua’s oscillator which is an active circuit implementation of
memristive characteristics [65]. Li etal. present a memristive chaotic oscillator [47]. Their
system is modeled like the Lorenz equations traditionally used to demonstrate chaos. The
specific model for the memristor implements a positive feedback mechanism. Fouda et al.
present a two-gate oscillator with two operational amplifiers [66], a variation on Zidan’s
original reactanceless oscillator. Corinto et al. have studied memristor oscillators as

dynamical systems [67].

4.4.2 Abel model-based relaxation oscillator

The first study with (4-7) was the implementation of a multi-function generator [60]. The

specific model used to represent the memristor was motivated by Biolek’s work which
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suggested that Abel differential equations could model memristors [30]. An Abel
differential of the first kind has the form, y' = fo + fiv+ o ¥* + f3 3, f3 £ 0 [68].
Here, y and f are functions of ¢; the derivative is w.r.t t. Consider a practical case where
fo=/f,=0and f; « 1 such that f; y* — 0 and can be ignored from an engineering
perspective.

y'=hy (4-9)
Lety =mf, fOT v(t) dt, where m is a free tuning variable and f; represents the natural

frequency of the memristor. The applications presented in this dissertation are relaxation
oscillators where each half cycle can be visualized as applying a DC voltage of either
positive or negative polarity across an R-Memristor-R topology. The “R” is a traditional
passive resistor. This DC voltage causes the voltage across the memristor to evolve as a
ramp for small amplitudes; suggesting v(t) = t in any half cycle. For a DC stimulus, (4-9)
evaluates as follows.

y'=mfyT (4-10)

y=gmf,T? (@-11)

The governing equation (4-9) is satisfied when the coefficient f; is,
2
== (4-12)
h=7
The coefficient necessary to satisfy the equation for any stimulus can be calculated if the

function representing the resistance is known. Another nonlinear functional representation

T
for R(t) is R(t) = R, + ™0 Jo Y at: \where R, is the initial low resistance. Checking
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for Abel compliance is easy when flux computation is treated as an indefinite integral so

that the derivative can be determined.

Equation (4-14) confirms that for f; =

flR(t) =

R'(¢p) =2mfyRytemht’ (4-13)

2mf, t emht?

Ry +emfot?

(Ry + o) @14

2mfy t emfo

t2
 omie the proposed function R (t) satisfies
0

the Abel equation of the first kind. Fig. 4.3 validates that the proposed function that

satisfies the memristor equation, does produce the correct response. For an input sine wave

(black, broken line), the electric flux (red, dot-dash) peaks at the half cycle and reduces to

zero at a full cycle. The resistance exhibits a minimum and maximum as expected. The

response in Fig. 4.3 was generated computationally with Ry, =1, m=1, f; =1 and

v(t) = sin (t) at a stimulating frequency of f; = %

——v(t)
8| |- ¢
— R(1)

¢

V., Vs, O

3]

__________

R(H)=Ry + " /0 Lvwa

\

.......

0

time, s

Fig. 4.3 Response of Abel based memristor model.

57



4.4.2.1 Circuit analysis

In the Abel circuit model, the memristor is modeled with R(t) = R, + e™/0 fizov(® at
Here R, is an initial minimum resistance. The polarity of the memristor model does not
affect the results because the model will always initialize from a low resistance and evolve
toward the high resistance.

The multifunction oscillator circuit is in Fig. 4.4. The circuit can be visualized as consisting
of three main building blocks namely the time-constant generator, the comparator and
switches to control signal flow. The comparator has two inputs. The negative input is fed
with a reference voltage v(ref). The positive input is connected to one of two pins of the
memristor such that the output will toggle when the selected input crosses the reference
threshold. Switches SW2 and SW2 are arranged such that they route the correct pin of the

memristor into the positive input of the comparator.

SW1
vee : .

SW1

Memristor SPICE deck

M= el fvat

SWO |

vee

Fig. 4.4 Multifunction oscillator in SPICE.
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The reference v(ref) is a single value. The design relies on inherent comparator offset to
detect and switch states. The listing of component values is provided in Table 4.1. The
switches are only specified for their typical ON resistance as found in their respective
datasheets. The resistors R[2:1] were specified as 1% tolerance and 0.1W rating. The power

supply was implemented with an ideal voltage source.

Table 4.1 Table of component values for the Abel oscillator.

