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ABSTRACT 

 

 

Medaramitta, Raveendra M.S.C.E., Department of Computer Science and Engineering, Wright 

State University, 2021. Evaluate the Performance of Using Speaker Diarization for Speech 

Separation of In-Person Role-Play Dialogues. 

 

 

Development of professional communication skills, such as motivational interviewing, often 

requires experiential learning through expert instructor-guided role-plays between the trainee and 

a standard patient/actor. Due to the growing demand for such skills in practices, e.g., for health 

care providers in the management of mental health challenges, chronic conditions, substance 

misuse disorders, etc., there is an urgent need to improve the efficacy and scalability of such role-

play based experiential learning, which are often bottlenecked by the time-consuming performance 

assessment process. WSU is developing ReadMI (Real-time Assessment of Dialogue in 

Motivational Interviewing) to address this challenge, a mobile AI solution aiming to provide 

automated performance assessment based on ASR and NLP. The main goal of this thesis research 

is to investigate current commercially available speaker diarization capabilities and evaluate their 

performance in separating the speeches between the trainee and the standard patient/actor in an in-

person role-play training environment where the crosstalk could interfere with the operation and 

performance of ReadMI.  

Specifically, this thesis research has: 1.) identified the major commercially-available 

speaker diarization systems, such as those from Google, Amazon, IBM, and Rev.ai; 2.) designed 

and implemented corresponding evaluation systems that integrate these commercially available 

cloud services for operating in the in-person role-play training environments; and, 3.) completed 
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an experimental study that evaluated and compared the performance of the speaker diarization 

services from Google and Amazon. The main finding of this thesis is that the current speaker 

diarization capabilities alone are not able to provide sufficient performance for our particular use 

case when integrating them into ReadMI for operating in in-person role-play training 

environments. But this thesis research potentially provides a clear baseline reference to future 

developers for integrating future speaker diarization capabilities into similar applications. 
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 CHAPTER 1 

1.1. Motivational Interviewing: 

 Motivational Interviewing [1][2] is a client-focused behavioral therapy technique that aims 

to motivate a healthy behavior change through clinician-client shared decision making. 

Motivational Interviewing generally involves a verbal interaction in counseling sessions between 

the client and the clinician, which aims to reduce patient ambivalence to change progressively. 

William Miller and Stephen Rollnick introduced it to primarily help people overcome alcohol 

addiction [3]. 

1.2. Role-Plays in Motivational Interviewing Skill Development: 

Motivational Interviewing technique education is adopted into the medical sciences 

curriculum as “Role-Play” sessions between medical students and a “Simulated Patient,” usually 

a well-trained actor who simulates patient profiles selected according to demographic variables 

like age, sex, and profession.  Roleplays allow medical students to develop the requisite skills to 

counsel patients [4]. 

According to current practice, MI roleplay evaluation workflow is a manual process. It 

involves manual transcription of audio files, behavioral coding [5], and MI-consistent metrics 

evaluation [6]. This process is cost-intensive both in terms of workforce and time [5] [6]. The 

delayed feedback due to the manual evaluation minimizes the effective transference of MI 

knowledge to MI students [5] [6]. 
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1.3. Real-time Assessment of Dialogue in Motivational Interviewing: 

ReadMI (Real-time Assessment of Dialogue in Motivational Interviewing), a Mobile 

Cloud Computing based solution effectively addressing the shortcoming, stands out as the 

technological solution that automatically transcribes the clinician-client conversations with 95% 

accuracy [6] and uses Natural Language Processing based algorithm that assigns MI-consistent 

behavioral codes to the clinician-client dialogue and provides feedback instantaneously (< 1 

second). 

In an in-person role-play training session, the typical setup of ReadMI consists of the MI 

dialogue participants speaking into their respective microphones, each connected to a separate 

tablet computer. The use of two sets of tablet/microphones is intended to separate the participant's 

speech via a simple hardware approach, although it incurs additional cost. This setup, however, 

might still suffer from the problem of audio "Crosstalk" [7], where the voice signal of one person 

could be captured by the opposite microphone resulting in noisy speech transcriptions consisting 

of texts from both speakers interspersed together. The crosstalk might be particularly severe when 

only a built-in microphone or low-cost commodity microphones are used. The problem could be 

further worsened due to the speakers' unequal voice volume and intonation. In theory, this problem 

of "audio crosstalk" could be mitigated by applying a combination of computational linguistics 

and Machine Learning based technique called "Speaker Diarization" [8]. Moreover, if Speaker 

Diarization can produce sufficiently accurate speech separation, only one tablet/microphone will 

be needed for a training session instead of the current two sets setup. 

