
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2020 

Intersections of Deleted Digits Cantor Sets with Gaussian Integer Intersections of Deleted Digits Cantor Sets with Gaussian Integer 

Bases Bases 

Vincent T. Shaw 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Physical Sciences and Mathematics Commons 

Repository Citation Repository Citation 
Shaw, Vincent T., "Intersections of Deleted Digits Cantor Sets with Gaussian Integer Bases" (2020). 
Browse all Theses and Dissertations. 2305. 
https://corescholar.libraries.wright.edu/etd_all/2305 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2305?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


INTERSECTIONS OF DELETED DIGITS CANTOR SETS
WITH GAUSSIAN INTEGER BASES

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

By

VINCENT T. SHAW

B.S., Wright State University, 2017

2020

Wright State University



WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

May 1, 2020

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Vincent T. Shaw ENTITLED Intersections of Deleted Digits Cantor Sets with
Gaussian Integer Bases BE ACCEPTED IN PARTIAL FULFILLMENT OF THE RE-
QUIREMENTS FOR THE DEGREE OF Master of Science.

____________________

Steen Pedersen, Ph.D.

Thesis Director

____________________

Ayse Sahin, Ph.D.

Department Chair

Committee on
Final Examination

____________________
Steen Pedersen, Ph.D.

____________________
Qingbo Huang, Ph.D.

____________________
Anthony Evans, Ph.D.

____________________
Barry Milligan, Ph.D.
Interim Dean, School of Graduate Studies



Abstract

Shaw, Vincent T. M.S., Department of Mathematics and Statistics, Wright State University,
2020. Intersections of Deleted Digits Cantor Sets with Gaussian Integer Bases.

In this paper, the intersections of deleted digits Cantor sets and their fractal dimensions

were analyzed. Previously, it had been shown that for any dimension between 0 and the

dimension of the given deleted digits Cantor set of the real number line, a translate of the

set could be constructed such that the intersection of the set with the translate would have

this dimension. Here, we consider deleted digits Cantor sets of the complex plane with

Gaussian integer bases and show that the result still holds.
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Chapter 1

Introduction

1.1 Why study intersections of Cantor sets?

Cantor sets may appear to be rather special. However, they occur in mathematical models

of many naturally occuring objects, play a role in number theory, in signal processing, in er-

godic theory, and in limit-theorems from probability. We study the “size” of the intersection

of two Cantor sets. The significance of this problem was noted by Furstenberg [Fur70] and

Palis [Pal87]. Papers dealing with versions of our problem and related applications include:

[Wil91], [Kra92], [PS98], [Kra00], [LN04], [DT07], [DHW08], [DT08a], [ZLL08], [DLT09],

[KLD10], [LYZ11a], [Mor11], [ZG11], [LTZ18], [SRM+20]. The literature in the subject,

neighboring areas, and applications is vast. In the list above, we limit ourselves to a small

sample of the literature closely related to our problem.

1.2 Prior work on this problem

Most of the prior work related to our problem has been done in the one dimensional case,

so we will begin with a summary of that case.

1



Let n � 3 be an integer. Any real number t 2 [0, 1] has at least one n-ary representation

t = 0.nt1t2 · · · =
1X

k=1

tk
nk

where each tk is one of the digits 0, 1, . . . , n � 1. Deleting some element from the full digit

set {0, 1, . . . n � 1} we get a set of digits D := {dk | k = 1, 2, . . . ,m} with m < n digits

dk < dk+1 and a corresponding deleted digits Cantor set

C = Cn,D :=

( 1X

k=1

xk

nk
| xk 2 D for all k 2 N

)
. (1.1)

We are interested in the dimension of the sets C \ (C + t) , where C + t := {x+ t | x 2 C}.

Since the problem is invariant under translation we will assume d1 = 0.

We say that D is uniform, if dk+1 � dk, k = 1, 2, . . . ,m � 1 is constant and � 2. We

say D is regular, if D is a subset of a uniform digit set. Finally, we say that D is sparse, if

|� � �0| � 2 for all � 6= �0 in

� := D �D = {dj � dk | dj , dk 2 D} .

Clearly, a uniform set is regular and a regular set is sparse. The set D = {0, 5, 7} is sparse

and not regular. We abuse the terminology and say Cn,D is uniform, regular, or sparse

provided D has the corresponding property.

Previous studies of the sets C \ (C + t) include:

• When C = C3,{0,2} is the middle thirds Cantor set, a formula for the Hausdorff

dimension dim (C \ (C + t)) of C \ (C + t) can be found in [DH95] and in [NL02].

Such a formula can also be found in [DT08b] if C is uniform and dm = n� 1, and in

[KP91] if C is regular. For sparse C, a formula can be found in [PP13].

• Let F+ be the set of all t � 0 such that C \ (C + t) is non-empty. For 0  �  1, let

F� := {t 2 F+ | dim (C \ (C + t)) = � logn(m)} . If C is the middle thirds Cantor set

then F+ = [0, 1] and it is shown in [Haw75, DH95, NL02] that F� is dense in F+ for

2



all 0  �  1. This is extended to regular sets and to sets Cn,D such that D satisfies

dk+1 � dk � 2 and dm < n � 1 in [PP12]. It is also shown in [PP12] that F� is not

dense in F+ for all 0  �  1 for all deleted digits Cantor sets Cn,D.

• It is shown in [Haw75, Igu03] that, if C is the middle thirds Cantor set, then the

Hausdorff dimension of C \ (C + t) is 1
3 log3(2) for Lebesgue almost all t in the closed

interval [0, 1] . This is extended to all deleted digits sets in [KP91].