# | Component Symbol Unit Value

1 | Resistors R1, R2 kQ 1

2 | Switches, True ADG1612 SW[2:0] Q 1

3 | Switches, Complimentary | ADG1611 SW[2: 0] Q 1

4 | Memristor M Q Fig. 45
5 Power VCC, Vee V +4.5

4.4.2.2 Function

The circuit in Fig. 4.4 is shown with switches SW[2: 0] closed. One can assume that an
output low from the comparator closes SW[2: 0] while an output high will close SW[2: 0].
The time-constant path is vcc-R1-M-vee. The memristor is initially in the low resistance
state, due to which the voltage v(in) will be below the reference v(ref). As the memristor
increases in resistance, v(in) increases above v(ref). When v(in) exceeds v(ref) by some
amount determined by the comparator offset, the comparator output to toggles low to high.
This event causes SW[2: 0] to close and opens SW[2: 0]. The active time-constant ladder
is now vcc-R2-M-vee; forcing the memristor to alter its state from high-resistance to low
resistance. This transition causes v(in) to decrease. Once again when v(in) falls below
v(ref) by some offset, the comparator output transitions high to low. Thus, a full cycle of
oscillation is complete and continues to repeat. The transient response is confirmed by the

SPICE plot of Fig. 4.5 where the input to the comparator is a triangular wave and the
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output is a square wave as expected. The subsequent Fig. 4.6 documents the effect of input

common mode on output frequency.

R1=1k£)
4 R(1)=1kQ 1 010" [v(nde
2
> 0
-2
I I L 6 R [ B B S
0.7 0.8 0.9 1.0
time, ms
Fig. 4.5 Oscillator input and output.
18 e o * . !
]7 .. L] . .
16} .
N 1s)e
-
14
13
12 ¢

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
v(ctrl), V

Fig. 4.6 Frequency vs. control voltage for multifunction oscillator.
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Fig. 4.6 demonstrates that when the common mode is “virtually” controlled by the v(ref),
the oscillation frequency changes. Palmer has demonstrated that comparator offset
increases as the input common mode of a signal approaches the power supplies [69]. The
memristor oscillator’s frequency decreases when the control voltage deviates from the
center of the power supplies. This is expected because the increasing offset requires that
the voltage on (n0, nl) transition a wider (offset) dead band; resulting in a larger transition
time or equivalently lower frequency. A circuit as in Fig. 4.4 could be used as a simple,

compact indicator for the onset of common-mode induced offsets.

4.4.3 Logistic model-based relaxation oscillator

This dissertation improves upon [60] to study a power and reliability aware R-M-R
relaxation oscillator where the memristor uses the logistic model [43]. Consider Fig. 4.7
showing the proposed oscillator in each of the two possible states. The design is composed
of three distinct building blocks. The following discussion references Fig. 4.7 (a). The
power supply is composed of the positive vce and negative vee where vee = -vcc.

Component U is a comparator that produces an output in response to the difference between
the input nets net-mem and net-ref. Whenever v(mem) > v(ref), v(out) is vcc. Conversely,
for v(mem) < v(ref), vout is vee. The core of the design is the time-constant circuit
composed of R1-M-R2. The comparator responds to the voltage at one end of the
memristor M, compared to a reference voltage. The switches multiplex the appropriate
power supply into the R-M-R ladder, route the correct threshold voltage into the

comparator and tap the correct end of M into the positive input of the comparator.
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Fig. 4.7 The R-M-R relaxation oscillator.

The active path at any given time is either vcc-SW1-R1-M-R2-SW0-vee or vcc-SW1-R2-
M-R1-SWO0-vee. The net with the higher potential from among (n0, nl) is switched into
the positive input of the comparator.

This floating memristor design guarantees that the current in the device is bi-directional
over a full cycle. This mitigates the damaging effects of electromigration in a practical
integrated design. When current constantly flows in one direction integrated structures
suffer erosion of physical material resulting in opens in metals, bridging between adjacent
lines, localized heating and increased resistance; all of which can alter circuit response
compared to the intended design. Integrating memristors into very large scaled integrated
circuits is an active area of research [70], [71], [72] that can benefit from the proposed

reliability aware design practice.
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The use of a single comparator U minimizes active components and reduces power
consumption. Integrated CMOS switches with minimal on resistance, were chosen for the
simulations. The complete listing of component values as implemented in LTSpice is

shown in Table 4.2.

Table 4.2 Table of component values associated with Fig. 4.7.

