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Abstract 
Rama Venkat Siddhartha M.S.R.C.E. Department of Mechanical and Materials Engineering, 
Wright State University, 2020. Optimization Study of a Combined Wind-Solar Farm for a 
Specified Demand. 
 
 
 

At the present time, using wind and solar energy for producing electricity in the United 

States is becoming cost competitive. According to Lazard’s 2019 [36] levelized cost of energy 

(LCOE) analysis of a number of energy sources used for producing electricity in the United States, 

wind and solar are cheaper than natural gas and coal. While capital, maintenance, operation, and 

fuel costs are included in LCOE numbers, energy source intermittency is not. Intermittency is an 

important issue with wind and solar energy sources, but not with natural gas or coal energy sources.   

Combining wind and solar energy sources into one electrical generating station, is one 

means by which the intermittency of the electricity provided by wind alone and solar alone can be 

reduced. The combination of wind turbines and solar photovoltaic panels into a wind-solar farm 

can produce electricity over a greater fraction of the day or year than wind or solar alone. Predicting 

the energy output of different combinations of wind turbines and solar panels in a wind-solar farm 

is an objective of this work. While yearly electricity production rates are an important and 

necessary part of this work, this quantity does not provide a means to compare the wind-solar 

farms to each other, to a pure wind farm, to a pure solar farm, or to meeting a given electrical 

demand by purchasing all electricity from the local electrical grid. An economic analysis has to be 

performed to do this. This is the ultimate objective of this work. 

The economic analysis done in this work determines the net present cost of providing a 

specified electricity demand by a wind-solar farm with grid backup. Including grid purchased 

electricity to meet demand that cannot be met by the wind-solar farm is essential in this economic 

analysis. This sets the net present cost of providing all the electricity demand by grid purchased 

electricity as the cost that must be beat by a wind-solar farm with grid backup. Using grid backup 

also ensures that all of the electrical demand is met. Doing the economic analysis this way, means 

the intermittency costs of wind and solar are included in the economic analysis.    

The electrical output of many combinations of wind turbines and solar panels into one 

wind-solar farm are simulated in this work to see which combination provides the lowest net 
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present cost of electricity for a specified electrical demand. The net present cost analysis performed 

n this work is different than a LCOE analysis because all the electricity produced for the net present 

cost analysis does not have value. For most of the simulations in this work, excess generated 

electricity is given no value. Only one economic simulation, for a given location, performed in this 

work is allowed to sell excess electricity from the wind-solar farm back to the electrical grid; and 

this is done at half the price at which it is purchased.  

The mathematical models that were pieced together to perform this work are presented. 

Detailed models of the solar and wind resource are utilized. The conversion of solar energy into 

electricity by the solar panels is handled with a solar panel efficiency. The conversion of wind 

energy into electricity is handled with a wind turbine power curve. Demand profiles for a given 

location are obtained from those published on the internet. The net present cost analysis is done 

including the time value of money. A MATLAB program was written to obtain numerical results 

from the mathematical models brought together to simulate the performance and costs of a wind-

solar farm with gird backup.  

Many results are presented in this thesis for three different cities in the United States. These 

cities are Rio Vista, California, Dallas, Texas, and Dayton, Ohio. For each of these locations, 

electricity demand profiles, wind and solar resource profiles, electricity produced by different sizes 

of wind-solar farms, excess electricity produced by these wind-solar farms over the required 

demand, and the net present cost of these wind-solar farms with grid backup using different cost 

constraints are presented. A base case of costs is developed and then single changes to these base 

case costs are investigated. The results show that combining wind turbines with photovoltaic 

panels can reduce the cost of providing a specified electricity demand. In Rio Vista, California 

wind-solar farms are cost competitive, whereas in Dayton, Ohio they are not. Whether a wind-

solar farm is cost competitive in Dallas, Texas depends on the cost conditions. A key factor in 

determining the attractiveness of wind-solar farms under the conditions used in this study, is the 

cost of grid electricity.  
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Chapter 1 

Introduction 
 

 

 

 

 

 

 

1.1. Objective of Work 

Renewable energy technologies like wind, solar, hydropower, geothermal, wave and tidal, 

and biofuels produce sustainable and clean energy from sources such as the atmosphere, sun, 

rivers, earth, oceans, and plants. Renewable energy technologies can reduce environmental 

degradation and increase energy security, while at the same time boosting a region’s economy [2]. 

Figure 1 shows one of the changes that can occur to our environment as a result of relying too 

heavily on fossil fuels [3]. On the other hand, a difficulty with wind, solar, and most renewable 

energy technologies is their intermittency. Intermittency drives electricity providers to install 

expensive storage or to have backup facilities available when the renewable energy system is not 

providing the electric power demanded by a community. Thus, there is a need to reduce the 

intermittency of renewable energy systems.  

 The problems caused by the variable nature of renewable energy resources can be partially 

overcome by combining renewable energy sources in such a way that one renewable energy 

technology complements the weakness of the other [7]. Researchers have been developing the 

Integrated Renewable Energy Systems (IRES) program [2] to face the challenges of stand-alone 

systems due to source availability interruption. The integration of renewable energy technologies 

changes with the renewable energy source, location, load demands, and various other factors. The 

choice of renewable energy technologies to be used in combination is usually dependent on the 

energy sources that are locally available [8]. For this work combinations of wind and solar 
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renewable energy systems are studied. These two renewable energy sources are available in almost 

any location on the surface of the earth to varying degrees. In addition, these two renewable energy 

technologies are becoming the least expensive means to generate electrical power. It is only natural 

that studies should be done to see if the costs of meeting a specified demand can be reduced by 

combining these two renewable technologies into one installation which will be called a wind-

solar farm in this thesis.   

 

 

Figure 1.1: CO2 produced by various fossil fuel power generation systems since 1971 [3]. 

 

1.2. Renewable Energy Systems 

Before giving background on wind and solar systems, a brief discussion of a number of 

renewable energy sources is given. Renewable energy sources are those energies that nature 

continually provides and are essentially inexhaustible. Depending on how you want to categorize 

the primary sources of renewable energy on the earth, you can obtain different categories. In this 

work, six categories are utilized. These categories are: 

1. Solar energy: This includes the use of radiant energy as it comes from the sun 
and does not include solar energy that has been converted to other forms before 
being used for producing an energy form useful to humankind. Because the net 
radiation the sun exchanges with the earth is based on the temperature 
differences between the sun and the earth, this is a form of thermal energy. 
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Because it is thermal energy at very high temperatures, conversion efficiencies 
can be very high.  

2. Wind power: This only includes kinetic energy present in the movement of air 
in our atmosphere. Of course, this air movement is commonly called wind and 
originates as solar energy.  

3. Hydropower: For this work hydropower includes the energy that can be 
obtained from the kinetic and potential energy stored in inland, surface water 
sources. In essence, this includes energy that can be obtained from lakes, ponds, 
rivers, and streams and excludes energy in ground water and oceans. Examples 
of this type of energy is the potential energy stored in fresh water as it is about 
to fall over a cliff and the kinetic energy in fast moving rivers. 

4. Ocean energy: This includes potential, kinetic, and thermal energy that is 
obtained from our oceans. Potential ocean energy is harvested from the ocean’s 
tides, kinetic and potential energy can be harvested from the ocean’s waves, 
and thermal energy can be harvested from the ocean’s temperature gradients.    

5. Geothermal Power: This is the thermal energy that is stored in the earth, 
whether it be in the ground, in ground water, or in fresh, surface water. High 
temperature geothermal energy stored deep inside the earth is the energy 
residual left over from the creation of our planet and from radioactive decay of 
several elements present in the earth. Thermal energy stored in the earth within 
10 meters of the surface or in surface water mostly comes from the sun. 

6. Biomass energy: This includes the energy obtained from plant and animal 
matter. This is the oldest known renewable energy. Biomass energy was 
popularly used as people have been burning trees for cooking and warmth since 
humankind discovered fire. Though it is renewable, it takes a very long time for 
trees to regrow when compared to the rate at which they are used. Currently, 
biomass energy is being used safely by producing methane gas and alcohols to 
run automobiles. 
 

Sometimes hydrogen energy and battery energy is placed in the renewable energy category. 

While it may be acceptable to call them renewable, they are not primary sources of energy. The 

energy that is stored in a battery, needs to come from some other sources. Likewise, the energy 

required to produce hydrogen from water or natural gas, comes from some other sources. Batteries 

and hydrogen should be looked at as energy storage systems, not primary renewable energy 

sources.  

A schematic representation of the path that various energy conversion process naturally 

follow in the earth-atmosphere system is as shown in Figure 1.2. The usefulness of diagrams of 

this kind has been pointed out by King Hubbert in 1971 [4]. Different components of the earth-

atmosphere system have been placed in horizontal rows. Vertical columns represent various energy 

types. The chambers in which energy may become stored are represented by boxes and the line 



4 
 

with arrows indicates the flow of energy with respective rates in terawatts. The part of the incoming 

short-wavelength solar radiation that has been reflected into outer space and the part that has been 

absorbed into various layers of earth’s atmosphere are represented in the first column. Potential 

energy, latent chemical energy and nuclear energy are represented in the second column. Sensible 

heat energy is represented in third column. Kinetic energy in the wind and ocean is represented in 

the fourth column. Longwave radiation re-radiated into space from the earth is represented in the 

fifth column. Energies presented in the second column are not susceptible to characteristic weather 

patterns since these energies are constrained within matter. Sensible heat energy within the 

biosphere and various energies associated with kinetic energy like moving land masses, the 

movement of animals and the movement of ground water are ignored in Figure 1.2 due to the 

excessively complicated nature of these energies. This thesis project deals with the first column in 

Figure 1.2, short-wavelength solar radiation from sun, and the fourth column, kinetic energy of the 

wind. 

 

1.3. Solar Energy 

1.3.1. The Sun 

Th sun has been providing the earth energy for billions of years. The diameter of the sun 

is 1.39 x 109 meters and, on average, it is 1.5x1011 meters away from the earth with an effective 

radiating temperature of 5777 K. The inner temperatures of the sun are much higher at 

approximately 8 x 106 to 40x106 K [11]. The sun undergoes a significantly energetic process called 

nuclear fusion in its core, where it creates high mass particles by fusing lower mass particles. 

Hydrogen atoms combine with each other and form helium atoms. There is a loss of mass in this 

reaction since the helium atom’s mass is less than the hydrogen atoms that combine to form the 

helium. This mass is converted into energy. As the vacuum of space does not facilitate conduction 

and convection, any of the sun’s energy that makes it to the earth gets here via radiation. Currently, 

the sun emits 3.9x1026 watts of energy through radiation in all directions. On average the earth’s 

topmost layer of atmosphere receives about 1353 watts per square meter on a surface perpendicular 

to the propagation of the solar rays from sun. This is the earth’s solar constant. Due to orbital 

motion of the earth around the sun every year, there is an oscillation around the solar constant 

value which is illustrated in Figure 1.3.  
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Figure 1.2: Schematic energy cycle without anthropogenic interference [4]. 
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Figure 1.3: Yearly variation in the solar constant [11]. 

 

 Having detailed spectral data about the solar extraterrestrial irradiation, i.e., the radiation 

that the earth receives at the edge of the atmosphere, is important. Below is a figure of the WRC 

standard spectral irradiance curve that has been produced by collecting information from high 

altitude weather and space equipment [12]. From this curve it can be seen that the spectral radiance 

is relatively smooth. While not illustrated in this figure, the suns irradiance just above the earth’s 

atmosphere is close to the spectral profile a blackbody.   

 

1.3.2. Solar Thermal and Solar Electric Systems 

To take advantage of solar energy there has been various technologies developed for 

capturing the radiant energy from the sun. The renewable energy technology that makes use of the 

energy output from the sun in a thermal form is called solar thermal energy.  This energy can be 

used for both comfort purposes, like home temperature control and producing hot water, and for 

production of electricity in appropriate locations. A system making use of solar thermal energy for 

electricity production is shown in Figure 1.5 and one used for hot water heating is shown in Figure 

1.6.  
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Figure 1.4: WRC standard spectral irradiance curve at mean earth-sun distance [11]. 

 

 

 

 

Figure 1.5: Solar thermal technology used for electric power production [13]. 
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Figure 1.6: Solar thermal technology used for hot water production [14]. 

 

A second broad classification of solar energy systems is solar electric systems. These 

systems take the radiation from the sun and directly produce electricity (see Figure 1.7). This is 

done using the photovoltaic process. In fact, such solar electric systems will be called photovoltaic 

energy systems and these are the types of systems utilized in the wind-solar farms being 

investigated in this thesis. Photovoltaic systems are the most common way solar energy is utilized. 

The reason this is the most common way of harnessing solar energy is that it is the least expensive 

way to convert the radiant energy from the sun into electricity.  

 

1.4. Wind Power 

Wind power or wind energy comes from the kinetic energy present in the flow of air in the 

earth’s atmosphere. People have been using the energy present in wind for thousands of years, 

although not extensively until the last 500 years. In the past 100 years, due to the invention of 

electric generators, this energy has been used to generate electricity. In the 400 years before wind 

turbines humankind mainly used wind mills. People tend to use the terms “windmill” and “wind 

turbine” interchangeably; but in reality, they are different. Windmills are devices that are used to 
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capture wind energy and use it for mechanical processes like grinding grain, pumping water, 

cutting logs etc. In contrast, wind turbines are advanced machines that capture the energy present 

in wind to generate electricity [16]. 

 

 

Figure 1.7: Solar photovoltaic system [15]. 

 

 

1.4.1. Utility Scale Wind 

Wind turbines used for generating electricity at the utility scale tend to be quite large. 

Utility scale wind turbines produce more than 100 kilowatts of electricity per turbine and usually 

in the megawatt range. Wind turbines as large as 12 MW are currently being considered. These 

large-scale wind turbines cannot be used in all locations, they are often used in open fields or 

offshore which have the least obstruction to wind flow and are used in collections of wind turbines. 

Collections of wind turbines are called wind farms.  

Wind is an important source of affordable, renewable energy, contributing 6.5% of the 

United States’ electricity supply in 2018. With 7,588 megawatts (MW) of new wind capacity 

added to the nation’s capabilities in 2018 and $11 billion invested, wind represents the third largest 

energy source added for generating electricity in the United States in 2018, behind solar and natural 

gas [17].  
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1.4.2. Land-Based Wind 

The majority of the wind turbine projects in the United States are land based. There are 

more than 56,000 land-based wind turbines operating across 41 states, Guam and Puerto Rico [17]. 

Figure 1.8 shows the installed wind capacity in each state. The total wind turbine nameplate 

capacity of installed wind turbines in the United States is slightly over 97 gigawatts of electricity 

[20].  Land-based wind turbine projects have vastly proliferated due to the ease of construction 

and demand in the nearby communities. It has been estimated by the National Renewable Energy 

Laboratory that the United States has more than 10,000 gigawatts of wind energy potential at 80-

meters above the ground [18]. There has been a 5% increase in the average nameplate capacity 

rating of recently installed wind turbines in the United States from the 2.43-megawatt average 

capacity in 2018 [17]. 

 

1.4.3. Offshore Wind 

Compared to land-based wind, offshore wind has a higher capacity to produce electricity 

(since there are no obstructions to wind flow in oceans  and the wind has higher and steadier 

velocities and thus higher kinetic energy potential). Due to recent advancements in the material 

sciences, there is a widespread growth of offshore wind energy projects across the globe. The 

overall size of the United States offshore wind pipeline grew from 25,464 megawatts to 25,824 

megawatts in 2018 [19]. 

 

1.5. Outline of Thesis 

 In this thesis, a wind-solar farm which is a combination of on-shore wind turbines that tap 

into the land-based wind and solar photovoltaic panels which tap into the radiant energy from the 

sun are optimized for the least cost of providing electricity to 20,000 typical homes for 25 years. 

The wind resources, solar resources, and community load profiles of Riovista, California, Dallas, 

Texas and Dayton, Ohio are considered for this purpose. To perform these computations a 

computer program has been developed in MATLAB which has a capability to plot the necessary 

comparisons for each case studied. In this analysis, the solar panels are facing due south and have 

a 22% conversion efficiency. The wind turbines employed are 3 MW in size with a hub height of 

84 m. All the costs associated with the project are converted into present day dollars with an 

interest rate of 10 percent. 
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Figure 1.8: Wind power capacity in the United States [20]. 

 

 Chapter 2 of this report looks at the work that has been published in the literature to 

optimize integrated renewable energy systems with several objectives like least cost or least loss 

of power capability using several optimization algorithms. Chapter 3 provides a detailed 

explanation of the mathematical models employed in this work. The first section of this chapter 

describes the fundamentals of calculating the solar energy resource, its capture and its conversion 

to electricity. This is followed by the fundamentals of calculating the wind energy resource, its 

capture, and its conversion to electricity. Shading of solar panels in rows behind the first row is 

included in this analysis. A method of calculating this shading was developed as part of this work. 

In Chapter 4, the results section is divided into five sections. The first section provides general 

information on the large number of results that are presented in Chapter 4. Sections 4.2, 4.3, and 

4.4 present results for each of the three cities in the United States were survey results are produced. 