Advanced speaker diarization algorithms can be integrated into applications by software 

developers through API (Application Programming Interfaces). The Cloud based implementations 

of these APIs are provided by technology companies like Google, IBM, Amazon, etc., where 
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speaker detection and diarization algorithms are combined with speech-to-text algorithms. 

Individual speakers are identified through speaker tags, and their respective speeches are 

transcribed in real-time or in batches from pre-recorded audio files. 

1.3.1. Problem Statement:  

ReadMI uses microphones for each participant in the clinician-client dialogue for recording 

voice signals and transmits them via Bluetooth to the corresponding receivers connected to their 

respective mobile devices. Typically, participants are seated close to each other to resemble the 

clinic encountering approximately 6 feet apart. This proximity, however, may allow the audio feed 

from one participant to be captured by the microphone of the opposite participant, resulting in 

erroneous speech-to-text transcriptions across participants and affecting the accuracy of the 

subsequent analysis. 

Typically, crosstalk is defined as interference in one channel from another. In this case, we 

interpret this definition of crosstalk as appearances of noisy erroneous utterances in the final 

textual representation of each participant’s speech [9]. 

 

Figure 1: ReadMI crosstalk block diagram 
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Figure 2 represents inaccurate transcription due to crosstalk where we can see the 

transcripts on the left side of the picture under the headline labeled 'SPEECH TO TEXT,' with 

one's speech in the grey background and the others in green. The right-side part of the picture 

labeled as 'INTERVIEW ANALYSIS' represents the analytics that ReadMI gives as feedback to 

the roleplay session doctor. In the above screenshot, the utterances affected by cross talk are 

marked with red bubbles. 

 

Figure 2: Inaccurate transcription due to crosstalk 

1.4. Motivation: 

One of the enabling technologies that facilitate the timely delivery of MI feedback in 

ReadMI is the Automatic Speech Recognition (ASR) algorithm. ASRs are used in applications as 
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APIs (Application Programming Interfaces). Companies like Google, IBM, Amazon, Rev.ai, IBM 

Speech-to-text have deployed ASR-based APIs as cloud-based services that enable real-time 

speech-to-text applications like ReadMI. These APIs provide services like real-time and recorded 

audio transcriptions and automatic speaker detection and separation also referred to as “Speaker 

Diarization” [8]. Speaker diarization allows applications to recognize multiple speakers and 

transcribe their respective speeches automatically. Speaker Diarization allows for a dialogue 

between multiple participants to be transmitted on a single audio channel. At the receiving end, 

the deep neural network-based speaker diarization equipped application will automatically tag the 

individual utterances with “speaker tag” and separate the utterances based on speakers resulting in 

a significant reduction in crosstalk, resources like separate recording devices per audio channel 

per speaker, and improvement in user experience. 

The efficacy and accuracy of automatic speech recognition have matured to the extent that 

its utility has become ubiquitous, examples include AI assistants in smartphones, cars, 

refrigerators, smart televisions, and text editors’ applications like Microsoft word. Speaker 

diarization would incorporate increased autonomy in dialogue analysis applications where the 

speakers are automatically detected, and audio transcribed without the explicit assignment of 

separate recording devices for each participant reducing audio crosstalk, equipment costs and 

improve user experience. On the other hand, there is limited literature evaluating the effectiveness 

of commercially available speaker diarization services. In particular, we did not find any surveys 

available comparing this feature in supporting role-play sessions between different Speech 

Recognition Systems.  

In this thesis, 1) We examined the crosstalk in the existing ReadMI set up to establish a 

baseline in speaker separation; 2) We demonstrate the use of speaker diarization APIs in 
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overcoming crosstalk; 3) We evaluate both real-time streaming and batch diarization capabilities 

of Google Cloud Speech to Text API and Amazon Transcribe API to evaluate speaker separation 

accuracy through speaker tag assignment; and, 4) We compare the diarization accuracies of the 

two APIs to inform user decision to choose the best possible diarization API for dialogue analysis 

applications. 

