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ABSTRACT

Schmidt, Daniel P. M.S., Department of Computer Science and Engineering, Wright State Univer-
sity, 2020. Identifying Knowledge Gaps Using a Graph-based Knowledge Representation.

Knowledge integration and knowledge bases are becoming more and more prevalent in

the systems we use every day. When developing these knowledge bases, it is important to

ensure the correctness of the information upon entry, as well as allow queries of all sorts; for

this, understanding where the gaps in knowledge can arise is critical. This thesis proposes a

descriptive taxonomy of knowledge gaps, along with a framework for automated detection

and resolution of some of those gaps. Additionally, the effectiveness of this framework

is evaluated in terms of successful responses to queries on a knowledge base constructed

from a prepared set of instructions.
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1

Introduction

A knowledge gap arises when there is limited or missing information or capabilities and

typically causes an agent to produce inefficient or erroneous behavior, even leading to a

process halting. In a typical knowledge-based system, if a question is asked that requires

knowledge which the system does not have (whether external vocabulary, situationally rel-

evant knowledge, information that connects two seemingly disjoint pieces of information,

etc.), then the system simply returns an error or does the equivalent of saying “I don’t

know”, without further feedback. This event is an example of a knowledge gap in action.

Knowledge gap identification in knowledge base systems is an important, emerging

concept. Its importance stems from the fact that automated knowledge acquisition is play-

ing an increasingly crucial role in artificial intelligence and synthetic assistant technology,

but knowledge gap identification has yet to be adequately addressed. As another example

where knowledge gap identification and resolution can be of service, question answering

systems (e.g. Wolfram Alpha [22]) are by nature designed to take in questions from users

regarding an existing knowledge base and attempt to return accurate answers to the ques-

tioner; correctly ingesting knowledge is critical to such systems. For this reason, it is

important to not only identify gaps in knowledge, but then find ways to resolve these gaps.

Some examples of knowledge gap identification, as well as gap resolution, are provided in
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this thesis.

Two major paths have been identified that may be taken to improve results from such

systems. One path would be to extend the information to which the system has access,

whether by storing more information internally or having external sources that the system

can query to augment its knowledge base when it receives a question that causes a gap in

the system’s knowledge. However, in the event of failing to find the relevant information,

this system will likely still return a flat “Unknown” response. Another approach that would

not only lead to less “I don’t know” answers, but would make it easier to resolve such an-

swers when they do arise, would be to increase the depth of processing over the integrated

knowledge to improve the potential for responses. For example, if a system receives some

information like “Anakin Skywalker is Luke Skywalker’s father. Darth Vader told Luke

Skywalker ‘I am your father’”, a fairly shallow question could be “Is Darth Vader Luke

Skywalker’s father?”, while a deeper question which could show improvement if answered

correctly could be “Is Darth Vader Anakin Skywalker?”. To this end, automated identifica-

tion and resolution of gaps, to the extent possible, appears to be a step in the right direction

when it comes to increasing a system’s depth of processing, as well as a mechanism toward

extending the system’s available knowledge and application of knowledge.

With automated knowledge gap identification and resolution, it becomes possible for

a system to operate using both a form of “passive” and “active” gap identification at the

same time - “passive” gap identification refers to gap identification that occurs prior to user

querying, while “active” identification is triggered by a user query revealing or causing a

gap. In its passive form, the system receives its initial set of instructions/information in

a first pass, then automatically checks this knowledge for any gaps which it can identify.

Passive identification allows for the user/teacher of the system to be immediately notified

of any potential problems without needing to ask questions or wait for the error to be

encountered later on; this could be seen as equivalent to compile-time error checking. In

the active form of checking, gaps are detected when a user enters a query into the system.
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The query could either lead to detection of a gap which already exists in the knowledge base

or a gap could arise due to a disconnect between the query and the existing information in

the knowledge base; in either scenario, the gap will be identified. Active knowledge gap

identification allows the system’s user to be quickly and accurately informed as to what has

gone wrong in the event of an error in knowledge retrieval, thus leading to better results

and faster recovery time; this could be likened to run-time error checking.

With regards to knowledge gap resolution, there are two primary ways in which the

identified gaps can then be handled. First, a gap can be automatically resolved due to the

system knowing the likely causes of the type of gap identified and having a method in

place to attempt resolution of such a gap without needing user intervention. Alternatively,

in the instance where the system does not have a method in place to resolve the gap or

the automated resolution fails to solve the problem, the system can more accurately inform

the user as to why the gap arose, explaining which gap has occurred and what may be

needed from the user in order to resolve it. In the first case, the user may or may not even

be informed of the gap, but operation continues smoothly. In the second case, it is much

easier for the user to understand what happened and why the gap arose, as there is context

given, and debugging the knowledge base or query likely becomes a simpler task.

The hypotheses, therefore, are twofold.

• First, that having automated knowledge gap identification and resolution can provide

a higher percentage of non-“Unknown” responses to queries than a system which

lacks such a mechanism.

• Second, from a more qualitative perspective, that having gap identification, even if

there is no automated resolution available, provides insight into where a problem

arose with regards to answers which returned “Unknown”, enabling users to more

quickly devise a new query or debug a problem with the knowledge base than simply

receiving an error without explanation.
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To evaluate these hypotheses, a system has been developed which can ingest a set of

instructions, generate a knowledge graph, and be queried; this system is named KOIOS,

after the Greek Titan of intelligence. KOIOS detects knowledge gaps as they are encoun-

tered, whether due to a query (“actively”) or independent of human input (“passively”); it

then endeavors to resolve the gaps through a number of different resolution methods to be

described in this thesis.

Chapter Overview

The rest of the thesis is organized as follows.

Chapter 2: Preliminaries introduces important preliminary information. This includes

information about the tasks used for testing and evaluation of the KOIOS system, as well

as background information about the restricted form of English used for input into KOIOS.

Chapter 3: Related Work covers other research which explores similar topics and goals

as this thesis. Specifically, works are considered which deal with general knowledge gap

detection, Visual Question Answering, and Schema/Ontology Alignment.

Chapter 4: Research Contributions contains a high-level taxonomy of knowledge gaps

as well as a high-level explanation of each of the working parts within the KOIOS system.

This taxonomy was not originally within the scope of the research, but proved to be a

major development, as it appears to be a novel summary of information in addition to

serving to guide the goals of KOIOS development. The section on the KOIOS system also

explains how the system identifies and resolves different types of knowledge gaps in order

to improve the performance of knowledge base queries.

Chapter 5: Evaluation explains the design and results of the evaluation.
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2

Preliminaries

To develop a system which could construct a knowledge base from instructions, instruc-

tion sets were needed which could be used as the source of knowledge. Additionally, in

order to minimize out-of-scope work, a mechanism was needed to circumvent the diffi-

culty of natural language processing. As the introduction states, this section is intended

to present important background information regarding these items. Section 2.1 explains

some background about the Psychomotor-Vigilance Task (PVT) and Visual Search Task

(VST), which are used as proof-of-concept knowledge sets. Section 2.2 gives information

about the Attempto Project and its derivations, which are used to minimize the complexity

of language processing.

2.1 Instruction Sets

This section describes the two cognitive science tasks used as proof-of-concept tests; the

basic instruction sets for these tasks were provided by the research sponsor at the Air Force

Research Laboratory (AFRL). Each task’s subsection will briefly cover what the actual task

description is for the task, why the task was selected, and and some background information

on the task.
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2.1.1 Psychomotor-Vigilance Task

The Psychomotor-Vigilance Task (or PVT) is a system proposed in 1985 [15], designed to

evaluate a subject’s vigilance during relatively repetitive and menial tasks over sustained

periods of time. This task has been used to develop computational models of fatigue over

time caused by sleep loss [47] and is quite simple, consisting essentially of a button next to

a box in which a letter appears at random; when a letter appears in the box, the subject must

click on the button. In the context in which the PVT is used in this research, the subject also

must remember the letter, as it may feed into other tasks such as the Visual Search Task.

This task was chosen as a good starting point for developing and testing the system, both

in terms of instruction input handling as well as beginning to identify simple gaps, due to

its simplicity while still retaining the opportunity for some simple gaps to arise.

2.1.2 Visual Search Task

The Visual Search Task (VST) [42] is a significantly more advanced task in comparison to

the PVT. The task’s goal is to examine speed of identification of a target within a field of

distractors and analyze how different changes to the task (such as the number of distractors

or the degree of similarity between the distractors and the target) affect eye movement and

time to determine if a target is present or absent from the display. The specific layout of

the Visual Search Task, as a standalone task, is still relatively simple - the subject is told to

look for a target item, which is an object made up of a features (e.g., shape, color, rotation,

etc.). This target appears on a canvas, surrounded by a field of distractors (containing the

same shape in a different color and/or a different shape in the same color). The subject

must attempt to find the target they were provided, at which point they press a “Present”

button; if one does not find the target s/he responds by pressing a button labeled “Absent”.

Handling the VST added some additional challenges in comparison to PVT - notably the

added complexity in its conditionals, such as the addition of a negative conditional (“If the
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target is not found, press ’Absent’.”). This added complexities in language constructions

beyond those presented by the PVT as well as the potential for new knowledge gaps. Over-

all, VST works well as a second-order problem, generally being a more complex task with

potential for more gaps.

2.2 Attempto Project

In this section, the primary elements of the Attempto Project used as a surrogate for natural

language processing in the system are introduced. Additionally, the reasoning behind why

these elements were chosen is outlined, and an explanation of how they are directly related

to each other and the task at hand is given.

