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to both scattering and absorption by projecting different spatial frequencies. This can be

seen clearly in Figure 2.3, where Rd, curve is plotted with respect to spatial frequencies by

changing the optical parameters at a single pixel. For example, Figure 2.3 (right) shows Rd

values do not change at thigh frequencies at different absorption coefficients. This indicates

that Rd is not sensitive to absorption parameter, µa, but only scattering parameter, µ′
s.

Figure 2.3: Flow chart for quantifying optical properties. In this example, there are two
spatial frequencies that are demodulated and fit to obtain the optical property maps. Data
provided from Open-SFDI.

Figure 2.3 (left) indicates that scattering parameters is sensitive to both high and low

spatial frequencies. As mentioned before, this spatial frequency-dependent sensitivity al-
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lows for accurate quantification of both µa and µ′
s.

There is a trade-off between the accuracy of optical property quantification and data

acquisition time. Typically, three spatial frequencies at DC, low and high spatial frequency

components are used to obtain accurate quantification of both µa and µ′
s. A least squares

minimization method is used to fit Rd for each pixel to obtain the optical property maps. A

flow chart of optical property map quantification is shown in Figure 10.

A diagram of a traditional spatial frequency domain imaging instrument is shown

below in Figure 2.4.
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Figure 2.4: Diagram of spatial frequency domain imaging system from “Quantitation and
mapping of tissue optical properties using modulated imaging [5].”
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Multiple LED light at different wavelengths coupled with a light guide focused onto

a spatial light modulator (SLM) that produces the sinusoidal modulation patterns. Light

from DMD illuminate the tissue phantom and diffuse reflected light is measured my scien-

tific CMOS (sCMOS) camera. Cross-polarizers eliminates specular reflection so that only

photons that diffuse in the tissue are measured.

2.2 Compressed Single Pixel Imaging

Conventionally, the sampling rate must be twice the bandwidth of the signal to capture

all its Fourier components dictated by the Shannon-Nyquist theorem, which is the funda-

mental principle behind many consumer devices such as radio receivers, visual electronics,

and medical imaging devices [2]. However, with compressed sensing, sparse signals can

be recovered, perfectly, from sub-Nyquist samples with high probability. This has led to

compressed single pixel imaging which is the imaging modality used to capture the light

field projected by our proposed SFDI instrument.

In this section, I will first describe image compression which enables compressed

sensing to find a sparse representation of the diffuse light-field that is measured in SFDI.

Second, the compressive sampling approach followed by the single pixel camera architec-

ture will be described. Following the compressive measurement and single pixel camera

sections, briefly, the compressed sensing framework that reconstructs images from a sub-

Nyquist number of compressive measurements will be discussed. Finally, a single pixel

camera based spatial frequency domain imaging instrument developed by Torabzadeh et.

al. is mentioned due its heavy influence on this work.
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2.2.1 Image Compression

Images captured by cameras are digitally stored as matrices, where each entry corresponds

to an illuminance value. This thesis will focus on grayscale images that are represented

by a 2-D matrix whose entries correspond to the illuminance of a light field at a single

wavelength, λ. Furthermore, images are “flattened” from a matrix into a vector, x, that is

N length. Each pixel in x, denoted by p, can be represented a linear combination of basis

vectors,

x(p) =
N∑
i=1

ψi(p)ωi. (2.10)

The basis vectors, ψi, can be re-arranged into a matrix, Ψ, to more concisely write

Equation 2.10 in matrix notation,

x = Ψω. (2.11)

Transform coding is used in compressive image file formats, such as the Joint Pho-

tographic Experts Group (JPEG) and Tagged Image File Format (TIFF) standards. The

idea is that natural images have a sparse representation when transformed into some rep-

resentation basis, Ψ. The discrete cosine transformation (DCT), implemented in the first

JPEG standard, is known to sparsely represent images in terms of sinusoidal waves with

increasing frequency. By transforming the image vector, x, a more efficient representation,

ω, in terms of its corresponding representation basis, Ψ, is revealed. Therefore, all that is

needed to represent an image is a sparse coefficient vector, ω, and the representation basis

or dictionary, Ψ, that was originally used to sample the image.

In some sense, a sparsifying basis transformation reveals the most important compo-

nents of signals, such as images, so less important components may be discarded without

much loss in perceptual quality. For demonstration purposes, the Lena test image is com-
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Figure 2.5: Lena image compressed via the fast Fourier transformation (FFT). The spectro-
gram reveals the most important components of the coefficient vector, ω. The perceptual
quality of the compressed version of Lena is perceptually similar to the uncompressed ver-
sion considering 95% of coefficients, ω, are discarded.
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pressed via transform coding using the fft function in MATLAB shown in Figure 2.5.

