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ABSTRACT 

 

 

Farid, Hasan. MS, Deparment of Neuroscience, Cell Biology and Physiology, Wright 

State University, 2020. Protocol Development and Optimization for rNLS Mouse 

Characteristic Assessment 

 

 

Protocol development and optimization are vital in the scientific method process. 

By having accurate protocols, one can properly assess the characteristics of their animal 

model for any given experiment. One animal newly adopted in our lab was the novel 

regulatable nuclear localization sequence (rNLS) mouse model. This novel mouse model 

displays symptoms of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal 

dementia (FTD), after the accumulation of the hTDP-43 (TAR DNA-binding protein 43) 

aggregate in the central nervous system. The expression of this protein occurs after the 

removal of deoxycycline from the mouse’s food source. Once the removal of the drug, 

this activates a tetracycline-controlled activation system, which causes expression of 

hTDP-43. The ability to control the expression of hTDP-43 provides the uniqueness to 

this ALS/FTD mouse model allowing researchers to study these fatal neurodegenerative 

diseases at various time points in the mouse’s timeline.  

In this thesis, three different studies were conduct that either developed or 

optimized protocols to assess characteristics of this novel rNLS mouse. The first study 

investigates the development of cognitive behavioural tasks designed assess working 

memory and learning in this mouse model. These behavioural tasks are the Y-maze, the 
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NOR (NOR) and the Holeboard tests. In addition to developing behavioural task 

protocols suited for our mouse model, a comparison was also done between WT (WT) 

and NS (NS) rNLS mouse, which are mice part of the rNLS colony that do not have the 

bigenic mutation expressing ALS/FTD, to determine if NS rNLS could be used as 

control, the results confirm they can be used. In the second study, the Y-maze protocol 

was utilized in assessing short-term working-memory of rNLS mice 3 and 5 weeks off 

doxycycline. This preliminary study shows evidence of cognitive deficits in this mouse 

model as well as provides credibility to our developed protocol.  

The third study compares the intramuscular labelling of α-MNs (α-MNs) through 

the usage of Fast-Blue (FB) and Cholera-toxin B (CTB) retrograde tracers under different 

parameters such as different concentrations and survival days. These tracers were injected 

into the hindlimb muscles of WT mice and showed that despite each tracer providing its 

own uniqueness in labeling α-MNs was no overall difference between these retrograde 

tracers. However, it was discovered that using less in concentration and survival day is 

often advantageous then utilizing standard protocol for alpha-motoneuron labeling. 
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TDP-43 and TDP-43 Proteinopathies 

Transactive response DNA binding protein-43 (TDP-43), commonly known as 

TDP-43, is a heterogenous ribonuclear protein that is composed of an N-terminus, C-

terminus and 2 Ribonucleic Acid (RNA) Recognition Motifs that allows the protein to 

bind to ribonucleic acid  (J. Gao et al., 2018, p. 43; Guo & Shorter, 2017; Ratti & Buratti, 

2016, p. 43; Tremblay et al., 2011). This protein was originally discovered in 1995 as a 

repressor for the Human immunodeficiency virus-1 gene (Ou et al., 1995). Since then 

additional research has discovered that human TDP-43 (hTDP-43) is responsible for 

other functions surrounding the DNA dogma, in addition to gene regulation (J. Gao et al., 

2018, p. 43; Guo & Shorter, 2017; Ratti & Buratti, 2016; Tremblay et al., 2011). TDP-43 

primarily plays a role in post-transcriptional modification such as pre-mRNA splicing, 

mRNA translation, mRNA stability and transportation across the axon (Coyne et al., 

2017). The C-terminus of TDP-43 is responsible for these functions as it regulates pre-

mRNA splicing activity through the interaction of other hnRNPs and also self-regulates 

its transcription (Guo & Shorter, 2017). TDP-43 also plays a significant role in the 

processing of microRNA and formation of stress-granules to ensure that the transcription 

continues during oxidative stressful environments (Colombrita et al., 2009; Guo & 

Shorter, 2017).   

 In the early 2000s, researchers discovered that many patients with various 

neurogenerative diseases like Alzheimer’s Disease, Huntington’s Disease, Parkinson’s 

Disease, Frontal Temporal-Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) 

had commonalities that was the presence of aggregated TDP-43 in the cytoplasm of 

neurons and glial cells (Kovacs, 2016) . This discovery introduces the topic of TDP-43 

proteinopathies to research, which suggests that TDP-43 plays an important role in 
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neurodegenerative diseases. Since its discovery, further research has been conducted to 

understand how TDP-43 contributes to neurodegenerative diseases.  

Although there is still more research to be conducted in the pathomechanism of 

TDP-43 during these neurodegenerative diseases, there are some theories as to how TDP-

43 goes from being helpful to harmful. In individuals without any neurodegenerative 

diseases, TDP-43 is observed primarily in the nucleus, with less than 30% of the total 

TDP-43 in the cytosol (Kabashi et al., 2010). However, in neurodegenerative diseases, 

TDP-43 is not observed in the nucleus but rather aggregated in the cytosol (Ratti & 

Buratti, 2016). This relocation of TDP-43 to the cytoplasm is caused by mutations to the 

TARDBP gene, which responsible for expressing TDP-43 protein (Kabashi et al. 2010; 

Janssens and Van Broeckhoven 2013, 43; Medina, Orr, and Oddo 2014, 43). Majority of 

these mutations are missense mutations that result in conformational structure changes of 

TDP-43, truncation of TDP-43 or deletion of a nuclear localization sequence (J. Gao et 

al., 2018; Kabashi et al., 2010; Medina et al., 2014).  

The nuclear localization sequence (NLS) is primarily responsible for translocating 

TDP-43 back to the nucleus after translation (Janssens & Van Broeckhoven, 2013; 

Kabashi et al., 2010; Medina et al., 2014; Ratti & Buratti, 2016). These mutations of 

TDP-43 result in a loss of function mutation, where TDP-43 that is normally located in 

the nucleus is no longer there (Cascella et al., 2016). In addition to a loss of function 

mutation, there is also a gain-of-function mutation for these mutated TDP-43, where 

aggregation of TDP-43 outside of the nucleus becomes toxic (Cascella et al., 2016; 

Kapeli et al., 2017). How aggregated TDP-43 is toxic is still yet to be determined, but one 

theory suggested that TDP-43 still retains its ability of bind to RNA and protein and thus 
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sequesters other TDP-43 outside of the nucleus to aggregate in a prion-like manner 

contributing to toxic effects (Voigt et al. 2010). Other theories have inferred that mutated 

TDP-43 affects axonal transport and other dependent mechanisms, which interrupted can 

results in neuronal death (Ludolph & Brettschneider, 2015).  Further investigation is 

needed into these proteins as they appear to be a primary suspect in various 

neurodegenerative diseases.  

 

Amyotrophic Lateral Sclerosis  

  (ALS) is a fatal neurodegenerative disease that was first discovered by French 

neurologist Jean-Martin Charcot in 1869 (Martin et al., 2017; Ng et al., 2017; Zarei et al., 

2015). It became more commonly known as Lou Gehrig’s disease after the famous 

baseball player, Lou Gehrig, was diagnosed with ALS in 1939 (Zarei et al. 2015). This 

fatal neurodegenerative disease causes the death of upper and lower MNs located at the 

spinal and bulbar level (Ng et al., 2017). This loss of MNs results in paralysis and 

atrophy of muscles, which eventually leads to death due to respiratory failure within 1-5 

years after disease onset (Ng et al., 2017). In addition to the fatality of this disease, only a 

small fraction of people are diagnosed with ALS.. In a population of 100,000 people 

worldwide, only 1.5-2.5 people are affected by ALS (Chiò et al., 2013). Of the people 

affected by ALS, the majority of them are males diagnosed between the ages of 50 and 

75 (Martin et al., 2017). Currently, there are two FDA-approved drugs, Riluzole and 

Edaravone, that assist in treating ALS symptoms, however, there is no cure regarding this 

fatal disease (Jaiswal, 2019). 
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 ALS is presented in two forms, with the common form being sporadic ALS (Zarei 

et al., 2015). This type of ALS occurs in 90% of the patients and has no underlying 

causes for the disease (Zarei et al., 2015). The other form of ALS is known as familial 

ALS, which accounts for 10% of all ALS cases (Zarei et al., 2015). This form of ALS 

does have a genetic attribution to cause symptoms of ALS (Zarei et al., 2015). The 

mutations that are commonly studied in research are Superoxidase dismutase gene, 

Fusion in sarcoma gene, Angiogenin gene, Optineurin gene, C9orf72 gene and TDP-43 

gene (Kapeli et al., 2017; Zarei et al., 2015). Although TDP-43 mutations account for 5-

10% of familial ALS cases, 97% of all ALS patients from sporadic and familial variants 

have shown cytoplasmic TDP-43 aggregation post-mortem (T. Ishihara et al., 2010; 

Kabashi et al., 2010).  Interestingly, ALS patients lose normal TDP-43 function in the 

nucleus and gain neurotoxic effect by the aggregation of TDP-43 in the cytoplasm 

(Kabashi et al., 2010; Scotter et al., 2015, p. 43). Due to the involvement of TDP-43, 

ALS is also considered under the TDP-43 proteinopathy umbrella  (Scotter, Chen, and 

Shaw 2015). 

 

Frontotemporal Dementia 

FTD is the third common dementia that follows after Alzheimer’s Disease and 

Dementia with Lewy bodies and is the second most common dementia for patients under 

65 years of age (Young et al., 2018). The term frontotemporal corresponds to the loss of 

neurons located primarily in the frontal and temporal regions of the brain (Olney et al., 

2017). The loss of neurons in these locations results in dysfunction in executive 

functioning, behavior, language, episodic memory loss and motor deficits in later stages 
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of the disease (Olney et al., 2017; Young et al., 2018). The symptoms of FTD are 

difficult to effectively diagnose as many of the symptoms can show off as psychiatric 

disorders (Bang et al., 2015).  

Within FTD there are subtypes of this disease that all vary in the initial symptoms 

seen in patients (Liu et al., 2004). For example, behavior variant FTD is a subtype of 

FTD that shows primary symptoms of behavior and personality changes that result in 

inappropriate social actions, lack of empathy and even impulsiveness (Bang et al., 2015). 

Whereas, primary progressive aphasia subtype shows symptoms that mimic Alzheimer’s 

disease-like deficiency in memory and also presents deficits in the language (Bang et al., 

2015). So far there are no current FDA treatments for FTD other than managing 

symptoms through hospitality care and medication for behavior symptoms (Bang et al., 

2015). 

 Although there are many different subtypes of FTD, various cases have shown 

the presence of 3 different mutated proteins that contribute to the disease (Young et al., 

2018). These proteins are said to play a role in the progression of FTD (Young et al., 

2018). These proteins are microtubule-associated protein tau  protein, TDP-43 and FUS 

(Young et al., 2018). Of these three proteins, TDP-43 plays a role in 50% of all FTD 

cases with the majority of the cases being primary progressive aphasia subtype of FTD 

(Sieben et al., 2012). TDP-43 observed in FTD patients have shown the same consistency 

as ALS patients, where there is a loss of nuclear TDP-43 accompanied by aggregation of 

TDP-43 in the cytoplasm that leads to toxicity, ultimately leading to neuronal death 

(Janssens & Van Broeckhoven, 2013).  

 



 
 

7 
 

ALS/FTD spectrum involving TDP-43 

ALS and FTD patients appear to be two polar opposite diseases, however, it was 

later discovered that there were overlapping symptoms between these two 

neurogenerative diseases (Bennion Callister & Pickering-Brown, 2014). Studies have 

shown that 15% of all ALS and FTD patients experience behavioral, cognitive and motor 

deficits in the latter stages of their disease (Lillo & Hodges, 2009). These overlapping 

symptoms of ALS and FTD suggested some patients that develop ALS also develop FTD 

and that there is a commonality between these diseases (Lillo & Hodges, 2009).  

In 2006, TDP-43 mutations were identified as the common source that contributed 

to ALS-FTD disease (Ling et al., 2013; Neumann et al., 2006). The pathomechanism of 

TDP-43 in ALS and FTD are still being determined, but patients that exhibit ALS-FTD 

all seem to show a loss of regular function of TDP-43 in the nucleus and aggregated 

TDP-43 in the cytoplasm (Ling et al., 2013). It is speculated that TDP-43 aggregation in 

the cytoplasm cause neurotoxicity in ALS-FTD patients (Ling et al., 2013).  

 

rNLS Mouse Model 

One mouse model that has gained interest in being used as an ALS-FTD mouse 

model is rNLS mouse model. This model was first introduced with a tetracycline 

transactivator (tTA) attached to a calcium camodulin-dependent protein kinase (CamkIIa) 

promotor along with a tetO (Tet Operator)-hTDP-43ΔNLS (Alfieri et al., 2014). The 

uniqueness of this mouse model came from the ability to express hTDP-43, after the 

removal of doxycycline (Alfieri et al., 2014). This would be more beneficial to study 

ALS-FTD than other transgenic mouse models because you can assess all aspects of 
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ALS-FTD symptoms at various ages and stages of diseases, as well as further investigate 

role TDP-43 plays in ALS-FTD, especially after re-introducing doxycycline (Spiller, 

Cheung, et al., 2016; Walker et al., 2015). In addition to the tTA system, the hTDP-43 

contained the ablation of the nuclear localization sequence (NLS), this sequence was 

located close to the N-terminus of TDP-43 and is responsible for shuttling TDP-43 back 

into the nucleus after translation (Cascella et al., 2016). Previous literature has shown that 

for ALS-FTD pathogenesis to occurs both the loss of nuclear function and gain of 

toxicity through aggregation must occur (Cascella et al., 2016). Ablation of the NLS 

sequence allowed for this to happen. 

Although, this early hTDP-43ΔNLS mouse model showed motor deficits, these 

deficits were not regards to affected MNs located in the spinal cord (Alfieri et al., 2014). 

This is because the CamkIIa promotor facilitated the expression of hTDP-43 only in the 

forebrain and not in the spinal cord (Walker et al., 2015). This expression only to the 

brain led to cognitive deficits due to inclusions of hTDP-43ΔNLS seen in the 

hippocampus, cortex and olfactory bulb (Igaz et al., 2011). In addition, these inclusions 

were also shown to cause cognitive deficits in this model of rNLS as seen through 

behavioral tests such as the Y-maze, NOR and Elevated Plus Maze with minimal motor 

deficits (Alfieri et al., 2014). Furthermore, this model of rNLS showed an increase of 

hTDP-43 expression 8 to 9 fold more than endogenous mTDP-43 and evidence of gliosis 

by immunohistochemistry staining using glial fibrillary acidic protein (Igaz et al., 2011). 