• If C is the middle thirds Cantor set, then C \ (C + t) is self-similar if and only if the

sequence {1� |yk|} is “strong periodic”, where t =
P1

k=1
2yk

3k and yk 2 {�1, 0, 1} for

all k by [LYZ11b]. This is extended to sparse C in [PP14]. In particular, C \ (C + t)

is not, in general, a self-similar set.

Some of the cited papers only consider rational t and some consider Minkowski dimension

in place of Hausdorff dimension. It is known, see e.g., [PP12] for an elementary proof, that

the (lower) Minkowski dimensions of C \ (C + t) equals its Hausdorff dimension.

Palis [Pal87] conjectured that for dynamically defined Cantor sets typically the corre-

sponding set F+ either has Lebesgue measure zero or contains an interval. The papers

[DS08], [MSS09] investigate this problem for random deleted digits sets and solve it in the

affirmative in the deterministic case.

In two dimensions, where C are certain Sierpinski carpets, the dimension of C \ (C + t)

is investigated in [LTZ18] and the dimension is calculated for certain translation vectors

t. In [DT07] the authors consider the intersection of a Sierpinski carpet with its rational

translates. They use the methods from and obtain results similar to the ones in [NL02].

Both in [LTZ18] and [NL02] the authors study the case where the base is a real number and

the “digits” are vectors parallel to the coordinate axes.

In this work, we study the case where the base is a complex number of the form �n± i

for an integer n > 1 and the set of digits is a proper subset of the set
�
0, 1, . . . , n2

 
.

In Chapter 2 we discuss the one dimensional case, in particular, we show that the case

where we use a negative integer as a base does not lead to new results.

In Chapter 3 we show that if we want to use a Gaussian integer as the base and have a

3



digit set of the form {0, 1, 2, . . . , N}, then we must have b = �n± i for some positive integer

and N = n2.

In Chapter 4 we begin to investigate the set C \ (C + t) and its dimension, in particular

we identify appropriate conditions on the subset of {0, 1, 2, . . . , N} that can serve as a good

set of digits.

In Chapter 5 we show that for any 0  ↵  1, there is a complex number t, such that

C \ (C + t) has dimension ↵ dim (C) .

4



Chapter 2

Negative Base Representations

2.1 Integer Representations

Suppose b is an integer such that |b| � 2. Let D = {0, 1, 2, . . . , |b|� 1} . For dk 2 D, we say

n =
MX

k=0

dkb
k

is a representation of n in base b with digit set D. When b = 10, 3, 2 this gives the usual

decimal, ternary, and binary representations. Here we are also interested in the case where

b  �2. The case of negative bases is well known, see e.g., [Knu98] for the n = 2 case, the

proof below is essentially taken from [GG79].

Proposition 1. If b  �2, then every integer has a unique representation in base b with

digit set D.

Proof. Existence follows from the usual division algorithm. For a positive base, it is clear

that the sequence of quotients is decreasing, hence the division algorithm terminated. Here

termination of the division algorithm requires an argument. Suppose n is an integer, positive

or negative. Let q0 = n and inductively qk = qk+1b+ dk, where 0  dk < |b| .

(i) If qk > 0 and qk � dk, then |qk+1| =
��� qk�dk

b

��� 
�� qk
b

�� < |qk| .
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(ii) If qk > 0 and qk < dk, then |qk+1| =
��� qk�dk

b

��� 
��dk

b

�� < 1  |qk| , since dk < |b| .

(iii) If qk < �1, then |qk+1| =
��� qk�dk

b

��� 
�� qk
b

�� +
��dk

b

�� <
�� qk
b

�� + 1  |qk| , the last  used

qk  �2.

(iv) If qk = �1, then qk+1b = �1� dk, so 1+ dk is divisible by b, since 0 < 1+ dk  �b,

we have �1� dk = b, hence qk+1 = 1 and therefore qk+2 = 0, by (i).

It follows from (i)-(iv) that eventually the quotient qk must equal zero. If qM+1 = 0,

then

n = d0 + q1b

= d0 + (d1 + q2b) b

= d0 + d1b+ (d2 + q3b) b
2

= · · ·

= d0 + d1b+ d2b
2 + · · ·+ (dM + qM+1b) b

M

=
MX

k=0

dkb
k.

Thus every interger has a representation in base b.

Suppose dk 2 D, ek 2 D, and
PM

k=0 dkb
k =

PM
k=0 ekb

k. Then

b
MX

k=1

(dk � ek) b
k�1 = e0 � d0

so the left hand side is an integer divisible by |b| and the right hand side is an integer < |b| .

Hence, the right hand side e0 � d0 = 0. Therefore d0 = e0.

Using d0 = e0 it follows that
PM

k=1 dkb
k�1 =

PM
k=1 ekb

k�1. Repeating the previous

argument shows d1 = e1 and
PM

k=2 dkb
k�2 =

PM
k=2 ekb

k�2.

Continuing in this manner we see that dk = ek for all k = 0, 1, . . . ,M.

6



2.2 Fractals Obtained by Deleting Digits

Fix an integer |b| > 1 and let D = {0, 1, . . . , |b|� 1} as above. Let fj (x) = 1
b (x+ j) for

j 2 D.

Suppose b > 1. Let ↵ = 0 and � = 1, then
S

j2D fj [↵,�] = [↵,�] . In fact, fj [0, 1] =
⇥ j
b ,

j+1
b

⇤
, so

S
j2D fj [↵,�] =

Sb�1
j=0

⇥ j
b ,

j+1
b

⇤
=
⇥
0
b ,

b�1+1
b

⇤
. If D⇤ is a subset of D, then

the compact non-empty set Cb,D⇤ = CD⇤ satisfying
S

j2D⇤ fj (CD⇤) = CD⇤ is the deleted

digits Cantor set CD⇤ =
�P1

k=1 dkb
�k : dk 2 D⇤ . In [PP12] the authors studied the fractal

dimensions of the intersections of CD⇤ with its translates.

