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ABSTRACT 

 

 

Kho, Soon Jye. PhD. Department of Computer Science and Engineering, Wright State 

University, 2021. Sample Mislabeling Detection and Correction in Bioinformatics 

Experimental Data. 

 

 

Sample mislabeling or incorrect annotation has been a long-standing problem in 

biomedical research and contributes to irreproducible results and invalid conclusions. 

These problems are especially prevalent in multi-omics studies in which a large set of 

biological samples are characterized by multiple types of omics platforms at different times 

or different labs. While multi-omics studies have demonstrated tremendous value in 

understanding disease biology and improving patient outcomes, the complexity of these 

studies may increase opportunities for human error.  Fortunately, the interrelated nature of 

the data collected in multi-omics studies can be exploited to facilitate the identification 

and, in some cases, correction of mislabeling errors. The dissertation proposed a pipeline 

comprising statistical and machine learning techniques to identify mislabeled samples and 

correct the sample labels. Expected correlations between copy number variation, gene 

transcript abundance, protein abundance and microRNA expression were used to identify 

mislabeled samples. In datasets with only two omics data, the label corrections were 

performed by exploiting gender-specific indicators of the mislabeled samples; whereas in 

datasets with more than two omics data, a network topology realignment method was 
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proposed to perform label correction. We demonstrated the effectiveness of the pipeline in 

several cancer datasets by simulation experiments. The pipeline was then performed on 

several public multi-omics datasets and in overall, 2.71% of the samples are found to be 

mislabeled. 
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1. INTRODUCTION 

 

Omics refers to the global and comprehensive assessment of a set of biological molecules. 

The advances in omics technologies in the past two decades have had a profound impact 

on the biomedical sciences. Diverse types of omics data have been generated and studied 

extensively to understand complex biological processes. Transcriptomics data has been 

well explored in the literature for associations with specific diseases with the intent of 

understanding and/or predicting susceptibility to disease, morbidity, and disease 

progression. Ma et al. (2003) generated gene expression data of breast cancer tissues of 

distinct stages (premalignant, preinvasive and invasive) and distinct grades (grade I, II, and 

III). They found that the gene expression exhibits a similar pattern among different stages, 

suggesting the alteration of gene expression is already present in the preinvasive stage. In 

contrast with stages, a distinct gene expression pattern was observed in different grades 

and several genes were identified to be differentially expressed in Tumor grade III.  Tonon 

et al. (2005) characterized the genomic profile of non-small cell lung cancer (NSCLC) and 

identified 319 copy number alterations (CNA). Recurrent CNAs in different samples allow 

the grouping into minimal common regions (MCR). The authors found 93 MCRs in total 

which covers a number of tumor suppressor genes and oncogenes found to be implicated 

in NSCLC. Rai et al. (2002) profiled peptide abundance of plasma of patients diagnosed 

with ovarian cancer. Four biomarkers were identified to have high discriminatory power 

for cancer detection. 

https://paperpile.com/c/r72lLE/q9xx
https://paperpile.com/c/r72lLE/lezB
https://paperpile.com/c/r72lLE/lezB
https://paperpile.com/c/r72lLE/5PVQ
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1.1 Multi Omics Studies 

Omics technology provides a high throughput approach to identify a list of 

differences associated with the diseases, providing insights on the different biological 

processes occurring in patients and normal individuals. However, the insights from single 

omics studies may be limited as the data only reveals the difference of one set of biological 

molecules and does not uncover the flow of such information to other molecules. As such, 

researchers may adopt a system biology approach and integrate multiple omics in studies 

of a variety of diseases. Over the past two decades, rapid development of omics 

technologies has facilitated the measurement of variations in form, abundance, and state of 

a wide range of biological macromolecules.  Some of the more common omics 

technologies include: 

- Genomics - assessment of DNA sequence variations among and within individuals, 

tissues, and cells. 

- Transcriptomics - assessment of RNA transcript abundance or state.  Variations 

exist to allow specific observation of messenger RNA (mRNA) transcripts, 

microRNA (miRNA) transcripts, alternative splicing of mRNA transcripts, 

ribosome translation of mRNA transcripts. 

- Metagenomics - exploration of the collective genome of a population of organisms. 

- Epigenetics - exploration of changes in genomic state that do not involve sequence 

variation, including chromatin structure and DNA methylation state. 

- Proteomics - assessment of the relative abundance of expressed proteins. 
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- Phosphoproteomics - assessment of the relative abundance of proteins containing a 

phosphate group as a result of posttranscriptional modifications. 

- Metabolomics - assessment of the presence and relative abundance of metabolites, 

often assayed using liquid chromatography-mass spectrometry (LC-MS) or nuclear 

magnetic resonance (NMR) spectroscopy. 

 

Mertins et al. (2016) characterized genomic, transcriptomic, proteomic and 

phosphoproteomic profiles of 105 breast cancer samples. The authors performed 

integrative analysis on these omics landscapes and revealed several genomic alterations 

that affect the proteomic abnormality. Notably, the loss of chromosome 5q exhibits the 

most trans-association where loss of CETN3 and SKP1 is associated to elevated expression 

of epidermal growth factor receptor (EGFR), and SKP1 loss to increased SRC tyrosine 

kinase. On the other hand, Ding et al. (2018) conducted an ambitious study in which they 

inspected 11,000 tumor samples across 33 different human cancer types. The study aims 

to elucidate the molecular processes governing oncogenesis by uncovering the influence 

of somatic mutation to the carcinogenesis process. The study uncovers the association of 

somatic mutations with other omics (epigenome, transcriptome, and proteome) which helps 

in identifying the driver genes and therapeutic targets. 

Multi omics studies are becoming more common in recent years. The search term 

“multi omics” retrieved over 1121 publications in Pubmed in 2020, compared to 17 

publications in 2010 (Figure 1.1). The increasing popularity of multi omics studies has 

https://paperpile.com/c/r72lLE/qmxM
https://paperpile.com/c/r72lLE/qmxM
https://paperpile.com/c/r72lLE/qmxM
https://paperpile.com/c/r72lLE/uCrh
https://paperpile.com/c/r72lLE/uCrh
https://paperpile.com/c/r72lLE/uCrh
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called for a repository suited for handling and disseminating this sort of system biology 

data. The Cancer Genome Atlas (TCGA) is a pan-cancer analysis project that has profiled 

and analyzed a large number of human tumors to discover molecular aberrations at the 

DNA, RNA, protein, and epigenetic levels (Weinstein et al., 2013). It is by far the largest 

such repository that has been made available for study by the scientific community. 

 

 
Figure 1.1: Number of “multi omics” related publications in PubMed. 

 

1.2 Sample Mislabeling 

Multi omics studies allows researchers to dissect a biological process from different aspects 

and understand it via a holistic approach. Consequently, a multi omics study is inevitably 

a large scale study that involves collaboration among researchers of different specialties. 

https://paperpile.com/c/r72lLE/vx5D
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The large scale of such study does not come without consequences. Human errors can occur 

at multiple steps in the experimental process including sample collection, transportation, 

sample analysis and data generation, and data analysis and interpretation. Sample 

mislabeling is particularly concerning as it might go unnoticed and can introduce 

significant noise into the data. 

While the majority of experiments and results reported in the scientific literature 

are undoubtedly accurate and reproducible, there nevertheless remain numerous instances 

of identified experimental and procedural errors. Toker et al. (2016) looked for 

discrepancies between gene expression-inferred and investigator-annotated sex in 70 

human microarray datasets. The authors found that among 4160 samples, 83 (2%) of them 

are mislabeled. These mislabeled samples are scattered across 32 datasets, showing an 

alarmingly high prevalence of mislabeling in datasets where 46% (32 / 70) of datasets 

contain mislabeled samples. 

Other than biomedical research settings, sample mislabeling and data mishandling 

have been long-standing problems in medical settings. The U.S. Institute of Medicine 

(Kohn et. al, 2007) published a report entitled To Err is Human which estimates as many 

as 98,000 die in any given year from medical errors. The report increased the awareness of 

medical errors which in turn pushed the initiative for prevention and mitigation. With the 

intention of improving patient safety, Astion et al. (2003) investigated reported incidents 

in the laboratory which could potentially cause adverse events to patients. In their study, 

129 incidents were reported in a 16 months period which have the potential to cause 

https://paperpile.com/c/r72lLE/8YfB
https://paperpile.com/c/r72lLE/8YfB
https://paperpile.com/c/r72lLE/8YfB
https://paperpile.com/c/r72lLE/YYTa
https://paperpile.com/c/r72lLE/YYTa
https://paperpile.com/c/r72lLE/YYTa
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adverse events, though the errors may have been intercepted before causing harm to the 

patient. The authors then examined the factors for these incidents. Some factors, such as 

incorrect requisition, missing collection of specimens, lost or delayed specimen, 

suboptimal or ruined specimens, led to the failure or delay of data generation. Though 

unfortunate, these factors are easily recognized and corrected. In contrast, other factors 

such as specimen mislabeling and data entry errors are harder to detect and could cause 

serious harm as these factors can result in incorrect interpretation of the patient’s condition. 

Moreover, specimen mislabeling and data entry errors are not uncommon and constitute 

26% of all the incidents examined. 

 

1.3 Consequences of Sample Mislabeling 

In the medical settings, sample mislabeling may incur unnecessary patient discomfort, 

additional facilities and labor cost, increase morbidity and medical cost. Astion et al. (2003) 

reported that 5% of laboratory incidents caused actual adverse events. Valenstein et al. 

(2006) estimated that the rate of adverse events out of mislabeling events is ~5.29% (324 

out of 6123). 

In biomedical research settings, sample mislabeling may cause statistical power 

loss, irreproducible results, invalid conclusions and increased research cost. Statistical 

power loss has been a concern in the genetics research community. Simulation showed that 

sample mislabeling has disproportionate effects on the power to detect genetic associations 

in genome-wide studies, especially when the sample size is small (Buyske et al., 2009; 

https://paperpile.com/c/r72lLE/YYTa
https://paperpile.com/c/r72lLE/qzZu
https://paperpile.com/c/r72lLE/qzZu
https://paperpile.com/c/r72lLE/qzZu
https://paperpile.com/c/r72lLE/qzZu
https://paperpile.com/c/r72lLE/J9Ma+yvU9
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Edwards et al., 2005). Another study reported that sample mislabeling presents a problem 

in detecting genetic variants associated with diseases, specifically those variants with small 

genetic effect and low frequency (Samuels et al., 2009). 

Correctness and reproducibility of experiments are cornerstones of the scientific 

method. However, these are significantly impacted by sample mislabeling. In the year 

2007, Rae et al. (2007) found that the cell line MDA-MB-435, famously known as the 

“triple-negative breast cancer” cell line, is actually derived from a melanoma cell line. Yet, 

despite the identification of the error, researchers still published studies using the cell line 

in international peer reviewed journals over the following years. Prasad & Gopalan (2015) 

reported that a total of 890 published studies have used the cell line as a model for human 

breast cancer and 219 among them are published after the year 2007. The conclusions of 

notable studies that investigate the effect of drugs using this cell line may thus be 

questionable. 