2.2.1 Attempto Controlled English

Attempto Controlled English (ACE; [16]) reduces the scope of English constructions so as

to easily translate it into something which is immediately translatable to first-order logic.

While the first-order logic properties of ACE are not of direct interest, this reduction in

complexity helps to avoid the difficulty of natural language processing for instruction and

query inputs. Consequently, ACE is used as the first step in translating the natural language

instruction sets into a knowledge base. Using ACE limits not only the vocabulary of the

inputs, but also the grammar. In terms of vocabulary, ACE is constrained to content words

(major parts of speech such as nouns, verbs, adjectives, and adverbs), a select subset of

additional function words, such as certain conjunctions and prepositions, and phrases, such

as “there is” or other such commonly used phrases with clear meaning. These constraints

mean that most, if not all, phrases in ACE are relatively short and simple, as well as highly

disambiguated. Because of this, ACE can be easily translated into different representa-

tional forms including Discourse Representation Structures (DRS), allowing for easier use
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of the incoming language in an automated system, especially as ACE can be easily and

quickly converted into DRS through the Attempto Parsing Engine (APE), as explained in

the following subsections - the DRS derived from ACE are particularly useful in allowing

an automated system to process inputs.

2.2.2 Attempto Parsing Engine

The Attempto Parsing Engine (APE; [16]) contains a default general lexicon of content

words and function words and can be expanded by user-provided, domain-specific lexicons

of content words. One notable feature is that users can also provide words not found in any

of APE’s available lexicons but still indicate the part of speech by a prefix, allowing for

flexibility in the ACE input, especially in the case of a “black box” scenario where the

lexicon would be unknown. Usefully, APE is made public as a web service which is freely

available (its source code can also be downloaded, modified as needed, and/or run locally).

APE allows for ACE translation into several different forms of output - several ver-

sions of syntax trees, paraphrased versions of the ACE, multiple different representations

of the DRS which derive from the ACE, and even Web Ontology Language (or OWL) [33]

derived from the DRS. The textual representation of the DRS generated from the ACE input

eases the burden of language processing over the presented instructions.

2.2.3 Discourse Representation Structures

The syntax and structure of DRS [17] is derived from ACE via APE and is highly disam-

biguated. There are DRS atoms for nouns (or “objects”), verbs (or “predicates”), and other

linguistic structures, such as negations, conditionals, and questions, to name a few. If a

set of ACE phrases is converted to DRS, the identifying reference variables in the result-

ing atoms can also be referenced by future atoms, allowing for relationships between the

different atoms to be explicitly identified. DRS provides a limited set of potential inputs,
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eliminating the need to develop a part of speech tagger or language parser. With DRS,

atoms are handled according to their tag. For example, object tags get processed in one

consistent manner, predicate tags get handled with a limited amount of variability (there

are a few “hardcoded” terms to deal with), and conditionals and negations are clearly iden-

tified. Consequently, it was easy to create a knowledge base and make the input processing

portion highly generalizable, as any set of DRS instructions can be handled once there are

processes in place to handle each of the structures that DRS offers.
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3

Related Work

As previously addressed, published research into knowledge gap identification and res-

olution seems to be very few and far between. In this chapter, a number of papers are

summarized which touch on the topic tangentially. While there does not seem to be any

work that directly approaches the problem addressed herein of identifying specific gaps in

knowledge, there are a number of fields which have to do with verification and alignment

of information or rules. In Section 3.1, works that have to do with knowledge gap detec-

tion as a general concept are discussed. Section 3.2 considers the field of Visual Question

Answering and what is being done there with regards to knowledge gaps. Finally, Section

3.3 looks at schema and ontology alignment at a cursory level as a form of knowledge gap

detection.

3.1 General Knowledge Gap Detection

This section presents the works that are most similar to what this thesis is focused on -

namely, they directly address identification and resolution of some form of knowledge gap;

each of these works is tangentially aligned with this thesis’s topic [37], [30].
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3.1.1 Rule Verification: COVER

The most recent substantive research found in terms of rule verification is the COVER

program found in [37], written in 1994. This work summarizes the major research in rule

verification (also referred to as “anomaly detection”) methods proposed over the period of

1982 to 1991 and performs an empirical study to check the performance and usefulness of

these methods in terms of real-world knowledge bases. This research operates primarily

in the realm of rule-based systems; the publication describes a knowledge base as a rule

base and a declaration set, where a declaration set is made up of a set of goal literals,

a set of input literals, and a set of semantic constraint expressions. The empirical study

performed in the paper found that the anomaly detection principles worked in real-world

scenarios and inexpensively indicated where there were anomalies in the knowledge base,

thus allowing for corrections and improved performance. This study is encouraging, as

it supports the theory that knowledge gap identification provides some benefit and insight

into where errors arise.

However, the work in the COVER research does not quite align with what is proposed

in this thesis, as the principles in COVER are specifically focused on logical correctness

of a rule set. While this does address a certain type of knowledge gap (stemming from

inconsistencies arising from conflicting rules, unnecessary conditions, or unreachable con-

clusions, to name a few), it only looks at the logical correctness of the rule set and only

identifies gaps without resolving them. COVER’s focus, on the other hand, is on logical

rule sets, the focus of this thesis is to rather analyze a set of general instructions and look

at more qualitative gaps.

3.1.2 Knowledge Gap Detection for Active Learning

There is also research centered on detecting knowledge gaps with regards to a robot en-

gaged in active learning by classifying data [30]. This paper proposes a new strategy for an
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active learning method which would reduce the necessary amount of training data by using

automated knowledge gap detection and communicating the gaps which are discovered to

the teacher. An interesting concept which this paper presents is the distinction between

introspective and extrospective knowledge gap detection and communication.

In terms of knowledge gap detection, extrospective detection is defined as detecting

knowledge gaps in relation to particular situations or problems which arise while training

is ongoing. Introspective detection, on the other hand, is not linked to any specific task,

but rather is triggered by an internal mechanism intended to detect knowledge gaps. When

introspective detection is triggered, no real input is used, but rather the robot uses its cur-

rent knowledge base and, in the words of the authors, “hallucinates” sensorial inputs; by

their explanation, this “hallucination” occurs by sampling over distributions of feature val-

ues it uses. When it comes to knowledge gap communication, the extrospective case they

describe is once again the simpler of the two - in communicating the gap, the robot ref-

erences an existing instance as an example of the case in which the gap was encountered.

Introspective gap communication consists of taking the feature values which make up the

knowledge gap and mapping them back to action parameters to understand what would

have caused the input that triggered the gap, then returning this information to the teacher.

Notably, this paper uses “knowledge gap” to refer to what is essentially uncertainty

about the robot’s classification of some set of data; the general scope of the research is

essentially limited to active learning. Despite this, this paper can be considered to be re-

lated to this thesis as it does conceptually approach the same core issue - finding out where

information is lacking or incorrect and resolving it. In this case, the exact flaw in the in-

formation is not necessarily able to be pinpointed, although introspective communication

does allow for at least generating information on what the input that caused the problem is.

The resolution process comes from simply communicating with the teacher and receiving

needed information in return which allows the robot to resolve the gap. The introspective

and extrospective aspects also have some light parallels to the way KOIOS handles gaps,
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especially in terms of detection; extrospective detection could have similarities drawn with

KOIOS’ knowledge gap detection which occurs on user questions, while introspective de-

tection could be compared to passive gap detection on the existing instruction base.

3.2 Visual Question Answering

Visual Question Answering (VQA) is an AI problem based around taking in an image

and a natural language question about the image. Originally proposed in [31], VQA uses

images with annotations to represent the items in the graph and their relationships to each

other; with this information available, a VQA system will then parse natural language

questions which are asked of it regarding the image and attempt to resolve the question

based on the knowledge which it has available. As the name suggests, this is at its core a

question answering problem, so there is certainly a place for knowledge gap identification

and resolution here to answer the question more accurately. This is even more salient

when one considers [2], which proposes a system to handle open-ended and free-form

questions asked about images. This not only expands the number of possible questions and

the potential difficulty of the questions, but also opens the door to multiple answers being

correct; both of these elements increase the potential for knowledge gaps as there may be

unclear elements which need to be bridged or new terms introduced through the free-form

questions.

There is some work which does aim to resolve such knowledge gaps involving new

terms or unknown information, as found in [48]. This proposes a way to integrate exter-

nal knowledge contained in DBPedia [3] or some other such external knowledge base by

searching for information regarding the major attributes identified in the image. The sys-

tem requests information about the attributes from whichever knowledge base is used and

then uses Doc2Vec [26] to extract meaningful semantic information about the attributes and

craft a simple but correct answer to the question asked. This clearly demonstrates a knowl-
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edge gap being identified and resolved (the gap being that external knowledge is required

and the resolution being the automated retrieval and integration of such knowledge), and

the experimentation performed by the paper’s authors shows that this process significantly

improves performance on questions which have to do with “common sense” or external

knowledge, especially “Why” questions or questions that have to do with the purpose of

an object. While this work implicitly handles knowledge gaps by its very nature, it does

not inform the user of when a gap is identified, nor does it appear to adjust its behavior

based on the type of gap found - rather, whenever a gap is identified, it always calls for the

external knowledge and handles it in the same manner.

3.3 Schema and Ontology Alignment

Schemas and ontologies are both structures to represent and model data, with some dif-

ferences with regards to how and to what extent semantic information is encoded into the

model. Both schemas and ontologies may have instances when they need to be aligned;

namely, when two distinct schemas or ontologies containing similar data need to be fused,

there must be a matching made for which items are related and which data are distinct.