Suppose b < �1 and let D = {0, 1, . . . ,�b� 1} as above. Let ↵ = b
1�b and � = 1

1�b ,

then ↵ < 0, � > 0, and
S

j2D fj [↵,�] = [↵,�] . In fact, � � ↵ = 1, f0 [↵,�] is an interval of

length 1
�b , and fj [↵,�] is obtained from fj�1 [↵,�] by a translation by 1

b . Hence the intervals

fj [↵,�] and fj�1 [↵,�] intersect at endpoints, and we just need to check that the right hand

endpoint f0 (↵) of f0 [↵,�] is � and the left hand endpoint f�b�1 (�) of f�b�1 [↵,�] is ↵.

Now

f0 (↵) = f0

✓
b

1� b

◆
=

1

b
· b

1� b
=

1

1� b
= �

and

f�b�1 (�) = f�b�1

✓
1

1� b

◆
=

1

b
· 1

1� b
+

�b� 1

b
=

b

1� b
= ↵

Again, if D⇤ is a subset of D, then the compact non-empty set Cb,D⇤ = CD⇤ satisfying
S

j2D⇤ fj (CD⇤) = CD⇤ is the Cantor set

CD⇤ =

( 1X

k=1

dkb
�k : dk 2 D⇤

)
.

In this case, the reflection caused by b being negative means we cannot simply copy iterated

function systems arguments from [Gau32] when studying fractal dimensions of the inter-

section of CD⇤ with its translates. However, it is easy to see that as a set C�|b|,D⇤ can be

obtained by translating the set C|b|,D⇤ by � |b|
1+|b| . For any integer b, such that |b| > 1, the

7



union of translated
S

k2Z (CD + k) is a tiling of the real line.

8



Chapter 3

Gaussian Integers and Fractals

3.1 Gaussian Integer Representations

The set of Gaussian integers is the set Z [i] = {x+ iy : x, y 2 Z} . To extend the study of the

dimension of the intersection of a deleted digits Cantor set with its translates we will study

the case where the base b is a Gaussian integer and our Cantor set is a subset of the complex

plane determined by a set of digits as above. We consider a digit set D = {0, 1, 2, . . . , N}

and a Gaussian integer b = m + in. We say a Gaussian integer z has a representation in

base b, with digit set D, if z =
PM

k=0 dkb
k, with dk 2 D. In analogy with Proposition 1,

the first question is: Can we choose m,n,N such that every Gaussian integer has a unique

representation in base b = m+ in with digit set D = {0, 1, 2, . . . , N}?

We begin by showing that a necessary condition for every Gaussian integer to have a

representation in base b = m+ in, is that the imaginary part of b has modulus one.

Lemma 2. If every Gaussian integer has a representation in base b = m + in, with digits

set D = {0, 1, 2, . . . , N} , then n = ±1.

Proof. Since (u+ iv) (x+ iy) = ux� vy + i (uv + vx) , it follows by induction that for any

integer k, n is a factor of y, when bk = x + iy where n divides y in Z. Consequently, if

z =
PM

k=0 dkb
k, then n divides the imaginary part of z in Z. By assumption i =

PM
k=0 dkb

k,

9



for some dk 2 D, so n divides 1 in Z. Thus n = ±1.

Our next result establishes a connection between representations in base b and congru-

ence classes modulo b.

Lemma 3. If every Gaussian integer has a unique representation in base b, then every

Gaussian integer is congruent to exactly one element of D, that is D is a complete set of

representatives for Z [i] / (b) .

Proof. Let z be a Gaussian integer. By assumption z = d0 + b
PM

k=1 dkb
k�1, hence z ⌘ d0

(mod b). So, if every Gaussian integer has a representation in base b, then every Gaussian

integer is congruent to some element of D.

Uniqueness of representation means, if
PM

k=0 dkb
k =

PM 0

k=0 d
0
kb

k, then dk = d0k for all k.

Where if M < M 0 we set dk = 0 for all M < k  M 0. And similarly, if M > M 0, we set

d0k = 0 for all M 0 < k  M.

The second claim is that no Gaussian integer is congruent to more than one element of

D. So suppose z is a Gaussian integer and z is congruent to d 2 D and to e 2 D. Then

z = d+ bu and z = e+ bv for some Gaussian integers u, v. Now v� u is a Gaussian integer,

so v � u =
PM

k=0 dkb
k for some dk 2 D. Hence,

d = e+ b (v � u) = e+
MX

k=0

dkb
k+1..

By uniqueness, d = e and dk = 0 for all k.

Due to Lemma 3 we ask: For a Gaussian integer b = m + in, does there exist an N,

such that D = {0, 1, 2, . . . , N} is a complete set of representatives for the congruence classes

Z [i] / (m+ in) . Gauss showed that if m,n are relatively prime the answer is affirmative.

We reproduce Gauss’ argument below.

Lemma 4 ([Gau32, Theorem 40]). If b = m + in is a Gaussian integer and m,n are

relatively prime, then D =
�
0, 1, 2, . . . ,m2 + n2 � 1

 
is a complete set of representatives for

the congruence classes Z [i] / (b) .

10



Proof. Since m,n are relatively prime, there are integers ↵,�, such that ↵m+�n = 1. Note

↵n� �m+ b (� + i↵) = ↵n� �m+ (m+ in) (� + i↵)

= ↵n� �m+m� + (m↵+ n�) i� n↵

= i.