The results of this study showed that CamkIIa rNLS model is excellent models for FTD, 

but lacked the full symptoms of ALS and therefore not considered to be an ALS-FTD 

mouse model.  
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 This then led to the development of the novel rNLS mice model, which is 

currently used in our lab. This rNLS mice model is unique because it contains a NEFH 

(neurofilament heavy chain) promoter attached to the tTA instead of the CamkIIa 

promotor, allowing expression of the hTDP-43 protein to occur in neurons and non-

neuronal cells in the central nervous system  (Spiller et al., 2019; Walker et al., 2015). 

Previous literature has shown that when these mice are taken off doxycycline, 

transcription of hTDP-43ΔNLS occurs in neurons and astrocytes of the hippocampus, 

cortex, olfactory bulb  and MNs in the spinal cord causing severe motor function deficits 

in addition to suspected cognitive deficits (Spiller et al., 2019; Walker et al., 2015). 

Although, literature has also shown that this novel rNLS mouse model is capable of 

exhibiting cytoplasmic inclusions of hTDP-43 in neurons in the hippocampus and other 

regions of the brain (Walker et al., 2015) there has yet to be a study conducted on 

whether this results in the expression of FTD symptoms.  
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Brief Introduction 

 Rodents are ideally used for behavior experiments as their innate behaviors are 

relevant to human disease (Teegarden, 2020). Behavior experiments utilize innate 

behaviors of rodents to assess various functions (Teegarden, 2020). Such functions that 

are commonly assessed by behavioral experiments are memory (Prieur & Jadavji, 2019), 

learning (Kuc et al., 2006), motor function (Shiotsuki et al., 2010), sensory function 

(Pankevich & Bale, 2008) and addiction (Duncan et al., 2019). 

Memory is defined as the ability to recall information that is already stored and 

learning is defined as the ability to acquire new information (Smid & Vet, 2016). In 

humans, we use working memory, which is a type of short-term memory that is 

temporally store information for the usage of everyday tasks such as remembering and 

using facts and data to solve problems (Hasselmo et al., 2017). Working memory can be 

further broaden to include spatial awareness, this is known as spatial working memory 

(Shrager et al., 2007).  In this study, three commonly used behavioral tasks were 

developed to assess short-term working memory and learning in mice. These behavioral 

tasks are the Y-maze test, NOR test and Holeboard Discrimination test.  

The Y-maze test is a maze that is set up in the shape of a “Y” with each arm 

having an angle of 120 degrees (Kraeuter et al., 2019). This test is frequently used as it is 

relatively easy to conduct and assess spatial working memory in rodents.  The premise of 

the Y-maze test involves the use of mice’s innate curiosity to explore less recently visited 

arms (Kraeuter et al., 2019). As a mouse is dropped into the center of the maze, it will 

continue to go from arm to arm without entering the previous arm it just visited. A mouse 

that has memory deficit will not be able to recall the arm it had just entered and will 

continue to enter the same arm it just visited (Kraeuter et al., 2019). The Y-maze test 
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requires the use of several different regions of the brain such as the hippocampus and 

prefrontal cortex, which are some of the affected regions in the novel rNLS mouse model 

(Walker et al., 2015) mice are required to recall the arm they had just visited and make 

decisions as to which arm to go into next (Kraeuter et al., 2019).  

The NOR test is another behavioral task used in research that can assess short-

term working memory. This test is conducted by using two familiar objects that a mouse 

thoroughly explores before one of the objects is replaced with a novel object (Antunes & 

Biala, 2012). The same mouse is then reintroduced to the objects, after a short interval of 

time, and will recall, which object is familiar and will interact with the novel object 

(Antunes & Biala, 2012). This test relies on a mouse’s innate preference towards novelty 

and assesses functions related to the limbic system specifically the hippocampus, 

entorhinal and prefrontal cortices (Antunes & Biala, 2012). These specific brain regions 

are involved in object recognition and retention in mice and are the affected regions of 

the rNLS model (Antunes & Biala, 2012; Walker et al., 2015).   

The Holeboard Discrimination test is the only test in this study that assesses 

spatial reference memory and learning within the mice. Spatial reference memory refers 

to the retention of one’s location-based off a series of visual cues (Kuc et al., 2006).  

Interestingly, this test relies heavily on visuospatial processing as mice use distal cues to 

identify baited holes in the test (Kuc et al., 2006). The goal of this experiment is that mice 

are tested over a series of days, expected to find 4 holes that are baited with treats using 

distal cues attached on the side of the apparatus. Mice with hippocampal-dependent 

memory and learning deficits will make more errors in finding the baited holes (Kuc et 

al., 2006). Our modification of this test involves the use of positive reinforcement in the 
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form of cookie dough to encourage mice to find the baited holes. The brain structure most 

assessed from this test is the hippocampus, as it is the primary brain structure involved in 

learning as well as spatial reference memory (Vorhees & Williams, 2014).  

 Due to the novelty of this particular rNLS mouse model, no literature indicates 

this mouse model has been assessed through behavioral tests. Therefore, the purpose of 

this study is to develop and modify the experimental designs of the behavioral tests: the 

Y-maze test, the NOR test and the Holeboard Discrimination test to assess short-term 

memory and learning in this rNLS mice model. The reason these specific tests were 

chosen is because of their ability to assess different aspects of hippocampal dependent 

memory such as working, recognition and spatial reference memories as well as learning.  

To accomplish this, WT background strain of mice and NS rNLS mice were used to 

develop these behavioral tests after adopting common protocols from literature. 

Background strain were used in this study to develop these protocols as it is unsure if the 

either inserts, tTA-NEFH and tetO- hTDP-43ΔNLS, independently cause cognitive 

deficits. Therefore, in addition to developing behavioral tests, this study also shows if 

these monogenic inserts could contribute cognitive dysfunction.  
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Hypothesis 

We hypothesized that behavioral tests developed are capable of assessing short-term 

memory and learning for our rNLS mice model. We also hypothesized that the WT 

background strain of rNLS mice are not different in cognitive performance compared to 

our NS rNLS mice.   

 

Methods and Materials 

Animals 

 rNLS mice model had the background strain B6C3F1/J, a hybrid between 

C57BL/6J x C3HeJ F1 mice strains. B6C3F1/J-WT had been ordered from Jackson 

Laboratory (Stock No. 100010) and housed at Wright State University’s Laboratory 

Animal Care facilities. B6C3F1/J-WT and rNLS NS mice (Stock No. 028412) were used 

for short-term memory task development (Table X).. rNLS +/- and -/+ contained either 

the tTA-NEFH promoter or tetO-hTDP-43-ΔNLS monogenic mutation, but neither both 

so ALS-FTD symptoms should not appear.  

Table 1 shows the sample size used for each experiment. For all sample size equal 

number of male and female mice were used. Same set of adult B6C3F1/J-WT and NS 

rNLS mice (~5 weeks of age) were used for all experiments regarding the development of 

these behavioral tasks. Positive control experiments were run for the Y-maze and the 

NOR Task. For these experiments 24 additional B6C3F1/J-WT were ordered from 

Jackson Laboratory (Stock No. 100010). 12 of these B6C3F1/J-WT mice were injected 

with 1 mg/kg (for Y-maze testing) and 3 mg/kg (for NOR) of scopolamine (Sigma 

Aldrich, St. Louis, USA) intraperitonally, 30 minutes before testing. The other 12 
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B6C3F1/J-WT mice were I.P injected with 0.09% saline solution 30 mins before testing 

experimentation. The purpose of scopolamine is to induce short-term memory deficits in 

mice by acting as an acetylcholine antagonist, decreasing the amount of acetylcholine in 

the brain. In most cognitive behavioral studies, scopolamine is used as a positive control 

as it is also used as a positive control in this study.  

All mice had been housed at Wright State University’s Laboratory Animal Care 

facilities on 12:12-h light-dark cycle. Food and water were provided ad libitum. All 

procedures followed NIH guidelines and were approved by Wright State University’s 

Laboratory Animal Care and Use Committee (LACUC) – protocol numbers AUP 1145 

and 1117. 

Table 1. Sample Size Distribution For Short-term Memory Task Development.  

Experiment  Experiment 

Iteration #1  

sample size (n) 

Experiment 

Iteration #2 sample 

size (n) 

Experiment 

Iteration #3  

sample size (n) 

Y-maze B6C3F1/J-WT (12) 

rNLS - NS (12) 

N/A N/A 

NOR Test B6C3F1/J-WT (12) 

rNLS - NS (12) 

B6C3F1/J-WT (12) 

rNLS - NS (12) 

B6C3F1/J-WT (12) 

rNLS - NS (12) 

Holeboard 

Discrimination Test 

B6C3F1/J-WT (6) 

rNLS -/- (6) 

B6C3F1/J-WT (3) 

rNLS -/- (3) 

B6C3F1/J-WT (6) 

rNLS -/- (6)  

 

Y-maze test 

Y-maze was constructed with white plexiglass in the shape of a “Y” with each of 

the 3 arms labelled as A, B, C and having the dimensions 39.5 x 8.5 x 13 cm (Fig 1).  All 

mice were acclimated to testing room conditions 30 mins before starting the test. Each 

mouse was tested for only one trial. Each trial consisted of 10 mins. At the start of a trial, 

a mouse was dropped in the middle of the chamber, where 3 of the arms intersected, to 
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prevent starting point having an influence on the results. At the end of the trial, the mouse 

was removed from the Y-maze and the apparatus was cleaned with 70% (w/v) ethanol.  

 

Figure 1. Image of Y-maze apparatus used for short-term memory assessment 

Y-maze apparatus with Arm A, Arm B and Arm C labelled.  

 

Animal tracking program, Any-Maze (Steoelting, UK) and ELP USB Camera with 

1080P wide-angle fisheye lens with LED infrared (Ailipu Technology Co. LTD, 

Guangdong, China) were used for determining the following: number of entries, number 

of alternations and spontaneous alternations. The number of entries represents the 

locomotive activity of the mouse during the trial and is defined as how many times a 

mouse enters a specific arm during the trial. The number of alternations is defined as the 

number of times a mouse went into each of the 3 arms consecutively to form an 

overlapping triplet set ie. ABC, BCA, CAB etc. Spontaneous alternation percentage was 

calculated by comparing the number of alternations relative to the number of entries of 
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the mouse during the trial. Spontaneous alternation percentage is calculation is 

represented by: 

            Spontaneous Alternation % = (Total Number of Alternations)   x 100 

       (Total Number of Entries – 2) 

 

 

This protocol for Y-maze was the finalized and was used for testing on rNLS +/+ 

mice. A positive control experiment was also conducted to determine the efficiency of 

this protocol. For the positive control experiment, 12 B6C3F1/J-WT were injected with 1 

mg/kg of scopolamine, 30 mins before the start of the trial and 12 B6C3F1/J-WT were 

injected with 0.09% saline, also 30 mins before the start of the trial.  Same Y-maze 

protocol and measurement were used to assess short-term memory.  

 

NOR Test 

 

NOR apparatus had 2 separate parts. Square opaque plexiglass and an open-top 

opaque chamber with the dimensions of 40.64cm x 40.64 cm x 38.1 cm (Fig 2). Any-

Maze (Steoelting, UK) and ELP USB Camera with 1080P wide-angle fisheye lens with 

LED infrared (Ailipu Technology Co. LTD, Guangdong, China) were used to record 

video and the amount of time a mouse had spent with each object. NOR test development 

took 3 iterations to establish a proper protocol that worked for our set of mice. Before the 

start of each experiment, mice were acclimated to the testing room conditions for 30 

mins. 
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Figure 2. Image of NOR apparatus 

NOR apparatus used for assessment. 

 

The first iteration of the experiment consisted of B6C3F1/J-WT (n=12) and NS 

rNLS mice (n=4 each for rNLS -/-, rNLS +/- and rNLS -/+) for a total of 24 mice. The 

experiment took 2 days, the first day was for habituation in which each mouse was left in 

the chamber for 10 minutes with no objects to interact with. On the second day, each 

mouse was left in the chamber with two same objects in the corners of the chambers for 

10 mins, this is known as the familial trial. Once the last mouse was done with the 

familiar trial, the first mouse was put into the chamber again for 10 mins, however, this 

time one of the objects was replaced with a new one. This portion of the experiment is 

known as the novel trial. The objects used in this phase were a used pipette box filled 

with rocks (Fig 2a) and 120 mL plastic cups glued at the bases with a black rubber 

stopper (Fig 2b). The issue with this iteration was that the inter-trial time interval 
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between the familial and novel phases were too long and the mice consistently climbed 

the object, which did not consider interacting with the objects. 

 

Figure 3. Objects used for first iteration of experiment for NOR Test 

(A) pipette box filled with rocks (B) 120 mL plastic cups glued at the bases with black 

rubber stopper. 

 

A discrimination ratio was used to assess the short-term memory of mice and was 

calculated based off timings from the novel phase of the experiment. The time a mouse 

spend on top of the object was recorded and removed from the total time at the end of the 

trial to give an accurate timing of interaction. The equation representing the 

discrimination ratio is: 

 

  Discrimination Ratio = (Time spent with Novel Object) 

                    Time spent with Both Objects 

 

 

The second iteration of experiments was conducted to overcome the issues of the first 

iteration, which were the long inter-trial interval and the objects were climbable. This 
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iteration was similar to the first iteration of the experiment; however, the test was 

conducted over a series of days because the mice were grouped into 4 groups with a 

squad of 6 mice per group. This was done so that a large cohort of mice can be tested 

throughout the experiment. These 4 groups were staggered in testing as seen in Table 2. 

Mice were still acclimated to testing room conditions 30 mins before the start of test each 

day. Habituation was still conducted for 10 mins, the day before familial and novel trials. 

On the day of familial and novel trials, each trial consisted of 10 mins with an inter-trial 

interval of 2 hours, which was less than the 4 hours in the first iteration. The objects used 

in this testing were 100 mL flask and 200 mL bottle with a black cap (Fig 4).  

Discrimination Ratio was still used to assess short-term memory. The second 

iteration had still resulted in problems with the experimental design. For this iteration, the 

inter-trial time interval was still long and the objects were still climbable. Also, the mice 

appeared to be interactive with their surrounds and not so much with the object. 

Therefore, a third iteration was conducted to address these problems. 

 

Table 2. Schedule of NOR Per Group  

Day 1 

Group 1 Habituation 

Day 2 

Group 1 

Familiar/Novel 

 

Group 2 Habituation 

Day 3 

Group 2 

Familiar/Novel 

 

Group 3 Habituation 

Day 4 

Group 4 

Familiar/Novel 
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Figure 4. Objects used for second iteration of experiments for NOR. 

(A) 100 mL flask and (B) 200 mL bottle with a black cap. 