Many different schema matching and ontology matching methods are discussed at varying

levels in [45]. One interesting point made in the paper is that schemas do not have any

explicit semantics encoded into the data, while ontologies do. Thus, a schema matching

will by nature have one more type of knowledge gap which must be addressed when com-

pared to an ontology matching; namely, resolving the meaning of the terms encoded in

the schema. In a very general form, an alignment between two schemas/ontologies con-

sists of a set of mapping elements. Each mapping element essentially gives a confidence

value for a relation between an entity from the first schema/ontology and an entity from the

second. In attempting to determine relations and confidences between entities, there is a

wide variety of knowledge gaps which must be bridged; each of the matching techniques
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surveyed in this paper addresses a knowledge gap in some way. However, none of them ap-

pear to explicitly alert the user to which gap was encountered and what was done to resolve

it. Despite this, at their core, gap detection and ontology alignment share some common

features.
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4

Research Contributions

This chapter describes the complete survey of knowledge gaps developed over the course

of this research, as well as a high-level overview of KOIOS, the Python system developed

to automatically detect and resolve knowledge gaps. The taxonomy provided here is the

most up to date at the time of this writing, but gaps may be added or removed in the future

as work continues toward improving this research.

There are two major sections to the rest of this chapter. Section 4.1 contains a descrip-

tion of the broad categories of knowledge gaps identified and goes into some detail about

each type of gap. Section 4.2 explains at a high level each of the major functions of the

Python system, as well as which gaps it can presently address and how it addresses them.

4.1 Knowledge Gap Taxonomy

In the goal of better understanding what the system would need to be able to do, research

began by attempting to understand and classify different types of “knowledge gaps”. A

knowledge gap arises when there is limited or missing information or capabilities, which

causes an agent to produce inefficient or erroneous behavior, even potentially leading to a

process halting. These gaps can cause incorrect responses as the recipient of the informa-
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tion may attempt to fill in the blank by faulty inference or may simply fail to complete the

task. It was determined that having a survey of the major types of knowledge gaps would

be highly beneficial and a major step in understanding which gaps could be reasonably

addressed in the limited timeframe available for this research. Searching for such a survey

led to research into the realm of cognitive science and, more specifically, meta-cognition

and begin development of a descriptive taxonomy of knowledge gaps, as such a taxonomy

does not currently exist.

This search led to early work by Dedre Gentner and Allan Collins [18], in which

the concept of a “lack-of-knowledge inference” was encountered; namely, the tendency to

believe that the lack of knowledge about some suggested event or thing which would be

important enough to commit to memory means that the proposed event or thing is untrue.

Collins, Warnock, et al. [13] propose that this may be a safe assumption in a closed world,

but becomes significantly more dangerous in an open world, where a better response would

be to admit to not knowing. The authors alluded to the concept of knowledge gaps, but did

not specifically cover the topic.

Radeka [38] proposed three major goals for resolving knowledge gaps. The first is

to establish facts which are not already known, which is the primary goal of resolving

gaps through the proposed system in this thesis. The second reason listed is to develop

alternative options to existing solutions, as resolving a gap could create a new link which

would reveal an alternate way of doing a task or answering a question. The third reason is

to establish boundary conditions on a known problem, i.e. to limit the world.

Despite the resources listed above, no work was found directly categorizing types of

knowledge gaps, so one was developed. The general causes of knowledge gaps relating to

incoming information were considered and grouped into four overarching major categories.

The taxonomy was pulled together from a number of existing papers to derive twenty dif-

ferent types of knowledge gaps (see Figure 4.1). While this taxonomy is not exhaustive

and was initially focused on knowledge gaps relevant to the goal of this thesis, it does
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Figure 4.1: Hierarchy of Knowledge Gaps.

cover a number of other gaps which were encountered during the research. This taxonomy

is covered in detail in the following sections.

Figure 4.1 shows a hierarchy of the gaps described below.

4.1.1 Language Gaps

Language Gaps, as the name suggests, are knowledge gaps which arise from disconnects

in somebody’s understanding of language. These typically manifest as misunderstandings

in communication and thus instructions being ignored or incorrectly performed.

4.1.1.1 Semantic and Syntactic Gaps

4.1.1.1.1 Lexical Gap A Lexical Gap is a simple concept - when an agent receives a

term that is not in their existing vocabulary, whether that be a word in another language or

a word in their native language which they have never encountered before. In essence, the

gap occurs when the agent is unable to do anything with the given term because they do

not understand it. For example, an agent trained to recognize and handle terms that have

to do with cooking would likely encounter a Lexical Gap if asked to handle something

regarding a rocket. There has been a good bit of prior research on the topic of lexical gaps;

for example, research was found endeavoring to match unknown terms to known terms by

the use of translation models [28], as well as by adding ontology labels to natural language
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expressions to find overlap with a learned lexicon [21]. This gap can be resolved rather

simply by educating the agent in question on the meaning of a new word and linking it

contextually to other words.

4.1.1.1.2 Homonym Gap Some words have multiple meanings depending on their con-

text - sometimes this is due to a colloquialism which changes the meaning of a word, or

sometimes it is simply that a word has different meanings depending on context. When

a recipient is unclear about which sense of the word is intended, this causes a Homonym

Gap. For example, if the agent is asked “Is this right?”, it may be unclear whether “right”

in this context means “correct” or the direction opposite of left. Prior work was found in

differentiating homonyms which works by manually classifying the meanings of a sample

set of instances of a term and using a neural network to classify other occurrences of the

homonymous term [36, 41]. One way to resolve this gap is to look at context to resolve the

intended meaning of the word.

4.1.1.1.3 Part-Of-Speech Gap A Part-Of-Speech Gap is a fairly straightforward con-

cept and is somewhat related to the Homonym Gap. This type of gap occurs when it is

unclear which part of speech a word given to the agent is supposed to be. This can arise

due to the word being a homonym with a different part of speech, but could also occur

when there is an unspoken subject in the phrase, which could lead to reference issues by

the agent. As an example, consider the phrases “Target the letter” vs. “The letter is a

target”; the word “target” serves as a different part of speech in each case. This is a well-

documented problem which has been the subject of much work - notably, Eric Brill’s 1992

work on an automated part-of-speech tagger [9], which has spawned a number of subse-

quent works in the years since, with more advanced and accurate methods arising over

time. Similarly to the Homonym Gap, a way to resolve this is to pay attention to context

and try to determine the meaning based on the structure of the rest of the sentence.
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4.1.1.2 Negation Gap

A Negation Gap occurs when an agent understands a term but does not directly understand

its negation. For example, with a Negation Gap present, if the agent is told that “the task is

inactive” and is then asked “is the task active”, the agent would not know the answer, rather

than knowing that the answer is no. There is some prior research on detecting negations in

medical writing [20, 23], as medical writing has a somewhat more constrained grammar;

[20] takes the approach of finding negated phrases and determining what is negated, while

the approach detailed in [23] involves constructing a parse tree from the sentence and de-

termining the negation from there. [13] also briefly addresses this concept and discusses

how the authors dealt with it. Seemingly, the simplest way to deal with a negation gap is

to detect whether there is a negation present or not in a statement or query - if there is a

negation, then steps must be taken to resolve what the negation means and then connect it

to the existing knowledge.

4.1.1.3 Sentiment Gap

The type of knowledge gap which occurs when the recipient of some statement fails to

understand the sentiment behind the statement or information is labeled as a Sentiment Gap.

This occurs in situations such as when somebody misses the sarcasm in something or is

unsure of whether somebody is truly upset or merely joking. Text interactions are especially

prone to causing Sentiment Gaps. For example, consider the phrase “Yeah, right.” At face

value, it seems to be a positive statement affirming the correctness of something. However,

when spoken sarcastically, it means quite the opposite. This type of gap has been the

subject of much work, as sentiment analysis has been a popular field of research recently.

[34] gives a general survey of sentiment analysis, its value and implications, and some

approaches, while [1] gives an example of sentiment analysis on Twitter data. The research

on sentiment analysis has been ongoing for quite some time and these give good milestones

to demonstrate how this gap is quickly becoming more and more easily resolved. One of
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the simplest methods for an agent to resolve a Sentiment Gap without these techniques,

however, is to simply ask for clarification about the intended sentiment behind a statement.

4.1.1.4 Target Gap

A Target Gap occurs when it is unclear what the target of an instruction or phrase is sup-

posed to be; this is not quite the same as considering the subject of the phrase, as the target

may be implied or different from the subject. For example, consider the phrase “I expect

success”. Does this mean that the speaker expects the listener to succeed, that the speaker

expects some form of success for themselves, or that the speaker expects some third party

to succeed? Another way this gap could manifest itself would be if there were multiple

identical items and a question were asked about them. For instance, consider an experi-

ment with three red squares on a screen and the subject is told to “click the red square”.

Naturally, this would lead to confusion. No existing research was found addressing this

problem, but it may exist under field-specific keywords. A potential resolution for this

could consist of parsing the sentence and finding any sort of ambiguity as to who the target

would be (whether due to having to make an assumption or simply not being able to fill

in what the target is) then seeking clarification or using some confidence-based model to

guess.