While mislabeling of one sample does not always falsify the claims of a study 

(depending on the total number of samples in the study), mislabeling of a significant 

portion of samples may invalidate the conclusion. Moloney et al. (2016) published a study 

which investigated the genetic underpinnings of amyotrophic lateral sclerosis (ALS) but 

the study was retracted later as it was discovered that the mouse line was mislabeled. Mice 

mislabeled as expressing wild-type MATR3 were actually expressing the mutant variant 

of the MATR3 gene with a mutation of F115C. While the retraction of published studies 

https://paperpile.com/c/r72lLE/J9Ma+yvU9
https://paperpile.com/c/r72lLE/TLfr
https://paperpile.com/c/r72lLE/xk3H
https://paperpile.com/c/r72lLE/xk3H
https://paperpile.com/c/r72lLE/xk3H
https://paperpile.com/c/r72lLE/i4wA
https://paperpile.com/c/r72lLE/79GE
https://paperpile.com/c/r72lLE/79GE
https://paperpile.com/c/r72lLE/79GE
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may incur unnecessary research and labor costs, this is nevertheless a preferable outcome 

compared to undiscovered errors resulting in false study conclusions. 

Many experimental assays and protocols include quality control checks that can 

help to verify the correctness of the experimental conditions and instruments used. 

However, gross human error such as sample mislabeling or incorrect analysis assumptions 

remain difficult to detect and correct, especially in high-throughput multi-omics studies. 

Given the high prevalence and severe consequences of sample mislabeling, it is desirable 

to have a quality check system to ensure the correctness of data. This not only safeguards 

the patient safety in medical settings, but also improves reproducibility of a study and 

prevents any invalid claim in biomedical research settings. 

Detecting individual mislabeling is a nontrivial task. However, unlike many other 

multi-omics problems which suffer from the well-known curse of dimensionality (Sen & 

Others, 2005) - decrease in classification performance as the number of independent 

variables increases - it may be possible to harness the plentitude of observed features 

typical to these studies to increase confidence for mislabeling identification and even 

correction. As multi-omics studies are becoming more commonplace, it is both desirable 

and feasible to develop a scalable automated approach. 

We hypothesized that if more dimensions of data are generated, it could provide 

more information to determine the source of error and help in relabeling the data 

automatically to the individual level. Specifically, we address two research questions here: 

1) Can correlation signals across different omics data accurately identify individual 

https://paperpile.com/c/r72lLE/JvP2
https://paperpile.com/c/r72lLE/JvP2
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mislabeling errors? and 2) Is the information in typical multi-omics systems biology studies 

sufficient to afford automated correction of mislabeling errors? 
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2. LITERATURE REVIEW 

 

Machine Learning is a method of data analysis that automates analytical model building. 

Machine learning approaches, as applied to data analytics, attempt to identify patterns in 

observations (generally referred to as instances). Each observation may comprise multiple 

variables (or features) collected from a single sample or individual. In cancer 

transcriptomics for example, a sample may consist of tens of thousands of gene expression 

values from a single tumor tissue sample. In supervised machine learning the learned 

patterns are applied to classify the observations into two or more classes (e.g. cancer tissue 

versus healthy tissue).  Unsupervised machine learning, in contrast, does not associate a 

class with each sample. Rather, models are constructed to identify non-uniform distribution 

(groupings) of samples (i.e. cluster analysis) or to explain the variance in the samples in 

terms of the observed features (e.g. principal component analysis and factor analysis). 

More recently, semi-supervised approaches have been developed to perform classification 

where only some of the samples have known class labels. 

Supervised machine learning is generally carried out in two stages: training and 

testing. In the training stage, a model is constructed based on distinct patterns in training 

data associated with different classes. In the testing stage, the identified patterns are 

exploited to make predictions about future data. 

The past several decades have seen significant advances in data availability, 

computing power, affordability of storage, and ease of data sharing.  These changes, along 
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with improvements in machine learning algorithms, have led to successful application of 

supervised machine learning across a wide variety of domains.  In many cases, machine 

learning methods have performed tasks previously thought to be exceedingly difficult or 

impossible to automate (González-Reymúndez et al., 2017; Jagga & Gupta, 2014; Sun et 

al., 2008). Successful construction of machine learning-based models, however, generally 

requires an abundance of high-quality data. As the use of supervised machine learning 

becomes increasingly common, researchers have tried to identify mislabeled instances and 

correct their labels before building the model. It is important to note that these studies focus 

on detecting class mislabeling instead of individual mislabeling. Class mislabeling refers 

to the instance in which a sample's class (e.g. tumor vs healthy tissue) is labeled incorrectly, 

while individual mislabeling refers to a sample that is labeled as belonging to the wrong 

individual or source. Section 2.1 describes current work in identifying class mislabeling 

and Section 2.2 discusses research into identifying individual mislabeling. 

 

2.1 Detecting Class Mislabeling 

The problem of mislabeling is particularly concerning in supervised machine learning 

applications as labeled samples - which often come from human tissue - are sparse, and 

mislabeled instances constitute noise in model building. This would decrease the accuracy 

and reliability of the model. Several approaches have been explored for detecting class 

mislabeling with the aim of increasing data quality. The methods used in these studies can 

be categorized into two different types: classification and statistical approaches. 

https://paperpile.com/c/r72lLE/C32c+UuQ7+jcJs
https://paperpile.com/c/r72lLE/C32c+UuQ7+jcJs
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2.1.1 Classification Approaches 

As mislabeled instances constitute noise in model building, their presence is reflected in 

the decrease of a model’s classification performance. Different studies have utilized 

different metrics that define the classification performance of a model. Muhlenbach et al. 

(2004) proposed an algorithm to identify training noise that influences class separation with 

the aim of minimizing error rate of the classifier model. The authors projected each sample 

into a graph and determined edges that connect samples: two samples are connected if there 

are no other samples between them. The connections helped to determine if a dataset has 

good class separability, having a lower number of edges than a random graph that needed 

to be cut in order to obtain well-defined clusters (sub-graphs connected only by samples of 

the same class). Then, the sample’s neighbors are examined. An instance is considered 

mislabeled if the majority of its neighbors are of different classes. The experiments were 

performed on a collection of ten domains from the UCI Repository of Machine Learning 

Databases1. The authors also investigated the optimum handling method for the identified 

suspected samples. They found that handling suspected samples via the schema of 

“relabelling or else removal” (relabel if a suspected sample’s neighbors are of the same 

class, otherwise remove) yields a lower error rate in all datasets except Breast Cancer 

Dataset, where removing all suspected samples consistently yields the lowest error rate. 

                                                
1 https://archive.ics.uci.edu/ml/index.php 

https://paperpile.com/c/r72lLE/D0Mi
https://paperpile.com/c/r72lLE/D0Mi
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Sánchez et al. (2003) inspected different approaches that enhance the classification 

accuracy of Nearest Neighbor (NN) classifiers. The experiment was applied on five 

datasets from the UCI Repository of Machine Learning Databases1. Different approaches 

were performed on the dataset to filter out bad samples, samples that are mislabeled or 

outlier. The authors found that the depuration method (use leave-one-out method to predict 

a sample’s class using k-NN classifier. The sample is relabeled if it has k’ representatives 

among k neighbours, or removed otherwise) yields the best accuracy in 4 datasets: Liver, 

Pima, Cancer and Heart Datasets. This study is similar to the previous study (Muhlenbach 

et al., 2004), as both studies aim to reduce the noise of training data and improve model 

classification. 

Venkataraman et al. (2004) developed a method for distinguishing between 

correctly labeled and mislabeled data sampled from video sequences. Instead of training 

several classifiers as in an ensemble-based method, one single classifier (SVM with a linear 

kernel) is trained on multiple representations of the data where each representation is built 

by different “discriminating” subspaces that are significant in class separation. Then leave-

one-out (LOO) cross-validation is used to identify mislabeled data. Mislabeled data are 

those data which the annotated label is inconsistent with the predicted label. The mislabeled 

data were removed and the authors showed that removing the mislabeled data increased 

the LOO cross-validation accuracy overall. 

 The above studies focus on filtering noisy and atypical training samples to improve 

the quality of training data. The accuracy of relabeling is not evaluated independently. 

https://paperpile.com/c/r72lLE/A0ZV
https://paperpile.com/c/r72lLE/A0ZV
https://paperpile.com/c/r72lLE/A0ZV
https://paperpile.com/c/r72lLE/D0Mi
https://paperpile.com/c/r72lLE/D0Mi
https://paperpile.com/c/r72lLE/QXyO
https://paperpile.com/c/r72lLE/QXyO
https://paperpile.com/c/r72lLE/QXyO
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Rather, overall classifier performance is the optimization objective. Furthermore, all these 

studies use datasets where the number of samples (n) is greater than the number of variables 

or features (d), a case that is not commonly seen in omics datasets (d is typically much 

greater than n). There are a few studies in detecting class mislabeling in bioinformatics 

data. 

Malossini et al. (2006) proposed an algorithm that identified mislabeled samples by 

label perturbation and data misclassification. The algorithm iteratively perturbed the label 

of one instance within cancer microarray datasets and performed n iterations of LOO 

classification using an SVM with a linear kernel. An instance was identified to be 

mislabeled under two conditions, either: 1) the instance was consistently misclassified after 

the perturbation of other instances or, 2) perturbation of that instance resulting in improved 

prediction power of the resulting classifier. The first condition is reported to be a better 

strategy in identifying mislabeled samples and achieved an average precision of 0.67 and 

average recall of 0.92 on three real microarray datasets. One major drawback of this method 

is the long execution time as the method requires training of n2 classifiers: n iterations of 

LOO classification for n iterations of perturbing the label of instances. 

Knights et al. (2011) explored the identification of mislabeled samples solely based 

on classifier error rate.  They trained prediction models (random forest and nearest 

shrunken centroid) and performed prediction on 16S rRNA microbiota data in two 

classification tasks (classifying general body habitats like skin vs gut, and classifying 

hand/keyboard samples by individual). False positives and false negatives were treated as 

https://paperpile.com/c/r72lLE/aQNS
https://paperpile.com/c/r72lLE/aQNS
https://paperpile.com/c/r72lLE/aQNS
https://paperpile.com/c/r72lLE/5nQh
https://paperpile.com/c/r72lLE/5nQh
https://paperpile.com/c/r72lLE/5nQh
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mislabeled instances. They demonstrated that their algorithm was robust to noise and still 

able to predict correct labels, but only when the noise level is < 40% and the data exhibited 

clear separation between classes. The authors recognized that this approach will not be 

useful in a harder classification task where the data separation between classes is very 

subtle. 

Martín-Merino (2013) proposed a similar algorithm to that of the previous study 

with two differences: the classifier model is built using SVM with a dissimilarity kernel 

and the datasets used are cancer microarray datasets. The sample and labels were mapped 

into feature spaces using the dissimilarity kernel and outliers were detected using one-class 

classification. The authors performed the algorithm on cancer microarray datasets and 

reported that the algorithm is more effective than a traditional SVM with a linear kernel. 

All of these studies can be characterized as outlier detection methods, in that they aim at 

removing noise to have a better separability between classes and achieve a better 

classification performance of models. 

 

2.1.2 Statistical Approaches 

In contrast with the studies in the previous subsection, some studies identify mislabeled 

instances by observing the statistical distribution of data. Westra et al. (2011) identified 

sample mislabeling by observing the deviation of gene expression z-scores in gene 

expression Quantitative Trait Loci (eQTL) datasets. The mean gene expression z-scores of 

different genotypes were computed. Significant cis-eQTLs, i.e., trait loci that have 

https://paperpile.com/c/r72lLE/L79y
https://paperpile.com/c/r72lLE/L79y
https://paperpile.com/c/r72lLE/L79y
https://paperpile.com/c/r72lLE/UW9e
https://paperpile.com/c/r72lLE/UW9e
https://paperpile.com/c/r72lLE/UW9e
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significant influence on expression of some specific genes, were first identified. Loci 

whose expression z-scores of those genes were highly distant from their genotype group 

mean were identified as mislabeled. The authors performed sample mislabeling checks on 

published datasets and found that four out of five datasets contain sample mislabeling. 