# | Component Units Value Tolerance Notes
1 |Vcc V +3V NA Ideal
2 | Comparator NA LT1001
3 | Resistors R# Q 1k +1% Generic
4 | Switches NA ADG1611 -
ADG1612
5 | Memristor NA Function - Custom

4.4.3.1 Circuit analysis
Any floating device design adds an additional level of complexity due to temporally

evolving voltages at both device pins. In this design, the memristor must respond to the
integral of the voltage across the pins. Consider Fig. 4.8 (a) where the memristor is
connected to the dual power supplies through fixed resistors. The nets (n0, n1) will evolve
as shown in Fig. 4.8 (b); diverging nonlinearly around the imaginary virtual ground and
asymptotically approach the final values which will be determined by simple voltage
division. As visualized in Fig. 4.8 (b), it is now possible to locate a nominal value vmid
and assign a threshold around it at vmid + va. Fig. 4.8 (c) superimposes a triangular wave
on the linear portion of the swing from vmin to vmax. The switching thresholds can be
controlled by using a comparator whose high threshold is vmid + va and low threshold is

vmid — va.
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(a) vee (b) V

vimax
~ vmid
R
vimin
time, t
v(n0)
*«— Virtual ground
(c) v(n
vmax
~ vmid
vmin
time, t
Fig. 4.8 Deconstructed R-M-R ladder for analysis.
The voltage across the device follows from simple voltage division.
R(t) )
Vap (t) = (vee — vee) m (4-15)
The minimum and maximum voltages across the memristor are,
Rmin Rmax 4-16
(vab (0), vy (oo)) = <(vcc — vee) RrR (vee — vee) m) . (4-16)

In (4-16), R,,in, and R,,,,, Can be determined from experiments. Equation (4-15) can only
be solved numerically after substituting (3-1) for R(t). A continuous function f(t) can be
fitted to the numerical solution and subsequently manipulated. The time derivative of the

function f'(t) is the rate at which the voltage evolves across the device. From Fig. 4.8 (c),
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F'()limo (%T) = 2va. (4-17)
In (4-17), the only unknown quantity is AT; since f(t) is known from the curve fitting
exercise and va is known from the high and low thresholds that are applied into the
comparator. A fit of the order 8 returned the following polynomial.
f(t) =2.01 +1538.10 t + 7509021.54 t2 + 2.21 x 100 t3 — (4-18)
1.01 x 10™¢* + 1.35 x 1017¢% — 8.71 x 1019t° + 2.76 x 10%%t7 —

3.47 x 10%4¢8,

The computed frequency of oscillation is,

_ _f1®
fosc - 2(2 va) . (4'19)

Consider Fig. 4.9 which shows a comparison between the estimated oscillator frequency
and that measured from a SPICE simulation. Computation is straightforward and based on
(4-19). Given that the SPICE waveform is a square wave, the FFT feature in LTSpice was
used to locate the fundamental frequency of oscillation. Therefore the said comparison is
between the computed f, . from (4-19) and the fundamental frequency estimated from the
FFT of the square wave. The FFT was evaluated after discarding the first 10s of cycles.
Nevertheless, some insignificant residual error from finite edge rates is to be expected. For
example, repeating the experiment with a higher bandwidth comparator that produces
sharper edge rates will result in different numbers; but certainly not different enough to
alter the inferences.

Fig. 4.9 shows that the frequency of oscillation is inversely proportional to the amplitude
of oscillation, as expected from (4-19). It is also observed that the fit is better at lower
frequencies or higher amplitudes.
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Fig. 4.9 Computed frequency of oscillation compared to SPICE response.

This is attributed to the following practical circuit limitations.

e The comparator in the circuit is gain-bandwidth limited at greater than 1 kHz
according to the datasheet.

e Parasitic contributors in the SPICE models are not part of the computed estimation,
making the computed response have a higher frequency compared to the more
practical SPICE based simulation.

e Comparator offset, however minute is proportionally an increasing part of the

swing amplitude. This makes the error large at low amplitude and high frequency.

4.4.3.2 Function

The LT1001 comparator that implements threshold detection was chosen for its low offset

of 15uV-60uV. The datasheet recommends that power supply could be as low as+3.5V
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although the simulations were done with +3V without any noticeable adverse response.
All switches were implemented with the ADG 16-series of integrated circuit switches.
ADG1611 is of type PMOS and active low enabled. ADG1612 is of type NMOS and active
high enabled. The specified on resistance is in the 3Q to 4€ range worst case and well
below the memory resistance and fixed R resistance values; which are in the 1 kQ to 3 kQ
range.