Hence, this research presents a data-driven study of diarization accuracies provided by the 

most popular ASR APIs: Google Cloud Speech [10] and Amazon Transcribe [11]. The accuracy 

of these APIs in labeling the distinguished speakers in the audio feed is evaluated. 
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CHAPTER 2  

Literature survey 

2.1. Speaker Diarization 

Speaker diarization [8] is a process in which the speaker's voice is automatically recognized 

and labeled. It improves our understanding of automatic speech recognition, which is used in 

downstream applications such as analytics for call-center transcription. Diarization is done through 

mapping. It is mapping a speech segment, such as a word, into a space representing the speaker’s 

specific characteristics that cluster the segments together. Mapping should be done by identifying 

different speakers mapped according to different positions in the space, irrespective of their 

conversation.  Neural networks are recently being used for mapping, improving diarization 

accuracy. 

Speaker diarization can be used in Telemedicine, Conference calls, Podcast hosting, hiring 

platforms, Video casting, Broadcast media [12] [13] for analyzing and deriving semantic value. 

For example, customers in the Application Tracking System depend heavily on phone and video 

calls to recruit their applicants. Speaker Diarization helps separate the recruiter's and applicant's 

transcripts without listening to their audio and video feed. 

 

2.2. Survey of commercially available ASR service with Speaker diarization capabilities: 

2.2.1. Google Speech-to-text:  

Google speech to text is a cloud-based automatic transcription API from Google that 

supports 289 language variants. With options for adding custom vocabulary, the ASR supports 

real-time streaming speech to text along with punctuations in its beta version. Transcription service 
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for recorded audio supports FLAC, WAV, OGG, AMR, MP3, where MP3 support is restricted to 

beta implementation. Custom speech transcription models can be added to the google speech-to-

text API for specific tasks. Currently, the API supports phone calls, video, voice commands. 

Developers can utilize the Google Cloud Speech ASR API in java, python, node.js, ruby, go, PHP, 

and c# languages [14].  

Speaker diarization is one of the features of API. This feature in its beta form supports real-

time and batch transcriptions, allowing users to either upload audio files from the local computer 

or cloud storage. Audio files are restricted to one minute when uploaded from the local computer. 

Google Cloud Speech ASR can transcribe up to 4 hours of audio and video files. The Speaker 

diarization feature of Google cloud speech ASR supports 37 languages, and the default number of 

speakers for the Google ASR speaker diarization is 6.  

 

2.2.2. Amazon transcribe: 

Amazon transcribe is available in 37 languages. It supports features like speech-to-text, 

custom vocabulary filtering, and auto-punctuation for streaming and recorded audio (WAV, MP3, 

FLAC, and MP4 media formats).  Software Development Kits [15] are available in java, python, 

node.js, ruby, go, PHP, and .NET languages [16] for developers. 

Speaker diarization, all 37 languages are supported with certain limitations, i.e., batch 

transcriptions for media files of duration up to 4 hours. Amazon Transcribes speaker diarization 

can label up to 2-5 different speakers in real-time and batch transcriptions, with batch 

transcriptions limited to 4 hours for all 37 languages. However, the speaker diarization feature for 
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real-time transcription is only limited to the “English-US” language. The accuracy of diarization 

decreases with an increase in the number of speakers.  

2.2.3. Rev.ai: 

Rev.ai is available in 31 languages [17]. It supports features like Automatic Speaker 

Recognition, Punctuation & Capitalization, Speaker Diarization, and Time Stamp Generation for 

recorded media (all major audio and video types like WAV, MP3, OGG, e,t,c.)[18]. The best 

results are obtained with file formats such as FLAC, ALAC, MP3 with a bit rate of 192kbps or 

above [18]. The recorded media files should be of size (<5 GB) [18], or else they should be 

compressed to match the size requirements. Software Development Kits [15] are available in java, 

python, node.js languages [19] for developers. 

Rev.ai speaker diarization is available as a default feature for recorded media files 

transcription and can label all the speakers in the media file.  