Overall, 3% of all samples were mislabeled and 15% more significant cis-eQTLs were 

identified after correction. 

Lynch et al. (2012) took a similar approach, but they observed the misclassification 

of genotypes instead of the deviation of gene expression z-score. Similar to the previous 

study, significant cis-eQTLs were first identified. Then, the expression values of those 

significant genes were used to predict the genotype of samples. Any instances with 

inconsistent genotypes (predicted versus annotated) were identified as mislabeled. 

Zych et al. (2017) utilized genotype perturbation and identified mislabeled samples 

by observing changes in the t-statistic value. The rationale behind this approach is that if a 

mislabeled genotype is perturbed to its true label, the overall t-statistic value between 

different genotypes would increase and vice-versa. The algorithm achieved an area under 

the curve (AUC) of 0.8 to 1.0, depending on genetic similarity of datasets (the more 

dissimilar the dataset, the higher the AUC achieved). The authors performed the algorithm 

on public worm gene expression datasets (Snoek et al., 2012; van der Velde et al., 2013) 

and 1.9% (4 / 208) of C. elegans recombinant cell lines are found to be mislabeled. One 

drawback of the algorithm is a high execution time exacerbated by the perturbation of 

genotype. Each perturbation requires a new calculation of t-statistics for every genotypes-

https://paperpile.com/c/r72lLE/6Mw2
https://paperpile.com/c/r72lLE/6Mw2
https://paperpile.com/c/r72lLE/6Mw2
https://paperpile.com/c/r72lLE/ZnX4
https://paperpile.com/c/r72lLE/ZnX4
https://paperpile.com/c/r72lLE/ZnX4
https://paperpile.com/c/r72lLE/vS8B+Ceeb
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gene pair. The method requires high performance computing when a dataset has a fairly 

large set of samples. The worm datasets used in the studies have ~120 single nucleotide 

polymorphisms (SNP) but humans have ten of millions. This limits the scalability of the 

algorithm. 

As with the previously-described classification-based approaches, all of the 

statistical approaches mentioned above identified mislabeled samples with the aim of 

assuring the correctness of class labels. Further investigation into the source of error is 

usually not performed. However, detecting class mislabeling is not sufficient in the field 

of precision medicine, where a data instance should not only be correctly assigned to its 

class but also attributed to the correct patient. 

 

2.2 Detecting Individual Mislabeling 

Very few studies focus on detecting individual mislabeling. Broman et al. (2015) identified 

mislabeled samples by inspecting the concordance of gene expression data across different 

tissue types. The datasets are generated from six tissue types from the same population of 

mice. Every mouse subject had six tissues (adipose, gastrocnemius muscle, hypothalamus, 

pancreatic islets, kidney, and liver) extracted and sequenced using an Affymetrix 

microarray platform. The rationale of the approach is that the concordance of gene 

expression between two tissues from the same mouse should be high. While the authors 

were able to identify and correct mislabeled samples to the individual level, the study 

focuses on transcriptomics data from several tissues. The method is not directly applicable 

https://paperpile.com/c/r72lLE/Rtb4
https://paperpile.com/c/r72lLE/Rtb4
https://paperpile.com/c/r72lLE/Rtb4
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to study designs where only one type of tissue is sampled for different omics. In addition, 

the approach does not provide a mechanism for automated correction. Rather, it relies upon 

manual intervention to identify mislabeled samples. 
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3. MATERIALS AND METHODS 

 

3.1 Data Collection 

Three multi omics datasets were collected from National Institute of Health’s Clinical 

Proteomic Tumor Analysis Consortium (CPTAC)2. These datasets were generated for three 

different cancers: colorectal, kidney and lung. Intensive manual inspection has been 

performed and there was no observed data mislabeling upon publication. 

 

3.1.1 Colorectal Cancer Dataset (COAD) 

The colorectal cancer dataset was merged from two colon rectal cancer cohorts, 85 from 

Zhang et al. (2014) and 96 from Vasaikar et al. (2019). Two types of omics data were 

collected: transcriptomics and proteomics. Expression level of mRNA was quantified 

based on Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Protein 

fragmentation and sequencing were performed through Liquid Chromatography with Mass 

Spectrometry (LC-MS/MS) and protein abundance was measured based on spectral 

counting (the total number of MS/MS spectra acquired for peptides from a given protein). 

For both proteomics and RNA-seq data, genes with more than 50% missing values were 

removed, except for genes located in X or Y chromosomes. The missing values were 

imputed using Random-Forest based imputation (Stekhoven & Bühlmann, 2011) except 

                                                
2 https://proteomics.cancer.gov/programs/cptac 

https://paperpile.com/c/r72lLE/bU16
https://paperpile.com/c/r72lLE/bU16
https://paperpile.com/c/r72lLE/bU16
https://paperpile.com/c/r72lLE/hyJL
https://paperpile.com/c/r72lLE/hyJL
https://paperpile.com/c/r72lLE/hyJL
https://paperpile.com/c/r72lLE/GdIN
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for sex chromosome genes where the missing values were replaced by zero. This resulted 

in a total of 17220 gene and 4105 protein features. The proteomics data were then 

normalized using quantile normalization whereas the RNA-seq data was normalized using 

the trimmed mean of M-values normalization method (TMM) (Robinson & Oshlack, 

2010). Since the dataset was integrated from two cohorts, batch correction was performed 

on both proteomics and RNA-seq data using Combat (Johnson et al., 2007) after data 

normalization. Quality control analysis was performed using metaX (Wen et al., 2017) 

before and after batch correction. 

 

3.1.2 Kidney Cancer Dataset (CCRCC) 

The kidney cancer dataset (Clear Cell Renal Cell Carcinoma) was collected from Clark et 

al. (2019). Two types of omics data were collected: transcriptomics and proteomics. The 

expression level of mRNA was quantified based on FPKM while the expression level of 

protein was measured based on spectral counting after performing the MS/MS pipeline. 

The samples were manually inspected for any sampling error and one sample was removed 

due to low self correlation between RNA and Protein profiles (Clark et al., 2019). The 

features with missing rate > 50% were filtered and proteomic missing values were imputed 

using DreamAI3, an ensemble algorithm developed during the National Cancer Institute-

Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) Dream Proteomics 

                                                
3 https://github.com/WangLab-MSSM/DreamAI 

https://paperpile.com/c/r72lLE/jGuS
https://paperpile.com/c/r72lLE/jGuS
https://paperpile.com/c/r72lLE/1OKj
https://paperpile.com/c/r72lLE/D8vJ
https://paperpile.com/c/r72lLE/2CST
https://paperpile.com/c/r72lLE/2CST
https://paperpile.com/c/r72lLE/2CST
https://paperpile.com/c/r72lLE/2CST
https://paperpile.com/c/r72lLE/2CST
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Imputation Challenge4. There were a total of 19275 RNA features and 10127 protein 

features. Lastly, the mRNA expression levels and global protein abundances were 

normalized to a standard normal distribution. 

 

3.1.3 Lung Cancer Dataset (LUAD) 

The lung adenocarcinoma dataset was collected from Gillette et al. (2020). Four types of 

omics data were collected: transcriptomics, proteomics, copy number variation (CNV) and 

microRNA (miRNA). The RNA transcript read counts were upper-quartile normalized and 

transformed into Reads Per Kilobase of transcript, per Million mapped reads (RPKMs). 

Protein abundance was quantified based on spectral counting and normalized TMT ratios.  

The features with missing rate > 50% were filtered and proteomic missing values were 

imputed using the DreamAI tool5. CNV analysis was performed using CNVEX6, an 

algorithm which uses several probabilistic and optimization algorithms to estimate the copy 

number from whole genome sequencing (WGS) and whole exome sequencing (WES) data. 

Expression of miRNA was quantified using a variant of the small RNA quantification 

pipeline developed for TCGA (Chu et al., 2016). The number of features in each omics 

dataset are: 19275 (RNAseq), 7556 (proteomics), 19817 (CNV), and 1881 (miRNA). 

 

 

                                                
4 https://www.synapse.org/#!Synapse:syn8228304/wiki/413428 
5 https://github.com/WangLab-MSSM/DreamAI 
6 https://github.com/mctp/cnvex 

https://paperpile.com/c/r72lLE/YoYY
https://paperpile.com/c/r72lLE/YoYY
https://paperpile.com/c/r72lLE/YoYY
https://paperpile.com/c/r72lLE/1rEY
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3.2 Mislabeling Simulation 

Three mislabeling error patterns were observed in various TCGA or CPTAC datasets: 

swapping, duplication and shifting (Clark et al., 2019). These similar error patterns were 

introduced into the datasets during simulation and the simulation mechanisms were 

described as below. 

 

3.2.1 Swapping 

Swapping errors occur when the patient labels of two samples from different subjects are 

swapped. Swapping errors can occur in any type of omics data and were simulated by 

swapping the data of two samples. 

 

3.2.2  Duplication 

Duplication error is the replication of data from one patient. This may be an electronic 

duplication of the data or, more frequently, when a tissue sample is divided and 

unintentionally assayed multiple times. The resulting duplicate data replaces the data for 

another sample. This is often a sample associated with a different subject. To simulate a 

duplicate data that accurately reflects real duplicates, actual proteomics replicates were 

referred to. There are two additional actual proteomics replicates in the COAD dataset and 

the replicates were found to have Pearson correlation coefficient > 0.9 with their original 

counterparts. To simulate a duplicate data, the original data was added with a perturbation 

equal to the standard deviation of each gene i as in Sample(i)duplicate = Sample(i) ± σ/α, 

https://paperpile.com/c/r72lLE/2CST
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where σ is a standard deviation of the gene i and α is a scale factor for the σ. For each gene, 

the perturbation is either added to or removed from (randomly selected) the original value. 

 The scale factor was empirically optimized to yield correlation coefficients between 

simulated duplicates similar to that observed in actual proteomics duplicates. The changes 

of score difference with respect to the changes of scale factors are visualized in Figure 3.1. 

Score difference is the difference of sample correlation with itself and the average of 

sample correlation with others. The original data have a score difference of 0.495. A low 

α increases the perturbation variance and decreases the score difference, indicating that the 

duplicated data is more similar with random samples (no differences between self and other 

sample), whereas a high α increases the score difference until it reaches the level of original 

data (no differences with original sample). It was found that a scale factor of α = 1.0 (pivot 

of the elbow line in Figure 3.1 middle) resulted in a correlation coefficient > 0.9 between 

simulated RNAseq replicates and the original samples. The original data of another 

randomly selected patient was discarded and displaced by the simulated data. 
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Figure 3.1: Simulation of duplicated samples. (left) The actual proteomic replicates have 

high sample correlation and this experimental data is used as a reference for simulation. 

(middle) Simulation of the scale factor α to control sample similarity score between 

RNA-seq and proteomics. Two dashed colored lines mark the sample simulation for 

RNA-seq and proteomics respectively. (right) The scale factor α = 1 is chosen to simulate 

RNA-seq duplicated samples which have similar sample correlation with the reference in 

proteomics dataset (Figure adapted from Yoo et al., 2021). 

