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ABSTRACT 

 
 
Ayres, Dorothy Lucille. M.S., Department of Psychology, Wright State University, 2021. 
Promises and Pitfalls of Machine Learning Classifiers for Inter-Rater Reliability Annotation 
 
 

Qualitative data result from observation, video, and dialogue.  These types of data are 

flexible and allow us to study behavior without imposing potentially disruptive data collection 

methods.  However, subsequent quantitative analysis requires a time consuming, labor intensive 

initial coding process, and a second manual coding to calculate inter-rater reliability.  I examined 

the use of machine learning algorithms to reduce the amount of manual annotation work required 

to perform inter-rater reliability measures on text data.  By comparing machine-human and 

human-human raters using Cohen’s Kappa statistic and an informal analysis of the features used 

in machine learning classification, I identify the promise and limitations of machine rating for 

conducting the second coding effort used to determine reliability. I found that machine learning 

algorithms can be useful tools for supporting inter-rater reliability as a second coder, but there 

are limitations associated with the class balance of the data that may restrict their usage. 
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Introduction 

Real-world observational studies rarely permit the systematic collection of content-

oriented quantitative behavioral metrics. Such studies rely on post hoc human annotation of 

qualitative data that result from observations, video and dialogue. However, behavioral science 

favors quantitative measures over the social scientist’s qualitative summaries.  This is one 

motivation for the controlled laboratory study where the collection of quantifiable metrics is built 

a priori into the data collection method.  Relative to quantitative measures, qualitative data do 

not require specific formats or participant inputs. This makes these measures particularly useful 

for psychological research outside of the laboratory. However, the flexibility comes with a 

coding cost to support quantitative analysis.  Manual coding (also called annotation) is time-

consuming and expensive. Once manually coded initially, a second re-coding examines the 

consistency of the coding scheme.  This step is important to determine whether the coding  is 

reliable.  If it is not, researchers can not determine whether their data supports their claims or 

whether the categories they have defined are repeatable.    

A potential automated option for the second manual coder in inter-rater reliability is 

machine learning (ML). These programs develop classification rules that sort initially coded 

instances into categories.  This study attempts to substitute ML technology for a second human 

rater to make the inter-rater reliability coding process faster, more efficient and itself more 

reliable.  In the remainder of this introduction I define machine learning and the rationale for 

using it in this project.  I then discuss potential issues with using ML for inter-rater reliability, as 

well as the methods used for calculating inter-rater reliability in the first place.  I complete this 

introduction with a discussion on using ML as a second rater in inter-rater reliability 

calculations.   
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The Methodological Problem  

Auerbach and Silverstein (2003) defined qualitative research as “research that involves analyzing 

and interpreting texts and interviews in order to discover meaningful patterns descriptive of a 

particular phenomenon”.  Some examples of qualitative data include interviews, histories, text 

analysis, and descriptive ethnographies.  Qualitative data often comes in the form of unstructured 

text.  Psychologists typically code, or annotate such data to convert it to metrics suitable for 

quantitative analysis. 

Current Annotation Approaches 

Social and behavioral science employs different qualitative research methods with 

corresponding approaches to annotation. In his book Qualitative Inquiry and Research Design: 

Choosing Among Five Approaches (2007) the social scientist John W. Creswell distinguishes 

several varieties of qualitative research on text-based data.  In narrative research, researchers 

gather stories from an individual or a few individuals and then “re-story” them, imposing 

chronological order, adding causal links, and exposing dichotomies, sometimes in collaboration 

with the source as part of identifying key topics.  In phenomenological research, researchers 

interview several subjects regarding their experience of a common phenomenon that may 

transcend cultures (e.g., grief, medical intervention) and interpret  the transcripts of those 

interviews for commonalities in “what” the participants experienced and “how”, to obtain a 

single unified description of the phenomenon.  Ethnographic research is more ambitious than 

phenomenological research by encompassing an entire cultural group over time.  Researchers 

conducting ethnographic studies gather data from a variety of sources, including interviews and 

observational fieldwork. Researchers then attempt to organize that data into a coherent 

understanding of the culture’s norms, values and constraints, sometimes employing a critical 



 
 

 3 
 

stance on the role of power and the marginalization of the powerless.  Case study research is 

more bounded than an ethnography,  and examines one or a few specific cases of a phenomenon 

in-depth by gathering information from multiple sources.  Those sources can include interviews, 

text recorded observations,  video and audio recordings,  and documents.  The researchers then 

put the data in chronological order and identify themes that indicate the complexity of the case,  

including its context and causal relationships.    

Less broad than ethnography, grounded theory research extends phenomenology with a 

new unified theory about a phenomenon grounded in the new data, often collected in the field by 

observing behavior in its social setting.  Using this approach, the primary issues are “saturation”, 

i.e., a sufficient number of observations (20 -30), expanded sampling after initial analysis (up to 

60), and of particular importance here,  the development of the coding scheme itself.   First 

researchers use open coding, where they create categories into which they sort the data, such as 

causes, strategies, context and outcomes.  After open coding, a researcher employs axial coding 

to organize those categories into some type of logical relationship.   

 Grounded theory best captures the approach used to code the data used in this study 

(Robinson et al.,  2020).  Robinson suggested a number of independent categories associated 

with physician strategies for processing patients in the emergency room.  For example, the 

information gathering category requires features such as “current symptoms”, referring to the 

type of information that the doctor is gathering, and “the patient”, referring to the source of the 

information.  He intentionally avoided complaint-specific causes to preserve generalizability, and 

did not have access to outcomes (as is typical in this setting).  When creating  a coding scheme,  

psychologists like Robinson seek themes that are key to the psychological constructs, e.g., 

workload or conscientiousness. The resulting coding scheme can be quite abstract, requiring 
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substantial inference and interpretation between the actual data (e.g., lexical items in the text) 

and the category in question.  An example of the qualitative data from the present study is  “res 

asks about any belly surgery” coded as an information gathering behavior.   “Asks” is likely a 

relevant feature but it is not the only feature indicative of information gathering.   

Problems with the Grounded Theory Annotation Scheme 

Typically the psychologist creates a new, theoretically informative coding scheme and 

class definitions for abstract constructs. The same researcher also conducts the first classification 

of the data.  However, the researcher’s coding scheme and definitions may not correspond to 

reproducible categories.  The experimenter could be a biased rater, finding patterns that cannot 

be reproduced. To address this risk, psychologists conduct inter-rater reliability. Technically, 

inter-rater reliability is the quantification of agreement between different raters when rating the 

same data using a detailed, pre-established coding scheme. Replicability confers precision in the 

coding scheme.  For example, two raters with good reliability would rate one piece of text as 

representing the same type of behavior.  Typically, researchers specify the rules and associated 

features that define which category an instance represents; for example “asking a question” may 

define the “information gathering” category.  Then either new raters attempt to apply these 

definitions to a subset of the data or the original rater applies these rules after significant time 

delay when memory of the initial instance and its coding have decayed.  High inter-rater 

reliability occurs when there is a high level of calculated agreement between raters on the 

classification of individual items in the data set. Because the definitions of the categories are 

established in advance, the assumption is that independent review is applying the same feature 

set  (Kottner et al.,  2011;  Burns, 2014).  While replicability confers precision, it does not confer 

accuracy, that is proximity to truth.  
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Problems with the Annotation Process  

The large sets of qualitative data required for statistical analysis increase the demand on  

annotation.  The labor intensive process of both annotating that data and assuring coding scheme 

reliability not only delays subsequent analysis, conclusions,  and publication (Davidson et al.,  

2018) but in so doing limits the kinds of studies that can be pursued.  Additionally, human raters 

are fallible. Human raters can suffer from drift over time, particularly with large data sets.  

Accordingly, their criteria for rating potentially changes over time, and therefore the reliability of 

their ratings across the whole data set degrades. Moreover, annotation is similar to a signal 

detection task, with known vulnerability to class imbalance (Pandey et al., in review). When one 

class is under-represented, a human annotator may have difficulty identifying it, or may make 

implicit adjustments in the decision rule.  A small number of positive instances causes viewers to 

raise their criterion, while a large number of positive instances causes viewers to lower their 

criterion.   