 

2.2.4. IBM Watson Speech to Text: 

IBM Watson Speech to Text is available in 13 language variants. It supports features like 

pre-trained speech models, Model training, Fine-tuning, low latency transcription, audio 

diagnostics before transcribing, interim transcription, smart formatting, speaker diarization, and 

word spotting and filtering for both streaming and recorded audio (All popular formats like FLAC, 

MP3, OGG, etc.). For the best transcription of recorded files, mp3, MPEG, WAV, FLAC, opus 

file formats [20] are recommended. Software Development Kits [15] are available in Android, Go, 

Java, Node.js, Python, Ruby, .NET, Swift, Unity [21]. 
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The Speaker diarization feature of IBM Speech to text is available for telephony models 

for now. The speaker diarization performance will be poor if the audio feed contains more than six 

speakers [22].  
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CHAPTER 3 

System design and implementation: 

 The primary purpose of this research is to evaluate the accuracy of speaker diarization 

systems in both real-time streaming and batch transcription conditions for the commercially 

available Speaker diarization APIs. Amazon Transcribe and Google speech-to-text[23] APIs 

transcribe the previously recorded 11 Motivational Interviewing roleplay sessions. 

This section presents a comprehensive description of the test-bench used for speaker-

diarization accuracy evaluation. 

3.1. Block Diagram Representing Speaker Diarization Evaluation set-up: 

 

 

Figure 3: Evaluation set up for speaker diarization 
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 Figure 3 represents the block diagram for the evaluation setup for speaker diarization 

analysis with MI-based roleplay data. According to the block diagram, a test application with a 

speaker diarization client is installed on the participating clinician and client's mobile device (PC, 

tablet, or mobile phone). The device captures combined audio feed from both the clinician and the 

client. The combined audio feed is then sent to the Google Cloud Speech ASR or Amazon 

Transcribe server for transcription and diarization. The test application receives the transcribed 

and speaker tagged utterances from the server is received by the test application where the speaker 

tagged utterances are displayed in Figure [7]. 

3.2. Google Speech-to-text Speaker Diarization: 

Step 1: Initial setup 

Google “speech to text” can be accessed by rest API or speech-to-text console. For the sake 

of convenience and future purpose use, we used the REST APIs for these experiments. The 

sequence of steps for accessing google speech to text is mentioned below. 

1) Create an account and sign into the Google Cloud console. 

2) Go to the manager resources page and select create a project by entering the 

project’s name and by linking billing details to the project. 

3) In the search products and resources bar, search and select Google speech-to-

text API from the list of available resources. 

4) A new service account is created with basic IAM roles, and it is linked to google 

speech to text API. 

5) We now must create and download the JSON key for the service account. 
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6) In our local machine, we must add a new environmental variable 

GOOGLE_APPLICATION_CREDENTIALS and assign the path of the JSON 

file to this variable. 

Finally, we are all set to access google speech-to-text from our machine.  

Step 2: API configuration for Google Cloud Speech ASR 

a) Online Speaker Diarization configuration: 

To enable speaker diarization, we must set the ‘EnableSpeakerDiarization’ to ‘true’ in the 

‘SpeakerDiarizationConfig’ parameters. We can also set the minimum and the maximum number 

of speakers in the ‘SpeakerDiarizationConfig’ according to the number of speakers in our audio 

feed to get better diarization results in online speaker diarization, as shown below: 

  

Figure 4: Snipett showing google speech-to-text speaker diarization configuration 

Figure 4 represents the ‘speakerDiarizationConfig’ parameters in which 

‘EnableSpeakerDiarization’ is set to ‘true,’ and ‘MinSpeakerCount’ and ‘MaxSpeakerCount’ 

parameters are set to ‘2’ to get better results as our roleplay sessions have only two speakers. 

‘recognitionConfig’ provides information for the recognizer for processing the request. We 

must specify the necessary feature from the available google speech-to-text features into the 

‘recognitionConfig.’ As our primary focus is on the speaker diarization, ‘recognitionConfig’ is 

enabled with the speaker diarization feature as shown below. 
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Figure 5: Snippet showing recognitionConfig parameters. 

 Figure 5 represents the ‘recognitionConfig’ parameters in which the language is enabled 

to ‘English-US’ and Sampling Rate Hertz is set to ‘16000’ along with speaker diarization 

configuration.  