 

3.2.3 Shifting 

Shifting errors indicate the displacement of several samples to another sample in a 

sequential manner (A to B, B to C, and C to D). Shifting errors can occur in any type of 

omics data and one shifting event always involves several samples, typically ranging from 

3 to 6. 

 

3.3 Pearson Correlation Coefficient 

Pearson Correlation Coefficient measures the degree of relatedness between two sets of 

data. It measures the linear relationship between them and is the ratio between the 

covariance of two variables and the product of their standard deviations (Equation 1 and 2). 

https://paperpile.com/c/r72lLE/4hiV
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𝜌𝑋, 𝑌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
   (1) 

𝜎𝑋𝑌 = ∑(𝑥𝑖 − 𝑥̅)(𝑦
𝑖
− 𝑦̅) (2) 

Where ρX,Y = correlation of X and Y, σXY = covariance of X and Y, σX = standard 

deviation of X, σY = standard deviation of Y. 

When computing gene correlation across two omics data, X represents the 

expression values of a specific gene in one omics data while Y represents the expression 

values of a specific gene in another omics data with the same sample order as X; whereas 

when computing sample correlation across two omics data, X represents the expression 

values of genes of a sample in one omics data while Y represents the expression values of 

the genes of a sample in another omics data with the same gene order as X. 

 

3.4 Stable Matching Algorithm 

Given a sample correlation heatmap which indicates the correlation of two samples from 

two different omics data, the challenge is to find a set of matchings that each matching 

pairs two samples with the highest correlation as possible. As such, we employed the Gale-

Shapley algorithm for finding a solution to this stable matching problem (Gale & Shapley, 

1962). The input of the algorithm is lists of preferential rank, one for each sample, ranking 

from the highest Pearson correlation to the lowest. The preferential ranks were generated 

from the sample correlation heatmap, where the ranking is done in each row for the 

respective samples from omics x and in each column for the respective samples from omics 

y. The output is a set of matchings, pairing two samples from different omics data. 
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Below is the pseudocode of the stable matching algorithm used in this thesis: 

Input: Preferential ranks for every samples 

Output: A set of matchings pairing two samples, one from omics 

x and one from omics y 

 

Initialize m ∈ samples from omics x and w ∈ samples from omics 

y to be unpaired 

While ∃ m which is not paired with some w: 

w := first sample of omics y on m's list to which m has 

not yet tried to pair 

if ∃  some pair (m', w) then 

          if w has upper rank with m to m' then 

               m' becomes unpaired 

               (m, w) become paired 

          end if 

else 

               (m, w) become paired 

end if 

repeat 

 

 

3.5 Evaluation 

To evaluate the performance of the proposed approach in detecting and correcting 

mislabeling, several simulation experiments were performed. In every simulation 

experiment, the true datasets were used to simulate artificial datasets with mislabeling 

errors as described in the previous subsection. The true individual labels of the simulated 

datasets remained hidden and were used for evaluation later. The expected mislabeling rate 

in real life datasets is low, ranging from 0-20%. Thus, we evaluated the proposed approach 
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using F1 scores (Equation 3, 4, and 5), the harmonic mean of precision and recall. The 

proposed approach should be able to detect as many mislabeled samples as possible without 

overcorrecting those correctly-labeled samples. 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

True positive (TP) is the number of positives correctly identified, true negative 

(TN) is the number of negatives correctly identified, false positive (FP) is the number of 

negatives incorrectly identified as positive, and false negative (FN) is the number of 

positives incorrectly identified as negatives. Three levels of F1 scores were used in 

evaluation: sample level, data level, and correction level. Each level has different criteria 

to consider an instance as a true positive, with the subsequent level having stricter criterias 

than the previous. 

Sample level F1 score evaluates the performance of detecting samples with 

mislabeled data. A positive instance is the sample with mislabeled data regardless of omics 

type. If the corrected labels of any omics data do not match the original sample label, it is 

considered a mislabel identification at the sample level. Data level F1 score evaluates the 

performance of identifying correctly the types of mislabeled data. A true positive instance 

is an instance in which all the corrected labels of omics data match the original sample 

label except the mislabeled one. Correction level F1 score evaluates the performance of 



28 

correcting the individual label. The corrected labels of all omics data should match exactly 

the true labels to be considered as a true positive. 
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4 MISLABELING DETECTION 

 

This approach is based on the rationale that multiple types of omics data characterized from 

the same patient have intrinsic relationship between each other and could be utilized to 

extract a signal for aligning omics data. The signal should possess two characteristics: 1) 

it should be general such that it could be extracted from every sample, but at the same time, 

2) it should be highly specific in every individual such that every sample has a strong signal 

to itself but not to other individuals. 

The aim of this chapter is to investigate if such a signal could be extracted from 

different omics data and how accurate the signal would be in detecting mislabeled samples. 

 

4.1 Pairwise Alignment 

4.1.1 Correlation Signal Extraction 

Central Dogma of molecular biology describes the flow of genetic information from DNA 

to RNA and from RNA to protein via the processes of transcription and translation. The 

copy number of a gene, expression level of a gene transcript and expression level of a gene 

product are correlated to some extent. The correlation between these three omics data could 

be exploited to determine whether two data collections from different types of omics assays 

belong to the same patient. We employ the following procedure to extract the correlation 

signal that could accurately align two different omics data from the same patient. 
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Figure 4.1: Imputation of sample correlation for performing pairwise alignment. 

 

First, gene correlation between two omics data is computed and genes with high correlation 

(cor > 0.5) are extracted. The expression value of these highly correlated genes are then 

used to compute sample correlation between two omics data, generating a sample 

correlation matrix, C with a dimension of N ✕ N. 

 

4.1.2 Coexpression Signal Extraction for miRNA Data 

It is possible to extract correlation signals between RNA-seq, proteomics and CNV 

data as these omics have the same gene features. However, this is not the case for 

microRNA (miRNA). MicroRNA refers to a short single-stranded RNA (~22 nt) molecule 
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and mediates RNA silencing through base pair pairing. MicroRNA is not protein coding 

and thus, does not have the same gene features with other omics data. 

Instead of correlation signal, the coexpression signal is utilized to align miRNA 

samples. Around 70% of mammalian miRNA are embedded within a host gene and these 

miRNA are known as intragenic miRNA (Rodriguez et al., 2004). These miRNA were 

found to share a common transcription unit with their host genes and always co-transcribe 

together (Baskerville & Bartel, 2005; Ramalingam et al., 2014). The coexpression patterns 

were investigated in this chapter to determine their utility in miRNA sample alignment. 

To pair each miRNA with its host gene, the annotated human genome build dataset 

(GRCh38.p13) was downloaded from the NCBI Ensembl7 website and the annotated 

miRNA dataset (release v22) was downloaded from mirBase8. The annotated miRNA 

dataset aligns to the human genome of same build GRCh38 and contains a total of 1919 

unique miRNA entries. If the genomic position of a miRNA is within the genomic range 

of a gene, then they are considered as a miRNA-gene pair. A total of 1647 miRNA-gene 

pairs were extracted, comprising 1419 unique miRNAs and 1173 unique genes. 

For every pair of miRNA and its host gene, the feature correlation was imputed 

between miRNA with three other omics data (RNAseq, proteomics and CNV). Those 

miRNA-gene pairs that are highly correlated were extracted. The expression value of these 

                                                
7 http://useast.ensembl.org/index.html 
8 http://www.mirbase.org/ 

https://paperpile.com/c/r72lLE/1tKM
https://paperpile.com/c/r72lLE/NmDI+6grk
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highly correlated genes were then used to compute sample correlation, generating a sample 

correlation matrix, C with a dimension of N ✕ N. 

 

4.1.3 Stable Matching for Detection 

The correlation matrix C, was used as the preferential ranking for a stable matching 

algorithm, with the ranking being ordered by the correlation descendingly. The stable 

matching algorithm outputs N pairs of matching sample pairs with matching scores, the 

sum of preferential ranks of both omics data towards each other. Ideally, omics data from 

the same patient should have the top rank with each other, contributing to a matching score 

of 2. 

If a sample pair consists of omics data of different patients, those are considered as 

mislabeled samples. The stable matching algorithm pairs exactly one-to-one omics data 

thus data that are left out (due to duplication) will be paired despite having very low 

correlation signals with each other. Thus, a sample pair with a matching score > N/10 were 

also considered mislabeled. 
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Figure 4.2: Stable Matching algorithm pairs every instance from two different omics data. 

 

4.2 Evaluation 

4.2.1 Gene Correlation Inspection 

The distribution of genes Pearson Correlation between different omics was inspected. In 

Figure 4.3, the gene correlations follow a normal distribution and have a mean ranging 

from 0.24 to 0.53. This implies that there is a reasonable correlation between these omics 

data to be used for pairwise alignments. 
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Figure 4.3: Distribution of Gene Pearson Correlation between different pairs of omics 

datasets: (A) Colon adenocarcinoma RNAseq and Proteomics data, (B) Clear Cell Renal 

Cell Carcinoma RNAseq and Proteomics data, (C, D, E) Lung Adenocarcinoma RNAseq, 

Proteomics and CNV data 
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Dataset CPTAC COAD CPTAC 

CCRCC 

CPTAC LUAD 

Cancer Colon 

Adenocarcinoma 

Clear Cell 

Renal Cell 

Carcinoma 

Lung Adenocarcinoma 

Omics Data 

(Number of 

Features) 

RNAseq (13172) RNAseq 

(19275) 

RNAseq 

(19275) 

RNAseq 

(19275) 

Proteomics 

(7556) 

Omics Data 

(Number of 

Features) 

Proteomics 

(4105) 

Proteomics 

(10127) 

Proteomics 

(7556) 

CNV 

(19817) 

CNV 

(19817) 

Number of 

Overlapped 

Features 

3866 9946 7416 18707 7510 

Mean of 

Pearson 

Correlation 

0.2422 0.4099 0.5315 0.3233 0.2538 

Table 4.1: Mean of gene correlation between two omics dataset 

 

4.2.2 Simulation Experiments 

To investigate if the correlation signal extracted could be a useful indicator to inform 

mislabeling, the original datasets were used to simulate mislabeled datasets by the process 

of bootstrapping and artificial mislabeling. In each simulation, a fixed number of omics 

instances (100 in COAD; 80 in CCRCC and 80 in LUAD) were randomly selected and 

mislabeling errors with an error rate of e were introduced as described in Section 3.2. The 

process was repeated 10 times for each error rate, e = [0.1, 1.0]. 
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Figure 4.4: Simulation experiment for evaluating the performance of correlation signal in 

detecting mislabeled samples. The process was repeated 10 times in each pair of omics 

data for each error rate. 
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The pairwise alignment algorithm was performed on each simulated dataset. Every 

patient whose omics data is mislabeled, is a positive instance and only a successful 

detection of the patient is treated as a true positive. The complementary principles applied 

to a true negative instance. The sample level F1 score is obtained in each simulation and 

shown in Figure 4.5 (A). 

 

Figure 4.5: Sample level F1 scores of mislabeling detection between different pairs of 

omics datasets: (A) across different error rates using default correlation cutoff of 0.5, (B) 

across different correlation cutoff with fixed error rate of 0.2. 
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Figure 4.5 (A) shows that the correlation signal could accurately align samples 

across different datasets and different pairs of omics data, the average F1 score across all 

the datasets is 0.99. The algorithm was shown to be robust against error rate and achieved 

F1 score > 0.97 across different error rates. It is counterintuitive that the algorithm could 

achieve high F1 scores when the error rate = 1.0. This is because when the error rate = 1.0, 

the data do not have any useful correlation and the sample is paired randomly. Thus, all the 

samples were detected as mislabeled because of random pairing that does not yield any 

matching pairs. The simulation experiments were also repeated with fixed error rate, e = 

0.2 but with different correlation cutoffs. This is to determine the optimum correlation 

cutoff to extract gene features. Figure 4.5 (B) shows that the algorithm is robust against 

different cutoffs and the F1 scores were ~0.94 across different cutoffs. 