Because of concerns for both the annotation scheme and the annotation process as noted 

above, psychological research does not treat the initial human rating as a gold standard, 

particularly when it is based on categories constructed by a single observer.  For these reasons, 

psychologists seek inter-rater reliability by enlisting a second observer.  Of course, the second 

observer is subject to the same limitations as the first, and will be unable to repeat an imprecise 

coding scheme. 

Machine Learning Solutions 

In this thesis, I compare the agreement of a machine learning classifier with the original 

human annotator and the agreement of two human annotators to determine whether ML provides 

a reasonable substitute for a second human coder in typical psychological inter-rater reliability. 
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Computer science researchers use so-called supervised ML methods to classify manually 

annotated qualitative data. Applications include videos of lecturers (Brooks, Amundson & Gree, 

2009), recordings of human speech (Kang & Johnson, 2015) and medical data (Williams, 

Weakley, Cook & Schmitter-Edgecombe, 2013).  In the medical field, ML identifies the features 

to diagnose dementia (Shankle, Mani, Dick & Pazzani, 1998).  Medical researchers also use it to 

predict dementia scores based on patient data (Williams, Weakley, Cook & Schmitter-

Edgecombe, 2013). In non-medical fields, researchers use  ML algorithms to search for 

important moments in video recordings of lectures, with the possibility of improving online 

education outcomes (Brooks, Amundson & Greer, 2009).  

In the remainder of this section, I will discuss the definition of machine learning and my 

rationale for using it, potential issues with using machine learning, calculating inter-rater 

reliability, and using machine learning to replace the second rater. 

Definition and Rationale for Machine Learning 

 In supervised learning, the ML algorithm employs a subset of human annotated cases to 

develop its own classification rules for the features of instances that determine human 

annotation.  In computer science, human ratings are typically treated as the gold standard.  The 

ultimate goal is to have the machine replicate the human approach. In one popular method, ML 

algorithms create something called a decision tree; each time the algorithm identifies a feature in 

a piece of text, it must decide whether that feature is an indicator of the category or not.  As it 

examines more features, the algorithm creates a set of decision rules regarding whether a certain 

feature is indicative of the category.   For example,  the program might identify “asks” as a 

diagnostic feature of “information gathering”.   A good machine learning model might indicate 

correlated features missed in the explicit category definitions.    
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In the conventional ML application, a bad computer model results from concepts too 

difficult for the machine to acquire, most typically due to  features accessible to the annotator 

that are not accessible to the machine.  Voting resolves differences between multiple annotators.  

Low human agreement excuses machine failure and the machine is not expected to exceed 

human agreement or repair human rater variability.  On the other hand, psychologists would also 

suggest an initially bad classification scheme.  

However, good agreement between the machine and the annotators suggests that the 

annotators are responding to a well-specified coding scheme that the machines can apprehend 

and mimic.     A good model has the potential to replace manual annotation with machine 

annotation. This could reduce the manual labor required to perform inter-rater reliability, enable 

the examination of large data sets and facilitate emergent coding that tracks thematic changes in 

unstructured data over time.  Moreover, once an acceptable automated coding model has been 

validated by testing the ML algorithm on a reserved set of data, automated coding could be used 

for the purpose of annotating future collected data. Nevertheless, the absence of a reliable coding 

scheme is just one of the explanations for bad ML results.  Hence bad results do not necessarily 

condemn the coding scheme.    

This experiment reverses the conventional Computer Science approach to annotation. I 

consider that the machine algorithm may be more objective, be able to identify specific features  

in the data that human raters cannot, and would not suffer from rating drift over time.  Given a 

quality training data set, an ML algorithm could potentially surface hidden in the data that are 

not apparent to human raters and perform more consistently than a human rater. On the other 

hand, and as discussed further below, humans are better aware of the intent and context in the 



 
 

 8 
 

data, and therefore better able to discriminate meaningful “causative” patterns from spuriously 

correlated content.  

Potential Issues With Machine Learning as a Second Rater   

The successful application of ML as a second rater is vulnerable to a number of 

limitations. If behavioral researchers want to use this tool,  we must examine whether ML 

programs can match human annotators in both reliability and content. In addition, selecting a unit 

of analysis in unstructured text data falls outside the guidelines of ML methods, and yet must be 

established. 

Ideally the features that the algorithm finds  to categorize the data correspond to the pre-

established annotation rules.  However, the program may not capture the same features as human 

raters who might respond differently to feature combinations or context (Kang & Johnson, 

2015).    In the case of a mismatch, the algorithm might be overfitting, in which idiosyncratic 

features of the data set (e.g. belly, or surgery above) contribute to reliability statistics (e.g., a high 

Kappa value) but  will not generalize to a different corpus, thereby limiting utility.   This concern 

echoes the anthropologists’ saturation caution noted above, regarding the breadth of the sample 

submitted to analysis.   A related concern is the dependence of ML algorithms on word 

frequency, neglecting low frequency, but discriminating words in favor of high frequency, 

potentially spuriously correlated high frequency words.  For this reason, computer scientists 

often eliminate so called stop-words, that is, high frequency words, such as articles and 

pronouns.  

Machine learning algorithms frequently struggle in cases of class imbalance. When one 

class dominates the data set, the algorithm may simply label all cases as that class and still be 

correct a majority of the time. SMOTE (Synthetic Minority Oversampling Technique) is one 
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method to address the problem of overfitting due to class imbalance.  SMOTE is an R function 

that oversamples from a minority class.  Oversampling from the minority class artificially creates 

a better class balance so the class imbalance does not throw off the ML algorithm (Maciejewski 

& Stefanowski, 2011). A more sophisticated alternative to SMOTE is GANS (Generative 

Adversarial Networks) which combines a generative model and a discriminatory model to 

replicate patterns artificially in the data with new instances (that come from the same distribution 

but are not duplicates).   

Another consideration is the unit of analysis of episodes for classification. Machine 

Learning uses a binary classification of an episode---it either is or is not an instance of the class 

no matter how many features or separate indicators are present.  However, continuous 

observations lack predefined units of analysis.  Temporally based units (e.g., delineated by 

minutes) may still contain multiple pieces of evidence concerning the classification of that unit.   

Content based units (e.g., turns in a conversation) that divide the original data require manual 

determination. I return to this issue below regarding the proposed data set.     

Inter-Rater Reliability Calculation  

Psychologists and Computer Scientists differ in the way they quantify agreement. The 

Computer Scientist typically quantifies agreement between the human annotator and the ML 

classifier based on  positive and negative agreement.  Two scores contribute to agreement.  

Recall concerns the proportion of positive instances captured by the classification scheme.  A 

low recall value means that many positive instances were missed.  Precision concerns the 

proportion of instances classified as positive were manually classified as positive.  A low 

precision value implies a high false alarm rate.  The F measure combines these two metrics to 

better mirror the tradeoffs between them.   
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Psychologists usually quantify  inter-rater reliability in qualitative data categorization 

with Kappa statistics, although alternatives such as Gwet’s AC1 exist.  The multiple versions of 

Kappa statistics include Cohen’s Kappa, Cohen’s weighted Kappa, and the intraclass Kappa 

statistic (Kottner et al., 2011). I am using Cohen’s Kappa for this study.  Low values of Cohen’s 

Kappa indicate poor agreement between annotators.   Sim and Wright (2005) described the 

purpose of Kappa is to measure “true” agreement between two researchers’ use of the same 

analytic tool.  By “true” they mean that Kappa discounts agreement that occurs merely through 

chance.  Researchers use Kappa to measure the proportion of agreement between two raters 

beyond chance.  The equation for Kappa is 

𝐾 =		
(𝑃!	–	𝑃")
(1	–	𝑃")

 

where 𝑃!	is the proportion of observed agreements and 𝑃" is the expected proportion of chance 

agreements.  Kappa can range from -1 to 1, and a result of zero indicates that there was no more 

agreement than could be expected by chance.  The closer Kappa is to 1 or -1 the more unity there 

is between the raters.  By accounting for chance, Kappa takes into account class imbalance in the 

data.  That is, if the data contains instances of one category more than another,  an ideal “guess” 

merely reflects the extent of the imbalance.  For example if the data contain 80% instances of 

“A” and 20% instances of “~A”, the best guess is “A” and agreement will appear to be relatively 

high without any motivating classification analysis.  Kappa protects against this kind of spurious 

agreement by assessing it over and above the agreement we expect by chance. Class imbalance 

increases with departures from an equal distribution of instances across the categories.   