Section 4.2 presents results for Rio Vista, California, Section 4.3 presents results for Dallas, Texas, 

and Section 4.4 presents results for Dayton, Ohio. Lastly, Section 5.5 presents tabulated results 
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that make comparisons between the three cities much easier to perform. The last chapter of this 

thesis draws conclusions based on the wind-solar farm studies performed.   
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Chapter 2 

Literature Survey 
 

 

 

 

 

 

 

The literature that has been focused on optimizing integrated wind and solar systems is 

discussed in this chapter. There are a several optimization techniques that have been published; 

this chapter presents nine optimization methodologies that have been found in the literature. In the 

work presented in this thesis, a brute force method of optimization is used. In this thesis, several 

different sizes of wind and solar capacity are surveyed with the optimum found by plotting and 

looking for the minimum overall cost. This brute force technique has the advantage in that it shows 

how the optimum is approached with different combinations of wind and solar. Like some of the 

studies presented below, this thesis shows costs for pure solar and pure wind systems. Most of the 

optimization studies presented below are on the small size, whereas the study done in this thesis 

focuses on large wind-solar farms located in the United States. This is significant because wind 

does not become cost competitive to grid generated electricity until utility sized wind turbines are 

implemented. Some of the studies discussed below focus on wind-solar installations where grid 

electrical power is not available. This work is focused on determining if large amounts of 

electricity at a rate below the local grid price can be provided by wind-solar farms using the local 

grid as backup. 

 

2.1. Simulated Annealing Algorithm 

 In research done by Alireza Askarzadeh [22], a special type of simulated annealing 

algorithm named discrete chaotic harmony search-based simulated annealing (DCHSSA) is 

considered. The DCHSSA method has been developed by combining chaotic search (CS), 
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harmony search (HS), a meta-heuristic approach to simulate improvisation process of musicians, 

and simulated annealing (SA), a popular generic probabilistic solo-algorithm used for global 

optimization problems with efficient discrete optimization methodology, for solving optimum 

sizing of integrated renewable energy systems. A desirable aspect of the DCHSSA method is that 

it considers every constraint variable without repetition. This methodology has been used to design 

photovoltaic and wind hybrid systems with inverter connected battery storage and backup power 

generator by varying sizes of the system components to have minimum total annual cost. The 

program developed has been used to design a system for a house in remote south-central Montana 

with varying demand profiles having a peak demand of 2.8 kW. Capital recovery factors using an 

interest rate of 6 percent for 20 years of system life are used to convert the initial capital cost to an 

annual cost. Three system configurations were studied including hybrid, photovoltaics alone and 

wind alone.  

This method has been used to investigate two cases: Case 1 is where the power production 

is at the rated capacities of the individual photovoltaic panels and wind turbines and Case 2 is 

where the power produced by the photovoltaic panels is reduced by 50% and that for the wind 

turbines is reduced by 20% from rated capacities. In Case 1, the minimum cost is for a hybrid 

system with 2 photovoltaic panels, 2 wind turbines and 58 batteries is $9687. In Case 2, the 

minimum cost is also for a hybrid system with 18 solar panels, 2 wind turbines and 66 batteries 

with total minimum cost of $10944.  

 

2.2. Biogeography Based Optimization  

 In research done by Rajesh Kumar, R. A. Gupta and Ajay Kumar Bansal [5] on the 

biogeography based optimization (BBO) method, an algorithm that is used to categorize 

evolutionary emigration and immigration rates of species in a habitat has been modified to predict 

the optimal sizing of wind and photovoltaic hybrid energy systems by minimizing total cost of the 

system. In their work, an integrated renewable energy system consisting of wind turbines, 

photovoltaic panels, storage batteries, and a diesel electric generator are combined to ensure a 

continuous supply of power that is reliable. Power generated by the wind turbines is calculated by 

using the wind speed and power coefficient for the wind turbine; and power generated by the 

photovoltaic panels is determined by using an efficiency along with rated currents and voltages of 

photovoltaic panels. Excess power produced is stored is in batteries. The total cost of the system 
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includes the costs of the photovoltaic panels, the wind turbine, the battery and the diesel generator 

in present day dollars. The time value of money is included by using a capital recovery factor along 

with a compensation coefficient which is used determine the cost value of energy. 

 The BBO optimization program has been used to design an IRES for an isolated area of 

Jaipur, Rajasthan, India. The daily energy consumption at this site is 2263 kWh/day with a peak 

demand of 261 kW and 30% variation of the load profile. The lifetime of this system is taken as 

25 years, with an interest rate of 10%, a capital cost of $1,120/kW (Rs. 65,000/kW) for the wind 

turbine, $3,447/kW (Rs. 200,000/kW) for the photovoltaic panels, $345/kW (Rs. 20,000/kW) for 

the diesel generator running at maximum rated capacity, $172 (Rs.10,000) for each 6V, 360Ah 

Tarjan L16P battery, and $862/kW (Rs.50,000/kW) for an inverter. Peak loads that cannot be 

satisfied by the renewable systems are satisfied by diesel generators. The analysis keeps the 

minimum fraction of energy supplied by the renewable components of the system at 60%. For this 

case, BBO provides optimal system component sizes of 52 kW of photovoltaic panels, one wind 

turbine generator at 300 kW rated power, one 163 kW diesel generator, 813 batteries and a 93 kW 

capacity inverter. The net present cost for this system is $1.17 million (Rs. 67,877,356) and 

1,059,639 kW-h of energy is produced per year at a LCOE of $0.18/kWh (Rs. 10.81/kWh).  

 

2.3. Genetic Algorithm Based Optimization 

In the research done by A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali and Y. 

Baghzouz [37] a genetic algorithm (GA) is modified by using fuzzy C-means clustering of similar 

data points for seasonal variations to optimize wind and solar energy systems with battery storage 

to meet heating, ventilation and air conditioning (HVAC) loads while minimizing the total cost of 

the system. This approach uses an interrogative search inspired by Charles Darwin’s theory of 

natural evolution where the fittest of species are selected for reproduction to produce the next 

generation. Probability distribution functions are used to group data from the past 10 years into 10 

clusters of days using fuzzy C-means. A Weibull distribution is used to model wind speed 

statistics, the clearness index is modelled by a beta distribution to obtain solar irradiation 

information and a Gaussian distribution is used for the lower and upper limits of the HVAC loads.  

The GA optimization program developed is applied for a residential feeder to analyze the 

IRES according to the risk factors which involve the percentage of demand not met by the system 

and for given cost constraints given in references [43] and [44]. Two optimum cases for hybrid 
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wind-solar systems with battery storage are analyzed having optimum characteristics of 0 MW of 

photovoltaics, 1.9 MW of wind, and 2.92 MWh of battery storage capacity. This system provides 

0.85 MW-h of excess energy production at a cost of  $3.80 million for wind and $0.815 million 

for storage. In this analysis the photovoltaics and wind generation are normalized with maximum 

allowable load shifting of 30%. The optimization characteristics for a region with poor wind and 

high solar irradiation gives 0.0 MW of wind, 2.85 MW of photovoltaics and 6.4 MWh of storage 

with 4.58 MW-h of excess energy production. The cost for the photovoltaic system was $11.7 

million and that for the storage was $1.73 million. the authors mention that 100% of the load power 

could be supplied by installing more solar panels.   

 

2.4. HOMER, PSO and CPSO  

 In research done by Vikas Khare, Savita Nema and Prashant Baredar [38], the optimization 

of a hybrid wind-solar system with battery backup and a diesel generator to obtain minimum total 

net cost was done for a police control room in Sagar, India. This control room has a load demand 

of 17 kWh/day and peak demand of 1.5 kW. This location is dominated by solar resources. This 

analysis uses the hybrid optimization model available in the National Renewable Energy Software 

called HOMER. The results from HOMER are compared to particle swarm optimization (PSO) 

with innovative variations and the chaotic particle swarm optimization algorithm (CPSO). The 

photovoltaic system is modeled by a simple maximum voltage and current model while the wind 

system is modeled by using power coefficients. A Weibull distribution factor of 7.961 and 

autocorrelation factor of 0.86 is used for wind speeds. The diesel generator is modelled by an 

overall efficiency which includes engine efficiency and efficiency of the electric generator. The 

minimum annual capital cost is obtained using a capital recovery factor, a sinking fund factor, a 

penalty factor for capacity shortage and a penalty factor for emissions. The cost of installation of 

a 3 kW photovoltaic system is $3163 and cost of replacement of deteriorated units due to 

continuous use by new units is $2846. For the wind system a SW Whisper 500 wind turbine with 

a 3 kW rated capacity, 2.5 meter rotor diameter and a hub height of 25 m which costs $13,000 per 

unit and $11,000/unit for replacement is used. The batteries cost $0.156/kWh at 3 kW rated 

capacity with 80% round trip efficiency and 405-minute allowable state of charge (SOC). The 

inverter costs $200/kW and the diesel generator costs $2100 per 3.5 kW at a replacement cost of 

$1300. The annual interest rate used in the analysis is 6% and the lifetime of the system is 25 years. 
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 The program was run for two cases, photovoltaics and a diesel generator and a hybrid 

system with photovoltaics, wind, and diesel generator. The costs of energy were cheaper for the 

hybrid system at $3163 as predicted by HOMER, $2777 as predicted by PSO, and $2700 as 

predicted by CPSO. The costs for the photovoltaics alone costs were $8435 as predicted by Homer, 

$8368 as predicted by PSO and $8200 as predicted by CPSO. Using the predictions from HOMER, 

the cost of fuel for the diesel generator are reduced 70-80% with the hybrid system and the 

reduction in total harmful gas emissions were reduced by 90%. 

 Getachew Bekele and Bjorn Palm [39] did research using the HOMER software to design 

a hybrid energy system in Ethiopia where at least 51% of the load demand of a village consisting 

of 1000 people is met by renewable energy systems. The daily energy consumption of the 

community is 147 kWh. The hybrid system is a combination of solar photovoltaics, wind turbines, 

a diesel generator, batteries and an inverter. Diesel and battery backup are used because only 15% 

of Ethiopia has grid coverage. The cost of installation of either photovoltaic panels or wind turbines 

is taken to be $4000/kW; while, the cost for diesel-based power is taken to be $1000/kW. When a 

system with 5 kW of photovoltaic panels, a 20-kW wind turbine, a 44-kW diesel generator, 40 

(Serrette 6CS25P) batteries of 1156 Ah each, 20 kW inverter, and a 20 kW rectifier is used, a total 

initial capital cost of $121,320 is obtained. This system is able to supply 51% of the load demand 

of the village. Similarly, when a system with 20 kW of photovoltaic panels, a 20 kW wind turbine, 

a 44 kW diesel generator, 60 (Serrette 6CS25P) batteries of 1156 Ah each, a 40 kW inverter, a 40 

kW rectifier is used the total initial capital cost is $205,980 This system is capable of  supplying 

81%  of the electricity demand of the village. The lifetime of these systems was taken as 25 years. 

 Research was done by Sanjoy Kumar Nandi, Himangshu Ranjan Ghosh [40] on 

environmental aspects of a hybrid wind-solar system for the remote island of Kutubdia, 

Bangladesh where electricity is produced solely by diesel generators at an average daily demand 

of 160 kWh/day and a peak demand of 23 kW. The HOMER software was used to design a hybrid 

system with photovoltaic panels, a wind turbine, battery banks, an inverter and a diesel generator 

with total initial cost of $5000 and maintenance cost of $1000 for a 25-year time period. The 

interest rate for this analysis was 6%. There was approximately a 44% reduction in total pollution 

to 136,366 kg/year from 241,038 kg/year using the hybrid power system compared to diesel power 

generation only. 
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 Ahmed M. A. Haidar, Priscilla N. John and Mohd Shawal [41] used HOMER to obtain a 

least net present cost of a hybrid wind-solar system in four Malaysia districts. Depending on the 

load requirements and energy available in the location different results were found. A total of 

800,145 different configurations have been analyzed for least cost and least pollutants released 

into the atmosphere so that good economic and environmental decisions could be made on the way 

Malaysia provides its electricity production.   

 

2.5. Genetic Algorithm with LPSP 

In research done by Hongxing Yand, Wei Zhou, Lin Lu and Zhaohong Fang [7] the 

optimization of a photovoltaic and wind system with battery banks for minimum loss of power 

supply probability (LPSP) was undertaken. These investigators used a genetic algorithm (GA),  

which imitates evolutionary principles of natural genetics to find optimums. The solar irradiation 

in this model includes beam and diffuse components of solar radiation. The diffuse components 

use the Perez model [24] accounting for circumsolar, horizon brightening, and isotropic diffuse 

radiation using sky clearness coefficients and sky brightness parameters. The wind power system 

is modeled by scaling the wind speeds with the seventh power law. Wind turbines are modeled 

using aerodynamic power efficiencies coupled with mechanical transmission and electric 

conversion efficiencies. Lead acid battery banks are employed, and the battery model iconsiders 

charging rate, charging efficiency, capacity, state of charge (SOC), varying temperatures and self-

discharge rates. The annualized cost of this hybrid system is calculated considering annualized 

capital costs calculated using a capital recovery factor, annualized replacement cost with sinking 

fund factor, and maintenance costs. The initial costs were $6500/kW for the photovoltaics, 

$3500/kW for the wind turbine without tower, $250/m of tower, $1500/kAh for the batteries, and 

$800 for other components.  

A hybrid system used to supply power to a telecommunication relay station on the remote 

island of Dalajia in China was studied. The electrical load of this island is a continuous 1500 W. 

The integrated renewable energy system designed was a hybrid wind-solar system with one wind 

turbine with a hub height of 31 m, 128 photovoltaic panels at slope of 24.5o, and 6 batteries with 

0.97% LPSP. The annualized cost of this system is $10,600. Another integrated wind-solar system 

studied had one wind turbine with a hub height of 32.5 m, 115 photovoltaic panels at slope of 24o, 

and 5 batteries with a 1.96% LPSP. This system has a slightly better annualized cost of $9708.  A 
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nonintegrated system that only used 182 photovoltaic panels at slope of 25o with 8 batteries with 

a 1.96% LPSP had an annualized cost of $11,145 and a nonintegrated system that included 4 wind 

turbines with a hub height of 30 m coupled with 17 batteries with a 1.98% LPSP had an annualized 

cost of $16,889. It is clear that an integrated system with slightly more LPSP has lower annual 

costs. These systems were designed to supply 3-5 days of power to the relay station with battery 

alone.   

 

2.6. Multiple Objective Optimization with Genetic Algorithm 

Dhaker Abbes, Andre Martinez, and Gerard Champenois [42] studied wind-solar hybrid 

energy systems with battery banks using the multiple objective optimization with genetic 

algorithm. These investigators included life cycle costs (LCC), embodied energy (EE), and loss of 

power supply probability (LPSP) in an analysis to obtain multiple pareto front solutions. The 

energy is modelled by considering the wind turbine efficiency as 30% and the efficiency of the 

photovoltaic panels as 13%. Lead acid batteries are used by introducing an oversizing coefficient 

and using a maximum allowable depth of discharge of 70%. The life cycle cost of the system 

includes the cost of the equipment, the cost of installation, the cost of maintenance and the 

replacement costs. The time value of money uses  a discount rate of 5%, inflation rate of 2%, and 

a system lifetime of 25 years. The embodied energy in the system is minimized by using an 

aluminum frame, polycrystalline silicon photovoltaic modules and a 90% recycle rate of scrap 

batteries. Less than a 10% energy contribution for manufacturing all other components in the 

system was assumed. 

The integrated energy system was designed to supply electricity to a residential house with 

a 2193 kWh/year load that is located in Colorado. Studies of 120 different combinations of systems 

which consider LCC against EE and LPSP and are performed. A configuration with 9 sharp ND-

240QCJ 240W solar panels of 14.8 m2 total area, a 900 W Lacota S wind turbine with a swept area 

of 3.43 m2 and 4 Numax Gel SLG180-12, 12 V batteries rated at 178.6 Ah. An embodied energy 

of 101,459 MJ and LCC of $32,471 were calculated. This system meets at least 95% of the 

electrical energy requirements of the home and the rest is supplied by the grid. 
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2.7. Hybrid Solar Wind System Optimization Tool  

Hongxing Yang, Lin Lu, and Wei Zhou [44] developed what is referred to as the hybrid 

solar wind system optimization (HSWSO) tool. The HSWSO simulation tool optimizes for the 

least possible loss of power supply probability (LPSP) and for levelized cost of energy (LCE). 

Power from photovoltaic modules is tracked using regression constants for silicon photovoltaic 

modules operating at ambient temperature. The solar incident radiation on the panels is determined 

with the Perez model [24]. Power from the wind system is modeled by using power curves from 

the wind turbine manufacturer. Wind speeds at a given hub height are scaled from published data 

at one hub height using the 1/7 power law formula. Lead acid Battery banks are modeled by 

considering the state of charge (SOC) of the batteries and tracking energy into and out of the 

batteries. Batteries are sized to have the LPSP. The LCE was determined using capital costs for 

the photovoltaic panels, wind turbine, and batteries of $3330/kW, $2000/kW, and $80/kWh 

respectively. Maintenance costs of $10/kW, $20/kW and $25/kW-h for photovoltaic panels, the 

wind turbine, and batteries respectively. The photovoltaic panels used in this simulation have an 

area of 0.457 m2 with 2.5 amps of short circuit current and 22 volts of open circuit voltage at 50 

watts of maximum power. The simulation initially starts 20 photovoltaic panels facing south at an 

inclination angle of 29.5o and an 0.5 kW wind turbine that increments by 0.1 kW. A 5% loss of 

power from all secondary aspects of system, like wires and connections, is included in the 

calculations. 

This simulation is applied to design the optimum size of a power system for a 

communication relay stationed in Shanwei, China which has 1000 W of continuous daily demand. 

