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ABSTRACT 

 

 

Blue, John A., M.S., Department of Earth & Environmental Science, Wright State University, 

2022. Has Winter Weather in Southwest Ohio Been Affected by the El Niño Southern 

Oscillation, the North Atlantic Oscillation, the Pacific Decadal Oscillation, and the Atlantic 

Multidecadal Oscillation? 

 

Winter temperature and precipitation in Southwest Ohio over the last century were 

examined for anomalies attributable to teleconnections with large-scale atmospheric 

perturbations caused by the El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation 

(NAO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation 

(AMO). The record of temperature gives evidence of a teleconnection with the NAO, ENSO, and 

PDO, with the strongest link being for phases of the NAO. Most winters during positive NAO 

phases had mean monthly temperature warmer than the century long mean, and the majority of 

negative NAO phase winters had colder temperatures. The difference in average temperature 

between positive and negative NAO phase winters was 0.82oC and is statistically significant at 

the p=0.0005 level. Winters were also increasingly warmer when NAO was increasingly 

positive, and increasingly colder when NAO was increasingly negative (regression-model with 

p=E-5). The support for this teleconnection was the strongest when NAO is out of phase with 

ENSO and PDO. For example, the 21 winters when the NAO phase was positive and ENSO and 

PDO phases were negative (condition A) were 1.73oC warmer on average than the 12 winters 

when NAO was negative and ENSO and PDO were positive (condition B), and the difference is 

statistically significantly different at the p=0.02 level. The warmest winters on record (mean-

monthly temperature of 6.9oC) occurred under condition A, while the coldest (5.2oC) occurred 

under condition B. The NAO, ENSO and PDO variations explain 0.25 of the overall variance in 

mean winter temperature (multi-regression-model with p=3.5E-05). The record does not give 
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statistical support for an influence on winter temperature by the AMO. The record gives 

statistical support for a smaller influence of NAO, ENSO, PDO, and AMO phases on 

precipitation, with the phases explaining 7% of the variance in winter precipitation (multi-

regression model with p=0.018). 
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I.  INTRODUCTION 
 

 Teleconnections are defined as links between large-scale ocean-atmospheric 

perturbations and globally distal weather (Wallace et al., 1981; Nigam et al., 2015). Large-scale 

ocean-atmospheric perturbations include the North Atlantic Oscillation (NAO), the El Nino 

Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic 

Multidecadal Oscillation (AMO). Teleconnections have been identified between these ocean-

atmospheric perturbations and resulting anomalies in distal weather across the continents (e.g., 

Ropelewski et al., 1987; 1989; Hurrell, 1995; Mantua et al., 1997; Enfield et al., 2001; Mantua et 

al., 2002; McCabe et al., 2004; Knight et al., 2006; Lindsey, 2016; 2017; and NOAA CPC, 

2022). Examples of studies identifiing teleconnection-caused weather anomalies in specific 

North American watersheds include Gabric et al. [date unknown], Mitra et al., 2014, and Ritzi et 

al., 2021. 

 Ritzi et al. (2021) examined historical records of winter preciptation and 

temperature in southwestern Ohio to determine if there were statistically significant differences 

due to teleconnections with ENSO. The data that were used were the measured monthly average 

of daytime high temperatures, and the monthly average of daily precipitation published by the 

U.S. Historical Climate Network (USHCN). The USHCN data were measured at station 

USH00338552 located near Urbana, OH (Figure 1). Their study used three statistical methods 

that included a regression analysis, where the ENSO cycle was represented by the extended 

Multivariate ENSO Index, MEI (NOAA). Winter was taken to be the 5 months from November 

to March, and three metrics were used in the analyses: the mean-monthly value, the maximum-

monthly value, and the minimum-monthly value. 
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The results showed that while most (80%) of El Niño winters had below average 

precipitation, and precipitation decreased with increasing MEI values, variations in MEI only 

accounted for 3% of the overall variability in precipitation. Furthermore, during La Nina winters 

precipitation was not statistically significantly different from neutral years. Temperature was also 

not found to be statistically significantly different than neutral years for either phase of ENSO. 

Figure 1. Southwest Ohio study area and data location.  

USHCN – U.S. Historical Climate Network. Modified from 

Ritzi et al. (2021) 
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 The goal of this thesis is to expand on Ritzi et al. (2021) by considering and including, in 

addition to ENSO, three other large-scale perturbations in atmospheric circulation in the 

regression analysis.  Each might have an individual teleconnection with winter temperatures in 

southwest Ohio and there might be combined effects. The three additional perturbations are the 

NAO, PDO, and AMO (Figure 2). While support for an ENSO effect was small for precipitation 

and nonexistent for temperature at the Urbana station (Ritzi et al., 2021), one of the additional 

perturbations newly considered here, and combinations of these perturbations including 

combinations with ENSO, might cause an identifiable and statistically significant anomaly in 

winter temperature or precipitation. The same historical data record of precipitation and 

temperarture from USHCN will be used, but with additional data reflecting the strength of other 

perturbations in addition to the MEI data. The same statistical methods will be used to analyze 

each additional data record alone, and additional statistical methods, described below, will be 

used to analyze the combined records.  The additonal methods include multiple regressions with 

and without interaction terms.   

Figure 2. Indices representing four types of global perturbations. The El Nino Southern Oscillation (ENSO), the 

North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation 

(AMO). 
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The organization of the thesis is as follows. In Chapter 2, the northern hemisphere jet 

streams and Polar Vortex along with each perturbation’s (ENSO, PDO, NAO, and AMO) effect 

on the jet streams are reviewed. Furthermore, existing knowledge of teleconnections with winter 

weather in southwest Ohio is reviewed. In Chapter 3 the data and methodologies used in this 

thesis are described. In Chapter 4 the results from the analysis for effects on winter temperature 

are presented, and in Chapter 5 the results from the analysis for effects on winter precipitation 

are presented. Chapter 6 contains a discussion of the results, and conclusions are drawn in 

Chapter 7. 
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II.  BACKGROUND AND PREVIOUS WORK 

II.A. Jet Streams and the Polar Vortex 

 The teleconnection between perturbations in atmospheric/ocean circulation patterns like 

ENSO and distal weather is facilited in large part through alterations in the pattern of the jet 

streams (Woolings, 2022). Thus, it is helpful to first discuss relevant aspects of the jet streams.  

Jet streams are thin regions of high velocity air that move eastward around the globe near the 

tropopause level. In the northern hemisphere, there are two persistent meandering jet streams 

known as the subtropical (or Pacific) and the polar jet streams and a less persistent Arctic jet 

stream, that form near the three fold structure of the tropopause (dashed lines in Figure 3). Each 

jet stream can vary in location, but in general the subtropical jet stream is highest in elevation 

and located along the northern side of the hadley cell around 250 N and is driven by northward 

angular momentum transport in the hadley cell from the suns direct thermal influence (Held et 

al., 1980; Shapiro et al., 1986; Woolings, 2022). The polar jet stream is second in elevation and 

found above the polar front around 450 N, and it is driven by momentum and heat fluxes from 

eddies of the mid-latitudes located within the polar front (Williams, 1988; Shapiro et al., 1986; 

Panetta et al., 1988). The Arctic jet stream is the lowest in elevation, and located around 700 N 

(Shapiro et al., 1986), but its influence on the study area is not considered since it is not in close 

proximity to the Midwestern U.S. like the polar and subtropical jet streams. 
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 The North Atlantic Oscillation, discussed further below, is related to the stability of the 

polar vortex, which in turn is related to the position of the polar jet stream.  The polar jet stream 

and the polar vortex occur in separate layers of the atmosphere, however, they can affect each 

other. When the polar vortex, which occurs in the stratosphere, is strong and stable it has a 

stabilizing influence on the polar jet stream in the troposphere which confines cold air to the 

north pole region. But when the polar vortex is weak and unstable the polar jet stream can start to 

Figure 3. Idealized model of the threefold structure of the tropopause. Elevation is on the y-axis, 

while latitude is on the x-axis. The dark black line represents the tropopause between the 

stratosphere above (shaded) and the troposphere below (white). The thick dotted lines represent the 

primary frontal zones that extend through the depth of the troposphere, and the thin dashed lines 

encircle the cores of the three primary jet streams (Ja is the Arctic jet, Jp is the polar jet, and Js is the 

subtropical jet). From Shapiro et al., 1986. 
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wobble, allowing cold troughs of air to migrate south. Thus it is the polar jet stream that actually 

delivers cold air to mid latitudes when the polar vortex is disrupted. (Figure 4; Lindsey, 2021) 

  

  

 The stratosphere and troposphere are best coupled in the winter, and thus jet stream 

variability in response to stratospheric perturbations is more pronounced in the winter (Hall et 

al., 2015). Among the winter jet stream variations, those of the subtropical and polar jet streams 

most affect the winter weather in temperate mid-latitudes, the region of focus in this study 

(Riehl, 1962; Hoskins et al., 1990).  

Figure 4. When the Arctic polar vortex is especially strong and stable (left globe), it encourages the polar jet stream, 

down in the troposphere, to shift northward. The coldest polar air stays in the Arctic. When the vortex weakens, shifts, 

or splits (right globe), the polar jet stream often becomes extremely wavy, allowing warm air to flood into the Arctic 

and polar air to sink down into the mid-latitudes. From Lindsey (2021). 
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 Manney et al., (2014) showed the winter positions of the polar and subtropical jet 

streams, averaged from 1979 – 2012, are most often found around 58o N at an altitude of 8.9 km 

and around 29o N at an altitude of 11.5 km, respectively. Therefore, the Midwestern U.S. is 

typically located between the winter jet stream positions, with the polar jet stream to the north 

and the subtropical jet stream to the south. However, as discussed below, significant variations in 

the positions of these jet streams may be caused by pertubations in circulations patterns in the 

Atlanic region, including the North Atlantic Oscilation (NAO) and Atlantic Multidecadal 

Oscillation (AMO), and by perturbations arising in the Pacific region including the El Nino 

Southern Oscillation (ENS0) and the Pacific Decadal Oscillation (PDO).  Significant variations 

in jet stream positions in response to these global circulation phenomena can cause local weather 

variability referred to as anomalies, which are defined in this study as a clear difference between 

the weather during an event like an ENSO phase, and the normal conditions that are averaged 

over many years. Anomalies in temperature and precipitation, as well as other attributes of 

weather, occur across the United States. The goal of this thesis is to identify anomalies that may 

exist in winter temperature and precipitiation in southwest Ohio as caused by teleconnections 

with NAO, AMO, ENSO, and PDO individually or as combined influences.   

In the next sections, perturbations in global ocean and atmospheric circulation that affect 

the jet streams are reviewed individually. 

II.B. El Nino Southern Oscilation (ENSO) 

 The ENSO is a perturbation in ocean-atmospheric circulation that originates in the Pacific 

with major centers occurring in either the central or eastern tropics (Capotondi et al., 2015, 

Lindsey, 2017, Yang et al., 2018, Feng et al, 2019). ENSO is marked by the oscillation between 

El Nino (warm) and La Nina (cold) phases that involves changes in sea surface temperature 
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(SST), air temperature, wind circulation and other ocean-atmospheric properties. This alternating 

pattern of warm and cold sea surface anomalies in the tropical Pacific has been shown to 

oscillate on interannual timescales with periods lasting 2-7 years (Ropelewski et al., 1987, 

Garrison, 2010). Many indices have been used to measure the strength of perturbations in global 

ocean and atmospheric circulation in relation to ENSO, but the extended Multivariate ENSO 

Index (MEI) is used in this study because it is available for the century-long time of recorded 

data for temperature and precipitation records. The extended MEI is determined from sea level 

pressure, zonal and meridional components of the surface wind, sea surface temperature, surface 

air temperature and cloudiness using data from the International Comprehensive Ocean-

Atmosphere Data Set (Wolter, 2011; 2018). The MEI is increasingly positive with the strength of 

the El Niño phase and increasingly negative with the strength of the La Niña phase. 

 Under normal conditions (neutral phase), air and surface water flow westward across the 

pacific, leading to the upwelling of cold water along the west coast of South America (Figure 5). 

