
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2022

Low-Power, Low-Cost, & High-Performance Digital Designs : Multi-Low-Power, Low-Cost, & High-Performance Digital Designs : Multi-

bit Signed Multiplier design using 32nm CMOS Technology bit Signed Multiplier design using 32nm CMOS Technology

N V Vijaya Krishna Boppana
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Engineering Commons

Repository Citation Repository Citation
Boppana, N V Vijaya Krishna, "Low-Power, Low-Cost, & High-Performance Digital Designs : Multi-bit
Signed Multiplier design using 32nm CMOS Technology" (2022). Browse all Theses and Dissertations.
2643.
https://corescholar.libraries.wright.edu/etd_all/2643

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2643&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2643?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2643&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

LOW-POWER, LOW-COST, & HIGH-PERFORMANCE

DIGITAL DESIGNS: MULTI-BIT SIGNED MULTIPLIER

DESIGNS USING 32NM CMOS TECHNOLOGY

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

By

N V VIJAYA KRISHNA BOPPANA

M.S.Eg., Wright State University, USA, 2014

B.E., Andhra University, India, 2011

2022

Wright State University

Copyright © 2022 All Rights Reserved

N V Vijaya Krishna Boppana @ Wright State University

2022

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

July 27, 2022

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY

SUPERVISION BY N V Vijaya Krishna Boppana ENTITLED Low-Power, Low-Cost,

& High-Performance Digital Designs: Multi-bit Signed Multiplier Designs using 32nm

CMOS Technology BE ACCEPTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

Saiyu Ren, Ph.D.

Dissertation Director

Michael Saville, Ph.D., P.E.

Chair, Electrical Engineering

Barry Milligan, Ph.D.

Dean of the Graduate School

Committee on Final Examination:

Raymond E. Siferd, Ph.D.

Henry Chen, Ph.D.

Marian K. Kazimierczuk, Ph.D.

Yan Zhuang, Ph.D.

iv

Abstract

Boppana, N V Vijaya Krishna. Ph.D., Department of Electrical Engineering, Wright State

University, 2022. “Low-Power, Low-Cost, & High-Performance Digital Designs: Multi-

bit Signed Multiplier design using 32nm CMOS Technology”

 Binary multipliers are ubiquitous in digital hardware. Digital multipliers along

with the adders play a major role in computing, communicating, and controlling devices.

Multipliers are used majorly in the areas of digital signal and image processing, central

processing unit (CPU) of the computers, high-performance and parallel scientific

computing, machine learning, physical layer design of the communication equipment, etc.

The predominant presence and increasing demand for low-power, low-cost, and high-

performance digital hardware led to this work of developing optimized multiplier designs.

Two optimized designs are proposed in this work. One is an optimized 8 x 8 Booth

multiplier architecture which is implemented using 32nm CMOS technology. Synthesis

(pre-layout) and post-layout results show that the delay is reduced by 24.7% and 25.6%

respectively, the area is reduced by 5.5% and 15% respectively, the power consumption

is reduced by 21.5% and 26.6% respectively, and the area-delay-product is reduced by

28.8% and 36.8% respectively when compared to the performance results obtained for

the state-of-the-art 8 x 8 Booth multiplier designed using 32nm CMOS technology with

1.05 V supply voltage at 500 MHz input frequency. Another is a novel radix-8 structure

with 3-bit grouping to reduce the number of partial products along with the effective

v

partial product reduction schemes for 8 x 8, 16 x 16, 32 x 32, and 64 x 64 signed

multipliers. Comparing the performance results of the (synthesized, post-layout) designs

of sizes 32 x 32, and 64 x 64 based on the simple novel radix-8 structure with the

estimated performance measurements for the optimized Booth multiplier design

presented in this work, reduction in delay by (2.64%, 0.47%) and (2.74%, 18.04%)

respectively, and reduction in area-delay-product by (12.12%, -5.17%) and (17.82%,

12.91%) respectively can be observed. With the use of the higher radix structure, delay,

area, and power consumption can be further reduced. Appropriate adder deployment,

further exploring the optimized grouping or compression strategies, and applying more

low-power design techniques such as power-gating, multi-Vt MOS transistor utilization,

multi-VDD domain creation, etc., help, along with the higher radix structures, realizing

the more efficient multiplier designs.

vi

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Digital Multiplier.. 1

1.2 Research motivation and objective .. 2

2 Literature Review .. 4

2.1 Digital Multiplier.. 4

2.2 Multiplier Architectures ... 5

2.2.1 Array Multiplier .. 5

2.2.2 Tree Multiplier [6] .. 7

2.2.2.1 Wallace Tree Multiplier (WTM) [7] ... 8

2.2.2.2 Dadda Tree Multiplier [20] .. 14

2.2.3 Booth Multiplier.. 20

2.2.4 Baugh-Wooley Two’s Complement Signed Multiplier [32] 22

2.2.5 Vedic Multiplier .. 28

3 Optimization of radix-4 8 x 8 Booth multiplier ... 30

3.1 Introduction .. 30

3.2 Low power-delay-product radix-4 8 x 8 Booth multiplier [42] 31

3.3 Low-cost and high-performance radix-4 8 x 8 Booth multiplier [41]................ 34

3.3.1 Booth encoder optimization & partial product generation 37

3.3.2 Reduction of Partial Products using Two-Stage Parallel Addition 41

3.3.3 B2C optimization .. 45

4 Proposed Multiplier Architecture based on radix-8 (3-bit grouping) structure

 48

vii

4.1 8 x 8 signed multiplication using the proposed design : 49

4.2 16 x 16 signed multiplication using the proposed design : 58

4.3 32 x 32 signed multiplication using the proposed design : 70

4.4 64 x 64 signed multiplication using the proposed design : 75

4.5 Results & Performance Comparison .. 81

5 Conclusions and Future Work .. 100

5.1 Conclusion .. 100

5.2 Major Contributions ... 101

5.3 Future Work ... 102

5.4 Publications .. 103

6 List of Abbreviations ... 105

7 References ... 108

viii

LIST OF FIGURES

FIGURE 1. EXAMPLE OF A BINARY MULTIPLICATION .. 5

FIGURE 2. 4-BIT X 4-BIT ARRAY MULTIPLIER .. 7

FIGURE 3. 4-BIT X 4-BIT TREE MULTIPLIER [6] .. 8

FIGURE 4. WALLACE TREE MULTIPLIER USING CARRY SAVE ADDERS [6] 9

FIGURE 5. DOT DIAGRAM FOR AN 8-BIT X 8-BIT WALLACE TREE MULTIPLIER [8] 10

FIGURE 6 DELAY DIAGRAM OF AN 8 X 8 WALLACE MULTIPLIER WITH RCA AS A FINAL

ADDER [8] .. 12

FIGURE 7. DOT DIAGRAM FOR AN 8-BIT X 8-BIT DADDA TREE MULTIPLIER [8] 15

FIGURE 8. DELAY DIAGRAM OF AN 8 X 8 DADDA MULTIPLIER WITH RCA AS FINAL ADDER

[8] .. 18

FIGURE 9 3-BIT GROUPING PERFORMED IN RADIX-4 BOOTH MULTIPLIER 20

FIGURE 10 CONVENTIONAL TWO'S COMPLEMENT BINARY MULTIPLICATION [32] 23

FIGURE 11 POSITIVE AND NEGATIVE SEGREGATION OF PP BITS [32] .. 26

FIGURE 12 BAUGH-WOOLEY ALGORITHM WITH ALL POSITIVE PP BITS [32] 28

FIGURE 13. (A) CONVENTIONAL BOOTH MULTIPLIER [4], (B) OPTIMIZED LOW PDP BOOTH

MULTIPLIER IN [43] [42] .. 31

FIGURE 14. FURTHER OPTIMIZED LOW-COST AND HIGH-PERFORMANCE 8 X 8 BOOTH

MULTIPLIER WITH PARALLEL ADDITIONS IN [41] .. 34

FIGURE 15 RADIX-4 8X8 SIGNED BOOTH MULTIPLIER WITH PARALLEL ENCODING AND

ADDITIONS IN [41] .. 35

FIGURE 16 LAYOUT OF THE MODIFIED RADIX-4 8X8 SIGNED BOOTH MULTIPLIER WITH

PARALLEL ENCODING AND ADDITIONS [41] .. 36

file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225541
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225542
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225543
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225544
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225545
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225546
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225546
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225547
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225548
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225548
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225549
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225550
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225551
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225552
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225553
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225553
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225554
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225554
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225555
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225555
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225556
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225556

ix

FIGURE 17 FIRST STAGE PP GENERATION IN [41] .. 38

FIGURE 18 (A) BOOTH ENCODER IN [43] [42], (B) OPTIMIZED BOOTH ENCODER IN [41] 39

FIGURE 19 (A) 2ND, 3RD, AND 4TH PP GENERATION IN [41], (B) PP GENERATION IN [43] [42]