 Using standard criteria, a Kappa value above 0.75 indicates a strong reliability 

(agreement) between the machine and human categorization.   A Kappa value between 0.40 and 

0.75  indicates a moderate reliability, while a Kappa below 0.40 indicates a weak reliability 
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(Fleiss, 1981).  Landis and Koch (1977) suggest more levels of agreement: 0.0 to  0.20 indicates 

slight agreement, 0.2 to 0.4 indicates fair agreement, 0.41 to 0.60 indicates moderate agreement, 

0.61 to 0.80 indicates substantial agreement, and >0.80 indicates almost perfect agreement.  

Conventionally, publication of research in psychological journals hinges on obtaining at least 

moderate agreement.  

Using Machine Learning as a Second Rater 

  The data I am using for this study was classified against a number of independent 

categories, all of which had defined features.  For example, the information gathering category 

requires features such as “current symptoms”, referring to the type of information that the doctor 

is gathering, and “the patient”,  referring to the source of the information.  The researcher uses 

these features to identify whether a piece of text belongs in a category or not.   

The goal in this research was not to optimize the ML algorithm, but to examine the 

potential utility of an existing ML algorithm as a second rater.  I sought to compare the 

agreement between the human annotators, between the human and the machine annotators and 

whether the human and machine annotations use similar terms to classify the data.  For this 

initial investigation, I tested the Random Forest algorithm, as implemented in the Waikato 

Environment for Knowledge Analysis, or WEKA.  I listed the steps that I used to prepare the 

data and analyze the data in WEKA in Appendix B.  According to Hall et. al., (2009), 

researchers at the University of Waikato in New Zealand initiated WEKA in 1992 to provide a 

toolbox of learning algorithms for researchers as well as an environment they could use to create 

their own algorithms.  WEKA is now a widely-used toolkit that includes several machine 

learning algorithms and other data preprocessing tools, including algorithms for categorization 

and attribute selection.  
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The Random Forest algorithm is not the only possibility.  The K-nearest neighbors 

algorithm operates on a vector representation of the text data, classifying an instance according 

to its similarity to its neighbors.  The K-nearest neighbors algorithm is vulnerable to over-fitting, 

and its vector representation does not support meaningful inspection. A Linear Classifier seeks a 

linear combination of features that identifies class membership. A hyperplane separates positive 

and negative instances.  A Support Vector Machine is a particular type of linear classifier that 

finds the hyperplane that maximizes the distance between the positive and  negative instances. It 

can also be used to deal with non-linear class boundaries using data transformation, but this is 

beyond the scope of this  work.) The Random Forest algorithm combines a set of feature-based 

decision trees to classify an instance according to the central tendency of the trees. It is a simple 

approach, and it has the advantage of generating an inspectable forest of decision trees as part of 

the final output.  
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Research Questions 

Agreement between the human and the machine annotation suggested that ML algorithms 

can potentially substitute for a human annotator.  It was also important to check the features the 

program uses because that will determine how broadly I can apply an algorithm after training.  I 

may have needed to alter the data, including potentially removing stop words such as “and” or 

“but” to prevent the algorithm from catching them as significant when they are not useful. 

To address the promise of machine learning for inter-rater reliability I posed the following 

questions and corresponding analyses for the data set in question: 

RQ1: What is the quantified inter-rater reliability between the human and machine 

annotators? 

RQ2: How do the machine learning categorization terms compare with the original class 

definitions? 

RQ3: Do I need to eliminate stop words (highly frequent, typically non-discriminators 

e.g., “the”) from the data set  to suppress spurious feature selection for qualitative data 

classification? 

RQ4: What is the effect of drift in the human annotation process? 

RQ5: What is the quantified inter-rater reliability between two human annotators? 

RQ6: How does class imbalance affect machine learning and human annotation?  
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Pilot Results 

 Pilot work examined the information gathering category, which was the most 

balanced in the data set.  When comparing the human and machine annotators on “information 

gathering”, I found a Kappa of 0.76 showing a strong agreement.   The resulting ML model also 

chose terms that are associated with the original classification rules of this data.  For the 

information gathering condition, the most important terms it selected were terms like “asks”, 

“does”, “says”, “looks”, “feels”, and “listens”.  The pilot WEKA results including the decision 

tree terms appear in Appendix C.  These terms were also associated with things that a human 

annotator might seek to see if a described behavior is for the purpose of gathering information.  

This suggests that a machine learning algorithm can be relied on to give results in line with 

human annotation and can be used as a substitute for a second human rater.  
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Method 

Data Set 

 Robinson (2011) provided the data for this project (see Appendix A).  This data consists 

of descriptions of doctor behavior observed over the course of a work shift. It was taken from 

twenty-six emergency department physicians at two different hospitals.  It included a total of 38 

excel files. Each file was composed of observations of one physician over the course of one shift 

including several hundred instances of data with one instance per row.  In all, these files included 

approximately 25,000 separate entries.  I do not know the specific criteria the original observer 

used to separate the data into individual instances, but it may have been something like pauses in 

the action by the physicians or breaks between statements.  Some examples of instances include 

“asks what happened to bring them in”,  “says they've already ordered a chest pain set and BNP”, 

and “looks at pt's mouth and eyes”.   

Coding Scheme 

The original annotator, Eric Robinson, categorized these descriptions into six different 

broad behavior types (see Table 1).  These categories were: information gathering behavior, 

diagnostic behavior, evidence evaluation behavior, patient management behavior, system 

management behavior and filtering behavior.  For my final analysis I chose three specific 

categories of behavior and ran them through WEKA separately in order to compare the results 

between them.  The three categories I chose were information gathering from a patient source 

(PT), system management (SM), and logistics (LOG), which was a subcategory of patient 

management.  These categories provided examples of data that is well balanced (26% positive 

instances), moderately balanced (15% positive instances) and poorly balanced (6% positive 

instances), respectively.  I also chose them because the researcher who collected this data found 
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that these three variables (unlike several others) were relevant to his original analysis.  Relative 

to the pilot study, information gathering from a patient source (examined in the present analysis) 

is a subset of the complete information gathering category.  The text data itself is exactly the 

same for  all variables; the only thing that changes is the specific type of behavior being 

categorized. 

According to the Robinson coding scheme, doctors use information gathering behavior to 

generate facts about the case.  This information is further sub-categorized into types of 

information and sources of information such as information gathered from the patient or from 

medical records.  Diagnostic behaviors are any behaviors that attempt to find a cause for 

symptoms or to eliminate possible causes.  Evidence evaluation behaviors help doctors 

determine which signs and symptoms are important and worth pursuing.  Patient management 

behaviors include any actions the doctors take to treat their patients and also to keep them 

informed and to act in their best interest.  System management behaviors include any behaviors 

doctors use to maneuver through the larger system of the hospital and health care system they 

operate within.  Filtering behaviors are actions doctors take to limit the number of problems they 

must handle. Any data segment could pertain to multiple data categories.  For this reason, I ran 

separate classification models with the same data set.  

Table 1. Robinson Analysis Categories  

Behavioral Categories Potential Indicators of Behavior 

Information Gathering 

Subcategories:  

Questions, looking up records, 

searching databases 
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● Source (Exams, tests/images, the 

patient (PT), family/friends, medical 

records, hospital staff, 

internet/references, misc.) 

● Type (Current symptoms, timeline, 

past medical info, contributors, 

reference, other) 

Diagnostic Using treatments to diagnose the issue 

Evidence Evaluation Checking the reliability of the patient history 

Patient Management  

● Type (Collaboration, treatment, 

consulting, logistics (LOG)) 

Keeping the patient informed and reassured, 

regulating the patient’s condition, offering 

advice on care 

System Management (SM) Contacting a specialist, working in a busy 

environment 

Filtering Making judgements on which problems to 

address 

Note. Categories used in this thesis project have been bolded. 

Instances 

Researchers often have access to text data in a continuous stream format. Continuously 

streamed data raise a problem with the unit of analysis.  The text does not necessarily have 

principled delineation of discrete instances for subsequent annotation.  The data that I am using 



 
 

 18 
 

is broken into smaller parts,  but those parts are not standardized and do not each exhibit only 

one type of behavior.  For example, the piece of text data “res tells pt the xray and US were ok, 

says they're waiting on the blood work; asks if the pain meds helped” was originally annotated as 

containing multiple instances of evidence evaluation,  information gathering,  and system 

management behavior. 