Hence, if x+ iy is any Gaussian integer, then

x+ iy = x+ (↵n� �m) y + b (�y + i↵y) . (3.1)

Let h, k be integers such that x + (↵n� �m) y = h + k
�
m2 + n2

�
and 0  h < m2 + n2.

Then

x+ (↵n� �m) y = h+ bk (m� in) , (3.2)

since b (m� in) = m2 + n2. Combining Eqns. (3.1) and (3.2) we see

x+ iy = h+ b (�y + km+ i (↵y � kn)) .

Thus x+ iy ⌘ h (mod b).

To complete the proof we need to show that no Gaussian integer is congruent to more

than one element of D. Suppose x+iy is a Gaussian integer, h, h0 2 D =
�
0, 1, 2, . . . ,m2 + n2 � 1

 
,

x + iy ⌘ h (mod b), and x + iy ⌘ h0 (mod b), then h � h0 = b (u+ iv) for some Gaussian

integer u+ iv. Hence,

(h� h0) (m� in) =
�
m2 + n2

�
(u+ iv) .

So

(h� h0)m↵ = u↵
�
m2 + n2

�
and (h� h0)n� = �v�

�
m2 + n2

�
.

11



Adding these equations and using ↵m+ �n = 1 it follows that

h� h0 = (u↵� v�)
�
m2 + n2

�
.

Since h, h0 2
�
0, 1, 2, . . . ,m2 + n2 � 1

 
and u↵� v� is an integer, h = h0.

Recall, we are interested in when every Gaussian integer has a unique representation in

base b = m+in using digit set D = {0, 1, 2, . . . , N} . By Lemma 2, we may assume b = m±i.

and by Lemma 3 and Lemma 4, we may assume D =
�
0, 1, 2, . . . ,m2

 
. To complete this

line of reasoning we need to go back to the original question of representing every Gaussian

integer uniquely in base b = m+ i with digits in D =
�
0, 1, 2, . . . ,m2

 
.

Lemma 5. Suppose b = m + i, D =
�
0, 1, 2, . . . ,m2

 
, and every Gaussian integer has a

unique representation in base b with digit set D, then m < 0.

Proof due to [KS75]. The proof is by contradiction. If m = 0, then D = {0} and we can

only represent 0 in base b with digit set D.

If m > 0. Suppose 1�m+ i =
Pm2

k=0 dkb
k. Multiplying by 1� b = 1�m� i we get

(1�m)2 + 1 = d0 +
m2X

k=1

(dk � dk�1) b
k � dm2bm

2+1. (3.3)

The left hand side m2 � 2m + 2 is in D and the right hand side is ⌘ d0 (mod b), so using

Lemma 3 and Lemma 4 we conclude m2 � 2m = d0. So, by Eqn. (3.3),

m2X

k=1

(dk � dk�1) b
k�1 � dm2bm

2

= 0.

Either d1 � d0 or d0 � d1 is in D, so we can repeat the argument to get d1 = d0. Continuing

in this manner we get

dk = dk�1, for k = 1, 2, 3, . . . ,m2, and dm2 = 0.

Consequently, d0 = d1 = d2 = · · · = dm2�1 = dm2 = 0. Thus, we get the contradiction
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(1�m)2 + 1 = 0, from Eqn. (3.3).

We have shown, that if m,n,N are integers, b = m + in, and every Gaussian integer

has a unique representation in base b with digit set D = {0, 1, 2, . . . , N} , then m < 0,

n = ±1, and N = m2. Converserly, it is known [KS75], that if n > 0 is an integer, then

every Gaussian integer has has unique representation in base b = �n ± i with digits form

D =
�
0, 1, 2, . . . , n2

 
.

3.2 Gaussian Fractals Obtained by Deleting Digits

Fix an integer n > 0 and let D =
�
0, 1, . . . , n2

 
. Then every Gaussian integer has a unique

representation in base b = �n + i with digits set D. Every complex number is within 1p
2

of some Gaussian integer Z [i]. Hence every complex number is within 1p
2

of some complex

number of the form
Pm

k=0 dkb
k, dk 2 D. Now, let z be a complex number and pick a

Gaussian integer
Pm

k=0 dkb
k, dk 2 D within 1p

2
of bz. Then 1

b

Pm
k=0 dkb

k =
Pm�1

j=�1 dj�1bj is

within 1
|b|

p
2

of z. Similarly, given any complex number z, we can find
Pm

k=�l dkb
k, dk 2 D,

within 1
|b|l

p
2

of z. It follows that every complex number has at least one representation of

the form

z =
mX

k=�1
dkb

k =
mX

k=0

dkb
k +

1X

k=1

d�kb
�k, dk 2 D.

We say that z has radix expansion (or equivalently radix representation) z =
Pm

k=�1 =

dm . . . d1d0.d�1d�2 . . . . When base b = �n+ i, the radix expansion of z does not share the

same properties when b 2 Z. For example, if b = 10, it is well known that the geometric

series 0.999 · · · =
P�1

k=�1 9(10)k = 1. But, if b = �2 + i with digits set D = {0, 1, 2, 3, 4},

then 0.444 · · · =
P�1

k=�1 4(�2 + i)k = 2
5 (�3 � i) 6= 1. Nevertheless, we will use radix

representation with Gaussian integer base b where convenient. We are particularly interested

in the set of complex numbers whose radix expansions have integer part 0. So, the define

the set

T0 =

( 1X

k=1

d�kb
�k : dk 2 D

)
.

This takes the place of the unit interval. See Figure 6.1 of T0 when n = 2.
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We define some terms that will be useful in proving upcoming lemmas that will be

necessary in proving the main theorem. First, let D⇤ = {d1, d2, ..., dt} ⇢ D denote a set of

at least two integers such that 0 = d1 < d2 < ... < dt < n2 + 1, t < n2.