 ... 41

FIGURE 20 OPTIMIZED RADIX-4 SIGNED 8 X 8 BOOTH MULTIPLIER WITH TWO-STAGE

ARCHITECTURE IN [41] ... 43

FIGURE 21 (A) 9-BIT SQRT CS-CLA, (B) 10-BIT SQRT CS-CLA, (C) 11-BIT SQRT CS-

CLA [41] .. 44

FIGURE 22. (A) OPTIMIZED B2C USING BUBBLE PUSHING IN [42], (B) BETTER OPTIMIZED

B2C IN [41] .. 46

FIGURE 23 EXAMPLE-1 CALCULATION OF THE 8 X 8 SIGNED MULTIPLICATION USING THE

PROPOSED RADIX-8 ARCHITECTURE .. 51

FIGURE 24 EXAMPLE-2 CALCULATION OF THE 8 X 8 SIGNED MULTIPLICATION USING THE

PROPOSED RADIX-8 ARCHITECTURE .. 53

FIGURE 25 PROPOSED 8 X 8 SIGNED MULTIPLIER WITH RADIX-8 ARCHITECTURE 55

FIGURE 26 LAYOUT OF THE PROPOSED 8 X 8 MULTIPLIER .. 58

FIGURE 27 EXAMPLE-1 CALCULATION OF THE 16 X 16 SIGNED MULTIPLICATION USING THE

PROPOSED RADIX-8 ARCHITECTURE .. 60

FIGURE 28 EXAMPLE-2 CALCULATION OF THE 16 X 16 SIGNED MULTIPLICATION USING THE

PROPOSED RADIX-8 ARCHITECTURE .. 63

FIGURE 29 PROPOSED 16 X 16 SIGNED MULTIPLIER WITH RADIX-8 ARCHITECTURE 66

FIGURE 30 LAYOUT OF THE PROPOSED 16 X 16 MULTIPLIER .. 69

file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225557
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225558
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225559
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225559
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225560
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225560
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225561
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225561
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225562
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225562
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225563
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225563
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225564
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225564
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225565
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225566
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225567
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225567
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225568
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225568
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225569
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225570

x

FIGURE 31 STAGE-0 OF THE PROPOSED 32 X 32 SIGNED MULTIPLIER WITH RADIX-8

ARCHITECTURE ... 70

FIGURE 32 STAGE-1 OF THE PROPOSED 32 X 32 SIGNED MULTIPLIER WITH RADIX-8

ARCHITECTURE ... 71

FIGURE 33 STAGES 2, 3, AND 4 OF THE PROPOSED 32 X 32 SIGNED MULTIPLIER WITH RADIX-

8 ARCHITECTURE .. 73

FIGURE 34 LAYOUT OF THE PROPOSED 32 X 32 MULTIPLIER .. 74

FIGURE 35 STAGE-0 OF THE PROPOSED 64 X 64 SIGNED MULTIPLIER WITH RADIX-8

ARCHITECTURE ... 75

FIGURE 36 STAGE-1 OF THE PROPOSED 64 X 64 SIGNED MULTIPLIER WITH RADIX-8

ARCHITECTURE ... 76

FIGURE 37 STAGE-2 OF THE PROPOSED 64 X 64 SIGNED MULTIPLIER WITH RADIX-8

ARCHITECTURE ... 77

FIGURE 38 STAGES 3, 4, AND 5 OF THE PROPOSED 64 X 64 SIGNED MULTIPLIER WITH RADIX-

8 ARCHITECTURE .. 79

FIGURE 39 LAYOUT OF THE PROPOSED 64 X 64 MULTIPLIER .. 80

FIGURE 40 OPTIMIZED 8-BIT B2C IN [15] USED IN THE 8X8 MULTIPLIER PROPOSED IN THIS

WORK ... 83

FIGURE 41 BEC LIKE STRUCTURE WITH WIDTHS (A) 3-BIT, (B) 4-BIT, (C) 6-BIT, AND (D) 10-

BIT .. 84

file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225571
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225571
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225572
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225572
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225573
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225573
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225574
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225575
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225575
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225576
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225576
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225577
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225577
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225578
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225578
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225579
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225580
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225580
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225581
file:///D:/Proposal_2021/MULT_HPC_PP/Dissertation/Dissertation-2022_v5.docx%23_Toc108225581

xi

LIST OF TABLES

TABLE 2.1. DELAY AND COMPLEXITY COMPARISONS FOR VARIOUS SIZES OF DADDA AND

WALLACE MULTIPLIERS WITH RCA AND CLA PRESENTED IN [8] .. 19

TABLE 2.2 RADIX-4 BOOTH ENCODING SCHEME [4] ... 21

TABLE 3.1 FIRST STAGE ENCODING SCHEME [41] .. 37

TABLE 3.2 COMPARISON OF THE SYNTHESIS (PRE-LAYOUT) RESULTS FOR THE B2C DESIGNS

[41] .. 47

TABLE 4.1 BOOTH MULTIPLIER WITH BINARY TREE STYLE REDUCTION OF PARTIAL

PRODUCTS USING ADDERS ... 48

TABLE 4.2 PROPOSED RADIX-8 (3-BIT) GROUPING TO SEPARATE TRIVIAL AND NON-TRIVIAL

COMPUTATIONS .. 49

TABLE 4.3 SYNTHESIS (PRE-LAYOUT) RESULTS FOR 8-BIT AND 16-BIT B2C IN [41] 82

TABLE 4.4 SYNTHESIS (PRE-LAYOUT) RESULTS FOR THE SUB-COMPONENTS USED IN THE 8 X

8, 16 X 16, 32 X 32, AND 64 X 64 SIGNED MULTIPLIER DESIGNS PROPOSED 86

TABLE 4.5 SYNTHESIS AND POST-LAYOUT RESULTS FOR THE PROPOSED DESIGN 90

TABLE 4.6 SYNTHESIS AND POST-LAYOUT RESULTS FOR THE PROPOSED DESIGNS

SYNTHESIZED AT HIGHEST FREQUENCY .. 92

TABLE 4.7 COMPARISON OF TOTAL DYNAMIC POWER (TDP) AND CELL LEAKAGE POWER

(CLP) FOR THE PROPOSED SYNTHESIZED AND POST-LAYOUT DESIGNS OF VARIOUS

SIZES ... 94

TABLE 4.8 PERFORMANCE COMPARISON OF THE MULTIPLIERS .. 96

xii

Acknowledgements

First and foremost, I would like to acknowledge and thank my dissertation advisor and

dissertation committee chair Dr. Saiyu Ren. I would also like to especially thank Dr.

Saiyu Ren for understanding, supporting, and encouraging my strong desire for an

independent and broad range of study/research. Thanks to be with me for the last 9+

years, since the beginning of my first master’s career at Wright State University, for

listening to my ideas, for the initial years of support and encouragement towards my

teaching career, for appreciating and expressing exciting views on my teaching and

research at various occasions, and for spending time on reviewing my work, documents,

and articles and providing the feedback. I would also like to thank my dissertation

committee members, Dr. Ray Siferd, Dr. Henry Chen, Dr. Marian K. Kazimierczuk, and

Dr. Yan Zhuang, and the external observer, Dr. Tarun Goswami, for spending their

valuable time and effort to review my work and provide feedback.

I would like to thank all the faculty members, Dr. Saiyu Ren, Dr. Ray Siferd, Dr. John

Marty Emmert, Dr. Henry Chen, and Dr. LaVern A. Starman, who taught VLSI-related

subjects in my master’s in Electrical Engineering career. I would also like to thank all the

faculty members, Dr. Jack S. Jean, Dr, Pradeep Misra, Dr. Ronald Taylor, Dr. Yan

Zhuang, Instructor Dennis Hance, Dr. Yong Pei, Dr. John Nehrbass, Dr. Nikolaos G.

Bourbakis, and Dr. Jeff Clark, who taught other subjects in my student career, Ph.D. in

EE and second masters in CEG.

I would like to especially thank Dr. Raymond E. Siferd for the encouragement provided

and I always keep in mind the valuable suggestions. I would also like to especially thank

Dr. Marian K. Kazimierczuk for sharing some of his life experiences, achievements, and

suggestions related to studies and research, which I keep in mind forever.

A special thanks to a very important person, Mike VanHorn (Senior Computer Systems

Administrator) in my student, teaching, and research career. I cannot express in words

how thankful I am to Mike (a very knowledgeable, humble, great human being, and an

invaluable asset to WSU) for the last 9+ years of continuous help and support on

numerous occasions in fixing any hardware and software-related issues. I would like to

thank Simon A. (Tony) Tritschler, laboratory manager, for the help he provided me being

a lab instructor and a research student.

I would like to thank the EE department chairs, Dr. Kefu Xue (before 2014) and Dr.

Brian D. Rigling (2014-2017), and the current dean of the CECS, Dr. Brian D. Rigling. I

would also like to thank especially the EE department staff, including academic advisors,

Dr. Ryan Hamilton, Lori Luckner, Vickie Slone, Nickey Brown, Elizabeth Anne Generas,

and Amanda Ellen Steward. A special thanks to Vickie Slone and Amanda Ellen Steward

for their help in the final semesters of teaching and completion of the dissertation. I

xiii

would also like to thank the other staff members at Wright State University, Donna J.

Harris, Kimberly Ann Brumbaugh (DSO), Gwana Snell, Scott, and many others for their

help. I would like to thank Erika Gilles (Associate Director of Academic Affairs,

Graduate School) for the assistance provided at various occasions and for performing the

format check of this dissertation document.

Thanks to all the faculty members, Dr. Henry Chen, Dr. Saiyu Ren, Dr. John M. Emmert,

Instructor Dennis Hance, Dr. Gorman, Dr. Kefu Xue, Dr. Mike Saville, Dr. Pradeep

Misra, Dr. Robert Allen Myers, and Dr. Marian K. Kazimierczuk, for whom I taught the

labs for, for the trust, support, and appreciation. A very special thanks to my students

whom I taught labs/classes for. Thanks for the cooperation provided in the lab, for

making my teaching career so exciting and enjoyable, and for the love and appreciation. I

will cherish the memories, accumulated over the years, forever.