However, During El Nino events the trade winds that usually blow westward diminish and 

reverse, leading to an eastward movement of warm water that is backed up against the west coast 

of South America as a warm zone (Figure 5a; Garrison, 2010). The warming of the tropical 

troposphere, strengthens the Hadley cell circulation, displacing the subtropical jet stream farther 

north than normal (Lindsey, 2017; Yang et al., 2018). During La Nina events the conditions 

representing normal become more extreme, with stronger westward currents, and powerful 

upwelling along the coast of South America, leading to a cold zone forming (Figure 5b; 

Garrison, 2010). The colder tropical troposphere air then weakens the Hadley cell circulation, 

and the unstable polar jet stream can migrate southward (Lindsey, 2017).  
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The jet streams then transmit these ENSO effects into the midlatitudes, and continental 

scale studies have suggested that in the Midwestern United States the winter precipitation and 

temperature are affected by the phase of ENSO. During La Niña conditions the polar jet stream 

dips below the Midwest which can bring colder temperatures with more precipitaion to the 

midwest, while the opposite occurs to the southeast. During El Niño condtions the subtropical Jet 

Stream can extend across the united states in a position beneathe the midwest which can bring 

higher temperatures and less precipitation to the midwest, while bringing the cold and more 

precipitation to the southeast (Figure 6; Trenberth et al., 1998; Garrison, 2010; Lindsey, 2017).  

 

 

 

 
 

Figure 5. Composite maps of sea-surface temperature anomalies for moderate to strong (a) El Niño and (b) La 

Niña events during the period 1982–2008 (November–February). The location of Tahiti (and Integrated Ocean 

Drilling Program site M0024) in the tropical South Pacific is indicated by the white dot (not investigated in 

this study). From Felis et al., 2012 
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In contrast to continental studies, Ritzi et al. (2021) analyzed a record of winter 

temperature and precipitation for 121 winters, from 1896 to 2016, for statistically significant 

anomalies corresponding to El Niño and La Niña conditions in southwest Ohio (figure 1).  Their 

research hypothesis, built from these continental scale studies, was that El Niño winters have 

been warmer with less precipitation and La Niña winters have been colder with more 

precipitation.  

The data used were the measured monthly average of daytime high temperatures, and the 

monthly average of daily precipitation published by the U.S. Historical Climate Network 

(USHCN). The USHCN data were measured at station USH00338552 located near Urbana, OH 

(Figure 1). The ENSO cycle was represented by the extended Multivariate ENSO Index, MEI 

(NOAA). The results from their study (Table 1, Figure 7) showed that (1) eighty percent of El 

Niño winters had below average precipitation, with an average anomaly of –5 cm, (2) the MEI 

regressed against precipitation showed a statistically significant negative slope, but the variance 

in MEI only explained 3% of the overall variability in winter precipitation, (3) La Niña winters 

were not statistically significantly different from neutral year winters, and (4) winter temperature 

Figure 6. The expected temperature and precipitation effects related to jet stream position during El Niño (left image) 

and La Niña (right image). From Lindsey (2017). 
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was not statistically significantly different during El Niño or La Niña winters within the century 

of record.  

 

 

 

 

 

Table 1. Results from linear regression for USHCN data. 

Modified from Ritzi et al. (2021) 

Winter Temperature (0C) 

  Slope  p-value  Adj. R2 

Mean Monthly  -6.5E-05  0.9996   <1E-9 

Maximum-Month  -0.07855  0.6994   <1E-3 

Minimum-Month  -0.05143  0.8286   <1E-4 

       

Winter Precipitation (cm) 

  Slope  p-value  Adj. R2 

Mean Monthly  -0.38823  0.0257  0.0331 

Maximum-Month  -0.06129  0.0550  0.0224 

Minimum-Month  -0.18779  0.2205  0.0043 

Figure 7. Examples of linear regression for (a) cumulative winter 

precipitation and (b) mean monthly winter temperature (daily highs) vs. 

the extended Multivariate ENSO Index (MEI). From Ritzi et al. (2021). 
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II.C. Pacific Decadal Oscillation (PDO) 

The PDO is a perturbation in ocean-atmospheric circulation that also originates in the Pacific, 

but with its major signatures in the northern extratropics (above 20o N) and a less prominent 

secondary signature located in the tropics that coincides with the major signature displayed 

during ENSO events (Mantua et al., 2002). The perturbation is marked as either being in a warm 

phase where there is a cold center in the Northern Pacific with a boomerang shaped warm 

anomaly along the west coast of North America, or as being in a cold phase that has the reverse 

pattern, with a warm center in the Northern Pacific and a cold anomaly along the coast of North 

America (Mantua, 2002; Liberto, 2016). Figure 8 shows the different sea surface temperature 

patterns observed during different phases of the PDO, and their relationship to phases of ENSO. 

This oscillation from warm to cold phases related to PDO happens on decadal timescales with 

periods lasting 20 – 30 years (Mantua et al., 1997; 2002). 

 

Figure 8. Composite map of sea surface temperature (oC) during (a) warm phase of the Pacific 

Decadal Oscillation (PDO) and El Niño years, (b) the warm phase of the PDO and La Niña years, 

(c) the cold phase of the PDO and El Niño years, (d) the cold phase of the PDO and La Niña years. 

Upper boxes show dominant PDO signature, and lower box shows dominant El Niño Southern 

Oscillation signature. Modified from Zhao et al., 2016 
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PDO results from a complex combination of processes that span the tropical and extratropical 

latitudes. These processes can include anything from fluctuations in the Aleutian low, 

teleconnections from the tropics through the atmospheric bridge, or midlatitude ocean dynamics 

like reemergence and gyre circulation (Trenberth, 1998; Liberto, 2016, Newman et al. 2016). 

The PDO index, which measures the strength of the perturbation, is based on NOAA's extended 

reconstruction of sea-surface temperatures (SSTs). When SSTs are anomalously cool in the 

interior North Pacific and warm along the western Pacific Coast, the PDO has a positive value, 

but when the anomaly patterns are reversed with warm SST in the interior and cool sea-surface 

temperature anomalies along the North American coast, the PDO has a negative value (Mantua 

et al., 1997; 2002).  

With PDO being remotely forced in part from teleconnections with the tropics, PDO is 

intricately linked to low-frequency modulations of ENSO. Furthermore, since the two 

perturbations have similar patterns of Pacific Ocean-atmospheric warming, but ENSO oscillates 

on shorter timescales, PDO is often viewed as a long-lived El Niño like pattern of Pacific 

variability (Zhang et al., 1997; Mantua et al., 1997). The similar patterns of ocean-atmospheric 

warming as compared to ENSO, means the PDO alone likely has comparable shifts in the jet 

streams as well. Figure 9 shows how correlations with precipitation and temperature across the 

U.S. can be similar for ENSO and PDO. However, anomalies in SST can become different 

during periods when PDO and ENSO are in phase as compared to when they are out of phase 

(Figure 8), which may create different anomalies in winter weather. For example, when El Niño 

winters occur during positive PDO phases (in phase), the Atlantic SST can be colder than usual 

(Figure 8a), but when they are out of phase the Atlantic SST can be warmer than usual (Figure 

8c). Conversely, when La Niña winters occur during negative PDO phases (in phase), the 
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Atlantic SST can be warmer than usual (Figure 8d), but when they are out of phase the Atlantic 

SST can be colder than usual (Figure 8c). This relationship with the Atlantic SST may alter the 

phase of perturbations that originate in the Atlantic, and lead to interaction effects that contribute 

to different temperature and precipitation anomalies as compared to when the perturbations are 

working alone.  

 

a) c) 

b) d) 

Figure 9. Cold season relationship between the Pacific Decadal Oscillation (PDO), and the El Nino Southern 

Oscillation (ENSO), and U.S. precipitation and temperature anomalies determined from U.S. climate division 

data (Vose et al. 2014), for the years 1901–2014. NDJFM U.S. precipitation anomalies correlated with (a) the 

PDO index, and (b) the ENSO index. NDJFM U.S. temperature anomalies correlated with (c) the PDO index, 

and (d) the ENSO index. Modified from Newman et al., 2016. 
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II.D. North Atlantic Oscillation (NAO) 

The NAO, first identified by Walker and Bliss (1932), is a large ocean-atmospheric 

phenomenon located in the North Atlantic Ocean that is said to dominate winter weather 

variability over the north Atlantic and surrounding lands (Hurrell et al., 1995). Often considered 

as a regional expression of the Arctic oscillation that is specific to the north Atlantic, the NAO is 

also seen as a surface expression of the polar vortex (Kennedy et al., 2014). When the NAO is in 

a strong phase, the subtropical high-pressure system near the Azores and the subpolar low-

pressure system near Iceland are more pronounced, and the larger pressure gradient between 

them pulls stronger westerly winds across the Atlantic that helps to strengthen and stabilize the 

polar vortex. Conversely, when the NAO is in a weak phase, the subtropical high and the 

subpolar low are less pronounced with weakened westerlies across the Atlantic and a disrupted 

polar vortex (Hurrell, 1995; Lindsey et al., 2009; NOAA, 2012, Kennedy et al., 2014, Lindsey, 

2021). Figure 10 shows the 700 millibar (mb) geopotential heights (pressure) anomalies 

associated with the strong and weak phases of the NAO. This oscillation between large and small 

pressure differentials from the Azores high and the Icelandic low has been shown to occur on 

decadal timescales (Hurrel, 1995), although, the typical cycle of NAO is about 2 weeks 

(Feldstein, 2000; 2003). 
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The NAO index is based on the surface sea-level pressure difference between the Subtropical 

High near Azores and the Subpolar Low near Iceland, where the differing strengths between the 

two causes the pressure gradient between them to oscillate, controlling how strong the winds are 

that move across the Atlantic (Hurrell, 1995). When the sea level pressure distribution over the 

north Atlantic has a well-developed subpolar low and Azores high, the larger pressure gradient 

between them gives a positive NAO index, which is associated with stronger westerly winds 

across the Atlantic that keep cold and possibly wet air from migrating into the midlatitudes. 

Conversely, when the subpolar low and Azores high are rather weak, the smaller pressure 

gradient between them gives rise to a negative NAO index, thus reducing the westerlies strength 

across the Atlantic and allowing cold and possibly wet air to migrate into the Midlatitudes 

(Figure 11; Wanner et al. 2001; Booth et al., 2006; Lindsey et al., 2009, NOAA, 2012). Most 

Figure 10. Composite maps of mean winter 700 millibar (mb) geopotential height (in black solid 

lines) and anomalies (in color) (relative to NAO-neutral mean) for winters of (a) strong and (b) 

weak NAO during 1963–2010. The interval for the means and anomalies is 50 and 10 m, 

respectively. The low pressure near Iceland is shown with a blue L, and the high pressure over the 

Azores is shown with a red H. The gray and dark shaded areas represent the 95% and 99% 

significance level, respectively. Modified from Bai et al., 2012. 
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studies of the effects the NAO has on hydrologic factors have focused on Europe, and the eastern 

United States, but Balvanz et al. (2017) found that NAO does affect snowfall in the Midwestern 

United States. In fact, all eleven stations studied had a negative correlation between the NAO 

index and snowfall, suggesting snowfall in the Midwest is more likely and potentially heavier 

when the NAO index is negative.  

 

II.E. Atlantic Multidecadal Oscillation (AMO) 

The AMO is another ocean-atmospheric perturbation originating from the Atlantic that 

has been identified as an important mode of weather variability. AMO describes the alteration 

between warm and cold SST anomalies in the North Atlantic with a 40 to 80-year cycle (Kerr, 

2000; Enfield et al., 2001; Knight et al., 2006). Typically, the SST changes by about 1 oC 

between warm and cold phases (Enfield et al., 2001). Figure 12 shows an example of a warm 

phase AMO pattern averaged from 1951 to 1980.  

Figure 11. Expected temperature and precipitation effects along with jet stream positions related to the 

phases of NAO. From Lindsey et al. (2009), which was adapted from the AIRMAP by Ned Gardiner 

and David Herring, NOAA. 
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The AMO index is calculated by linearly detrending and applying a running 10-year 

mean to the monthly SST anomalies and then averaging the values over the North Atlantic (0°-

70°N, 80°W-10°E; Enfield et al, 2001). The index becomes increasingly positive as the North 

Atlantic becomes increasingly warmer and is increasingly negative as the North Atlantic 

becomes increasingly colder.  