Definition 6. We say that D⇤ satisfies the separation condition if | di�dj |� 2, for all i 6= j

if b = �2 + i, or |di � dj | � 2n, for all i 6= j if b = �n+ i, for all n � 3.

We then define our analagous Cantor set in the complex plane.

Definition 7. The set T = Tb,D⇤ = {z 2 T0 | di 2 D⇤} is a deleted digits Cantor set

with Gaussian integer base b. Here, T is obtained from T0 by restricting attention to those

representations that only contain digits from the set D⇤.

We wish to refine the set T0 to construct the deleted digits Cantor set T in the same way

[PP12] constructed their deleted digits Cantor set. For that we have the following definition.

Definition 8. For all k � 0, the set Tk = {0.d1d2... | di 2 D⇤, 8i  k} is called a refinement

of T0 at the kth stage. Here, Tk is obtained from T0 by restricting attention to those

representations whose first k digits past the radix point are from the set D⇤.

See figures 6.2 and 6.3 for refinements T1 and T2 when n = 2. The fractal set T0 is self-

similar, meaning that T0 has the same shape as one or more of its parts. [Fal85] refers to

these parts as similitudes. In [PP12], similitudes of the unit interval were called subintervals.

Hence, it is natural to introduce the following term.

Definition 9. Let b�kT0 =
�
b�kx | x 2 T0

 
, and b�kT0 + x =

�
z + x | z 2 b�kT0

 
, x 2 C.

Then a subtile of Tk refers to a subset of Tk of the form b�kT0 +
Pk

i=1 d�ib�i for fixed

d�i 2 D⇤.

In order to prove the theorem, we must first turn our attention to the entropy dimension

of a subset of Rn. To calculate the entropy dimension of intersections, we need to extend

the definition of possible covering sets.
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Chapter 4

Preliminaries

4.1 Entropy Dimension of the Intersections

In this chapter, we set up some necessary foundation that will aid in the proof of the

theorem. Due to the structure of T , we study its entropy dimension (also called box-counting

dimension, Kolmogorov dimension, or Minkowski dimension.)

Definition 10. Let E ⇢ Rn such that E is nonempty. Then the entropy dimension of E is

defined as

dimE = lim
�!1

logN�(E)

� log �

where N�(E) denotes the smallest number of sets each of diameter at most � needed to cover

E.

The lower and upper entropy dimensions are defined respectively as follows:

dimE = lim�!1
logN�(E)

� log �

dimE = lim�!1
logN�(E)

� log �
.

If the limit does not exist, then we can talk about the upper and lower entropy dimensions
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obtained by replacing the limit by the limit superior and limit inferior, respectively. [Fal85]

considers various definitions of N�(E), namely

• the smallest amount of closed balls of radius � that cover E;

• the least amount of cubes of side length � that cover E;

• the number of ��mesh cubes that intersect E;

• the smallest number of sets of diameter at most � that cover E;

• the largest number of disjoint balls of radius � with centers in E.

We extend the list to include the smallest number of subtiles of T0; sets of the form b�jT0+

0.d1d2...dj for some integer j, that cover the set E.

Lemma 11. If E ⇢ Rn such that E is nonempty, then the entropy dimension of E is

lim�!1
logN� (E)

� log �
where N� (E) is the smallest number of subtiles of diameter at most �

needed to cover E.

Proof. Denote the diameter of T0 as diam(T0). Let N�j (E) denote the smallest number

of subtiles of T0 each of diameter �j from a decreasing sequence {�j}1j=0, where �j =
p
n2 + 1

�j
diam(T0). Let L�j (E) be the smallest number of closed balls of radius �j needed

to cover E. Obviously, L�j (E)  N�j (E). Let Mp
2�(E) be the smallest number of ��mesh

cubes that intersect E. Now, Mp
2�(E)  N�j (E). If

p
2�j < 1, then

logMp
2�(E)

� log(
p
2�)



logN�j (E)

� log(
p
2)� log(�)

. As �j ! 0 when j ! 1, we get the following,

dimE = lim�j!0

logN�j (E)

� log �j

and

dimE  lim�j!0
logN�j (E)

� log �j
.

Any set of diameters at most �j is contained in 32 = 9 �j�mesh cubes. Therefore, we get

N�j (E)  9M�j (E) and taking logarithms leads to the opposite inequalities of the equations
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above. As a result, we can calculate the entropy dimension using the subtiles of Tk. As

vector spaces, R2 is isomorphic to C. So if T ⇢ C is defined as above and N�(T ) is the

minimum number of subtiles in Tk = {z 2 T0 | di 2 D⇤, 8i  k} needed to cover T , then,

by [Fal85], the entropy dimension of T is equal to logpn2+1 | D⇤ |.

Let

F = {x 2 C | T \ (T + x) 6= ;}

be the set of all x 2 C such that the intersection of T and its translate by x, T + x =

{z + x | z 2 T}, is non-empty. We consider all x in F such that T \ (T + x) has entropy

dimension ↵ logpn2+1 | D⇤ | where 0  ↵  1. Under appropriate assumptions, we show

that for any ↵ 2 [0, 1], there exists x 2 F such that dim (T \ (T + x)) = ↵ dimT.

4.2 Construction of Deleted Digits Cantor Sets

In this section, we consider how the self-similarity construction of T can be used to study

T \ (T + x).