Finally, I would like to thank all my family members for the unparalleled love and

immense support. And, I would like to also thank the friends and well-wishers who

were/are/will be always loving me and being with me.

1

1 Introduction

1.1 Digital Multiplier

Addition and Multiplication are the most often used elemental components of

digital computing devices such as DSP, microprocessor, etc. Multiplier is the most used

computer arithmetic after addition and subtraction. DSPs use multipliers for frequently

used computationally intensive applications such as filtering: finite impulse response

(FIR) filter, infinite impulse response (IIR) filter, and adaptive filters of types of least

mean squares (LMS) filter and recursive least mean squares (RLS) filter; convolution:

linear and circular convolution, Fast Fourier Transform (FFT), audio/video codecs etc.

High performance computer hardware, CPUs, and GPUs, for scientific computing rely

majorly on use of these fundamental digital arithmetic. Digital signal processors spend

most of the time multiplying and requires more chip area of multipliers to meet the

performance requirements. Multipliers often contributes towards critical path delay which

in turn effects the throughput in case of pipelined designs and consumes more power in

applications such as multimedia and DSP. Demand for low power consuming portable

computing and communication devices such as smart watches, IoT devices, mobile

phones, laptops, PCs etc., comprise of signal processing algorithms and other

multiplication intense algorithms, has been increasing. Specifically, the global market for

wireless portable medical devices is going to see a huge growth in next five years.

According to the market research report [1], “The Global Portable Medical Devices

2

Market is estimated to be USD 38.1 Bn in 2021 and is expected to reach USD

68.24 Bn by 2027, growing at a CAGR of 10.2%.”, and according the report [2], “Global

portable medical devices market will reach $99.89 billion by 2030, growing by 9.8%

annually over 2020-2030 owing to the rise in demand for portable medical devices,

increase in geriatric population, growing incidences of chronic diseases, increasing

government support, rising R&D investment and technological advancement.”. “The

global wearable medical devices market size was valued at USD 16.6 billion in 2020. It is

expected to expand at a compound annual growth rate (CAGR) of 26.8% from 2021 to

2028. The growth of industries such as home healthcare and remote patient monitoring

devices is anticipated to influence market growth. In addition, increasing focus on fitness

and a healthy lifestyle orientation are also expected to impact the market.” [3] with the

revenue forecast in 2028 as USD 111.9 billion. The importance of need for inventing

multiplier algorithms is supported by the statement “At least one good reason for

studying multiplication and division is that there is an infinite number of ways of

performing these operations and hence there is an infinite number of PhDs (or expenses-

paid visits to conferences in the USA) to be won from inventing new forms of multiplier.”

by Alan Clements in the year 1986.

1.2 Research motivation and objective

As the usage of the digital hardware is getting increased, digital hardware become

ubiquitous and a part of the gadgets, appliances, or vehicles used by and for human. With

the advancements in chip manufacturing technologies such as 10nm, 7nm, and 5nm

nodes, the density of the transistors is increasing and hence the power dissipation. The

chip manufacturing technologies are getting matured, and the node sizes are tending to

3

approach the atomic sizes. With billions of people using multiple digital devices and a

huge number of digital devices deployed, for the direct use or for the indirect use, for the

people, and the advancements of new technologies such as digital health, Inter-of-Things

(IOTs), etc., the demand for the digital devices with a combination of one or more

performance attributes and cost attributes such as low-area, low-power, and high-speed

has been increasing. Low-power digital designs are in great demand for biomedical signal

processing. This work focuses on finding the solutions for low-cost and high-speed

designs at algorithmic level instead of exploring for an advanced node technology.

The objective of this work is to designing low-power, low-cost, and high-speed

signed integer multipliers. The research is started with the best algorithm, Booth

algorithm, for the signed number multiplication either to optimize the existing algorithm

or to find new architectures. The objective includes designing the optimized algorithms

using 32nm CMOS technology, performing synthesis, generating the post-layout, and

comparing the performance of the modified or proposed designs with the state-of-the-art

designs.

4

2 Literature Review

2.1 Digital Multiplier

This and the following subsection of this chapter presents the summary of the

literature study on multipliers with an emphasis on signed Booth multiplier algorithms.

An extensive work on optimization of multiplication circuits has been performed [4], [5]

and is continuing. Standard binary multiplication uses repeated shift and accumulate

routine. Therefore, the mechanisms to improve the multiplier speed involves dealing with

the combination of the following process: partial product generation (PPG) & Partial

product reduction (PPR), and acceleration of the accumulation of the shifted partial

products (PP). Smaller number of PPs require lesser number of resources to build and

hence reduces the design complexity, design area, and time & power required for the

accumulation process, i.e., minimization of power-delay product (PDP) and power-delay-

area (PDA) product which is also known as energy-area product (EAP). According to [5],

study of various implementations of shift/add multiplications leads to a conclusion to

come up with two ways to improve the speed of intrinsic multi-operand addition: high

radix multipliers to reduce the number of operands to be added, and tree and array

multipliers to compose multi-operand adders to minimize latency and/or maximize the

throughput.

The following notation adapted from [5] is used in this discussion of

multiplication algorithms:

5

𝑋 Multiplicand 𝑥𝑛−1𝑥𝑛−2…𝑥1𝑥0

(2.1)

𝑌 Multiplier 𝑦
𝑛−1

𝑦
𝑛−2

…𝑦
1
𝑦
0

(2.2)

𝑃 Product (𝑥 × 𝑦) 𝑝
2𝑛−1

𝑝
2𝑛−2

…𝑝
1
𝑝
0

(2.3)

2.2 Multiplier Architectures

Various binary multiplier architectures such as array and tree multipliers for

unsigned multiplication and the optimized booth algorithms for signed multiplication are

discussed in this section.

2.2.1 Array Multiplier

An array multiplier is a combinational circuit in the shape of parallelogram used

for multiplying two binary numbers, multiplicand (x) and multiplier (y), by using an

array of full adders (FA) and half adders (HA) employed in simultaneous addition of the

product terms generated by an array of AND gates. An example of binary multiplication

is shown in Figure 1.

Figure 1. Example of a binary multiplication

6

An array multiplier has a simple structure and is designed by placing the FA and

HA blocks horizontally, row-wise, and vertically, column-wise. Hence, the structure is

more compatible to modify to pipeline structure, smaller, and requires less design time.

Rows of PPs and adders are treated as stages. All stages work parallelly by processing the

respective partial products before each adder while carry-out propagating to the next row.

Critical path is the limiting factor in non-pipelined structure to achieve high speed or

throughput. As highlighted in Figure 2 with bold line, critical path has vertical and

horizontal parts with similar delay contributions in both directions by the gate delays and

adder delays. The worst-case delay of the structure is proportional to the width of the

multiplier i.e., for an n-bit by n-bit array multiplier the delay is nearly equal to the two

times the number of full adders in a row or a slanted column. Hence, the width of an

array multiplier limits the speed.

7

2.2.2 Tree Multiplier [6]

Unlike the generation of PPs and accumulating the PPs in a regular array

multiplier, tree structure shown in Figure 3 deploys number of full adders, each one as a

3:2 compressor, to reduce the three input bits to two output bits: sum bit and carry out bit.

A full adder acts like a compressor or as an encoder by converting three binary inputs to

two encoded binary output with a compression factor of 1.5. The advantage of employing

the 3:2 compressors in the tree structure is that it does not involve longer carry

propagation along multiple stages and hence this process is faster than the conventional

way of multiplication. Summands are grouped in each step to reduce, and the process of

Figure 2. 4-bit x 4-bit Array Multiplier

8

grouping and compression continues until only two numbers remain. Total time of adding

to the last step is proportional to the logarithm of the number of summands.

2.2.2.1 Wallace Tree Multiplier (WTM) [7]

Wallace tree structure using carry-save adders to sum the multiplicand-multiples

in parallel is shown in Figure 4. A carry save adder takes three binary inputs and yields

two binary outputs. The advantage of the Wallace tree multiplier is its tree like structure

with the carry save adders which ensures less delay due to the reduced number of logic

levels. The disadvantage of this structure is its complex structure to design the layout and

very high hardware requirement.

Figure 3. 4-bit x 4-bit Tree Multiplier [6]

9

The essential feature of Wallace tree architecture is to find the final product using

least number of possible steps. Hence, at each step maximum number of bits, shown as

solid dots in [8], are covered in each step vertically to compress using half adder to

encode two bits and full adder to encode three bits. This process is illustrated in Figure 5.

Any bits uncovered, groups of two or three, are transferred to the next stage without any

further processing. As mentioned earlier, half adder acts like a 2:2 compressor and full

adder like a 3:2 compressor. The steps are continued until only two or a smaller number

of bits remaining at each bit position at the end of the completion of a step. All the

compressions are carried out in parallel at each step. At each step, the lone bit on the least

significant bit (LSB) positions or on the most significant bit (MSB) positions are

transferred down to the next step without any processing.

Figure 4. Wallace Tree Multiplier using Carry Save Adders [6]

10

Sum and carry out output bits obtained from the full adder in the current step are

depicted using a diagonal line joining two solid dots in the next stage. Similarly, the two

output bits of the half adder are shown in the next stage using an inclined solid line of

joining two circles enclosing the respective bit of a partial product, solid dot. Recursive

equations used to determine the height of the 𝑗𝑡ℎ reduction stage, 𝜔𝑗, where 𝑗 starts from

0, are shown below [9] using equations (2.4) and (2.5).