The system has zero LPSP when a 10 kW wind turbine and 270 modules of photovoltaic panels 

are coupled with a one-day battery storage bank. It has also been found that with 3 days of battery 

storage, zero LPSP can be obtained with less photovoltaic panels and less wind turbine capacity. 

A configuration with 75 modules of photovoltaic panels, a 5 kW of wind turbine, and a half-day 

of battery storage gives the lowest LCE at  $0.22/kWh (1.6 HKD/kWh) at 5% LPSP. For the system 

to be reliable in a stand-alone configuration, it is necessary to have battery storage of at least 1.5 

days of energy use. 
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2.8. Monte Carlo Simulation 

 Dheeraj Kumar Khatod, Vinay Pant and Jaydev Sharma [45] developed an approach to 

compare well-being performance using a Monte Carlo simulation technique. They also 

implemented an analytical procedure. These techniques were applied to small autonomous power 

systems (SAPS) comprised of photovoltaic panels and wind turbines coupled with a diesel 

generator. In the analytical model, a beta distribution is used to rank solar irradiations to obtain a 

probability distribution function for the solar irradiance, a Weibull distribution function is used to 

model wind speed distributions, and a probability distribution function is used to model the load 

distribution. Only a fraction of the load demand was to be met by the wind system as it has the 

highest fluctuations in its reliability factor. The energy not served (ENS), loss of healthy 

expectation (LOHE) and loss of load expectation (LOLE) are three calculated quantities used to 

evaluate the stability of the designed system with a given load demand. The power from 

photovoltaic panels is calculated by using temperature coefficients of current and voltage of the 

photovoltaic I-V characteristic, along with a fill factor. The power from the wind turbine is 

obtained with functions that provide the electrical power from the wind turbine as a function of 

the wind speed between the cut-in and cut-out speed. 

 These models are applied to a site in Gujarat, India that has a peak load of 60 kW. The 

analytical approach was compared to the Monte Carlo simulation by adding increments of wind 

and solar to the starting system with very small percentage changes, 0.07-0.4%, in the LOEE, 

LOHE, and LOLE. The analytical method had a run time of 10.53 minutes, while the Monte Carlo 

simulation had a run time of 8147 minutes. 

 

2.9. Probabilistic Modeling 

 Probabilistic modeling has been performed by G. Tina, S. Gagliano and S. Raiti [46] on an 

integrated wind-solar system. In this case excess power was sent to the electrical grid and deficit 

power was taken from the electrical grid. The probabilistic approach used by these investigators 

produced an energy index of reliability (EIR) which is directly related to the energy expected but 

not supplied (EENS). A Weibull distribution was used for the wind speeds and a transformation 

theorem [23] for power from the wind turbine. The Hollands and Huget probability distribution 

[26] of hourly clearness indexes was used for solar irradiation so that power from a photovoltaics 

panel could be obtained.  
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 The system was designed for a remote island in Italy which has a peak demand of 20.33 kW 

and yearly demand of 98,800 kWh. The average wind speed at this location is 4.55 m/s and an 

equivalent sunlight period is 5.5 hours. Simulations are done for wind alone, photovoltaics alone 

and hybrid systems. The solar panels were given an inclination angle of 0o and an inclination angle 

equal to the latitude of the location. Calculated yearly EIRs of 0.418, 0.293, and 0.519-0.501 for 

photovoltaics alone, wind alone, hybrid configurations respectively were obtained when the 

inclination of the panels is equal to latitude of the location and yearly EIRs of 0.454, 0.293, 0.544-

0.496 respectively were obtained when the inclination of the panels was zero. The authors clearly 

state in their paper that it is not possible to have a reliable energy system without energy storage. 
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Chapter 3 

Mathematical Models  
 

 

 

 

 

 

 

This chapter presents a number of mathematical models required to determine the net 

present costs of meeting specified electrical demands with a combination of wind, solar, and grid 

generated electricity. To do this a mathematical model predicting the electrical output of a given 

number of solar panels, of a specified efficiency, set in a specified location, at a given slope and 

given azimuthal orientation is required. This model is presented in the first section of this chapter. 

Also required is a mathematical model that predicts the electrical output of a given number of wind 

turbines that have a specified performance as a function of wind speed, that are set in a specified 

location. This model is presented in the second section of this chapter. After determining the 

electrical output of a specified wind-solar farm it is compared to the specified electrical demand. 

This comparison is done on an hour by hour basis so that the amount of positive excess electricity 

generated and negative excess, that is the deficit, electricity generated can be determined. For any 

hour in which the wind-solar farm cannot supply the required electrical demand, electricity is 

drawn from the local electrical grid. This comparison between the electricity produced by the 

wind-solar farm and the electrical demand is discussed in the third section of this chapter. Lastly 

a mathematical model is needed that properly describes the economics of fulfilling a given 

electrical demand with a combination of wind, solar, and grid generated electricity. This economic 

mathematical model is given in the fourth section of this chapter. Because results from such 

complex models must be generated by computers using a computer program, a fifth section is 

added to this chapter discussing a few of the numerical issues. All mathematical models presented 
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in this chapter have been implemented in a MATLAB computer program that was written from 

scratch as part of this thesis work.  

The goal of this thesis work is not simply to determine the net present cost of a specified 

hybrid system for meeting a specified electrical demand, but to find the configuration that results 

in the minimum net present cost to achieve this goal. To perform this cost minimization study, the 

mathematical models presented in this chapter are used to predict the net present cost of many 

sizes of wind-solar farms. Plots of the net present cost versus wind nameplate capacity and solar 

nameplate capacity are produced so that the configuration that produces a minimum net present 

cost can be found. While this can be viewed as a brute force method of performing an optimization 

study, it provides information that more sophisticated optimization studies may gloss over. Seeing 

the trends in the net present cost as a function of wind nameplate capacity and solar nameplate 

capacity is beneficial for understanding the benefits of different combinations of wind and solar 

electricity generation. Even combinations that only use wind and grid generated electricity to meet 

a specified demand, or only use solar and grid generated electricity to meet a specified demand are 

displayed. Because of the brute force optimization technique used in this work, results are available 

for all these combinations and comparisons between these different types of wind-solar farms can 

be made.   

 

3.1.  Solar Model 

The mathematical model to predict the amount electricity produced by the solar portion of 

the wind-solar farm is presented first because it is the most complex model. A large number of 

angles are required to perform these calculations and different aspects of the way the surface of 

the earth and its atmosphere affect the sun’s rays need to be modeled. All the required angles are 

given in the following subsection and the equations giving the solar energy incident on a solar 

panel of a given slope and azimuthal orientation, including the effects of the earth’s surface and 

atmosphere are given in the second subsection. The third subsection provides the relatively simple 

equations required to determine how much of this incident solar energy is converted to electricity.  

 

3.1.1. Fundamental Angles  

A number of the angles required for the solar calculations are shown in Figure 3.1. To 

calculate some of these angles, the time of day is required. However, the time of day needs to be 
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given in what is called solar time. The difference between solar time and standard time is what 

instant is called noon. In solar time, noon is when the sun is directly above the latitude of the 

location of the solar panel. Standard time is the same for all latitudes within a time zone. All the 

latitudes in a given time zone have the same noon time. Only one location in each time zone can 

possibly have standard time match solar time; and this location will vary throughout the year.   

 

Figure 3.1: Zenith angle, surface slope angle, surface azimuthal angle, solar azimuthal angle and 
polar view of solar azimuthal angle [11]. 
 

3.1.1.1. Solar Time 

In solar calculations, all times must be in solar time. Normally solar time only varies from 

standard time at a given location by less than an hour. Solar time, ��, is determined from the local 

standard time, ����, as   

 �� − ���� =
�(��������)��

��
 (3.1) 

where ��� is the standard meridian for the time zone of the longitude where the solar panel is 

located,  ����, and � is the equation of time given as 

             � = 229.2(0.000075 + 0.001868 ���� − 0.032077 ���� − 0.014615 ��� 2� −

                      0.04089 ���2�.  (3.2) 
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The � in this equation is the year fraction converted to a degree fraction and can be determined by 

 � = (� − 1)
���

���
 ,      (3.3) 

where � is the day number from January 1. In Equation (3.1), the quantities on the righthand side 

are in minutes and the 60 in the denominator converts the minutes to fractions of an hour. Equation 

(3.2) provides the equation of time, �, in minutes. Thus Equation (3.1) provides the difference 

between solar time and standard time in hours. Solar time can easily be determined by adding this 

difference to the standard time at the panel location. With this solar time, the location of the sun 

in an east to west direction can be determined as an angle. This angle is called the hour angle and 

will be discussed next.  

                                      

3.1.1.2. Hour Angle  

The hour angle is a measure of the sun’s location east or west of the location of the solar 

panel in degrees of longitude. This angle is measured from the center of the earth between a plane 

that encompasses the longitude of the panel location and a plane that encompasses the longitude 

that the sun is located over. The hour angle changes with the time of the day having a negative 

value before noon and positive value after noon. Positive hour angles occur in the morning and 

negative hour angles occur in the afternoon. The hour angle changes by 15o every hour and is zero 

at solar noon. Thus, the hour angle, �, can easily be determined once solar time is known using 

the equation 

 � = 15 (�� − 12).     (3.4) 

The hour angle at sunset, ���, can be determined from  

 ��� ���  = − ���(∅) ���(��).     (3.5) 

In this equation ∅ is the latitude of the location of the solar panel and �� is the daily declination 

angle. These two angles are discussed below. Since the sun rises and sets in a symmetric manner 

around solar noon, the sunrise time can be determined as 

 ��� = −���.     (3.6) 

Knowing sunrise and sunset is important because it is only between these times that the sun’s 

energy is available. Times before sunrise and after sunset are considered nighttime. The bending 

of the sun’s rays as they travel through the atmosphere are not included in Equation (3.5). Ray 

bending makes sunset slightly later in the day and sunrise slightly earlier in the day, thus increasing 

the time in which the sun’s rays can be collected.  
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3.1.1.3. Declination Angle 

The declination angle is the angle between a line extending from the center of the sun to 

the center of the earth and the earth’s equatorial plane. It is a function of the time of year with its 

value ranging from -23.45o to +23.45o. Most texts present the declination angle as being a function 

of the day only, 

 �� =  23.45 ��� �360
(�����)

���
�.     (3.7) 

In parts of this work, the declination angle is calculated on an hourly basis using  

 �ℎ =  23.45 ��� �360 �
284

365
+

ℎ

8760
��     (3.8) 

where ℎ is the total number of hours that have passed from midnight on January 1. Calculating the 

declination angle on an hourly basis does not affect the final results in any noticeable way, but it 

does make the computer programing easier.   

 

3.1.1.4. Zenith Angle 

The zenith angle is the angle between the sun rays and a normal vector to a horizontal plane 

on the surface of the earth at the location of the solar panel. Its value ranges from 0o to 90o and has 

a value of 0o when the sun is directly overhead and 90o when the sun is on the horizon. The zenith 

angle is equal to 90o at sunrise and sunset. The zenith angle, ��, is related to the latitude, ∅, 

declination angle, ��, and hour angle, �, as 

 cosθ�  =  ��� ∅ ��� �ℎ ��� � + ���∅ ����ℎ.     (3.9) 

 

3.1.1.5. Altitude Angle 

The solar altitude angle, ��, is nothing more than the compliment of the zenith angle, 

 �� = 90 − ��.     (3.10) 

This angle represents how high the sun is in the sky. An altitude angle of 90o indicates the sun is 

directly overhead and an altitude angle of 0o means the sun is on the horizon getting ready to rise 

or set.   

 

3.1.1.6. Azimuthal Angle  

The azimuthal angle is an angle in a horizontal plane between a line pointing due south and 

line that is the projection of the sun’s rays on this horizontal plane. Its value ranges from -180o to 
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+180o having negative values when the projection of the sun’s rays on horizontal plane is east of 

due south and is positive values when the projection of the sun’s rays on a horizontal plane are 

west of due south. For latitudes between 23.45o and 66.45o north and -23.45o and -66.45o south, 

solar azimuth angle values range between -90o to +90o on days with less than 12 hours of sun light 

and take on a value that is greater than 90o in the late evenings and less than -90o during the early 

mornings when the day length is greater than 12 hours. The azimuthal angle of the sun can be 

related to other angles using 

 �� = ����(�) ������ �
��������∅������

��������∅
� �.     (3.11) 

An absolute value sign is placed around the inverse cosine portion of this equation so the sign of 

the azimuthal angle of the sun is determined by the sign on the hour angle.  

 

3.1.1.7. Latitude  

The latitude, ∅, is the angle between a line joining the location of the solar panel to the 

center of the earth and the equatorial plane. Latitudes are marked on maps as an angle from the 

equator. This angle is measured from the center of the earth. The latitude values range from -90o 

to +90o with positive values for locations north of the equator and negative values for locations 

south of the equator. In this work, three different latitudes are used, 38.21o N for Rio Vista, 

California, 32.77o N for Dallas, Texas and 39.83o N for Dayton, Ohio. Latitudes of any city in the 

world can be found on the internet. The latitudes listed for the three cities above should be taken 

as representative latitudes for those cities, as latitudes vary for different locations within a large 

city.  

 

3.1.1.8. Surface Azimuthal Angle 

The surface azimuthal angle, �, is the angle between the projection of a normal vector from 

the solar panel surface to a horizontal plane and due south. Its value ranges from -180o to +180o 

having negative values when the surface is orientated east of due south and positive values when 

the surface is orientated west of due south. In this work, all solar panels are orientated due south 

and have an azimuthal angle of 0o. 
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3.1.1.9. Surface Tilt Angle  

The slope of the solar panel surface is represented by the angle between the plane of the 

surface and a horizontal surface, �. Its value is between 0o and 90o. Any angle greater than 90o 

would have the sun collecting surface facing down towards the ground, which does not make sense. 

The solar panel surface is horizontal when its slope angle is 0o and is vertical when its slope angle 

is 90o. In this work, all solar panels are tilted at an angle equal to the latitude of the location 

 � = ∅.     (3.12) 

This is a rule-of-thumb used in the solar industry to collect the most solar energy from a fixed 

panel over the course of one year. If two axis tracking were used, the panel would always face 

directly towards the sun. Since tracking devices add undesired initial costs to the system, fixed 

panels are used throughout this work. Using fixed solar panels, as opposed to solar panels with 

two axis tracking, reduces the yearly solar energy collected by about 25 to 40%. 

 

3.1.1.10. Angle of Incidence  

The angle of incidence, �, is the angle between a line joining the location of interest to the 

center of the sun and the normal to the solar panel surface. This angle is a function of longitude, 

declination angle, hour angle, slope angle of the surface, and surface azimuth angle. The value of 

the incidence angle changes as a function of time of day and day of the year. The cosine of the 

incidence angle is given by  

 ��� � = ��� �� ��� ∅ ��� � − ��� �� ��� ∅ ��� � ��� � + ��� �� ��� ∅ ��� � ��� � +

                           ��� �� ��� ∅ ��� � ��� � ��� � + ��� �� ��� � ��� � ��� �.     (3.13) 

This is a rather lengthy expression, but it is an important one. This equation provides the fraction 

of the beam radiation normal to the sun’s rays that impinges on the surface as the sun moves across 

the sky and the panel orientation remains fixed. When the incident angle of the sun’s rays is large, 

little solar energy hits the panel. When the incident angle of the sun’s rays is small, more solar 

energy is captured by the solar panel. 

 

3.1.2. Solar Radiation Incident on Tilted Solar Panel 

While the sun’s radiant energy travels through the vacuum between the sun and earth’s 

atmosphere as beam radiation, in the earth’s atmosphere beam radiation is disturbed. In the earth’s 

atmosphere, a portion of the sun’s beam radiation is scattered into what is called diffuse radiation. 
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At the surface of the earth, a portion of the sun’s radiant energy is reflected from the ground and 

this called ground reflected radiation. These are the three primary components of solar radiation 

that need to be tracked in order to determine the amount of solar energy incident on a solar panel 

located on the surface of the earth. Beam, diffuse, and ground reflected solar radiation components 

are included in the Hay and Davis solar radiation model [29] which is used in this work. 

In some models the diffuse radiation component is subdivided into three parts: isotropic 

diffuse, circumsolar diffuse, and horizon brightening diffuse. The isotropic diffuse part is the 

portion of the incoming solar radiation that has interacted with the earth’s atmosphere and is 

scattered with the same strength in all directions. The circumsolar portion is the forward scattered 

solar radiation and has almost the same direction of travel as the beam radiation. The horizon 

brightening portion is nonisotropic scattered radiation that comes from the horizon. For certain 

atmospheric conditions more or less scattered radiation is received from the horizon than what a 

purely isotropic model would predict. In the Hay and Davis model used in this work, diffuse 

radiation is subdivided into circumsolar diffuse radiation and isotropic diffuse radiation. Hay and 

Davis assume that horizon brightening is adequately modeled with isotropic radiation coming from 

the horizon. Thus the radiation model used in this work has detailed models for the beam, 

circumsolar, isotropic diffuse, and ground reflected radiation reaching a tilted solar panel and 

neglects the effects of horizon brightening. 

For this work, shading of the solar panels by the panels in front of them is included. For 

this reason, the solar radiation collected by the front row of panels is discussed separately from the 

solar radiation collected by the succeeding rows. Any row of solar panels behind the front row 

may be partially shaded depending on a number of conditions. For this work the front is never 

shaded, but the succeeding rows are checked for any shading by doing detailed trigometric 

calculations. The front row panels will be referred to as front row panels and the succeeding rows 

of panels will be referred to as back row panels.  