From Figure 2.5, despite discarding a large portion of components, the perceptual

quality of the compressed version of Lena is still very good, but is noticeably “fuzzier”

than the uncompressed version since the high frequency components were discarded.

For compressed sensing, mentioned in Sparse Signal Recovery, the sinusoidally mod-

ulated light field projected in SFDI must have a sparse representation especially when trans-

formed into a basis consisting of sinusoid wave functions. In theory, an image of the light

field could be recovered, perfectly, from a single DCT component, ω, that corresponds to

the spatial frequency of the projected SFDI pattern. However, sampling directly with a

representation basis, Ψ, poses hardware limitations, so a set of measurement matrices from

the measurement basis, Φ, are used to sample, instead. In previous works mentioned in

the Compressed Single Pixel Spatial Frequency Domain Imaging section, a single pixel

camera based SFDI instrument incorporated the same sampling method mentioned. The

following section describes how compressed samples encoded with a measurement basis,

Φ, can be mapped to a representation basis, Ψ, such that a sparse coefficient vector, ω, can

be recovered via optimization.

2.2.2 Compressive Sampling

Considering each entry in a matrix corresponds to a byte (UINT8), typically, and some

cameras have pixel counts in the millions, it can be memory intensive to store images. As

a result of the high memory demands, it is common for consumer grade cameras to include

hardware that performs some sparsifying transformation, such as the DCT, to the raw (not-

compressed) image to reduce its size in memory. In some applications, the sample then

compress approach may not be feasible if the dimensionality of the image is too great,

which begs the question, “Why not directly acquire compressed samples?” This section

describes the compressive sampling approach.

There are hardware related challenges with acquiring compressed samples directly in
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the optical domain, which will be discussed in the Acquiring Compressed Samples in the

Optical Domain section representation basis, but it has to do with the instrument being

digital, not analog. So, it is ideal to sample the image scenery, x, with a measurement

basis, Φ, that can be represented by Boolean logic. Commonly used binary measurement

matrices include the Bernoulli, Hadamard and Noiselet measurement matrices [4, 2]. In

this work, the Bernoulli measurement matrix was used to sample.

A single Bernoulli measurement matrix and its corresponding probability distribution

is shown in Figure 2.6.

Figure 2.6: Image of 64x64 resolution Bernoulli measurement matrix (left) and correspond-
ing distribution. Measurement matrix shown is 80% sparse (zero-valued).

An important characteristic of the Bernoulli measurement matrix is its sparsity and

dimensions. As shown in the distribution, 80% of the 4096 matrix’s values are false. Also,

in the case of compressive sampling, the dimensionality of the measurement basis corre-

sponds to the resolution of the recovered image, x.
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Compressive sampling is mathematically equivalent to the inner product of the mea-

surement basis, Φ, and image, x,

g = Φx. (2.12)

The measurement vector, g, has a length, K, which is the number of measurements

sampled. Each row in the measurement matrix, Φ, can be thought of as a measurement

matrix like the one shown in Figure 2.6. The transformation of the measurement basis, Φ,

into the representation basis, Φ, is expressed by Θ. A visualization of the measurement

vector, g, measurement basis, Φ, representation basis, Φ, and coefficient vector, ω, is

shown in Figure 2.7.

Figure 2.7: Visualization of measurement vector as inner product of measurement basis
and image. The measurement vector, g, is expressed as the inner product between the
measurement matrix, Φ, and scenery, x. The Lena image, x, can also be expressed in
terms representation basis, Ψ, and coefficients, ω.

As shown in Figure 2.7, the measurement vector, g, is a linear combination of the

measurement basis, Φ, and target image, x. Also, it can be represented as a linear com-

bination of, Φ, some representation basis, Ψ, and vector of corresponding coefficients, ω.

It is important to note that the coefficient vector, ω, is sparse and the measurement vector,

g, is dense. If we were to only sample x with the representation basis, Ψ, it would be
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equivalent to sampling ω directly. But, as mentioned before, the measurement basis, Φ, is

easier to implement with hardware, so the acquired measurement vector, g, is mapped to a

representation basis, Ψ, so that a sparse solution or coefficient vector, ω, can be recovered.

For compressive sampling to work, a measurement and representation basis pair must be

1.) highly incoherent and 2.) obey the restricted isometry property.

A current assumption is incoherence may be used a measure of the viability of a

measurement and representation basis pair. The idea is that if a set of measure basis pairs

are highly coherent, it is impossible to distinguish whether the energy in the signal comes

from one basis vector or another [4]. Incoherence of a representation and sensing basis pair

is the max correlation between the columns,

µ(M) = max
j<k

|〈Mj,Mk〉|
||Mj||2||Mk||2

(2.13)

The Bernoulli measurement matrix, for instance, is highly incoherent with the DCT

representation basis, Ψ, especially, with increasing dimensionality. For a given measure-

ment and representation basis pair, the coherence falls in the range between 1 and
√
N .