During a negative AMO index, global circulation patterns favor above average 

precipitation across much of the U.S., which includes the Midwest (Enfield et al., 2001). 

Conversely, during a positive AMO index, circulation patterns cause drier conditions across 

much of the U.S. and the Midwest (McCabe et al., 2004). Winter temperature anomalies related 

to AMO do not seem to be directly investigated in the literature, possibly because of the lack of 

interchange between positive and negative phases warrants poor statistical analyses, but recent 

studies relating the phase of AMO to the phase of NAO present an indirect influence through 

Figure 12. Mean SST anomaly map (1951–1980) for warm AMO years (Positive Phase). The 

Labrador Sea (LS) and Sargasso Sea (SG) are labeled for reference. Modified from Birkel, 2018. 
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modulation of the polar jet stream (Davini et al., 2015; Kwon et al., 2020). These studies show 

that a positive AMO phase can ultimately lead to a negative NAO response and a southward 

displaced polar jet stream. Conversely, a negative AMO phase can lead to a positive NAO 

response and a poleward displaced polar jet stream. As shown by NAO above, this suggests that 

a positive AMO phase may create colder conditions in the Midwest, and that a negative AMO 

phase may create warmer conditions in the Midwest. 

II.F. Interactions between ENSO, PDO, NAO, and AMO 

Exploring interactions between each of the four ocean-atmospheric perturbations and the 

respective global circulation patterns could explain more of the variance in hydrologic attributes 

than explained by any single perturbation alone. For example, Enfield et al. (2001) shows AMO 

has a strong influence on summer rainfall over the contiguous U.S. and may modulate the 

strength of the teleconnection between ENSO and winter precipitation. Furthermore, Zhang et al. 

(2007) suggested AMO might serve as one of the sources or triggers of North Pacific 

multidecadal variability like PDO, and McCabe et al. (2004) attributed more than 50% of the 

U.S. spatial and temporal variance in multidecadal drought frequency to the PDO and AMO. 

More recently, Johnson et al. (2020) showed that even though tropical Pacific weather variability 

is the primary driver for PDO, it is also modulated by multi-basin interactions originating from 

the Atlantic and, together, the tropical Pacific and the Atlantic basins explain roughly 52-73% of 

the PDO variability. Also, Bᴕrgel et al. (2020) found the AMO influences the east-west position 

of the Icelandic Low and the Azores High, with a NW to SE shift during positive AMO phases, 

and in return this could affect how the NAO interacts with distal weather.  

In summary, the literature suggests that the four phenomena and their interactions have a 

combined effect on US weather. Therefore, our general hypothesis is that statistically significant 

anomalies in Southwestern Ohio winter weather have occurred from teleconnections with large-
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scale ocean-atmospheric perturbations including ENSO, PDO, NAO, and AMO. In table 2, the 

hypotheses to be tested here for winter weather anomalies in the historical record caused by 

perturbations in addition to ENSO are listed and are depicted for temperature in Figure 13.  

Another hypothesis to be tested here is that when combinations of these perturbations exist, 

larger anomalies have occurred in the historical record creating more variance in the overall 

record as compared to anomalies from any individual perturbation alone. 

Table 2. Hypotheses for each individual perturbations effect on winter temperature and precipitation in 

Southwest Ohio. 

Record Positive Conditions Negative Conditions 

  

ENSO 

 

PDO 

 

NAO 

 

AMO 

 

ENSO 

 

PDO 

 

NAO 

 

AMO 

Temperature (oC) Warmer Warmer Warmer Colder Colder Colder Colder Warmer 

         

Precipitation (cm) Drier Drier Drier Drier Wetter Wetter Wetter Wetter 

         

 

Figure 13. Expected temperature affects for each positive and negative phase index based on 

continental scale studies 

Positive, warmer air? 
Negative, colder air? 

Positive, colder air? 
Negative, warmer air? 



22 
 

III.  DATA AND METHODS 

III.A.  Data 

The sample population of data for winter precipitation and temperature used by Ritzi et 

al. (2021) are again used here and are from the US National Historical Climate Network 

(USHCN; NOAA NCEI [see distribution websites listed in the references below as USHCN; 

NOAA NCEI date unknown a, unknown b]). Specifically, the data are the monthly average of 

daytime high temperatures and the monthly average precipitation, both measured at station 

USH00338552, near Urbana, OH (Latitude = 40.1, Longitude = -83.7833; Figure 1) and consists 

of 121 winters from 1896 to 2016. The indices reflecting the strength of the ENSO, PDO, NAO 

and AMO perturbations are from the National Oceanic and Atmospheric Administration 

(NOAA) Climate Prediction Center (CPC). The ENSO cycle is represented by the extended 

multivariate ENSO Index, MEI (Wolter, 2011; 2018). The NAO cycle is represented by the 

NAO Index, NAO hereafter (Hurrell, 1995; NOAA PSL, 2013). The PDO cycle is represented 

by the PDO Index, PDO hereafter (Mantua et al., 1997; Zhang et al., 1997; NOAA PSL, 2018). 

The AMO cycle is represented by the AMO Index, AMO hereafter (Enfield et al., 2001, NOAA 

PSL, date unknown). Time series for each of these indices are shown in Figure 2.  

We use three metrics for temperature and precipitation: the mean-monthly winter value 

(i.e., winter 5-month mean), which might show seasonal-scale anomalies, and the maximum-

month value (i.e., the value for the month with the highest value within each winter) and the 

minimum-month value which both might show a shorter one-month scale anomaly as compared 

to the winter mean. Summary statistics for temperature and precipitation for each of these 

metrics are shown in Table 3, and time series of cumulative precipitation and average 

temperature are shown in Figure 14. 



23 
 

Table 3. Summary statistics for metrics on winter temperature and precipitation for each perturbation  

Winter Temperature (oC) 

 All winters Positive winters Negative winters 
 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
NAO       
Mean-monthly 6.12 1.43 6.42 1.49 5.59 1.16 
Maximum-month 11.68 2.06 11.82 2.11 11.41 1.97 
Minimum-month 1.10 2.41 1.57 2.48 0.25 2.04 
PDO       
Mean-monthly 6.12 1.45 5.91 1.49 6.36 1.38 
Maximum-month 11.69 2.09 11.25 1.88 12.19 2.21 
Minimum-month 1.05 2.43 0.88 2.43 1.24 2.45 
AMO       
Mean-monthly 6.12 1.43 6.35 1.42 5.97 1.43 
Maximum-month 11.68 2.06 11.58 2.09 11.74 2.06 
Minimum-month 1.10 2.41 1.86 2.29 0.59 2.37 
       

Winter Precipitation (cm) 

 All winters Positive winters Negative winters 
 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
NAO       
Mean-monthly 7.03 1.78 7.28 1.81 6.58 1.65 
Maximum-month 122.14 46.44 125.84 46.53 115.42 46.05 
Minimum-month 32.02 15.60 33.56 16.51 29.22 13.52 
PDO       
Mean-monthly 7.00 1.77 6.76 1.93 7.28 1.54 
Maximum-month 121.84 46.56 120.33 51.28 123.56 40.89 
Minimum-month 31.88 15.81 29.61 14.46 34.49 16.99 
AMO       
Mean-monthly 7.03 1.78 7.37 1.76 6.80 1.77 
Maximum-month 122.14 46.44 128.65 53.47 117.70 40.78 
Minimum-month 32.02 15.60 32.67 15.24 31.58 15.93 
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III.B. Methods 

To test the hypotheses for temperature and precipitation anomalies presented in table 2, 

the statistical analyses are broken up into two parts: (1) anomalies caused by perturbations 

individually, and (2) anomalies cause by the combined influence of perturbations.  

III.B.1.  Testing hypotheses for anomalies caused by perturbations individually 

Three statistical methods are used. The first two methods separate the data into positive 

and negative phases for each index, and the third method uses the entire continuous cycle. The 

first method was to quantify the proportion of positive phase winters for which a metric fell 

above and below the century long mean (CLM), and the proportion of negative phase winters for 

which it fell above/below the CLM. The second method was to use an independent samples t-test 

comparison of the mean value of a metric for positive phase winters against the mean of negative 

phase winters to test whether the means are statistically significantly different. The third method 

was to consider the effect from the entire continuous cycle of each perturbation by analyzing the 

variations in temperature and precipitation metrics as a function of the respective index, using 

Figure 14. Records for winter weather. Cumulative precipitation is for November through March. Temperature is the 

average daily high in winter. USHCN – U.S. Historical Climate Network. 



25 
 

linear regression. Assumptions of constant variance and normality of error terms were tested by 

visual inspection of residual plots and were satisfied for all metrics of each added index.  

III.B.1.A. Proportion of positive phase winters with temperature or precipitation above or 

below negative phase winters 

As stated above, the first method was to simply quantify the proportion of positive phase 

winters for which a metric fell above and below the century long mean (CLM), and the 

proportion of negative phase winters for which it fell above/below the CLM. To illustrate, a 

result supportive of the positive PDO hypotheses would be that the sample proportion of positive 

phase winters had an average temperature greater than that of the CLM, and that the entire 95% 

confidence interval falls above 0.5. Confidence intervals are calculated using the Wilson score 

interval methodology (Wilson, 1927). 

III.B.1.B. Independent sample t-tests comparison of the mean winter values between 

positive and negative phase indices 

Statistical tests for differences in the means are constructed with a null hypothesis (H0) 

that is hoped to be rejected. Therefore, the H0 is that the mean during positive phase winters is 

equal to the mean during negative phase winters, and rejection of the H0 is defined in this study 

as a probability of error that is less than 0.05 for one-tailed tests (Kutner et al., 2013). When the 

H0 is rejected, the alternate hypothesis (HA) is supported. For example, in considering the 

average temperature in positive PDO phase winters, the HA states that the mean was higher than 

for negative PDO phase winters.  

III.B.1.C. Simple Linear Regression 

An example of a result consistent with the research hypothesis would be a regression 

model for average temperature vs. PDO that is statistically significant (p-value ≤ 0.05) and has a 

negative slope. Further, An R2 value above 0.25 indicates the PDO explains a meaningful 

proportion of the variation in temperature (Cohen, 1988), while a value below 0.25 would not 
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support this conclusion. Similar examples drawn from the hypotheses in Table 2 could be given 

for the other indices as well. 

III.B.2. Testing hypotheses for anomalies cause by the combined influence of perturbations 

MEI was included as an independent variable in multiple regression with NAO, PDO, 

and AMO. A multiple regression without considering terms for interactions between the indices 

was first conducted, followed by a multiple regression that includes terms for interactions 

between the four indices. Here, the variance inflation factor (VIF) for all four predictor terms is 

checked and found to be well below the value of 5 that would begin to raise concern for 

multicollinearity (Kutner et al., 2013).  

III.B.2.A. Multiple Linear Regression without interactions 

A first order “main effects” multiple regression model incorporating ENSO, NAO, PDO, 

and AMO without considering the interaction effects is used first. The main effects model gives 

the additive effect of the four indices together and is given by the general formula in equation 1.  

�̂� = 𝛽0̂ + 𝛽1̂𝑋1 + 𝛽2̂𝑋2 + �̂�3𝑋3 + 𝛽4̂𝑋4 

Where, �̂� is the estimated response variable for the chosen hydrologic attribute, X1 is MEI, X2 is 

NAO, X3 is PDO, X4 is AMO, 𝛽0 is the y-intercept, and 𝛽𝑘 is the slope for a given Xk. 

 A result consistent with the general hypotheses here would be a model with statistically 

significant predictor variables, and a larger R2 value than found in any of the linear regressions, 

indicating that adding more terms to the regression analysis increases the amount of variance 

explained. Furthermore, an R2 value above 0.25 would indicate the model explains a meaningful 

proportion of the variance in temperature or precipitation.  

(Eq.1) 
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III.B.2.B. Multiple Linear Regression with interactions 

 A first order multiple regression model that incorporates the four indices as well as all 2, 

3 and 4-way interactions between them is used, and Equation 2 shows the general formula for the 

model when all combinations of interactions are accounted for. 