 

The third iteration of experiments was conducted to decrease the inter-trial time 

interval, replace the objects with pointy geometric 3D shapes such as a cone or square-

based pyramid and increase the habituation days. These changes were done to address the 

issues from the 2nd iteration, where the inter-trial interval was too long, the objects were 

still climbable and the mice seemed to be distracted with their environment during 

habituation.  In this iteration, the protocols for acclimation, familial and novel trials were 

still the same. However, 2 more habituation days were added and the inter-trial interval 

was reduced to 20 mins.  Grouping of 6 mice was still maintained similar to the previous 

set of experiments, however, a squad of 3 mice was staggered in testing to reduce 

expendable time between mice. For example, Mouse 2 and 3 ran for their familiar phase 

during the 20 mins inter-trial interval of Mouse 1. The objects used in this testing were 

plastic see-through colourful geometric shapes, cone (Fig 5a) and square-based pyramid 
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(Fig 5b). A discrimination ratio was still used to assess short-term memory. This third 

phase of the experiment protocol is the finalized protocol intended to be used for testing. 

A positive control experiment was also conducted using this protocol and consisted of 12 

B6C3F1/J-WT I.P injected with 3 mg/kg of scopolamine 30 mins before the familiar 

phase and 12 B6C3F1/J-WT I.P injected with 0.09% saline. Same protocols and 

measurements were used for short-term memory assessment with NOR test. 

 

Figure 5. Objects used for third iteration of experiments for NOR test. 

(A) green cone geometric shape and (B) purple square-base pyramid geometric shape.  
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Holeboard Discrimination Test 

 

Holeboard Discrimination Test consisted of 16 holes on a board with the 

dimensions of 41.50 cm x 41.50 cm x 5 cm. The holes made in the holeboard are equal 

distance apart from each other and from the sides of the holeboard with a diameter of 1.8 

cm and a depth of 0.6 cm. A transparent chamber with an open top-bottom is place on top 

of the 16 holeboard.  On the north side of this chamber is a cardboard circle with a 

diameter of 25 cm and on the west side is equilateral cardboard triangle with a 

dimensions of 15 cm x 15 cm x 15 cm (Figure 6). Development of the holeboard 

discrimination test took 3 iterations with emphasis on not trying to fast the mice. Any-

Maze (Steoelting, UK) and ELP USB Camera with 1080P wide-angle fisheye lens with 

LED infrared (Ailipu Technology Co. LTD, Guangdong, China) were used to record 

video throughout the experiments. 
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Figure 6. Image of the Holeboard Discrimination test apparatus  

In the first iteration of this experiment, all mice were acclimated 30 mins before 

the start of the experiment. The mice were habituated by being placed into the holeboard 

apparatus with all 16 holes baited with whole honey-nut cheerio for 15 mins. For 

acquisition training, only 4 of the holes were baited with whole honey-nut cheerio in a 

configuration that did not change throughout the rest of an experiment. 6 trials were 

conducted for 4 days. Each trial was completed in 3 mins or when a mouse obtained all 

the baited holes. Measurements used to assess learning and memory capabilities were 

Reference Memory error, Working Memory error, Completion Time, 1st time to treat and 

Number of Treats. Reference memory error refers to the number of times a mouse nose 
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pokes into a hole that was never baited. This variable assesses short-term spatial 

reference memory of a mouse. Working memory error refers to the number of times a 

mouse nose pokes into a hole that was baited or is no longer baited after obtaining the 

treat. This variable assesses short-term working memory. This iteration presented many 

issues as the number of trials were too long, the time per trial was too short, the treats 

were too big for the mice and even the sample size tested was too big. 

The second iteration of this experiment was conducted to address the issues of the 

first iteration which were too many trials, longer trial time, bigger treat size and large 

sample size testing. To overcome these issues the sample size was halved from the first 

iteration. The time for each trial was also extended to 4 mins and whole honey-nut 

cheerio was cut into ¼ size pieces. The acclimation, habituation and the number of days 

of testing were still the same however, the number of trials per day was decreased to 4 

trials. The 4 holes baited were re-configured and kept the same throughout an 

experiment. The same measurements as the first iteration were used. Issues were still 

seen in the second iteration where the treats did not seem to appeal to the mice, the mice 

were not as active and avoided the center of the apparatus due to the interference of 

lighting and there was no learning component present. This led to a third iteration of the 

holeboard experiment. 

The third iteration of this experiment was conducted to address the issues in the 

second iteration, which were the unappealing treats, lack of activity, avoiding the center 

of the apparatus and lack of learning. To overcome these obstacles the treats were 

replaced with cold 20 μg of cookie dough (Meijer Sugar Cookie Dough, 1.6 oz, Dayton, 

Ohio). The test was also conducted at night at around 19:00 when lights were off and a 
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learning component was added. To add a learning component, the 5 mL silicone-filled 

tubes were replaced with 5 mL tubes that had their base cut to allow a ~2 cm diameter 

wooden dowel insert into the tubes. The wooden dowels were placed on top of a 35 cm x 

35 cm plexiglass sheet acting as a platform, which was added to the bottom of the 

holeboard apparatus. At the end of the trial, the wooden dowels would erect the treats 

exposing them for the mice to see and learn the location of the baited holes.  

The time for each trial was also extended to 5 mins, the last-minute was given to 

raise the platform underneath the hole board to expose the baits. The acclimation, 

habituation, sample size and measurements used to assess this experiment were kept the 

same as the previous iterations. This third iteration of the experiment is the protocol that 

is intended to be used for short-term memory and learning assessment. Due to the 

interference of the COVID-19 pandemic, a positive control experiment for the third 

iteration of the Holeboard Discrimination test was not conducted.  

 

Data Analysis 

SPSS® (IBM Corporation, New York USA) statistical software was used for 

statistical analysis of all measurements. While, PRISM Graphpad (GraphPad Software, 

California USA) was used for all graph needs in this study. All data for behavioral task 

development had a normal distribution and did not reject the Levene’s test (p>0.05). 

Therefore, parametric statistical analysis was conducted for all measurements. For Y-

maze and NOR Tests, independent t-test was conducted between groups. The 

measurements regarding Y-maze are number of entries, number of alternations, 

spontaneous alternations. The measurement for the NOR test is the discrimination ratio. 
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For Holeboard discrimination test, a Two-Way Repeated Measures ANOVA was 

conducted to compare within-subjects being between Day 1 and Day 4 of testing and 

between-subjects being between WT and NS rNLS mouse.  Fischer’s LSD was utilized 

for post hoc analysis. The threshold for significance was 0.05 (α). All data is shown with 

the mean + standard error mean (SEM).  

 

Results 

Y-maze test was developed and showed no differences between NS rNLS and WT mice. 

To test the short-term memory and learning of the rNLS +/+ mice, which are the 

mice that exhibit ALS/FTD symptoms. Behavioral tasks must be accurately developed. 

Some behavioral tasks require more refinement than others, however, having these 

accurate protocols to assess short-term memory and learning will detect deficits in rNLS 

+/+ mice. Y-maze test development was conducted between B6C3F1/J-WT (WT) and NS 

rNLS (NS-rNLS), with equal sample sizes of rNLS -/-, rNLS +/- and rNLS -/+ within the 

NS rNLS group. The reason for a NS rNLS group is because mice that contain either 

monogenic mutation for the NEFH promoter or tetO-hTDP-43ΔNLS (rNLS +/- and rNLS 

-/+) should not express any cognitive deficits and thus theoretically can be used as 

controls along with rNLS -/- for behavioral experiments. 

 For Y-maze development, NS rNLS mice did not show any difference in 

spontaneous alternation when separated by genotype and were therefore pooled into a 

single “NS group”. For the results regarding Y-maze development, mice did not show a 

significant difference in the number of entries (p=0.07) (Fig 7a), the number of 

alternations (p=0.433) (Fig 7b) and spontaneous alterations (Fig 7c) between B6C3F1/J-
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WT and NS rNLS (p=0.904), suggesting that there are no cognitive deficits within the NS 

rNLS mice.as p-values were greater than 0.05.  When a positive control group of 

B6C3F1/J-WT injected with 1 mg/kg of scopolamine was compared against B6C3F1/J-

WT injected with 0.09% saline there was a significant difference only in spontaneous 

alteration (p<0.05, p=0.002) (Fig 8c). This suggests that the scopolamine injected mice 

exhibited short-term memory deficits, which is reflected in the Y-maze test. Therefore, 

from our results, it appears our current Y-maze protocol and apparatus is suitable for 

short-term working memory assessment of our rNLS +/+ mice. 
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Figure 7. Y-maze assessment between B6C3F1/J-WT and NS - rNLS. 

Two groups are B6C3F1/J-WT (WT) and NS rNLS (rNLS) with (A) average number of 

entries, (B) average number of alternations and (C) spontaneous alternations (%) duration 

of the trial. Numbers inside the bar indicates mean (top) and sample size (bottom). Data 

represents mean + SEM. 
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Figure 8. Y-maze assessment between saline-injected or scopolamine injected 

B6C3F1/J-WT mice. 

Two groups injected with either 0.09% saline (Sal) or 1 mg/kg scopolamine-injected 

(Sco)  B6C3F1/J-WT mice with (A) average number of entries, (B) average number of 

alternations and (C) spontaneous alternations (%) duration of the trial. Numbers inside 

the bars indicate mean (top) and sample size (bottom). * denotes as p<0.05. Data 

represents mean + SEM. 
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NOR test was developed in three iteration and showed no difference between NS rNLS 

and WT mice  

For NOR, multiple iterations were conducted to establish a working protocol. In 

our first iteration of the experiment, we assessed the short-term memory of WT and NS 

rNLS mice by comparing discrimination ratio between these groups. Within this first 

iteration of the experiment, the inter-trial was 4 hours long due to how the animals were 

serially tested and the results of the experiment show that there was no significant 

difference (p>0.05, p=0.345) between WT and NS rNLS mice. Our results also showed 

that the discrimination ratio was too low for both groups (Fig 9a). From figure 9a, the 

discrimination ratio for WT is -0.074 and for NS rNLS is – 0.098. Negative 

discrimination ratio usually indicates that a group did not learn the task or forgot which 

object was familiar (Sj & Jr, 2014). This suggests that the mice could have spent too long 

in an inter-trial interval that made them forget which object was familiar. Also, one major 

problem identified in this iteration of the experiment was the objects used in the 

experiment. These objects were not tall enough for the testing mice and therefore they 

were able to climb and sit on top of them. This resulted in time being deducted as it was 

not considered to be interaction with the object.  
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Figure 9. Discrimination ratio for the NOR test. 

Discrimination ratio shown by iterations between B6C3F1/J-WT (WT) and NS rNLS 

(rNLS). (A) shows the first iteration. (B) shows the second iteration and (C) shows the 

third iteration Numbers inside the bars indicate mean (top) and sample size (bottom). 

Data represents mean + SEM. 

 

For the second iteration of the experiment, the same set of animals were used 

because results from the first iteration of the experiment showed that there is no 

recollection of familial or novel object past 4 hours. In the second iteration, the decrease 

in the inter-trial interval to 2 hours had helped increase the discrimination ratio (Fig 9b). 

From figure 9b, the discrimination ratio for both groups were 0.38 for WT and 0.28 for 

NS rNLS. These discrimination ratios are positive but are still low. However, there is still 
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no statistical difference between the groups, WT and NS rNLS (p>0.05, p=0.326). The 

second iteration still had a problem with mice climbing up and sitting on the objects and 

with being too distracted with the apparatus chamber. Therefore, better objects were still 

needed and the inter-trial interval was decreased to 20 minutes with three additional 

habituation days.  

In the third iteration of the experiment, the results show that the discrimination 

ratio is high enough to be optimal for testing (Fig 9c). From figure 9c, the third iteration 

of the experiment showed that the discrimination ratio was 0.62 for B6C3F1/J-WT and 

0.45 NS rNLS. These results also show that there is no statistical difference between 

B6C3F1/J-WT and rNLS -/- (p>0.05, p=0.224) (Fig 9c) and were similar to what is 

normally seen in literature (Arias et al., 2015). The introduction of 2 more habitation days 

had benefitted the mice, their behavior was a lot calmer and less distracted then the 

previous iterations of the experiment. The replacement of the object to geometric shapes 

like cones and square-based pyramid prevented the mice from climbing on top of the 

objects. The third iteration was established as the NOR protocol used for testing. From 

our positive control results, we see that the discrimination ratio between WT 

(scopolamine) and WT (saline) was significantly different (p<0.05, p=0.001) (Fig 10). 

The discrimination ratio for WT (scopolamine) mice were 0.38 compared to WT (saline) 

mice, which was 0.63 (Fig 10). Therefore, the NOR test has been successfully developed. 

 



 
 

34 
 

Figure 10. Discrimination ratio for saline-injected or scopolamine injected 

B6C3F1/J-WT groups. 

Results show the discrimination ratio for 0.09% saline-injected (Sal) and 3 mg/kg 

scopolamine (Sco). Numbers inside the bars indicate mean (top) and sample size 

(bottom). *** denotes as p<0.001. Data represents mean + SEM. 

 

Holeboard Discrimination Test was developed in three iteration and showed no 

difference between NS rNLS and WT mice. 

Holeboard experiment was more difficult than the other tests because of the 

complexity of the test as well as the lack of fasting, which is normally required to 

motivate mice to find the food. In the first iteration of the experiment, the results showed 

that both groups had obtained <1 treat, suggesting that majority of the mice did not find 

all four treats throughout the days of the experiment (Fig 11a). Reference memory error 

was also low as rNLS group had 2.69 errors at Day 1 and 1.5 errors at Day 4 (Fig 11b). 

Having low errors suggest that mice were not active throughout the experiment. 

Interestingly, there was no statistical difference (p>0.05) in reference memory errors 

between Day 1 and Day 4 within and between WT and rNLS groups (Fig 11b). Working 
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memory errors also had a low number of errors with rNLS group having the highest 

number of errors, 0.6 errors on Day 1 (Fig 11c). There was also no statistical difference 

(p>0.05) between Day 1 and Day 4, within and between WT and rNLS groups (Fig 11c). 

The results suggest that the mice did not seem to learn the objective of the task nor were 

active during experimentation.  Due to the incompletion of the experiment trials for the 

first iteration, there was also no data obtained for 1st time to treat and completion time. 

The first iteration of experimental testing also took a long time and so the sample size 

was reduced for the next iteration.  
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Figure 11. Results for the first iteration of the Holeboard Discrimination Test. 