Approximately speaking, the coherence between any fixed representation basis and ran-

dom (Bernoulli) measurement matrices is
√

2log(N), where n is the number of rows and

columns in the measurement/representation bases [2]. The coherence between the DCT

and Bernoulli matrices with respect to dimensionality is plotted in Figure 2.8.
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Figure 2.8: Coherence of Bernoulli and DCT basis pair. Random measurements are more
incoherent with the DCT basis with increasing dimensionality.
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Another property used to measure the viability and robustness of a measurement and

representation basis pair is the restricted isometry property. If the measurement basis, Φ,

obeys the restricted isometry property, x can be recovered perfectly from an underdeter-

mined system of equations. The restricted isometry property is formally defined in Equa-

tion (10).

(1− δs)||x||2L2 ≤ ||ΦΨx|| ≤ (1 + δs)||x||2L2 (2.14)

The restricted isometry value, δs, is constant for a measurement basis, Φ. If δs is not

too close to one, Φ approximately preserves the Euclidean length of x. Unfortunately, RIP

is difficult to compute in practice, but there are families of measurement and representation

basis pairs that are known to obey this property including the Bernoulli and DCT basis pair

that is used in this work [2].

2.2.3 Acquiring Compressed Samples in the Optical Domain

A single pixel camera is a relatively new camera architecture that acquires images via com-

pressive sampling [8]. While multi-pixel cameras capture the light-field directly in the

spatial domain, the single pixel camera used in our proposed instrument acquires com-

pressed measurements via a series of random (Bernoulli) projections. In this section, the

single pixel camera architecture is described.

In a broad sense, single pixel cameras are a specific type of single pixel imaging device

that may be used to image visible to near-infrared light. In the case of SFDI, the signal of

interest is a sinusoidally modulated light source that has a wavelength, λ, of 660 nm. To

project the measurement matrices, mentioned in the compressive sampling section, a digital

micromirror device (DMD) is used.

A DMD is a 2D array of bacteria-sized mirrors that can be controlled, programmati-

cally, to project measurement matrices. The mirrors of a DMD pivot on an actuator such
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that the light hitting the surface of the micromirror array can be reflected or blocked [15].

Mirrors that reflect light are considered ON, while those that block light are OFF. A simple

diagram of the mirrors on a DMD chip is shown below in Figure 2.9.

Figure 2.9: Diagram of digital micromirror device states left and orientation of mirrors on
chip right.

It is common for there to be millions of mirrors on a single DMD chip, but as men-

tioned in the Compressive Sampling section, the dimensionality of the projected measure-

ment matrices must not be too great. Otherwise, recovering the target image, x, is infeasi-

ble. Therefore, the mirrors are binned into superpixels to reduce the dimensionality of the

measurement matrices. Practical dimensions for measurement matrices are 32x32, 64x64,

and 128x128. Bernoulli measurement matrices with the aforementioned dimensions are

shown in Figure 2.10.
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Figure 2.10: Images of Bernoulli measurement matrices that are 80% sparse. The resolu-
tion of image (a) is 32x32, (b) 64x64, and (c) 128x128.

The white pixels in 2.10 represent the ON or true state while the black pixels represent

the OFF or false state. Measurement matrices, like the Bernoulli measurement matrices

shown in Figure 2.10, are streamed to a DMD control board, sequentially, in a single pixel

camera setup like the one shown in 2.11 to optically encode some target scenery. In the

case of SFDI, the target scenery is a spatially modulated light field.
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Figure 2.11: Schematic of single pixel camera setup capturing modulated light field from
an SFDI instrument. The digital micromirror device (DMD) shown projects measurement
matrices like the ones shown in 2.10.

In Figure 2.11, the spatial light modulator (SLM) illuminates the target scenery with

an SFDI pattern. Light reflecting off the target image, x, is then focused onto the DMD

with Lens 1. The DMD projects the measurement basis, Φ, in the optical domain by

selectively reflecting or blocking light into Lens 2, which is then focused onto the active

area of an avalanche photodiode (APD). The data acquisition device (DAQ) measures the

voltage signal emitted by the APD to acquire a measurement from a measurement matrix

in the measurement basis, Φ. The process repeats for each measurement matrix, ψi, until

the desired K number of measurements are acquired for image reconstruction.

2.2.4 Sparse Signal Recovery

One of the goals of compressed sensing is to find sparse solutions to under-determined

systems of equations that generally have an infinite number of solutions. By using a sparsity

promoting criterion, a sparse solution can be found if the restricted isometry property holds,
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