  

4.2.3 miRNA Coexpression Inspection 

Several publications showed that miRNA always coexpress with its host genes 

(Baskerville & Bartel, 2005; Ramalingam et al., 2014). The miRNA data of the lung 

adenocarcinoma dataset (N = 107) was inspected and the distribution of miRNA-gene pairs 

Pearson correlation was plotted (Figure 4.6). The histograms show that miRNA has 

reasonable coexpression pattern to all the omics data, with the strongest correlation to 

RNAseq data with a mean of 0.231 while the lowest correlation to CNV data with a mean 

of 0.106. 

https://paperpile.com/c/r72lLE/6grk+NmDI
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Figure 4.6: Distribution of Pearson correlation of miRNA-gene pairs between (A) 

miRNA with RNAseq, (B) miRNA with proteomics, and (C) miRNA with CNV data of 

the Lung Adenocarcinoma (LUAD) dataset. 
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Alignments of omics Number of pairs of 

miRNA and host gene 

Mean of Pearson 

Correlation 

miRNA with RNAseq 1166 0.2305 

miRNA with proteomics 646 0.1331 

miRNA with CNV 1182 0.1055 

Table 4.2: Number of miRNA-gene pairs and the mean of Pearson correlation. 

 

4.2.4 Simulation Experiments for miRNA Data 

Simulation experiments were performed with three different pairs of omics data with 

miRNA: miRNA to RNA, miRNA to Proteomics, and miRNA to CNV. The original 

datasets were used to simulate mislabeled datasets (N = 100) with an error rate of 0.1. The 

process was repeated 50 times and the pairwise alignment was performed on simulated 

datasets iteratively using different correlation cutoffs. The performance of the pairwise 

alignment algorithm in aligning miRNA data was inspected. 
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Figure 4.7: Sample level F1 scores of detecting mislabeled samples in pairwise alignment 

of miRNA data with three other omics data. 

 

Figure 4.7 shows that the algorithm achieved an F1 score of 1 when aligning 

miRNA with RNAseq data, whereas aligning miRNA with Proteomics data achieved the 

highest F1 score of 0.68 and aligning miRNA with CNV data achieved the highest F1 score 

of 0.54. The coexpression signal is proved to be useful in aligning miRNA samples with 

RNA samples, but not with proteomics nor CNV data. 

It is hypothesized the reason for the low F1 score in aligning miRNA to Proteomics 

or CNV samples is due to low number of correlated feature pairs. To validate the 

hypothesis, the simulation experiments were repeated but in each simulation, a different 
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number of correlated feature pairs (corr > 0.1 or 0.2) were extracted randomly to compute 

sample correlation for pairwise alignment. Figure 4.8 shows that the higher the number of 

feature pairs, the higher the F1 score achieved. However, the F1 score was limited by the 

number of correlated feature pairs in Proteomics and CNV data. RNAseq data has the 

highest coexpression signal with miRNA data, and yet it requires at least 300 feature pairs 

(corr > 0.2) to achieve an F1 score of 1. Proteomics and CNV data do not have sufficient 

correlated feature pairs (corr > 0.2) to miRNA data, which normally capped at around 125 

and 175 features pairs. Combined with the weaker coexpression of these datas to miRNA 

data, the F1 score achieved is not sufficient for accurate label prediction. Yet, the increasing 

trend of F1 score against the number of features, suggests that a higher F1 score, and thus 

a useful correlation signal could be achieved if there were more feature pairs available. 

One surprising finding is that the pipeline has high recall regardless of the number of 

feature pairs and the low F1 score is due to low precision. This indicates that all mislabeled 

samples are being identified and a matching sample can be treated as correctly labeled with 

confidence. 
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Figure 4.8: Sample level F1 score achieved against different number of feature pairs. The 

feature pairs were selected randomly from a set of features with correlation > 0.1 (left) or 

0.2 (right). Higher number of correlated feature pairs achieved a higher F1 score, but it is 

limited in Proteomics and CNV data. 
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4.3 Discussion 

In this chapter, an algorithm was proposed to extract correlation signals between two omics 

data and use the signal to perform pairwise alignments of samples. The results show that 

the correlation signal is reliable and achieved a high F1 score (> 0.95) in detecting 

mislabeled samples across RNAseq, Proteomics and CNV data from three cancer datasets. 

The detection algorithms are robust against different error rates and achieved average F1 

scores > 0.95 even in a dataset with high error rate. 

The coexpression signal extracted from miRNA with RNAseq data was also shown 

to be an accurate indicator to align miRNA and RNAseq samples, with an F1 score of 1.0. 

However, alignment of miRNA to another two omics samples did not achieve satisfactory 

F1 scores (0.68 to proteomics; 0.54 to CNV). This is due to the low number of correlated 

feature pairs between these omics data. Higher number of feature pairs are required to 

extract reliable coexpression signals that could accurately align proteomics and CNV 

samples. It is estimated that Proteomics data requires at least 450 pairs while CNV data 

requires at least 800 pairs. 
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5 MISLABELING CORRECTION IN TWO OMICS DATA 

 

The preceding chapters show that pairwise alignment across omics data sources can 

accurately detect mislabeled samples in multi omics experiments. However, alignment 

alone is insufficient for correcting the identified mislabelings. To correct the label, it is 

important to investigate the source of error to determine which omics data get mislabeled. 

Here we propose an algorithm that utilizes the class label to determine the source of error. 

The class label could be any clinical attribute collected in the dataset. In this chapter, the 

aim is to investigate the accuracy obtained by using various clinical attributes as the class 

label in correcting mislabeled samples. 

 

5.1 Attribute Prediction 

Other than omics data characterization, clinical attributes data of the patients are often 

collected in a cohort study. Different studies collect different clinical attributes of the 

patients, but sex is one of the most common attributes across all the studies. Thus, sex 

phenotype and genotype was chosen to be utilized in this work for label correction. 

Due to the dimensionality curse in bioinformatics data, two feature selection 

methods were used. The first is the selection of sex-linked genes in sex chromosomes. The 

missing values in sex-linked genes were replaced by 0 as they are assumed to be either 

absent (i.e., the absence of the Y chromosome in females) or repressed (i.e., X chromosome 

inactivation in females). The second method is elasticNet regularization during the model 
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training. One classifier model was trained for each omics data and the model used in this 

work is a regularized weighted logistic regression model. Class weighting was used to 

compensate for any class imbalance issue and logistic regression (LR) model was chosen 

due to its simplicity and efficiency in training. 

There is an inherent circular problem in training a model to predict gender from 

multi omics data from a particular study, given the possibility that sample mislabeling may 

have occurred in the training data. To resolve this issue, the model is trained in two steps. 

First, matched samples from the study data are used to train a model using k-fold cross 

validation (CV). Next, samples for which sex genotype is mispredicted during testing folds 

are identified as suspected cases of mislabeling, and are excluded from the model. Next, 

the model is retrained with only high-confidence non-mislabeled samples from the study. 

Finally, the re-trained model is used to predict sex genotype across all samples. 



47 

 
Figure 5.1: The workflow of predicting sex label of omics data: (A) Matched samples 

from the study are used in the first round of model training using k-fold cross validation 

(B) Samples which sex genotype is mispredicted were identified (C) Suspected 

mislabeling case is excluded from second round of model training (D) Trained model is 

used to predict sex genotype across all samples. 

 

 

 



48 

5.2 Individual Label Correction 

With the detected mislabeled samples and predicted sex label, an automated correction 

algorithm was proposed. The algorithm inspects pairwise alignment patterns along with 

the predicted sex label to correct the label. There are three types of mislabeling error and 

the algorithm corrects each type of error with different mechanisms. 

Swapping errors are characterized by the cross alignments between two patients’ 

samples. To determine which omics data get swapped, the predicted sex labels of omics 

data are checked against the annotated sex labels. Each checking generates an error rate, 

the difference between annotated label and predicted probability. The omics data with a 

higher error rate is determined to be mislabeled and the labels will be corrected. 

The identification of duplication error is complicated, as the stable matching 

algorithm pairs the samples in a strict one-to-one manner; a duplicated sample will not pair 

with its matching sample. Hence, the identification of duplication cases relies on the 

matching score. Due to the displacement of duplicated data, there is another sample with 

no matching sample and will always spuriously paired with the duplicated data despite 

having low correlation. Due to the low correlation, this pairing will have a high matching 

score. The highest possible matching score is 2N and a threshold of 5% (2N/20) is used, 

assuming that the spurious pairing will only have a 5% random chance to have a low 

matching score. Thus, we used N/10 as the threshold. If a sample pair has a matching score 

higher than the threshold, it is suspected to be a duplication case. To determine which omics 

data get duplicated, the algorithm inspected the highest correlation each data has with the 
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other samples. The duplicated data is supposed to have high correlation with its sample, 

and thus the one with the higher correlation has its label corrected. 

Shifting cases always start with a duplication event. Before correcting the label, the 

algorithm first identifies the shifting chain. The shifting chain starts with a duplicated 

sample, which is identified as the previous paragraph. The chain is identified by iteratively 

inspecting the sample pair of the last sample in the chain until the chain reaches a sample 

pair with a matching score higher than the threshold N/10. After the shifting chain is 

identified, the next step is to determine which omics data get shifted. The predicted sex 

labels of omics data are checked against the annotated sex labels. This checking step is the 

same as checking swapping errors but with several samples in the shifting chain. Each 

checking generates an error rate, the difference between annotated label and predicted 

probability. The omics data with a higher error rate is determined to be mislabeled and the 

labels will be corrected. 
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Figure 5.2: The automated correction algorithm for each type of mislabeling error. 
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5.3 Simulation and Evaluation 

These different algorithms (pairwise alignments, attribute prediction and label correction) 

were integrated together and form an automated pipeline, known as COSMO (COrrection 

of Sample by Multi Omics). To investigate the performance of COSMO in correcting 

individual labels, similar simulation experiments were conducted. A dataset was simulated 

with an error rate ranging from 0.05 to 0.28 and then the COSMO pipeline was used on the 

dataset. The process was repeated 50 times. The performance of COSMO was evaluated 

using F1 score in three levels: sample level, data level and correction level. Sample level 

F1 score is the same scores obtained in Chapter 4, which evaluate performance in detecting 

mislabeling of the patients’ samples. Data level F1 score evaluates how accurately the 

pipeline identifies mislabeled omics type. In the data level, a mislabeled instance is treated 

as a true positive if and only if COSMO detects correctly which omics data get mislabeled. 

Correction level F1 score evaluates how accurate the pipeline corrects the label. In the 

correction level, the corrected label has to be the same with its true label in order to be 

treated as a true positive instance. Figure 5.4 represents the number of mislabeled samples 

with different types of error in each simulation. The error rate ranges from 0.5 to 0.28. 
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Figure 5.3: Simulation to evaluate the correction performance of COSMO. The 

simulation was repeated 50 times with various error rates. 
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Figure 5.4: Number of mislabeled samples in each simulation across different datasets. 

The error rate varies from 0.05 to 0.28 in every simulation. 
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Figure 5.5: F1 scores of label correction across different pairs of omics data. 