Results show (A) the average number of treats (B) the average number of reference 

memory errors (C) the average number of working memory errors obtained per day 

(Days 1-4) for B6C3F1/J-WT (WT) and NS rNLS (rNLS) groups. Data represents mean 

+ SEM. 
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For the second iteration, both groups showed a downward trend for reference 

memory errors (Fig 12a). However, both groups also exhibited a low number of errors as 

the highest error for reference memory was 4.5 errors belonging to rNLS on Day 1 (Fig 

12a). Working memory indicates no trends from Day 1 to Day 4 for both groups but also 

exhibits low errors with the highest number of errors being 2 errors on Day 1 for rNLS 

(Fig 12b). Both reference memory errors and working memory errors do not have any 

statistical difference (p>0.05, p=0.237 and p=0.559) between Day 1 and Day 4 for within 

and between WT and rNLS groups (Figs 12a and 12b). The number of treats obtained in 

the second iteration of the experiment had an upward trend only for the rNLS group, this 

group obtained 3 treats by Day 4 (Fig 12c). This upward trend was not significant 

(p>0.05, p=0.078) from Day 1 to Day 4 (Fig 12c). The 1st time to treat result reflects this 

as a downward trend is seen for rNLS group from Day 1 to Day 4, this trend was not 

significant (p>0.05, p=0.477) (Fig 12d). This suggests that the possibility of learning 

from the rNLS groups because of the trends seen in figure 12. Subsequentially, these 

trends were not observed for WT group for all measurements at any time point. Both 

groups had no completion time result as neither group completed the entire task.  
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Figure 12. Results for the second iteration of experiments for Holeboard 

Discrimination test. 

Results show the (A) the average number of reference memory errors, (B) the average 

working memory errors, (C) the average number of treats and (D) the average 1st time to 

treat per day (Day 1-4) for B6C3F1/J-WT (WT) and NS rNLS (rNLS) groups. Data 

represents mean + SEM. 

 

In the third iteration of the experiment, results show much improvement as a 

decreasing trend was seen for reference memory errors from Day 1 to Day 4 for both 

groups. Reference memory error was the highest for the rNLS group with 7 errors 

starting at Day 1. Interestingly, both groups were significantly different (p<0.05, p=0.00) 

in reference errors from Day 1 to Day 4 within groups, but not significantly different 

(p>0.05, p=0.805) between groups (Fig 13a). Working memory did not show a 
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decreasing trend from Day 1 to Day 4 for both groups (Fig 13b). The number of errors for 

working memory was still low as WT and rNLS groups both started with 2.2 errors on 

Day 1 of testing (Fig 13b). 

Interestingly, there is no statistical difference (p>0.05, p=0.177) between Day 1 

and Day 4 for WT and rNLS groups regarding working memory errors (Fig 13b). Results 

also show that the number of treats had an upward trend, where all 4 treats were obtained 

by Day 4 for both groups (Fig 13c). Between Day 1 and Day 4 there was a statistical 

difference (p<0.05, p=0.000) in the number of treats (Fig 13c). However, there was not a 

statistical difference (p>0.05, p=0.113) between WT and rNLS at each of those days (Fig 

13c). This was also reflective in the first time to treat and the completion time which had 

a decreasing trend from the Day 1 and Day 4 (Figs 13d and 13e), the results from Day 1 

were significantly different (p<0.05, p=0.000 and 0.000) than Day 4 for both groups (Figs 

13d and 13e). Also, rNLS group was not statistically different (p>0.05, p=0.588 and 

0.849) compared to WT at any days of experimentation for 1st time to treat and 

completion time (Figs 13e and 13d) Therefore, changes made to the third phase was 

effective as this protocol for Holeboard Discrimination test has shown results that suggest 

mice with no short-term memory deficits can learn and retain the objectives of the 

Holeboard Discrimination test over 4 days. 
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Figure 13. Results for the third iteration of experimentation for Holeboard 

Discrimination test.  

Results show the (A) the average reference memory errors (B) the average working 

memory errors (C) the average number of treats, (D) the average 1st time to treat and (E) 

the average completion time obtained per day (Day 1-4) for B6C3F1/J-WT (WT) and NS 

rNLS (rNLS) groups. *** denotes p<0.001. Data is represents mean + SEM. 
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Specific Discussion 

 The purpose of this first study was to accurately develop protocols for three 

behavioral tasks, which will be used to assess short-term memory and learning in rNLS 

+/+ mice. For this study, we had decided to use a combination of rNLS -/-, rNLS +/- and 

rNLS -/+ as our rNLS group. The reason for this choice was because rNLS +/- and rNLS 

-/+ did not have the bigenic mutations that would result in expressing symptomatic ALS-

FTD symptoms. Therefore, these mice did not show symptoms of FTD and can be used 

as potential controls, since rNLS -/- breeding is just as difficult as rNLS +/+, with ¼ 

chances of obtaining the desired genotype. In addition to that, there are additional 

possible controls that could be used for this mouse model, which also includes rNLS +/+ 

on doxycycline.  

 Results from our study have shown that for the developed protocols there is no 

difference between our NS rNLS and B6C3F1/J-WT groups for all three behavioral 

experiments. B6C3F1/J-WT Jackson ordered mice were necessary to use as a background 

control because it contains no transgenic insert and will determine if this strain of mice 

capable of behavioral testing. For this study, we utilized published works of literature as a 

reference point for starting our protocols (Denninger et al., 2018; Kuc et al., 2006; Prieur 

& Jadavji, 2019). We also utilized the results in these published pieces to determine if our 

results are optimal. For example, our results obtained from the Y-maze is similar to those 

commonly found in literature (Garcia & Esquivel, 2018; Griffiths et al., 2019; Stover et 

al., 2015). This suggests that our protocol for the Y-maze is optimal for testing. Whereas 

the results of our first iteration for NOR did not resemble what was obtained in literature 

(Arias et al., 2015; Lueptow, 2017; Sik et al., 2003) and thus was determined that the 
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protocol was not optimal and refinement in methodology was still needed. To further 

verify if our protocols were optimal, we had conducted positive control experiments 

through the intraperitoneal injection of scopolamine. Scopolamine is an acetylcholine 

(ACh) antagonist that decreases the amount of ACh activity in the brain resulting in 

symptoms of memory deficits seen in Alzheimer’s disease (AD)  (Skalicka-Wozniak et 

al., 2018). Scopolamine used as a positive control for AD-related research is common 

(Balmus and Ciobica 2017; Kim et al. 2017; E. Kim et al. 2016).  

The idea of slightly varying experimental designs is not uncommon in the field of 

behavioral neuroscience. Many studies have adjusted their protocols for specific reasons 

or to ensure it works efficiently (Onaolapo & Onaolapo, 2015; Post et al., 2011; Prieur & 

Jadavji, 2019; Stover et al., 2015). This need to slightly vary experimental design could 

be contributed to the background strain of mice. Studies have suggested that some strains 

of mice do significantly better at performance in behavioral experiments than other 

strains (Garcia & Esquivel, 2018; Heyser et al., 1999; Sik et al., 2003). Therefore, the 

need to optimize behavioral experimental for the B6C3F1/J strain of mice is necessary 

for future short-term memory assessment.  
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Study 2: Assessment of Short-Term Memory in rNLS Mice Model 
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Brief Introduction 

Previous rNLS mouse model contained a Calcium/Calmodulin Dependent Protein 

Kinase II Alpha (CamkIIa) promoter used to solely express TDP-43 in the brain (Alfieri 

et al., 2014; Philips & Rothstein, 2015). This led to cognitive dysfunction, where mice 

were showing symptoms of FTD. In addition to the cognitive dysfunction, these mice 

were also showing slight motor deficits, however, it was difficult to claim these motor 

deficits were the result of ALS as TDP-43 inclusions were not seen in MNs located in the 

spinal cord  (Walker et al., 2015). This led to the development of the novel rNLS8 mouse 

model with a bigenic mutation inserts of tTA-NEFH/tetO-hTDP-43ΔNLS. Using a 

similar mechanism of expressing hTDP-43 as in the previous model, the NEFH promotor 

ensures that TDP-43 inclusions are expressed in all types of neurons located in both the 

brain and the spinal cord (Walker et al., 2015). Current research conducted on this newer 

rNLS mouse model has shown motor deficits with TDP-43 inclusions in MNs located in 

the spinal cord, similar to ALS-like pathogenesis (Walker et al., 2015). Although there is 

evidence to suggest cognitive dysfunction from TDP-43 inclusions seen in the 

hippocampus and other brain structures, there has yet to be any cognitive testing 

conducted on this novel rNLS mouse model. Therefore, protocols that were established 

using the background strain of this novel rNLS in the first study are used to assess the 

short-term memory and learning of this novel rNLS mouse to determine if FTD 

symptoms are exhibited along with ALS symptoms.  

Hypothesis 

We hypothesize that the rNLS +/+ mice will exhibit short-term memory deficits at around 

or past 4 weeks off doxycycline in this preliminary study. 
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Methods and Materials 

Animals 

rNLS -/- and rNLS +/+ were used for short-term memory assessment. rNLS -/- 

mice contains neither monogenic mutations of tTA-NEFH promoter (+/-) and tetO-

hTDP-43ΔNLS. Whereas, rNLS +/+ mice contains both tTA-NEFH promoter (+/-) x 

tetO-hTDP-43ΔNLS (-/+) monogenic mutations. rNLS +/+ mice express disease 

symptoms after the removal of rodent chow containing doxycycline (Dox Diet #3888, 

Doxycycline 200mg/kg, Bio-Serv). Due to the difficulty in breeding large sample size of 

mice, short-term memory assessment of rNLS +/+ mice was conducted in two cohorts of 

mice labelled as Group A and Group B. With both groups the total sample size was 31 

mice, which are broken down into rNLS mice +/+ (n=13, 6 male and 7 female mice) and 

rNLS -/- (n=18, 9 male and 9 female mice). Both of these groups did not differ in body 

weight or condition before the removal of doxycycline. 

When the youngest mice in each cohort had reached the age of P35, all the mice 

in that cohort had their doxycycline rodent chow replaced with regular rodent chow. The 

age range of animals tested was ~5-9 weeks with a difference of 4 weeks between the 

oldest and youngest mice. All mice had been housed at Wright State University’s 

Laboratory Animal Care facilities on 12:12-h light-dark cycle. Food and water were 

provided ad libitum. All procedures followed NIH guidelines and were approved by 

Wright State University’s Laboratory Animal Care and Use Committee (LACUC) – 

protocol numbers AUP 1145 and 1117. 
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Y-maze test 

Y-maze protocol as stated in Study 1 was used to assess short-term working 

memory of rNLS +/+ mice. All mice were acclimated to testing room conditions 30 mins 

before start the test. Each mouse was tested for only one trial. Each trial consisted of 10 

mins. At the start of a trial, a mouse was dropped in the middle of the chamber, where 3 

of the arms intersected, to prevent starting point having an influence on the results. At the 

end of the trial, the mouse was removed from the Y-maze and the apparatus was cleaned 

with 70% (w/v) ethanol. Y-maze testing was conducted 3 weeks and 5 weeks after mice 

in each group were removed from doxycycline rodent chow and were expressing hTDP-

43 genes. Number of alternations, number of entries and spontaneous alternations were 

assessed with results showing data from combined groups. 

 

Data Analysis 

For short-term memory assessment of rNLS +/+, SPSS® (IBM Corporation, New 

York USA) statistical software was used for statistical analysis of number of entries, 

number of alternations and spontaneous alternation. While, PRISM Graphpad (GraphPad 

Software, California USA) was used for all graph needs in this study. All data for this 

study had a normal distribution and did not reject the Levene’s test (p>0.05). Therefore, 

parametric statistical analysis was conducted for all measurements in this study. 

Independent t-test was conducted between rNLS -/- and rNLS +/+ groups with 

significance being 0.05 (α). In addition to an independent t-test, a two-way repeated 

ANOVA was also conduct to look at the difference across the two timepoints, 3 weeks 

and 5 weeks off doxycycline. All data are represented as mean + SEM. 
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Results 

Y-maze test detects short-term memory at 5 weeks off doxycycline 

The purpose of this study was to assess if rNLS +/+ exhibits short-term memory loss during 

disease progression. Since previous literature has indicated brain atrophy occurs around 4 

weeks off doxycycline (Walker et al., 2015), we decided to assess short-term memory 3 

weeks and 5 weeks off doxycycline with the same set of animals.  

Within each group, there is no statistical difference (p>0.05, Table) seen between 

rNLS -/- and rNLS +/+ for spontaneous alternation, number of entries and number of 

alternations. When Group A and Group B data was combined, the results show that there 

is no significant difference (p>0.05, p=0.409) in spontaneous alternation between rNLS -

/- and rNLS +/+ at 3 weeks off doxycycline (Fig 14c).  Our results also show that there is 

still no statistical difference (p>0.05, p=0.274 and p=0.475) in the number of entries and 

number of alternations between rNLS -/- and rNLS +/+ at week 3 off doxycycline (Fig 14a 

and Fig 14b). 

At 5 weeks off doxycycline, rNLS +/+ has a significant decrease (p<0.05, p=0.011) 

in spontaneous alternation compared to rNLS -/- (Fig 15c). This suggests that rNLS +/+ 

exhibits short-term memory deficits at 5 weeks off doxycycline. The number of entries 

showed no statistical difference (p>0.05, p=0.055) between rNLS -/- and rNLS +/+ (Fig 

15a), but the number of alternations was significantly lower (p<0.05, p=0.007) for rNLS 

+/+ compared to rNLS -/- 5 weeks off doxycycline (Fig 15b). Therefore, rNLS +/+ show 

short-term memory deficits when taken off doxycycline for 5 weeks.  

A two-way repeated ANOVA test was done to compare the results of 3 weeks off 

to that of 5 weeks off doxycline. The results show that that number of entries and alterations 
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were significantly lower (p<0.05, p=0.036 and p=0.043) for rNLS +/+ group from 3 weeks 

off doxycycline to that 5 weeks off doxycycline (Fig 16a and b). Spontaneous alternation, 

for rNLS +/+ does not change from 3 week off doxycycline to that of 5-week off 

doxycycline (p>0.05, p=0.588) (Fig 16c). It does however, show that rNLS -/- has higher 

spontaneous alternation at 5 weeks off doxycline compared to 3 weeks off doxycycline 

(Fig 16c). 

 

Table 3. p-values for Group A and Group B number of entries, number of alternations and 

spontaneous alternations. 

 

Groups Week Off Doxcycline Measurement (p-value) 

A 3 Entries (p=0.894) 

Alternations (p=0.445) 

Spontaneous Alterations 

(p=0.065) 

 

5 Entries (p=0.437) 

Alternations (p=0.074) 

Spontaneous Alterations 

(p=0.086) 

 

B 3 Entries (p=0.197) 

Alternations (p=0.12) 

Spontaneous Alterations 

(p=0.289) 

 

5 Entries (p=0.067) 

Alternations (p=0.055) 

Spontaneous Alterations 

(p=0.084) 
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Figure 14. Y-maze assessment between rNLS -/- and rNLS +/+, 3 weeks off 

doxycycline. 

Y-maze test results are shown for rNLS +/+ and rNLS -/-  with (A) average number of 

entries, (B) average number of alternations and (C) spontaneous alternations (%) duration 

of the trial. Numbers inside the bars indicate mean (top) and sample size (bottom). Data 

represents mean + SEM.  
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Figure 15. Y-maze assessment between rNLS -/- and rNLS +/+, 5 weeks off 

doxycycline. 