4.1.1.5 Open Statement Gap

An Open Statement Gap occurs when a statement is given that could cause a recipient with

a closed-world perspective to make an incorrect inference. For example, take a system that

only knows about the United States and Canada and receives the statement “Paris is a city

which is not in the United States”; it is very possible that the system would assume that,

since the only other country it knows of is Canada, Paris is a city in Canada. This is directly

addressed in [10], as well as [13] - in both cases, an automated system is discussed, as well

as how it deals with such a gap. An important step to resolving this problem is to have
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knowledge about whether an open or closed world is currently being discussed. Once the

type of system is known, different rulesets can be considered to handle queries and new

information.

4.1.1.6 Context Gap

A Context Gap occurs when seemingly disjoint information is given and an agent does not

know what to do with it; it can also arise if multiple phrases share the same subject but

this is not immediately obvious. For example, consider the following information: “There

is a target. The letter is red”. Without outside context connecting the fact that the target

in question is a letter, an agent would be incapable of doing anything with this knowl-

edge. This example also shows how context can be critical to connecting two different

terms for the same subject. [35] tangentially touches upon this topic, with more focus on

a single sentence with complex interactions between entities, but this still works to address

the confusion around subjects. The simplest resolution for this is to note that there are

two seemingly disjoint entities with no prior or further reference and query if there is a

connection between them or if they are intended to be separate.

4.1.2 Spatial Gaps

Spatial Gaps are a type of knowledge gap which were briefly considered as an exercise in

completion; essentially, a Spatial Gap occurs when someone is disoriented or misjudges

something in the spatial world around them.

4.1.2.1 Direction Gap

A Direction Gap is defined as the error that occurs when somebody gets disoriented and

is unsure which direction is north or south, or which way is up or down. One example is

when someone spins around with their eyes closed and then opens them - for a brief period
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of time, they are unsure which way they are pointing or which way something is. Alter-

natively, another example would be stepping out of a car after having slept as a passenger

- one must reorient themselves to figure out where they are. [11] surveys how different

beings re-orient themselves using the geometry of the space that they are in, while [27]

considers how geometric and non-geometric cues are used to re-orient in a space. Judging

by the relevant citations, it appears that the natural way to reorient oneself is to under-

stand the geometry of the space one is in, then from there identify recognizable traits and

landmarks to understand one’s position within the space.

4.1.2.2 Size Gap

A Size Gap occurs when somebody over- or underestimates the size of an object or of a

distance. As an example, somebody may be mistaken and believe that Pennsylvania and

Ohio are much further apart than they truly are, or that the distance between two houses is

much less than a quarter mile, even when this is not the case. [8] considers the relationships

between the distance, shape, and size of the object and how humans perceive each of these

things and the interactions between these perceptions, while [39] analyzes how retrieving

information from memory leads to underestimations of sizes and distances. There is no

cut-and-dry way to correct such misinterpretation of space, other than simply measuring or

testing the size of something - however, having a known object to use for scale could also

be very helpful in addressing this error.

4.1.3 Reasoning Gaps

Reasoning Gaps are the term used for knowledge gaps which arise when attempting to cog-

nitively reason through a problem and finding difficulty in the process. These can appear

in many forms, but the base cause is typically a lack of knowledge about some instruction

or relevant information associated with the task to be done.
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4.1.3.1 Replication Gap

A Replication Gap arises when someone has demonstrated how to perform a task, but when

someone who watched the demonstration attempts to perform the task themselves, they

find themselves stuck at a certain point and unable to recall what needs to be done. This is

functionally the same as not having succeeded in fully learning the task. As an example,

consider a student taking a calculus course who is shown how to resolve a problem with

partial fractions, but then goes home and finds himself unable to complete the homework.

[46] proposes that some tasks are difficult to learn due to cognitive load caused by the

complexity of the task - extrapolating from this, it can be inferred that a Replication Gap

could be in part caused by too great a cognitive load due to too many new concepts thrown

in at once. A simple way to resolve this, if possible, would be to break down the task into

smaller sub-tasks and instruct each of those at once. However, as addressed in [46], some

tasks simply cannot be broken into smaller portions as they are interconnected.

4.1.3.2 Procedural Gap

A Procedural Gap is similar to a Replication Gap, but differs in that it does not involve

a demonstration; rather, a Procedural Gap occurs when a person knows how to do some-

thing theoretically, but when it comes time to perform the task, despite knowing all of the

instructions and understanding them, the person is not able to successfully complete the

task. As an example, someone may know how the steps to tie a knot, but when it comes

time for them to do it, they forget how or miss a step and get the knot wrong. No prior

research was found on this - perhaps due to the fact that this is a fairly similar concept to

the Replication Gap, so the research on this topic is conflated with the previous gap. While

resolution would be difficult, one common adage which may hold true in this case is that

“practice makes perfect” - attempting to perform the task, finding the points where failure

occurs, and attempting to resolve those difficulties, whether by trying alternative methods

or studying the process and learning the correct method that way.
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4.1.3.3 Cue Gap

A Cue Gap is based on the concept of “cues” and their validities for decision making, as

explained in Gigerenzer and Todd’s book on simple heuristics [19] - in a Cue Gap, a person

trying to make a decision based on heuristics (consciously or not) is attempting to use cues

about their options, but is lacking information on some of the cues or their validities. This

can actually be positive and lead to better decisions being made, as outlined in the book’s

conclusions on Less-is-More decision making, but it is still a reasoning gap. An example,

as explained in [19], would be someone attempting to resolve which of two foreign cities is

larger, knowing some basic information about each city (whether it is a state capital, etc.).

The gap arises when there are certain cues (e.g., whether the city has a soccer stadium)

which are present for one city but not the other, so an adequate comparison cannot be

made. The simplest way to resolve this gap is to query for additional information about

the lacking cues; alternatively, one could eliminate those cues which are incomplete from

consideration.

4.1.3.4 Boundary Gap

A Boundary Gap is a rather metacognitive form of knowledge gap, but as it is closely tied

to reasoning, it is considered as being in the category of Reasoning Gaps. A Boundary

Gap occurs when someone attempts to perform a task that is beyond their current capacity

- namely, not knowing the bounds of one’s own reasoning capacity, or when they expect

someone else to be able to perform a task beyond the other person’s capacity - in other

words, not knowing the bounds of another’s capacity. [6] analyzes the way in which chil-

dren believe that everybody else knows what they themselves know, as well as how they do

not recall false beliefs that they previously had which have since been corrected; this illus-

trates quite well the way in which one would have a gap in comprehension of their own past

boundaries, as well as others’ current boundaries. Similarly, [24] studies the way in which

one’s own knowledge can taint one’s cognition of another person’s knowledge, leading to
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hesitation or errors in reasoning despite “knowing” what the correct choice would be. The

brute-force resolution for such a gap would be to continue attempting new, more difficult

tasks until one reaches the point that they are no longer capable, at which point the current

boundary has been found; this is, of course, an over-simplification.

4.1.4 Philosophical Gaps

Philosophical Gaps are likely the most nebulous of the categories of knowledge gaps - at

their core, they are gaps which have to do more theoretical cognitive and metacognitive

processes which are in the realm of philosophical debate and consideration.

4.1.4.1 Explanatory Gap

An Explanatory Gap is a concept put forth by Joseph Levin in [29]. The gap occurs when

someone understands what something is, but does not understand what it does or how it

feels. An example based on [29] would be explaining to a computer system that pain is the

firing of C fibers - the system would still not understand what pain feels like. [40] also pro-

poses the concept of a computational explanatory gap, which is similar to the philosophical

explanatory gap. Where the traditional explanatory gap consists of trouble mapping con-

cepts to understanding, the computational explanatory gap consists of difficulty in mapping

computational processes and algorithms to low-level circuitry and neural processes. There

is no easy way to resolve this gap, as something which can only be felt by experiencing it

is nearly impossible to synthesize the feeling of.

4.1.4.2 Update Gap

An Update Gap is also inspired by studying Gigerenzer and Todd’s book [19] - in the book,

there is reference to the theory that information is stored and updated in a person’s memory

as new and relevant data is introduced, which will lead to changing the stored informa-
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tion and forgetting the out-of-date information. An Update Gap occurs when someone has

failed to update stored information based on current data. This is commonly known as an

error of commission when it comes to one’s memory, as it is a gap caused by wholly be-

lieving something which is not the case. As an example, despite knowing that a childhood

friend is 25 years old, if someone has not seen that friend often in recent years, they may

unconsciously think of their friend as still being younger, as they had seen each other far

more often at that age and thus have a stronger mental connection between them and that

age. This is in line with [7], which holds that memory updating does not work as well when

the context of the recollection matches more closely to the context in which the out-of-date

information was stored. The most straightforward way to resolve an update gap is to at-

tempt to repeatedly expose oneself to the updated information and try to create a stronger

connection to the new information than to the old information.

4.1.4.3 Memory Gap

While the Update Gap is caused by errors of commission, the Memory Gap is representa-

tive of the other type of memory error: an error of omission, which consists of forgetting

something entirely. As an example, an error of omission would be encountering an old

acquaintance and completely forgetting their name. [5] suggests that such forgetfulness

could actually be beneficial in some respects, which is supported by the aforementioned

Less-is-More heuristic in [19], which holds that in some cases, having less knowledge ac-

tually leads to better results in decision-making and heuristic usage than having 100% of

the relevant knowledge. While this gap can be positive in some cases, it is still important to

recognize it as a gap to know how best to harness its benefits, as well as when to simply try

to correct it. The clearest path to resolving a Memory Gap is to recognize which informa-

tion is forgotten and to query the relevant resources or other agents to acquire the missing

knowledge.