�̂� = 𝛽0̂ + 𝛽1̂𝑋1 + 𝛽2̂𝑋2 + �̂�3𝑋3 + 𝛽4̂𝑋4 + 𝛽5̂𝑋1𝑋2 + 𝛽6̂𝑋1𝑋3 + 𝛽7̂𝑋1𝑋4                                 

+ 𝛽8̂𝑋2𝑋3 + 𝛽9̂𝑋2𝑋4 + 𝛽10̂𝑋3𝑋4 + 𝛽11̂𝑋1𝑋2𝑋3 + 𝛽12̂𝑋1𝑋2𝑋4                    

+ 𝛽13̂𝑋1𝑋3𝑋4 + 𝛽14̂𝑋2𝑋3𝑋4 + 𝛽15̂𝑋1𝑋2𝑋3𝑋4 

Where, �̂� is the estimated response variable for the chosen hydrologic attribute, X1 is MEI, X2 is 

NAO, X3 is PDO, X4 is AMO, 𝛽0 is the y-intercept, and 𝛽𝑘 is the slope for a given predictor 

term. 

  A result consistent with the hypotheses here would be at least one statistically significant 

(p-value ≤ 0.05) interaction term and an R2
a value that is above that found in the additive model, 

indicating some interactions between these perturbations are important in explaining the variance 

in temperature or precipitation.  

 

 

 

 

 

 

(Eq.2) 
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IV.  RESULTS FOR TEMPERATRE 

Presented here are the results of sample proportions, and differences in the means, 

followed by the regression analyses of temperature, for each metric. The analysis of sample 

proportions above or below the mean for each phase of the index and the analysis of differences 

in the means among each positive and negative phase index are presented together first. Then, 

the regression analyses are presented sequentially, first with an analysis of temperature vs. each 

index individually, then vs. the four indices together in one multiple-regression, and finally with 

a multiple regression that includes terms for interactions between the indices.  

IV.A. Analysis of sample proportions and differences in means among each positive and 

negative phases 

The sample proportions of positive phase winters above the century long mean (CLM) 

and negative phase winters below the CLM for each metric and index are shown in Table 4, 

along with the 95% CI. Of positive NAO winters, 62% of them had above average temperatures 

in the minimum-month with its 95% CI entirely above 0.5, and 60% of winters had mean 

monthly temperature greater than the CLM with a CI that is close to but not entirely above 0.5 

(0.49 to 0.71). Of negative NAO winters, 67% of them had mean monthly temperature below the 

CLM, and 70% had below average temperatures in the minimum-month of a winter, and both 

have the 95% CI entirely above 0.5. These results support the hypotheses that positive NAO 

winters are associated with above average temperatures, and negative NAO winters are 

associated with below average temperatures. For PDO and AMO the proportions for all metrics 

and their 95% CI are not entirely above/below 0.5 as per the hypotheses in Table 2, and therefore 

the results do not support those hypotheses.  
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The results for statistical tests of the difference in the means between positive and 

negative phase winters for each temperature metric are shown in Table 5. The mean monthly 

temperature during positive NAO winters was on average 0.82 oC higher than that of winters 

with a negative NAO index, and the minimum month metric was 1.32 oC more. These 

differences are statistically significant with p-values of 0.0005 and 0.0011, respectively. This 

result supports the hypotheses that positive NAO winters are warmer than negative NAO 

winters.  

The differences for the mean monthly and maximum month temperature metrics between 

positive and negative PDO phases were statistically significant (p=0.0477, p=0.0084), but were 

negative, counter to the hypothesis that positive phase PDO winters were warmer than winters in 

the negative PDO phase. 

Table 4. Results for the sample proportions of positive and negative phase indices according to 

the hypotheses from Table 2 

Winter Temperature (oC) a 

  Proportion of positive 

phases above mean (CI) 

 Proportion of negative 

phases below mean (CI) 

NAO (n = 121)    

 Mean Monthly 0.60 (0.49, 0.71)  0.67 (0.53, 0.81) 

 Maximum-Month 0.49 (0.38, 0.60)  0.58 (0.43, 0.73) 

 Minimum-Month 0.62 (0.51, 0.72)  0.70 (0.56, 0.83) 

PDO (n = 116)    

 Mean Monthly 0.47 (0.34, 0.59)  0.44 (0.31, 0.58) 

 Maximum-Month 0.42 (0.30, 0.54)  0.50 (0.37, 0.63) 

 Minimum-Month 0.53 (0.41, 0.66)  0.48 (0.35, 0.61) 

  Proportion of positive 

phases below mean (CI) 

 Proportion of negative 

phases above mean (CI) 

AMO (n = 121)    

 Mean Monthly 0.49 (0.35, 0.63)  0.50 (0.38, 0.62) 

 Maximum-Month 0.55 (0.41, 0.69)  0.47 (0.36, 0.59) 

 Minimum-Month 0.45 (0.31, 0.59)  0.47 (0.36, 0.59) 
a 

Highlighted values color key:  Green, proportion and 95% confidence interval (CI) all above 50%. Yellow, proportion above 

50% but not the 95% CI. Red, proportion not above 50%. 
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For AMO, the minimum month metric was found to be statistically significant with 

positive phase winters being on average 1.27 oC warmer than negative phase winters. This result 

is counter to the hypothesis that positive-phase AMO winters are colder than winters with AMO 

in the negative phase.  

 

Collectively, these results give an indication that there is a teleconnection between NAO 

oscillations and winter temperature in the study area, and do not support the hypotheses for 

teleconnections between the PDO and AMO and winter temperature in the study area. 

 

 

 

 

Table 5. Results for the differences in the means among positive and negative phase indices. 

Winter Temperature 

  Difference    

  (0C)  H0 a  HA b  Result c  p-value 

NAO+ VS NAO-          

 Mean-Monthly 0.82  Equal Means  > Mean  Reject H0  0.0005 

 Maximum-Month 0.42  Equal Means  > Mean  Fail to Reject H0  0.1413 

 Minimum-Month 1.32  Equal Means  > Mean  Reject H0  0.0011 

PDO+ VS PDO-          

 Mean-Monthly -0.45  Equal Means  > Mean  Fail to Reject H0   0.0477 

 Maximum-Month -0.94  Equal Means  > Mean  Fail to Reject H0  0.0084 

 Minimum-Month -0.36  Equal Means  > Mean  Fail to Reject H0  0.2122 

AMO+ VS AMO-          

 Mean-Monthly 0.38  Equal Means  < Mean  Fail to Reject H0  0.0738 

 Maximum-Month -0.17  Equal Means  < Mean  Fail to Reject H0  0.3340 

 Minimum-Month 1.27  Equal Means  < Mean  Reject H0  0.0019 
a 

H0 is the null hypothesis in hopes to reject 
b 

HA is the alternate hypothesis extracted from Table 2 
c 

Highlighted values color key: Green, reject the null hypothesis with p-value less than 0.05. Yellow, cannot reject the null 

hypothesis at the 0.05 level but p-value is close. Red, cannot reject the null hypothesis. 
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IV.B. Separate regression on each index 

The results of regression on each index individually against each metric are given in 

Table 6 and Figure 15. The slope for the regression model “NAO” is positive with p-values well 

below 0.05, consistent with the hypothesis that winters are increasingly warmer when NAO is 

increasingly positive and increasingly colder when NAO is increasingly negative. The R2 value is 

0.14 indicating that NAO alone does not account for much of the variance in winter temperature, 

however it is much higher than the R2 value for the models using other indices including ENSO 

(Tables 1 and 6). The results for the other indices and other metrics have either an inconsistent 

slope, p-value above 0.05, or a negligible R2 value, and do not support the respective hypothesis 

for an individual effect associated with those perturbations. 

 

 

Table 6. Temperature regression, results with each individual index on each metric 

Winter Temperature (0C) a     

  Coefficients  p-value  R2 

NAO (n = 121)      

 Mean Monthly 0.5464  2.6E-05  0.139 

 Maximum-Month 0.3837  0.046  0.033 

 Minimum-Month 0.5137  0.022  0.043 

PDO (n = 116)      

 Mean Monthly -0.3616  0.016  0.050 

 Maximum-Month -0.3357  0.124  0.021 

 Minimum-Month -0.5172  0.041  0.036 

AMO (n = 121)      

 Mean Monthly 0.2226  0.070  0.026 

 Maximum-Month -0.0039  0.983  4E-6 

 Minimum-Month 0.5319  0.012  0.052 
a Highlighted values color key: Green, slope is consistent with hypotheses or p-value is less than 0.05. Yellow, p-value is close 

to 0.05 but slightly above. Red, slope is inconsistent with hypotheses or p-value is greater than 0.05 or adjusted R2 value is less 

than 0.25. 
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IV.C. Multiple regression with four indices 

The results of the multiple regression analysis on temperature using the indices MEI, 

NAO, PDO and AMO are given in Table 7.  The R2 for the mean monthly winter temperature 

model was 0.14 with NAO alone but increases to an adjusted R2 (R2
a) of 0.23 when all four 

indices are included in the regression.  For the minimum-month metric it increases from 0.04 to 

0.13. Thus, more variance in the metrics is explained in the multi-variate model.  However, the 

NAO index has the smallest p-value among all three metrics and is the most significant.  

 

 

Figure 15. Linear regressions for each index individually (NAO in the first row, PDO in the second row, 

and AMO in the third row) against each of the metrics chosen (mean-monthly winter temperatures in first 

column, Maximum-month temperature in the second column, Minimum-month temperature in the third 

column). 
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Table 7. Multiple regression for each metric without considering interaction terms (n=116). 

Winter Temperature (oC) a 

Terms Mean Monthly Maximum Month Minimum Month 

 coefficient p-value coefficient p-value coefficient p-value 

Intercept 5.963 < 2E-16 11.54 < 2E-16 0.965 6.7E-05 

MEI 0.070 0.6509 0.012 0.961 0.047 0.864 

NAO 0.629 1.83E-06 0.429 0.036 0.671 0.003 

PDO -0.443 0.0057 -0.377 0.140 -0.579 0.041 

AMO 1.808 0.0094 0.291 0.793 3.437 0.005 

    

R2
a  0.23 0.027 0.125 

p-value 1.2E-06 0.136 0.0008 
a Highlighted values color key: Green, p-value is less than 0.05 or R2

a is greater than or equal to 0.25. Yellow, p-value is close to 0.05 

but slightly above or R2 is close to 0.25. Red, p-value is greater than 0.05 or adjusted R2 value is much less than 0.25. 

 

IV.D. Multiple regression with four indices and interactions 

 In further analysis, the interactions between variables were added as interaction terms in 

the various combinations of independent variable groupings. Because the four-way interaction 

term was insignificant (p-value > 0.05) it was removed and the multiple regression was re-run 

without it, with results shown in Table 8.  Beyond individual terms, only the three-way 

interaction term that includes NAO with MEI and PDO was significant (p-value = 0.043). The 

adjusted R2 for the mean-monthly metric model increased from 0.23 (without interactions) to 

0.25 (with interactions) and, therefore, we focus on the three-way interaction model for the 

mean-monthly metric.  
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The plot of interactions in the model between MEI, NAO, and PDO in Figure 16 shows 

that the trend in the interactions is towards the warmest winters occurring when NAO is positive 

while MEI and PDO are negative, and towards the coldest winters occurring when NAO is 

negative while MEI and PDO are positive. 