 One potential solution could be to cut the existing data into single units so that every unit 

only contains one instance of a behavior type.  However, this solution would require an initial 

manual segmentation of the data, inconsistent with the goal of streamlining manual annotation. 

Another solution is to remove observations that are classified as containing multiple instances of 

behavior.  This could work but depends on the number of observations that contain multiple 

instances and the class imbalance concern.  A viable solution is re-classifying each entry into the 

data file as either zero or one.  That is, any classification above one becomes one, indicating that 

piece of text does include at least one instance of that type of behavior, and zeros remain zeros, 

indicating that text does not contain that type of behavior.  This solution is consistent with 

standard practice in the automated analysis of unstructured short social media posts,  and can be 

applied to a variety of different types of data (Bhatt et al., 2019; Kursuncu et al., 2019; Purohit et 

al., 2013; Purohit et al., 2014). Therefore it is the solution I used for this experiment.  Doing so 

resulted in 25,480 instances.  

Recoding Procedure 

 I re-coded 10 percent of the data myself, or approximately 2,500 instances, each instance 

being an observation contained in one line of an excel file.  I received instruction on the three 

categories I chose and also a copy of the category definitions from Robinson.  Because the 

original data lacks temporal attributes, I had to use the re-annotated data for drift analysis. 
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 I spent approximately 12 hours re-coding this data, spaced over several days.  To analyze drift in 

the coding process, I used only the 10% of the data that I personally re-coded, which is a smaller 

corpus than the original data.   

Inter-Rater Reliability Quantification 

 I used Cohen’s Kappa to quantify agreement. This is a departure from focusing on 

standard machine learning F measures that average misses and false alarms for the evaluation of 

classifier performance.   Cohen’s Kappa in ML relates to the training data.  However, Cohen’s 

Kappa takes class imbalance into account and is consistent with practice in behavioral research, 

and is in fact included in WEKA output.   
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Analysis Approach 

Measures  

As just noted, I used Kappa to quantify agreement. I also performed a qualitative analysis 

to check the similarities between the features used by the ML program and those used by 

humans. If the ML program used key words for categorization that are related to the concepts in 

the instructions, then that indicates it is using a similar set of criteria as the human annotators. 

For example, if the program used key words associated with “reassurance” to categorize a 

behavior as patient management, that would be similar to the original annotation criteria. The  

list of stop words to inform feature analysis appears in NLTK’s list of English Stopwords (n.d.). 
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Results 

RQ1: What is the quantified inter-rater reliability between the human and machine 

annotators? 

Table 2 shows the Kappa values as well as the standard ML F values and values for 

precision and recall assuming the original annotation as ground truth for each of the three 

variables when running the full data set annotated by the original annotator for all three of our 

chosen variables through WEKA. I found a Cohen’s Kappa of 0.83 for information gathered 

from the patient (PT), 0.60 for system management behavior (SM), and 0.18 for behavior related 

to logistics (LOG).  These variables represented good balance, medium balance, and very poor 

balance respectively.   

Table 2. ML Values for Original Annotated Data (Full Corpus) 

 Kappa F Statistic Precision Recall 

Patient (PT) 0.83 0.935 0.935 0.935 

System 
Management 
(SM) 

0.60 0.907 
*0.91 

0.907 0.913 

Logistics (LOG) 0.18 0.92 0.913 0.934 

Note. Values reported are weighted averages as calculated by WEKA 

Note. *F statistic calculated for SM as a Harmonic mean of Precision and Recall is different from 

that provided by WEKA and hence has provided explicitly 

RQ2: How do the machine learning categorization terms compare with the original class 

definitions? 

 The decision tree for PT prioritized terms like “asks”, “listens”, “feels”, “confirms”, 

“yes”, and “pt”.  All of these terms are associated with the original definition for the category, 
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which is information gathering from the patient themself.  Terms like “asks” and “pt”, which is 

the abbreviation for patient used in the data, are particularly telling in this respect.   

The tree for SM prioritized terms such as “tsheets”, “tsheet”, “documents”, “pages”, and 

“log”.  All of these terms are associated with the definition for system management, which deals 

primarily with paperwork, administrative tasks, and other ways of dealing with the system.   

The LOG decision tree prioritized terms such as “ride”,  “needed”, “wants”, “wont” 

“isnt”,  and “the”.  The logistics category includes behaviors that maximize patient benefit, 

minimizing resources used, and finding the most appropriate treatment.  Terms such as “ride”, 

“needed” and “wants” are connected to this definition.  

The most important words in the decision tree for each of the three categories are 

different, indicating that there is a quantifiable, conceptual difference between the categories. 

RQ3: Do I need to eliminate stop words (highly frequent, typically non-discriminators e.g., 

“the”) from the data set  to suppress spurious feature selection for qualitative data 

classification? 

While stop words such as “she” and “if” are present in the PT decision tree, they are not 

among the top terms the decision tree uses to determine categorization for the data.  The SM 

decision tree also includes some stop words such as “who” and “for”, but like the PT tree they 

are not high priority for the algorithm to make decisions about categorization. 

Stop words were present in the LOG tree, and higher in priority than in the other two 

trees.  Terms like “isn't” and “the” appeared relatively high on the tree for the LOG category.  

These terms are stop words, not directly associated with the category definition.  The fact that I 

found these stop words higher on the decision tree for the most poorly balanced variable suggests 
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that the ML algorithm has a more difficult time not only simply categorizing, but also identifying 

meaningful features for poorly balanced variables. 

RQ4: What is the effect of drift in the human annotation process? 

 I analyzed the re-categorized data to check for the impact of drift in human annotation 

over time.  I did this by splitting the re-categorized data into two halves chronologically, one half 

being the first one categorized and the other being the second.  I chose to use the most well-

balanced variable (patient information gathering) to remove the complicating factor of poor class 

balance.   I processed each of these halves through WEKA to determine if the ML algorithm 

could detect a difference between them, which would indicate that there was a difference in how 

the two halves were categorized by the human rater.  The Kappa value I found for the first half of 

the data was 0.72, and for the second half 0.76, confirming that there is no difference between 

the two halves of the data.   

The most important words in both decision trees were the words “asks”, “pt”, and “res”, 

three terms that indicate the doctor asking the patient a question.  These terms also appeared high 

up on the decision tree calculated for the full PT corpus.  These results show that in this re-

annotated data set,  drift was not a significant problem for the human annotator.  However, it is 

possible that I didn’t see drift in this annotation because a re-annotation was done on a smaller 

subset of the data. 

RQ5: What is the quantified inter-rater reliability between two human annotators? 

 Complete recategorized corpus. When I re-categorized the data myself, I calculated 

Kappa again between my categorization and the previous human categorization.  I found values 

of 0.95 for PT, 0.91 for SM and 0.78 for the LOG category.  The Kappa values for human 

annotated data are higher for the more poorly balanced variables than for the well balanced one, 
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although the well balanced variable has a similar Kappa between WEKA and the human 

annotators.  I also ran the re-annotated data through WEKA, in order to compare the results to 

the results of the original annotation.  Table 3 shows these WEKA-calculated Kappa values as 

well as F values and values for precision and recall for each of the three re-categorized variables. 

Table 3. Values for Re-Annotated Data (Reduced Corpus) 

 Human 
Kappa 

WEKA 
(ML) Kappa 

F Statistic Precision Recall 

Patient 0.95 0.77 0.904 0.904 0.904 

System 
Management 

0.91 0.51 0.92 0.926 0.931 

Logistics 0.78 0.17 0.914 0.906 0.928 

 

RQ6: How does class imbalance affect machine learning and human annotation? 

As expected, the Kappa value for a well-balanced variable was best and degraded as the 

balance became poorer.  After using SMOTE in R to re-balance the full LOG corpus, I ran the 

re-balanced corpus through WEKA again.  This data set gave me a significantly improved Kappa 

over the original, with a Kappa of 0.93.  Table 4 shows the WEKA-calculated Kappa, F, 

precision and recall values for the re-balanced data.  Because the data was balanced, 

approximately half positive results of logistics behavior and half negative, the ML algorithm was 

able to categorize it with a much higher degree of success.  I saw a definite benefit to Cohen’s 

Kappa calculation in WEKA as a result of re-balancing the data which could result merely from 

a reduction in the chance penalty.   