Figure 5. Dot Diagram for an 8-bit x 8-bit Wallace Tree Multiplier [8]

11

𝜔0 = 𝑁

(2.4)

𝜔𝑗+1 = 2 ∙ ⌊
𝜔𝑗

3
⌋ + 𝜔𝑗 𝑚𝑜𝑑 3

(2.5)

 In the dot diagram shown in Figure 5 for an 8 x 8 Wallace multiplier, four

reduction stages can be observed with heights of 6, 4, 3, and 2 respectively. And, the total

digital hardware required for the multiplication includes 64 AND gates, 1 OR gate, 38 3:2

compressors, 15 2:2 compressors, and 10-bit carry propagation adder (CPA). The number

of 2:2 compressors required are either equal or greater than N and often much greater

than N. Given the number of bits of operands, N, and calculating the number of stages of

reduction to reduce the PP matrix from N-rows to 2-rows, S, the number of 3:2

compressors and the size of the final CPA adder can be determined by the following

criteria [10] shown using equations (2.6) to (2.10).

3 ≤ 𝑁 ≤ 5

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 3 + 𝑆

(2.6)

CPA length = 2 ∙ 𝑁 − 2 − 𝑆

(2.7)

5 < 𝑁

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 2 + 𝑆

(2.8)

or

12

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 1 + 𝑆

(2.9)

CPA length = 2 ∙ 𝑁 − 1 − 𝑆

(2.10)

Figure 6 Delay Diagram of an 8 x 8 Wallace Multiplier with RCA as a Final Adder [8]

13

Discussing about the delay estimation, all 𝑁2 partial products are generated in

parallel by exercising the bit-by-bit multiplication using a simple two input AND gate.

Hence, the delay contributed by PP generation is of 𝑂(1) complexity. Delay estimation

for the Wallace multiplier is performed in [8] considering a nine gate full adder,

comprised of only 2-input AND, 2-input OR, and inverter gates, as 3:2 compressor and a

half adder, comprised of four 2-input gates, as 2:2 compressor while considering that all

the two input standard cells having nearly equivalent area, gate count, and a delay of 1.

Assuming the simultaneous arrival of all the input signals to the compressors, the delays

of the sum, LSB output bit, and carry out, MSB output bit, signals for the full adder as

3:2 compressor are 6 gate delays and 5 delays respectively, and the delays of sum and

carry-out output signals of the half adder, as 2:2 compressor, are 3 and 1 gate delays

respectively. Similarly, the delay estimation for the Dadda tree multiplier discussed in the

following sub-section relies on the gate count and delay consideration made above. The

following delay diagram for an 8 by 8 Wallace multiplier with an RCA as final adder is

presented in [8], shown in Figure 6, with detailed explanation.

A low power and scalable counter-based modular Wallace tree (CBMW)

multiplier is presented in [11]. Partial products are reduced using a power efficient

sequential 7:3 counter, composed of multiplexer and XOR, and by applying multibit

addition in a single column. Power consumption is reduced by deploying a single 7:3

counter to perform the partial product reduction in each column. Only a single 7:3

counter used per each stage of partial product reduction applying inputs serially. 7:3

counter presented in [12], which is an efficient 7:3 counter than the ones presented in

[13], [14], [15], and [16], is used. The performance of the CBMW multiplier is compared

14

in terms of power, delay, total cell area, and PDP against the other variants such as

conventional WTM, Reduced Complexity Wallace (RCW) tree multiplier [17], Counter-

Based Wallace (CBW) tree multiplier [18] [16], etc.,.

Ever increasing use of the Booth-encoding in reduction of number of partial

products led to the work in [19] to perform the performance comparison between RCW

multiplier and radix-4 Booth-Reduced Complexity Wallace (R4B-RCW) multiplier and

the synthesis results clearly show that the RCW performs significantly better than the

R4B-RCW multiplier in terms of both speed and power consumption.

2.2.2.2 Dadda Tree Multiplier [20]

Dadda tree binary multiplier design is an optimized scheme invented by computer

scientist, Luigi Dadda, in 1965 to compute the multiplication of the unsigned fixed-point

numbers. Like Wallace tree structure, Dadda tree multiplier is also a column compression

multiplier consists of three stages: Partial product matrix formation in stage 1, reduction

of partial product matrix height to 2 in stage 2, and accumulation of these final two rows

using carry propagation adder in the final stage.

15

Dadda tree multiplier has same number of reduction levels as Wallace tree

multiplier with variation of matrix height at different levels. The number of full adders in

both the tree structures is nearly the same. However, Wallace adder uses more of the full

adders and a greater number of half adders in the reduction levels leading to a shorter

Figure 7. Dot Diagram for an 8-bit x 8-bit Dadda Tree Multiplier [8]

16

final CPA adder compared to the Dadda multiplier. Dadda multiplier use a minimal

number of compressors in each level of compression to achieve the required compression

and the recursive reduction procedure is as follows [21] [8]:

1. Starting from 𝑑1 = 2 as the final stage of reduction and 𝑁as the height of the

original PP matrix, calculate 𝑑𝑗 , the height of the matrix at 𝑗𝑡ℎ level of

reduction from the bottom, using 𝑑𝑗 = ⌊
3

2
∙ 𝑑𝑗−1⌋. Repeat calculating the 𝑑𝑗

until reaching the largest matrix of at 𝑗𝑡ℎ level where 𝑑𝑗 < 𝑁 < 𝑑𝑗+1.

2. Starting from the highest 𝑗𝑡ℎ stage from the end, matrix in each stage needed

to be reduced using (3,2) and (2,2) counters to the desired heights calculated

in the previous step. Reduction should be performed on only columns with

dots greater than the required stage height, 𝑑𝑗. Carries coming from the least

significant (3,2) and (2,2) counters are needed to consider as dots while

reducing.

3. Repeat the reduction procedure in step two on each stage until reaching the

final stage of height 𝑑1 = 2.

The dot diagram for 8 by 8 Dadda multiplier is shown in Figure 7. All three stages

involving PP matrix generation, matrix reduction, and final CPA additions are shown in

the figure. In stage 2 of reduction, each of four levels of reduction are labeled with the

respective matrix height reduction requirement as 6, 4, 3, and 2 from the top to the

bottom level. Digital hardware required to build the Dadda multiplier includes 64 AND

gates in the first stage, 35 3:2 compressors and 7 2:2 compressors in the second stage, and

17

a 14-bit CPA adder in the final stage. Given N as the number of bits of operands, the

number of (3,2) counters, (2,2) counters, and the size of the final CPA adder are

determined as follows:

(3,2) counters = 𝑁2 − 4 ∙ 𝑁 + 3

(2.11)

(2,2) counters = 𝑁 − 1

(2.12)

CPA length = 2 ∙ 𝑁 − 2

(2.13)

The article [8], includes the discussion of delay estimation methodology,

concluded about the delay comparison based on the closed examination performed

between Dadda and Wallace multipliers that the general assumption of slightly faster

response of Wallace multiplier due to the smaller final stage adder is incorrect. The delay

calculation diagram is depicted in Figure 8 and the results presented in [8] by performing

detailed analysis on both tree structures varying the operand sizes with both RCA and

CLA are shown in Table 2.1 and concluded that the delay and complexity of Dadda

multiplier is less compared to Wallace multiplier.

18

Figure 8. Delay Diagram of an 8 x 8 Dadda Multiplier with RCA as Final Adder [8]

19

Table 2.1. Delay and Complexity Comparisons for various sizes of Dadda and Wallace Multipliers

with RCA and CLA presented in [8]

Multiplier Size Delay Complexity

Dadda Wallace Dadda Wallace

with RCAs

4 x 4 19 (100%) 21 (111%) 104 (100%) 104 (100%)

8 x 8 37 (100%) 42 (114%) 528 (100%) 552 (105%)

16 x 16 69 (100%) 77 (112%) 2336 (100%) 2476 (106%)

32 x 32 133 (100%) 145 (109%) 9792 (100%) 10283 (105%)

with CLAs

4 x 4 15 (100%) 18 (120%) 120 (100%) 112 (93%)

8 x 8 29 (100%) 31 (107%) 573 (100%) 582 (102%)

16 x 16 43 (100%) 45 (105%) 2440 (100%) 2557 (105%)

32 x 32 54 (100%) 56 (104%) 10013 (100%) 10475 (105%)

Signed Radix-2m parallel multipliers with two new sign extension techniques to

improve the energy efficiency with smaller design area presented in [22] with partial

product compression performed in both Wallace and Dadda styles deploying two variants,

one employing RCA-less optimization (NR) and the second one employing optimized

sign extension without intermediary ripple carry adders (NR-SO) for multipliers of

operand widths 8, 16, 32, and 64.

An efficient signed carry-save multiplier (CSM) with modified square root carry-

select adder (MSCA), instead of conventional vector-merging adder (CVMA), for the

vector-merging addition and improved full adder (IFA), in place of regular full adder, is

presented in [23]. 8-bit and 16-bit wide multipliers are designed, synthesized, and made

comparisons with the state-of-the-art designs to show that there is a remarkable

improvement in the performance metrics, critical path delay (CPD), power, PDP, area,

and ADP.

20

2.2.3 Booth Multiplier

A signed multiplier technique is presented in [4] by Andrew D. Booth hence the

name Booth multiplier. Booth multiplier architecture works mainly on the partial product

generation using the Booth encoding scheme in Table 2.2. Though the encoding scheme

looks like using three bits of the multiplier, the effective number of bits used at any stage

of partial product generation are two and hence the encoding scheme is a radix-4 scheme.