 

Dataset 

 

Type of 

Omics 

 

Type of 

Omics 

Sample Level Data Level Correction 

Level 

Mean Median Mean Median Mean Median 

COAD RNAseq Proteomic 0.9217 0.9381 0.9123 0.9189 0.9067 0.9143 

CCRCC RNAseq Proteomic 0.9947 1.0000 0.9906 1.0000 0.9906 1.0000 

LUAD RNAseq Proteomic 0.9880 1.0000 0.9252 0.9393 0.9252 0.9393 

LUAD RNAseq CNV 0.9586 0.9615 0.8700 0.8889 0.8631 0.8775 

LUAD Proteomic CNV 0.9001 0.9091 0.7591 0.7826 0.7591 0.7826 

LUAD RNAseq miRNA 0.9836 1.0000 0.8899 0.9062 0.8891 0.9016 

Table 5.1: Mean and Median of F1 scores in sample, data and correction level 
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 Figure 5.5 shows that when aligning RNAseq and proteomics samples, COSMO 

achieved high average F1 scores in correcting mislabeled samples: 0.91, 0.99 and 0.92 in 

COAD, CCRCC and LUAD datasets in both data and correction level. When aligning 

RNAseq to CNV samples, COSMO achieved an average F1 score of 0.87 in data level and 

0.86 in correction level respectively. While aligning RNAseq to miRNA samples, COSMO 

achieved an average F1 score of 0.89 in both levels. The results indicate that aligning 

RNAseq to any other omics data is accurate, making RNAseq data the most utilisable in 

detecting mislabeling. On the other hand, when aligning Proteomics to CNV data, COSMO 

achieved an average F1 score of 0.76. 

 To determine the robustness of the pipeline in label correction, the simulation 

experiments were repeated with different error rates, e = [0.1, 1.0]. The experiments are 

performed using the CCRCC dataset, as it has the highest F1 scores among all datasets. 

Figure 5.6 shows the F1 scores achieved against different error rates. The pipeline achieved 

a mean F1 score of 1.0 when error rate = 0.1. The mean F1 score decreased with the 

increasing error rate and correction level F1 score = 0.91 when error rate = 0.5. However, 

the pipeline is unable to perform label correction when error rate > 0.5, due to insufficient 

correctly labeled training data to train a classifier model. Without attribute prediction, the 

pipeline is unable to perform label correction, albeit still able to detect mislabeled samples 

(as shown in Chapter 4). 
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Figure 5.6: F1 scores against different error rates. 

 

5.4 Real Case Study - Mouse Proteogenomic Dataset 

The mouse proteogenomic dataset was collected from Chick et al. (2016). This dataset was 

derived from 192 mouse liver tissues and contains two types of omics data: RNAseq and 

proteomics. The RNAseq data contains 21321 gene features with no missing values. The 

proteomics data contains 8246 protein features: 1640 of them were removed due to missing 

rate > 50%, any remaining missing values were imputed via a random-forest based 

imputation, resulting in a total of 6606 protein features. The COSMO pipeline was used on 

the dataset and 20 samples were found to be mislabeled. 

https://paperpile.com/c/r72lLE/3GKk
https://paperpile.com/c/r72lLE/3GKk
https://paperpile.com/c/r72lLE/3GKk
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Among the 20 mislabeled samples, 18 were swapped (9 swapping pairs) and 2 were 

duplicated. The annotated label and predicted labels of those swapped samples were shown 

in Table 5.2. Four pairs were found to be proteomic swapping while the remaining five 

pairs were unknown due to same-sex sample swapping. 

Upon further inspection, it was observed that all 20 mislabeled samples are from 

two different Tandem Mass Tag (TMT) batches, ten samples from Batch S14 and ten from 

Batch S15. TMT multiplexing is a proteomic quantification technique where several 

samples are tagged with unique isobaric tags, then are mixed and analyzed in a single liquid 

chromatography-mass spectrometry (LC-MS) experiment. The quantification of protein 

abundance and sample separation are then carried out in-silico. Every swapping case 

occurred between two samples from different batches. There is reasonable evidence to 

suggest that these two TMT batches got swapped, resulting in proteomic swapping in all 

these 20 samples. 
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TMT 

Batch 

 

Sample 

Annotated 

Label 

Predicted Label 

RNAseq 

Predicted Label 

Proteomic 

Type of 

Swapped 

data 
sex prob* sex prob* sex prob* 

S14 s_130FS F 0 F 0.0039 F 0.0811 Unable to 
infer 

S15 s_140FH F 0 F 0.0147 F 0.0055 

S14 s_131FS F 0 F 0.0072 F 0.0308 Unable to 
infer 

S15 s_141FH F 0 F 0.0089 F 0.0374 

S14 s_132FS F 0 F 0.0043 F 0.4644 Unable to 

infer 
S15 s_142FH F 0 F 0.0129 F 0.0045 

S14 s_133FH F 0 F 0.0163 F 0.1177 Unable to 

infer 
S15 s_143FH F 0 F 0.0103 F 0.0541 

S14 s_135MS M 1 M 0.8622 M 0.5750 Proteomic 

S15 s_146FS F 0 F 0.0112 M 0.8641 

S14 s_136MS M 1 M 0.9955 F 0.3709 Proteomic 

S15 s_147FH F 0 F 0.0565 M 0.9976 

S14 s_137MS M 1 M 0.9894 M 0.9999 Unable to 

infer 
S15 s_148MH M 1 M 0.9948 M 0.9992 

S14 s_138MH M 1 M 0.9779 F 0.0754 Proteomic 

S15 s_149FH F 0 F 0.0108 M 0.9844 

S14 s_139MS M 1 M 0.9944 F 0.2745 Proteomic 

S15 s_150FH F 0 F 0.0167 M 0.9995 

Table 5.2: The annotated and predicted labels of 18 swapped samples. Every two 

consecutive samples, indicated by different colored cells, are swapped with each other. 

The prediction probability is the probability of being a male sample. The table is adapted 

from Yoo et al. (2021). 

 

https://paperpile.com/c/r72lLE/4hiV
https://paperpile.com/c/r72lLE/4hiV
https://paperpile.com/c/r72lLE/4hiV
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Figure 5.7: Four pairs of swapping were determined to be proteomics swapping. Though 

it is impossible to determine the source of error for another 5 pairs of swapping, the 

observation that every swapping occurred between samples from two different TMT 

batches suggests the Proteomics data get swapped during TMT multiplexing process. 

 

The mislabeling rate in this dataset is 10.4% (20/192). To determine the impact of 

mislabeling in the analysis, the protein Quantitative Trait Loci (pQTL) analysis was rerun 

on the corrected data. In the published data, the most significant association is the OMA1 

protein expression of OMA1 to a genetic marker in Chromosome 4 with a log odd ratio of 

24. After correcting the data, the log odd ratio increased to 31, an increment by 1.3 fold 

(Figure 5.8). 
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Figure 5.8: LOD score of OMA1 protein expression with a genetic marker in 

Chromosome 4 increased from 24 to 31 upon rerun the pQTL analysis on corrected data 

The figure was adapted from Yoo et al. (2021). 

 

5.5 Discussion 

The COSMO pipeline is useful in detecting the mislabeled samples and determining the 

source of error before correcting the labels. It was shown to have achieved high F1 scores 

in both data level and correction level, on three simulated cancer datasets. Mislabeling 

correction has the highest F1 score when comparing RNAseq data to Proteomics data, with 

an average score > 0.9 (both data and correction level) in all three datasets. It was observed 

that COSMO achieved the highest average F1 score of 0.99 in Kidney Cancer Dataset 

(CCRCC). This could be due to the higher number of protein features (CCRCC has 10127 

protein features while COAD has 4105 and LUAD has 7556) which helps in extracting 
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more reliable correlation signals. Mislabeling correction in RNAseq to CNV or to miRNA 

data also has a high average F1 score (> 0.86 in both data and correction level). This shows 

that RNAseq is the most utilisable omics data in detecting and correcting mislabeled 

samples. On the other hand, mislabeling corrections in Proteomics to CNV data achieved 

an average F1 score of 0.76. There is still room for improvements. Fortunately, this does 

not diminish the impact of COSMO as it still has a high detection capability (as shown in 

Chapter 4). Besides, RNAseq data is the most common omics data to be characterized in 

the research settings and most of the studies have RNAseq data which could be utilized in 

correcting Proteomics and CNV data. 

 To showcase the impact of COSMO, the pipeline was carried out on a real 

proteogenomic dataset to perform a quality check. It was found that 10.4% (20/192) of 

proteomics data get mislabeled. The pQTL analysis was rerun on corrected proteomics data 

and the most significant association (OMA1 protein expression with a genetic variant in 

Chromosome 4) has increased LOD score from 24 to 31, showing that a small mislabeling 

rate of 10.4% can have an impact of reducing the significance by 23% (7 / 31) on the LOD 

score. 
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6 MISLABELING CORRECTION IN MULTI OMICS DATA 

 

COSMO has achieved good performance in detecting and correcting mislabeling, but its 

application is limited to datasets with exactly two omics data. Theoretically, a study with 

more than two omics data could perform the same pipeline iteratively for different pairs of 

omics data, but each application only utilizes information from the two omics data being 

inspected and do not approach the task in a holistic manner. The advantage of having more 

types of omics data is not fully exploitable since more dimensions of omics data is 

hypothesized to have more information in mislabeling handling. Besides, each application 

performs predictions for two omics data and it is redundant in consecutive applications 

where the same omics data were corrected. The redundancy decreases the efficiency of the 

quality control check and the reduction is even higher if a dataset has more types of omics 

data. In Chapter 6, an algorithm was proposed to integrate all omics data to detect and 

correct individual mislabeling in a dataset. The performance of the proposed algorithm was 

investigated, along with its application in real life datasets. 

 

6.1 Network Topology Realignment 

Considering a patient’s tissue sample was used to characterize three types of omics data 

(RNAseq, proteomics and CNV), these three different data instances should have the 

highest correlation signal with each other. In other words, three pairwise alignments will 

be performed: RNAseq to proteomics, RNAseq to CNV, and proteomics to CNV. In each 
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alignment, the data instances from the same patient should have the highest correlation 

signal and are paired with each other. 

Thus, the mislabeling detection and correction tasks could be approached as a 

network topology realignment task. An algorithm was proposed to integrate all pairwise 

alignments to perform the realignment. In the network, the set of vertices consists of all 

data instances of every omics data and the edge represents the matching pairs in each 

pairwise alignments. Data instances from the same patient should have the highest 

correlation signal with each other, and thus they should be connected with only each other, 

forming a tightly connected cluster on the network. These data instances are considered as 

correctly labeled whereas those that do not pair with itself are considered mislabeled. Then, 

those considered mislabeled will have their correlation to other omics inspected to perform 

label correction. 

 During label correction, the priority of the mislabeled instances were determined. 

Priority indicates the number of mismatches in each pairwise alignment. The instance with 

the highest priority will have its label get corrected first. To determine the correct label of 

the instance, its correlation to other instances from different omics was inspected for every 

patient and the one with the highest correlation will be the corrected label. As the instance 

gets corrected, it forms a new connected cluster. All the instances within the cluster will 

have their priority updated. The label correction process repeats until all the instances have 

their label corrected or their priority becomes zero. 
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Figure 6.1: Network Topology Realignment for correcting the labels for datasets with 

more than two types of omics data. Mismatched instances will get their labels corrected. 