Before discussing the nonshaded models and shading models for incident solar energy on 

the front row and back rows of arrays of solar panels, a number of required quantities are presented. 

These quantities are required in the Hay and Davis model which predicts the amount of solar 

energy incident on a tilted solar panel, of any azimuthal orientation, at any location. 
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3.1.2.1. Extraterrestrial Radiation 

The extraterrestrial solar radiation normal to the sun’s rays present just above the 

atmosphere of the earth is required to determine the amount of scattering in the earth’s atmosphere. 

From a simplistic viewpoint this is just the solar constant, ���, which is 1353 W/m2. Figure 1.3 

showed that the extraterrestrial solar radiation varies with the day of the year and this variation can 

be modeled using the formula 

 � = ��� �1 + 0.033 ���
����

���
�.     (3.14) 

In addition to handling this issue, the extraterrestrial solar flux will be converted from a power flux 

normal to the sun’s rays to an hourly energy flux on a horizontal surface. In this work, and in most 

solar modeling, solar energy is modeled on an hourly basis. This is done because the required 

experimental data on solar energy reaching the earth’s surface are given for hourly time 

increments. Integrating Equation (3.14) multiplied by Equation (3.9) over a one-hour time period 

gives    

 �� =
��

�
��� �1 + 0.033 ���

����

���
� ���� ∅ ��� ��(��� �� − �����) +

�(�����)

���
��� ∅ ��� ��� 

  (3.15) 

where �� is the solar radiation incident on a horizontal surface per unit area, located just outside of 

the earth’s atmosphere, for a time period of one hour. The quantities �� and �� are the hour angles 

at the beginning and end of the hour respectively. 

 

3.1.2.2. Components of Solar Radiation on a Horizontal Surface  

To get the portion of the total solar radiation that interacts with the atmosphere, a clearness 

index is used. The clearness index is calculated as  

 k� =
�

��
.      (3.16) 

Once the clearness index is found, it is used in the empirical relationships 

 
��

�
=  �

1.0 − 0.09k�                               for     k� ≤ 0.22

0.9511 − 0.1604k� + 4.388k�
� − 16.638k�

� + 12.336k�
�   for     0.22 < k� ≤ 0.80

0.165                                              for     k� > 0.8

 

  (3.17) 

to determine the ratio of the diffuse flux, I�, to the total flux, I, on a horizontal surface. Notice that 

the denominator on the lefthand side of this equation is the measured solar energy flux on a 
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horizontal surface. This is a known quantity that comes from published data sets, and the clearness 

index is calculated with Equation (3.16). Therefore, the diffuse flux on a horizontal surface can be 

determined from these relationships. Once the total energy flux and the diffuse flux on a horizontal 

surface are known, the beam energy flux on that same horizontal surface can be found from 

 I� = I − I�.     (3.18) 

At this time the total measured energy flux on a horizontal surface has been separated into beam 

and diffuse components. The ground reflected component on a horizontal surface, I�, is the only 

one of the three primary radiation components left to determine on this horizontal surface. This 

can be done using the equation 

 I� = Iρ�     (3.19) 

where ρ� is the ground reflectivity to solar radiation. In this work the ground reflectivity is given 

the value of 0.6.  

 To get the portion of the diffuse component that is circumsolar, the anisotropic index is 

used. The anisotropic index is determined from the beam energy flux and the extraterrestrial solar 

energy flux as 

 A� =
��

��
.     (3.20) 

The circumsolar portion, I�,��, of the diffuse radiation component is determined from the 

anisotropic index as 

 I�,�� = I�A�     (3.21) 

and the isotropic, I�,���, portion of the diffuse component is 

 I�,��� = I�(1 − A�).     (3.22) 

Equations (3.21) and (3.22) show how the anisotropic index is used in the Hay and Davis radiation 

model to split the diffuse component into a circumsolar portion and an isotropic scattering portion. 

Note that both the clearness index and the anisotropic index are calculated on an hourly 

basis just like the solar energy fluxes. Both of these indices make use of a ground radiation energy 

flux and an extraterrestrial radiation flux to indicate the amount of interaction the atmosphere has 

with the solar radiation traveling through it. For the clearness index the ground radiation flux is 

the total solar radiation on a horizontal surface, while for the anisotropic index it is the beam 

radiation on a horizontal surface. 
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3.1.2.3. Horizontal to Tilted Surface  

The separate parts of the solar radiation that need to be summed to get the total solar 

radiation incident on the solar panel are the beam, circumsolar, isotropic diffuse, and ground 

reflected. Equations (3.18), (3.19), (3.21), and (3.22) provide these quantities for a horizontal 

surface. The beam component given in Equation (3.18) and the circumsolar portion of the diffuse 

component given in Equation (3.21) needs to be adjusted to that impinging on the tilted solar panel 

surface. This can be done using the geometric factor ��, which represents the ratio of beam 

radiation on the tilted surface to the beam radiation on a horizontal surface. On an instantaneous 

basis, this geometric factor is defined as the cosine of the incident angle to the cosine of the zenith 

angle, 

 �� =
����

�����
.     (3.23) 

Because this geometric factor approaches infinity close to sunset and sunrise an integrated average 

version is used,   

 ��,��� =
�

�
     (3.24) 

where  

 � = (����� sin ∅ cosβ − sin����� ∅sinβcosγ)
�

���
(�� − ��)� + (��������∅cosβ +

                cos�����∅sinβcosγ)(sinω� − �����) − (�������������)(����� − �����)     (3.25) 

and 

 � = (���∅�����)(����� − �����) + (���∅�����)
�

���
(�� − ��)�.     (3.26) 

Using this average reduces problems that could occur at sunset and sunrise, but does not 

completely eliminate them. 

 Converting isotropic diffuse radiation on a horizontal surface to a tilted surface does not 

require a geometric factor like the beam and circumsolar radiation. Because isotropic diffuse 

radiation has the same strength in every direction, the flux is generally taken to be the same on a 

tilted surface as that on a horizontal surface. This is true as long as the surface has a full view of 

the atmosphere. Thus, changes in the isotropic diffuse radiation on a horizontal surface and that 

on a tilted surface are handled with a view factor. This view factor is presented latter.  
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3.1.2.4. Electrical Energy Produced by Front Row Solar Panels 

In this model, solar panels are considered to be arranged in several rows that constitute a 

rectangular array pattern. There is a shadow cast by the first row of solar panels on the second row 

and by the second row on the third row and so on. The first row is special in that no shading occurs 

to it. Every row after the first will have shading affects and these rows will be labeled as back 

rows. The amount of shading occurring on the back rows is a function of the row spacing, the 

height of the top edge of the solar panels above the bottom edge and the position of the sun in the 

sky.  

Since there is no shading on the front row of solar panels, the solar energy flux, ���, incident 

on the front row of solar panels is 

 ��� = ��� + ��� + ���     (3.27) 

where the beam including circumsolar, isotropic diffuse and ground reflected terms are symbolized 

by ���, ��� and ��� respectively. The subscript �� on these quantities indicates front row. Each 

of these three terms can be written in terms of quantities already defined in this thesis as   

 ��� = (�� + ����)��,���,     (3.28) 

 ��� = ��(1 − ��) �
������

�
�,     (3.29) 

and 

 ��� =  ��� �
������

�
�

 
.     (3.30) 

View factors for the isotropic diffuse radiation, 
������

�
, and for the ground reflected radiation, 

������

�
, have been included at this time. 

The electrical energy produced by the entire front row of panels in one hour, ��,��, can be 

determined by multiplying the incident solar flux given by Equation (3.27) by the surface area of 

the front row panels, ���, then by the conversion efficiency of the photovoltaic panels, ���, then 

by the conversion efficiency of the inverters and other required electronics, ��, as  

 ��,��  = ���������.     (3.31) 

The yearly electrical energy produced by the front row of solar panels, ��,��, is then obtained by 

summing the hourly values over the 8760 hours that compose one year as 

 ��,��  = ∑ ��,��
����
� .     (3.32) 

 



35 
 

3.1.2.5. Electrical Energy Produced by Back Row Solar Panels 

The determination of the electrical energy produced by the back row solar panels is much 

more difficult to determine than the front row. All the complication comes from accessing what 

fraction of the solar panel area in a back row is shaded by the row in front of it. Of the three main 

components of solar radiation separately modeled in this work, the beam and ground reflected are 

affected by shading. The circumsolar portion of the diffuse radiation is also affected by shading 

and this is handled by combining the circumsolar diffuse radiation with beam component. 

This is an involved geometric analysis that was developed specifically for this thesis. The 

geometry associated with this problem is shown in Figure 3.2. In Figure 3.2, the wedge in the front 

represents the row of panels doing the shading, and the wedge in the back represents the row of 

panels being shaded. For purposes of developing the shading model, the solar panel rows are taken 

to be infinitely long. Of course, this is never true, but if the rows of panels are long, it is a very 

good model. As the rows become shorter, this model will over predict the amount of shading. To 

better see some of the important distances involved on the shaded panel, Figure 3.3 has been 

prepared. Figure 3.3 only shows the shaded panel. These distances are important for determining 

where a ray of the sun just comes over the row of solar panels doing the shading, impinging on the 

row of panels being shaded. With the location of this impingement point, the fraction of the back 

row solar panels that is not shaded, ���, can be determined as 

 ��� = 1 −
�

�
.  (3.33) 

where � is the height of the upper edge of the solar panel above the lower edge of the solar panel; 

and � is the height above the lower edge where the sun beam coming over the shading solar panel 

hits the surface of the shaded solar panel. See Figure 3.3 for these dimensions. 

 Angles that are required in this analysis are β, the tilt of the solar panel, γ, the azimuthal 

orientation of the solar panel, αs, the solar altitude angle, and γs, the solar azimuthal angle. The two 

solar panel angels are inputs to this analysis, and the two sun angles can be determined with 

Equations (3.10) and (3.11). Other inputs are the length of the solar panels, �, and the spacing 

between the solar panels, �. For all the results presented in this thesis the solar panel length is 

taken as 1 m and the spacing between the solar panels is taken as 5 m. Using these distances and 

trigonometry the following equations are produced  

 � = �����,  (3.34) 
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 � =
�

�����
,  (3.35) 

 � = � �����,  (3.36) 

 � = � − �,  (3.37) 

 � + � =
�

�����
,  (3.38) 

 � =
��

���
,  (3.39) 

 � = � ����,  (3.40) 

and 

 
�

�
= �����.  (3.41) 

With Equations (3.34) through (3.41), Equation (3.33) can be written as  

 ��� = 1 −
�����

�����(�� 
�����
�����

����)
  (3.42) 

and � can be written as  

 � =
�����

�����
����� − �.  (3.43) 

Equations (3.42) and (3.43) are written in terms of known quantities and can be solved.  

   

Figure 3.2: Important distances and angles for shading calculations.  
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Figure 3.3: Enhanced view of shaded row solar panel with important angles and distances. 

 

For the ground reflected component of the solar radiation, the length of the ground between 

the two rows of solar panels that is not shaded must be determined. This length is needed to 

calculate the ground view factor for the shaded panels. Here, ��� is the length of ground not shaded, 

 ��� = ���[0, � − �], (3.44) 

and ���� is the corresponding ground view factor  

 ���� =
��������� � ���

� �� � ���   ���(�����)

� �
.  (3.45) 

With the fraction of the back row panels not shaded and the ground reflectivity view factor 

adjusted for shading, equations for the electrical energy produced by the back row panels can be 

written. These equations are similar to those for the front row solar panels given in Equations 

(3.27) through (3.32), but include reductions caused by shading. The average solar energy flux, 

���, incident on the back rows of solar panels is 

 ��� = ��� + ��� + ���     (3.46) 

where the beam including circumsolar, isotropic diffuse and ground reflected pieces of the total 

incident solar energy flux are symbolized by ���, ��� and ��� respectively. The subscript �� on 
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these quantities indicates back row. This equation is the same as Equation (3.27) for the front row, 

except for the subscripts. These subscripts indicate that the components in this equation have 

different relationships than the front row and all three components are given as   

 ��� = ���(�� + ����)��,���,     (3.47) 

 ��� = ��(1 − ��) �
������

�
�,     (3.48) 

and 

 ��� =  ������� 
.     (3.49) 

Since all the back rows behave similarly, the electricity generated by all the rows behind 

the front row are determined as one quantity. Just like for the front row of panels, the solar energy 

fluxes need to be multiplied by the surface area of the back row panels, ���. This surface area is 

the entire surface area of the back row panels, not just the unshaded surface area. The fraction of 

the area that is shaded has already been accounted for in the solar energy fluxes. Thus, the electrical 

energy produced by the all the back row panels over a one hour period is 

 ��,��  = ���������.     (3.50) 

The yearly electrical energy produced by the back rows is  

 ��,��  = ∑ ��,��
����
� .     (3.51) 

The electrical energy generated by the solar portion of the wind-solar farm, both the front 

row and all the back rows, can be found by summing the front and back row values. For one hour, 

the electricity generated by the solar portion of the wind-solar farm is 

 ��,� = ��,�� + ��,��.     (3.52) 

For a year period, the electricity generated by the solar portion of the wind-solar farm is 

 ��,� = ��,�� + ��,��.     (3.53) 

 

3.2. Wind Model  

The wind energy calculations are less involved than the solar energy calculations because 

a number of complex angles and different components do not have to be included. The wind energy 

parameter required is the wind speed and it is assumed that the wind turbine is yawed to face 

directly into the wind, so wind directions are not required. The wind speed at a given location is 

obtained from measured wind speeds over the course of a year at a specified location at a specified 

elevation.  
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The energy in the wind over the area swept out by the rotor, ��, of the wind turbine is 

obtained by the simple relation 

 ����� =
�

�
���� �� ��     (3.54) 

where 

 �� =
�

�
��

�.     (3.55) 

and ��
  is the diameter of the rotor of the wind turbine. The density of the air used in this work is 

always taken as the standard value of 1.225 kg/m3. What remains to be done is to determine the 

fraction of this energy extracted by the wind turbine. This is done by using a manufacturer power 

curve for the chosen wind turbine. A power curve provides the electrical power a given wind 

turbine will produce at a given wind speed. The power curve used in this work is given below. The 

proper wind speed to enter into the power curve is the freestream wind speed at the height of the 

wind turbine hub.  

 

3.2.1. Scaling Wind Speed Data for Different Heights 

Wind speed data at every five-minute interval for the year of 2012 at the three locations 

studied in this thesis are obtained from the wind speed database published by the National 

Renewable Energy Laboratory [33]. Often, these wind speed data are tabulated at standard heights 

which may differ from the hub height of the wind turbine under consideration. This is the reason 

that wind scaling relations were developed. In this work a log wind scaling relation is used which 

is given as 

 � = ����

���
�

��
�

���
����

��
�
.     (3.56) 

In this equation, � is the speed of the wind at the hub height of the chosen wind turbine, �, and 

���� is the speed of the wind given in the measured data set which was measured at a height of 

����. The parameter ��  is an effective surface roughness height which changes depending on the 

type of landscape located around the turbine. In this work, a surface roughness factor of 0.01 m is 

used which is representative of rough pastures. Other surface roughness factors can be obtained 

from published tables.  

The measured wind speed used in this work has a high temporal resolution and is reported 

every 5 minutes over the course of a year. This means there are 105,120 wind speed values to 



40 
 

represent the wind at a given location for an entire year. Measured wind speeds are generally given 

on finer time intervals than measured solar data, because changes in the wind speed occur more 

abruptly than changes in the solar radiation incident on the surface of the earth. Thus, the wind 

calculations in this work are done over 105,120 time intervals, while solar calculations are done 

over 8760 time intervals. The only difficulty this causes is the computer has to perform more 

calculations to complete a year’s worth of wind energy calculations. This is not difficult for modern 

day computers, and should not cause concern. Another point to be made is that the measured wind 

speed data used in this work was taken in 2012. The calculations performed in this work are meant 

to be valid for any year. While there may be some changes in temporal wind profiles from year to 

year, it is assumed that 2012’s wind speed profiles are representative of any year’s wind speed 

profiles.  

 

3.2.2. Electricity Generation from Wind Turbine 

 The wind turbine used in this work is the Enercon E-82 E4 3.0 which has a cut-in wind 

speed of 3 m/s, a cut-out wind speed of 34 m/s, a hub height of 84 m, and rotor diameter of 82 m. 

The power curve for this wind turbine is shown in Figure 3.4. This power curve shows the 

maximum rated capacity of this turbine to nominally be 3 MW. This is the peak electrical power 

that this wind turbine can produce. To find the energy that this wind turbine can produce at a given 

location, electrical power outputs for each of the 105,120 wind speeds at the hub height are found. 

These electrical power outputs are labeled with the symbol ��,�. This quantity is found for each 5 

minute wind speed by linearly interpolating the discrete tabulated data used to produce the wind 

turbine power curve given in Figure 3.4.  

 When the electrical power output from all the wind turbines in the wind-solar farm is 

numerically integrated over a one hour time period an hourly electrical energy output, ��,�, can 

be found. This is done as 

 ��,� = ��
�

��
∑ ��,�

��
�      (3.57) 

where �� is the number of wind turbines in the farm. This equation simply adds the five minute 

wind turbine powers, ��,�, multiplies them by a five minute time increment in hours, 5/60, for one 

hour. There are 12, five minute time increments in an hour. This quantity is useful for comparing 

hourly electricity generation from the wind portion of the wind-solar farm to the hourly electricity 
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generation from the solar portion. The electrical energy produced over the course of a year by the 

wind turbines in the wind-solar farm is found from 

 ��,� = ��
�

��
∑ ��,�

���,���
� .     (3.58) 

This equation will produce a yearly energy output in kW-h or MW-h depending on the power units 

used for ��,�. The 
�

��
 factor dictates that the time units in the energy result is in hours.  