The grouping, shown in Figure 10, and encoding starts from the LSB side and

proceeds towards the MSB side of the multiplier. First 3-bit grouping on the LSB side

includes a padded bit-0 at -1th location, a pseudo index, and the next two bits include the

LSB bits at 0th and 1st bit positions of the multiplier. The second 3-bit grouping include

the MSB bit of the previous 3-bit grouping as an LSB bit and the next two bits include

the adjacent bit values proceeding towards the MSB side, i.e., bits at indexes 2 and 3

respectively. This grouping process continues until the end of the multiplier bits. Even

number of multiplier bits result in complete grouping of all the bits. Since the effective

number of bits used per group are two and the number of groups equal to half the total

number of multiplier bits.

Figure 9 3-bit grouping performed in radix-4 Booth multiplier

21

Table 2.2 Radix-4 Booth encoding scheme [4]

𝑦2𝑖+1 𝑦2𝑖 𝑦2𝑖−1 Partial Product

0 0 0 0

0 0 1 +𝑋

0 1 0 +𝑋

0 1 1 +2𝑋

1 0 0 −2𝑋

1 0 1 −𝑋

1 1 0 −𝑋

1 1 1 0

 A high-speed parallel Booth multiplier with new modified Booth encoding (MBE)

scheme to achieve better performance than the traditional MBE schemes, modified PPA,

and a new addition algorithm, multiple-level conditional-sum adder (MLCSMA), to

perform the final addition is presented in [24]. One of the two common methods of

generating partial products in the first stage is using radix-4 MBE [4] [25] which reduces

the number of partial products by a factor of two. Area and delay profiles of new MBE

scheme proposed is compared with several other existing MBE schemes and can be

observed that the proposed scheme is faster while requiring moderate design area. Partial

product reduction tree (PPRT) is used to effectively sum up all the partial products

generated. Also, examined and concluded that the parallel multiplier constructed using

Three-Dimensional-reduction-Method (TDM) [26] [27] with MBE is faster with smaller

area. Partial product reduction using 4:2 compressor is faster compared to using Wallace

22

tree and Carry-save tree which uses 3:2 compressor, full adder, as a basic element,

whereas, the TDM outperforms the 4:2 compressor in speed. New MLCSMA presented

and used is constructed using conditional-sum adder (CSMA) and the conditional-carry

adder (CCA) and showed an improvement of up to 25% performing final addition when

designed in 350nm technology at supply voltage of 3.3 V. Since the tree based CSMA is

a very regular structure with the performance compared to CLA adder. The hybrid adder

structure retains the speed from by using the conventional CSMA [28] and saves area

using CCA [29].

Modified Booth algorithms performing speed critical wide operand

multiplications with very high radix structure accompanied by deployment of reduced

area adder trees is presented in [30] resulting in large increase in speed with reasonable

design area. Another modified Booth algorithm with optimized radix-4 Booth encoders

for partial product generation and effective use of (3,2), (5,3), and (7,4) compressors for

partial product reduction in vertical direction is presented in [31].

2.2.4 Baugh-Wooley Two’s Complement Signed Multiplier [32]

A high-speed two’s complement m-bit by n-bit parallel array multiplier for signed

multiplication, also known as Baugh-Wooley multiplier, is presented in 1973 [32] with

the focus on the solving the problems caused by the sign bits in signed number

multiplication using the most common two’s complement representation. Conventional

two’s complement multiplier contains partial products with both the positive and negative

signs. However, the Baugh-Wooley multiplier has an advantage over the conventional

two’s complement multiplier is that the signs of all the partial product bits are positive.

Conventional two’s complement binary multiplication, shown in Figure 10, multiplies the

23

multiplicand 𝑋 = (𝑥𝑚−1𝑥𝑚−2…𝑥1𝑥0) with multiplier 𝑌 = (𝑦𝑛−1𝑦𝑛−2…𝑥1𝑥0) resulting

in the 𝑚 + 𝑛 bit product 𝑃 = (𝑝𝑚+𝑛−1𝑝𝑚+𝑛−2…𝑝1𝑝0). Product is the result of the sum

of the partial product bits formed by AND each of the multiplicand bit with the multiplier

bit.

Let the values of the 𝑋 and 𝑌 be 𝑋𝑣 and 𝑌𝑣 which are given by the following

equations (2.14) and (2.15) included in [32].

𝑋𝑣 = −𝑥𝑚−12
𝑚−1 + ∑ 𝑥𝑖2

𝑖

𝑚−2

𝑖=0

(2.14)

𝑌𝑣 = −𝑦𝑛−12
𝑛−1 +∑𝑦𝑗2

𝑗

𝑛−2

𝑗=0

(2.15)

Figure 10 Conventional two's complement binary multiplication [32]

24

Let the value of the product 𝑃 be 𝑃𝑣 , and is represented by the equation (2.16).

 𝑃𝑣 = −𝑝𝑚+𝑛−12
𝑚+𝑛−1 + ∑ 𝑝𝑖2

𝑖

𝑚+𝑛−2

𝑖=0

= 𝑋𝑣𝑌𝑣

 = (−𝑥𝑚−12
𝑚−1 + ∑ 𝑥𝑖2

𝑖

𝑚−2

𝑖=0

 𝑌𝑣)(−𝑦𝑛−12
𝑛−1 +∑𝑦𝑗2

𝑗

𝑛−2

𝑗=0

)

 = (𝑥𝑚−1𝑥𝑛−12
𝑚+𝑛−2 + ∑ ∑𝑥𝑖𝑦𝑗2

𝑖+𝑗

𝑛−2

𝑗=0

𝑚−2

𝑖=0

)

− (∑𝑥𝑚−1𝑦𝑗2
𝑚−1+𝑗

𝑛−2

𝑗=0

+ ∑ 𝑦𝑛−1𝑥𝑖2
𝑛−1+𝑖

𝑚−2

𝑖=0

)

(2.16)

The above equation has partial products needed to be added and subtracted. The partial

products with negative signs must be two’s complemented to perform the addition instead

of subtraction. Assuming the magnitude of a two’s complement number 𝑍 is 𝑍𝑣. Value of

the negation of the two’s complement number 𝑍 = (𝑧𝑘−1, ⋯ , 𝑧0) is as follows:

−𝑍𝑣 = 2
′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍

 = 1′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍 + 1

 = −𝑧𝑘−12
𝑘−1 +∑𝑧𝑖2

𝑖

𝑘−2

𝑖=0

+ 1

(2.17)

Therefore, the subtraction terms in the product equation,

25

2𝑚−1(−0 ∙ 2𝑛 + 0 ∙ 2𝑛−1 +∑𝑦𝑗𝑥𝑚−12
𝑗

𝑛−2

𝑗=0

)

(2.18)

and

2𝑛−1 (−0 ∙ 2𝑚 + 0 ∙ 2𝑚−1 + ∑ 𝑦𝑛−1𝑥𝑖2
𝑖

𝑚−2

𝑖=0

)

(2.19)

are replaced with

2𝑚−1(−1 ∙ 2𝑛 + 1 ∙ 2𝑛−1 + (∑𝑦𝑗𝑥𝑚−12
𝑗

𝑛−2

𝑗=0

) + 1)

(2.20)

and

2𝑛−1 (−1 ∙ 2𝑚 + 1 ∙ 2𝑚−1 + (∑ 𝑦𝑛−1𝑥𝑖2
𝑖

𝑚−2

𝑖=0

) + 1)

(2.21)

respectively. Thus, the last two partial product rows, shown in Figure 11,

26

which need to be subtracted,

0 0 𝑦𝑛−1𝑥𝑚−2 𝑦𝑛−1𝑥𝑚−3 ⋯ 𝑦𝑛−1𝑥0

(2.22)

and

0 0 𝑦𝑛−2𝑥𝑚−1 𝑦𝑛−3𝑥𝑚−1 ⋯ 𝑦0𝑥𝑚−1

(2.23)

are replaced by

1 1 𝑦𝑛−1𝑥𝑚−2 𝑦𝑛−1𝑥𝑚−3 ⋯ 𝑦𝑛−1𝑥0

(2.24)

and

1 1 𝑦𝑛−2𝑥𝑚−1 𝑦𝑛−3𝑥𝑚−1 ⋯ 𝑦0𝑥𝑚−1

(2.25)

Figure 11 Positive and Negative segregation of PP bits [32]

27

respectively. The additional “1”s are added to the 𝑝𝑚−1 column and 𝑝𝑛−1 column. And,

the non-uniformity occurred in the last two rows due to the need for using NAND instead

of AND to form the partial product bits can be avoided by using the following

equivalences (2.26) and (2.27),

{

0, 𝑓𝑜𝑟 𝑦𝑛−1 = 0

2𝑛−1 (−2𝑚 + 2𝑚−1 + (∑ 𝑥𝑖2
𝑖

𝑚−2

𝑖=0

) + 1) , 𝑓𝑜𝑟 𝑦𝑛−1 = 1

(2.26)

and

{

0, 𝑓𝑜𝑟 𝑥𝑚−1 = 0

2𝑚−1(−2𝑛 + 2𝑛−1 + (∑𝑦𝑗2
𝑗

𝑛−2

𝑗=0

) + 1) , 𝑓𝑜𝑟 𝑥𝑚−1 = 1

(2.27)

Following the equivalences (2.26) and (2.27), the above equations (2.20) and

(2.21)can be rewritten as follows:

2𝑛−1(−2𝑚 + 2𝑚−1 + 𝑦𝑛−12
𝑚−1 + 𝑦𝑛−1 + (∑ 𝑦𝑛−1𝑥𝑖2

𝑖

𝑚−2

𝑖=0

))

(2.28)

and

2𝑚−1(−2𝑛 + 2𝑛−1 + 𝑥𝑚−12
𝑛−1 + 𝑥𝑚−1 + (∑𝑥𝑚−1𝑦𝑗2

𝑗

𝑛−2

𝑗=0

))

(2.29)

28

A simplified proof for Baugh-Wooley two’s complement parallel array multiplier is

presented in [33]. After achieving the uniformity at the last two rows and adding the

constant terms, the rewritten partial product array with complete uniformity is shown in

Figure 12.