Let b = �n + i 2 Z[i] and n 2 N � {1}. Let D =
�
0, 1, ..., n2

 
be the digit set. Let

D⇤ = {d1, d2, ..., dt} ⇢ D be a set of at least two distinct integers satisfying the separation

condition. Let T0 and Tk be defined as above. The set Tk+1 is obtained by refining the set

Tk; that is, by removing complex numbers in Tk with digits in the k+1th position to the right

of the radix point that are not in D⇤. If we take b�kT0 = {0.0...0d�k�1d�k�2... | di 2 D}

and consider its translates b�kT0+x = {0.0...0d�k�1d�k�2...+ x | di 2 D} , x 2 C, then we

can write Tk =
S

di2D⇤

�
b�kT0 + 0.d�1...d�k

�
. What this means, is that for each k, the set Tk

consists of |D⇤|k subtiles each
1

(n2 + 1)k
the area of T0. It should be clear that Tk ⇢ Tk+1

for all k, and that T =
T1

k=0 Tk.

In order to use subtiles in calculating the entropy dimension of T , we need to show that

the subtiles of Tk are pairwise disjoint. To prove this, we require the following lemma.

Lemma 12. Let T0 be given. It follows that
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i) if n = 2 and D⇤ satisfies the condition |di � dj | � 2 for all i 6= j, then T0\(T0+d) = ;

for d = 3, 4;

ii) if n � 3 and D⇤ satisfies the condition |di � dj | � 2n for all i 6= j, then T0\(T0+d) =

; for all d 2 D⇤ � {0}.

Proof. Let z = dn2

2 e 2 D. Denote cs = 0.sz where s 2 D is fixed. Then cs represents the

“center” of the subtile b�1(T0 + s) ⇢ T0 as

|x� cs| =

������

1X

j=2

(xj � dn
2

2
e)b�j

������


1X

j=2

dn
2

2
e | b |�j=

dn2

2 e
n2 + 1�

p
n2 + 1

= ✏

for all x 2 b�1(T0+s). Denote B✏(cs) as the ball centered at cs with radius ✏. As b�1(T0+s) ⇢

B✏(cs), we get T0 ⇢
n2S
s=0

B✏(cs). Similarly, b�1(T0+t)+d ⇢ B✏(ct+d) and T0+d ⇢
n2S
t=0

B✏(ct+

d) where t 2 D is fixed. For any t, s = 0, 1, ..., n2, | cs�(ct+d) |=| 0.sz�d.tz |=| d.(s�t) | is

the distance between the centers of the balls B✏(cs) and B✏(ct+d). Therefore, it is sufficient

to show that the ball centered at cs with radius ✏ is disjoint from any ball of radius ✏ centered

at ct + d; that is, B✏(cs) \B✏(ct + d) = ;. Figure 6.4 provides a visual representation when

b = �2 + i, and D⇤ = {0, 3}.

The proof reduces to show that | d.(s� t) |> 2✏. Algebraically, we get

| d.(s� t) |=| d+ 0.(s� t) |=| d+ (s� t)b�1 |

=

����d+
(s� t)

�n+ i

���� =
����d+

(s� t)(�n� i)

n2 + 1

���� =
����

✓
d+

�(s� t)n

n2 + 1

◆
+

✓
�(s� t)

n2 + 1

◆
i

����

=

����d+
(s� t)(�n� i)

n2 + 1

���� =
����

✓
d+

�(s� t)n

n2 + 1

◆
+

✓
�(s� t)

n2 + 1

◆
i

����

=

 ✓
d+

�(s� t)n

n2 + 1

◆2

+

✓
�(s� t)

n2 + 1

◆2
!1/2

=

r
d2 � 2dn

n2 + 1
(s� t) +

1

n2 + 1
(s� t)2.

Also, 2✏ =
2dn2

2 e
n2 + 1�

p
n2 + 1

 n2 + 1

n2 + 1�
p
n2 + 1

. We will take a closer look at small

values of n.

If n = 2, then D⇤ = {0, 3} , or {0, 4} and we have (2✏)2 = 4✏2  5

5�
p
5
< 9 � 12

5 (s �
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t) + 1
5 (s � t)2 = |d.(s� t)|2 . Table 6.1 compares 2✏ with |3.(s� t)| for all possible s and t

values. Note that 2✏ < |3.(s� t)|  |4.(s� t)|. Taking the square root yields the desired

result.

If 3  n < 5, then D⇤ = {d1, d2} where di =

8
>><

>>:

d 2 D if d � 2n

0 if i = 1

. The reason di =

d � 2n is because
r
d2 � 2

dn

n2 + 1
(s� t) +

1

n2 + 1
(s� t)2 ⇡

p
d2 � 2dn+ 0 + 1 � 1

2 . So,

d2 � 2dn� 3
4 > 0 implies d =

2n+
p
4n2 + 3

2
which leads to d � 2n. Clearly,

(2✏)2 = 4✏2  n2 + 1

n2 + 1�
p
n2 + 1

< d2 � 2
dn

n2 + 1
(s� t) +

1

n2 + 1
(s� t)2 = |d.(s� t)|2

for all sufficient d, and taking the square root gives us the desired result. Table 6.2 compares

2✏ and |6.(s� t)| when n = 3. Again, note that 2✏ < |6.(s� t)|  |d.(s� t)| for all digits

d > 6. Table 6.3 compares 2✏ and |8.(s� t)| when n = 4. Again, note that 2✏ < |8.(s� t)| 

|d.(s� t)| for all digits d > 8.

If n � 5, and D⇤ satisfies the separation condition, then we have,

(2✏)2  n2 + 1

n2 + 1�
p
n2 + 1

< d2 � 2
dn3

n2 + 1
< d2 � 2

dn(s� t)

n2 + 1
+

1

n2 + 1
(s� t)2 = |d.(s� t)|2

for all s, t 2 D. This is the first case where D⇤ can have more than two digits. Thus, for all

cases, 2✏ < |d.(s� t)| implying B✏(cs) \B✏(ct + d) = ;, and the desired result.