  

 

Figure 3.4: Wind power curve for the Enercon E-82 E4 3.0 wind turbine. 

 

3.3. Electricity Demand  

Electricity demand curves are obtained from the OpenEI energy datasets that are located 

on the web [32]. These demand curves were determined using the NREL developed software 

ENERGY PLUS. These demands are given as average powers that occur on an hourly basis. A 

key criteria for this study is that all of the electrical demand has to be met. If the wind-solar farm 

cannot meet the demand, electricity has to be purchased from the local electrical grid. 
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From the electricity produced by all the solar panels and the electricity produced by all the 

wind turbines in the wind-solar farm, the hourly electricity production from the wind-solar farm is  

 ��,��� = ��,� + ��,�.     (3.59) 

This same sum can be done on a yearly basis as well giving  

 ��,��� = ��,� + ��,�.     (3.60) 

 The electricity demand on an hourly basis, ��,�, can be directly compared to the hourly 

wind, ��,�, and solar, ��,�, electrical energy productions. Yearly demand can be found by simply 

summing the hourly demands as 

 ��,� = �� ∑ ��,�
����
� .     (3.61) 

No time increment is needed because the hourly demands are energies and not average hourly 

powers.   

 Now the excess energy produced by the wind-solar farm on an hourly basis, ��,��, can be 

determined as  

 ��,�� = ��,��� − ��,�.     (3.62) 

To calculate the excess electrical energy produced on a yearly basis, care has to be taken to 

understand that electricity purchases are made on an hourly basis and thus the yearly positive 

excess energy should be calculated as  

 ��,�� = ∑ ����0, ��,�������
� ,     (3.63) 

and the negative excess energy (deficit energy) should be calculated as  

 ��,� = − ∑ ������,��, 0�����
� .     (3.64) 

The yearly deficit electrical energy, ��,�, is the electricity that has to be purchased from the local 

electrical grid every year. The minus sign in Equation (3.65) makes the yearly deficit electrical 

energy a positive number. The yearly positive excess electrical energy, ��,��, is the yearly electrical 

energy that may be sold back to the grid.  

 

3.4. Net Present Cost Model 

The means of comparing different wind-solar farms studied in this work is through the net 

present cost of providing electricity to 25,000 typical homes in the city of interest for 25 years. 

The wind-solar farm with the lowest net present cost is considered to be the best wind-solar farm 

for that location. A constraint on this analysis is that all the demand must be met on an hourly 
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basis. If the demand cannot be met by the wind-solar farm, electricity must be purchased from the 

local grid at local grid prices. For most of the cases, excess electricity produced by the wind-solar 

farm is considered waste, and is not sold back to the gird. In one case for each location, electricity 

is sold to the grid at half the price at which it is purchased. No onsite energy storage is utilized in 

this study. Not using onsite storage eliminates capital costs, but is paid for as annual costs to obtain 

electricity to supply unmet demand.  

The cost included in this analysis are rather simple. They include capital costs, operation 

and maintenance costs, and cost of purchasing electricity from the grid. The capital costs include 

the costs to purchase and install the wind turbines and solar panels at the site. Maintenance costs 

are given on a yearly basis and include the costs to keep the wind turbines and solar panels running 

throughout the 25 years of operation. A critical cost in this analysis is the amount of electricity that 

must be purchased to meet the portion of the electricity demand that cannot be met by the wind-

solar farm.  The key trade-off in this study is between the capital costs and the cost of purchased 

electricity. The capital costs are incurred at the start of the 25 year period and do not need any 

adjustment to be included in the net present cost. The maintenance costs and electricity purchases 

are annuitized costs and have to be multiplied by a time value of money factor to obtained their 

net present value.  

The net present cost, NPC, including capital, maintenance, and electricity purchases or 

sales is determined with 

 ��� = ������� + ������� + �����,�
(���)����

�(���)�� + �����,�
(���)����

�(���)�� + ���,���,�
(���)����

�(���)�� −

                      ���,����,��
(���)����

�(���)��  

  (3.65) 

Each of the terms in this equation represent a cost or a cash flow. All but the last term on the 

righthand side is a cost. The minus sign on this term indicates that it is a net cash influx. Each of 

the terms on the righthand side of this equation has the following meanings:  

������� - the capital cost of placing wind turbines at the site where ��� is the cost per 
unit of nameplate capacity and ���� is the wind nameplate capacity  

������� - the capital cost of placing solar panels at the site where ��� is the cost per 
unit of nameplate capacity and ���� is the solar nameplate capacity  

�����,� - the annual cost to operate and maintain the wind turbines where ��� is the 

annual cost per unit of electricity produced and ��,� is the yearly electricity 
produced by the wind turbines  
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�����,� - the annual cost to operate and maintain the wind turbines where ��� is the 

annual cost per unit of electricity produced by the solar panels and ��,� is the 
yearly electricity production of the solar panels  

���,���,� - the annual cost of purchasing electricity from the grid to make up for deficit 
production by the wind-solar farm where ���,� is the cost per unit of electrical 
energy and ��,� is the yearly amount of electrical energy bought from the grid 

���,����,�� - the annual money received by selling excess electricity to the grid where 
���,�� is the selling price per unit of electrical energy and ��,�� is the yearly 
amount of electrical energy sold to the grid  

 

The factor 
(���)����

�(���)��
 shows up many times in Equation (3.65). This quantity is the inverse of the 

capital recovery factor and is used to convert an annuitized cost to a present cost. The � in this 

equation is the interest rate and the �� is the lifetime of the system in years. Essentially the interest 

rate is the cost of money and is taken as 10% for all time value of money calculations. The lifetime 

of the system is taken as 25 years. Using this interest rate and lifetime gives  

 
(���)����

�(���)�� = 9.077. (3.66) 

For most of the cases studied in this work, electricity is not sold back to the grid. This 

means the last term in Equation (3.66) is taken to be zero. For the few cases where electricity is 

sold back to the grid, the selling price is taken to be half the purchase price. This type of constraint 

is an onerous one on the wind-solar farm. This was a choice made early in the study so that the 

economics of the wind-solar farm does not lean on the electrical grid for free storage capacity.   

The goal of this work is to find the least cost combination of wind turbines, solar panels, 

and electricity purchased from the electrical grid. If the cost of producing a unit of electricity is 

high with wind and solar, the optimum system should be no wind turbines and no solar panels; all 

of the community’s electricity needs should be purchased from the grid. Due to variations in the 

wind and solar resources, there will always be times when neither wind or solar energy is available. 

Thus, it is not possible to supply all the electrical demands of the community without purchasing 

some electricity from the grid. There will always be some hourly intervals where it is more 

beneficial, from a cost stand point, to purchase electricity from the grid. This cost analysis aims to 

show what is the least costly way to deliver electricity for a 25,000 home community. This is done 

accounting for the intermittency of wind and solar energy.  
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3.5. Numerical Issues 

3.5.1. Discretization of Time 

 A time period of 8760 hours that begins at the start of the day on January 1 and terminates 

at the end of the day on December 31 is the temporal computational domain for the numerical 

calculations performed for this work. The primary time increment used in these computations is 

one hour, which means there are 8760 time increments. One hour is a natural time increment to 

use because the measured solar data is given in one hour time increments and the demand data is 

given in one hour time increments. The measured data that is not given in one hour time increments 

is the wind speeds. These are provided in 5 minute increments. So that wind results can be 

combined with solar results, the calculated five minute wind powers are converted to one hour 

wind energies using Equation (3.58). In addition, to doing most of the computations using one 

hour time increments, all results are plotted on an hourly basis, except the fundamental resource 

data which are plotted using 5 minute time intervals.  

As mentioned in prior sections of this chapter, sun ray bending is not included in the solar 

model. This is the norm in these types of calculations. The beginning and end times when the sun’s 

rays shine on a specified location on the surface of the earth is taken to be when the sun’s rays are 

parallel with a horizontal surface at that location. This occurs at sunset and sunrise as determined 

by Equations (3.5) and (3.6) respectively. In these computations, all solar energy reaching the 

surface of the earth stops at sunset and begins at sunrise. So that matching with wind results in the 

night and plot results are continuous, solar energies are assigned a value of zero during the night 

which includes times from sunset to sunrise. 

Another place in the numerical calculations where one hour time increments are not used 

is at sunset and sunrise. Sunset and sunrise usually occur between the beginning and the end of the 

hour time increments used in the MATLAB program. For this reason, the time increments for 

calculations at sunrise and sunset are shorten to match the portion of the sunset hour and the sunrise 

hour where the sun is shining. After calculating these partial hour energies, they are reassigned to 

the full hour for combination with wind energies and plotting.  

 

3.5.2. Sunset and Sunrise Adjustments 

In this work, most quantities are calculated at the middle of the one hour time increments; 

or at the middle of the shortened time increments at sunset and sunrise. When the shortened time 
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increments at sunset and sunrise become small, some solar quantities acquire unrealistically large 

values. The effect of this problem is minimized by using Equation (3.24) for the ratio of the solar 

radiation on a tilted surface to that on a horizontal surface, but it is not eliminated. To eliminate 

this problem completely, hour angles were calculated at the beginning of the hour increment where 

sunset occurs and at the end of the hour increment where sunrise occurs. This eliminated the few 

remaining unrealistic large numbers that Equation (3.24) does not eliminate.  

Another difficulty at sunset and sunrise comes in through the anisotropic index. For some 

days anisotropic indexes are calculated that give rise to circumsolar and isotropic portions of the 

diffuse radiation component that do not make sense. This problem is mitigated by setting the 

anisotropic index to zero for the sunset and sunrise time increments. This simply puts all the diffuse 

solar energy into the isotropic diffuse portion and eliminates the circumsolar portion at sunrise and 

sunset.   

The numerical adjustments made at sunset and sunrise have very little effect on the overall 

results generated in this work. Collected solar energy is small at these times.  

 

3.5.3. Shading Adjustments 

Depending on the slope of the panels and the day of the year the sun may be above the 

horizon, but behind the solar panels. If the sun is completely behind the solar panels the nonshaded 

fraction is zero, ��� = 0. This occurs whenever the incidence angle becomes greater than or equal 

to 90o. Since the sun is behind the shaded panel in this situation, the distances � should become 

 � = ���(������)  (3.67) 

and 

 � = ���[0, � − (� − � ��� �)]  (3.68) 

and the nonshaded ground length is  

 ��� = ���[�, �].  (3.69) 

For times when the sun is at azimuthal angles less than -89o or greater than 89o and the 

incidence angle is still between 0o and 90o the back row solar panels are unshaded and ��� = 1. 

These are times when the sun may be parallel or north of a line running along the rows of solar 

panels. The length of nonshaded ground in this case is should be taken as shown in the equations 

above.  
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Chapter 4  

Results 
 

 

 

 

 

 

 

 A great deal of results from the mathematical models developed in Chapter 3 of this report 

are presented in this chapter. To keep the amount of repetition in the writing to a minimum, the 

first section of this chapter, Organization of Results, is provided. This should aid the reader in 

understanding the results presented. 

 The major reason for generating these results is to determine what combination of wind 

turbines, solar panels, and grid generated electricity provides the lowest cost in meeting a given 

electricity demand for a 25-year period. Of course, this lowest cost depends on a number of factors. 

The overall factor that determines a number of other factors that influence the benefits of using a 

wind-solar farm is location. Location determines the magnitude of the wind and solar resource, the 

magnitude of the electrical demands, and the cost of buying electricity from the grid. Of course, 

larger wind and solar resources are going to make wind-solar farms more attractive. For systems 

that do have energy storage, demand profiles that match resource profiles will make wind-solar 

farms more attractive. None of the wind-solar farms used in this study have on site energy storage, 

however, one case for each location will sell power back to the grid at a reduced price: effectively 

using the grid as energy storage. Not utilizing onsite storage, forces the analysis to optimize the 

number of wind turbines and number of solar panels in the combined facility against the local price 

of grid electricity. It also forces the analysis to use only that wind and solar capacity that generates 

demand electricity at a price lower than local grid generated power. In order for a wind-solar farm 

to be attractive from a purely economic perspective, it must produce electricity at a lower cost than 
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simply purchasing electricity from the gird. Thus, the price of buying electricity from the grid sets 

an upper limit on the unit electricity cost that a wind-solar farm must fall below to be economically 

desirable. One factor studied in this work, that is not taken to be a function of location, is the capital 

cost of wind and solar equipment. This cost will be increased and reduced by given percentages at 

each location, but the same base values are used for all locations.   

 

4.1. Organization of Results 

 The major grouping of results in this chapter is by location. Location is the way the next 

three sections of this chapter are labeled. Three locations are studied: 

1. Rio Vista, California, 
2. Dallas, Texas, and  
3. Dayton, Ohio. 

As mentioned above, location affects a number of other quantities; these quantities will be treated 

as subsections and sub-subsections. The reason Rio Vista, California is chosen is that it has a good 

wind resource, a good solar resource and high grid electricity costs. The reason Dallas, Texas was 

included in this study is that it has a decent wind resource, a decent solar resource, and fair 

electricity costs. The wind and solar resources in Dallas, Texas are less than those in Rio Vista, 

California; and their cost of electricity is lower. The last location chosen for this study is Dayton, 

Ohio. This location was picked because it is the location where this work is being performed. More 

importantly, Dayton, Ohio has lowest wind and solar resources of the three locations studied, and 

very low electricity rates. This combination of factors is a severe test on the economic viability of 

a wind-solar farm. Dayton does not have the worst wind and solar resources in the country, but 

they are much less than Rio Vista, California and less than Dallas, Texas. The fact that Dayton’s 

solar and wind resources are not as good as other parts of the country and grid generated electricity 

is inexpensive is supported by the fact that a small amount of wind and solar energy facilities have 

been built around Dayton, Ohio.  

 Within each location section of this report, four subsections are given. These four 

subsections are 

1. Electricity Demand,  
2. Wind and Solar Resources,  
3. Wind-Solar Farm Electricity Production, and 
4. Wind-Solar Farm Economics. 
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The Electricity Demand subsection presents a plot of the electricity used by 25,000 typical 

homes located in the city being studied. The demand varies from location to location, but does not 

vary for any of the results generated for that location. The demand for a typical home at each of 

the three locations studied was obtained from the OpenEI energy datasets [32]. As will be seen 

from these demand curves, air conditioning electricity requirements increase the amount of 

electricity demanded in the summer. For locations where electrical heating is used, electricity 

requirements increase in the winter. Dallas, Texas and Dayton, Ohio use electrical heating. 

Compared to heating and cooling, electricity used for appliances and lighting does not vary 

appreciably, but lighting usage is usually slightly higher in the winter time. The horizontal axis on 

each of these plots, and several others presented in this chapter, have the time of year marked out 

in hours. In general, spring runs between the hours of 1416 to 3624, summer from 3624 to 5832, 

and fall from 5832 to 8016. Winter is located on the beginning and end of the graph and goes from 

0 to 1416 and 8016 to 8760.  

To present the hourly wind and solar resource at a given location, it was decided to put the 

wind resource, the solar resource, and the sum of the two resources on the same graph. This graph 

has three curves with the blue one representing the wind resource, the yellow one representing the 

solar resource, and the black one representing the sum of the solar and wind resources. Wind 

resource data is given on 5 minute intervals, while solar resource data is given on 60 minute 

intervals. All resource data is plotted on 5 minute intervals; however, the solar resource data uses 

the same magnitude for the 12 five minute intervals that land in a given hour. Having these three 

curves on one graph is crowded, but it allows comparisons to be made between the wind and solar 

resources. It also allows the reader to determine the relative magnitude of these resources at 

different times of the year. For example, at some sites the wind resource may be larger in the 

winter, but the solar resource may be larger during the summer. The reader should also note that 

the wind and solar resource results are given in MW/m2. This was done because the wind-solar 

farm dependent results are given in MW or MW-h. All wind resource data is obtained from 

NREL’s wind energy database [33] and all solar resource data is obtained from the NREL’s solar 

energy database [34]. 

 The third subsection, Wind-Solar Farm Electricity Production, contains results for the 

yearly electricity production of different sized wind-solar farms and the excess energy produced 

by these wind-solar farms. On both of these plots, the size of the solar capacity is varied along the 
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horizontal axis and the size of the wind capacity is treated as a parameter and varies from curve to 

curve. Also, for both of these graphs, pure wind farm performance can be ascertained by looking 

at the location where the wind capacity lines intersect the vertical axis; and pure solar farm 

performance can be ascertained by looking at the wind capacity line marked 0 MW. For the energy 

production graphs, the yearly electricity produced by the wind turbines and the solar panels 

combined is shown on the vertical axis. For the excess energy production graphs, the electricity 

produced above the demand is shown on the vertical axis. If the wind-solar farm cannot meet the 

demand, the excess electricity is shown as a negative number. A negative number indicates a 

deficit of electricity for the year. A certain size of wind-solar farm can have a positive excess 

electricity, and still require that electricity be purchased from the grid. The timing of the excess 

electricity affects the results and yearly excess energy graphs do not show this timing. Detailed 

plots showing the timing of excess energy are given in the next subsection.  