A new high speed digital multiplier using modified pairwise and parallel addition

algorithms is presented in [34] to improve the speed and the simulation results show that

the speed and delay performance is two folds better than the conventional linear array

multipliers. The delay and power consumption for this design is significantly better than

the designed and optimized Baugh-Wooley multiplier.

2.2.5 Vedic Multiplier

Vedic multiplier, which is based on Urdhva – Tiryakbhyam (UT) (vertical and

crosswise) formulae, with fast adders (carry save adder, Brenk-Kung adder, and carry

select adder) and by deploying compressors in place of full-adders and half adders to

Figure 12 Baugh-Wooley algorithm with all positive PP bits [32]

29

minimize the power-delay-product (PDP) is proposed in [35]. Multipliers with operand

width of 8-bit and 16-bit are designed, synthesized, and made proper comparisons with

the synthesis results obtained from designing and synthesizing Ripple carry based Vedic

multiplier (RCVM) [36], Carry Save array multiplier (CSAM) [37], compressor-based

Vedic multiplier (CVM) [38], and modified Booth encoded Wallace tree multiplier

(MBWM) [39]. Results comparison clearly shows that optimized Vedic multiplier

presented shows significant improvement in delay and PDP with the area and power

tradeoff. Another optimized Vedic multiplier with adaptable Manchester carry chain

(MCC) adder, implemented with adaptable clocking scheme to be suitable to extend the

use towards wider multipliers, for low power-delay product is presented in [40].

30

3 Optimization of radix-4 8 x 8 Booth multiplier

The discussion in the following chapter is substantially drawn from [41] [42] [43] where we first

reported the development and evaluation of this technique.

3.1 Introduction

The main motivation for optimization came from the observations made while

designing the conventional Booth multiplier. Conventional Booth multiplier architecture

is impressive for reducing the number of partial products to half, but the implementation

needs further optimization to achieve low-cost and high-performance modified signed

multiplier with Booth encoding. The improvements presented in [42] for an 8 x 8 Booth

multiplier dealt with the unnecessary usage of full width adder and multiplier hardware,

optimization of B2C, removal of adder in the first stage, and replacing the two-input

encoder with three input encoders in the first stage. More details about the work in [42]

are discussed in the sub-section 1.1 of this document. Further optimized 8 x 8 Booth

multiplier is presented in [41] by majorly focusing on two aspects, (1) improving the

speed by the execution of square root carry select adders with carry look ahead block in

parallel to reduce the number of stages of addition, and (2) optimization of Booth encoder

along with the B2C with bubble pushing and deploying a simple hardware by the fusion

of the encoder logic and the multiplexer logic at every stage. Complete discussion about

the implementation and results are included in the section 3.3 of this document.

31

3.2 Low power-delay-product radix-4 8 x 8 Booth multiplier [42]

Booth encoding scheme applied at each stage of the conventional Booth

multiplier architecture shown in Figure 13(a) uses one of the five distinct operations, to

result in a partial product in the respective stage. The five distinct operations include: (1)

all 0’s, (2) direct use of multiplicand, X, (3) multiplicand left shifted by one bit position,

2X, (4) two’s complement of X, and (5) right shift the two’s complemented X by one bit

position, -2X. Except the two’s complement operation to generate the -X as partial

product at the respective stage, all other operations involve trivial and fast parallel

computation of shift.

 (a) (b)

Figure 13. (a) Conventional Booth Multiplier [4], (b) optimized low PDP Booth Multiplier in

[43] [42]

32

Design shown in Figure 13(a) avoid two’s complement operation by deploying

the adder-subtractor and switching the addition and subtraction operation relying on the

MSB bit of the 3-bit group. But, it takes an additional hardware and power consumption

due to the deployment of the number of XOR’s at one of the multibit inputs of the adder

at every stage. This leads to a significant power and area over head. Left shift operations

are performed by hardwiring the input connections to the multi-bit 3-to-1 multiplexer to

avoid the actual physical hardware. Moving forward to the next stage, which takes an

adjacent group of 3-bits of multiplier to perform the encoding scheme, the possible partial

product output is formed from one of the above mentioned five distinct values which are

left shifted by two-bit positions because of the two-bit left shift to form 3-bit group.

Hence, there is no need to generate the five possible values in any other stage but to be

selected using the multiplexers at each stage while hardwiring the inputs to eliminate the

inclusion of the left shift block. The optimized 8 x 8 Booth multiplier is proposed and

presented in [43] [42], shown in Figure 13(b), minimized the encoder in the first stage

from a 3-bit encoder to 2-bit encoder based on the fact that the LSB bit, 𝑦−1, of the 3-bit

group is always ‘0’, the first stage adder-subtractor block is replaced with an optimized

B2C, and the sizes of the 15-bit adder-subtractor blocks at each stage are reduced to 9-bit

for eliminating the unnecessary computational cost at the LSB bits and sign bits at the

MSB side. Optimized B2C presented in [42] is represented using equation (3.1)

assuming the total number of bits of the word to be 2’s complemented are odd where n is

even and [an an-1 … a2 a1 a0] as input vector and [acn acn-1 … a2 a1 a0] as the two’s

complemented output

𝑎𝑐0 = 𝑎0

33

𝑎𝑐1 = 𝑎0⊕𝑎1

𝑎𝑐2 = 𝑎2⊕ (𝑎1 ∙ 𝑎0) = 𝑎2⊕ (𝑎1 ∙ 𝑎0)

𝑎𝑐3 = 𝑎3⊕ (𝑎2 ∙ 𝑎1 ∙ 𝑎0) = 𝑎3⊕(𝑎2 + (𝑎1 ∙ 𝑎0))

…

𝑎𝑐𝑛−1 = 𝑎𝑛−1⊕(𝑎𝑛−2 + (𝑎𝑛−3 ∙ (𝑎𝑛−4 + (𝑎𝑛−5 ∙ ⋯+ (𝑎1 ∙ 𝑎0)))))

𝑎𝑐𝑛 = 𝑎𝑛⊕(𝑎𝑛−2 ∙ (𝑎𝑛−3 + (𝑎𝑛−4 ∙ (𝑎𝑛−5 +⋯+ (𝑎1 ∙ 𝑎0)))))

(3.1)

34

3.3 Low-cost and high-performance radix-4 8 x 8 Booth multiplier [41]

Booth multiplier architecture is further optimized in [41], shown in Figure 14, by

implementing the following strategies: (1) replacing the adder-subtractor blocks in all

stages with only adders and using the B2C output to feed the -X and -2X inputs to

generate the partial products in all stages where necessary to reduce the power

consumption and design area, (2) sequential addition of partial products is replaced with

parallel addition, number of stages of addition are reduced to two, to improve the speed

while keeping the area of partial product reduction hardware almost same, (3) encoded

partial products are generated directly using the speed optimized encoder block with

Figure 14. Further optimized low-cost and high-performance 8 x 8 Booth Multiplier with parallel

additions in [41]

35

inherent multiplexer logic, (4) B2C block in the worst delay path is further optimized to

reduce the power consumption and design area, and (5) Square root carry select adders

with carry look ahead blocks are used to improve the speed performance with a power

and area tradeoff.

 The anatomy of the radix-4 8 x 8 signed Booth multiplier with parallel

adders is presented in [41] is illustrated in Figure 15. This parallel addition with careful

grouping has higher performance advantage compared to employing the series addition of

the partial products in [42] [43] [44] [45] [46]. The worst delay path includes B2C, Booth

encoder, 10-bit SQCS with CLA, and 11-bit SQCS with CLA. Hence, all the blocks in

worst delay path are optimized for speed. The explanation about each sub-optimization

Figure 15 Radix-4 8x8 signed Booth multiplier with parallel encoding and additions in [41]

36

strategy used is included in the following sub-sections. Layout of the modified 8x8 Booth

multiplier with parallel encoding scheme and parallel partial product reduction, which is

synthesized at 500 MHz clock frequency and performed PnR, using Synopsys Design

Compiler (DC) and IC compiler (ICC) respectively, is shown in Figure 16. Total chip

area of the layout shown in the following figure is 2058.566 (𝜇m)2 with the standard cell

utilization factor of 57.32%. Hence, the total cell area is nearly 1180 (𝜇m)2 with total

number of standard cells used are 358.

Figure 16 Layout of the modified Radix-4 8x8 signed Booth multiplier with parallel encoding

and additions [41]

37

3.3.1 Booth encoder optimization & partial product generation

Pre-computation stage first encoder for the first partial product, PP1, generation is

reduced to a two-input encoder, 4 to 1 multiplexer, since the LSB bit, 𝑦−1, is always ‘0’

and can be ignored. The rest of the encoding uses 𝑦1 and 𝑦0 bits of the multiplicand to

generate the partial products based on the encoding scheme shown in Table 3.1. The

operation of choosing one of the four possible partial products is performed using a 9-bit

wide 4 to 1 multiplexer, shown in Figure 17. The multiplexer takes four inputs, 0, X, -X,

and -2X, with two LSB bits of the multiplier as selection inputs. The negative value of

the multiplicand, -X, is generated by using the B2C and by feeding -2X, output from B2C,

as an input after arithmetic left shift is performed just by hardwiring while avoiding the

actual physical hardware. Discussion about the optimized B2C is included in a later sub-

section.