Y-maze test results are shown for rNLS +/+ and rNLS -/- with (A) average number of 

entries, (B) average number of alternations and (C) spontaneous alternations (%) duration 

of the trial. Numbers inside the bars indicate mean (top) and sample size (bottom). ** 

denotes as p<0.01 and *** denotes at p<0.001. Data represents mean + SEM.   
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Figure 16. Y-maze assessment between rNLS -/- and rNLS +/+, timeline comparison 

between 3 and 5 weeks off doxycycline. 

Y-maze test results are shown for rNLS +/+ and rNLS -/- at 3 and 5 weeks off doxycycline 

for (A) average number of entries, (B) average number of alternations and (C) spontaneous 

alternations (%) duration of the trial.. * denotes as p<0.05 for rNLS +/+ group. Data 

represents mean + SEM.   

 

Specific Discussion 

Y-maze test was conducted on rNLS +/+ to assess its short-term working 

memory. This mouse model was developed to express ALS and FTD symptoms (Walker 

et al., 2015). Previous literature has shown results that this mice model does show ALS 

like symptoms, however, no behavioral experiments have been conducted to determine if 

FTD like symptoms are present in this rNLS mice model (Walker et al., 2015). This 



 
 

52 
 

preliminary study was conducted to determine if rNLS +/+ mice exhibit short-term 

memory deficits and when it will exhibit these deficits off doxycycline.   

 Our results contribute to the notion that this rNLS mice model exhibits cognitive 

deficits in the form of short-term memory deficits. From our results, we saw a significant 

decrease in the spontaneous alternation between rNLS -/- and rNLS +/+ 5 weeks off 

doxycycline when Group A and Group B datasets were combined (Fig 15c). 

Interestingly, we don’t see a significant decrease in the number of entries at this time 

point (Fig 15a). The number of entries depicts the locomotive active of the mice during 

testing. This suggests that the rNLS +/+ mice had a significant decrease in spontaneous 

alternation as a result of short-term working memory deficit and not from motor deficits 

presented by ALS. Our results also that when comparing the data of 3-week off 

doxycycline to 5-week off doxycycline there is hardly any change in spontaneous 

alternation between these two time points for rNLS +/+ (Fig 16c). Instead, you see a 

change in movement, where rNLS +/+ are less active and rNLS -/- are more active at the 

5-week timepoint. This could suggest that rNLS mouse model develops cognitive deficits 

much later in disease progression or movement deficits of the rNLS +/+ occur before the 

onset of cognitive deficits, this alteration in movement also will make it difficult to assess 

cognition at later points.  

Some of the results correspond to previous literature where a different rNLS mice 

model had been assessed through Y-maze and NOR (Alfieri et al., 2014).  An earlier 

model rNLS mice model used had a tTA-CamkIIa promoter instead of a tTA-NEFH 

promoter. This resulted in TDP-43 aggregations expressed heavily in the brain causing 

symptoms of FTD (Alfieri et al., 2014). From that study, the results showed that there 
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was a decrease in spontaneous alternation, in the Y-maze, for rNLS one month off 

doxycycline compared to control group (Alfieri et al., 2014). Furthermore, the NOR test 

in that study also showed a significant decrease in the discrimination ratio between the 

rNLS one month off doxycycline and control group (Alfieri et al., 2014). This suggested 

that FTD symptoms are expressed in that rNLS mice model.  

The Y-maze results from this study also resemble previous literature results and 

suggesting the possibility that this rNLS mice model shows cognitive deficits when mice 

are taken off doxycycline for a long time. However, due to COVID-19 pandemic we were 

unable to continue this study. For future directions on completing this study, a 3-week 

and 5-week off doxycycline rNLS +/+ mice must be tested on the NOR and Holeboard 

Discrimination Test. Validation of the model is also recommended to confirm that the 

cognitive deficits are due to hTDP-43 inclusions. To accomplish this a pathological 

analysis should be conducted by staining for hTDP-43 in the hippocampus of the mouse 

brain, in addition to obtaining brain weight measurement to measure atrophy of mice 3 

weeks off doxycycline compared to 5 weeks off doxycycline. 

 

 

 

 

 

 

 



 
 

54 
 

 

 

 

 

 

 

Study 3: Comparison of FB and Cholera-Toxin B in 

Labelling of Α-MNs 
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Brief Introduction 

Neuroanatomical tracers have been frequently used to label neuronal structures 

since their discovery in 1971 by Kristensson & Olsson (Kristensson & Olsson, 1971) ). 

Since then, numerous tracers of differing compositions have been developed. These 

include dextran conjugates such as Fluoro-Ruby (tetramethylrhodamine-dextran amine 

conjugate) (Nance & Burns, 1990), chemical tracers such as Fluoro-Gold (Schmued & 

Fallon, 1986), and enzymatic proteins such as horseradish peroxidase (Kristensson & 

Olsson, 1971). The usefulness of retrograde tracers is a) their ability to trace neural 

connections from synapses (i.e., their terminals) back to cell bodies (i.e., their sources), 

and b) their adaptability to different studies by changing the method of application 

(Haenggeli & Kato, 2002)  and detection (Schmued et al., 1989) . Tracers have allowed 

researchers to identify neuroanatomical pathways (Horie et al., 2013)), improve our 

understanding of axonal transport mechanisms during states of health and disease 

(Chiasseu et al., 2017), and develop novel treatments for nerve injury (Acosta et al., 

2017).  

Of the various neuroanatomical tracers described in literature, FB and CTB are 

retrograde tracers that have been extensively used in labeling MNs. (Alstyne et al., 2018; 

Simon et al., 2017; Q.-G. Xu et al., 2010). FB is a chemical fluorescent dye that emits 

blue light upon excitation (Hayashi et al., 2007; Köbbert et al., 2000). CTB, on the other 

hand, is the beta-subunit of a bacterial toxin that is secreted by the bacterium Vibrio 

cholerae (Lencer & Tsai, 2003) . Although these tracers have several features in 

common, such as their retrograde transport ability and their fluorescence (Grkovic et al., 

2005; Yoshikawa et al., 2011), they differ in some aspects. First, their uptake 
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mechanisms are different in that CTB uses receptor-mediated endocytosis by binding 

onto monosialotetrahexosyl (GM1) gangliosides located on the neuronal membrane. This 

increases the binding affinity of the tracer,  leading to higher CTB uptake efficiency 

(Köbbert et al., 2000; Lencer & Tsai, 2003). FB, in contrast, is passively taken up by 

neurons and labels them through activate transport using endosomes (Köbbert et al., 

2000).  Second, their compositions are different: CTB is a bacterial toxin that can be 

conjugated, making it adaptable to any type of microscopy (Havton & Broman, 2005; 

Yao et al., 2018), whereas FB cannot be conjugated and is thus only useful for 

fluorescence microscopy (Hayashi et al., 2007; Köbbert et al., 2000). FB’s fluorescence 

property is somewhat limiting, because its blue fluorescence requires Ultraviolet (UV) 

wavelength (360 nm) for excitation. This is a potential issue in cell culture studies, 

because UV light can cause phototoxicity in labeled cells (Köbbert et al., 2000). 

Additionally, FB can also interfere with cell adhesion in cell culture studies (Köbbert et 

al., 2000).  

 The purpose of this study is to compare FB and CTB under various 

concentrations and survival days to determine which protocol is optimal for retrograde 

labelling of α-MNs. This study can be related to the cognitive studies presented in study 1 

and study 2, where either of these tracers will be used in future studies regarding the 

novel rNLS mouse model to confirm of these novel rNLS mice are indeed appropriate 

FTD/ALS mouse models. By retrograde labelling α-MNs located in the spinal cord, we 

can investigate if innervate MNs are being affected by ALS disease progression.  
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Hypothesis 

We hypothesis that CTB would be more efficient at labelling a higher quality and 

quantity of spinal alpha-motoneuron labelling. As well as, changing properties such as 

concentration and survival day will affect quantity and quality of motoneuron labelling. 

Methods 

Animals 

WT (WT) B6SJL mice were used in the study as these were the most abundant 

type of mice available in our colony. Breeders were purchased from the Jackson 

Laboratory (stock #002726) and a line was established at Wright State University. 34 

adult male mice (6-7 weeks of age) were used in this study, these mice were obtained 

from the colony and were randomly assigned to ten experimental groups. Each group 

tests a given tracer at a different concentration and number of survival days (Table 3 

shows all groups). Mice were housed under appropriate conditions at WSU Laboratory 

Animal Resource (LAR) facility, prior to surgeries approximately 4 mice were housed 

per cage with cotton bedding material in a 12 hours light/dark cycle with water and food 

provided ad libitum. After surgeries, mice were then individually housed in single cages 

with 12 hours light/dark cycle with water and food provided ad libitum until euthanized.  

All experiments and procedures were conducted in accordance with the Guiding 

Principles for Research Involving Animals and Human Beings as adopted by The 

American Physiological Society, and in compliance with the guidelines of Wright State 

University whose Laboratory Animal Care and Use Committee (LACUC) has approved 

these experiments (approved protocol numbers: AUP 1045 and 1117). 
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Table 4. WT B6SJL Male Mice Categorized Into Different Tracer Protocols.  

 

 

 

 

 

 

 

 

Surgical Procedures and Tracer Injections 

Surgical procedures were conducted in the morning to mid-afternoon in WSU’s 

LAR sterile surgical suite. Mice were anesthetized with isoflurane at 3-5% for induction, 

then maintained at (2-3%) during surgery via nose cones. Four hindlimb muscles - soleus 

(Sol), tibialis anterior (TA), lateral and medial gastrocnemius (LG and MG) – were 

exposed by a small incision and separation of overlying biceps femoris muscle. All four 

muscles in a given mouse were injected with one of the following tracer/concentration 

protocols: 1) 5 µL of FB (FB) (Polyscience, Missouri, USA catalog 17740-1) at a) 0.1%, 

b) 0.2%, or c) 2%; in weight/volume; or 2) 5 µL of CTB-488 Alexa Fluor conjugate 

(Invitrogen, California, USA catalog C22841) at a) 0.05% or b)  0.1%; in weight/volume.  

Injections were given through a 10 μl Hamilton syringe with a 33-gauge needle. 

Overall, each mouse received a total of 20 µL of one type/concentration of tracer injected 

into its four hindlimb muscles. Intraoperative monitoring was conducted every 5 minutes 

based off movement, respiration and color. Buprenorphine (0.0025 mL/g) was injected 

subcutaneously immediately after surgery followed by a subcutaneous injection of 

Tracer Concentration 

(%) 

Survival 

days 

Number 

of mice 

CTB 

0.05% 
3-day 3 

5-day 3 

0.1% 
3-day 3 

5-day 4 

FB 

0.1% 
3-day 3 

5-day 3 

0.2% 
3-day 3 

5-day 3 

2% 
3-day 3 

5-day 3 
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Carprofen (0.01 mL/g) 24 hours after surgery for post-operative pain relief. Mice were 

then euthanized and perfused 3 or 5 days post-injection of tracers (survival days). 

 

Perfusion and Dissection of Spinal Cord 

All perfusions and dissections were conducted mid-morning and took place at 

WSU Microscopy Core Facility perfusion room. All mice were anaesthetized with a 

lethal dosage of Euthasol solution (150 mg/kg, pentobarbital sodium and phenytoin 

sodium) via intraperitoneal injection, either 3 or 5 days after injection of retrograde 

tracers into hindlimb muscles. After confirming lack of reflexive response via toe pinch, 

mice were transcardially perfused with vascular rinse (0.01 M phosphate buffer with 

0.5% NaCl, 0.025% KCl, and 0.05% NaHCO3, pH 7-8), followed by 4% 

paraformaldehyde in 0.1M phosphate buffer, pH 7-8. After fixation, mice had their spinal 

cord extracted from mid-thoracic to early sacral region. These extracted spinal cords were 

submerged into 4% paraformaldehyde for ~2 hours before being transferred into 15% 

(weight/volume) sucrose solution at 4oC overnight. 

 

Identification of Spinal Cord segments and Sectioning 

Extracted spinal cords were removed from 15% sucrose and pinned onto a Slyguard® 

padded dissection petri dish with large insect pins. Smaller insect pins were then used to 

mark the origins of the ventral roots from L3 to S1 (lower lumbar spinal cord region). 

After identifying the lower lumber spinal cord region, ventral roots were cut and spinal 

cord segments were painted using marking dyes (Bradley Products, Minnesota, USA) 

with contrasting colors. Two transverse cuts were made, at L2 and at S2. The lower 
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spinal cord regions were then placed into rubber molds with Tissue Freezing Medium™ 

(GeneralData, Ohio, USA catalog TFM-C) and frozen with cold isopentane. Frozen tissue 

blocks were removed and stored at -80oC until sectioning. Frozen tissue blocks were 

transversely sectioned at 45 µm at ~ -25 oC on a HM 550 ThermoFisher® Cryostat. 

Tissues were serially collected from L3 to L6 in 24-well plates filled with cryoprotectant. 

 

Mounting and Immunohistochemistry 

Approximately 3 days after perfusion, ~5-6 sections were collected from each 

spinal cord segment and transferred into Netwell® inserted 6 well-plates. Transverse 

sections were washed with 1x Phosphate Buffered Saline solution (PBS), pH 7.4 

(ThermoFisher® Scientific Inc., New Jersey, USA catalog 10010023) 3 times at 10-

minute intervals. This was followed by washing once in cupric sulfate (10 mM Cupric 

sulfate in 50 mM ammonium acetate) solution for 45 minutes to prevent the 

autofluorescence of endogenous protein, lipofuscin, within neurons. Sections were then 

rinsed in DDI-filled NetWell® 6 well-plates, followed by another minute of PBS 

washing before being mounted onto positively charged microscope slides and cover-

slipped with Vectashield® antifade mounting medium (Vector Laboratories, California 

USA catalog H-1000). This process was repeated for all sections.  

Additional sections from 2% FB 3-day and 0.1% CTB 3-day were labeled with 

Choline Acetyltransferase (ChAT) and Vesicular acetylcholine transporter (VaChT) to 

determine if the tracers were labeling cholinergic inputs on MNs. For this staining, 

sections were washed 3 times with PBS-T (0.01M PBS containing 0.1% Tritron-X, pH 

7.3) followed by blockage with normal horse serum (10% PBS-T) for an hour. Sections 
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were then incubated with primary antibody, ChAT (mouse antibody, Novus Biologicals, 

catalog #NBP2-46620, Colorado, USA) at 1:100 dilution in PBS-T overnight at 4 oC. 