However, the decision tree changed,  prioritizing  terms such as “felt”, “tsheet”, 

“reception”, “because”, “sign” and “none”.  Some of these terms, such as “felt”, “sign” or “none” 

could be conceptually linked to the category definition of logistics behavior. The term “felt” 



 
 

 25 
 

could be linked to what resources they need for their condition.  The terms “sign” and “none” 

could be indicators of what it is that the patient needs as well.  The prioritization of stop words in 

the decision trees differed between the different levels of balance, with stop words appearing at a 

higher priority in the most poorly balanced variable.  Also, it seems that the algorithm also 

struggled to maintain the conceptual difference between the most poorly balanced variable and 

other variables, as the terms in the LOG tree are less conceptually connected to the category.  

The most worrisome of these terms is “tsheet”, which is most often associated with the doctor 

doing paperwork, and is therefore connected to system management rather than logistics.  Unlike 

the decision tree for the unbalanced LOG data, this tree did not prioritize stop words as high up 

on the tree.  However, it also differed from all the other decision trees in another way.  This tree 

does not branch as much as the other trees, and continues looking at new terms for much longer 

before making a decision and starting a new branch.  This may be a result of the re-balanced 

LOG data having a smaller and less varied vocabulary to draw from for the positive instances, as 

SMOTE re-balancing creates new positive instances by oversampling from the existing ones.  

Table 4. ML Values for Data Balanced With SMOTE 

 Kappa F Statistic Precision Recall 

Logistics 0.93 0.964 0.966 0.964 
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Discussion 

The intention of this study was to examine the possibility of using machine learning 

algorithms as a tool for assisting inter-rater reliability by substituting for the second rater.  In 

order to conclude that they are a useful tool, I must determine whether I can use them to get good 

inter-rater reliability measurements, and whether the algorithm’s decision rules are comparable 

to the category definitions.  When human raters perform inter-rater reliability annotation, we 

assume that the second rater is using the features identified in the coding scheme.  However, it is 

possible that a human rater could be sensitive to spurious correlated features, just as an ML 

algorithm could be.  Benefits of using ML algorithms to replace the second rater include 

reducing the workload for human researchers who have to annotate qualitative data, as well as 

creating ML models that can be run repeatedly on multiple data sets, which is a more extensive 

analysis than researchers usually perform in psychological studies 

Evidence Favoring the Adoption of ML for Inter-Rater Reliability Annotation 

Both quantitative and qualitative analyses favor the adoption of ML. The results of using 

ML algorithms to substitute for one human rater in inter-rater reliability measurements seem 

positive, given good class balance of the data in question.  When the data is relatively well 

balanced, the ML algorithm is comparable to a human rater. I did not find evidence that it is any 

better.  The fact that I found acceptable inter-rater reliability between machine and human raters 

for good and moderate class balance, as seen by the calculated Cohen’s Kappa values, supports 

the use of ML for this purpose.   

  Qualitative (or conceptual) disagreement might have appeared as completely different 

criteria to categorize the data, or relevant but surprising features that the original categorization 

guidelines did not take into account.  This could happen because Random Forest ML algorithms 
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are not given instructions and generate criteria to sort the data without researcher input.  Again, 

given reasonable class balance, this did not appear to be a problem. Stop words also did not 

become a problem except in cases of very poor class balance in the data.  This suggests that as 

long as the data is well balanced (with at least 15% positive instances) researchers can expect 

that the ML algorithm will have good conceptual agreement with the original classification 

guidelines. 

Limitations of ML for the Adoption of ML for Inter-Rater Reliability Annotation 

I have identified class imbalance as a major limitation.   The results of my final analysis 

showed that the ML algorithm resulted in bad inter-rater reliability scores when the variables 

were more poorly balanced, as predicted.  In contrast, the human-human inter-rater reliability 

scores maintained relatively high values across different levels of balance.  This suggests that the 

second human coder apprehended the context or nuances of the English language that were not 

accessible to the machine.  Features that the ML algorithm used to classify the data tend to 

degrade with degraded balance.  More poorly balanced data resulted in more stop words being 

labeled as important for the classification. Unfortunately,  SMOTE gave mixed results as a re-

balancing tool.  On the positive side, the Kappa results were good.  The re-balanced data set 

produced a decision tree that included more content words at higher levels of importance. 

However, the relationship of those words to the category definition was tenuous.  Nevertheless, 

because I looked at Cohen’s Kappa, rather than F values, I demonstrated limitations of the ML 

algorithm that are not apparent in F alone.    

Study Limitations 

 Because this study was focusing on the viability of ML algorithms as a substitute for the 

second rater, I did not examine alternative WEKA parameters.  Future researchers should look 
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into different classification methods and different  parameter settings in WEKA.  The specific 

results may be dependent on the settings used, and could even improve. Because stop-words 

appeared to be problematic only in the case of the poorly balanced class, I did not examine 

potential improvements with their removal in the well balanced classes, though this could be 

checked.   In this initial study, I examined the three labels in separate classification exercises. A 

multi-class classification algorithm, considering all labels simultaneously, is an important next 

step.   

The sensitivity of my results to class balance limits the use of machine learning in many 

applications.  This is a known limitation in the Information Retrieval literature, and therefore not 

surprising. From my results, it is unclear whether SMOTE was an effective solution for restoring 

class balance.  While the data that was re-balanced using SMOTE produced a good Kappa value 

when run through WEKA, it also produced unclear decision tree results.  It may be worthwhile 

for future research to explore alternative methods for class re-balancing or smoothening, such as 

with GANS.  Data rebalanced with SMOTE only replicates existing data to obtain improved 

class balance; GANS would attempt to replicate patterns in the existing data by generating data 

from similar distribution, possibly producing better results.  In either case, any re-balancing 

intervention raises a methodological concern.  Potentially,  human coders should receive a re-

balanced corpus, although the human-human agreement did not fall off as much with class 

imbalance as the human-machine agreement.   In the case of human-machine agreement, perhaps 

reporting should include both balanced and unbalanced results. In addition, alternative balance 

penalties in the agreement statistic, such as Gwet’s AC1 merit consideration. A completely 

different approach to manage class imbalance is to be less reliant on pattern discovery by 
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providing guidance to the algorithm in the form of human curated rules. This implies a hybrid 

ML-human coding procedure as a candidate for future research.    

My analysis assumed that the directly available text provided the required features.  This 

is suspect.  Perhaps synonyms and lexical variants (asks, questions) or even more challenging n-

grams (wants to know) are better represented at a higher level of abstraction than is directly 

available in the text.  This is particularly concerning because it is the observer who chose the 

descriptive language that appears in the field notes, though likely favoring simpler, shorter 

alternatives.  Two approaches to alternative representation counter this problem.  First, the text 

might be pre-processed using external knowledge bases and syntactic parsing to convert the text 

to a more abstract representation of its features.  Second, it may also be helpful to represent the 

data as a vector when processing it with ML, rather than as text as I did.  This will also pull 

latent features out of the data, without appeal to external knowledge bases.  Vector representation 

also has the added advantage of not depending on the format of the data.  The trouble with the 

method is that it loses the semantics of the class labels.  It would return a vector representing the 

content with unnamed parameters, rather than a decision tree with identifiable text features that 

can be compared to the original class definitions.  This might be attempted after more favorable 

results with the basic, lexically based approach used here.  

I also had issues with my data set structured as a continuous stream.  Each individual 

chunk of text could represent multiple instances of multiple variables.  I resolved this with binary 

classification, but this still clouds the results and could have an impact on the algorithm’s ability 

to pick up on important features.  Binary classification is more of a patch than an actual solution.   

Generalizability to other independent data sets was not tested here, and typically is not 

required in order to publish subsequent analyses with coded qualitative data.  From a practical 
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perspective, it may not matter if an individual ML algorithm can not generalize to all data.  

Building new ones to fit new sets of data is cheap and relatively easy, although they do require 

very large training data sets on which to train.   