The correction process keeps iterating until all mismatched instances get corrected or 

become zero priority. 
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6.2 Simulation and Evaluation 

A mislabeled dataset was simulated from LUAD dataset with four omics data: RNAseq, 

proteomics, CNV and miRNA data. A total of 100 patients were randomly selected and 

mislabeling errors were artificially introduced to the dataset. Pairwise alignments were 

performed on the simulated dataset and the alignments output were used to handle 

mislabeling via network topology realignment. The performance was evaluated using F1 

scores in three levels: sample level (if a sample has mislabeled data), data level (if a data 

instance is mislabeled), and correction level (if a mislabeled instance is corrected to its true 

label). The process was repeated 10 times for each error rate where error rate = [0.1, 1.0]. 

 

 
Figure 6.2: F1 scores of network topology realignment in multi omics data across 

different error rates. 
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Error Rate Sample Level Data Level Correction Level 

Mean Median Mean Median Mean Median 

0.1 0.9846 1.0000 0.9458 0.9706 0.9458 0.9706 

0.2 0.9937 1.0000 0.9709 0.9697 0.9603 0.9687 

0.3 0.9921 1.0000 0.9554 0.9583 0.9421 0.9545 

0.4 0.9986 1.0000 0.9669 0.9677 0.9605 0.9677 

0.5 0.9938 1.0000 0.9656 0.9740 0.9522 0.9538 

0.6 0.9916 0.9899 0.9658 0.9684 0.9488 0.9519 

0.7 0.9953 1.0000 0.9515 0.9557 0.9369 0.9423 

0.8 0.9937 0.9963 0.9545 0.9593 0.9388 0.9447 

0.9 0.9959 0.9966 0.9578 0.9603 0.9364 0.9382 

1.0 0.9969 0.9971 0.9638 0.9697 0.9443 0.9425 

Table 6.1: Mean and Median F1 scores of label correction across different error rates. 

 

 Figure 6.2 shows that the network realignment algorithm achieved high F1 scores 

(> 0.99 in patient level, > 0.95 in data level and > 0.94 in correction level) across different 

error rates. The algorithm is robust against error rates even at the correction level. This 

emphasizes the advantage of having more than two omics data, the misalignment of one 

data could be corrected by other pairwise alignments. It should be noted that the error rate 

indicates the proportion of samples with mislabeled data. In other words, a dataset with an 

error rate of 1.0 indicates that every sample has one mislabeled data. The label correction 
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is still feasible in such high error rate as the mislabeled data could be realign to other 

correctly labeled omics data. 

 

6.3 Real Case Study 

6.3.1  TCGA Breast Cancer Dataset (BRCA) 

TCGA is the largest public multi omics repository to date. Breast Invasive Carcinoma 

dataset is the largest cancer dataset to date. It consists of data of 521 patients with all three 

types of omics data collected: RNAseq, microarray and CNV. The omics quantification 

pipelines were described in detail on the website9. The omics data contains 20501, 17274, 

and 25187 gene features respectively with no missing values. Three pairwise alignments 

were performed and network realignment identified 16 mislabeled samples. These 16 

samples were swapped in microarray data and the samples were listed in Table 6.2. 

 Breast cancer dataset is highly gender imbalanced in that most of the samples 

belong to female patients. Only 0.1% (6 / 521) of the samples belong to male patients. 

Table 6.2 shows that one mislabeled sample belongs to male patient. To investigate the 

impact of the mislabeling, the differential expressed gene (DEG) analysis was run between 

male and female patients. T-test was performed on each gene feature between two groups 

and the significance of the gene was adjusted by Benjamini-Hochberg procedure. The 

analysis was run twice, first on the mislabeled data and then corrected data. The number of 

                                                
9 https://docs.gdc.cancer.gov/Data/Introduction/ 
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DEGs are shown in Figure 6.3. In the first run, 16 genes were found to be differentially 

expressed while in the second run, the number of DEG increased to 59, an increment of 3.7 

fold. Among these two sets of DEGs, 13 of them overlapped which means the mislabeling 

prevented the discovery of 46 true DEGs. Three genes, previously thought to be significant, 

are in fact not significant (Figure 6.4). 

 

First sample in a pair Second sample in a pair 

Label Sex Label Sex 

TCGA.BH.A0BA Female TCGA.BH.A0DS Female 

TCGA.BH.A18K Female TCGA.BH.A18T Female 

TCGA.BH.A0BS Female TCGA.BH.A0BT Female 

TCGA.AR.A1AW Female TCGA.AR.A1AV Male 

TCGA.BH.A0H3 Female TCGA.BH.A0HA Female 

TCGA.E2.A1B5 Female TCGA.E2.A1B6 Female 

TCGA.AR.A1AN Female TCGA.AR.A1AL Female 

TCGA.BH.A0EI Female TCGA.A1.A0SD Female 

Table 6.2: Eight swapping pairs of 16 mislabeled microarray data. Each row represents 

each swapping pair. 
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Figure 6.3: Number of DEGs before and after correction across different thresholds. 

 

 
Figure 6.4: Change of false discovery rate of genes before and after the correction. 

Horizontal and vertical grey lines indicate the FDR cutoff of 0.05. 
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6.3.2 Lymphoblastoid cell lines (LCLs) dataset 

Battle et al. (2015) conducted a study to determine the association of genetic markers with 

expression quantitative trait loci (eQTLs), ribosome occupancy (rQTLs), or protein 

abundance (pQTLs). Three types of omics data were generated from Epstein-Barr virus 

(EBV)-transformed lymphoblastoid cell lines (LCLs) derived from 60 human individuals. 

RNAseq and Riboseq were quantified based on Fragments Per Kilobase of transcript per 

Million mapped reads (FPKM) as described in the study. Protein abundance was measured 

using a SILAC internal standard sample (Ong et al., 2002) and quantitative protein mass 

spectrometry. RNAseq data contains 16614 gene features while the riboseq data contains 

15059 genes with no missing values. The proteomics data contains 4381 proteins and the 

missing values were imputed by random forest based imputation. 

 Battle et al. (2015) observed that many QTLs exhibit shared effects across mRNA, 

ribosome occupancy (riboseq) and protein, indicating that riboseq has reasonable 

correlation to RNAseq and proteomics data. Three pairwise alignments were performed 

and the distribution of gene correlation across different pairs of omics data were inspected. 

Figure 6.5 shows that the Pearson Correlation follows normal distribution in every pair of 

omics data. Riboseq is a high throughput method based on deep sequencing of ribosome-

protected mRNA fragments, providing an estimate of protein translation efficiency. Thus, 

riboseq has a higher mean correlation to RNAseq and to Proteomics, compared to the mean 

correlation of RNAseq to proteomics data. 

https://paperpile.com/c/r72lLE/dE54
https://paperpile.com/c/r72lLE/dE54
https://paperpile.com/c/r72lLE/dE54
https://paperpile.com/c/r72lLE/C43I
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Figure 6.5: Distribution of gene-wise Pearson Correlation across different pairs of omics 

data. 

  

The alignment outputs were feedforward to the network realignment algorithm. 

Three samples were found mislabeled. Two RNAseq data were found to be swapped, while 

one proteomics data was found to be duplicated. The mislabeling rate of the dataset is 5% 

(3 / 60). 

 

 
Figure 6.6: Three Mislabeled samples found in LCLs dataset. 
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6.3.3 Tuberculosis Patients Blood Gene Expression 

Cliff et al. (2013) conducted a study on 27 tuberculosis patients with the aim to differentiate 

blood gene expression with respect to the treatment response. The patients were given 

conventional therapy (2HRZE/4HR) for 6 months: isoniazid, rifampin, pyrazinamide and 

ethambutol for 2 months (2HRZE) followed by isoniazid plus rifampin for 4 months 

(4HR). During the treatment duration, blood samples were collected in five different 

timepoints: prior to starting standard therapy and after 1, 2, 4, and 26 weeks of successful 

treatment. In total, 135 blood samples were collected (27 patients ✕ 5 timepoints). The 

gene expression of blood samples was characterized using the microarray platform A-

AFFY-44 - Affymetrix GeneChip Human Genome U133 Plus 2.0, measuring expression 

of 21319 genes in every sample. 

There is only one type of omics data in this dataset (transcriptomics) but the patients 

have their blood samples collected five times in five different timepoints. Ten pairwise 

alignments were performed across all different pairs of timepoints and the alignment 

outputs were used for network realignment. A total of 25 samples from 17 patients were 

found to be mislabeled, as shown in Figure 6.7. No sample was mislabeled at the time of 

diagnosis and one week after treatment. In the second week, 10 samples were mislabeled 

in two shifting events (each shifting involved 5 samples). In the fourth week, 5 samples 

were mislabeled: two of them swapped while three got shifted. At the last timepoint 26th 

week, 10 samples got shifted in one shifting event. 

https://paperpile.com/c/r72lLE/cQSF
https://paperpile.com/c/r72lLE/cQSF
https://paperpile.com/c/r72lLE/cQSF
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Figure 6.7: Mislabeling of 25 samples from 17 patients. Patients whose samples are not 

shown here are correctly labeled. There is no mismatched sample in Week 0 and Week 1. 

In week 2, there are two shifting events, indicated by different colors of edges. In week 4, 

the shifting events are indicated by blue-colored edges. Only mismatched edges are 

shown here. 

 

 The paired t-test was conducted between Week 4 and Week 26 after label 

correction. The number of genes found to be differentially expressed is 3844 before 

correction and 4019 after label correction. Among these two sets of DEGs, 3709 genes 

overlapped. In other words, the mislabeling prevented the discovery of 310 genes, 7.71% 
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(310 / 4019) of the total number of genes. There are 135 previously identified DEGs that 

are in fact not significant (Figure 6.9). 

 

 
Figure 6.8: Number of differentially expressed probes (left) and genes (right) between 

Week 4 and Week 26 before and after the label correction. 
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Figure 6.9: Change of false discovery rate of probes before and after the correction. 

Horizontal and vertical grey lines indicate the FDR cutoff of 0.05. 

 

6.4 Prevalence 

The mislabeling pipeline was applied on other public datasets to detect any mislabeling 

and determine the mislabeling rate overall. Cancer Cell Line Encyclopedia (CCLE) is a 

multi omics repository of several human cancer cell lines (Ghandi et al., 2019). To date, 

the repository contains data of 1457 cell lines. Three types of omics data were collected 

from the website10: RNAseq, proteomics and CNV. Cell lines that do not have all three 

omics data were filtered, leaving 371 cell lines at the end. Three pairwise alignments were 

                                                
10 https://portals.broadinstitute.org/ccle 

https://paperpile.com/c/r72lLE/dQqz


76 

performed on the dataset followed by network realignment. All cell lines aligned perfectly 

with each other and no mislabeling was found. 

TCGA is the largest public multi omics repository to date, consisting of 38 different 

cancers. Nine cancer datasets having all four types of omics data were collected (RNAseq, 

microarray, CNV and miRNA) and the mislabeling detection algorithm was applied on 

these datasets. Table 6.3 shows the summary statistics of mislabeled samples.  The 

mislabeled samples were found in 5 (55.55%) out of 9 cancer datasets. In total, there are a 

total of 1259 subjects and 44 (3.49%) of them whose data has been mislabeled. The 

mislabeling rates vary across datasets, ranging from 0% to 28.13%. 