Additional sections were also labelled with VaChT (mouse antibody, Novus Biologicals, 

catalog #NBP2-59378, Colorado, USA) at a 1:400 dilution in PBS-T and incubated at 4 

°C overnight. The following day, Alexa Fluor® 647 anti-mouse secondary antibody 

(Jackson ImmunoResearch Inc., catalog #715-605-150, Pennsylvania, USA) was diluted 

to 1:100 with PBS-T and sections were incubated for ~2 hours before being mounted 

onto positively charged microscope slides and cover slipped in Vectashield® antifade 

mounting medium. 

For FB protocols (0.1% 5-day, 0.2% 5-day, 2% 3-day and 5-day) additional 

staining was conducted as small, round and blue fluorescent dots were seen after initial 

processing. To determine if these small and round structures are neuronal or non-

neuronal, sections for these FB protocols were labelled with VAChT and NeuN. On the 

first day of staining, these sections were washed 3 times with PBS-T (0.01M PBS 

containing 0.1% Tritron-X, pH 7.3) followed by blockage with normal horse serum (10% 

PBS-T) for an hour. Sections were then incubated with primary antibodies, VaChT 

(mouse antibody, Novus Biologicals, catalog #NBP2-59378, Colorado, USA) at a 1:400 

dilution in PBS-T and incubated overnight. The following day, Alexa Fluor® 647 anti-

mouse secondary antibody (Jackson ImmunoResearch Inc., catalog #715-605-150, 

Pennsylvania, USA) was diluted to 1:100 with PBS-T for approximately 2 hours. After 

that, the sections were washed 3 times with PBS-T once more before primary antibody, 

NeuN, (guinea pig antibody, Millipore, catalog# ABN90, Washington, USA) at 1:300 in 

PBS-T was applied and left to incubate overnight. The next day, Alexa Fluor® 488 anti-
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guinea pig secondary antibody (Jackson ImmunoResearch Inc., catalog #138058, 

Pennsylvania, USA) was diluted to 1:100 with PBS-T for approximately 2 hours. 

Afterwards, sections were mounted onto positively charged microscope slides and cover 

slipped in Vectashield® antifade mounting  

 

Imaging and Data Analysis 

Images were obtained 4 days post-fixation using an FV1000 Olympus confocal 

microscope objective lens at 20x with 1-µm z-steps. Only complete sections that 

displayed both ventral horns without any major tears were imaged. Fluoview image 

analysis software (Olympus Corporation, Pennsylvania USA) was used to measure the 

labeling intensity ratio, labeling intensity difference, density of labeled cells and 

percentage of non-neuronal co-labelling from images. 

Labeling intensity ratio was obtained by circling the largest cross-sectional area of 

a labeled MN with a complete nucleolus to obtain the average labeling intensity that was 

compared to the average background intensity.  Labeling intensity difference was 

calculated as the difference between the average labelling intensity of a labelled MN and 

the average background intensity. Density of labeled cells was calculated by counting the 

number of labeled MNs within a 20x image and dividing it by the total volume of the 

stack image; thereby allowing comparison of how many MNs are labeled among tracer 

protocols. Non-MN labelling was seen as small, round, blue fluorescent dots in some FB 

protocols. NeuN was used to determine if these dots were neuronal. Co-labelling 

percentage was obtained by counting the number of non-neuronal labelled dots co-

labelled by NeuN only and dividing it by the entire count of non-MNs labelled dots in 
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selective FB protocols. These images were obtained using a 60x objective in order to 

better visualize the smaller fluorescent dots.  

Neurolucida® 360 (MBF Bioscience, Vermont, USA) image analysis software 

was used to measure 3D properties of labeled somas and neurites. A neurite was defined 

as any projection out of the soma of a MN, as we could not determine if these projections 

were dendrites or axons without additional labeling. Analysis of neurites commenced 

with identifying somas; then using Neurolucida® 360 software to label neurites 

connected to their respective somas. Neurolucida® 360 Explorer software (MBF 

Bioscience, Vermont, USA) was then used to obtain three measurements: 1) neurite 

volume (µm3), 2) total neurite length (µm), and 3) longest neurite path distance (µm). 

These parameters were selected because they assess different aspects of neuronal labeling 

quality by tracers. For instance, neurite volume provides a measure of how well a tracer 

fills the 3D structure of neurites, which is useful in studies aiming to reconstruct 

anatomical morphologies. Total neurite length was calculated as the summation of 

lengths of labeled neurites branching out of somas (see Figure. 4a), which provides a 

measure of how well a tracer labels somatic primary projections. The longest neurite path 

distance was calculated as the longest path formed by labeled neurites away from the 

soma, which provides a measure of how far a tracer is capable of labeling neurites away 

from the soma (see Figure. 4a). Previous literature has shown that MNs with largest 

cross-sectional area equal to or greater than 300 μm are deemed to be α-MNs (A. Ishihara 

et al., 2001; McHanwell & Biscoe, 1981). Therefore, in this study those labelled MNs 

with a largest cross-sectional area less than 300 μm are not included in these 

measurements, as they are not deemed to be α-MNs. 
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Statistical Analysis and Data Presentation 

SPSS® (IBM Corporation, New York USA) statistical software was used for 

statistical analysis of all data. Prism GraphPad (GraphPad Software, California USA) was 

used for all graphing needs for this study. Data for all measurements were found not to be 

normally distributed as indicated by a failure of the normality test, Shapiro-Wilk test and 

therefore a logarithmic transformation was applied. Unequal variance was also indicated 

by Levene’s test. In the end parametric analysis was used for all statistical analysis.  

using the logarthimical transformed data. Each experimental group (tracer, concentration, 

and number of survival days) was coded and tested with the One-way ANOVA Kruskal-

Wallis test and the Tukey’s post-hoc test. Threshold for significance (α) for all statistical 

analysis was 0.05. Any data with p-value >0.05 was deemed not statistically significant 

(N.S). All data are shown as mean ± SEM.  

Three mice were excluded from the analysis due to insufficient tracer labeling. 

These mice were part of the 0.2% FB 3-day and 0.05% CTB 3-day groups and had less 

than 10 labeled cells in total. This is significantly less than other animals in the groups 

and from what is expected if the tracer has been successfully taken up at the muscle and 

retrogradely transported back to the spinal cord.  Therefore, it was concluded that the 

tracer labeling was faulty in some way in these mice and their data was excluded. The 

sample sizes listed in table 1 show the number of animals that contributed successful data 

to each group and do not include the excluded animals. For each group, the data from 

each animal were compared and we confirmed that animals contributed comparably to 

the collected total sample. 
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Results 

FB has a higher MN labeling intensity than CTB, and lower concentrations of FB are 

as effective as higher concentrations 

The goals of the present study are: 1) to assess the effectiveness of different 

protocols of the retrograde tracers FB and CTB in labeling spinal α-MNs, and 2) to 

compare the labeling quality of tracers’ standard concentrations (FB 2% and CTB 0.1%) 

versus lower concentrations, in an effort to avoid common issues such as leakage. To 

achieve that, a number of measurements were compared among experimental groups 

representing different tracers, concentrations, and survival days (see Table 3 for a 

summary of the experimental groups). All images were collected 4 days after mice were 

perfused (see Methods for detail). First, we compared the labeling intensity ratio among 

the experimental groups as shown in Figure 17a. The data showed that 0.2% FB 3-day 

provided the highest labeling intensity for FB (p<0.001), and 0.1% CTB 3-day provided 

the highest labeling intensity for CTB (p<0.001, Figure 17a) with the 0.2% FB 3-day 

protocol having the highest labeling intensity among all (i.e. higher than 0.1% CTB 3-

day, p<0.001). Among all the examined protocols, three FB (0.1% 5-day, 0.2% 3-day, 

and 2% 3-day) had similar or higher mean intensity than that of the highest intensity CTB 

protocol (0.1% 3-day). This indicates that FB provides higher MN labeling intensity than 

that of CTB, and that FB has a wider range of effective MN labeling protocols than CTB. 

Additionally, FB and CTB 5-day protocols had generally similar (N.S in the 0.05% CTB) 

or lower neuronal labeling intensity than 3-day protocols (p<0.001), except at 0.1% FB 

which showed the opposite result. Importantly, the labeling intensity of 0.2% FB was not 

statistically different from that of the standard 2% FB concentration, in either 3-day or 5-
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day protocols (N.S). This indicates that a 10-fold reduction of the standard FB 

concentration is equally effective in labeling spinal MNs. However, the lower 

concentration of CTB was statistically different than that of the standard 0.1% CTB 3-day 

and 5-day protocol.  

The average background intensity could influence the outcome of labelling 

intensity ratio, a labelling intensity difference measure was also analyzed between all 

tracer protocols (Fig 17b). The results of this measurement further verify FB protocols 

having greater intensity by showing a significant difference in labelling intensity 

difference between all FB protocols to that of all CTB protocols (Fig 17b). Interestingly, 

it is also seen that there is no difference in labelling intensity difference of FB protocol 

when conditions, such as concentration and survival day are altered. However, this is not 

true for CTB as 0.1% CTB 5-day had the highest labelling intensity, which was 

significantly different (p<0.001 and p<0.05) compared to other CTB protocols (Fig 17b).  

In sum, our results show that: 1) FB provides higher labeling intensity of spinal MNs than 

CTB, 2) FB also has a greater number of effective labeling protocols than CTB, 3) 5-day 

protocols generally show lower labeling intensity than 3-day protocols in labelling 

intensity ratio, and 4) lower concentrations of FB provides equal, sometimes higher, MN 

labeling intensity than that of the standard concentrations. 
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Figure 17. α-MN labeling intensity ratio and difference among tracer protocols.  

(A) Intensity ratios (labeling/background intensity) (B) Intensity difference for all 

experimental groups measured 4 days after fixation. Data is mean ± SEM. The numbers 

inside the bars indicate the mean value (top) and the number of cells analyzed in that 

group (bottom). *** denotes p<0.001. The “#” symbol indicates that 0.05% CTB 3-day 

and 5-day are significantly different from all other experimental groups in labelling 

intensity ratio only.  

 

 

 



 
 

68 
 

CTB is more effective in labelling more α-MNs 

To assess how successfully FB and CTB tracers are retrogradely transported from 

the muscle fibers to the spinal cord, we compared the number of α-MNs labeled among 

the experimental protocols. We injected tracers into multiple hindlimb muscles (Sol, TA, 

MG and LG) - to maximize the number of labeled cells and to achieve equal distribution 

of labeling across the lumbar spinal cord region (Bácskai et al., 2013) - and measured the 

density of labeled α-ΜΝs (number of labeled α-ΜΝs per unit tissue volume). Our data 

showed statistically significant differences in the density of labeled α-ΜΝs among 

different FB and CTB protocol concentrations (p<0.01) (Fig 18). Specifically, the 0.05% 

CTB 3-day protocol had significantly higher labeled cell density than some FB protocols 

(p<0.001 and p<0.05) (Fig 18). This indicates that CTB generally labels more MNs than 

FB. Also, 3-day protocols generally had similar or higher cell density than 5-day 

protocols for both tracers (Figure 18, compare red to blue bars in all groups). With 

respect to tracer concentrations, FB protocols of low concentrations (0.1% and 0.2%) had 

comparable labeled cell density to that of the higher 2% FB standard concentration, and 

similarly the lower 0.05% CTB 3-day protocol had comparable labeled cell density to 

that of the 3-day higher 0.1% CTB standard concentration (Fig 18). These data further 

show no advantage for higher tracer concentrations than lower ones.  

Together, these data show that 1) CTB generally labels more spinal MNs than FB, 

2) 3-day protocols are as effective as 5-day protocols, and 3) protocols of low 

concentrations are as effective as, or sometimes better than, high concentration protocols. 
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Figure 18. Density of labeled α-ΜΝs among tracer protocols.  

α-ΜΝ density was measured as the number of labeled MNs  per unit tissue volume for all 

experimental groups. *** denotes p<0.001 and *denotes p<0.05. The numbers inside the 

bars indicate the mean value (top) and the number of cells analyzed in that group 

(bottom). Data represents mean + SEM. 

 

FB and CTB label α-ΜΝ anatomy comparably 

To assess how well FB and CTB label the anatomy of α-ΜΝs, we quantified and 

compared the 3D morphological properties of labeled α-ΜΝs, including their somas and 

neuronal projections (neurites) among the experimental groups. To achieve that, we used 

the Neurolucida® 360 software to measure three parameters: 1) neurite volume, 2) total 

neurite length (i.e., total sum of neurite length, which would be =L1+L2+…+L10 in 

Figures 19a-b), and 3) longest neurite path distance (which would be =L4 in Figures 20a-

b). These parameters were selected because they assess different aspects of the 3D 

neuronal labeling quality. For instance, neurite volume provides a measure of how well 

the tracer fills the 3D structure of neurites. Total neurite length provides a measure of 

how many neurites are labeled by the tracer and how well the tracer labels neurites along 
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their path. The longest neurite path distance provides a measure of how far a tracer is 

capable of labeling neurites away from the soma. Because a cell located near the edge of 

a section could have some of its neurites transected; thereby underestimating its neurites 

measurements, we – therefore – excluded cells located close to the section edge from the 

total and longest neurite length analysis.   

For neurite volume, our data showed that regardless of concentration, 5-day FB 

protocols had higher labeling of neurites volume than 3-day FB protocols and higher than 

all CTB protocols (Fig 19). Specifically, statistical difference was seen between 3-day 

and 5-day protocols for all FB protocols (p<0.05) and not for CTB tracers. With respect 

to tracer concentrations, 0.1% and 0.2% FB protocols were not statistically different from 

the higher 2% standard FB concentration (3-day or 5-day protocols), and similarly the 

0.05% CTB protocols were not statistically different from the higher 0.1% standard CTB 

concentration (figure 19, the last four bars). 

 

Figure 19. Neurite volume measurements among tracer protocols. 

The numbers inside the bars indicate the mean values (top) and the number of analyzed 

neurites in each group (bottom). Data represents mean + SEM.  
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With the total neurite length analysis, we continued to see similar trends with 3-

day and 5-day protocols for both tracers having comparable total labeled neurite length 

(no statistical significance was noted between any blue and red bars at a given 

concertation in Figure 20c), and protocols of low and high concentrations having 

comparable total labeled neurite length (no statistical significance was noted among blue 

or red FB bars, or among  blue or red CTB bars in Figure 20c). Between FB and CTB, 

protocols of both tracers had comparable total labeled neurite length, but 0.05% CTB 

protocols tended to show the lowest total neurite length values, whereas 0.1% FB 5-day 

and 0.1% CTB 5-day tended to show the highest total neurite length values (Fig 20c). 

When the longest neurite path length was compared among the experimental groups, no 

statistical difference was seen across all FB or CTB protocols (Fig 21c). Taken 

collectively, these results indicate that: 1) 5-day FB protocols are the most effective in 

labeling the neurite volume , 2) low FB and CTB concentration protocols are as effective 

as high concentration protocols in labeling neurite volume, total neurite length, and 

longest neurite path distance of α-MNs, and 3) short survival FB and CTB (i.e., 3-day) 

protocols are as effective as long survival (i.e., 5-day) protocols in labeling neurite 

volume, total neurite length, and longest neurite path distance of α-MNs.  
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Figure 20. Total neurite length among tracer protocols.  