27



4.1.4.4 Metonymy Gap

When someone conflates a part of a whole and the whole itself, this is deemed a Metonymy

Gap. This is certainly a gap likely to occur within an artificially intelligent system, as in

the case where an item is misinterpreted to be the target of a search rather than recognized

as a part of the target, but it can also occur with natural intelligence - for example in the

case of somebody asking a question of a college freshman and assuming that their response

mirrors that of the entire student body. [14] discusses the different forms that metonymy

can take on and gives an analysis of the different conceptual mappings. [44] and [43]

present an interesting way of classifying interpretations of metonymic phrases, which could

be beneficial to helping an artificial agent understand the meaning of a metonymic idiom.

Resolving this gap is difficult, as it consists of needing to know when a metonymic mapping

is correct or incorrect and when to accept it.

4.1.4.5 Rationality Gap

A Rationality Gap is a conceptual knowledge gap that is related to game theory. If someone

is in a situation where there is some decision to be made where there is a clearly rational

choice, if the person does not know what the rational choice would be or simply chooses

to make an irrational decision, this is called a Rationality Gap. A simple example is that

of a Nash Equilibrium - if one of the players chooses an option in the game which would

not cause the equilibrium, this is an irrational choice and so would consist of a Rationality

Gap. [12] suggests that humans, while having a tendency to make errors and be irrational

at times, will overall act rationally; thus, the cases where a Rationality Gap would likely

arise would either be in a human acting irrationally and so erring from normal behavior, or

potentially in an artificial system developed erroneously or irrationally and so into which

irrationality is programmed. There is no direct simple resolution, apart from correcting

course by demonstrating why a behavior is irrational and why the rational behavior would

be more beneficial.
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4.1.4.6 Ignorance Gap

One of the hardest gaps to recognize and resolve, an Ignorance Gap is when someone

does not know what they do not know. Often, when studying or researching, it becomes

necessary to build knowledge that one does not have, but this can be very difficult to do

as the person does not know what they do not know until they know it. [25] analyzes

how people can relatively quickly return whether they know that something is not the case

using fairly closed-world examples. Meanwhile, [4] provides representations for how the

mind handles uncertainty in a more mechanical sense. In a closed world, it is not too

difficult to detect whether some knowledge is had, as it is possible to simply subtract current

knowledge from the complete world and find the difference; however, in an open world,

there are significantly greater challenges to finding out what is not known. The typical way

in which one grows their knowledge in the real world is to be instructed by somebody with

more knowledge, or to stumble upon some new trail of information which leads them to

something they had never learned or considered before.

4.2 KOIOS

A system developed using the Python programming language was built to handle ACE

instructions as input instructions into a network, which can then be queried via user ques-

tions. The system then queries the network constructed from the instructions to answer

the queries with either a “Yes”, “No”, or “Unknown” answer. If a knowledge gap is en-

countered during the process of answering the query, the system identifies the gap, informs

the user, and resolves the gap. This behavior can be controlled through a control panel

which allows users to individually enable or disable either or both of gap identification and

automated resolution for each gap specifically. This system is called KOIOS 1.

1The code for KOIOS is made available at https://github.com/schmidtDTN/KOIOS
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4.2.1 ACE/DRS language structure and APE

The input instructions given to KOIOS are in a format known as Discourse Representation

Structures (DRS) [17]. DRS is produced from Attempto Controlled English (ACE) using

the web service interface of a system known as the Attempto Parsing Engine (APE), all of

which is described in [16]. ACE instructions were generated for the Psychomotor-Vigilance

and Visual Search tasks, then run through APE to have DRS instructions which can be fed

into KOIOS.

4.2.2 Input Processing

The DRS instructions given to KOIOS are passed in through a text file, at which point the

system processes each instruction depending on whether it is an instruction or part of a

conditional. As the file is processed, a node-edge network is constructed to be used for

the querying and knowledge gap handling. The differentiation between instructions and

conditionals is used when constructing the graph. Instructions are used to directly create

nodes and edges describing statements about the task. Conditionals also create nodes but

those are identified by edges which connect them to instructions that must be true to trigger

the consequence of the conditional, as well as to nodes that are triggered as a consequence

of the conditional.

Once the file is fully processed, questions can be asked by the user by typing ques-

tions in ACE format into the terminal. While the eventual goal is to make KOIOS fully

generalizable with regards to DRS input, the initial proof-of-concept implementation de-

scribed here includes only a subset of DRS structures. Future expansion to include all DRS

structures is a straightforward task.
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4.2.2.1 Instructions

Instructions, as stated above, are lines in the incoming DRS file which are statements and

are accepted as true. These instructions go through an instruction switcher which handles

the DRS statement and either inserts nodes or appends to existing nodes in the graph, based

on the details of the predicate and node reference given in the DRS.

4.2.2.2 Conditionals

Conditionals are identified and flagged in KOIOS by tracking the headers in the DRS to

identify which lines are the condition and which are the consequence. The conditionals

are processed after the instructions - each instruction within a conditional is handled in the

same way as a normal instruction. However, at the very end of the conditional, a “Con-

ditional” node is created; each node created as a part of the condition is connected to this

central node by a “Condition” edge, while each node from the consequence is connected to

it via a “Consequence” edge. This allows simple identification of which nodes were created

as part of the normal instructions as opposed to as part of a conditional.

As an example, two graphs are provided below. Figure 4.2 shows the graph for the

instruction set “There is a task named Psychomotor-Vigilance. The task is active. There is

a button named ‘Acknowledge’.” In this graph, there are three distinct node clusters (task,

button, and active), with the “task” node and the “active” node joined by the “be” node,

which defines their “is” relationship. In Figure 4.3, a similar set of instructions is used, but

with a conditional. This instruction set is “There is a task named Psychomotor-Vigilance. If

the task is active, there is a button named ‘Acknowledge’.” In this graph, there are the same

three node clusters with the “be” node joining the “task” and “active” nodes. However, a

conditional node is introduced, which shows the “be” and “active” nodes as conditions, and

the existence of the button as the consequence.
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Figure 4.2: Network With No Conditional.

Figure 4.3: Network With Conditional.
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One question which remains is whether the conditional instructions should be handled

in the same way as normal instructions when it comes to queries; for example, should a

question along the lines of “Does this event occur?” have within its scope the conditional

nodes, or should it only focus on instructions? For the purpose of this thesis, this was

addressed by allowing the question to look at the conditional nodes. This is in part for

simplicity’s sake, due to the limited time and scope of the research, but also because, in the

current scenario of the project, it makes sense to consider the graph an image of an “ideal”

task, in which case all of the conditionals would trigger. However, it would be valuable to

develop a way of handling the other scenario - namely, not considering conditionals unless

there is a stated instruction that a conditional has been triggered. As an example, consider

the conditional “If the task is active, press the button”. In the current state, a query about

whether the task is active would return true, as the condition would be considered to have

been triggered and thus valid knowledge. In a scenario where conditionals are not seen as

being in their “ideal” state, the query would return false, due to not having an instruction

specifically stating that the task was active.

4.2.2.3 Questions

Questions are entered into KOIOS by the user writing questions into the terminal. The

question must be in ACE, as the APE Webservice is called to process the question and

convert it to DRS. The DRS is then processed by KOIOS to determine if a set of properties

and objects with the same values as those identified in the question exists in the network.

If the items referenced exist in the graph, then the connecting edges are checked to see if

there exists a relationship that mirrors what is asked in the question. If an appropriate edge

showing the correct relationship is found, then the answer to the question is positive. If an

edge that shows the opposite (or an edge to an opposite value) is found, a negative answer

is returned. In any case where it is unclear what the relationship of the items and properties

is, whether that is because of not being able to find a requested element or there being a
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lack of connecting edges between them, the response states that the answer is unknown.

4.2.3 Graph structure

The structure of the node-edge network used in KOIOS is loosely based on the Instruction

Ontology developed as part of the greater AFRL project with which this research was in-

tended to be cooperating. In this network, nodes represent objects and properties created

from DRS instructions and edges represent the relationships between those objects and

properties. In addition, each object and property node has one or more attribute nodes con-

nected to it which contain information regarding role, name, or such other attributes which

affect the main node. Visual examples of the graph for the cases used in the evaluation are

available in Appendix A (Figure A.1) and Appendix B (Figure B.1).

4.2.3.1 Instruction Ontology

The network’s structure, as mentioned above, is loosely modeled after the Instruction On-

tology. While the Instruction Ontology is much more detailed and handles many elements

differently, because this research was occurring under the purview of the same over-arching

project, it makes sense to have some sort of similarity between the network designed for this

provisional system and the ontology used for the larger project. Additionally, this makes it

less difficult to modify KOIOS in the future to operate with the Instruction Ontology as its

framework.

4.2.4 Gap Identification and Resolution Mechanism

KOIOS is capable of automatically identifying certain knowledge gaps as well as resolving

them, in some cases without requiring user intervention. This is configured through a

“control panel” file which contains a number of booleans, each of which sets whether or not

the system will identify and/or resolve a certain type of gap (identification and resolution
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each have their own control). When the identification option for a gap is toggled on, the

system alerts the user any time that gap is encountered, whether it is a problem or not; when

the resolution option is turned on, the system automatically attempts to resolve the gap if

possible rather than simply returning a response of “unknown”.

4.3 Gaps Addressed

In this section, which gaps KOIOS is currently capable of identifying and resolving is

discussed, as well as how the system performs these tasks for each gap.