Cancer 

Dataset 

Number of 

Subjects 

Subjects with 

mislabeled data 

Omics 

Assay 

Sample 

Size 

Mislabeled 

Assay 

Rate 

(%) 

BRCA 521 18 (3.45%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

521 

521 

521 

312 

1875 

0 

16 

0 

2 

18 

0 

3.07 

0 

0.64 

0.96 

COAD 135 8 (5.93%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

135 

135 

135 

121 

526 

0 

5 

0 

3 

8 

0 

3.70 

0 

2.48 

1.52 

GBM 19 0 (0%) RNAseq 

Microarray 

CNV 

Total 

19 

19 

18 

56 

0 

0 

0 

0 

0 

0 

0 

0 

KIRC 71 4 (5.63%) RNAseq 

Microarray 

CNV 

71 

71 

69 

0 

3 

0 

0 

4.23 

0 
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miRNA 

Total 

62 

273 

1 

4 

1.61 

1.47 

KIRP 16 0 (0%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

16 

16 

16 

16 

64 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

LGG 27 0 (0%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

27 

27 

27 

27 

108 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

LUAD 32 9 (28.13%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

32 

32 

32 

32 

128 

0 

9 

0 

0 

9 

0 

28.13 

0 

0 

7.03 

LUSC 151 0 (0%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

151 

151 

151 

127 

580 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

OV 287 5 (1.74%) RNAseq 

Microarray 

CNV 

miRNA 

Total 

287 

287 

284 

280 

1138 

0 

0 

0 

5 

5 

0 

0 

0 

1.79 

0.44 

Total 1259 44 (3.49%)  4748 44 0.93 

Table 6.3: Summary of mislabeled samples found in TCGA datasets. 

 

 Expression Atlas is an archive storing gene expression data from high-throughput 

experiments housed by EBI (European Bioinformatics Institute). Expression Atlas stores 
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and displays gene expression data across species and biological conditions, which enables 

the user to retrieve desirable datasets. The mislabeling detection algorithm is applicable to 

datasets in which every subject contributes at least 2 samples. The datasets of homo sapiens 

from differential experiments were collected where the experimental factor is time or 

treatment. Datasets were filtered based on these criterias: 1) contributed by too few subjects 

(< 8 subjects and < 16 assays), 2) the assays are generated by the same cell line and no 

heterogeneity in different samples. A total of 48 datasets were collected, consisting of 6900 

assays contributed by 1993 subjects. The application of the proposed approach revealed 

eight datasets (16.67%) to have mislabeled data (as listed in Table 6.4 and appendix A). In 

overall, 36 (1.81%) subjects have their data mislabeled, affecting a total of 44 (0.64%) 

assays. 

 Number of 

Subjects 

Subjects with 

Mislabeled Data 

Number of 

Assays 

Mislabeled 

Assays 

E-MTAB-6558 107 3 (2.80%) 288 3 (1.04%) 

E-GEOD-19519 112 1 (0.89%) 224 1 (0.45%) 

E-MTAB-7032 61 3 (4.92%) 158 3 (1.90%) 

E-GEOD-41168 42 3 (7.14%) 140 3 (2.14%) 

E-GEOD-31348 27 17 (62.96%) 135 25 (18.52%) 

E-GEOD-58558 19 2 (10.53%) 109 2 (1.83%) 

E-GEOD-23597 42 1 (2.38%) 107 1 (0.93%) 

E-TABM-1138 142 6 (4.23%) 284 6 (2.11%) 

Table 6.4: Datasets collected from Expression Atlas which contain mislabeled data. 

Details of other datasets could be found in Appendix A. 
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 To determine the overall prevalence of mislabeling in public omics datasets, the 

summary of the mislabeled samples was compiled and inspected in respect to studies, 

subjects and assays. The study refers to a project or an experiment which generates the 

dataset. The subject refers to the organism where the biological sample is collected from. 

In a multi-omic study, one subject contributes one biological sample; but in a multi-

timepoint study, one subject could contribute multiple biological samples. Hence, the 

number of subjects instead of samples is compiled in this table. The assay refers to any 

omics data generated in the study. In a multi-omic study, one sample is sequenced for 

several omics types but in a multi-timepoint study, one sample is only assayed for one 

omics data. The number of assay is the number of data generated regardless of the types of 

omics. 

 Table 6.5 shows that 25% of datasets contain mislabeled data. These datasets 

consist of omics data from 3875 subjects and 105 (2.71%) subjects’ data have been 

mislabeled. Looking further into the performed assays, 113 (0.85%) out of 13325 assays 

were mislabeled. Given that most of the multi-omic studies combine omics data to perform 

integrative analysis, it is more practical to look into the mislabeling rate in subject level 

than assay level. Although there is only less than 1% of mislabeled assays, it results in a 

much higher mislabeling rate in subject level, highlighting again the importance of 

performing quality check before data analysis. 
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 Number 

of 

Datasets/ 

Studies 

Studies 

Containing 

Mislabeled 

Samples 

Number 

of 

Subjects 

Number of 

Subjects with 

mislabeled 

data 

Number 

of 

Assays 

Number of 

Mislabeled 

Assay 

Chick et al. 

(2016) 

1 1 192 20 384 20 

TCGA 9 5 1259 44 4748 44 

Battle et al. 

(2016) 

1 1 60 5 180 5 

CCLE 1 0 371 0 1113 0 

Expression

Atlas 

48 8 1993 36 6900 44 

Total 60 15 (25%) 3875 105 (2.71%) 13325 113 

(0.85%) 

Table 6.5: Overall mislabeling rate compiled from various sources of datasets. 
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7 CONCLUSION AND FUTURE WORK 

 

Multi omics study is getting more common in recent years. It characterizes several types 

of omics data and takes a system biology approach to gain insight in understanding 

biological processes. The scale of the study is getting larger and more omics data are 

generated, contributed by the collaborative efforts of researchers. The large scale of the 

study does not come by without any consequences. Sample mislabeling is a prevalent 

problem in multi omics studies and has led to unwanted consequences: irreproducibility of 

the result, unnecessary research effort and cost, and the discovery of false claims. 

 While the large scale of the multi omics study poses a risk of sample mislabeling, 

the multi dimension of omics data generated in the study presents an opportunity to perform 

quality check, making sure the data is attributed to the correct label before doing any data 

analysis. In this thesis, the quality check is approached as alignment tasks. The omics data 

from the same patient that are aligned together are considered correctly labeled and vice 

versa. Chapter 4 shows that every individual contains a unique signal in the omics data that 

is useful in the sample alignment. A method was proposed to extract correlation / 

coexpression signals and the signals are shown to be reliable in performing sample 

alignment. The method was able to achieve F1 scores of at least 0.95 in detecting 

mislabeling and is robust against error rate. 

 The pairwise alignments outputs were further inspected to correct the individual 

labels of the samples in a study where only two types of omics data are available. A pipeline 
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was proposed to integrate predicted sex genotype in the label correction task. Chapter 5 

shows that the pipeline was able to achieve F1 scores of at least 0.88 in correcting the labels 

when comparing RNAseq data to any other types of omics data. The utilization of predicted 

genotype enables the label correction task and the limitation lies in this component as well. 

To accurately correct the label, the prediction has to be accurate and to be able to correct 

the label, the mislabeled samples should have the opposite class label in the first place to 

begin with. The pipeline was applied on a real dataset (Battle et al., 2015). Nine pairs of 

samples were found to be swapped, however, the algorithm was unable to determine the 

source of error for 5 pairs as the swapping occurred between same sex sample. Fortunately, 

manual inspection revealed the swapping occurred between two TMT batches during 

proteomic multiplexing measurements, suggesting the source of error is on proteomics 

data. Though only sex attribute was utilized in the work here, theoretically, any other 

attribute that could be accurately predicted from omics data should enable the label 

correction task as well. 

 For datasets with more than 2 types of omics data, an algorithm was proposed to 

realign the data. The algorithm was able to achieve F1 scores of at least 0.94 in correcting 

individual labels. Due to the presence of at least 3 types of omics data, more pairwise 

alignments are performed and one mislabeled data could be realigned with another omics 

data without the attribute prediction. This mitigates the limitation of the previous pipeline 

and showcases the advantage of having more dimensions of omics data. Besides, more 
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dimensions of omics data enable the network realignment algorithm to be robust against 

error rate.  

 Several datasets were collected from public repositories and the correction 

pipelines were performed to detect the mislabeled samples. Overall, 2.71% (105 / 3875) of 

the subjects are found to have mislabeled data. Though most of the datasets were free of 

any mislabeling, one dataset was observed to have a mislabeling rate as high as 28.13%. 

This showed the significance of performing quality checks in multi omics studies. An 

automated correction algorithm was developed to detect and correct the mislabeled samples 

to the individual level. The omics data inspected in this work are transcriptomics, 

proteomics, CNV and miRNA. One of the future directions includes investigating the 

quality check pipeline for other omics data such as genomic, epigenomic, metabolomic, 

phosphoproteomic and others. 
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APPENDIX A 

 

Table A: All 48 datasets collected from Expression Atlas, along with the number of 

mislabeled data and mislabeled assay in each dataset. A subset of the table is used to create 

Table 6.4, which contains only datasets with mislabeled data. 

 

Dataset ID 

Number of 

Subjects 

Subjects with 

mislabeled data 

Number of 

Assay 

Mislabeled 

Assay 

E-GEOD-100833 289 0 1653 0 

E-MTAB-2232 377 0 1399 0 

E-MTAB-6559 125 0 369 0 

E-MTAB-6558 107 3 288 3 

E-GEOD-19519 112 1 224 1 

E-GEOD-20181 57 0 171 0 

E-MTAB-7032 61 3 158 3 

E-GEOD-41168 42 3 140 3 

E-GEOD-31348 27 17 135 25 

E-GEOD-58558 19 2 109 2 

E-GEOD-63085 29 0 84 0 

E-GEOD-11348 31 0 93 0 

E-GEOD-53552 25 0 96 0 

E-GEOD-11903 15 0 85 0 

E-GEOD-41663 15 0 81 0 

E-GEOD-23597 42 1 107 1 

E-TABM-1138 142 6 284 6 
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E-MEXP-3756 20 0 40 0 

E-MEXP-2069 20 0 60 0 

E-GEOD-20489 11 0 54 0 

E-MTAB-8549 27 0 54 0 

E-MTAB-6212 15 0 45 0 

E-TABM-740 18 0 36 0 

E-MTAB-5262 10 0 35 0 

E-GEOD-18995 16 0 32 0 

E-GEOD-48445 15 0 30 0 

E-GEOD-31652 13 0 26 0 

E-MTAB-7456 15 0 30 0 

E-MTAB-6555 10 0 30 0 

E-MTAB-7087 8 0 23 0 

E-GEOD-29908 9 0 18 0 

E-GEOD-11227 8 0 16 0 

E-MTAB-6556 10 0 180 0 

E-TABM-271 8 0 32 0 

E-MTAB-6473 8 0 32 0 

E-MEXP-941 8 0 32 0 

E-GEOD-26104 8 0 32 0 

E-GEOD-80060 74 0 148 0 

E-GEOD-60424 20 0 134 0 

E-GEOD-21610 30 0 60 0 
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E-GEOD-32407 10 0 60 0 

E-GEOD-60590 14 0 32 0 

E-GEOD-22278 16 0 32 0 

E-GEOD-16797 17 0 34 0 

E-GEOD-46665 9 0 25 0 

E-GEOD-11199 12 0 24 0 

E-MEXP-1901 8 0 16 0 

E-GEOD-11100 11 0 22 0 

Total 1993 36 (1.81%) 6900 44 (0.64%) 
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