Now, for an important corollary.

Corollary 13. If b�kT0+0.d�1...d�k and b�kT0+0.d
0

�1...d
0

�k are subtiles of Tk and d�i 6=

d
0

�i for at least one i, then the subtiles are disjoint.

Proof. Assume b�kT0+0.d�1...d�k and b�kT0+0.d
0

�1...d
0

�k are subtiles of Tk and d�i 6= d
0

�i

for at least one i. Then bi
�
b�kT0 + 0.d�1...d�k

�
= bi�kT0 + d�1...d�i.d�i�1...d�k and

bi
⇣
b�kT0 + 0.d

0

�1...d
0

�k

⌘
= bi�kT0 + d

0

�1d
0

�2...d
0

�i.d
0

�i�1...d
0

�k. Note that d�j = d
0

�j for all

j < i. Without loss of generality, assume di > d
0

i. By translating, we get bi�kT0 ⇢ T0 and
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bi�kT0+
kP

j=i
(d�j�d

0

�j)b
j�k ⇢ T0+(d�j�d

0

�j). By the result of lemma 12, the intersections

of these two subtiles are disjoint.

4.3 Investigating T \ (T + x)

Assume D⇤ satisfies the separation condition. Consider the translation T +x = {z+x | z 2

T, x 2 F}. Realize that

T \ (T + x) =
1\

k=0

(Tk \ (Tk + x)).

For x = 0.d1d2d3... let bxck denote the truncation of x to the first k places; i.e.,

bxck = 0.d1d2d3...dk.

We will investigate Tk \ (Tk + bxck), since both Tk and Tk + bxck consists of subtiles.

Remember a subtile in Tk is short for a similitude in Tk; that is, one of the tiles obtained

from the refinement process. We apply similar terminology to a subtile in Tk + x.

Consider how Tk+1 \ (Tk+1 + bxck+1) is beget from Tk \ (Tk + bxck) for k � 0. Tk+1 is

obtained from Tk by refining each subtile in Tk. Consequently, Tk+1 + bxck+1 is obtained

from Tk+bxck by refining each subtile in Tk+bxck and then translating the resulting subtiles

in the direction of dk+1/bk+1. Figures 6.5, 6.6, and 6.7 provide a visual demonstration when

b = �2 + i, and D⇤ = {0, 3} for the first two possible refinements. The intersections are

circled.

We study the subtiles of Tk and Tk + bxck as we transition from Tk \ (Tk + bxck) to

Tk+1 \ (Tk+1 + bxck+1). The subtiles in Tk + bxck either coincide with the subtiles in Tk,

share boundaries in common with subtiles in Tk, or are disjoint from the subtiles of Tk.

Provided that the digits of x are chosen from the set D⇤, the subtiles of Tk and Tk + bxck

either coincide, or are disjoint. Notice that once the subtiles are disjoint, they stay disjoint

upon further transition as a result from corollary 13.
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Chapter 5

Proof of Theorem

And now for the pièce de rèsistance.

Theorem 14. If D⇤ satisfies the separation condition | di� dj |� 2 for all i 6= j, b = �2+ i

or | di � dj |� 2n for all i 6= j, b = �n + i, n � 2, then given any 0  ↵  1, there exists

x 2 F such that T \ (T + x) has entropy dimension equal to ↵ logpn2+1 | D⇤ | . This x may

be chosen to admit a terminating radix expansion.

Proof. Let 0  ↵  1 be given. We use the transition process to construct an x such

that T \ (T + x) has entropy dimension ↵ logpn2+1 | D⇤ |. We begin the refinement

process starting with the set T0 \ (T0 + 0). The idea is if xj+1 = 0, then transitioning

from Tj \ (Tj + bxcj) to Tj+1 \ (Tj+1 + bxcj+1) multiplies the number of subtiles by | D⇤ |,

and if xj+1 = dt the transition multiplies the number of subtiles by one. Using the procedure

outlined in [PP12], let hj := [j↵] . Then hj is a positive integer such that hj  j↵ < 1+ hj ,

and consequently, hj/j ! ↵ as j ! 1. Since 0  ↵  1 we have hj  hj+1  1 + hj .

Suppose 0 < ↵ < 1. For j � 1 set

xj =

8
>><

>>:

dt if hj = hj�1

0 if hj = 1 + hj�1

.

Then the number of subtiles in Tj \ (Tj + bxcj) is | D⇤ |hj . Since T \ (T + x) is a subset of
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Tj \ (Tj + bxcj) this provides an upper bound for the number of subtiles of scale
1

(n2 + 1)j

of T0 needed to cover T \ (T + x) :

N�j (T \ (T + x)) | D⇤ |hj .

To calculate the entropy dimension of T \ (T + x) it remains to check that any subtile in

Tj\(Tj+bxcj) leads to points in T\(T+x) so that the upper bound for N�j (T\(T+x)) is also

a lower bound. Note that the diameter of the copies are given by �j =
p
n2 + 1

�j
diam(T0)

for each j. But by the refinement process each subtile in Tj \ (Tj + bxcj) transitions to one

or | D⇤ | subtiles in Tj+1 \ (Tj+1 + bxcj+1). Hence, it follows from Cantor’s Intersection

Theorem that each subtile in Tj \ (Tj + bxcj) has infinitely many points in common with

T \ (T + x). Using hj/j ! ↵, we conclude

lim
�j!0

logN�j (T \ (T + x))

� log �j
= lim

j!1

log | D⇤ |hj

� log
⇣p

n2 + 1
j
diam(T0)

⌘ ! ↵ dim(T ).