As described alongside Fig. 4.2, ideal behavioral components are used to implement the
mathematical operations. This usage of behavioral components allows circuit
imperfections such as noise figure, bandwidth limitations, input offsets, nonlinearity when
operating closer to the power supplies, effect of common-mode on offsets etc. to be
ignored. These imperfections should not be a major contributor to memristor emulation;
where the objective of the emulation is only to study the memristor model, not circuit
performance in the presence of practical device imperfections.

Consider Fig. 4.10 showing the waveforms across the memristor and the comparator
output. A triangular waveform exists across the memristor as predicted in Fig. 4.8 (c). The
discrete resistor in the simulation is set to R = 1 kQ. The memristor model used R, =
10 kQ, fo =1kHz, c =9, and ¢, = 0. Panel (a) was generated with thresholds spaced
200 mV around a common-mode of 1.5 V while in panel (b), the simulation used reference
voltages spaced 250 mV around a common-mode of 1.5 V. Close inspection shows some
switching noise on the triangular waveform at the point where it reverses direction. The
output of the comparator is a square wave. The switching noise into the comparator is also
seen to cause a ledge on the rising and falling edges of the square wave; although there is

no non-monotonicity. In both simulations, the duty cycle is an acceptable 52%.
67



va = 1.5£250mV

(a) 2

out,V
(—]

326.01p—+—350.71p

Frequency = 1.48kHz
Dutycycle = 0.518

T R Y A N |

0.0030 0.0035 0.0040 0.0045 0.0050

time, ms

vref = 1.5+200mV

(b)
2 — —— ]
1
5
£ 0 289.79u-—271.08p
=]
Frequency = 1.78kHz
-1 Dutycycle = 0.517

-2 —

3.0 3.5 4.0 4.5 5.0

time, ms

Fig. 4.10 Simulated oscillator output.

Fig. 4.10 plots voltages produced at the internal nets of the oscillator with respect to time.

It is also possible to visualize the transfer of resistance between the low and high resistance;

resulting in the generic I-V curve.
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Fig. 4.11 1-V plot of the memristor within the logistic based memristor oscillator.

The oscillator circuit used R[1,2] = 1 kQ and the memristor was implemented using (4-8)
with variable values R, = 10 kQ, f, = 1kHz, ¢ =9, initial flux ¢, = 0 and the

inconsequential lead capacitance is Cp,e, = 15f F.

4.5 Scope of the logistic model

45.1 1-V curves

The conclusive proof of memristive behavior is the emergence of 1-V curves with lobes
caused by hysteresis under sinusoid excitation. Unlike traditional active or passive circuit
elements, the memristor has no DC I-V curve. The only DC I-V information is a point at
(OV, OA) [73]. Consider Fig. 4.12, demonstrating 1-V traces for various stimulus
frequencies. The stimulus is v(t) = 1sin(w t); where w = 27 f;, f; being the stimulus

frequency. All three fingerprints can be identified from the figure. All lobes are pinched
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at the origin, satisfying fingerprint 1 (1.3.3.1). Hysteresis loop area is inversely
proportional to frequency of excitation, satisfying fingerprint 2 (1.3.3.2). The pinched
hysteresis collapses to a single valued function at a frequency much higher than the device
natural frequency, satisfying fingerprint 3 (1.3.3.3). The region of negative differential

resistance (NDR) is pronounced in the device response to 0.1kHz.

10 ... 0.1 kHz ”
— 1.0kHz ¢"’.'.
— 10 kHz T
0.5 ‘-a""" """" t.
< =7 NDR
- e
~ 00— """
\ta_/ """"""" Yy
e ot .
f . 4_:-’
I
P
—-1.0
—1.0 -0.5 0.0 0.5 1.0

Vab(t)a v

Fig. 4.12 Memristor SPICE 1-V.

A reasonable rule of thumb is to consider ten times the device natural frequency as “much
higher than the device natural frequency.” Fig. 4.12 was generated using (4-8) with
memristor parameters set as s = 1, R, = 10 kQ, device natural frequency f, = 1 kHz,

¢ = 9sothat R,,;, = 1 kQ, initial flux ¢, = 0 Vs and Cp = 15 fF.
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4.5.2 Sensitivity to temperature

Temperature dependence can be introduced into the model through the Einstein-Nernst
relation for mobility [38].

-4 ;
u(l) = =D (4-20)

In (4-20), u is ion mobility, q is electronic charge, k is Boltzmann constant, D is diffusion
constant and T is temperature. Consider Fig. 4.13 that demonstrates the memristor’s

response to temperature.

— T=273K, ~
40 —. T=473K Ohmic.