 

Table 8. Multiple regression for each metric with All 1, 2, and 3-way interaction terms (n=116) 

Winter Temperature (oC) a 

Terms Mean Monthly Maximum Month Minimum Month 

 coefficient p-value coefficient p-value coefficient p-value 

Intercept 5.937 < 2E-16 11.60 < 2E-16 0.900 0.001 

MEI 0.063 0.7336 0.161 0.597 -0.098 0.769 

NAO 0.538 0.0003 0.394 0.105 0.548 0.040 

PDO -0.510 0.0046 -0.466 0.113 -0.576 0.074 

AMO 2.014 0.0181 0.117 0.933 5.273 0.0008 

MEI: NAO 0.082 0.6006 -0.111 0.670 0.107 0.706 
MEI: PDO -0.036 0.8172 -0.210 0.416 0.037 0.897 
MEI: AMO 2.165 0.0491 2.335 0.198 2.400 0.226 
NAO: PDO -0.156 0.3499 -0.199 0.471 -0.136 0.652 
NAO: AMO 0.228 0.7671 0.622 0.625 -1.627 0.244 
PDO: AMO -0.926 0.3681 -1.138 0.504 -0.277 0.882 
MEI: NAO: PDO 0.274 0.0431 0.228 0.305 0.165 0.497 
MEI: NAO: AMO -0.968 0.3050 -1.264 0.418 -1.634 0.339 
NAO: PDO: AMO 0.057 0.9598 1.508 0.420 -2.226 0.278 
    

R2
a  0.25 0.0075 0.12 

p-value 3.5E-05 0.396 0.013 
a Highlighted values color key: Green, p-value is less than 0.05 or R2

a is greater than or equal to 0.25. Yellow, p-value is close to 

0.05 but slightly above or R2 is close to 0.25. Red, p-value is greater than 0.05 or adjusted R2 value is much less than 0.25. Gray, 

regression term is already being expressed in the highest order interaction terms and is not considered as supporting or rejecting 

the hypothesis here. 
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Figure 16. Three-way interaction model for the mean monthly temperature (0C) metric. The model gives the 

warmest winter temperature prediction when NAO is positive and MEI and PDO are negative (red circle) 

and gives the coldest winter temperature prediction when NAO is negative and MEI and PDO are positive 

(blue circle). 
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These observed trends in the interactions hint at an NAO influence on winter temperature 

that is more pronounced under the conditions when the NAO index is opposite the PDO and 

MEI. These two conditions represent 2 of 8 possible combinations of the positive/negative 

phases among these indices, as shown in Table 9 and 10. Combination 4 is when NAO is 

negative and MEI and PDO are positive and is indicated to be associated with colder winter 

temperature, while Combination 6 is when NAO is positive and MEI and PDO are negative and 

is indicated to be associated with warmer winter temperature (Table 10).   

Table 9. Eight combinations of index states (positive, negative) for NAO, PDO, and MEI. 

Terms Combinations 

 1 2 3 4 5 6 7 8 

NAO Positive Positive Negative Negative Positive Positive Negative Negative 

MEI Positive Positive Positive Positive Negative Negative Negative Negative 

PDO Positive Negative Negative Positive Positive Negative Negative Positive 

 

 

 

 

 

 

 

 

 

 

Table 10. Statistics for monthly winter temperature for years under each 

combination of perturbations given in table 9 and for all years. 

Interactions Mean Monthly 

Winter Temp. (0C) 

Standard 

Dev. 

Observations 

Combination 1 6.17 1.76 25 

Combination 2 6.21 1.38 11 

Combination 3 6.09 1.29 8 

Combination 4 5.20 (coldest) 1.20 12 

Combination 5 6.31 1.21 17 

Combination 6 6.93 (warmest) 1.46 21 

Combination 7 5.77 1.10 14 

Combination 8 5.33 1.08 8 

    

All years 6.12 1.43 116 
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This led to proceeding with a more refined research hypothesis that winters under 

combination 4 were colder than average and winters under combination 6 were warmer than 

average. The temperatures for these combinations are plotted in comparison with the mean for all 

years in Figure 17.  83% of winters under combination 4 fell below the mean and 71% of winters 

under combination 6 fell above the mean, with the entire 95% confidence interval above 50% for 

both (Table 11). These results support the refined hypotheses that winters tend to be colder under 

the conditions represented by combination 4 and warmer under the conditions of combination 6. 

 

T-tests, assuming unequal variance, were used to compare the means of the different 

combinations given in table 6 to the means of years outside the combination to search for 

statistically significant differences between the means (Table 12). In Combinations 4, 6, and 8 

the null hypothesis is rejected, and the data supports statistically significantly lower temperatures 

during combinations 4, and 8, while supporting statistically significantly higher temperatures 

during combination 6. This led to adding combination 8 to Figure 17. 

Figure 17. mean monthly temperature at the Urbana station from 1901 to 2016 for combinations 4, 6, and 8. The black 

dashed line represents the mean winter temperature for all years on record and is 6.12 0C. 
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In the analysis of variance (ANOVA), the overall F-test rejects the null hypothesis that all group 

means are equal (p-value = 0.03), which indicates at least one pair of combinations has statistically 

significantly different means. A multiple comparison procedure, using the Tukey-Kramer method 

(Haynes, 2013), at the 95% significance level is then used as a follow up test to look for where the 

specific differences between these groups of combinations occur (Table 13). The results show only the 

6-4 combination has a p-value less than 0.05, indicating a statistically significant difference 

Table 12. Results from hypothesis testing on differences in the mean with unknown and unequal variances.  

Winter Temperature 

  Anomaly    

  (0C)  H0 
a  HA 

b  Result c  p-value 

Combination 4          

 Mean-Monthly -1.03  Equals Mean  < Mean  Reject H0  0.008 

 Maximum-Month -0.22  Equals Mean  < Mean  Fail to Reject H0  0.357 

 Minimum-Month -1.95  Equals Mean  < Mean  Reject H0  0.016 

Combination 6          

 Mean-Monthly 0.99  Equals Mean  > Mean  Reject H0  0.004 

 Maximum-Month 1.28  Equals Mean  > Mean  Reject H0  0.021 

 Minimum-Month 1.22  Equals Mean  > Mean  Reject H0  0.037 

Combination 8          

 Mean-Monthly -0.85  Equals Mean  < Mean  Reject H0  0.034 

 Maximum-Month -1.55  Equals Mean  < Mean  Reject H0  0.036 

 Minimum-Month -1.07  Equals Mean  < Mean  Reject H0  0.032 
a 

H0 is the null hypothesis in hopes to reject 
b 

HA is the alternate hypothesis drawn from Figure 17 
c 

Highlighted values color key:  Green, reject the null hypothesis with p-value less than 0.05. Yellow, cannot reject the null hypothesis at the 0.05 

level but p-value is close. Red, cannot reject the null hypothesis. 
 

Table 11. Proportion of combination 4, combination 6 and combination 8 winters with mean above/below the winter 

mean for other years (116 winters total, 12 as combination 4, 21 as combination 6, and 8 as combination 8).  

Winter Temperature a 

 Proportion of 

Combination 4 below 

mean for all other years 

 Proportion of 

Combination 6 above 

mean for all other years 

 Proportion of 

Combination 8 below 

mean for all other years 

      

Mean-Monthly 0.83 (0.62, 0.99)  0.71 (0.52, 0.91)  0.75 (0.50, 0.99) 

Maximum Month 0.42 (0.14, 0.70)  0.57 (0.36, 0.78)  0.75 (0.45, 0.99) 

Minimum Month 0.74 (0.51, 0.99)  0.67 (0.47, 0.87)  0.88 (0.65, 0.99) 
a 

Highlighted values color key:  Green, proportion and 95% confidence interval (CI) all above 50%. Yellow, proportion above 50% but not the 95% CI. Red, 

proportion not above 50%. 



39 
 

between the mean winter temperature with winters under combination 6 being on average 1.7 0C 

warmer than winters under combination 4. This result is consistent with the hypothesis that the 

NAO is associated with more pronounced winter temperature anomalies when the NAO index is 

opposite the PDO, and MEI like that found in combinations 6 and 4.  

 

 

Table 13. Multiple comparison between combinations 

Winter Temperature a     

 

Pairwise Comparisons 

 Difference 

(0C) 

  

p-value 

Combinations 2 – 1   0.043  0.99 

Combinations 3 – 1  -0.077  0.99 

Combinations 4 – 1   -0.969  0.51 

Combinations 5 – 1  0.141  0.99 

Combinations 6 – 1  0.764  0.59 

Combinations 7 – 1  -0.393  0.99 

Combinations 8 – 1  -0.836  0.82 

Combinations 3 – 2  -0.120  0.99 

Combinations 4 – 2  -1.011  0.67 

Combinations 5 – 2  0.098  0.99 

Combinations 6 – 2   0.721  0.86 

Combinations 7 – 2   -0.436  0.99 

Combinations 8 – 2  -0.879  0.88 

Combinations 4 – 3   -0.891  0.86 

Combinations 5 – 3   0.218  0.99 

Combinations 6 – 3   0.841  0.83 

Combinations 7 – 3  -0.315  0.99 

Combinations 8 – 3  -0.758  0.96 

Combinations 5 – 4   1.109  0.42 

Combinations 6 – 4   1.732  0.02 

Combinations 7 – 4   0.576  0.97 

Combinations 8 – 4   0.133  0.99 

Combinations 6 – 5   0.623  0.87 

Combinations 7 – 5   -0.534  0.96 

Combinations 8 – 5   -0.976  0.73 

Combinations 7 – 6   -1.157  0.25 

Combinations 8 – 6   -1.600  0.12 

Combinations 8 – 7   -0.443  0.99 
a 

Highlighted values color key:  Green, reject the null hypothesis with p-

value less than 0.05. Yellow, cannot reject the null hypothesis at the 0.05 

level, but p-value is close. Red, cannot reject the null hypothesis. 
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V.  RESULTS FOR PRECIPITATION 

V.A. Analysis of sample proportions and differences in means among each positive and 

negative phases 

 The sample proportions of positive phase and negative phase winters above or below the 

CLM, corresponding to the hypotheses listed in Table 2 are shown in Table 14, along with the 

95% CI. Of positive PDO winters, 74% have mean-monthly precipitation that is less than the 

CLM, and 68% have less precipitation during the maximum month of winter. These both have 

their 95% CI above 0.5, supporting the hypotheses that positive PDO winters are associated with 

below average precipitation. Also, 63% of positive AMO winters have less precipitation during 

the maximum month of winter. As for other metrics and indices, the 95% CI is not entirely above 

0.5 as per the hypothesis in Table 2, and therefore the results do not support those hypotheses. 

 

 

 

Table 14.  Results for the sample proportions of positive and negative phase indices 

according to the hypotheses in Table 2 

Winter Precipitation (cm) a   

  Proportion of positive 

phases below mean (CI) 

 Proportion of negative 

phases above mean (CI) 

NAO (n = 121)    

 Mean Monthly 0.46 (0.35, 0.57)  0.33 (0.19, 0.47) 

 Maximum-Month 0.59 (0.48, 0.70)  0.21 (0.09, 0.33) 

 Minimum-Month 0.50 (0.39, 0.61)  0.47 (0.32, 0.61) 

AMO (n = 121)    

 Mean Monthly 0.47 (0.33, 0.61)  0.42 (0.30, 0.53) 

 Maximum-Month 0.63 (0.50, 0.77)  0.32 (0.21, 0.43) 

 Minimum-Month 0.49 (0.35, 0.63)  0.47 (0.36, 0.59) 

PDO (n = 116)    

 Mean Monthly 0.74 (0.63, 0.85)  0.37 (0.24, 0.50) 

 Maximum-Month 0.68 (0.56, 0.79)  0.35 (0.22, 0.48) 

 Minimum-Month 0.58 (0.46, 0.70)  0.56 (0.42, 0.69) 
a 

Highlighted values color key: Green, proportion and 95% confidence interval (CI) all above 50%. Yellow, proportion above 

50% but not the 95% CI. Red, proportion not above 50%. 
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 The results for statistical tests of the difference in the means between positive and 

negative phase winters for each precipitation metric are shown in Table 15. They indicate that 

positive NAO winters have on average 0.70 cm more precipitation than negative NAO winters 

with a p-value of 0.017, and positive AMO winters have on average 0.57 cm more precipitation 

than negative AMO winters with a p-value of 0.043. However, the means for positive phase 

NAO and AMO are above the means for negative phases, opposite to the hypotheses in Table 2, 

and therefore do not support those hypotheses. As for the PDO index, the difference in the means 

is consistent with the hypotheses in Table 2, with positive PDO winters having 0.53 cm less 

precipitation than negative PDO winters. The phases of PDO are not statistically significantly 

different from each other under the 95% significance level, although they are very close for the 

mean-monthly and minimum-month metrics (p = 0.053, and p = 0.0506, respectively).  