Because I was unable to look at the full corpus to examine drift in the human rater, I was 

not able to gain a full picture of how drift affects human ratings over time.  The amount of data I 

was able to analyze for drift simply was not enough to effectively detect drift in human 

annotation over time.  Future research in this area would benefit from examining drift more 

closely.  If ML algorithms can alleviate the impact of drift that would be an added benefit to their 

use, and if they are impacted negatively by drift that would need to be taken into account.   
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Conclusion 

 Because my results showed a significant agreement between the human raters as well as 

agreement between the human and ML algorithm in cases of well-balanced data, clearly the 

algorithm is a useful substitute for human annotators in some circumstances.  I found that ML 

algorithms can be used to categorize data with a strong agreement with human annotators.  I did 

not have issues related to the human raters disagreeing with one another, indicating that the 

original classification scheme for the data was reliable. In-depth analysis showed both good 

agreement between human and ML annotators and good levels of conceptual agreement between 

the algorithm and the classification rules.  Because of this,  I can conclude that this data and its 

classification scheme are reasonable for testing the ML algorithm for this purpose, and more 

generally, that the original coding scheme is reliable. 

Along with the practical benefits of using ML as a tool, this research will help researchers 

by helping to establish the reliability  of classification schemes.  ML algorithms are a promising 

tool for qualitative researchers who often need to categorize large amounts of qualitative data 

and check the reliability of that categorization. 
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Appendix A. Example Data as Coded by Robinson (2011) 
 
 
Res Action Info Gathering 

new pt; abdominal pain lady, loopy, saw 
something in her cup at church's, feels sick, 
MRDD (mentally retarded) 1 

we go into the room 0 

res shakes hands with the pt 1 

res asks about any fever 1 

res asks pt where her belly hurts 1 

res asks if that could just be from throwing up 0 

res asks how many times pt has thrown up 1 

res asks if pt has been throwing up clear liquid 1 

res asks about any belly surgery 1 

res asks about appendix and gallbladder 1 

res asks if she has taken anything 1 

res asks if it helped 1 

res asks when it started 1 

res listens to pt's chest and belly 1 

res feels pt's belly 1 

res asks if pt's bowels have been ok 1 

res asks what color it is 1 

res asks how many times pt has had diarrhea 1 

res asks who pt's doc is 1 

res asks about any other problems 1 

res asks pt if she's on meds for it 1 

res asks about a hysterectomy 1 

res says the labs are back and look ok, they're 
still waiting on one 0 

res says they'll give some nausea meds (that 
dissolve on the tongue) and try to get food to 0 
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stay down 

res asks what pt's drink was 1 

res asks pt if she feels hungry but just can't eat 
or keep it down 1 

we leave the room; res says it seems visceral 
(just an emotional reaction to the sight in her 
drink) 0 

res talks to the att; gives pt's history, says she 
looks good, moist lips, not dry/dehydrated 0 

res says nothing to add lab wise, will do 
zophran and an oral challenge 0 

res tells me with belly you always rule out a 
surgical issue but the pt is nontender, no 
localized pain, wants to eat, no fever 0 
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Appendix B. WEKA Settings 

 We used a j48 tree classifier to classify the data in WEKA. In pre-processing, I translated 

the text data through the stringtowordvector filter and set the category data as the class. I have 

included the list of steps I went through to process the data from the beginning.  

1. Open terminal 

2. cd ~/Desktop/WEKA_Analysis 

3. Change the file input name and output name 

4. python3 file_converter.py 

5. start weka 

6. open newly created file *_mod.csv 

7. save the file as *.arff 

8. Remove line number 3 that starts with @attribute to @attribute tweet string 

9. Change the next @attribute label numeric to @attribute class {0,1} 

10. Open weka 

11. Open the new arff file 

12. click "infogathering" 

13. In filter.. click choose 

14. in unsupervised--attribute--StringToWordVector 

## If you choose something besides StringToWordVector, it might change the results ## 

15. click apply 

16. click label 

17. click edit on upper right hand corner 

18. right click on the first attribute list (first column) and choose "attribute as class". click ok 
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19. got to "classify" tab 

20. click choose 

21. select trees--j48 

         -Alternatives: Logistic Regression (Logistic). NaiveBayes. 

         -For situations with insufficient data 

22. click start 

-23. Select Percentage split to run the model on the reserved test set 
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Appendix C. Pilot Data WEKA Output File 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     INFO GATHERING MASTER_mod-
weka.filters.unsupervised.attribute.StringToWordVector-R1-W1000-prune-rate-1.0-N0-
stemmerweka.core.stemmers.NullStemmer-stopwords-handlerweka.core.stopwords.Null-
M1-tokenizerweka.core.tokenizers.WordTokenizer -delimiters "  
[...] 
Instances:    10314 
Attributes:   1445 
              [list of attributes omitted] 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 pruned tree 
------------------ 
 