7.-'Semiconducting

20

H(T)=T"

2 4 6 8 10

Temperature, K

-0.10 -0.05 0.00 0.05 0.10
V

Fig. 4.13 Temperature dependence of the memristor based on the logistic model in SPICE.

The logistic model can accept R,,,4, and R,,,;,, resistances as direct inputs or they can be
related to some of the physical parameters of the device as explained in 3.3 after (3-2). Fig.
4.13 was generated with variable values s = (1 + 1073T), R,,,4,, = 10 kQ, device natural

frequency f, = 1 kHz, c = 9 sothat R,,;;, = 1 kQ, initial flux ¢, = 0 Vsand Cp = 15 fF.
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The free variable s has been used to model the natural tendency of ohmic material to exhibit
a resistance proportional to temperature. The free variable expressed as s = (1 + 1073T)
is an arbitrary choice and can be replaced by any more accurate expression that reflects
empirical data. The logistic equation on the other hand naturally captures the
semiconducting behavior in the high resistance state, observed empirically by Walczyk et
al. [74]. The reasoning for the ohmic and semiconducting response is simple. When the
device temperature increase, the ion mobility decreases as predicted by (4-20). Decreased
ion mobility manifests as a lower natural frequency of the device. This causes the high
resistance to be not as high as with lower temperature. Thus, the lower boundary of the
lobe moves up. The natural increase in ohmic resistance, modeled by s will cause the low
resistance to be higher, thus moving the upper edge of the lobe lower. The overall result is

a narrower lobe.

4.5.3 Current mode operation

Memristors are usually used with a stimulus voltage. Sometimes memristors are operated
in current mode where an accurate current is pumped into the device. Researchers have
used this type of design to create oscillators or timing storage cells [75], [76]. The current
causes a voltage to develop across the device, which in turn results in the migration of ions
as per the normal mechanism of drift in the presence of an applied voltage. It is shown
below that the logistic model responds similarly in current mode as in voltage mode.
Consider the original definition of the memristor, where memristance is,

_dp _glvoa (4-21)
aQ  Lfiyar
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The RHS of (4-21) shows that the stimulus can be either a voltage as in the numerator or a
current as in the denominator. With a steady current sourced into the device, [ v(t) dt can
be replaced by [ i(t) R(t) dt; which can be just [ R(t) dt:i(t) = 1 for the DC case. This

prework allows for rewriting (3-2) with m = f; = 1 for simplification.

Rinax 4-22
R(t)=s—1+ce_fR(t)dt (4-22)

For the remaining discussion the dependence of R on time is implied; and we will dispense
with writing time explicitly as an argument to R. Using the transformation R=* — G, where

G represents conductance, and some algebraic manipulation,

1

maxG__

e-ferar =2 g (4-23)
c

Take the natural log of both sides, differentiate w.r.t time and desensitize any remaining
constants that do not play into the results.
GG=1-G (4-24)

Equation (4-24) is also like an Abel equation of the second kind with g(x) = f,(x) =0
and fo(x) = fi(x) =1 [77]. This is a first order nonlinear ODE of the traditional form
y'y = 1 — y; which has a known closed form solution [78].

G=1+W(e 1t+) (4-25)
In (4-25), W is the Lambert function or otherwise called the ProductLog. Fig. 4.14 shows
the response of (4-25) computed for G~ to obtain R. Constant C; can be used to tune the
initial value or minimum resistance. The plot shows the expected sigmoid response similar
to the voltage mode excitation. Lambert functions are known to be relevant for modeling

memristors, from Biolek’s work [30].
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Fig. 4.14 Evolution of memory resistance with a constant current input.
4.5.4 Integration with external nonlinear elements

As evidenced in Fig. 4.12, the memristor model as presented degenerates into a linear
resistor at stimulus frequencies much higher than the natural frequency of the device.
Empirical data suggests that the collapsed I-V curve may also be nonlinear [22], [74], [79].
Nonlinearity can be introduced into the logistic model by integration into a circuit network
that uses nonlinear elements. Recent research suggests that the chemical-metal interface
may exhibit a rectifying single valued characteristic at high frequencies [72], [80]. The
logistic model can replicate this characteristic when paired with a double-diode circuit.
Consider Fig. 4.15 where an I-V lobe at 10Hz is shown collapsing into a nonlinear single

valued function at a higher stimulus frequency of 100 Hz. The circuit that produced this
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effect is shown in the inset. The blue boxed region now represents the new nonlinear

memristor model, with external pins (&, b).
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Fig. 4.15 1-V curve of a nonlinear memristor emulator with back-to-back dual diodes.

Fi