 

Table 15. Results of t-tests for the differences in the mean among positive and negative phase indices  

Winter Precipitation (cm) 

  Difference    

  (cm)  H0 
a  HA b  Result c  p-value 

NAO+ VS NAO-          

 Mean-Monthly 0.70  Equal Means  < Mean  Reject H0  0.0174 

 Maximum-Month 10.42  Equal Means  < Mean  Fail to Reject H0  0.1192 

 Minimum-Month 4.34  Equal Means  < Mean  Fail to Reject H0  0.0610 

PDO+ VS PDO-          

 Mean-Monthly -0.53  Equal Means  < Mean  Fail to Reject H0  0.0528 

 Maximum-Month -3.22  Equal Means  < Mean  Fail to Reject H0  0.3538 

 Minimum-Month -4.88  Equal Means  < Mean  Fail to Reject H0  0.0506 

AMO+ VS AMO-          

 Mean-Monthly 0.57  Equal Means  < Mean  Reject H0  0.0425 

 Maximum-Month 10.95  Equal Means  < Mean  Fail to Reject H0  0.1142 

 Minimum-Month 1.08  Equal Means  < Mean  Fail to Reject H0  0.3530 
a
 H0 is the null hypothesis in hopes to reject 

b 
HA is the alternate hypothesis extracted from Table 2 

c 
Highlighted values color key: Green, reject the null hypothesis with p-value less than 0.05. Yellow, cannot reject the null hypothesis at 

the 0.05 level, but p-value is close. Red, cannot reject the null hypothesis. 
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 Collectively, these results give an indication that there is a weak teleconnection between 

PDO oscillations and winter precipitation in the study area, and do not support the hypotheses for 

teleconnections between NAO and AMO and winter precipitation in the study area 

V.B. Separate regression on each index 

 Results of regression on each index individually against each metric are given in Table 16 

and Figure 18. The slope for the regression model of PDO is negative with a p-value below 0.05, 

consistent with the hypothesis that winters are increasingly drier when PDO is increasingly 

positive, and increasingly wetter when PDO is increasingly negative. However, the R2 value is 

only 0.04 indicating little of the variance in precipitation is explained by PDO alone. The results 

for the other indices and other metrics have either an inconsistent slope, p-values above 0.05, or 

a negligible R2 value and do not support the respective hypotheses for an individual effect 

associated with those perturbations.  

 

 

 

 

 

 

 

Table 16. Precipitation regression, results on each individual index for each metric 

Winter Precipitation (cm) a     

  Coefficients  p-value  R2 

NAO      

 Mean Monthly 0.2880  0.0847  0.0249 

 Maximum-Month 3.7964  0.3842  0.0064 

 Minimum-Month 1.7181  0.2403  0.0116 

PDO      

 Mean Monthly -0.4030  0.0285  0.0414 
 Maximum-Month -5.6642  0.2447  0.0119 
 Minimum-Month -2.8859  0.0797  0.0267 
AMO      

 Mean Monthly 0.1187  0.4553  0.0047 
 Maximum-Month 1.5710  0.7048  0.0012 
 Minimum-Month 0.3517  0.8006  0.0005 
a Highlighted values color key: Green, slope is consistent with hypotheses or p-value is less than 0.05. Yellow, 

p-value is close to 0.05 but slightly above. Red, slope is inconsistent with hypotheses or p-value is greater than 

0.05 or adjusted R2 value is less than 0.25. 
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V.C. Multiple regression with four indices 

 The results of the multiple regression analysis on precipitation using the indices MEI, 

NAO, PDO and AMO are given in Table 17. Only the mean-monthly metric was significant 

(p=0.018), explaining about 7% of the variance in precipitation. When only considering MEI, the 

R2 was 0.03 (Ritzi et al., 2021), but in including all four perturbations the R2
a became 0.07. Thus, 

more variance in winter precipitation is explained by the multivariate model, although the 

increase is small. The NAO and PDO indices in this model are the only ones that are significant 

at the p = 0.023, and p = 0.025 levels, respectively. 

 

 

Figure 18. Linear regressions for each index individually (NAO in the first row, PDO in the second row, and AMO 

in the third row) against each of the metrics chosen (mean-monthly winter precipitation in first column, Maximum-

month precipitation in the second column, Minimum-month precipitation in the third column).  
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Table 17. Multiple regression on precipitation (cm) for each metric without interaction terms (n=116). 

Winter Precipitation (cm) a 

Terms Mean Monthly Maximum Month Minimum Month 

 coefficient p-value coefficient p-value coefficient p-value 

Intercept 6.922 < 2E-16 120.9 < 2E-16 31.27 < 2E-16 

MEI -0.338 0.1037 -5.448 0.334 -1.019 0.591 

NAO 0.385 0.0232 4.972 0.278 2.170 0.161 

PDO -0.243 0.0250 -2.996 0.603 -2.487 0.202 

AMO 1.228 0.1832 17.75 0.480 4.260 0.614 

    

R2
a  0.069 -0.006 0.010 

p-value 0.018 0.511 0.274 
a Highlighted values color key: Green, p-value is less than 0.05 or R2

a is greater than or equal to 0.25. Yellow, p-value is close to 0.05 but 

slightly above or R2 is close to 0.25. Red, p-value is greater than 0.05 or adjusted R2 value is much less than 0.25. 

 

V.D. Multiple regression with four indices and interactions 

 The multiple regression including terms for interactions between each index on 

precipitation was not found to increase the R2
a value and does not lead to a more significant 

model of precipitation. An example of a model that includes all 2, 3, and 4-way interaction terms 

against precipitation is shown in Table 18 and indicates that none of the interaction terms are 

statistically significant (p-value ≤ 0.05). After the four-way interaction term was deemed not 

significant, it was removed, and only the 3-way interaction terms were considered. Furthermore, 

once they were deemed not significant, they were also removed, and only 2-way interaction 

terms were considered. The sequential removal of the highest order interaction terms did not lead 

to a more significant model for precipitation and does not support the hypothesis that the 

interactions between perturbations create statistically significant anomalies in winter 

precipitation at the study area.  
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Table 18. All 1, 2, 3, and 4-way interaction effects for each metric (n=116) 

 

Winter Precipitation (cm) a 

Terms Mean Monthly Maximum Month Minimum Month 

 coefficient p-value coefficient p-value coefficient p-value 

Intercept 6.989 <2E-16 123.75 <2E-16 31.990 <2E-16 

MEI -0.349 0.182 -3.700 0.606 -1.006 0.674 

NAO 0.333 0.098 4.617 0.404 2.440 0.187 

PDO -0.410 0.095 -8.153 0.228 -1.728 0.442 

AMO 0.314 0.816 -9.882 0.790 -1.746 0.888 

MEI: NAO -0.045 0.837 -6.929 0.256 2.359 0.246 
MEI: PDO -0.161 0.470 -5.930 0.337 -1.293 0.529 
MEI: AMO 0.412 0.785 5.312 0.899 0.774 0.956 
NAO: PDO 0.031 0.893 3.380 0.594 -2.106 0.320 
NAO: AMO -0.073 0.954 21.758 0.531 4.813 0.678 
PDO: AMO -0.542 0.740 -19.095 0.672 13.111 0.384 
MEI: NAO: PDO 0.111 0.557 4.792 0.362 -1.267 0.469 
MEI: NAO: AMO 0.155 0.906 -15.907 0.661 10.050 0.406 
MEI: PDO: AMO 1.779 0.218 35.087 0.378 4.994 0.706 
NAO: PDO: AMO -1.384 0.412 -20.102 0.666 -0.749 0.962 
MEI: NAO: PDO: AMO 1.268 0.296 11.323 0.735 4.777 0.668 
    

R2
a  0.054 -0.045 -0.009 

p-value 0.145 0.811 0.530 
a Highlighted values color key: Green, p-value is less than 0.05 or R2

a is greater than or equal to 0.25. Yellow, p-value is close to 

0.05 but slightly above or R2 is close to 0.25. Red, p-value is greater than 0.05 or adjusted R2 value is much less than 0.25. Gray, 

regression term is already being expressed in the highest order interaction terms and is not considered as supporting or rejecting the 

hypothesis here. 
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VI.  DISCUSSION 

VI.A. Temperature 

Ritzi et al. (2021) found that essentially none of the variance (R2 = 2E-9) in winter 

temperature was explained by MEI as a predictor variable in the regression. By here including 

indices for other ocean-atmospheric perturbations (NAO, PDO, AMO), 25% of the variance in 

winter temperature was explained. The NAO index is the most significant variable to come out 

of the multiple regression (p-value = 1.8E-6). These results are consistent with the results of 

other studies that have recognized the NAO perturbation as a useful predictor for temperature 

and those that consider it the most important pattern of atmospheric variability in the Northern 

Hemisphere (Hurrell, 1995; Li et al., 2013). However, most of these studies are limited to the 

hydrologic effects in the eastern U.S. and Europe (Lindsey et al., 2009; Seager et al., 2010; 

Lindsey, 2011), whereas this study highlights the importance of NAO on winter temperature in 

Southwest Ohio. These results are also consistent with Balvanz et al. (2017) more local study, 

which showed a negative correlation between the NAO index and snowfall from 11 stations 

within the Midwest. 

Also, in considering the additive effect of all four ocean-atmospheric phenomena on 

temperature, the variance explained by the mean monthly metric increases from 14% (with NAO 

alone) to 23%. Indicating, a model incorporating a single teleconnection pattern will not explain 

as much variance in temperature as a model that includes multiple teleconnection patterns.  

Furthermore, when the interactions between variables were added to the regression, and all 3-

way interactions with NAO included were accounted for, only the 3-way interaction between 

NAO, MEI, and PDO was significant (p-value = 0.043), with the adjusted R2 = 0.25 for the 

mean-monthly metric. The increase in variance explained by the model with interactions as 
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compared to the model without interactions is small (2% increase), but the statistically 

significant 3-way interaction term between NAO, MEI, and PDO is worth exploring.  

In considering whether these three indices are in a positive or negative phase, and the 8 

possible combinations of the index states between them, it was found that when NAO is 

negative, but MEI and PDO are both positive (Combination 4) the mean winter temperature was 

statistically significantly about 1 0C lower (p-value ~ 0.0076) on average than in other years on 

record. Conversely, when NAO is positive, but MEI and PDO are both negative (Combination 6) 

the mean winter temperature was statistically significantly about 1 0C higher (p-value ~ 0.0041) 

on average than in other years on record. Also, when NAO and MEI are both negative, but PDO 

is positive (Combination 8) the mean was statistically significantly about 0.85 0C lower (p-value 

~ 0.034) on average than in other years on record. In the multiple comparison, only the 

comparison between combinations 6 and 4 were statistically significant with a p-value = 0.02, 

indicating winters under combination 6 were on average 1.73 0C warmer than winters under 

combination 4.  

These results are consistent with the knowledge that the NAO index is a dominant 

perturbation in the Northern Hemisphere circulation since it is considered the most significant 

variable to come from the regression analyses of temperature, considering its relative proximity 

to the study area, and relationship with the polar jet stream (Figure 10 and 11; Hurrell, 1995; 

Lindsey et al., 2009; Kennedy et al., 2014), but it is interesting that the effect on temperature 

seems to be more pronounced when the MEI and PDO indices are opposite of the NAO index, 

considering the positive/negative phases of the MEI and PDO indices individually were 

hypothesized to affect temperature in a similar way as the NAO phases (Figure 13; Ropelewski 

et al., 1987, 1989; Hurrell, 1995; Mantua et al., 1997; NOAA CPC, 2012; Kennedy et al., 2014; 
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Lindsey, 2016; 2017). This would imply that when the waters of the eastern equatorial Pacific 

and northern Pacific coasts are anomalously warmer (i.e., El Nino and positive PDO; Figure 8a), 

and the pressure differential between the Icelandic low and Azores high is small (negative NAO; 

weaker westerlies/less-stable polar vortex), southwestern Ohio observes around 1 0C colder 

temperature most of the time (83%). Conversely, when the waters of the eastern equatorial 

Pacific and northern Pacific coast are cooler (i.e., La Nina and negative PDO; Figure 8d), and the 

pressure differential between the Icelandic low and Azores high is large (positive NAO; stronger 

westerlies/more-stable polar vortex), Southwestern Ohio observes around 10C warmer than 

average temperatures most of the time (71%).  