(A) Image of neurite projection prior to reconstruction from tracer labeling.  (B) Image of 

neurite projections reconstructed from tracer labeling. The total neurite length was 

calculated as the sum of L1, L2, ..., L10. (C) Total neurite length among tracer protocols. 

** denotes p<0.01. The numbers inside the bars indicate the mean values (top) and the 

number of analyzed cells that had neurites (bottom). Data represents mean + SEM.  

  

 



 
 

73 
 

 

Figure 21. Longest neurite path distance among tracer protocols.  

(A) Image of neurite projection prior to reconstruction from tracer labeling. (B) Image of 

neurite projections reconstructed from tracer labeling. The longest neurite path distance 

was determined to be L4, as it had the longest neurite length. (C) Longest neurite path 

distance among tracer protocols. The numbers inside the bars indicate the mean values 

(top) and the number of analyzed cells that had neurites (bottom). Data represents mean + 

SEM. 
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FB and CTB label MNs, but not interneurons  

As retrograde tracers, FB and CTB are expected to label α-MNs; they could also 

label γ-MNs or INs if transported via synapses. C-boutons are more likely to be found 

only on α-MNs, but can also be found on γ-MNs but not on INs (Witts et al., 2014). To 

determine if the labelled neurons are MNs and that only α-MNs were analyzed in this 

experiment., we stained spinal tissue with ChAT antibody to label C-boutons. and 

measured the LCA of all labelled MNs, removing those less than 300 μm,  For ChAT 

labelling, We focused on 2% FB 3-day and 0.1% CTB 3-day protocols in these 

experiments because the high tracer concentrations in these protocols increases the risk of 

labeling non-MN cells and the high labeling intensity of these protocols maximizes the 

accuracy of this analysis (see Figure 17a); thereby enhancing the rigor of this 

investigation. Our confocal images and analysis showed that 100% of neurons labeled 

with FB or CTB also showed ChAT co-labeling (Fig 22). The results of ChAT labelling 

support that FB and CTB label MNs only, when intramuscularly injected. Importantly, 

similar results were obtained when VaChT – another specific C-bouton antibody to label 

ΜΝs – was used in a separate tissue (data not shown), confirming that FB and CTB label 

ΜΝs only. 
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Figure 22.  Co-labeling of ChAT with FB or CTB.  

60x images of MNs labeled with 0.1% CTB 3-day (A) and 2% FB 3-day (B) co-labeled 

with ChAT. White arrows indicate the location of C-bouton labeling. The scale bar 

represents 30µm. 

 

Tracer leakage with the standard 2% FB concentration. 

Because FB has been shown to leak from labeled MNs to other cells in the spinal 

cord (Köbbert et al., 2000), we examined images of all experimental groups for potential 

leakage effects. Our analysis showed consistent appearance of FB leakage shown as 

small, round, blue fluorescent dots that appear to be non-MN in the standard 2% FB 

concentration (both 3-day and 5-day protocols, see the white arrows in Figure 23a) and in 

the lower concentration of FB at 5-day. To determine if these small, round, blue 

fluorescent dots could be neuronal and MN , we stained some FB sections from 0.1% FB 

5-day, 0.2% FB 5-day, 2% FB 3-day and 5-day with NeuN and VAChT. After staining, a 

NeuN co-labelled percentage was obtained from these sections without the inclusion of 
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those dots that also co-labelled with VAChT. This percentage depicts whether or not 

these dots are neuronal cells.   

From our results in Table 3, it is seen that majority of FB protocols, had a small 

percentage of NeuN co-labelling, with the exception of 0.2% FB 5-day, suggesting that 

these small, round, blue fluorescent dots are indeed not motoneuron and are not neuronal. 

Furthermore, we also observed the presence of a halo like-effect specifically within 2% 

FB images, which appeared along with non-neuronal cell labeling.  

Therefore, our NeuN analysis confirms that the small, round, blue fluorescent dots 

are non-neuronal and likely due to leakage from FB labeled α-MNs in the 2% FB 

protocols and in some cases lower concentration of FB at 5-day only (Fig 23). 

Interestingly, there was no non-MN cell labelingwith any concentration of CTB at 3 days 

or 5 days, or with lower concentrations (<2%) of FB at 3-days. Collectively, the results of 

these experiments and the experiments in the previous section on FB and CTB specificity 

in labeling α-MNs show that: 1) CTB and lower FB concentration (i.e., <2%) protocols at 

3-days label α-MNs only without tracer leakage, 2) FB at either higher or lower 

concentration protocols can exhibit tracer leakage leading to labeling of additional non-

neuronal labelling, in addition to the appearance of halo-like effects.  
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Table 5. NeuN Co-labelling Analysis. FB sections from 0.1% FB 5-day, 0.2% FB 5-

day, 2% FB 3-day and 2% FB 5-day were stained with NeuN and VAChT to determine if 

blue, fluorescent dots were neuronal and/or MNs. 

 

Protocol Number of Non-

neuronal labelling 

Number of Co-labelled 

Non-neuronal labelling 

Percentage 

Co-labelled (%) 

0.1% FB 5-day 28 5 17.85 

0.2% FB 5-day 11 7 63.63 

2% FB 3-day 56 4 7.14 

2% FB 5-day 87 3 3.44 

 

Figure 23. Non-MN labeled cells in an image from 2% FB 3-day protocol.  

60x image of A) FB labeling, B) NeuN labeling and C) FB, NeuN and VAChT labeling 

of non MN cells (red arrows), neuronal cells (white arrows) and γ-MN (yellow). The 

scale bar represents 20µm. 

 

 

 

 

 

 

 

 



 
 

78 
 

Specific Discussion 

  

This study provides, for the first time, a systematic assessment and comparison of 

FB and CTB under different experimental conditions, such as tracer concentrations and 

survival days. These two retrograde tracers are widely used in labeling MNs.  Seven 

different aspects of neuronal labeling quality were examined: 1) Labeling intensity ratio 

and difference, 2) density of labeled cells, 3) volume of labeled neurites, 4) total length of 

labeled neurites, 5) longest path distance of labeled neurites, 6) labeling specificity to 

ΜΝs, and 7) tracer leakage through NeuN co-labelling analysis.  

Our data show five major results: First, while FB and CTB protocols appear to 

differ in their labeling characteristics of α-MNs, the 0.2% FB 3-day protocol appears to 

offer good quality across ‘all’ labeling characteristics of α-ΜΝs. Second, low tracer 

concentration protocols are equally effective in labeling α-ΜΝs as the much higher tracer 

concentrations widely reported in literature, providing an economic advantage and 

avoiding major tracer leakage. Third, 3-day survival FB and CTB protocols are generally 

as effective as, and sometimes better than, 5-day survival protocols. Fourth, CTB and 

lower FB concentration protocols only label MNs. Fifth, the standard 2% FB 

concentration protocols (both 3-day and 5-day) suffer leakage problems, leading to large 

amounts of non-MN cell staining as well as halo-like effects in images. CTB protocols, 

on the other hand, do not appear to suffer leakage problems. Accordingly, these results 

provide a useful guide to selecting optimal protocols when using FB or CTB retrograde 

tracers.  
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High or low tracer concentration? 

Although high tracer concentrations would be expected to provide high labeling 

quality, they also result in tracer leakage, thereby losing labeling specificity of the desired 

neuronal populations. This tradeoff makes the selection of FB and CTB protocols and 

concentrations particularly challenging because these tracers have been used in literature 

in various protocols and a wide range of concentrations with no study highlighting the 

advantages and disadvantages of different tracer concentrations or suggesting optimal 

protocols. Because of the absence of this knowledge, sub-optimal protocols and high 

tracer concentrations continue to be used in various studies ranging from injecting tracers 

into muscle, nerves and other locations of the rodents’ body to label MNs and other 

various types of neurons.  

For instance, in the last five years only, at least  13 studies have used high FB 

concentrations (>1.5%, and as high as 5%) (Atanasova et al., 2016; Chen et al., 2018; W. 

Gao et al., 2015; Hashimoto et al., 2018; Lee et al., 2016; Lee & Malykhina, 2017; 

Majima et al., 2017; N. Shimizu et al., 2018; T. Shimizu et al., 2018; Takaki et al., 2015; 

Wong et al., 2017; Yamamoto & Nakamuta, 2018; Zimmerman et al., 2020; Žygelyte et 

al., 2016) when only 6 studies have used low FB concentrations (<1.5%) (Chaves-Coira 

et al., 2016, 2018; Kanda et al., 2016; La et al., 2016; Okabe et al., 2017) This indicates 

that low FB concentrations (i.e., <1%) are still not popular and their advantages over high 

concentrations are still unknown though they have been used for many years (Ghosh et 

al., 2012; Kwon et al., 2002; Sagot et al., 1998)).  

Data of the present study fill this knowledge gap and provide a direct comparison 

of the effects of high versus low tracer concentrations on the various aspects of neuronal 
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staining quality and, therefore, guide the selection of optimal tracer protocols and 

concentrations. 

Shorter is better 

It has been suggested that FB is the tracer of choice as compared to Fluoro-Gold 

(FG) and dextran conjugate tracers (Mini-Ruby, Fluoro-Ruby and Fluoro-Emerald), 

because FB labels a high number of MNs with persistent quality in labeling intensity for 

up to 24 weeks of survival time (Novikova et al., 1997) ). Our results add to the positive 

characteristics of the FB tracer, but also establish that CTB is better than FB in staining 

more MNs, yet at the expense of neurite labeling. Interestingly, our results for labeling 

intensity ratio contradicts what is seen in literature that states labeling intensity for FB 

remains consistent with protocols of longer survival days from 8 weeks to 24 weeks 

(Choi et al., 2002; Novikova et al., 1997).  

The only exception to this was with 0.1% FB, in which labeling intensity ratio 

was higher for the 5-day protocol than the 3-day protocol. Additionally, in most of our 

measurements, 3-day protocols were generally comparable to, and sometimes better than, 

5-day protocols.  However, upon reviewing the cell intensity difference data, our results 

also show that overall, regardless of the concentration and survival day, FB is optimal at 

labeling α-MNs greater than CTB (Figure 17b). In addition, this data also shows varying 

the concentration and survival day influences CTB protocols more than FB as 0.1% CTB 

5-day had significantly higher labeling intensity difference compared to other CTB 

protocols.  

Less is better 
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In intramuscular injection studies that utilize rodents such as ours, the standard 

concentration at which FB has been used is 2%  (Khristy et al., 2009; Wong et al., 2017). 

Interestingly, our results show that a 0.2% FB protocol – a much lower concentration 

than what has been used before and 10-fold lower than the standard concentration – has 

comparable labeling quality. In addition to the economy of using less tracer, lowering the 

concentration of FB reduces leakage onto other non-MN cells and non-neuronal cells as 

well as the appearance of halo-like effects in images – two risks of higher tracer 

concentrations (Figures 23). To our knowledge, only one study has described the 

appearance of accidental neuronal staining caused by FB leakage in facial rat MNs. 

(Popratiloff et al., 2001).  

In addition, the appearance of halo-like effects by FB is consistent with literature 

regarding other fluorescent tracers (Köbbert et al., 2000). The likely explanation for these 

effects is that they result from FB leaking from labeled neurons (Köbbert et al., 2000). 

Interestingly, from our NeuN analysis majority of these cells are also not neuronal as 

there was a low percentage of NeuN co-labelling. In addition, we also found that those 

that are co-labelled with NeuN could simply be small γ-MNs, as they were co-labelled 

with VAChT, or dendrites from MNs whose somas are not located in the section.  

Thus, the finding that significantly lower FB concentrations at 3-day have 

comparable neuronal staining quality to that of higher concentrations, while avoiding 

leakage is novel to this study. On the other hand, lowering the CTB concentration could 

have adverse effects: When the CTB standard concentration was decreased by half in our 

experiments, labeling intensity ratio was reduced while the intensity difference was 

comparable across concentrations (see figure 17). The lower concentration did yield 
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fewer neurites labeled relative to the CTB standard concentration (see Figures 20 and 21). 

Although previous studies examined different survival times of the 0.1% CTB 

concentration (Hirakawa et al., 1992) , there is no data in literature comparing the effects 

of different CTB concentrations on the quality of neuronal labeling, thus, these results 

represent additional novel data. In sum, lowering FB concentration does not decrease 

neuronal labeling quality, but does avert non-α-MN cell labeling and halo-like effects. 

Conversely, lowering CTB concentration decreases neuronal labeling quality.  

FB protocols and 0.1% CTB protocols are similarly effective in labeling the 

volume and length of α-MN somas and neurites (see Figures 19-21). Previously, CTB 

was found to label long neurites significantly better than Fluorogold (Yao et al., 2018). 

Fluorogold has been speculated to be potentially harmful for labeled neurons in the long 

term (Naumann et al., 2000) which would suggest that CTB and FB would preferably 

over Fluorogold. The effectiveness of FB and CTB tracers in labeling somas and neurites 

renders them useful in studying neurodegenerative diseases, such as ALS  in which α-

MNs experience changes in size (Dukkipati et al., 2018). However, FB and CTB labeling 

are only good for measuring the morphological properties of the α-MN soma and primary 

projections: In our images, all neurite projections from labeled α-MNs had few or no 

branches. Thus, intracellular fillings – as opposed to intramuscular fillings via retrograde 

tracers – would be the method of choice to study the full dendritic anatomy of α-MNs. 
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Final Discussion 

 The discovery of TDP-43 aggregates in ALS and FTD patients provided a 

possibility of how these two opposite diseases are related (T. Ishihara et al., 2010; 

Neumann et al., 2006). To be able to study and assess the characterization of ALS-FTD 

in a mouse model, proper experiments must be developed and/or optimized.  

The rNLS mouse model is a unique model that allows researchers to control 

disease progression by the removal of doxycycline in the mouse’s diet (Walker et al., 

2015). In a previous rNLS mice model, a CamkIIa promotor was used to express TDP-43 

aggregates in neurons of the brain (Alfieri et al., 2014). A study on this rNLS model 

suggested that the expression of TDP-43 aggregates in the brain had resulted in FTD like 

symptoms by showing cognitive deficits in behavioral experiments (Alfieri et al., 2014). 

The use of a CamkIIa promotor limited aggregates to only the forebrain and therefore full 

ALS like symptoms were not seen (Alfieri et al., 2014). This then leads to the 

development of a novel rNLS8 mice model, which had a NEFH promoter had been used 

instead of a CamkIIa, which resulted in an overexpression of hTDP-43 into the brain as 

well as spinal cord resulting in ALS symptoms (Walker et al., 2015). In addition to TDP-

43 aggregates in the spinal cord, it was also said that this model had a ten-fold increase of 

TDP-43 inclusions than what was seen in CamkIIa model (Walker et al., 2015). 