4.3.1 Lexical Gap

A lexical gap is identified by verifying if a term which was used in a query is not found

within the network of knowledge KOIOS has built. KOIOS identifies this gap during the

step where it searches for nodes matching the term queried - if no such node is found, then

a Lexical Gap arises. The automated resolution process begins by searching WordNet [32]

for the missing term and returning the hypernyms, hyponyms, and derivationally related

forms, then trying to find any of those in the network. Any node containing one of the

newly found terms from WordNet then has the originally unknown term appended to it so

that the next time said term appears, there is no need to go through this process. If no nodes

are found to contain any of the new terms, then the system has to ask the user to manually

enter another term to check and the cycle continues.

A few weaknesses in the system which still need to be addressed include resolving the

problem of concept drift, as well as handling Homonym Gaps. Concept drift can occur as

new terms are appended to the existing nodes, leading to an expansion in possible matches;

this could lead to highly irrelevant terms matching a node due to a trail of previous matches

leading to this drift. One potential way this could be addressed would be to include a
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maximum distance setting which can be configured; in this scenario, an exact match would

have a distance of 0, while a term found from WordNet which matches the original term

would carry a distance of 1. If a new term were found which matched the 1-distance term,

then that new term would carry a distance of 2. In this way, it would be possible to limit

the amount of drift by only allowing a term within some pre-selected degree of separation

from the original word to be used. The Homonym Gap problem is also closely tied to this,

as searching WordNet for terms related to words with homonyms (e.g., the word “right”)

could match with several different existing nodes (in this example “correct” or “interest”,

as in the case of having the “right” to something). Resolving how to deal with Homonym

Gaps would likely diminish this problem.

4.3.2 Negation Gap

Negation gaps are identified and handled similarly to lexical gaps; in fact, a negation gap

by nature includes a lexical gap. First, a lexical gap is identified in that a term queried

for is not found in the system’s nodes. At this point, the system continues to behave just

as if a lexical gap were found, searching WordNet to find related terms to the unknown

word; however, if negation gap identification is enabled, KOIOS also queries WordNet for

antonyms, not just positively related terms. If antonyms are found, then KOIOS checks

if any of those antonyms are found in the nodes of its knowledge base. If an antonym is

found, then a negation gap is identified and resolved; the unknown word passed in through

the query is then considered to be negatively related to the rest of the query.

4.3.3 Target Gap

Target gaps are identified when a query is passed in to the system - specifically, if a user

requests information in a way that leads to ambiguity as to which of several similar or

identical nodes is intended, a target gap is raised. KOIOS identifies this gap during the step
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where it is processing the meaning of a query - as it searches for an item referenced in the

question, if it finds multiple nodes which fit the description derived from the query, then it

raises a target gap. For the time being, the way that KOIOS resolves the gap is simply by

providing the user with a list of the nodes which have been found and asking which one the

user intended to be the target of the question; the user responds with the node they intend,

and KOIOS proceeds to answer the question with that node as the target. Automation of

this gap’s resolution is something which is likely within the scope of future work.

4.3.4 Context Gap

Context gaps are addressed at a very basic level in this iteration of KOIOS. In the current

proof-of-concept implementation, context gaps are identified only in their simplest form

- if there is an item or a property which exists without any contextual edges (edges to

non-attribute nodes). While there are certainly instances where there could be multi-node

context gaps (for example, a network where there are two sets of multiple nodes without

anything connecting them), for the present, only single-node context gaps are identified.

Additionally, there is no attempt to resolve context gaps at this time. The point in time at

which this gap is identified shows that there can be a form of “passive” gap identification

which occurs after the instructions are entered but before any user questions are entered, as

opposed to all of the other gaps addressed, which are only identified based on user queries.
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5

Evaluation

Recall that the research hypotheses under investigation are:

• First, that having automated knowledge gap identification and resolution can provide

a higher percentage of non-“Unknown” responses to queries than a system which

lacks such a mechanism.

• Second, from a more qualitative perspective, that having gap identification, even if

there is no automated resolution available, provides insight into where a problem

arose with regards to answers which returned “Unknown”, enabling users to more

quickly devise a new query or debug a problem with the knowledge base than simply

receiving an error without explanation.

In this chapter, the evaluation methods are discussed, as well as how the impact of

automated knowledge gap detection and resolution can be verified on user queries to a

knowledge base. Section 5.1 covers the evaluation design and the specific methods used,

and attempts to answer any questions regarding certain design choices. In Section 5.2, the

results of the evaluation are discussed.
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5.1 Evaluation Design

5.1.1 Design Overview

To evaluate the hypotheses claimed above and validate the KOIOS system, the evaluation

was designed with the following steps.

• Select Instruction Sets

• Develop Test Question Battery

• Run Test Questions with Varying Controls

• Evaluate Results

5.1.2 Select Instruction Sets

To show a proof of concept, as well as a minimum level of generalizability, two instruc-

tion sets were chosen as KOIOS’ testbed. For the initial simpler proof of concept case,

the Psychomotor-Vigilance Task’s instruction set was used, as it provided a set of simple

instructions while still containing enough complexity for simple gaps to arise. To demon-

strate generalizability, as well as begin working on more advanced knowledge gaps, the

Visual Search Task was selected as the second instruction set; not only does it introduce

some additional DRS terms, but it adds complexity and potential for new gaps to arise. The

ACE and annotated DRS for these tasks, as well as a visual representation of the knowl-

edge graphs of the instruction sets (pre-query), are provided in Appendix A for the PVT

and Appendix B for the VST.

5.1.3 Develop Test Question Battery

To test the first hypothesis in a quantitative format, a small battery of questions was devel-

oped for each task which showcased the different gaps KOIOS is capable of detecting and
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resolving. This set of questions queries a variety of information for the elements which

are fully developed in KOIOS, with each question having the possible answers of “Yes”,

“No”, and “Unknown”. The goal of this battery of questions is to cover the spectrum of

gaps, asking positive and negative questions, as well as possibly ambiguous questions, all

of which are tailored to KOIOS’ capacities. The limitations of KOIOS are discussed later

in this section, as well as in the conclusion. Less questions were developed for the VST as,

despite having many more nodes and edges, it has less variety and thus gives rise to less

interesting queries; also, the main novel gap which it shows is the Context Gap, which is

independent of queries. The batteries of questions developed for each instruction set are

available in Appendix C.

5.1.4 Run Test Questions with Varying Controls

In developing KOIOS, a “control panel” of sorts was included, which allows the enabling

or disabling of the identification and, separately, resolution of each gap individually; this

means that certain gaps can be resolved while only identifying others and even ignoring

another group. To test the first of the hypotheses, the battery of questions can be run in

KOIOS without any gap detection, then run again with full gap detection and resolution;

this should show a measurable increase in “Yes” and “No” answers. This could even be

done with different combinations of gaps being ignored or handled to see which sets of

gaps are the most impactful, but this is not being done at this time. The way of testing the

second of the hypotheses is much “softer” - it is simply noted that, in the answers which are

still “Unknown”, if any gaps arose which KOIOS is capable of detecting, there is output

from the system which informs the user as to which gaps have arisen. This knowledge can

inform the user’s decision on how to modify their query or verify that their knowledge base

has correct and complete information.
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Figure 5.1: Evaluation results for PVT scenario test questions. The response is provided
first, followed by a list of gaps which were detected.

Figure 5.2: Evaluation results for VST scenario test questions. The answer is provided
first, followed by a list of gaps which were detected.
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5.2 Evaluation Results

As this is a first attempt at robust identification and resolution of a large collection of

knowledge gap categories, there are limited opportunities for quantitative comparison with

existing works. Thus, the choice was made to report evaluation results here compared with

a baseline case in which no knowledge gap detection or resolution is attempted.

Before presenting the results of the evaluation, a few points must be clarified to fully

understand the results. First, because of the fact that the KOIOS system incorporates new

knowledge into its knowledge base and the questions were run as a battery, not individually,

a lexical gap should only arise once per new term (e.g., in the case of “ongoing” in the PVT

results); after it has been handled once, the new knowledge is integrated and that term will

no longer cause a gap. Additionally, a Target Gap arises in every instance where a question

regarding an “Is” relationship is asked - this is because there are multiple “Is” relationships

in the knowledge graph for each of the tasks. In future work, this could be circumvented

by checking if the subject and object of the question are connected in only one of the “Is”

relationships, which would mean that is the correct relationship; however, this is not being

done at this point so that gaps can be maximally detected and minimal developer biases are

encoded.

In a number of instances (especially with Lexical and Target Gaps), the answer may

be either Unknown or a non-Unknown based on whether the user’s response was enough

for the system to make a confident connection or not; in these instances, the result is labeled

as Yes/Unknown or No/Unknown based on what the “optimal” answer yields vs a “non-

optimal” answer. In addition, an intentional choice was made to encode a bias towards

replying “Unknown” when the system cannot make a connection rather than “No”. With

the current state of the system, to receive a “No” answer, the system must be able to make a

solid connection to a negative; another approach would be to consider a lack of connection

as “No”, but the choice was made to treat a lack of connection as not being able to give a

concrete answer. Finally, in every case where a Negation Gap arises, a Lexical Gap arises.
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By nature, a Negation Gap only arises when a term is not found but its antonym is; since

the term cannot be found, a Lexical Gap is detected as well.

5.2.1 Hypothesis 1 - Success Rate

To test the first hypothesis, the battery of questions was run in KOIOS for both the PVT

and VST scenarios under three sets of controls: no gap detection, detection of all gaps, and

detection and resolution of all gaps. The answers to the questions were then tracked, as well

as which gaps were detected for each question; a concrete answer (Yes/No) is considered

to be a “success”, and an answer of Unknown is considered a “failure”.