 

b) Batch speaker diarization configuration: 

In batch transcription, we must assign the 'enable_speaker_diarization' parameter to 'true' 

to enable the speaker diarization feature of google cloud speech-to-text API. The audio files used 

for our experiments are from the medical student's roleplay sessions. These files have only two 

speakers. So the minimum and the maximum number of speakers in the audio files are restricted 

to 2 using the 'min_speaker_count' and 'max_speaker_count' parameters. 'config' provides 

information for the recognizer to process the request. Language is enabled to 'English-US,' and 

Sampling Rate Hertz is set to '8000' along with speaker diarization configuration in 'config' as 

shown in Figure 6.  
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Figure 6: parameter configuration for speaker diarization in batch transcription 

Step 3: Testbench environments:  

a) Online speaker diarization: 

The combined audio feed is sent as a request to the google cloud speech-to-text API every 

60 seconds. Google cloud speech-to-text will assign speaker labels to every word for the request 

and return the results. For each request till the end of the session, google cloud speech-to-text will 

send the results back to the testbench environment. The final utterances, and the speaker labels 

arere generated based on the last response received from google cloud speech-to-text. Figure 7 

represents the testbench environment for getting the speaker diarization results for a session. The 

final utterances with speaker assignment can also be seen in the terminal highlighted with a red 

bubble. 
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Figure 7: Test environment for google cloud speech-to-text speaker diarization transcripts 

b) Batch speaker diarization: 

Google ASR batch transcription can be achieved by uploading a file from the local machine 

or the cloud. As Google ASR supports audio files within only one minute when uploaded from the 

local machine, we must use Google Cloud Platform buckets to store the audio files. A storage 

bucket with the necessary permission for accessing the files in the bucket has been created. The 

audio files are uploaded manually into the Google cloud storage bucket from the local machine to 

avoid latency issues. Figure 8 represents the files stored in the google cloud platform bucket. 
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Figure 8: Google cloud storage bucket with audio files for transcription 

 We must provide a link for the specific audio file in the google cloud storage bucket from 

the testbench environment setup to get the diarization transcripts. Figure 9 represents the testbench 

environment set up for google cloud speech speaker diarization with batch transcription. The 

diarization results with individual speaker labels are highlighted in the red bubble, as shown below.  
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Figure 9:  Screenshot showing Google ASR speaker diarization batch transcription 

3.3. Amazon Transcribe Speaker Diarization: 

Step 1: Initial setup 

Amazon Transcribe can be accessed by rest API or speech-to-text console. For the sake of 

convenience and future purpose use, we used the REST APIs for these experiments. The sequence 

of steps for accessing Amazon Transcribe is mentioned below. 

1) We must create an account for the amazon management console. 

 

2) We have to create a key-pair, and the private key file is downloaded and stored in 

the ‘. Aws’ folder in our local machine to access the EC2 instance from our local 

machine, and the public key is stored in our instance on the cloud. 



 

19 
 

 

3) We must go to the IAM console after logging into the amazon management console, 

and a role must be created, and EC2 is chosen for the use cases. 

4) Under permissions, we must set the policy name as 

“AmazonTranscribeFullAccess.” The default trust relationship policy for the role 

must be edited. 

We are all set to access google speech-to-text from our machine.  

Step 2: API configuration for Amazon Transcribe 

The below code snippet represents Streaming Transcription Request to Amazon transcribe 

with media encoding format as ‘PCM.’ Language is set to ‘English-US’. It supports only one 

language for streaming speaker diarization. The Sampling rate is set to 16000Hz, and speaker 

diarization is enabled. 

 

Figure 10: Snipett showing Amazon transcribe request with speaker diarization feature 
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Step 3: Testbench environments:  

a) Online speaker diarization: 

The below code snippet shows the user interface for the amazon transcribe real-time 

streaming transcription, an open-source code obtained from the GitHub repository of amazon. 

Once all the requests are sent, the transcription with the final utterances is saved to the folder in 

the local machine. 

 

Figure 11: User interface of Amazon streaming speaker diarization 
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b) Batch speaker diarization: 

For the batch speaker diarization, the audio files are uploaded to the s3 bucket [24] in the 

cloud, as shown in figure 12. Amazon management console provided an interface for getting the 

amazon transcribe diarization results as a JSON file, as shown in figure 13. We have to provide 

the URL link of the specific audio file stored in the S3 bucket and the number of speakers in the 

audio file to get accurate results. The JSON file obtained from the Amazon Transcribe 

management console is processed in our local machine to get the final transcription results with 

each speaker utterances labeled as shown in figure 14.  

 

Figure 12: Amazon S3 bucket with audio files for transcription 
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Figure 13: Amazon management console’s amazon transcribe interface 

 

 

Figure 14: Test environment for processing .json file for final transcripts with speaker labelling 
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CHAPTER 4 

Experimental Results: 

This chapter compares the speech diarization capabilities of Amazon Transcribe and 

Google Cloud Speech ASR and presents the results as bar plots. Clinician-client audio files and 

corresponding speech-to-text files from ReadMI [6] represent datasets for this comparison study. 