The last subsection, Wind-Solar Farm Economics, is where most of the graphs are located. 

As indicated in the subsection title, most of the results in this subsection depend on the cost 

associated with various aspects of electricity production. Obtaining these results is the reason the 

results in the prior subsection were generated. Five different cost scenarios are shown in these 

subsections for Rio Vista, California and Dallas, Texas, while six different cost scenarios are 

shown for Dayton, Ohio. Each of these cost scenarios is placed in its own sub-subsection. The first 

cost scenario presented is the base case; the remaining four or five cost scenarios have one cost 

altered from the base case.   

 The base case uses the inputs shown in Table 4.1. As seen in Table 4.1, these inputs are 

mostly related to costs. These costs include the cost to purchase a kW-h of electricity to make up 

for any demand that cannot be met by the wind-solar farm, the capital cost of the wind turbines, 

and solar panels, the time value of money and operations and maintenance costs for wind turbines 

and solar panels. For the base case, the cost of electricity is taken as the low industrial rate as 

provided by the Electricity Local website [35]. Industrial rates are much lower than residential 

rates and using these rates makes it tougher for wind and solar to compete with traditional grid 

generated electricity. All cases studied use the industrial rate for grid electricity, except one case 

that investigates the effects of using the higher commercial rate.  
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Table 4.1:  Inputs used for base case net present cost scenario. 

Quantity Value 

Electricity rate Industrial Rate which equals $0.0898/kW-h for Rio Vista, 
California, $0.0557/kW-h for Dallas, Texas, and 
$0.0196/kW-h for Dayton, Ohio.  

Cost of wind turbines installed $1300 per kW of nameplate capacity 

Cost of solar panels installed $1000 per kW of nameplate capacity 

Operations and maintenance costs 
of wind turbines 

$0.00368 per kW-h of electricity produced 

Operations and maintenance costs 
of solar panels installed 

$0.0012 per kW-h of electricity produced 

Lifetime of capital equipment 25 years 

Interest rate 10% 

 

For the base case, none of the excess power generated by the combined wind-solar farm is 

sold back to the grid. This limits the attractiveness of wind-solar farms; however, it is felt to be a 

necessary restraint. If infinite, free storage capacity were made available to the wind-solar farm, 

there would be no optimization of the wind and solar capacity. One objective of this work is to 

show the complementarity of wind and solar. This constraint is relaxed in one case for each 

location to see the effect of selling excess wind-solar farm generated electricity back to the grid. 

To keep this relaxed constraint from completely eliminating the complimentary of wind and solar, 

the selling price is half of the purchase price.  

For long term projects the time value of money is important. All wind-solar farm dependent 

results are based on a 25-year life. Most wind turbines and solar panels are capable of operating 

for this time span. The remaining critical number in a long lifetime economic analysis is the interest 

rate. A 10% interest rate is used for all economic analyses done in this thesis. These time value of 

money numbers make the capital costs of equipment a more significant factor in the economic 

analysis. In this work, three capital costs of equipment are studied. One case uses the baseline 

capital costs of equipment shown in Table 4.1, another case uses a capital cost of equipment 

increased by 50% from the baseline values, and yet another case uses capital costs of equipment 
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decreased by 50% from the baseline values. For Dayton, Ohio the base case capital costs are further 

reduced by 75% in hopes of obtaining a minimum cost using wind and solar energy. 

Each of the five or six cost scenarios will show three plots, as long as the plots are not 

trivial. The first plot shown is the cost of delivering all the demanded electricity at a given location 

for 25 years in present day dollars for a range of wind turbine capacities and solar panel capacities. 

For all cases, the range of wind turbine capacities run from 0 to 108 MW and the range of solar 

capacities run from 0 to 125 MW. This provides ample scope to find a minimum cost. To find the 

present-day cost of running any combination of wind and solar farm, one simply has to find the 

intersection of the solar farm capacity, located on the horizontal axis, and the wind farm capacity 

curve. This intersection corresponds to one point on the vertical axis which is the present-day cost 

to deliver 25 years of electricity. For pure wind farm costs, simply look at intersections of the wind 

curves with the vertical axis. For pure solar farm costs, look for the intersection of the solar farm 

capacity value with the 0 MW wind capacity curve and trace it over to the vertical axis. To find 

the cost of providing all 25 years of electricity from the grid, find the intersection of the 0 MW 

wind capacity curve with the vertical axis. One can see that this graph provides a great deal of 

information on the costs of delivering 25 years of electricity to 25,000 homes.  

The other two curves provided in each of these cost scenario sub-subsections are hourly 

details on the electricity produced and hourly details on the excess electricity produced by the 

wind-solar farm determined to provide the minimum cost of electricity in the graph described in 

the prior paragraph. The hourly electricity produced includes the electricity produced by all wind 

turbine capacity and all solar panel capacity. It does not include electricity purchased from the 

grid. The hourly excess electricity produced shows the amount of electricity produced by the wind 

and solar capacity above the demand. A negative excess energy means deficit electricity 

production by the wind-solar farm. Negative excess energy production is the amount of electricity 

that has to be purchased from the grid for that particular hour. 

  

4.2. Rio Vista, California 

4.2.1. Electricity Demand 

The hourly electricity demand of 25,000 homes in  Rio Vista, California is shown in Figure 

4.1. Because electricity demand curves were not available for Rio Vista, those for Sacramento, 

California were used. Sacramento is just 40 miles from Rio Vista. The electricity load demand 
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ranges between 16 MW to 46 MW and has high demands during summer and early fall peaking at 

96 MW. These occasional high electricity load demands during summer conditions are typical for 

air conditioning usage. The total electricity demand for the entire year is 218,470 MW-h.  

The dark blue portion of the curves in Figure 4.1 provide the reader an idea of the most 

common demands. The same color was used for the entire curve, but the curve appears darker 

where the lines are more densely packed in the time direction. Because of the scales used in this 

plot it is not possible to see the daily variations of electricity usage. This information is contained 

in this plot, as all demand curves are done on an hourly basis. In general, daytime electricity 

demands are larger than nighttime electricity demands. Cooling electricity demands essentially run 

from hour 2904 to hour 6552 for Rio Vista. This is from the beginning of May to the end of 

September. Outside of the summer and early fall demands, December and January show higher 

demands than October and March. This is due to shorter days which require more lighting. 

 

 

Figure 4.1: Electricity demand for 25000 typical homes located in Rio Vista, California. 

 

4.2.2. Wind and Solar Resources 

The wind and solar resources available in Rio Vista, California are shown in Figure 4.2. 

The solar energy resource in Figure 4.2 is for solar panels tilted from the horizontal at the latitude 
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of Rio Vista. This tilt angle is commonly recommended to collect the most solar energy over a 

one-year period using fixed panels [36]. It may be that other tilts better match the demand profile, 

but that is the subject of a future study. The wind power available at a height of 84 meters is also 

given. While the black line representing the combination of wind and solar power somewhat covers 

up the wind power curve and the solar power curve, putting these curves on one plot allows for 

comparison. All the large spikes of the combined wind-solar curve in Figure 4.2 are caused by the 

wind; the solar power never goes over 1.3 kW/m2. Rio Vista has good resource availability with 

strong wind and exceptional solar illumination. Both the wind and solar resource show their largest 

values in the summer. 

When the wind resource is integrated over one-year a value of 4.02 MW-h/m2  is obtained. 

When the solar resource is integrated over one year a value of 2.28 MW-h/m2 is obtained. These 

are good wind and solar resources. A nice aspect of the wind and solar energy resources available 

in Rio Vista is that they tend to peak in the summertime. This means these resources can address 

the peak cooling loads caused by air conditioning.  

 

 Figure 4.2: Wind and solar resource power densities for Rio Vista, California. 

 

4.2.3. Wind-Solar Farm Electricity Production 

Yearly energy produced by various sizes of wind-solar farms has been plotted in Figure 

4.3 and yearly excess energy produced by the same sizes of wind-solar farms has been plotted in 
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Figure 4.4. Figure 4.3 shows the annual energy generation by the wind-solar farms ranging from 

0 to 5.7x105 MW-h. Annual yearly excess energy for various configurations ranges from -2.18x105 

MW-h to 3.58x105 MW-h. Figure 4.3 clearly shows a linear increase in total energy generated 

with increasing solar panel capacity. A linear relationship also exists in yearly energy produced 

versus the wind turbine capacity. Both of these trends are expected. A more surprising result is the 

close to linear relationship seen in the excess energy plot. As expected for lower wind and solar 

capacities, yearly net energy produced by the wind-solar farms is not enough for yearly electricity 

needs; even if there were battery storage on site to store the excess energy produced.  

 

Figure 4.3: Yearly energy produced by different sizes of combined wind and solar installations 
located in Rio Vista, California. 
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Figure 4.4: Yearly excess energy produced by different sizes of combined wind and solar 
installations located in Rio Vista, California. 

 

4.2.4. Wind-Solar Farm Economics 

4.2.4.1.  Base Case  

The net present cost of producing electricity for 25,000 homes located in Rio Vista, 

California for 25 years using various configurations of wind-solar farms using the economic values 

given in Table 4.1 are shown in Figure 4.5. The key point on this plot is where these costs reach a 

minimum value. This can be seen to occur with 24 MW of wind capacity and 25 MW of solar 

capacity. This configuration provides a minimum net present cost of electricity for 25,000 homes 

for 25 years of $149 million. The cost of supplying this electricity from the grid is $178 million. 

Thus, building a wind-solar farm in Rio Vista will save the community $29 million present day 

dollars. The other interesting result from this plot is the nearly equal wind and solar capacities 

required to obtain the minimum cost. This equal balance occurs even though savings of $17 million 

can be obtained with a pure wind farm of 36 MW and $17 million of savings can be obtained with 

a pure solar farm of 27 MW. This shows that a combined wind-solar farm is better than wind alone 

or solar alone. The combination helps to reduce the intermittency cost associated with wind alone 

or solar alone. 
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Detailed hourly power generated by the minimum cost wind-solar farm determined from 

the results presented in Figure 4.5 are given in Figure 4.6. For this same wind-solar farm, hourly 

excess power generated is given in Figure 4.7. Figure 4.6 clearly shows that the combined wind-

solar farm is generating significantly more electrical power in the summer than the winter. This is 

desirable to meet the summer air conditioning loads. Summer power generation peaks at 47 MW 

due to high wind and solar resources. The excess power plot shows that the summer demands are 

being met better than winter demands. It appears that the minimum cost wind and solar capacities 

is obtained by sizing the wind-solar farm to meet summer demands. This means that electric power 

has to be purchased from the grid for many hours during the year. For Rio Vista, most of this 

purchasing is being done in the wintertime with the larger summer demands being met to a greater 

extent by the increased wind and solar resource in the summer.  

 

Figure 4.5: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Rio Vista, California using $1300 per kW nameplate capacity for wind, 
$1000 per kW nameplate capacity for solar, and an industrial electricity price of $0.0898 per kW-h 
for purchasing electricity to cover energy deficits. 

 

 



58 
 

 

Figure 4.6: Power produced by a 24 MW nameplate capacity wind and 25 MW nameplate capacity 
solar installation located in Rio Vista, California. This combined wind and solar installation 
provides the minimum cost of energy and is the lowest plotted value in Figure 4.5. 

 

 

Figure 4.7: Excess power produced by a 24 MW nameplate capacity wind and 25 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.5. 
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4.2.4.2.  Electricity Sold Back to Grid  

The results in this section are different from the base case results because electrical energy 

is sold back to the grid. So that an optimization between wind and solar sizes is still obtained, 

electrical energy is sold back to the gird at half the price it is bought from the grid. For Rio Vista, 

excess wind-solar farm produced electricity is sold back to the grid at $0.0449 per kW-h. There 

are three graphs presented in this sub-subsection: Figure 4.8 shows the present day costs of 

supplying power to 25,000 homes for one year, Figure 4.9 shows the hourly power produced at 

the minimum cost point in Figure 4.8, and Figure 4.10 shows the excess power produced at the 

minimum cost point. Figure 4.9 corresponds to Figure 4.5 for the base case, Figure 4.10 

corresponds to Figure 4.6, and Figure 4.11 corresponds to Figure 4.7.  Figures 4.3 and Figures 4.4 

for the base case which show the yearly energy produced and yearly excess energy for different 

sizes of wind-solar farms still applies, the only difference here is the excess energy is sold back to 

the gird.  

Figure 4.8 shows that selling electricity back to the grid moves the minimum cost point to 

60 MW of wind capacity and 52 MW of solar capacity. This results in a minimum cost of $134 

million. This compares to 24 MW of wind capacity and 25 MW of solar capacity with a minimum 

cost of $149 million for the base case. Thus, selling excess electrical energy produced back to the 

grid in Rio Vista will save the community 44 million present day dollars. Selling power drops the 

cost of providing 25 years of electricity by $15 million when compared to base case. Selling power 

noticeably increases the wind capacity and the solar capacity. This trend indicates that the levelized 

cost of wind produced electricity is lower than the levelized cost of solar produced electricity for 

Rio Vista. These optimum sizes for minimum cost also indicate that the levelized cost of wind and 

solar are higher than $0.0449 for the conditions used in this analysis. It is also interesting to note 

that steepness of the curves to the left of the minimum cost point relative to the steepness of the 

curves to the right of the minimum cost point. This behavior has flipped from the base case. Selling 

excess electricity to the grid has made larger wind and solar capacities more economically 

attractive. 

Figure 4.9 shows that the ability to sell power to the grid increases the excess electricity 

produced overall, of course all of this excess is sold. At 60 MW of wind capacity and 52 MW of 

solar capacity the yearly excess electricity produced is 1.25.x105 MW-h. There is still a net yearly 
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deficit, but it is not as large as the deficit seen for the base case which has an excess of 5.89x104 

MW-h.  

 
Figure 4.8: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Rio Vista, California using $1300 per kW nameplate capacity for wind, 
$1000 per kW nameplate capacity for solar, an industrial electricity price of $0.0898 per kW-h for 
purchasing electricity to cover energy deficits, and a selling price of $0.0449 per kW-hr for excess 
electricity generated.  
 

 
Figure 4.9: Power produced by a 60 MW nameplate capacity wind and 52 MW nameplate capacity 
solar installation located in Rio Vista, California. This combined wind and solar installation 
provides the minimum cost of energy and is the lowest plotted value in Figure 4.8 
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Figure 4.10: Excess power produced by a 60 MW nameplate capacity wind and 52 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.8.  

 

4.2.4.3.  Commercial Price of Electricity 

In this sub-subsection, base case inputs shown in Table 4.1 replace the industrial cost to 

purchase electricity with the higher commercial cost. This makes a wind-solar farm more attractive 

economically. In the base, the cost used to buy electricity from the grid was $0.0898 per kw-h, in 

this case it is $0.1408 per kW-h. It is typical for commercial electricity rates to be more than 

industrial rates. Making this alteration to the inputs produces the results shown in Figure 4.11. 

Using commercial rates causes the lowest cost point to move to 36 MW nameplate capacity of 

wind and 29 MW name plate capacity of solar, providing a minimum cost of $194 million. This 

compares to 24 MW of wind capacity and 25 MW of solar capacity with a minimum cost of $149 

million for the base case. All three of these numbers increase because the cost to cover demand 

increases. It must be recognized that the cost of using a grid only supply of electricity has increased 

to $279 million. This is one of the higher costs shown in Figure 4.11. Obviously as the cost of grid 

power increases, the benefits of using wind and solar increase. It is interesting that the wind 

capacity increased by 50% while the solar capacity increased by only 16% from the base case. The 

total cost of power increased by $46 million when compared to the base case. When commercial 
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electricity rates are in effect, the total savings garnered by using wind and solar compared to buying 

all electricity from the grid is $85 million.  

The hourly power generated by the minimum cost configuration of a wind-solar farm is 

plotted in Figure 4.12 and hourly excess power generated by the minimum cost configuration of a 

wind-solar farm is plotted in Figure 4.13. Both Figure 4.12 and Figure 4.13 have similar shapes to 

Figure 4.6 and Figure 4.7, respectively. The difference between these two cases is magnitude, the 

commercial cost case having larger wind-solar farm electricity generation, and thus more excess 

power, than the base case. The higher amount of electrical power that is wasted in the commercial 

power case over the base case is justified by reducing the amount of grid power that needs to be 

purchased by 36.2% compared to the base case, as the commercial price is significantly higher 

than the industrial purchase price.  

  
Figure 4.11: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Rio Vista, California using $1300 per kW nameplate capacity for wind, 
$1000 per kW nameplate capacity for solar, and a commercial electricity price of $0.1408 per 
kW-h for purchasing electricity to cover energy deficits. 
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Figure 4.12: Power produced by a 36 MW nameplate capacity wind and 29 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.11 

 
 

 

Figure 4.13: Excess power produced by a 36 MW nameplate capacity wind and 29 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.11. 
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4.2.4.4.  Capital Costs Increased by 50 Percent 

In this case, the costs for installing wind and solar equipment are increased by fifty percent. 

The cost to install wind is now $1950 per kW nameplate capacity and the cost to install solar is 

$1500 per kW nameplate capacity. Even at these increased capital costs some wind and solar is 

still the lowest cost option. The lowest cost point is for 12 MW nameplate capacity of wind and 

20 MW nameplate capacity of solar. This results in a minimum cost of $171 million. This is below 

the $178 million to directly buy power from the grid. This minimum cost point is inflated from the 

base case cost of $149 million. Thus, building a wind-solar farm in Rio Vista with a 50 percent 

increase in installation prices will save the community $7 million present day dollars when 

compared to purchasing power from grid. 