This may indicate that the polar jet stream is likely to stay north of southwest Ohio, and the 

pacific jet stream may move up into the Midwest when the NAO index is positive and the MEI 

and PDO indices are negative. Conversely, this may also conclude that when the NAO index is 

negative and the MEI and PDO indices are positive the polar jet stream is more likely to drop 

down as low as southwest Ohio and the pacific jet stream may stay farther south of the Midwest. 

This hypothesis could be the premise of furthering research in the atmospheric sciences in future 

studies. 

VI.B. Precipitation 

Ritzi et al. (2021) found that El Niño winters had statistically-significantly less precipitation. 

However, ENSO cycles only explained 3% of the variance in precipitation. The results for each 

individual perturbation added in this study (NAO, PDO, AMO) have either an inconsistent slope, 

p-value above 0.05, or a negligible R2 value, and do not support the respective hypothesis for an 

effect associated with those perturbations. However, including MEI with NAO, PDO, and AMO 

in the regression model here gave a slight increase in the variance explained from 3% (with 



49 
 

ENSO alone) to 7%. In this multivariate model only the PDO and NAO indices had p-values 

below 0.05. These results give evidence that the influences of NAO, ENSO, PDO, and AMO on 

precipitation were much less than their influences on temperature, if influences exist. 

VI.C. Implications 

 Those involved in agriculture, in water management, in understanding ecological 

stressors caused by changes in temperature and precipitation in Ohio, or any other activity aided 

by weather forecasting may benefit if knowing the NAO, ENSO and PDO conditions in late fall 

has predicative implications for the ensuing winter weather. For example, one of the most 

common natural disasters across the globe are floods (Emerton et al., 2016), and therefore 

accurate flood forecasting is of high importance. For example, the Miami Conservancy District 

(MCD) protects communities of Southwest Ohio from flooding through maintaining dams and 

levees and monitoring water levels. When winter temperatures are lower than usual, the ground 

is more likely to freeze, which can lead to increased runoff into the rivers (Niu et al., 2006), and 

when winter precipitation is higher than usual, it can lead to an increased snowmelt in the spring. 

In either case, the MCD would benefit from knowing information gathered from this research. 

Furthermore, improved predictions of temperature and precipitation can improve farming 

practices in an agricultural society, and hopefully lead to increased crop yield or less costly crop 

management.  

VI.D. Future Work 

In the future, studies expanding the geographic scope to more locations could answer 

questions like what the geographical extent of these weather anomalies is. For example, the 

USHCN has collected a century worth of precipitation and temperature records from several 

stations in Kentucky and Michigan that would allow for discerning if the results of this study are 

only locally existent, or if similar patterns extend into areas surrounding Southwestern Ohio. 
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Also, studies that consider the changing behavior of these ocean-atmospheric perturbations could 

determine how these anomalies change with the altering of these ocean-atmospheric phenomena 

over time. For instance, Capotondi et al. (2015) looked at the differing ENSO patterns and 

grouped years with eastern Pacific (EP) anomalies against years with central Pacific (CP) 

anomalies. By separating ENSO into CP-El Nino/La Nina and EP-El Nino/La Nina one could 

look for differences in the observed weather patterns and associated hydrologic effect. 

Furthermore, the results from this study statistically support the existence of some 

teleconnections and gives motivation for more work in the atmospheric sciences on the actual 

physical mechanisms, which may explain why NAO affects temperature but not precipitation in 

the study area. Clearly there is still much work that needs to be done in exploring how these 

teleconnection patterns have changed, are changing, and will change, not only globally but in 

specific watersheds as well, so more informed decisions about water management, agricultural 

use, and weather forecasting can be made.  
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VII.  CONCLUSIONS 

 Winter temperature and precipitation in Southwest Ohio from 121 winters between 1896 

and 2016 were examined for anomalies attributable to teleconnections with large scale 

atmospheric perturbations caused by the El Niño Southern Oscillation (ENSO), North Atlantic 

Oscillation (NAO), Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation 

(AMO). The record of winter temperature gives evidence of a teleconnection with the NAO, 

ENSO, and PDO patterns, with the strongest link being for phases of the NAO (explaining 14% 

of variance alone). The majority of winters occurring during a positive-NAO-phase had mean 

monthly temperature warmer than the century long mean (CLM), and the majority of negative-

NAO-phase winters had colder temperatures. The difference in temperature between positive and 

negative NAO phase winters was 0.82 oC, and the difference is statistically significantly different 

at the p = 0.0005 level. Furthermore, winters are increasingly warmer when NAO is increasingly 

positive and increasingly colder when NAO is increasingly negative (regression model with p = 

E-5). This teleconnection is the strongest when NAO is out of phase with ENSO and PDO. For 

example, the 21 winters when the NAO phase was positive and ENSO and PDO phases were 

negative (condition A) were 1.73 oC warmer on average than the 12 winters when NAO was 

negative and ENSO and PDO were positive (condition B), and the difference is statistically 

significantly different at the p = 0.02 level. The warmest winter on record (mean-monthly 

temperature of 6.9 oC) occurred under condition A, while the coldest (5.2 oC) occurred under 

condition B. Furthermore, it has been statistically significantly warmer most of the time (71%), 

by about 1 oC above normal during condition A, and about 1 oC colder most of the time (83%) 

during condition B, and the NAO, ENSO and PDO variations explain 25% of the overall 

variance in mean winter temperature (multi-regression model with p = 0.02). The mean winter 

temperature metric shows the largest effect, followed by the minimum-month metric, and the 
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maximum month metric shows the least effect. The record does not give evidence for an 

influence on winter temperature by the AMO.  

 Consistent with prior studies, mean monthly precipitation has been 5 cm less during El 

Nino events, with the decrease increasing with the strength of the El Nino, but a regression 

model for this influence only explains 3% of the variance in winter precipitation (Ritzi et al., 

2021). Considering the additive effect of all four perturbations in the multi-regression model 

only slightly increased the variance explained to 7%.  Thus, the record of winter precipitation 

during this time gives evidence that the influences of NAO, ENSO, PDO, and AMO on 

precipitation were much less than their influences on temperature, if influences exist.  

  

 

 

 

 

 

 

 

 

 

 



53 
 

REFERENCES 

Bai, X., J. Wang, C. Sellinger, A. Clites, and R. Assel (2012), Interannual variability of Great 

Lakes ice cover and its relationship to NAO and ENSO, J. Geophys. Res., 117, C03002, 

doi:10.1029/2010JC006932. 

Balvanz, A., Gallus, W., (2017). Effects of the North Atlantic Oscillation on Snow in the 

Midwest. Meteorology Senior Thesis. 20. https://lib.dr.iastate.edu/mteor_stheses/20 

Birkel, S. D., Mayewski, P. A., Maasch, K. A., Kurbatov, A. V, and Lyon, B., (2018), Evidence 

for a volcanic underpinning of the Atlantic multidecadal oscillation, npj Clim. Atmos. 

Sci., 24; doi:10.1038/s41612-018-0036-6 

Booth, R. K., Kutzbach, J. E., Hotchkiss, S. C., and Bryson, R. A., (2006), A reanalysis of the 

relationship between strong westerlies and precipitation in the Great Plains and Midwest 

regions of North America, Climate Change, 76, 427–441, doi:10.1007/s10584-005-9004-

3 

Börgel, F., Frauen, C., Neumann, T. and Markus Meier, H. E. (2020). The Atlantic Multidecadal 

Oscillation controls the impact of the North Atlantic Oscillation on North European 

climate. Environmental research letters, 15(10), s. 104025, doi:10.1088/1748-

9326/aba925 

Budikova, D., (2005), Impact of the Pacific Decadal Oscillation on relationships between 

temperature and the Arctic Oscillation in the USA in winter, Clim. Res., 1 (29), 199–208 

Capotondi, A., Wittenberg, A. T., Newman, M., Lorenzo, E. D., Yu, J., Braconnot, P., Cole, J., 

Dewitte, B., Giese, B., Guilyardi, E., Jin, F., Karnauskas, K., Kirtman, B., Lee, T., 

https://lib.dr.iastate.edu/mteor_stheses/20


54 
 

Schneider, N., Xue, Y., and Yeh, S. (2015). Understanding Enso Diversity. Bull. Am. 

Meteorol. Soc., 96(6), 921–938. Doi:10.1175/BAMS-D-13-00117.1 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: 

Lawrence Erlbaum Associates, 400 p., ISBN 13: 9780805802832. 

Davini, P., Hardenberg, J. V., and Corti, S., (2015), Tropical origin for the impacts of the 

Atlantic Multidecadal Variability on the Euro-Atlantic climate, Eniron. Res. Lett., 10, 

094010, doi:10.1088/1748-9326/10/9/094010 

Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A. H., Wood, A. W., 

Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C., Baugh, C. A., and Cloke, H. L., 

(2016), WIREs Water, 3, 391–418. doi: 10.1002/wat2.1137 

Enfield, D. B., Mestas-Nuñez, A. M. and Trimble, P. J. (2001). The Atlantic Multidecadal 

Oscillation and its relation to rainfall and river flows in the continental U.S.. Geophysical 

research letters, 28(10), s. 2077–2080. doi:10.1029/2000gl012745. 

Feldstein, S. B., (2000), The timescale, power spectra, and climate noise properties of 

teleconnection patterns. J. Clim., 13, 4430–4440. 

Feldstein, S. B., (2003), The dynamics of NAO teleconnection pattern growth and decay. Q. J. R. 

Meteorol. Soc., 129, 901–924. 

Felis, T., Merkel., U., Asami, R., Deschamps, P., Hathorne, E. C., Kölling, M., Bard, E., 

Cabioch, G., Durand, N., Prange, M., Schulz, M., Cahyarini, S. Y., and Pfeiffer, M., 

(2012), Pronounced interannual variability in tropical South Pacific temperatures during 

Heinrich Stadial 1, Nat. Commun., 3 (965), doi:10.1038/ncomms1973 



55 
 

Feng, Y., Chen, X., and Tung, K., (2020), ENSO diversity and the recent appearance of Central 

Pacific ENSO, Clim. Dyn., 54, 413–433, https://doi.org/10.1007/s00382-019-05005-7 

Gabric, L., Keeney, H. J., Pytlak, E. S., [date unknown], Climatological effects of the El Niño-

Southern Oscillation in the lower Great Lakes and Ohio Valley, NOAA, National 

Weather Service, Cleveland (OH) Weather Forecast Office: El Niño & the Lower Great 

Lakes and Ohio Valley. 

Garrison, T., (2010). Oceanography An Invitation to Marine Science, 7th Ed., Belmont, CA: 

Brooks/Cole, 2010. 

Hall, R., Erdélyi, R., Hanna, E., Jones, J. M., and Scaife, A. A. (2015). Drivers of North Atlantic 

Polar Front jet stream variability. Int J Climatol., 35, 1697–1720 doi:10.1002/joc.4121 

Haynes, W., (2013), Tukey’s Test. In: Dubitzky, W., Wolkenhauer, O., Cho, K. H., and Yokota, 

H., (eds) Encyclopedia of Systems Biology. Springer, New York, NY. 

https://doi.org/10.1007/978-1-4419-9863-7_1212 

Held, I. M., and Hou, A. Y. (1980). Nonlinear Axially Symmetric Circulations in a Nearly 

Inviscid Atmosphere. J. Atmos. Sci., 37, 515–533 

Hoskins B. J., and Valdes P. J., (1990). On the existence of storm tracks. J. Atmos. Sci., 47, 

1854–1864 

Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures 

and Precipitation. Science, 269, 676–679. https://www.jstor.org/stable/2888966 

https://doi.org/10.1007/s00382-019-05005-7
https://doi.org/10.1007/978-1-4419-9863-7_1212
https://www.jstor.org/stable/2888966


56 
 

Johnson, Z. F., Chikamoto, Y., Wang, S. Y., McPhaden, M. J., and Mochizuki, T. (2020). Pacifc 

decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. 

Clim. Dyn., 55, 789–811 https://doi.org/10.1007/s00382-020-05295-2 

Kennedy, C. and Lindsey, R. (2014) How is the polar vortex related to the Arctic Oscillation? 