asks <= 0 
|   listens <= 0 
|   |   feels <= 0 
|   |   |   looks <= 0 
|   |   |   |   checks <= 0 
|   |   |   |   |   BMP <= 0 
|   |   |   |   |   |   notes <= 0 
|   |   |   |   |   |   |   student <= 0 
|   |   |   |   |   |   |   |   adds <= 0 
|   |   |   |   |   |   |   |   |   new <= 0 
|   |   |   |   |   |   |   |   |   |   nurse <= 0 
|   |   |   |   |   |   |   |   |   |   |   CBC <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   sees <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   orders <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   res <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   att <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   phone <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   admitted <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   to <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   resident <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   you <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pain <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   or <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   not <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   the <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   chart <= 0: 1 (107.0/21.0) 
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|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   chart > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   for <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   than <= 0: 0 (11.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   than > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   for > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   the > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   and <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   are <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   negative <= 0: 0 (99.0/13.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   negative > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   are > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   and > 0: 1 (6.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   not > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   back <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   xray <= 0: 1 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   xray > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   back > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   or > 0: 1 (10.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   now <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   be <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   the <= 0: 1 (22.0/4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   the > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   they <= 0: 0 (17.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   they > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a > 0: 0 (9.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells > 0: 0 (4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   be > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   now > 0: 0 (4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pain > 0: 1 (18.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   you > 0: 1 (15.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   resident > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   negative <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pain <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   patients <= 0: 0 (30.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   patients > 0: 1 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pain > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   negative > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   to > 0 
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|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pts <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   you <= 0: 0 (228.0/14.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   you > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pts > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   admitted > 0: 0 (24.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   phone > 0: 0 (22.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   att > 0: 0 (193.0/18.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   res > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   documents <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   prescription <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   by <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   does <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   phone <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tsheets <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   says <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   has <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   writes <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pts <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   talks <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   with <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   at <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   confirms <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   test <= 0: 0 
(340.0/65.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   test > 0: 1 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   confirms > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   is <= 0: 1 (9.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   is > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   at > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   sheets <= 0: 1 
(14.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   sheets > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in > 0: 0 (47.0/6.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   with > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   check <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   of <= 0: 0 (58.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   of > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   check > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   talks > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   is <= 0: 0 (27.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   is > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   att <= 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   att > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pts > 0 
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|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   about <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   himself <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   family <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   goes <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   be <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   cant <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   story <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   lifts <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   leg <= 0: 1 
(50.0/9.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   leg > 0: 0 
(2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   lifts > 0: 1 
(2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   story > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   cant > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   be > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   goes > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   family > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   himself > 0: 0 (5.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   about > 0: 0 (6.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells > 0: 0 (120.0/6.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   writes > 0: 0 (49.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   has > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt <= 0: 0 (11.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up <= 0: 1 (51.0/7.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells > 0: 0 (9.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   says > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   high <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   gets <= 0: 0 (2397.0/197.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   gets > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   xray <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   maybe <= 0: 0 (31.0/3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   maybe > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   xray > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   high > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   negative <= 0: 0 (42.0/9.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   negative > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tsheets > 0: 0 (151.0/3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   phone > 0: 0 (89.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   does > 0 
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|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   rectal <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   US <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   has <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   foot <= 0: 0 (59.0/5.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   foot > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   has > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   US > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   rectal > 0: 1 (4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   by > 0: 0 (36.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   prescription > 0: 0 (36.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   documents > 0: 0 (141.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   orders > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   xray <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   CT <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   does <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   for <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   LFTs <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   UA <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   US <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   cardiac <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   enzymes <= 0: 0 (52.0/9.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   enzymes > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   cardiac > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   US > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   UA > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   LFTs > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt > 0: 1 (6.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   for > 0: 0 (19.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   does > 0: 1 (4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   CT > 0: 1 (10.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   xray > 0: 1 (18.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   sees > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   add <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   big <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   here <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in <= 0: 1 (31.0/10.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   here > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   big > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   add > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   CBC > 0 
|   |   |   |   |   |   |   |   |   |   |   |   out <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   pt <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   was <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   res <= 0 
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|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   low <= 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   low > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   res > 0: 1 (12.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   was > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   pt > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   out > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   nurse > 0 
|   |   |   |   |   |   |   |   |   |   |   says <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   blood <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   hands <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   much <= 0: 0 (71.0/9.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   much > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   hands > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   blood > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   orders <= 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   orders > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   says > 0 
|   |   |   |   |   |   |   |   |   |   |   |   doc <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   the <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   a <= 0: 1 (42.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   a > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt <= 0: 0 (6.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   pt > 0: 1 (10.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   the > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   about <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   cath <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   IV <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   give <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   he <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tell <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   too <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   bathroom <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up <= 0: 1 (39.0/3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   up > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   bathroom > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   too > 0: 0 (5.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tells > 0: 0 (6.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   tell > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   he > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   give > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   IV > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   cath > 0: 1 (5.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   about > 0: 0 (7.0) 
|   |   |   |   |   |   |   |   |   |   |   |   doc > 0: 0 (11.0/1.0) 
|   |   |   |   |   |   |   |   |   new > 0 
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|   |   |   |   |   |   |   |   |   |   to <= 0 
|   |   |   |   |   |   |   |   |   |   |   pain <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   afib <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   with <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   because <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   res <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a <= 0: 1 (23.0/4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a > 0: 0 (4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   res > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   EKG <= 0: 0 (31.0/9.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   EKG > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   because > 0: 1 (5.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   with > 0: 1 (12.0) 
|   |   |   |   |   |   |   |   |   |   |   |   afib > 0: 0 (4.0) 
|   |   |   |   |   |   |   |   |   |   |   pain > 0: 1 (20.0/1.0) 
|   |   |   |   |   |   |   |   |   |   to > 0 
|   |   |   |   |   |   |   |   |   |   |   seen <= 0: 0 (23.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   seen > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   adds > 0 
|   |   |   |   |   |   |   |   |   on <= 0 
|   |   |   |   |   |   |   |   |   |   atavan <= 0 
|   |   |   |   |   |   |   |   |   |   |   nitro <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   problem <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   for <= 0: 1 (30.0/3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   for > 0: 0 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   problem > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   nitro > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   atavan > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   on > 0: 0 (4.0) 
|   |   |   |   |   |   |   student > 0 
|   |   |   |   |   |   |   |   had <= 0 
|   |   |   |   |   |   |   |   |   if <= 0 
|   |   |   |   |   |   |   |   |   |   new <= 0 
|   |   |   |   |   |   |   |   |   |   |   says <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   at <= 0: 0 (24.0/5.0) 
|   |   |   |   |   |   |   |   |   |   |   |   at > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   says > 0 
|   |   |   |   |   |   |   |   |   |   |   |   home <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   then <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   though <= 0: 1 (45.0/6.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   though > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   then > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   home > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   new > 0: 1 (4.0) 
|   |   |   |   |   |   |   |   |   if > 0: 0 (7.0/1.0) 
|   |   |   |   |   |   |   |   had > 0: 1 (15.0) 
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|   |   |   |   |   |   notes > 0 
|   |   |   |   |   |   |   but <= 0 
|   |   |   |   |   |   |   |   xray <= 0 
|   |   |   |   |   |   |   |   |   for <= 0 
|   |   |   |   |   |   |   |   |   |   do <= 0 
|   |   |   |   |   |   |   |   |   |   |   his <= 0: 1 (48.0/5.0) 
|   |   |   |   |   |   |   |   |   |   |   his > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   do > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   for > 0 
|   |   |   |   |   |   |   |   |   |   has <= 0: 0 (4.0) 
|   |   |   |   |   |   |   |   |   |   has > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   xray > 0: 0 (4.0) 
|   |   |   |   |   |   |   but > 0: 0 (5.0) 
|   |   |   |   |   BMP > 0 
|   |   |   |   |   |   ddimer <= 0 
|   |   |   |   |   |   |   att <= 0 
|   |   |   |   |   |   |   |   normal <= 0 
|   |   |   |   |   |   |   |   |   he <= 0: 1 (34.0/3.0) 
|   |   |   |   |   |   |   |   |   he > 0 
|   |   |   |   |   |   |   |   |   |   the <= 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   the > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   normal > 0: 0 (2.0) 
|   |   |   |   |   |   |   att > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   ddimer > 0: 0 (5.0/1.0) 
|   |   |   |   checks > 0 
|   |   |   |   |   on <= 0 
|   |   |   |   |   |   to <= 0 
|   |   |   |   |   |   |   back <= 0: 1 (147.0/20.0) 
|   |   |   |   |   |   |   back > 0 
|   |   |   |   |   |   |   |   a <= 0: 0 (7.0/2.0) 
|   |   |   |   |   |   |   |   a > 0: 1 (2.0) 
|   |   |   |   |   |   to > 0 
|   |   |   |   |   |   |   give <= 0 
|   |   |   |   |   |   |   |   blood <= 0 
|   |   |   |   |   |   |   |   |   see <= 0: 0 (12.0/1.0) 
|   |   |   |   |   |   |   |   |   see > 0 
|   |   |   |   |   |   |   |   |   |   and <= 0: 1 (4.0) 
|   |   |   |   |   |   |   |   |   |   and > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   blood > 0: 1 (2.0) 
|   |   |   |   |   |   |   give > 0: 1 (5.0) 
|   |   |   |   |   on > 0 
|   |   |   |   |   |   med <= 0 
|   |   |   |   |   |   |   meds <= 0 
|   |   |   |   |   |   |   |   test <= 0 
|   |   |   |   |   |   |   |   |   and <= 0 
|   |   |   |   |   |   |   |   |   |   because <= 0 
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|   |   |   |   |   |   |   |   |   |   |   if <= 0: 0 (25.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   if > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   because > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   and > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   test > 0: 1 (2.0) 
|   |   |   |   |   |   |   meds > 0: 1 (2.0) 
|   |   |   |   |   |   med > 0: 1 (3.0) 
|   |   |   looks > 0 
|   |   |   |   at <= 0 
|   |   |   |   |   eyes <= 0 
|   |   |   |   |   |   in <= 0 
|   |   |   |   |   |   |   up <= 0 
|   |   |   |   |   |   |   |   tells <= 0 
|   |   |   |   |   |   |   |   |   pretty <= 0 
|   |   |   |   |   |   |   |   |   |   to <= 0 
|   |   |   |   |   |   |   |   |   |   |   blood <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   back <= 0: 0 (68.0/16.0) 
|   |   |   |   |   |   |   |   |   |   |   |   back > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   blood > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   to > 0: 0 (21.0/2.0) 
|   |   |   |   |   |   |   |   |   pretty > 0 
|   |   |   |   |   |   |   |   |   |   the <= 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   the > 0: 1 (3.0) 
|   |   |   |   |   |   |   |   tells > 0: 0 (12.0) 
|   |   |   |   |   |   |   up > 0 
|   |   |   |   |   |   |   |   be <= 0 
|   |   |   |   |   |   |   |   |   for <= 0: 1 (14.0/2.0) 
|   |   |   |   |   |   |   |   |   for > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   be > 0: 0 (3.0) 
|   |   |   |   |   |   in > 0 
|   |   |   |   |   |   |   for <= 0 
|   |   |   |   |   |   |   |   says <= 0 
|   |   |   |   |   |   |   |   |   res <= 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   res > 0: 1 (43.0/2.0) 
|   |   |   |   |   |   |   |   says > 0 
|   |   |   |   |   |   |   |   |   cant <= 0 
|   |   |   |   |   |   |   |   |   |   too <= 0: 0 (8.0/1.0) 
|   |   |   |   |   |   |   |   |   |   too > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   cant > 0: 1 (2.0) 
|   |   |   |   |   |   |   for > 0 
|   |   |   |   |   |   |   |   reference <= 0: 0 (8.0/1.0) 
|   |   |   |   |   |   |   |   reference > 0: 1 (2.0) 
|   |   |   |   |   eyes > 0: 1 (25.0) 
|   |   |   |   at > 0 
|   |   |   |   |   tsheets <= 0 
|   |   |   |   |   |   to <= 0 



 
 