We can change some of the digits xj = 0 to xj = dm or visa versa, as long as the limit

remains unchanged. That is, we can make changes of this nature on a sparse set of j’s. For

↵ = 0 or ↵ = 1, we can choose digits dj such that the subtiles are disjoint at some jth

refinement, or let x = 0, respectively. We leave the details to the reader.
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Chapter 6

Figures and Tables

Figure 6.1: T0, b = �2 + i
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Figure 6.2: T1, b = �2 + i, D⇤ = {0, 3}
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Figure 6.3: T2, b = �2 + i, D⇤ = {0, 3}
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Figure 6.4: T0 \ (T0 + 3) = ;, b = �2 + i, D⇤ = {0, 3}
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Figure 6.5: T1 \ (T1 + 0.3)
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Figure 6.6: T2 \ (T2 + 0.30)
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Figure 6.7: T2 \ (T2 + 0.33)
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Table 6.1: b = �2 + i, D⇤ = {0, 3}
s� t 2✏ |3.(s� t)|
�4 1.80901699437495 4.6690470119715
�3 1.80901699437495 4.24264068711928
�2 1.80901699437495 3.82099463490856
�1 1.80901699437495 3.40587727318528
0 1.80901699437495 3
1 1.80901699437495 2.60768096208106
2 1.80901699437495 2.23606797749979
3 1.80901699437495 1.89736659610103
4 1.80901699437495 1.61245154965971

Table 6.2: b = �3 + i, D⇤ = {0, 6}
s� t 2✏ |6.(s� t)|
�9 1.46247529557426 8.74642784226795
�8 1.46247529557426 8.43800924389159
�7 1.46247529557426 8.13019064967114
�6 1.46247529557426 7.82304288624318
�5 1.46247529557426 7.51664818918645
�4 1.46247529557426 7.21110255092798
�3 1.46247529557426 6.9065186599328
�2 1.46247529557426 6.60302960768767
�1 1.46247529557426 6.30079360080935
0 1.46247529557426 6
1 1.46247529557426 5.70087712549569
2 1.46247529557426 5.40370243444252
3 1.46247529557426 5.10881590977792
4 1.46247529557426 4.81663783151692
5 1.46247529557426 4.52769256906871
6 1.46247529557426 4.24264068711928
7 1.46247529557426 3.96232255123179
8 1.46247529557426 3.68781778291716
9 1.46247529557426 3.42052627529741
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Table 6.3: b = �4 + i, D⇤ = {0, 8}
s� t 2✏ |8.(s� t)|
�16 1.3201941016011 11.8022928978677
�15 1.3201941016011 11.563125976696
�14 1.3201941016011 11.3241023537253
�13 1.3201941016011 11.085231298497
�12 1.3201941016011 10.8465228909328
�11 1.3201941016011 10.6079881110749
�10 1.3201941016011 10.3696389409037
�9 1.3201941016011 10.1314884801558
�8 1.3201941016011 9.89355107841348
�7 1.3201941016011 9.65584248616593
�6 1.3201941016011 9.41838002805903
�5 1.3201941016011 9.18118280218071
�4 1.3201941016011 8.94427190999916
�3 1.3201941016011 8.70767072251614
�2 1.3201941016011 8.47140518936221
�1 1.3201941016011 8.2355041990011
0 1.3201941016011 8
1 1.3201941016011 7.76492869555534
2 1.3201941016011 7.5303308262613
3 1.3201941016011 7.29625205962945
4 1.3201941016011 7.06274400931936
5 1.3201941016011 6.8298652126912
6 1.3201941016011 6.5976823024988
7 1.3201941016011 6.36627141776926
8 1.3201941016011 6.13571991077896
9 1.3201941016011 5.90612842234035
10 1.3201941016011 5.67761341741819
11 1.3201941016011 5.45031029877577
12 1.3201941016011 5.22437724968812
13 1.3201941016011 5
14 1.3201941016011 4.77739776570517
15 1.3201941016011 4.55683068396807
16 1.3201941016011 4.33860915637312

31



Chapter 7

Conclusion

All complex numbers z can be expressed as a radix expansion z = dM . . . d0.d�1d�2... =
MP

k=�1
dkbk such that b = �n + i is a Gaussian integer, n � 1 and dk is a digit in the digits set

D =
�
0, 1, ..., n2

 
for all k. The set T0 = {0.d1d2d3... | di 2 D} forms a tile in the complex

plane. The subset Tk = {z 2 T0 | di 2 D⇤, 8i  k} is a refinement of T0 by restricting di,

1  i  k, to the digits in D⇤ = {d1, ..., dt} ⇢ D such that 0 = d1 < d2 < ... < dt < n2

and D⇤ satsifies the separation condition. As Tk+1 ⇢ Tk for all k, we define T =
T1

k=0 Tk =

{z 2 T0 | di 2 D⇤} to be the deleted digits Cantor set with Gaussian integer base b. The

entropy dimension of T is dimT = lim
�!1

logN�(T )

� log �
, or equivalently, lim

�j!0

logN�j (T )

� log �j
, where

N�j (T ) denotes the smallest number of subtiles of Tj , each of diameter �j from a sequence

{�j}1j=0, where �j =
p
n2 + 1

�j
diam(T0). This is calculated to be dimT = logpn2+1 |D⇤|.

We define a translate of T by T + x = {z + x | z 2 T}. By theorem 14, if ↵ 2 [0, 1], then

there exists x = 0.x1x2x3... for every xj 2 {0, dt} ⇢ D⇤, such that T \ (T + x) has entropy

dimension ↵ dimT.
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