This significance of using dialogue datasets can be attributed to, 1) Crosstalk errors: The existing 

ReadMI speech to text datasets are comprised of texts with crosstalk errors which provide a way 

to establish ground-truth 2) Turn-taking: ReadMI dialogue datasets are structured by equal turns 

[25] of clinician and client utterances which provides for a rigorous evaluation of speaker detection 

for each utterance.  

We first present the effects of crosstalk in the existing ReadMI setup where each speaker 

is assigned a separate audio channel for a sample of N=9 roleplay sessions consisting of a total of 

915 utterances. Subsequently, we present the mean speaker detection accuracy measure results of 

the speaker diarization feature, applied to mitigate the deleterious effects of the crosstalk from the 

Google Cloud Speech API and Amazon Transcribe for streaming and recorded audio. Lastly, we 

compare the mean speaker detection accuracy measure between Google Cloud Speech API and 

Amazon Transcribe. 

4.1. Examine effects of Crosstalk in ReadMI: 

In this experiment, 9 MI roleplay sessions (915 utterances), previously transcribed using 

ReadMI, are utilized. These nine transcripts are manually coded to identify utterances affected by 

crosstalk. Out of 915 utterances, 294 are affected by a cross-talk with an average accuracy of 

67.8% for speaker separation, while 32.2% of utterances are affected by crosstalk. Using two sets 
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of tablet/microphones, the cross talk may significantly interfere with the speech separation of the 

dialogues and lead to incorrect MI evaluations. 

 

Figure 15: Percentage of utterances effected with cross talk 
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4.2. Accuracy of transcripts with speaker diarization feature enabled for Google and 

Amazon ASR in real-time streaming mode: 

 

Figure 16: Real-time streaming speaker diarization amazon vs google 

In the second step of our analysis, the speaker diarization feature in both the google cloud 

speech ASR and amazon transcribe are enabled, and the ASR is running in real-time, which is the 

case during a live training session. N=11 dialogue files were transcribed in real-time with speaker 

identification. Figure 16. represents the speaker identification accuracy of both Google Cloud 

Speech API and Amazon Transcribe. Google Cloud Speech API accounts for a mean accuracy of 

66.36%. In comparison, a mean accuracy of 71.65% can be attributed to the Amazon transcribe, 

an improvement of 5.3% over the Google Cloud Speech API. 
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Please note no utterance was affected by crosstalk due to multiple devices anymore, as only 

one set of tablets/microphones was used to capture speech from both speakers. However, 

mislabeling of the speaker may lead to incorrect MI evaluations. 

4.3. Speaker diarization accuracy measure for Google Cloud Speech API and Amazon 

Transcribe in offline batch text transcription mode: 

 

Figure 17: Accuracy percentages of batch transcription in Google and Amazon 

Figure 17 represents speaker diarization accuracy percentages of batch text files obtained 

from uploaded audio files to Google and Amazon cloud platforms. Here the ASR is not done in 

real-time as the session progresses. Instead, it is completed after the session is concluded and the 

entire speech is made available to the ASR services. A total of N=11 previously recorded roleplay 

sessions were considered. A mean accuracy measure of 59.2% can be reported for the Google 
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Cloud Speech API. On the other hand, Amazon transcribe attributed to a mean accuracy measure 

of 85.1%, which is 25.9% higher than the mean speech diarization accuracy measure of Goole 

Cloud Speech API. 

 

Table 1: Real-time vs batch speaker diarization accuracy percentages for google cloud speech 

ASR and Amazon Transcribe 

 

4.4. Gender based roleplay accuracies: 

There has been a lot of ongoing research going on gender-based voice recognition. Some 

research proved that male voice recognition is better than female voice recognition [26]. We also 

extended our research into that area with preliminary results as mentioned below. 