 45 
 

|   |   |   |   |   |   |   and <= 0 
|   |   |   |   |   |   |   |   EKG <= 0 
|   |   |   |   |   |   |   |   |   chart <= 0 
|   |   |   |   |   |   |   |   |   |   orders <= 0: 1 (344.0/19.0) 
|   |   |   |   |   |   |   |   |   |   orders > 0: 0 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   chart > 0: 0 (8.0/2.0) 
|   |   |   |   |   |   |   |   EKG > 0: 1 (33.0) 
|   |   |   |   |   |   |   and > 0 
|   |   |   |   |   |   |   |   tsheet <= 0: 1 (89.0/6.0) 
|   |   |   |   |   |   |   |   tsheet > 0: 0 (7.0) 
|   |   |   |   |   |   to > 0 
|   |   |   |   |   |   |   document <= 0 
|   |   |   |   |   |   |   |   res <= 0: 0 (4.0/1.0) 
|   |   |   |   |   |   |   |   res > 0 
|   |   |   |   |   |   |   |   |   take <= 0 
|   |   |   |   |   |   |   |   |   |   I <= 0: 1 (51.0/5.0) 
|   |   |   |   |   |   |   |   |   |   I > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   take > 0: 0 (4.0/1.0) 
|   |   |   |   |   |   |   document > 0: 0 (4.0/1.0) 
|   |   |   |   |   tsheets > 0 
|   |   |   |   |   |   takes <= 0 
|   |   |   |   |   |   |   history <= 0: 0 (22.0/3.0) 
|   |   |   |   |   |   |   history > 0: 1 (2.0) 
|   |   |   |   |   |   takes > 0: 1 (3.0) 
|   |   feels > 0 
|   |   |   att <= 0 
|   |   |   |   says <= 0: 1 (186.0/1.0) 
|   |   |   |   says > 0 
|   |   |   |   |   to <= 0 
|   |   |   |   |   |   pts <= 0: 0 (5.0/1.0) 
|   |   |   |   |   |   pts > 0: 1 (4.0) 
|   |   |   |   |   to > 0: 0 (5.0) 
|   |   |   att > 0: 0 (12.0/2.0) 
|   listens > 0 
|   |   res <= 0 
|   |   |   att <= 0: 1 (8.0) 
|   |   |   att > 0: 0 (2.0) 
|   |   res > 0: 1 (179.0) 
asks > 0 
|   att <= 0 
|   |   questions <= 0 
|   |   |   wants <= 0 
|   |   |   |   nurse <= 0 
|   |   |   |   |   they <= 0 
|   |   |   |   |   |   says <= 0 
|   |   |   |   |   |   |   got <= 0 



 
 

 46 
 

|   |   |   |   |   |   |   |   can <= 0 
|   |   |   |   |   |   |   |   |   meds <= 0: 1 (2623.0/92.0) 
|   |   |   |   |   |   |   |   |   meds > 0 
|   |   |   |   |   |   |   |   |   |   needs <= 0: 1 (76.0/2.0) 
|   |   |   |   |   |   |   |   |   |   needs > 0: 0 (6.0/1.0) 
|   |   |   |   |   |   |   |   can > 0 
|   |   |   |   |   |   |   |   |   ride <= 0 
|   |   |   |   |   |   |   |   |   |   pt <= 0: 0 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   pt > 0: 1 (37.0/3.0) 
|   |   |   |   |   |   |   |   |   ride > 0: 0 (3.0) 
|   |   |   |   |   |   |   got > 0 
|   |   |   |   |   |   |   |   yet <= 0 
|   |   |   |   |   |   |   |   |   already <= 0: 1 (40.0/9.0) 
|   |   |   |   |   |   |   |   |   already > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   yet > 0: 0 (3.0) 
|   |   |   |   |   |   says > 0 
|   |   |   |   |   |   |   has <= 0 
|   |   |   |   |   |   |   |   another <= 0 
|   |   |   |   |   |   |   |   |   needs <= 0 
|   |   |   |   |   |   |   |   |   |   them <= 0 
|   |   |   |   |   |   |   |   |   |   |   at <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   doc <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   probably <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   but <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   what <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   shes <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a <= 0: 1 (32.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   a > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   if <= 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   if > 0: 1 (11.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   in > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   shes > 0: 0 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   what > 0: 0 (5.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   but > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   the <= 0: 1 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   the > 0: 0 (5.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   probably > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   doc > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   pts <= 0: 0 (5.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   pts > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   at > 0: 1 (4.0) 
|   |   |   |   |   |   |   |   |   |   them > 0: 0 (4.0) 
|   |   |   |   |   |   |   |   |   needs > 0: 0 (4.0) 
|   |   |   |   |   |   |   |   another > 0: 0 (5.0) 
|   |   |   |   |   |   |   has > 0: 1 (16.0/1.0) 
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|   |   |   |   |   they > 0 
|   |   |   |   |   |   blood <= 0 
|   |   |   |   |   |   |   ok <= 0 
|   |   |   |   |   |   |   |   yet <= 0 
|   |   |   |   |   |   |   |   |   want <= 0 
|   |   |   |   |   |   |   |   |   |   get <= 0 
|   |   |   |   |   |   |   |   |   |   |   do <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   says <= 0: 1 (37.0/4.0) 
|   |   |   |   |   |   |   |   |   |   |   |   says > 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   home <= 0: 1 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   home > 0: 0 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   do > 0: 0 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   |   get > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   |   want > 0: 0 (7.0/1.0) 
|   |   |   |   |   |   |   |   yet > 0: 0 (4.0) 
|   |   |   |   |   |   |   ok > 0: 0 (4.0) 
|   |   |   |   |   |   blood > 0: 0 (6.0) 
|   |   |   |   nurse > 0 
|   |   |   |   |   an <= 0 
|   |   |   |   |   |   comes <= 0 
|   |   |   |   |   |   |   sure <= 0 
|   |   |   |   |   |   |   |   meds <= 0 
|   |   |   |   |   |   |   |   |   want <= 0 
|   |   |   |   |   |   |   |   |   |   now <= 0 
|   |   |   |   |   |   |   |   |   |   |   been <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   bp <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   nitro <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   to <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   about <= 0 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   says <= 0: 0 (7.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   says > 0: 1 (12.0/2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   about > 0: 0 (9.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   to > 0: 0 (14.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   nitro > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   |   bp > 0: 1 (2.0) 
|   |   |   |   |   |   |   |   |   |   |   been > 0: 1 (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   now > 0: 1 (4.0/1.0) 
|   |   |   |   |   |   |   |   |   want > 0: 0 (3.0) 
|   |   |   |   |   |   |   |   meds > 0: 1 (9.0/2.0) 
|   |   |   |   |   |   |   sure > 0: 0 (5.0) 
|   |   |   |   |   |   comes > 0: 1 (5.0) 
|   |   |   |   |   an > 0: 1 (5.0) 
|   |   |   wants > 0 
|   |   |   |   nurse <= 0: 0 (36.0/3.0) 
|   |   |   |   nurse > 0 
|   |   |   |   |   orders <= 0 
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|   |   |   |   |   |   see <= 0: 1 (4.0) 
|   |   |   |   |   |   see > 0: 0 (2.0) 
|   |   |   |   |   orders > 0: 0 (3.0) 
|   |   questions > 0: 0 (36.0/2.0) 
|   att > 0: 0 (248.0/15.0) 
 
Number of Leaves  :  268 
 
Size of the tree :  535 
 
 
Time taken to build model: 120.74 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances        9066               87.8999 % 
Incorrectly Classified Instances      1248               12.1001 % 
Kappa statistic                          0.7579 
Mean absolute error                      0.1697 
Root mean squared error                  0.3217 
Relative absolute error                 33.9505 % 
Root relative squared error             64.3479 % 
Total Number of Instances            10314      
 
=== Detailed Accuracy By Class === 
 
                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  
Class 
                 0.898    0.140    0.867      0.898    0.882      0.758    0.907     0.862     0 
                 0.860    0.102    0.892      0.860    0.876      0.758    0.907     0.887     1 
Weighted Avg.    0.879    0.121    0.879      0.879    0.879      0.758    0.907     0.874      
 
=== Confusion Matrix === 
 
    a    b   <-- classified as 
 4674  533 |    a = 0 
  715 4392 |    b = 1 
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