Table 3.1 First stage encoding scheme [41]

𝑦1 𝑦0 𝑦−1 Partial Product

0 0 0 0

0 1 0 +𝑋

1 0 0 −2𝑋

1 1 0 −𝑋

38

 The three encoders needed for the generation of the next three partial

products, PP2, PP3, and PP4, in the pre-computation stage run in parallel, shown in

Figure 15, and are built on a same logic. The optimized encoder logic presented in [41],

achieved by applying bubble pushing and Boolean logic minimization techniques, is

shown in Figure 18 (b), and is compared to the encoder presented in [43] [42]. Typical

Booth encoder takes in three input bits and yields three selection output bits, S2, S1, and

S0, at each stage to fed to the multiplexer to choose one of the eight possible values based

on the booth encoder strategy. Where in the optimized encoder results in four output bits,

P, Q, R, and S, to choose between {X, 2X, -X, -2X} without the need for an exclusive

multiplexer since the simplified multiplexer functionality is fused with the encoder to

generate the partial products with reduced delay and reduced utilization of the design

space. The Boolean logic used to generate the P, Q, R, and S scalars is shown in the

Figure 18 (b) and the Boolean equation representation of the scalars as follows:

Figure 17 First stage PP generation in [41]

39

𝑃 = (𝑦0⊝𝑦1) + 𝑦2

(3.2)

𝑄 = (𝑦0 ∙ 𝑦1) + 𝑦2

(3.3)

𝑅 = (𝑦0 + 𝑦1) ∙ 𝑦2

(3.4)

𝑆 = (𝑦0⊕𝑦1) ∙ 𝑦2

(3.5)

The fused encoder and multiplexer logic presented in [41] for the generation of

the 2nd, 3rd, and 4th partial products is shown in Figure 19 (a) and is compared with the

conventional Booth encoder and the multiplexer, shown in Figure 19 (b), used to generate

Figure 18 (a) Booth encoder in [43] [42], (b) optimized Booth encoder in [41]

40

the partial products at each stage. P, Q, R, and S scalar outputs from the optimized

encoder are used to select the X, 2X, -2X, and -X vectors respectively to generate the

partial product, PP, and the Boolean representation of the selection hardware is

represented using the following equation (3.6):

𝑃𝑃 = (𝑃 ∙ 𝑋) + (𝑄 ∙ 2𝑋) + (𝑅 ∙ (−2𝑋)) + (𝑆 ∙ (−𝑋))

 = (𝑃 ∙ 𝑋) ∙ (𝑄 ∙ 2𝑋) ∙ (𝑅 ∙ (−2𝑋)) ∙ (𝑆 ∙ (−𝑋))

(3.6)

Selection inputs P, Q, R, and S are enabled with the 3-bit input vectors {001, 010},

{011}, {100}, and {101, 110} respectively. In case of the input vectors ‘000’ and ‘111’,

all the output bits of the encoder are 0’s and hence the fifth possible partial product of all

0’s is assigned to the PP output vector.

41

3.3.2 Reduction of Partial Products using Two-Stage Parallel Addition

As mentioned above, the three partial products generated are summed to have the

final product. Square root (SQRT) carry select adder with carry look ahead (CSA-CLA)

blocks are used to increase the computation speed with the power and area trade-off.

Carry select blocks works on a simple and very effective way to increase the speed by

precomputing the possible sum outputs with the assumption of ‘0’ carry-in and ‘1’ carry-

in. By the time of actual carry-in signal arrival at a particular block, two possible sum

values are ready to be selected in parallel by the multiplexer. Including CLA logic in sub-

block further improves the speed performance by the very quick carry out generation

based on the multi-bit propagate and generate chain. The parallel addition structure is

Figure 19 (a) 2nd, 3rd, and 4th PP generation in [41], (b) PP generation in [43] [42]

42

carefully designed following the grouping of the partial products illustrated in Figure 20.

All the partial products, PP1, PP2, PP3, and PP4, generated are of 9-bit wide, PP[9:0],

hence a 9-bit B2C is enough instead of a full width, 15-bit, B2C. PP1[8], PP2[8], and

PP3[8] are repeated as extension bits for keeping the sign of the partial product. PP1[0]

and PP1[1] are the final product bits P[0] and P[1] respectively. 10-bit SQRT CS-CLA

with 3-bit CLA, 3-bit CS-CLA, and 4-bit CS-CLA sub-blocks, shown in Figure 21 (b), is

used to sum the partial products PP1[11:2] and PP2[9:0], where PP1[11:9] are the sign

extension bits formed by repeating the sign indicator bit, PP1[8]. A 9-bit SQRT CS-CLA

with 2-bit CLA, 3-bit CS-CLA, and 4-bit CS-CLA sub-blocks, shown in Figure 21 (a), is

used to sum the partial products PP3[10:2] and PP4[8:0], where PP3[10:9] are the sign

extension bits formed by repeating the sign bit, PP3[8]. At each partial product row to be

summed in stage 1, the (n+1)th bit indicates the sign of that partial products and that bit

value is copied across the proceeding MSB bits until reaching the bit index of 14, with

the indexing begin at 0, with reference to the indices of the final product bits. Like the

10-bit adder, 9-bit adder takes the first partial product with a starting index of 2. The

remaining LSB bits of the first input vector PP3, PP3[0] and PP[1], are carried down to

the second stage addition to fill in the gap to form a rectangular group structure for

forming a SQRT CS-CLA. These two adders, 9-bit adder and 10-bit adder, run in

parallel for the stage 1 reduction resulting in two intermittent output vectors, S1 and S2,

to be further reduced, summed, in the final stage, stage 2.

43

 The two sum outputs, S1[12:2] and S2[8:0], along with the two partial product

bits, PP3[1:0], left unprocessed, from stage 1 are fed to the 11-bit SQRT CS-CLA in the

final stage, stage 2. As shown in Figure 21 (c), 11-bit SQRT CS-CLA constitutes a 3-bit

CLA block, 4-bit CS-CLA block, and 4-bit CS-CLA block. This parallel addition with

two stage structure is reducing the two adder delays compared with the designs presented

in [44] [45] [46], and reducing one adder delay if compared to the design in [42].

Figure 20 Optimized radix-4 signed 8 x 8 Booth multiplier with two-stage architecture in [41]

44

Figure 21 (a) 9-bit SQRT CS-CLA, (b) 10-bit SQRT CS-CLA, (c) 11-bit SQRT CS-CLA [41]

45

3.3.3 B2C optimization

Binary two’s complement block is one of the important blocks needed to be

optimized for the reduction in delay since it has the ripple structure. An optimized B2C is

presented in [42], discussion is included in the sub-section 1.1, shown in Figure 22 (a),

and the design is better optimized in [41], shown in Figure 22 (b), for the reduction of

area and power consumption. Based on the widely accepted and observed fact that the

inverters at the inputs consume more power due to high switching activity, reduction of

area and power consumption is achieved by bubble pushing the inverters at the inputs

used in [42]. The Boolean equations for the 9-bit B2C used in [42] and [41], shown in

Figure 22, are as follows, where [an an-1 … a2 a1 a0] as input vector and [acn acn-1 … a2 a1

a0] as the two’s complemented output:

𝑎𝑐0 = 𝑎0

𝑎𝑐1 = 𝑎0⊕𝑎1

𝑎𝑐2 = 𝑎0 + 𝑎1⊝𝑎2

𝑎𝑐3 = 𝑎0 + 𝑎1 + 𝑎2⊝𝑎3

𝑎𝑐4 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3⊝𝑎4

𝑎𝑐5 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4) ⊝ 𝑎5

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4⊝𝑎5

𝑎𝑐6 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4 + 𝑎5) ⊝ 𝑎6

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5⊝𝑎6

𝑎𝑐7 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4 + 𝑎5 + 𝑎6) ⊝ 𝑎7

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6⊝𝑎7

46

𝑎𝑐8 = ((𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7) ⊕ 𝑎8

 = (𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7) ⊝ 𝑎8

= 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7 ⊝ 𝑎8

(3.7)

 The synthesis results for the two B2C designs are compared in the following

Table 3.2. Synthesis is performed on the two designs designed in Synopsys 32nm CMOS

RVT standard cells at 500 MHz frequency and 1.05 supply voltage with the help of

(a)

(b)

Figure 22. (a) optimized B2C using bubble pushing in [42], (b) better optimized B2C in [41]

47

Synopsys design compiler (DC). Reduction in design area and power consumption can be

observed with a very small delay trade-off.

Table 3.2 Comparison of the synthesis (pre-layout) results for the B2C designs [41]

B2C Design Frequency

(MHz)

Area

(𝜇m)2

Power

(𝜇𝑊)

Delay

(ns)

Boppana et al. [41] 500 56.41 15.15 0.41

B2C in [42] 500 63.02 16.85 0.4

48

4 Proposed Multiplier Architecture based on radix-8 (3-bit

grouping) structure

Modified booth multiplier’s encoding scheme with the deployment of the parallel

adders of square root carry select (SQCS) structure, constitutes carry look ahead (CLA)

sub-blocks, is presented in [41], and has achieved a significant increase in speed by

reducing the worst path delay and a significant decrease in the power consumption with a

small reduction in area. As shown in Table 4.1, Booth encoding reduces the number of

partial products by half, and the parallel execution of the adders in a binary tree style

requires the same number of adders required by the series execution of the adders in

summing the partial products while the number of stages required to sum the partial

products to compute the final product are reduced to log2𝑁 from
𝑁

2
− 1.