As mentioned above, in instances where a Target Gap or a Lexical Gap arises, the

answer may be either Unknown or Yes/No, depending on whether an “ideal” user response

was given; an ideal response would lead to a concrete answer rather than Unknown. In the

evaluation, the ideal answer sometimes does not make sense (e.g., resolving a Lexical Gap

for “computer” as meaning “task”) - this case was included, however, to prove the point

that multiple answers may be returned based on user input.

As is shown in the evaluation, there is no increase in successful answers if gap detec-

tion is enabled without resolution. However, as can be seen, there is an observable increase

in success rate if full gap detection and resolution is enabled; with all gaps fully handled,

the success rate climbs from 5 out of 14 with no resolution to 12 out of 14 with resolution

and ideal user responses in the PVT scenario. Without ideal responses, the success rate is

5 out of 14, the same as without gap resolution, largely due to the bias toward responding

“Unknown” rather than “No” in a situation without a clear connection. This bias is also

the reason for the Unknown response in questions 12 and 13, as these should be “No” but,

in the absence of a clear negation, are defaulted to “Unknown”. Similarly, in the VST

scenario, the success rate rises from 1 out of 5 without gap resolution to 5 out of 5 with

gap resolution. These results are summarized in Table 5.1. I believe that this increase in

success rate with full resolution and ideal responses shows that the first hypothesis holds.
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Scenario Success Rate without Gap Resolution Success Rate with Gap Resolution

PVT 5 / 14 12 / 14
VST 1 / 5 5 / 5

Table 5.1: Hypothesis 1 Evaluation Summary

5.2.2 Hypothesis 2 - Usability

As mentioned earlier, the second hypothesis can be supported with qualitative evidence

based on the results of the test questions which were run. As can be seen in the evalua-

tion results, simply having gap detection enabled gives insight as to what has caused the

Unknown response in almost every case (with the exception of cases where the answer

is not due to a gap but rather due to the Unknown-bias). Additionally, even without any

queries being asked, the Context Gap is detected immediately on completion of instruction

processing, which allows the knowledge base designer to know that there is some isolated

knowledge which may need handled. Even in one case of a Yes answer (“Is there a key?” in

the VST scenario), a gap is detected - this is because there are two instances of “key” in the

graph, but regardless of which is chosen, the answer is true; thus, all answers are “ideal”,

but, despite this simple resolution, this is still a gap. Another interesting query which re-

quires gap resolution to answer successfully is “Is the task inactive?”. In this query, three

gaps are raised: a lexical gap, a negation gap, and a target gap. The target gap is due to

the fact that there are multiple “is” relationships in the graph. The lexical gap arises from

the knowledge graph not containing the term “inactive”. When KOIOS attempts to resolve

this gap, it encounters a negation gap, as the graph does contain “active” and “inactive” is

an antonym to “active”. Because of this, the lexical and negation gap are detected and im-

mediately resolved, while the target gap requires the user to select which “is” relationship

is of interest. While the gaps raised by this query can be fairly simply resolved, KOIOS

nevertheless informs the user of the gaps which were encountered, as this enables the user

to understand potential flaws in the knowledge base or the query.
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Because of these qualitative reasons, I believe that the second hypothesis holds as

well. This hypothesis could be tested more extensively and in a more falsifiable manner

in the future. One way to do this would be to provide subjects with the KOIOS system

which has been trained on an instruction set and request that they query it; when a failure

arises, they could attempt to resolve it using the system with or without gap detection. The

subjects would be timed to see how long it takes them to resolve it, and they could also

provide ratings after the fact describing ease of use and difficulty in resolution. Another

potential study could be to train users on KOIOS with gap resolution enabled so that they

can understand where gaps arise and what types of gap may occur, then have them use a

baseline version of KOIOS without any gap identification or resolution and see if they are

able to resolve gaps which arise without the help provided by the system.
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6

Conclusion

Knowledge bases continue to be highly relevant and useful tools in the current technology

space and will likely grow to be even more ubiquitous as systems integrate more and more

data. Because of this, ensuring correctness and flexibility of these knowledge base systems

is a very important goal to continue striving towards.

In the pursuit of maximizing both correctness and flexibility, having a concrete defini-

tion and understanding of knowledge gaps is critical, not only to better design the knowl-

edge bases in the first place, but to more quickly recognize the underlying cause of errors

that may arise, both in the creation and querying of a knowledge base. In this thesis, a

novel development was brought forth with the development of the knowledge gap taxon-

omy which allows for concrete categorization of specific knowledge gaps, as well as a pro-

totype system which allows for the automated identification and resolution of knowledge

gaps with minimal user input. The intention of this research is to take both this taxonomy

and the prototype system and continue their development so that they can be ported and

utilized as part of the overarching AFRL project with which this research was conducted in

collaboration.

Again, for the sake of convenience, the hypotheses are restated here.

• First, that having automated knowledge gap identification and resolution can provide
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a higher percentage of non-“Unknown” responses to queries than a system which

lacks such a mechanism.

• Second, from a more qualitative perspective, that having gap identification, even if

there is no automated resolution available, provides insight into where a problem

arose with regards to answers which returned “Unknown”, enabling users to more

quickly devise a new query or debug a problem with the knowledge base than simply

receiving an error without explanation.

The results of the evaluation with regards to these hypotheses appeared to support

both hypotheses, though the second was supported in a much more qualitative manner.

Because of this, it seems likely that continuing research and work in developing automated

knowledge gap detection and resolution would be beneficial.

Future Work

Both of the major contributions discussed in this thesis are rife with opportunities for im-

provement through future work.

First, it would be beneficial to continue developing the knowledge gap taxonomy such

that it is comprehensive, as well as finding any additional literature to support this research.

I believe that a fully developed taxonomy would be of use to the scientific community.

Second, there are many aspects of the KOIOS system which could be improved and

expanded; each of these will be very briefly discussed here. From a mechanical perspec-

tive, development of KOIOS should continue to handle all possible DRS terms (specifically,

questions involving “what”, “why”, and “how” would be very beneficial to add to the sys-

tem’s capabilities). Additionally, certain DRS terms such as NOT and MUST should be

handled in full and prepared to handle edge cases; they, as well as conditionals, can have

somewhat complex structures which are not addressed in the current version of the system.

Conditionals especially may need clarification and more specific handling depending on
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how the knowledge base developer believes they should be represented; either they can be

represented as having occurred (a view of the instructions as being in an “ideal” state), or

as needing to be triggered (a more dynamic view of the instructions). It would also be de-

sirable to develop KOIOS to handle more gaps from the taxonomy; the structure of KOIOS

is primarily focused on language gaps, which would be the simplest type of gaps to extend

the system to handle. Namely, the Part-of-Speech and Homonym Gaps would be relatively

straightforward to implement into KOIOS; Sentiment Gaps could be quite approachable as

well. Spatial, Reasoning, and Philosophical Gaps are somewhat more complex and out of

range of the current form of KOIOS; additionally, Philosophical and, to a lesser degree,

Reasoning Gaps may be significantly more difficult to identify and resolve using a com-

putational approach. Finally, the system as a whole needs general optimization and deep

testing.

From a more abstract perspective of these extensions, there is potentially interesting

work to be done in expanding the identification of both target gaps and context gaps, as well

as automating their resolution. Additionally, as a way to prevent certain gaps from occur-

ring, it could be interesting work to develop an understanding of when the instruction set

creates duplicate items which serve no purpose and handling those preemptively. As well,

the integration of new knowledge which occurs upon gap resolution could, as discussed in

the Research Contributions chapter, lead to concept drift where unrelated terms become ac-

cepted as being related. Finally, there is major potential for expansion in allowing multiple

instruction sets to be introduced as part of the same knowledge graph, as this would allow

(with even more expansion) for existing knowledge from a previously introduced task to

overlap with or be used as part of a new task introduced into the knowledge base.

Finally, from an evaluation perspective, there could be a more quantifiable evaluation

of the second hypothesis; namely, that the feedback generated by the knowledge identifica-

tion is useful and allows users to debug more quickly. This evaluation could take place by

holding a study with subjects who are told to use the system, then tracking their response
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time to successfully understand what went wrong when receiving an “Unknown” reply with

no gap information and comparing that to their time when there is gap information; they

could additionally give ratings about ease of use and confidence for each version as well.

To bolster the first hypothesis (that queries have a higher percentage of non-Unknown an-

swers with knowledge gap identification and resolution), users could be permitted to freely

rewrite questions from the test question battery or present their own novel questions and

track how the system handles these new cases. In order to confidently prove or disprove

the hypothesis, this could be done with a wide enough group of subjects submitting enough

questions to derive a statistically significant result about the effectiveness of KOIOS for

improving the question answering rate.
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Appendix A: Psychomotor-Vigilance

Task Instruction Set

A.1 Attempto Controlled English

Psychomotor-Vigilance is a task X1.

Acknowledge is a button X2.

X1 has a box X3 and a target X4.

X4 is a letter X5.

If X4 appears in X3 then a subject X6 clicks X2 and X6 remembers X5.

If X1 is active then X4 appears in X3.

A.2 Attempto Parsing Engine Paraphrase

There is a task X1.

Psychomotor-Vigilance is the task X1.

Acknowledge is a button X2.

The task X1 has a target X3 and a box X4.

The target X3 is a letter X5.

If the target X3 appears in the box X4 then a subject X6 remembers the letter X5 and the

subject X6 clicks the button X2.
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If the task X1 is active then the target X3 appears in the box X4.