Since the creation of this novel rNLS mice model, more research has been 

focused on ALS symptoms on this study such as motor function deficits (Walker et al., 

2015), MNs loss (Spiller, Cheung, et al., 2016), motor function recovery after the 

suppression of hTDP-43 overexpression and axonal dieback (Spiller, Restrepo, et al., 

2016). While minimal study has been conducted on the brain of this mouse model, so far 
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it is known that ~28%  of neurons are lost in the brain and that other non-neuronal 

structures are also affected leading to gliosis, which is the reactive change in glial cells in 

response to damage in the CNS, in the brain (Walker et al., 2015). Despite, the current 

literature regarding the brain of this mouse model, there has been no behavioral 

experiments conducted on this rNLS mouse model and additional characterization should 

be warranted on this rNLS mouse model to confirm if it is an ideal FTD/ALS mouse 

model. Therefore, the purpose of this thesis is to optimize protocols that would be 

advantageous for researchers to use to properly to characterize this rNLS mouse model.  

To be able to properly assess the cognitive function of the rNLS mice model, we 

had to first to develop proper protocols for the following behavioral experiments: the Y-

maze test, the NOR test and the Holeboard Discrimination test. These behavioral 

experiments are designed to assess short-term memory and learning of mice (Arias et al., 

2015; Labots et al., 2015; Prieur & Jadavji, 2019). It was important for this study to 

assess short-term memory and learning as the novel rNLS mouse model had shown 

evidence hTDP-43 inclusions in the hippocampus, without any behavioral testing 

conducted to determine if cognitive deficits appear (Walker et al., 2015). The reasons 

why these tests were chosen were because of different short-term memory it assessed. Y-

maze test assessed spatial working memory, NOR test assessed recognition memory and 

Holeboard Discrimination test assessed spatial reference memory as well as learning. The 

creditbility of these tests expands from the constant usage in literature (Castilla-Ortega et 

al., 2010; Fukuda et al., 2019; Griffiths et al., 2019; Labots et al., 2015; Onaolapo & 

Onaolapo, 2015; Rossi et al., 2018; Sampedro-Piquero et al., 2019; J. Xu et al., 2018).  
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 For the first study, we determined that the results obtained are optimal through 

the use of literature. Results that are consistently seen in published literature were similar 

to our results for the Y-maze and NOR tests. For example, our spontaneous alternation 

for the Y-maze was ~65%, numerous literature has suggested that their spontaneous 

alternation for the control was ~60-70% (Barakat et al., 2018; Hiramatsu et al., 2010; 

Paretkar & Dimitrov, 2018). Similarly, literature has mentioned that the discrimination 

ratio for NOR was ~0.4-0.7 (Denninger et al., 2018; Sik et al., 2003), our discrimination 

ratio at the final protocol was ~0.65 for our control group. For Holeboard Discrimination 

test, other literature had reference memory errors of ~7 on Day 1 and ~2 on Day 4. A 

working memory errors of ~9 on Day 1 and ~3 on Day 4 and completion time of ~100 

sec on Day 1 to roughly less than 60 sec on Day 4 (Kuc et al., 2006). Interestingly, our 

results were consistently lower in comparison to the literature. However, the 

downward/upward trends with a statistical difference (p<0.05) from Day 1 to Day 4 for 

reference memory error, completion time, 1st time to treat and the number of treats, all 

indicate that the mice had learned the object of the experiment. Therefore, our protocols 

that were developed for the Y-maze test, NOR Test and Holeboard Discrimination Test 

are deemed to be optimal. 

Furthermore, to determine the accuracy of our Y-maze and NOR, we used a 

positive control. Scopolamine was injected at either 1 mg/kg or 3 mg/kg in 12 BCJL6-

WT mice 30 mins before the commencement of a testing experiment (see methods for 

details). This drug is an acetylcholine antagonist that mimics short-term memory deficits 

commonly seen in Alzheimer’s disease by decreasing the amount of acetylcholine in the 

brain (Esquerda-Canals et al., 2017). Many published studies have used scopolamine-
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induced mice as a common positive control in AD-related studies (Balmus & Ciobica, 

2017; H.-B. Kim et al., 2017; Skalicka-Wozniak et al., 2018). 

 Our results with scopolamine injected mice showed that our Y-maze and NOR 

tests are appropriate in assessing short-term memory deficits in mice (Figs 8 and 10). 

Therefore, Y-maze and NOR tests with the current protocol are suitable for short-term 

memory assessment because it can detect short-term memory deficits. Future directions 

of this study should involve conducting a positive control experiment for the Holeboard 

Discrimination test to confirm that test is also suitable to detect short-term memory and 

learning deficits in mouse.  

Differences in behavior protocols are commonly seen in the literature. Usually, 

changes to the protocols are minor such as altering the time of experiment or number of 

times the experiment is running (Post et al., 2011; Stover et al., 2015). The need for 

altering behavior protocols stems from the possibility that different strains of mice 

behave differently when assessed in behavioral experiments. For example, a study 

conducted by Sik et al. looked at four different strains of mice with regards to the NOR 

test (Sik et al., 2003). From this study, researchers were able to conclude that strains like 

Swiss mice are more capable of being behaviorally assessed regarding the NOR test than 

other strains like 129/SVs (Sik et al., 2003). These strain differences in performance 

could be because of stress and anxiety, as it is an important factor that could influence 

any experiment (Heyser et al., 1999; Kuc et al., 2006; Sik et al., 2003). Some strains of 

mice are more capable of handling anxiety and stress from behavioral experiments than 

other strains of mice (Kuc et al., 2006; Sik et al., 2003). In addition to background strain 

difference, environmental factors such as husbandry, setup and experimental procedures 
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could also influence results of behavioral experiments by contributing stress. Several 

literatures have indicated that the changes in environment housing and experimental 

procedures can alter the reproducibility of results due to stress. One study conducted by 

Gerdin et al looked at the effects of experimental and husbandry procedures on 

C57BL/6Nac mice regarding stress. In this study, mice had undergone a surgical 

procedure, numerous cage changes and overnight fasting. Their results suggested that 

mice experience higher blood glucose, higher blood pressure and lower body weight due 

to stress caused by these experimental and husbandry procedures (Gerdin et al., 2012). 

 Therefore, differences in behavioral protocols such as strain differences, 

husbandry and experimental procedures could have a significant impact on the 

performance of mice in cognitive behavioral testing. Since hybrid animals such as our 

background strain of mice are not commonly used in research for behavioral experiments, 

altering experimental protocols is necessary to address non-variable effects such as 

anxiety and stress-related differences. Also, differences in protocol were necessary for 

Holeboard Discrimination test as fasting was not feasible for this experiment, since this 

particular mouse model would have FTD/ALS, which would result in significant weight 

loss and possibly death, if fasted. 

 For our second study, we hypothesized that this novel rNLS mice model, that 

contain the tTA-NEFH promoter with tetO-hTDP-43ΔNLS transgene will develop short-

term memory deficits. Our results showed that when rNLS +/+ mouse group were 5 

weeks off doxycycline, they experience short-term memory deficits because of the 

significant decrease in spontaneous alternation compared to rNLS -/- mouse group (Fig 

15c). This decrease in spontaneous alternation is a result of short-term memory deficits 
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and not motor deficit due to ALS disease progression. This was determined because the 

number of entries for the rNLS +/+ mice at 5 weeks off doxycycline were not statistically 

different from the control, rNLS -/- (Fig 15a). Previous literature has determined that 

these rNLS mice with the NEFH promoter exhibit motor deficits as early as 2 weeks off 

doxycycline (Spiller, Cheung, et al., 2016; Walker et al., 2015). Qualitatively it is also 

seen that our cohorts of mice were starting show symptoms of ALS before behavioral 

experimentation. Therefore, it is probable that FTD symptoms in this rNLS mice model 

occur after ALS symptoms, which is common in patients with ALS-FTD (Lillo & 

Hodges, 2009).   

Previous studies have assessed cognition through behavioral experiments on 

doxycycline suppressible mice. The most relevant study was, where rNLS mice with 

CamkIIa promoter was used instead of a NEFH promotor (Alfieri et al., 2014). In that 

study, a significant difference was seen in the Y-maze test when rNLS mice were 1 

month off doxycycline (Alfieri et al., 2014). The results presented by that study is similar 

to this study, which suggest that FTD like symptoms occur when doxycycline 

suppression happens for a long period. 

 Interestingly, another study that had also utilized a doxycycline suppression 

system had shown similar results. Alfieri, Silva and Igaz, 2016 had used mice that had the 

genetics tTA-CamkIIa promoter with tetO-TDP-43WT12, this would cause 

overexpression of hTDP-43 in the forebrain neurons. In this study, it was determined that 

1 month off doxycycline had resulted in cognitive deficits as Y-maze showed 

significantly lower spontaneous alternation (Alfieri et al., 2016).  In the end, our 

preliminary results suggest that rNLS mice with NEFH promoter appear to show short-
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term memory deficits, after ALS symptom onset. However, plans of NOR and Holeboard 

test will confirm the presence of short-term memory deficits.  

The third study was conducted to optimize tracer protocols of two commonly used 

retrograde tracers, FB and CTB, to label α-MNs by intramuscular injection. The labeled 

neurons located in the ventral horn of the spinal cord section were α-MNs that are 

innervated to muscles. When ALS disease affects a significant number of these 

innervated α-MNs, mice will start to show symptoms of ALS (Martin et al., 2017). These 

symptoms usually start with tremors that will gradually progress into paralysis (Rowland 

& Shneider, 2001). Interestingly, ALS symptom onset and disease progression tend to 

vary between different mouse models of ALS (Philips & Rothstein, 2015). Differences in 

disease progression are due to the type of transgenic mutation inserted within a mouse as 

well as how much are these mutations are expressed (Philips & Rothstein, 2015). For 

example, SOD1 G93A has overexpression of SOD1, which affects excitatory mechanism 

in the CNS resulting in excitotoxicity (Kaur et al., 2016). Whereas, TDP-43 mouse 

models revolve around affecting RNA-dependent mechanism by the loss of nuclear TDP-

43 and/or overexpression of aggregated TDP-43 (Philips & Rothstein, 2015). Therefore, 

having proper tracer protocols will allow researchers to properly label innervated α-MNs 

in various ALS mice models. These α-MNs can then be assessed through fluorescent 

microscopy in future experiments.  

This study was conducted by comparing FB and CTB under various conditions 

like different concentrations and survival days. It was hypothesized in this study that 

CTB would be more efficient at labeling MNs due to its high affinity for neurons through 

receptor-mediated endocytosis (Lencer & Tsai, 2003). But our results suggest that there is 
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no overall difference between FB and CTB for all of the seven parameters used for 

assessment. This study also reveals that FB has more experimental protocols that are 

useful for alpha-motoneuron labelling compared to CTB. Also, it was noticed that 

altering the survival days after tracer injection could alter labeling qualities after 

reviewing labeling intensity ratio data. For example, lowering the survival day from 5-

day to 3-day had resulted in an equal or higher quality of motoneuron labeling (Fig 17). 

This was the case for most of the experimental groups except for 0.1% FB (Fig 17).   

Lowering the concentration of FB – 10-fold than what is used as standard 

concentration is capable of labeling MNs just as efficient (Fig 17), if not better because 

adverse effect like tracer leakage was limited to what is seen at standard concentration of 

FB (Fig 23). Tracer leakage is an important adverse effect to be aware of as it can cause 

staining of non-neuronal cells (Choi et al., 2002). In this study, non-neuronal cells were 

also labelled as the result of FB leakage at the standard concentration (ie. > 2%) and in 

some cases lower concentrations (0.1% and 0.2%), however, only at 5-day survival day 

timepoint. From our NeuN analysis, it can be said that these small, blue fluorescent dots 

could be either γ-MNs, remanent of dendrites from somas not included in the sections or 

sequestering of FB dye after leakage. Interestingly, the advantage of lowering 

concentration is not for CTB, as a lower concentration of CTB revealed less quality in 

motoneuron labelling (Figs 17a, 20 and 21).   

Tracer protocol optimization is necessary as anatomical tracers like FB and CTB 

are commonly used in various research, especially in neurodegenerative disease related 

studies (Fernández-Espejo & Bis-Humbert, 2018; Nouraei et al., 2018; Vaughan et al., 

2015; Wang et al., 2016). An example of a study using retrograde tracer in a 
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neurodegenerative disease setting would be a study conducted by Mohajeri et al., where 

Fluoro-gold was intramuscularly injected in an ALS mouse model, SOD1 G93A. The 

researchers in that study had injected retrograde tracer Fluoro-gold (FG), intramuscularly 

injecting into hindlimb muscles at various time points (Mohajeri et al., 1998). From that 

study, they saw that α-MNs were lost 4 weeks before symptom onset and that FG also 

adequately labelled gamma-MNs (γ-MNs) (Mohajeri et al., 1998). Interestingly, other 

studies have described FG as a toxic retrograde tracer that harms labelled neurons 

(Naumann et al., 2000). Therefore, our study provides creditability and reliability in 

support of two retrograde tracers, FB and CTB, because these tracers would be better for 

neurodegenerative studies.  

This study is also unique in various other aspects as it provides more information 

about the intramuscular injection of retrograde tracers like FB and CTB, and their ability 

to label α-MNs. Firstly, this study provides further clarification of intramuscular labeling 

in mice. A previous study has shown that differences in FB labeling arise when different 

species of rodents are used even with the same method of application (Hayashi et al., 

2007). Hayashi et al. mentioned that FB labeling is generally lower in rats when 

compared against mice after the tracer was intramuscular injected into hindlimbs. 

Secondly, our study looked at several different parameters to assess labeling quality. 

Many kinds of literature have only relied mostly on the number of neurons labelled and 

not so much any other variable to determine the efficiency of tracer labelling (Novikova 

et al., 1997; Schmued & Fallon, 1986).  Our study utilized parameters like labeling 

intensity ratio, labelling intensity difference, neurite volume, total and longest neurite 

path distance in addition to cell density.  
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Neurite measurements are not commonly seen in tracer comparison literature, 

only one paper as recently used the neurite projections as measurements (Yao et al., 

2018). Neurite projections are important as it provides as a 3D morphological anatomy of 

the labeled MNs, which provide information that can be used in various other disciplines 

of science. 

In conclusion, these studies were developed to optimize protocols for short-term 

memory assessment through behavioral experiments and to label innervated MNs by 

intramuscular injection of retrograde tracers, FB and CTB.  These studies are important 

because having accurate protocols will allow researchers to be able to properly 

characterize ALS and FTD in mice models that contain both of these neurogenerative 

diseases like the rNLS mice model. In future experiments, we will thoroughly 

characterize rNLS mice model through the use of the methods developed in this thesis. 
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