 

    Speech data 

  

API 

 

Online (Real-time) 

(% diarization accuracy) 

 

Offline (Batch) 

(% diarization accuracy) 

Google Speech-to-

text 

66.36 59.22 

Amazon Transcribe 71.35 85.11 
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Figure 18: Gender specific roleplays for streaming speaker diarization 

 The above figure represents three roleplays from the previously experimented real-time 

streaming speaker diarization 11 roleplays. As we can see from the figure that there is no 

significant difference in the speaker diarization systems performance in distinguishing each 

speaker in all three categories: female-female, male-female, and male-male. 
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Figure 19: Gender specific speaker diarization for batch transcription 

 The above figure represents accuracy percentages in identifying different speakers of three 

roleplay sessions by batch transcription (by uploading audio files). It can be seen that amazon 

transcribe gave much more improved accuracy in all cases: female-female, male-female, and male-

male roleplay sessions in batch transcription mode compared to its real-time streaming mode. The 

performance for male-female and male-male roleplay sessions reaches over 90%. On the other 

side, Google Cloud Speech didn’t show similar improvement in the batch transcription mode 

compared to its real-time streaming mode. 
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4.5. Discussion: 

 As mentioned in section 4.1, the utterances are affected by the issue of cross-talk. The 

current ReadMI system individually captures and transmits audio on two separate channels to the 

Google cloud ASR. It has been demonstrated that by using the Speaker diarization feature, this 

multi-channel audio from both participants can be transmitted on a single channel to the Google 

Cloud ASR. The ASR separates the individual audio and labels each speaker in the audio feed.  

From Table-1, it is demonstrably clear that Amazon Transcribe performs better than 

Google cloud speech-to-text, indicating a higher level of maturity of Speaker diarization 

capabilities in Amazon Transcribe. This could have alluded to the “beta” implementation of 

Google cloud speech ASR. A beta implementation of a software feature is typically characterized 

by incomplete and/or inaccurate implementation. At the time of experimentation, only the beta 

version of the Google Cloud Speech ASR was available. Therefore, we may have to wait for the  

“alpha” version of the Google Cloud Speech ASR for a comprehensive comparison.  Amongst the 

nature of the speech data, i.e., streaming versus batch transcription, Amazon Transcribe shows 

improved accuracy for batch transcriptions versus real-time streaming transcription (Table 1). This 

improvement can be attributed to additional information from audio and text sequences embedded 

in the stored file. The future, present, and past knowledge of the sequence are available for 

decision-making. On the other hand, in the Google Cloud Speech API context, the online (real-

time) streaming diarization outperforms the offline (batch) diarization. This change in result can 

be attributed to 1) The beta version of the Google Cloud Speech API implementation and its lack 

of optimization in the batch transcription mode; 2) The need for additional data samples for a more 

comprehensive examination.    
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CHAPTER 5 

5.1. Conclusion: 

 This thesis research is focused mainly on avoiding the crosstalk issue, which is an active 

field of study in speech-to-text for transcribing individual utterances [9][27]. We take advantage 

of the latest advances of the Automatic Speech Recognition systems in speaker diarization to 

overcome the issue of crosstalk. As speaker diarization is an emerging technology in Speech-to-

Text, unfortunately, I didn’t find any surveys available comparing this feature between different 

Speech Recognition Systems. Thus, this thesis intended to fill this gap and establish the 

performance baseline of adopting speaker diarization for speech separations for supporting 

performance assessment of MI skills in role-play training/learning sessions. 

This thesis has made contributions in the following aspects: 

• It contributed to evaluating the percentage of utterances affected by crosstalk when using 

multi-channels.  

• It provides a brief overview of the available features of the topmost automatic speech 

recognition systems, along with their speaker diarization capabilities. 

• It contributes to the successful set up of the testbench environments for assessing the 

speaker diarization capabilities from Google Speech-to-Text and Amazon Transcribe in 

both online and batch transcriptions. 

• It contributes to evaluating the accuracy of speaker diarization capabilities of both online 

and batch transcriptions in the two topmost available speech recognition systems. 

• It contributes to evaluating the speaker diarization capability accuracy based on the 

participant’s gender. 
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In conclusion, the current speaker diarization capabilities of Google and Amazon ASRs 

alone might not produce sufficiently accurate speech separation for our particular use case in 

integrating this feature into our ReadMI application. A combination of speaker diarization, 

microphone array, and/or adaptive microphone control technologies may be necessary to achieve 

the desired performance. But this thesis research potentially provides a clear baseline reference for 

future developers to integrate speaker diarization capabilities into similar applications. 

5.2. Future work: 

 Future work might involve the use of diarization on a training set up with two sets of 

tablet/microphones, which will examine the performance of a combined approach that uses the 

diarization on top of the hardware-based speech separation. Furthermore, collecting more audio 

files and evaluating the diarization capabilities on a more significant amount of data is warranted 

to get more comprehensive evaluation results. 
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