A.3 Annotated DRS Output

Note: For the sake of formatting and readability, some very light modifications have been

made to the DRS. Nothing which is used at any part in the KOIOS process has been

changed; rather, some line numbering and indentation (which is unused by KOIOS) has

been removed. Annotations have also been manually added by the author for clarity.

Table A.1: Annotated DRS for PVT.

Begin Table A.1

DRS Annotation

[A,B,C,D,E,F,G,H,I,J] Defining reference variables for main in-

structions.

object(A,task,countable,na,eq,1) There is exactly one task represented by

A.

predicate(B,be,named(Psychomotor-

Vigilance),A)

Predicate B: The task (A) has a name

“Psychomotor-Vigilance”.

object(C,button,countable,na,eq,1) There is exactly one button represented

by C.

predicate(D,be,named(Acknowledge),C) Predicate D: The button (C) has a name

“Acknowledge”.

object(E,box,countable,na,eq,1) There is exactly one box represented by

E.

has part(H,E) The box (E) is a member of the group of

objects represented by H.
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Continuation of Table A.1

DRS Annotation

predicate(F,have,A,H) Predicate F: The task (A) has a group of

objects H.

object(G,target,countable,na,eq,1) There is exactly one target represented by

G.

has part(H,G) The target (G) is a member of the group

of objects represented by H.

object(H,na,countable,na,eq,2) There are exactly 2 objects in the group

represented by H.

object(I,letter,countable,na,eq,1) There is exactly one letter represented by

I.

predicate(J,be,G,I) Predicate J: The target (G) is the letter (I).

[K] Defining reference variable for condition

of the first conditional.

predicate(K,appear,G) Predicate K: The target (G) appears.

modifier pp(K,in,E) Modifier: The predicate K (the target ap-

pears) occurs in the box (E).

=> If the above condition (the target appears

in the box) is true, then the following con-

sequence (The subject clicks the button

and remembers the letter) occurs.

[L,M,N] Defining reference variables for conse-

quence of the first conditional.

object(L,subject,countable,na,eq,1) There is exactly one subject represented

by L.
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Continuation of Table A.1

DRS Annotation

predicate(M,click,L,C) Predicate M: The subject (L) clicks on the

button (C).

predicate(N,remember,L,I) Predicate N (The subject (L) remembers

the letter (I).

[O,P] Defining reference variables for condition

of the second conditional.

property(O,active,pos) Property O: The object this property is ap-

plied to is active.

predicate(P,be,A,O) Predicate P: The task (A) has the property

O applied to it (The task is active).

=> If the above condition (the task is active)

is true, the the following consequence

(The target appears in the box) occurs.

[Q] Defining reference variable for conse-

quence of the second conditional.

predicate(Q,appear,G) Predicate Q: The target (G) appears.

modifier pp(Q,in,E) Modifier: The predicate Q (the target ap-

pears) occurs in the box (E).

End of Table

A.4 Knowledge Graph
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Figure A.1: Pre-Query Knowledge Graph for PVT as generated by KOIOS.

61



Appendix B: Visual Search Task

Instruction Set

B.1 Attempto Controlled English

There are at least 2 keys.

p:W is a key X1.

p:R is a key X2.

There is a screen X3.

There is a target X4.

The target X4 is a letter.

There are at least 2 letters X5.

The letters X5 appear on the screen X3.

If the target X4 is on the screen X3 then the key X1 is pressed.

If it is false that the target X4 is on the screen X3 then the key X2 is pressed.

If there is a color X6 of the letter X8 and there is an identity X7 of the letter X8 and the

color X6 is equal to a color of the target X4 and the identity X7 is equal to an identity of

the target X4 then the letter X8 matches the target X4.

Every letter has a color and has an identity.
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B.2 Attempto Parsing Engine Paraphrase

There are at least 2 keys.

W is a key X1.

R is a key X2.

There is a target X3.

The target X3 is a letter.

There are at least 2 letters X4.

The letters X4 appear on a screen X5.

If the target X3 is on the screen X5 then the key X1 is pressed.

If it is false that the target X3 is on the screen X5 then the key X2 is pressed.

If a color of a letter X6 is equal to a color of the target X3 and an identity of the letter X6

is equal to an identity of the target X3 then the letter X6 matches the target X3.

Every letter has a color and has an identity.

B.3 Annotated DRS Output

Note: For the sake of formatting and readability, some very light modifications have been

made to the DRS. Nothing which is used at any part in the KOIOS process has been

changed; rather, some line numbering and indentation (which is unused by KOIOS) has

been removed. Annotations have also been manually added by the author for clarity.

Table B.1: Annotated DRS for VST.

Begin Table B.1

DRS Annotation

[A,B,C,D,E,F,G,H,I,J,K] Defining reference variables for main in-

structions.
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Continuation of Table B.1

DRS Annotation

object(A,key,countable,na,geq,2) There are at least 2 keys.

object(B,key,countable,na,eq,1) There is a key (Setup of Key #1).

predicate(C,be,named(W),B) Key #1 is named “W”.

object(D,key,countable,na,eq,1) There is a key (Setup of Key #2).

predicate(E,be,named(R),D) Key #2 is named “R”.

object(F,screen,countable,na,eq,1) There is a screen.

object(G,target,countable,na,eq,1) There is a target.

object(H,letter,countable,na,eq,1) There is a letter.

predicate(I,be,G,H) The target (G) is the letter (H).

object(J,letter,countable,na,geq,2) There are at least two letters.

predicate(K,appear,J) The letters (J) appear.

modifier pp(K,on,F) The letters (J) appear on the screen (K).

[L] Defining reference variable for condition

of first conditional.

predicate(L,be,G) The target (G) is.

modifier pp(L,on,F) The target (G) is] on the screen (F).

=> If the above condition (The target is on the

screen) is true, then the following conse-

quence (The “W” key is pressed) occurs.

[M,N] Defining reference variables for conse-

quence of first conditional.

property(M,pressed,pos) There is a property “pressed” (M).

predicate(N,be,B,M) The key named “W” is pressed (M).

[] Setting up a new conditional with no pos-

itive condition.
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Continuation of Table B.1

DRS Annotation

NOT The conditional has a negative condition.

[O] Defining reference variable for condition

of second conditional.

predicate(O,be,G) The target (G) is.

modifier pp(O,on,F) [The target (G) is] on the screen (F).

=> If the above condition (The target is on the

screen) is false, then the following conse-

quence (The “R” key is pressed) occurs.

[P,Q] Defining reference variables for conse-

quence of second conditional.

property(P,pressed,pos) There is a property “pressed” (P).

predicate(Q,be,D,P) The key named “R” is pressed (P).

[R,S,T,U,V,W,X,Y,Z] Defining reference variables for condition

of third conditional.

object(R,color,countable,na,eq,1) There is a color (R).

object(S,letter,countable,na,eq,1) There is a letter (S).

relation(R,of,S) (R) is the color of the letter (S).

object(T,identity,countable,na,eq,1) There is an identity (T).

relation(T,of,S) (T) is the identity of the letter (S).

object(U,color,countable,na,eq,1) There is a color (U).

relation(U,of,G) (U) is the color of the target (G).

property(V,equal,pos) There is a property “equal” (V).

predicate(W,be,R,V) The color (R) is equal.

modifier pp(W,to,U) [The color (R) is equal] to the color (U).

object(X,identity,countable,na,eq,1) There is an identity (X).

65



Continuation of Table B.1

DRS Annotation

relation(X,of,G) (X) is the identity of the target (G).

property(Y,equal,pos) There is a property “equal” (Y).

predicate(Z,be,T,Y) The identity (T) is equal.

modifier pp(Z,to,X) [The identity (T) is equal] to the identity

(X).

=> If the above condition (Some letter has a

color and identity which are identical to

the color and identity of the target) is true,

the the following consequence (That letter

“matches” the target) occurs.

[A1] Defining reference variable for conse-

quence of third conditional.

predicate(A1,match,S,G) The letter (S) matches the target (G).

[B1] Defining reference variable for condition

of fourth conditional.

object(B1,letter,countable,na,eq,1) There is a letter.

=> If the above condition (There is a letter)

is true, then the following consequence

(That letter has a color and an identity)

occurs.

[C1,D1,E1,F1] Defining reference variables for conse-

quence of fourth conditional.

object(C1,color,countable,na,eq,1) There is a color (C1).

predicate(D1,have,B1,C1) The letter (B1) has the color (C1).

object(E1,identity,countable,na,eq,1) There is an identity (E1).
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Continuation of Table B.1

DRS Annotation

predicate(F1,have,B1,E1) The letter (B1) has the identity (E1).

End of Table

B.4 Knowledge Graph
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Figure B.1: Pre-Query Knowledge Graph for VST as generated by KOIOS.

68



Appendix C: Testing Questions

C.1 Psychomotor-Vigilance Task

• Is the task active?

• Is the task inactive?

• Is the task ongoing?

• Is the computer active?

• Is the computer ongoing?

• Is Psychomotor-Vigilance active?

• Does the subject click the button?

• Does the subject click Acknowledge?

• Does the subject remember the letter?

• Is there a task?

• Does the target appear?

• Is the target the task?

• Does the box remember the letter?

• Does the subject ask the letter?
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C.2 Visual Search Task

• Does the target match the letter?

• Does the letter match the target?

• Is the target the letter?

• Is there a key?

• Is R pressed? (has to be written as “Is p:R pressed?” for the APE Webclient to

properly handle).
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