NOAA, https://www.climate.gov/news-features/event-tracker/how-polar-vortex-related-

arctic-oscillation 

Kerr, R. A., (2000), A North Atlantic climate pacemaker for the centuries, Science, 288, 1984–

1985 

Knight, J. R., Folland, C. K. and Scaife, A. A. (2006). Climate impacts of the Atlantic 

Multidecadal Oscillation. Geophysical research letters, 33(17). 

doi:10.1029/2006gl026242 

Kutner, M. H., Nachtsheim, C. T., Neter, J., Li, W., (2013), Applied Linear Statistical Models, 

5th Ed., India, McGraw Hill, 2013. 

Kwon, Y.-H., Seo, H., Ummenhoffer, C. C., and Joyce, T. M., (2020), Impact of Multidecadal 

Variability in Atlantic SST on Winter Atmospheric Blocking, J. Clim., 33, 867–892. 

Li, J., Sun, C., and Jin, F., (2013), NAO implicated as a predictor of Northern Hemisphere mean 

temperature multidecadal variability, Geophys. Res. Lett., 40, 5497–5502. 

Liberto, T. D. (2016). Going out for ice cream: a first date with the Pacific Decadal Oscillation, 

NOAA, https://www.climate.gov/news-features/blogs/enso/going-out-ice-cream-first-

date-Pacific-decadal-oscillation 

https://doi.org/10.1007/s00382-020-05295-2
https://www.climate.gov/news-features/event-tracker/how-polar-vortex-related-arctic-oscillation
https://www.climate.gov/news-features/event-tracker/how-polar-vortex-related-arctic-oscillation
https://www.climate.gov/news-features/blogs/enso/going-out-ice-cream-first-date-pacific-decadal-oscillation
https://www.climate.gov/news-features/blogs/enso/going-out-ice-cream-first-date-pacific-decadal-oscillation


57 
 

Lindsey, R. and Dahlman, L. (2009). Climate Variability: North Atlantic Oscillation, NOAA, 

https://www.climate.gov/news-features/understanding-climate/climate-variability-north-

atlantic-oscillation 

Lindsey, R. (2011). Winter Temperatures Influenced by North Atlantic Oscillation, La Niña. 

NOAA, https://www.climate.gov/news-features/event-tracker/winter-temperatures-

influenced-north-atlantic-oscillation-la-niña 

Lindsey, R., (2016), Climate variability: oceanic Niño index, NOAA, 

https://www.climate.gov/news-features/understanding-climate/climate-variability-

oceanic-niño-index 

Lindsey, R. (2017). How El Niño and La Niña affect the winter jet stream and U.S. climate. 

NOAA, https://www.climate.gov/news-features/featured-images/how-el-niño-and-la-

niña-affect-winter-jet-stream-and-us-climate 

Lindsey, R. (2021). Understanding the Arctic Polar Vortex. NOAA, 

https://www.climate.gov/news-features/understanding-climate/understanding-arctic-

polar-vortex 

Manney, G. L., Hegglin, M. I., Daffer, W. H., Schwartz, M. J., Santee, M. L., and Pawson, S., 

(2014), J. Clim., 27, 3248–3271. 

Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C., 1997. A Pacific 

interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. 

Soc. 78(6), 1069–1080. 

Mantua, N. J. and Hare, S. R. (2002). The Pacific Decadal Oscillation. J. Oceanogr., 58, 35–44. 

https://www.climate.gov/news-features/understanding-climate/climate-variability-north-atlantic-oscillation
https://www.climate.gov/news-features/understanding-climate/climate-variability-north-atlantic-oscillation
https://www.climate.gov/news-features/event-tracker/winter-temperatures-influenced-north-atlantic-oscillation-la-niña
https://www.climate.gov/news-features/event-tracker/winter-temperatures-influenced-north-atlantic-oscillation-la-niña
https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-niño-index
https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-niño-index
https://www.climate.gov/news-features/featured-images/how-el-niño-and-la-niña-affect-winter-jet-stream-and-us-climate
https://www.climate.gov/news-features/featured-images/how-el-niño-and-la-niña-affect-winter-jet-stream-and-us-climate
https://www.climate.gov/news-features/understanding-climate/understanding-arctic-polar-vortex
https://www.climate.gov/news-features/understanding-climate/understanding-arctic-polar-vortex


58 
 

Mccabe, G. J., Palecki, M. A. and Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences 

on multidecadal drought frequency in the United States. Proceedings of the national 

academy of sciences, 101(12), s. 4136–4141. doi:10.1073/pnas.0306738101 

Mitra, S., Srivastava, P., Singh, S., Yates, D., (2014), Effect of ENSO induced climate variability 

on groundwater levels in the lower Apalachicola-Chattahoochee-Flint River Basin, 

Trans. ASABE, 57(5), 1393–1403. https://doi.org/10.13031/trans.57.10748 

Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Lorenzo, E. D., Mantua, N. 

J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D. J., Phillips, A. S., 

Scott, J. D., and Smith, C. A., (2016), The Pacific Deacadal Oscillation, Revisited, Bull. 

Amer. Meteor. Soc., 29, 4399–4427, doi:10.1175/JCLI-D-15-0508.1 

Nigam, S., and Baxter, S., (2015), Teleconnections. In: Encyclopedia of Atmospheric Sciences, 

Elsevier, Amsterdam, 90–109, https://doi.org/10.1016/B978-0-12-382225-3.00400-X 

Niu, G., and Yang, Z., (2006), Effects of Frozen Soil on Snowmelt Runoff and Soil Water 

Storage at a Continental Scale, J. Hydrometeorol., 7(5), 937–952. 

[NOAA CPC] NOAA Climate Prediction Center, 2012, North Atlantic Oscillation (NAO) 

[NOAA Online Webpage] [Accessed 2022 April 3]. 

https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml 

[NOAA NCEI] NOAA National Centers for Environmental Information. [date unknown a]. 

Climate Data Online (CDO) [NOAA online database]. [accessed 2021 Feb 18]. 

https://www.ncdc.noaa.gov/cdo-web/ 

https://doi.org/10.13031/trans.57.10748
https://doi.org/10.1016/B978-0-12-382225-3.00400-X
https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
https://www.ncdc.noaa.gov/cdo-web/


59 
 

[NOAA NCEI] NOAA National Centers for Environmental Information. [date unknown b]. U.S. 

Historical Climatology Network (USHCN) [NOAA online database]. [Accessed 2022 

April 3]. https://www.ncei.noaa.gov/products/land-based-station/us-historical-

climatology-network 

[NOAA PSL] NOAA Physical Science Lab, [date unknown], AMO (Atlantic Multidecadal 

Oscillation) Index, [NOAA Online Database] [accessed 2022 April 3]. 

https://psl.noaa.gov/data/timeseries/AMO/ 

[NOAA PSL] NOAA Physical Science Lab, 2013, North Atlantic Oscillation (NAO), [NOAA 

Online Database] [accessed 2022 April 3]. 

https://psl.noaa.gov/gcos_wgsp/Timeseries/NAO/ 

[NOAA PSL] NOAA Physical Science Lab, 2018, Pacific Decadal Oscillation (PDO), [NOAA 

Online Database] [accessed 2022 April 3]. 

https://psl.noaa.gov/gcos_wgsp/Timeseries/PDO/ 

Panetta, R. L. and Held, I. M. (1988). Baroclinic eddy fluxes in a one-dimensional model of 

quasi-geostrophic turbulence. J. Atmos. Sci., 45(22): 3354–3365 

Riehl, H., (1962), Jet Streams of the Atmosphere, Report No. 32, Department of Atmospheric 

Science, Colorado State University, Fort Collins, Colorado. 

Ritzi, R. W., Jr., Roberson, L. M., and Bottomley, M., (2021), El Niño Southern Oscillation 

(1896 to 2016): Quantifying Effects on Winter Precipitation and Temperature in 

Southwest Ohio, USA, Ohio J. Sci., 121(2), 64–77. 

https://www.ncei.noaa.gov/products/land-based-station/us-historical-climatology-network
https://www.ncei.noaa.gov/products/land-based-station/us-historical-climatology-network
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/gcos_wgsp/Timeseries/NAO/
https://psl.noaa.gov/gcos_wgsp/Timeseries/PDO/


60 
 

Ropelewski, C. F. and Halpert, M. S. (1987). Global and regional scale precipitation patterns 

associated with the El Niño/Southern Oscillation. Mon. Weather Rev., 115(8), 1606–

1626. 

Ropelewski, C. F. and Halpert, M. S. (1989). Precipitation patterns associated with the high 

index phase of the Southern Oscillation. Journal of climate, 2(3), 268–284. 

Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik (2010), Northern Hemisphere winter 

snow anomalies: ENSO, NAO and the winter of 2009/10, Geophys. Res. Lett., 37, 

L14703, doi:10.1029/2010GL043830 

Shapiro, M. A., and Hampel, T. (1986). The Arctic Tropopause Fold. Mon. Weather Rev., 115, 

444–45453.  

Sung, M., An, S., Kim, B., and Woo, S., (2014), A physical mechanism of the precipitation 

dipole in the western United States based on PDO-storm track relationship, Geophys. 

Res. Lett., 41, 4719–4726, doi:10.1002/2014GL060711. 

Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., and Ropelewski, C., 

(1998), J. Geophys. Res., 103, 14291–14324. 

Vose, R. S, Applequist, S., Squires, M., Durre, I., Menne, M. J., Williams, C. N., Jr., Fenimore, 

C., Gleason, K., and Arndt, D., (2014), Improved Historical Temperature and 

Precipitation Time Series for U.S. Climate Divisions, J. Appl. Meterol. Climatol., 53, 

1232–1251. 

Wallace, J. M., and Gutzler, D. S., (1980), Teleconnections in the Geopotential Height Field 

during the Northern Hemisphere Winter, Mon. Weather. Rev., 109, 784–812. 



61 
 

Walker, G. T., E. W. Bliss, (1932), World Weather V. Mem. Roy. Meteor. Soc., 4, 53–84. 

Wanner, H., Brönnimann, S., Casty, C., Gyalistras. D., Luterbacher, J., Schmutz, C., Stephenson, 

D. B., and Xoplaki, E., (2001), North Atlantic Oscillation – Concepts and 

Studies. Surveys in geophysics, 22(4), s. 321–381. doi:10.1023/a:1014217317898 

Williams G. P. (1988), The dynamical range of global circulations – I, Clim. Dyn., 2, 205–260. 

Wilson E. B., (1927), Probable inference, the law of succession, and statistical inference. J. Am. 

Stat. Assoc. 22(158), 209–212, https://doi.org/10.1080/01621459.1927.10502953. 

Wolter, K., (2011), Extended Multivariate ENSO Index (MEI.ext), [NOAA webpage], Boulder 

(CO): NOAA Physical Sciences Laboratory (PSL). https://psl.noaa.gov/enso/mei.ext/ 

Wolter, K., (2018), Multivariate ENSO Index (MEI). [NOAA webpage], Boulder (CO): NOAA 

Physical Sciences Laboratory (PSL). https://psl.noaa.gov/enso/mei.old/mei.html 

Woolings, T., (2022), What is the jet stream?, NOAA, https://origin-east-01-drupal-

climate.woc.noaa.gov/news-features/blogs/enso/what-jet-stream 

Yang, S., Li, Z., Yu, J., Hu, X., Dong, W., and He, S., (2018), El Nino–Southern Oscillation and 

its impact in the changing climate, Nat. Sci. Rev., 5, 840–857. 

Zhao, H., and Wang, C., (2015), Interdecadal modulation on the relationship between ENSO and 

typhoon activity during the late season in the western North Pacific, Clim. Dyn., 

doi:10.1007/s00382-015-2837-1 

Zhang, R., and Delworth, T. L. (2007). Impact of the Atlantic Multidecadal Oscillation on North 

Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601 



62 
 

Zhang, Y., Wallace, J. M. and Battisti, D. S. (1997). ENSO-like Interdecadal Variability: 1900–

93. Journal of climate, 10(5), s. 1004–1020. doi:10.1175/1520-

0442(1997)010<1004:eliv>2.0.co;2 

 

 

 

 

 

 


	Has Winter Weather in Southwest Ohio Been Affected by the El Niño Southern Oscillation, the North Atlantic Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation?
	Repository Citation

	tmp.1664562243.pdf.anZO_