The hourly power generated by the minimum cost wind-solar farm is shown in Figure 4.15 

and the hourly excess power generated is shown in Figure 4.16. Figure 4.16 shows that positive 

excess power generated is rare. Most excess power is generated in the spring and summer. The 

higher costs of capital used in this case drive the minimum cost point to a smaller capital 

installation, and thus more deficit power.  

 

 
Figure 4.14: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Rio Vista, California using $1950 per kW nameplate capacity for wind, 
$1500 per kW nameplate capacity for solar, and an industrial electricity price of $0.0898 per kW-
h for purchasing electricity to cover energy deficits. 
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Figure 4.15: Power produced by a 12 MW nameplate capacity wind and 20 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.14. 
 

  

Figure 4.16: Excess power produced by a 12 MW nameplate capacity wind and 20 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.14. 
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4.2.4.5.  Capital Costs Decreased by 50 Percent 

In this case, capital costs for installing wind turbines and solar panels is decreased by fifty 

percent to $650 per kW nameplate capacity for wind and $500 per kW nameplate capacity for 

solar. Figure 4.17 shows that the minimum cost installation nameplate capacities are 48 MW for 

wind and 32 MW for solar. The minimum present-day cost for 25 years of electricity is $113 

million. This is a reduction of $36 million from the base case minimum cost and a reduction of 

$65 million compared to buying all electricity from the grid.  

Because of the lower cost of capital in this case, Figure 4.17 shows more electrical energy 

being produced by the minimum cost wind-solar farm as compared to the minimum cost base case 

wind-solar farm in Figure 4.6. More energy being produced for the same demand drives the 

production of more excess power as shown in Figure 4.19. At these low capital rates, it is 

advantageous to cover more of the demand, even if this means more electricity is wasted.  

 

 

Figure 4.17: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Rio Vista, California using $650 per kW nameplate capacity for wind, $500 
per kW nameplate capacity for solar, and an industrial electricity price of $0.0898 per kW-h for 
purchasing electricity to cover energy deficits. 
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Figure 4.18: Power produced by a 48 MW nameplate capacity wind and 32 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.17. 

 

Figure 4.19: Excess power produced by a 48 MW nameplate capacity wind and 32 MW nameplate 
capacity solar installation located in Rio Vista, California. This combined wind and solar 
installation provides the minimum cost of energy and is the lowest plotted value in Figure 4.17. 
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4.3. Dallas, Texas 

4.3.1. Electricity Demand 

The electricity demand shown in Figure 4.20 for Dallas, Texas is very different from the 

electricity demand for Rio Vista, California shown in Figure 4.1. Immediately obvious is the much 

larger demands seen in the winter. This is due to electrical heating that is probably pure resistance 

heating. While these heating demands are large, they tend to occur on isolated days in December, 

January, February, and early March. The electricity load for Dallas ranges between 16 MW to 150 

MW with peaks in the winter up to 196 MW. The total electricity demand for one year is 431,851 

MW-h.  

  

Figure 4.20: Electricity demand for 25000 typical homes located in Dallas, Texas. 

 

4.3.2. Wind and Solar Resources 

The wind and solar resources available in Dallas, Texas are shown in Figure 4.21. The 

solar energy resource is for a panel tilted at the latitude of Dallas. The wind power available in 

Dallas is at a height of 84 meters. When the wind resource is integrated over one-year, a value of 

2.53 MW-h/m2 is obtained; and when the solar resource is integrated over one year a value of 1.90 

MW-h/m2 is obtained. The combined resources provide 4.43 MW-h/m2 for one year. Both the wind 

and solar yearly resources are smaller in Dallas, Texas than Rio Vista, California.  
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When making comparisons between the wind resource in Dallas, Texas (Figure 4.21) and 

the wind resource in Rio Vista, California (Figure 4.2) you need to watch the scale difference. 

Dallas has a maximum y-value of 0.008 MW/m2 and Rio Vista has a maximum y-value of 

0.006 MW/m2. Keeping this in mind, it can be seen that the wind gusts in Dallas are larger than 

Rio Vista. However, the yearly wind resource in Dallas is less than that in Rio Vista. Overall it 

appears that Dallas has wind and solar distributions that are more similar during the winter and 

summer than Rio Vista.   

 

Figure 4.21: Wind and solar resource power densities for Dallas, Texas. 

 

4.3.3. Wind-Solar Farm Electricity Production 

Yearly energy produced by various configurations of wind-solar farms in Dallas, Texas 

has been plotted in Figure 4.22 and total excess energy produced by the configurations of wind-

solar farms for an entire year has been plotted in Figure 4.23. Annual total energy generated for 

various configurations ranges from 0 to 4.4 x 105 MW-h. It is interesting to note that this maximum 

annual energy generation is 23% less than that in Rio Vista, California. The annual excess energy 

generated ranges from -4.3x105 MW-h to 0.06x105 MW-h. The same range of wind capacities and 

solar capacities were considered for both Dallas, Texas and Rio Vista, California, but Dallas, Texas 

cannot produce net positive electricity over the course of a year for most wind-solar farm sizes 

simulated. This is mostly due to the large electrical demands required in Dallas as compared to 
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Rio Vista. This can be seen by comparing Figure 4.20 to Figure 4.1 and realizing that Dallas’ 

yearly electrical demand is 98% larger than Rio Vista’s.   

 

 

Figure 4.22: Yearly energy produced by different sizes of combined wind and solar installations 
located in Dallas, Texas. 

 

 

Figure 4.23: Yearly excess energy produced by different sizes of combined wind and solar 
installations located in Dallas, Texas. 
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4.3.4. Wind-Solar Farm Economics 

4.3.4.1.  Base Case  

Costs for producing power for 25 years with different sized wind-solar farms in Dallas, 

Texas is shown Figure 4.24. This curve has no minimum for any sized wind-solar farm. The 

minimum occurs when there is no wind and no solar. This results in a present-day cost for 25 years 

of electrical energy of $218 million. Because the minimum cost point is at 0 MW of wind capacity 

and 0 MW of solar capacity, no figures are shown for the hourly energy produced or the hourly 

excess energy. The hourly energy produced is simply a horizontal line at zero production. The 

excess power produced is simply an inversion of the demand curve shown in Figure 4.20.   

The primary reason why wind and solar are not cost effective under base case conditions 

in Dallas, Texas is the low cost of grid electricity. The cost of gird electricity in Dallas is $0.0557 

kW-h. This is 38% below the $0.0898 cost of grid generated electricity in Rio Vista, California. 

The bend in the curves in Figure 4.24 close to the vertical axis indicate that a minimum is getting 

close. The Capital Costs Decreased by 50% sub-subsection below shows that decreasing the cost 

to purchase and install capital equipment makes wind-solar farms cost competitive in Dallas, 

Texas.   

 

Figure 4.24: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dallas, Texas using $1300 per kW nameplate capacity for wind, $1000 per 
kW nameplate capacity for solar, and an industrial electricity price of $0.0557 per kW-h for 
purchasing electricity to cover energy deficits. 



72 
 

4.3.4.2.  Electricity Sold Back to Grid  

Figure 4.25 shows that using some wind and solar does not reduce the cost for 25 years of 

electricity when excess power is sold back to the grid at half the industrial rate, $0.02785 per kW-h. 

It is still cheaper to purchase all required electricity from the local grid. This curve has no minimum 

for any sized wind-solar farm. The minimum occurs when there is no wind and no solar. Because 

the minimum cost point is at 0 MW of wind capacity and 0 MW of solar capacity no figures are 

shown for the hourly power produced or the hourly excess power. The hourly energy produced is 

simply a horizontal line at zero production. The excess power produced is simply an inversion of 

the demand curve shown in Figure 4.20. 

 

Figure 4.25: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dallas, Texas using $1300 per kW nameplate capacity for wind, $1000 per 
kW nameplate capacity for solar, an industrial electricity price of $0.0557 per kW-h for 
purchasing electricity to cover energy deficits, and a selling price of $0.02785 per kW-h for excess 
electricity generated.   
 

4.3.4.3.  Commercial Price of Electricity 

Increasing the cost of grid electricity makes some solar capacity profitable, but wind 

capacity is not. Figure 4.26 shows that only solar capacity is cost competitive. A minimum now 

occurs at a wind nameplate capacity of 0 MW and solar nameplate capacity of 49 MW. The 

minimum cost of supplying 25 years of electricity with 49 MW of solar is $307 million. This is 
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much higher than the $194 million minimum found for the Rio Vista, California commercial 

electricity price. This is due to the larger demand in Dallas, as compared to Rio Vista.  

This is a rather surprising result because the wind resource is better than the solar resource 

in Dallas, Texas. However, yearly integrated numbers do not show the match between the timing 

of the wind resource and the demand and the timing between the solar resource and the demand. 

It is believed that the solar resource must be better matched to the demand than the wind resource 

to have this result. This case is an example of where the intermittence of the solar resource is not 

helped by tapping the wind resource. 

The detailed power production and detailed excess power production are given in Figure 

4.27 and Figure 4.28, respectively. These graphs show larger power production and more excess 

power than Rio Vista, California. There are high amounts of power generated over the year, 

peaking at 56 MW. These plots show a relatively uniform power generation throughout the year, 

but excess power seems to peak in the spring and the fall when heating and cooling are low and 

deficit power peaks during the winter. The differences in the excess power curve in Dallas from 

the comparable curve in Rio Vista, California (Figure 4.13), is due to the different loads in the two 

locations and the different prices of grid electricity.  

 
 Figure 4.26: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dallas, Texas using $1300 per kW nameplate capacity for wind, $1000 
per kW nameplate capacity for solar, and a commercial electricity price of $0.0816 per kW-h for 
purchasing electricity to cover energy deficits. 
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Figure 4.27: Power produced by a 0 MW nameplate capacity wind and 49 MW nameplate capacity 
solar installation located in Dallas, Texas. This combined wind and solar installation provides the 
minimum cost of energy and is the lowest plotted value in Figure 4.26.   
 

 

Figure 4.28: Excess power produced by a 0 MW nameplate capacity wind and 49 MW nameplate 
capacity solar installation located in Dallas, Texas. This combined wind and solar installation 
provides the minimum cost of energy and is the lowest plotted value in Figure 4.26. 
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4.3.4.4.  Capital Costs Increased by 50 Percentage 

Just like the base case shown in Figure 4.24, no minimum cost of energy is obtained when 

the cost of wind capacity is increased by 50% and the cost of solar capacity is increased by 50%. 

The yearly cost of energy for this case, for different capacities of wind and solar, is shown in Figure 

4.29. The results on this plot show no signs of a minimum, even less so than the base case results. 

In fact, the slopes on these curves are steeper and the separation between the different capacity 

wind power curves are larger compared to the base case. These are results of the increased cost of 

wind and solar capacity. This means all electric demand is satisfied by grid purchased electricity 

and the present day cost of 25 years of electricity for this case remains the same as the base case 

at $218 million.  

 

 

Figure 4.29: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dallas, Texas using $1950 per kW nameplate capacity for wind, $1500 per 
kW nameplate capacity for solar, an industrial electricity price of $0.0557 per kW-h for 
purchasing electricity to cover energy deficits. 

 
4.3.4.5.  Capital Costs Decreased by 50 Percent 

As the base case yearly cost of energy plot shown in Figure 4.24 indicated, the cost of using 

a wind-solar farm was close to being less expensive than buying power from the grid, it is 

reasonable to expect a wind-solar farm to be cost competitive when the cost of wind turbines and 

solar panels is reduced. Thus, when capital cost are decreased by 50%, Dallas, Texas should show 
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wind and solar lowering the cost compared to buying all the required power from the electrical 

grid. This is exactly what Figure 4.30 shows. The minimum present day cost occurs when 48 MW 

of wind nameplate capacity is used, and 59 MW of solar nameplate capacity is used. These are 

larger wind and solar capacities than any of the Rio Vista, California cases and any of the other 

Dallas, Texas cases presented in this thesis. The present-day cost of 25 years of electricity using 

this size wind-solar farm is $195 million, saving $23 million compared to providing all electricity 

from the grid. While $23 million is a significant amount of money, this is not as much as the $65 

million of savings obtained in Rio Vista, California for the comparable case. These reduced 

savings in Dallas, Texas are due to the much lower cost of grid purchased electricity. 

Hourly power generated by the minimum cost configuration of a wind-solar farm in Dallas, 

Texas is given Figure 4.31 and the hourly excess-deficit power generated is given in Figure 4.32. 

There are high amounts of power generated for the least cost configuration peaking at 113 MW. It 

is interesting that positive excess power occurs in the spring and fall and negative excess powers 

occur in the winter and summer. This is a different behavior than seen in Rio Vista, California.  

 

 

Figure 4.30: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dallas, Texas using $650 per kW nameplate capacity for wind, $500 per 
kW nameplate capacity for solar, and an industrial electricity price of $0.0557 per kW-h for 
purchasing electricity to cover energy deficits. 
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Figure 4.31: Power produced by a 48 MW nameplate capacity wind and 59 MW nameplate 
capacity solar installation located in Dallas, Texas. This combined wind and solar installation 
provides the minimum cost of energy and is the lowest plotted value in Figure 4.30. 

 

 

Figure 4.32: Excess power produced by a 48 MW nameplate capacity wind and 59 MW nameplate 
capacity solar installation located in Dallas, Texas. This combined wind and solar installation 
provides the minimum cost of energy and is the lowest plotted value in Figure 4.30. 
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4.4. Dayton, Ohio 

4.4.1. Electricity Demand 

The electricity demand for Dayton, Ohio is shown in Figure 4.33. This demand has 

different characteristics than Dallas, Texas and Rio Vista, California. The first difference is the 

cooling loads are not as big. The second difference is the heating loads are larger than those in Rio 

Vista, California, but do not reach the magnitudes of those seen in Dallas, Texas; however, the 

heating loads are more consistent in Dayton than Dallas. These demand plots should not be taken 

to mean that more heating is required in Dallas, Texas than Dayton, Ohio. The heating system used 

in Dallas is direct resistance heating, while that used in Dayton is an air source heat pump. An air 

source heat pump can provide three or four times the heat that direct electrical resistance heating 

unit can provide for every unit of input electricity. For Dayton, Ohio the total electricity demand 

for one year is 224,981 MW-h.  

 

 

Figure 4.33: Electricity demand for 25000 typical homes located in Dayton, Ohio. 

 

4.4.2. Wind and Solar Resources 

The wind, solar, and combined resources for Dayton, Ohio are shown in Figure 4.34. The 

solar resource is for the power hitting a unit surface tilted at the latitude of Dayton. Of the three 
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locations studied in this thesis, Dayton has the weakest wind and solar resource. Dayton’s 

combined wind and solar resource is 35% less than that in Rio Vista, California. This has an 

adverse effect on the economics of wind and solar in Dayton, Ohio. When the wind resource is 

integrated over one-year a value of 2.43 MW-h/m2 is obtained. When the solar resource is 

integrated over one year a value of 1.64 MW-h/m2 is obtained. The combined resource provides 

4.07 MW-h/m2 for one year.  

 

Figure 4.34: Wind and solar resource power density for Dayton, Ohio  

 

4.4.3. Wind-Solar Farm Electricity Production 

Energy produced by various configurations of wind-solar farms for an entire year in 

Dayton, Ohio is shown in Figure 4.35. What is immediately obvious when these plots are 

comparted to similar plots for Dallas, Texas and Rio Vista, California is the smaller values 

obtained. Annual total energy generated for various configurations ranges from 0 to 

3.9x105 MW-h. Annual excess energy generated ranges from -2.2x105 MW-h to 1.6x105 MW-h.  

The yearly excess energy produced by various sizes of wind-solar farms is shown in Figure 

4.36. This excess energy plot lies between that of Rio Vista, California (see Figure 4.4) and that 

for Dallas, Texas (see Figure 4.23). The excess energy plot for Dallas, Texas has most wind-solar 

farm sizes unable to meet the demands of 25,000 homes in Dallas, Texas. Dayton’s plot shows the 

larger capacity wind-solar farms simulated delivering positive excess power. Rio Vista shows 
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more than half of the wind-solar farms modeled showing positive excess power. These differences 

are due to the wind and solar resource available, as well as the electricity demands of the three 

locations.  

 

Figure 4.35: Yearly energy produced by different sizes of combined wind and solar installations 
located in Dayton, Ohio. 
 
 

  

Figure 4.36: Yearly excess energy produced by different sizes of combined wind and solar 
installations located in Dayton, Ohio. 
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4.4.4. Wind-Solar Farm Economics 

4.4.4.1.  Base Case  

The present day cost of generating 25 years of electricity with various configurations of 

wind and solar farms with an industrial electricity price of $0.0196 per kW-h in Dayton, Ohio is 

plotted in Figure 4.37. No minimum is seen in this plot. In fact, all the curves are fairly linear; 

more linear than those for the Dallas, Texas base case (see Figure 4.24). At least for Dallas it 

appeared that a minimum was close, this is not seen in the Dayton results. The question should be 

asked, why is the Dayton cost analysis is so poor? The big reason is the low cost of grid electricity. 

No information was found for why an industrial electricity price of $0.0196 per kW-h can be 

delivered in Dayton. All national production costs for electricity are higher than this number. This 

leads one to believe that power companies in Dayton are selling power to industrial customers 

below their costs. It cost just $40 million to deliver electricity to 25,000 homes in Dayton, Ohio 

for 25 years. This is an incredibly low cost. Because the minimum cost point is at 0 MW of wind 

capacity and 0 MW of solar capacity no figures are shown for the hourly power produced or the 

hourly excess power produced.  

 

 

Figure 4.37: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dayton, Ohio using $1300 per kW nameplate capacity for wind, $1000 per 
kW nameplate capacity for solar, and an industrial electricity price of $0.0196 per kW-h for 
purchasing electricity to cover energy deficits. 
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4.4.4.2.  Electricity Sold Back to Grid  

Even when electricity is sold back to the grid in Dayton, Ohio, wind-solar farms do not 

result in a smaller cost of electricity than simply buying all power from the grid. This is shown in 

Figure 4.38. The selling price of electricity in this case is a measly $0.0098 per kW-h. This does 

not affect the economics of Dayton wind-solar farms to a noticeable degree. Like the base case 

there does not even appear to be hope of a minimum occurring if the grid electricity prices are 

increased. This will be shown in the next section.  

 

 

Figure 4.38: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dayton, Ohio using $1300 per kW nameplate capacity for wind, $1000 per 
kW nameplate capacity for solar, an industrial electricity price of $0.0196 per kW-h for 
purchasing electricity to cover energy deficits, and a selling price of $0.0098 per kW-h for excess 
electricity generated.  

 

4.4.4.3.  Commercial Price of Electricity 

Even when the price of electricity is increased to the commercial rate of $0.0483 per kW-h, 

wind-solar farms are not cost competitive against grid purchased electricity. This is shown in 

Figure 4.39. Figure 4.39 is showing more curvature than the base case and selling cases shown in 

the prior two sub-subsections, but there still seems to be a way to go to reach an electricity price 

that would provide a minimum in the curve. It costs $99 million to supply power to the 25,000 

home community when power is purchased from the grid at commercial price.  
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Figure 4.39: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dayton, Ohio using $1300 per kW nameplate capacity for wind, $1000 per 
kW nameplate capacity for solar, and a commercial electricity price of $0.0483 per kW-h for 
purchasing electricity to cover energy deficits. 

 

 

4.4.4.4.  Capital Costs Increased by 50 Percent 

Obviously increasing the capital costs for wind and solar will not show a minimum in the 

yearly cost of energy for any nonzero capacity wind-solar farm. Even though it is obvious this is 

the case, Figure 4.40 is still shown. This plot is included for completeness sake more than anything 

else. What can be seen from this plot is the present day costs become more linear and higher than 

those shown for the base case in Figure 4.37.   
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Figure 4.40: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dayton, Ohio using $1950 per kW nameplate capacity for wind, $1500 per 
kW nameplate capacity for solar, and an industrial electricity price of $0.0196 per kW-h for 
purchasing electricity to cover energy deficits. 
 

 

4.4.4.5.  Capital Costs Decreased by 50 Percentage 

The present-day cost of generating 25 years of electricity with various configurations of 

wind and solar farms with an industrial electricity price of $0.0196 per kW-h in Dayton, Ohio and 

the capital costs reduced by 50% from the base case prices is plotted in Figure 4.41. Again, no 

minimum is seen. There cost reduces from the base case shown in Figure 4.37, but not enough to 

overcome the low grid price of $0.0196 per kW-h.  
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Figure 4.41: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dayton, Ohio using $650 per kW nameplate capacity for wind, $500 per 
kW nameplate capacity for solar, and an industrial electricity price of $0.0196 per kW-h for 
purchasing electricity to cover energy deficits. 

 

4.4.4.6.  Capital Costs Decreased by 75 Percent 

To see if reducing the capital costs by 75%, to $325 per kW nameplate capacity of wind 

and $250 per kW nameplate capacity of solar, will produce a minimum in the cost curve, Figure 

4.44 was produced. Finally, a minimum is found using 0 MW of wind nameplate capacity and 20 

MW of solar nameplate capacity. The minimum cost is $40 million which is a saving of $0.4 

million over buying the electricity from the grid. This is not a significant savings for 25 year of 

electricity for 25,000 homes.  

Hourly periodic power generated by the minimum cost configuration of a pure solar farm 

in Dayton, Ohio when reducing the capital cost of wind and solar equipment by 75% is shown in 

Figure 4.44. The hourly excess power generated for this case is plotted Figure 4.45. While there 

are a few peaks in excess power that go above the zero mark, essentially the system is operating 

in a deficit mode. The hourly excess energy plot and the yearly cost of energy plot indicate that a 

75% reduction in capital costs is just barely causing some solar capacity to be less expensive than 

buying all electrical power from the grid.  
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Figure 4.42: Yearly net present cost of energy for different sizes of combined wind and solar 
installations located in Dayton, Ohio using $325 per kW nameplate capacity for wind, $250 per 
kW nameplate capacity for solar, and an industrial electricity price of $0.0196 per kW-h for 
purchasing electricity to cover energy deficits. 

 

 

Figure 4.43: Power produced by a 0 MW nameplate capacity wind and 20 MW nameplate capacity 
solar installation located in Dayton, Ohio. This combined wind and solar installation provides the 
minimum cost of energy and is the lowest plotted value in Figure 4.42. 
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Figure 4.44: Excess power produced by a 0 MW nameplate capacity wind and 20 MW nameplate 
capacity solar installation located in Dayton, Ohio. This combined wind and solar installation 
provides the minimum cost of energy and is the lowest plotted value in Figure 4.42. 

 

4.5. Summary of Results 

A great deal of results have been presented in this chapter. The results presented are yearly 

energy values and detailed hourly values. The more important of these quantities are the yearly 

results connected with the size of the wind-solar farm that provides the minimum cost of electricity 

for 25,000 homes. These results are summarized in Tables 4.2, 4.3 and 4.4. Table 4.2 shows the 

results for Rio Vista, California, Table 4.2 shows the results for Dallas, Texas and Table 4.4 shows 

the results for Dayton, Ohio. These tables show the cost parameter deviated from the base case, 

the nameplate capacity of the wind turbines at minimum cost, the nameplate capacity of the solar 

panels at minimum costs, and the minimum cost. These tables clearly show that the best results 

are obtained for Rio Vista, California and the worst results are obtained for Dayton, Ohio. The 

results for Dallas, Texas are in between these two. The reasons for these results are the cost of 

buying electricity from the grid, the capital costs of wind turbines and solar panels, whether 

electricity is being sold back to the grid, the magnitude of the wind and solar resource available at 

the site, and how well the demand profile matches the solar resource profile. In this study it seems 

the most significant of these is the cost of grid electricity at the site.  
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The results from Rio Vista, California clearly indicate the advantages of using wind 

turbines combined with solar panels to meet a specified demand. The Dallas, Texas results also 

indicate this for the case where capital costs are reduced by 50%. For the commercial electricity 

case for Dallas, Texas only solar provides cost reductions, indicating there are some cases where 

only using solar is advantageous. It is thought that using only wind can be beneficial under the 

right conditions. The results from Dayton, Ohio simply indicate that it is very difficult to compete 

against very low electrical rates. Probably artificially low grid electrical rates.  
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Table 4.2: Summary of results at minimum cost points for Rio Vista, California. 

Rio Vista, California 
Quantity Base Electricity 

Sold Back 
to Grid 

Commercial 
Price of 

Electricity 

Capital 
Costs 

Increased 
by 50% 

Capital 
Costs 

Decreased 
by 50% 

Purchase 
Price of 

Electricity 
($/kW-h) 

$0.0898 $0.0898 $0.1408 $0.0898 $0.0898 

Selling 
Price of 

Electricity 
($/kW-h) 

$0.000 $0.0449 $0.000 $0.000 $0.000 

Capital Cost 
of Wind  
($/kW of 

Nameplate 
Capacity) 

$1300 $1300 $1300 $1950 $650 

Capital Cost 
of Solar  

 ($/kW of 
Nameplate 
Capacity) 

$1000 $1000 $1000 $1500 $500 

Nameplate 
Capacity of 

Wind 
(MW) 

24 60 36 12 48 

Nameplate 
Capacity of 

Solar 
(MW) 

25 52 29 20 32 

Net Present 
Cost for 25 

Years of 
Electricity 

(millions of $) 

$149 $134 $194 $171 $113 

Savings 
Compared to 

Grid Only 
(millions of $) 

$29 $44 $85 $7 $65 
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Table 4.3: Summary of results at minimum cost points for Dallas, Texas. 

 

 

   

  

Dallas, Texas 
Quantity Base Electricity 

Sold Back 
to Grid 

Commercial 
Price of 

Electricity 

Capital 
Costs 

Increased 
by 50% 

Capital 
Costs 

Decreased 
by 50% 

Purchase 
Price of 

Electricity 
($/kW-h) 

$0.0557 $0.0557 $0.0816 $0.0557 $0.0557 

Selling 
Price of 

Electricity 
($/kW-h) 

$0.000 $0.0279 $0.000 $0.000 $0.000 

Capital Cost 
of Wind  
($/kW of 

Nameplate 
Capacity) 

$1300 $1300 $1300 $1950 $650 

Capital Cost 
of Solar  

 ($/kW of 
Nameplate 
Capacity) 

$1000 $1000 $1000 $1500 $500 

Nameplate 
Capacity of 

Wind 
(MW) 

0 0 0 0 48 

Nameplate 
Capacity of 

Solar 
(MW) 

0 0 49 0 59 

Net Present 
Cost for 25 

Years of 
Electricity 

(millions of $) 

$218 $218 $307 $218 $195 

Savings 
Compared to 

Grid Only 
(millions of $) 

$0 $0 $13 $0 $24 
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Table 4.4: Summary of results at minimum cost points for Dayton, Ohio. 

Dayton, Ohio 
Quantity Base Electricity 

Sold Back 
to Grid 

Commercial 
Price of 

Electricity 

Capital 
Costs 

Increased 
by 50% 

Capital 
Costs 

Decreased 
by 50% 

Capital 
Costs 

Decreased 
by 75% 

Purchase 
Price of 

Electricity 
($/kW-h) 

$0.0196 $0.0196 $0.0483 $0.0196 $0.0196 $0.0196 

Selling 
Price of 

Electricity 
($/kW-h) 

$0.000 $0.0098 $0.000 $0.000 $0.000 $0.000 

Capital Cost 
of Wind  
($/kW of 

Nameplate 
Capacity) 

$1300 $1300 $1300 $1950 $650 $325 

Capital Cost 
of Solar  

 ($/kW of 
Nameplate 
Capacity) 

$1000 $1000 $1000 $1500 $500 $250 

Nameplate 
Capacity of 

Wind 
(kW) 

0 0 0 0 0 0 

Nameplate 
Capacity of 

Solar 
(kW) 

0 0 0 0 0 20 

Net Present 
Cost for 25 

Years of 
Electricity 

(millions of $) 

$40 $40 $99 $40 $40 $39.6 

Savings 
Compared to 

Grid Only 
(millions of $) 

$0 $0 $0 $0 $0 $0.4 
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Chapter 5  

Conclusions  
 

 

 

 

 

 

 

 This work has shown that combining wind turbines with solar panels in a wind-solar farm 

that uses the local electrical grid as backup to meet a specified demand can reduce costs compared 

to wind turbines alone, solar panels alone, or grid generated electricity alone. Positive results for 

wind-solar farms do not always result, but depend on the conditions and costs present at a given 

location. Three locations were studied in this thesis: Rio Vista, California, Dallas, Texas, and 

Dayton, Ohio. One base case cost condition along with four alternative cost conditions were 

studied in Rio Vista, California and Dallas, Texas. The same base case condition with five 

alternative cost conditions were studied in Dayton, Ohio. All four or five alterations of the base 

case cost conditions changed one cost in the base cost scenario. Base case cost conditions use local 

industrial rates for grid generated electricity, capital costs for wind turbines of $1300 per kW of 

nameplate capacity, capital costs for solar panels of $1000 per kW of nameplate capacity, operation 

and maintenance costs for the wind turbines of $0.00368 per kW-h of electricity generated, 

operation and maintenance costs for the solar panels of $0.0012 per kW-h of electricity generated, 

a lifetime of the wind-solar farm of 25 years, and an interest rate of 10%. For the base case costs 

the only location where wind-solar farms provided economic benefit over supplying all the demand 

from the local grid was Rio Vista, California. The minimum cost was for a wind-solar farm that 

contained approximately equal amounts of wind turbine and solar panel capacity. Thus, combining 

wind with solar and utilizing grid backup reduced the costs of providing a demand for 25,000 

homes, for 25 years in Rio Vista, California. These results demonstrate that a combination of wind 
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and solar reduces the intermittency problem of wind alone or solar alone under the right conditions. 

It also shows that when intermittency issues are included in an economic analysis, wind and solar 

produced electricity can be still be better economically than grid supplied electricity alone.   

The first cost alteration from the base case studied was excess electricity generated by the 

wind-solar farm could be sold to the gird at half the industrial rate. The second alteration from the 

base case was to use the commercial rate for grid electricity, instead of the industrial rate. This 

increased the cost of grid electricity by 57% in Rio Vista, California, 46% in Dallas, Texas, and 

146% in Dayton, Ohio. The highest jump in electricity rates is seen in Dayton, Ohio but it must be 

remembered that the industrial rates in Dayton are extremely low. The third and fourth alterations 

had to do with increasing the capital equipment costs by 50% and decreasing the capital equipment 

costs by 50%. Finally, for the Dayton, Ohio location capital equipment costs were decreased by 

75%.  Results show that increasing the grid cost of electricity and decreasing the capital cost of 

wind turbines and solar panels favors wind-solar farms.  

For Rio Vista, California all five cost scenarios resulted in a wind-solar farm with grid 

backup providing cheaper electricity than grid provided electricity alone. All five of these cost 

scenarios also had a combination of wind and solar capacity being cheaper than wind or solar 

alone. It is impressive that a wind-solar farm is still cost advantageous in Rio Vista, California 

when the capital costs for wind and solar are increased by 50%. The savings over grid only 

electricity shrunk by 24% when the capital cost were increased by 50% from the base case, but 

combined wind and solar was still beneficial. The most savings in Rio Vista, is obtained when the 

capital cost decrease by 50%. The largest wind-solar farm in Rio Vista is utilized to produce the 

minimum costs for the case where electricity is sold back to the grid.  

In Dallas, Texas a combined wind-solar farm is only advantageous when the capital cost 

of wind turbines and solar panels are decreased by 50%. Larger amounts of wind capacity and 

solar capacity are utilized in this case than any case studied, but this occurs because of the large 

electrical demands of 25,000 homes in Dallas, not because of cost benefits. It is interesting that for 

the commercial electricity price case in Dallas, a pure solar farm helps to reduce the cost of 

electricity, but wind does not help.  

The only case that a wind-solar farm is attractive in Dayton, Ohio is when the cost of capital 

is decreased by 75% and this just barely is cost advantageous. The major reason why wind-solar 
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farms do not fair well in Dayton, Ohio is the low cost of grid electricity. A lesser, but contributing 

factor, is the smaller wind and solar resources in Dayton, Ohio.  

 Besides providing cost information which allowed for the direct comparisons of wind-solar 

farms, pure wind farms, pure solar farms, and purchasing all electricity from the grid, it was also 

an objective of this work to present the electrical production of different sized wind-solar farms. 

This was done for all three locations, for all combinations of wind nameplate capacities that ranged 

from 0 to 108 MW and solar capacities that ranged from 0 to 120 MW. These were sufficient 

ranges to isolate minimum cost points for the electrical demands for all cases studied. Calculated 

electricity production rates were compared to electricity demands on an hourly basis, summed, and 

excess yearly energy production plots produced. Some values in these excess energy plots are 

negative and some are positive. The most severe demands were put forth by a community in Dallas, 

Texas. Even though yearly excess energy plots are positive, this does not mean electricity is not 

purchased from the grid. Purchasing decisions are made on an hour by hour basis. Hourly energy 

production plots and hourly excess energy plots for all the minimum cost points are presented in 

this thesis. Both the yearly and hourly excess energy plots indicate that it is not cost efficient to 

generate all demand with a wind-solar farm, but only a fraction of the demand. This fraction is a 

function of the cost of electricity, the capital costs of wind turbines and solar panels, the wind and 

solar resources present at a location and how the wind and solar resource hourly profiles match the 

hourly demand profiles.   

 Detailed mathematical models were used to predict the wind and solar resource present at 

a given location. Energy in the wind is calculated by obtaining actual wind speeds at 5 minute 

intervals for a year. Since these are given at a certain height above the ground that is different than 

the hub height of the wind turbines, these wind speeds are scaled to the hub height with a 

logarithmic scaling equation. Wind turbine power curves are then used to predict how much of the 

energy in the wind is converted into electricity. Energy in the solar radiation is calculated by 

obtaining actual total horizontal incident radiation in one hour intervals for a year. These measured 

total, incident values are converted to beam and diffuse components using a clearness index. The 

diffuse component is separated into circumsolar and isotropic diffuse portions using an anisotropic 

index. The ground reflected component is obtained by using a ground reflectivity. All these solar 

quantities for a horizontal surface are properly altered for a tilted surface. Solar panels facing due 

south, titled at an angle from the horizontal equal to the latitude were used to provide maximum 
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solar energy collection with fixed panels over the course of a year. Shadowing of solar panels by 

the panels in front of them is included in this analysis. The electricity produced by the solar panels 

is determined by using a solar panel conversion efficiency. The economic model used in this work 

accurately includes the time value of money.  
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