Table 4.1 Booth multiplier with binary tree style reduction of partial products using adders

Multiplier

size (N)

No. of

PPs (N/2)

No. of additions

(N/2-1)

Complexity in

Hardware (#Adders)

Complexity in Time

(PP reduction time)

8 4 2+1 = 3 𝑂(𝑁) =
𝑁

2
− 1 𝑂(log𝑁) = log2𝑁

16 8 4+2+1=7
𝑂(𝑁) =

𝑁

2
− 1

𝑂(log𝑁) = log2𝑁

32 16 8+4+2+1=15
𝑂(𝑁) =

𝑁

2
− 1

𝑂(log𝑁) = log2𝑁

64 32 16+8+4+2+1=31
𝑂(𝑁) =

𝑁

2
− 1

𝑂(log𝑁) = log2𝑁

Though the state-of-the-art modified Booth multiplier architectures use the radix-

8 Booth encoding with 3-bit grouping of the multiplier bits, the effective number of

multiplier bits, from LSB to MSB, used in partial product generation at any stage are two.

49

Hence, the Booth multiplier architecture can be called as a radix-4 structure

instead of radix-8 structure. The proposed architecture in this work is an attempt to prove

that the use of the higher radix, radix-8 in this work, by deploying a non-trivial block,

which further reduces the number of partial products to be added compared to the Booth

architectures, and area-power-delay aware grouping of the partial products results in

achieving a significant advantage, especially for the larger word size multipliers such as

32-bit, 64-bit, etc. The proposed structure first converts the multiplicand and multiplier to

its magnitudes, pre-compute the non-trivial functions, NT1, NT2, and NT3, included in

Table 4.2 which depicts the separation of the eight functions to four trivial and four non-

trivial functions.

Table 4.2 Proposed radix-8 (3-bit) grouping to separate trivial and non-trivial computations

Trivial

0 (000) By-pass N0 (No-Op)

1 (001) << 0 (No shift or addition) T0

2 (010) << 1 (Left shift by 1) T1

4 (100) << 2 (Left shift by 2) T2

Non-Trivial

3 (011) 2x+1x (or) 4x-1x NT1

5 (101) 4x+1x NT2

6 (110) 4x+2x S1 = (NT1) << 1

7 (111) 8x-x (or) 4x+2x+1x NT3

4.1 8 x 8 signed multiplication using the proposed design :

As seen in Table 4.2, All the trivial functions involve one of the four operations:

no operation, all 0’s; the magnitude of the multiplicand (X) with no shift, X; X left

shifted by 1 bit position, 2X; X left shifted by 2-bit positions, 4X. The complete working

of the proposed radix-8 with the grouping of 3-bit multiplier bits for the 8x8 signed

multiplier is clearly illustrated using the example-1 and example-2 shown in Figure 23

50

and Figure 24 respectively. As a first step, the magnitudes of the multiplicand, A, and

multiplier, B, are computed as Ap and Bp. Magnitude of the negative number is computed

using the 2’s complement and the magnitude of the positive number is the number itself.

In example 1, the negative multiplicand, A = -72 (1011 1000), is converted to its 2’s

complement, Ap (0100 1000), which is denoted as X for the ease of representation in

later steps. Taking the X as an input, the three non-trivial computations, 3X, 5X, and 7X,

are computed by performing the addition operations. 3X is formed by summing the X and

2X, 5X is formed by summing the X and 4X, and 7X is formed using the summation of -

X and 8X instead of summing X, 2X, and 4X to complete reduce the number of additions.

51

The first 6-bits of Bp on the LSB side are grouped into two 3-bit groups and the

first two partial products in stage 1 are calculated following the computation criteria

provided in Table 4.2. Indexing always starts from the LSB side with 0 as start index.

Figure 23 Example-1 calculation of the 8 x 8 signed multiplication using the proposed radix-8

architecture (NOTE: ! - NOT symbol. ^ - XOR symbol)

52

The second partial product needs to be shifted by three bits since the second group

multiplier bits start from index 3. The bit, ‘1’, at position 7 of index 6 from the LSB side

forms the third partial product of X left shifted by 6-bit positions. If this lone bit is ‘0’,

then the third partial product contains all 0’s. The first two partial products enclosed in

the L-shaped box are added together and the third partial product is carried to the next

stage to perform the addition in stage 2. In two stages the magnitude of the product is

computed as 001011100010000. As a final post computation step, the sign of the result

should be decided based on the combination of signs of the original inputs, A and B. If

the signs of A and B are opposite, 𝐴[7]⨁𝐵[7] == 1, and the magnitude of multiplier is

not the max value of 128, ~𝐵𝑝[7] == 1 , then the final magnitude obtained is 2’s

complement. XOR operation is represented as ^ and NOT operation is represented as ! in

all the figures with example illustrations. The sign bit of a multiplier or multiplicand

stays same even after performing the 2’s complement in only one case where the actual

value is the lowest, -128, i.e., the magnitude value is at its maximum for the 8-bit signed

number.

Like the example 1, example 2 also starts with the first of magnitude calculation

of both multiplicand, A = 6 (0000 0110), and multiplier, B = -36 (1101 1100), 2’s

complement of B, Bp=(00100100) shown in Figure 24. As a next step, the non-trivial

computation required are performed. In the proceeding step, the grouping of bits of the

multiplier magnitude, Bp, is completed and the three partial products are generated based

on the two 3-bit groups and the lone bit at index 6. Required additions are computed in

stage 1 and stage 2. The result after performing the summation is the magnitude of the

product. The sign of the product is determined based on the signs of the actual inputs. If

53

the signs of the actual inputs are opposite, then the result obtained from the summation at

stage 2 is 2’s complemented to find the actual value of the product.

Figure 24 Example-2 calculation of the 8 x 8 signed multiplication using the proposed radix-8

architecture

54

And, the architecture of the proposed 8 x 8 design implemented using Synopsys

RVT standard cells is shown in the following Figure 25. The precomputation block

constitutes the two major parts which work sequentially. First one for finding out the

magnitude using the two 8-bit B2Cs and two 8-bit wide 2 to 1 multiplexer. The second

major part is the group of three non-trivial computation blocks built on SQCS-CLA. As

discussed before, the non-trivial computation blocks results in vectors P, Q, and R to

which hold the values of 3X, 5X, and 7X respectively. Since the magnitude of the

multiplicand computed for an 8-bit signed number does not exceed 7-bit value except for

the only one case where the magnitude is of 8-bit is when the actual multiplicand, A, is at

its lowest value of -128 (1000 0000) which has highest magnitude of +128 (1000 0000)

after 2’s complement conversion. Hence, the Ap and Bp values are of 8-bit values and the

P, Q, and R vectors does not exceed 9-bit value of 384 (1 1000 0000), 10-bit value of 640

(10 1000 0000), and 10-bit value of 896 (11 1000 0000) respectively. The

precomputation block is kind of an overhead block looks like it is taking more design

area and power since it has two B2C’s working in parallel and three SQCS-CLA addition

blocks running in parallel. Since the adders in this overhead stage are fed with the output

from the B2C+MUX block, the delay of the overall block constitutes delay from B2C,

Multiplexer, and SQCS-CLA.

Next, in stage 1, the two partial products are generated by selecting one of the 8-

possible vectors, 0, T0, T1, P, T2, Q, P<<1, and R with the selection inputs Bp[2:0] and

Bp[5:3]. Here, 0 is all 0’s, possible trivial values T0, T1, and T2 which are X, 2X, and 4X

values respectively can be fed to the multiplexer without the need for any shifter but just

55

Figure 25 Proposed 8 x 8 signed multiplier with radix-8 architecture

56

by hardwiring the connections, and the non-trivial values, P, Q, and R, are from the non-

trivial computational blocks from the precomputation block. As shown in example 1 and

example 2 from Figure 23 and Figure 24 respectively, the three LSB bits of the first

partial product generated from the multiplexer on the right side are assigned the first three

LSB output bits, z[2:0] of the magnitude of the product. Here, the intermediate vector, z,

represent the magnitude of the final product. The next six bits of the first partial product

and the second partial product of ten bits are added together in stage 1. The careful

grouping in the current stage and later stage results in reduction in addition hardware by

employing the binary excess-1 code, BEC, style generator. Hardware of the BEC style

block is less complex, simple, faster, requires less design area, and consumes less power

for performing its operation. The BEC block does generate the excess-1 code if the carry

output from the 7-bit SQCS-CLA block which is fed to the BEC is ‘1’. The 7-bit adder

with 3-bit BEC structure results in a 11-bit output as an output of stage 1 and the first

three bits of the output are the product magnitude bits z[5:3].

In stage 2, the result obtained from the stage 1, z[10:3], and the 8-bit input, either

all 0’s or X, formed based on the 7th bit of the magnitude of the multiplier at index six are

added using an 8-bit SQCS-CLA. The 9-bit result of the adder is assigned to z[14:6]. As a

final part of the process, the sign of the final product is determined by the sign bits, A[7]

and B[7] of the actual inputs, A and B. If both the sign bits are opposite, then the 2’s

complemented value of the z is selected as the output. This selection is done using a 15-

bit wide 2 to 1 multiplexer. And, the final minor step of stage 2 is to deal with the one

extreme case where the multiplier is -128 (1000 0000) with B[7] and Bp[7] equals to 1.

As mentioned above, this is the only case where the MSB bit, the sign bit, of the actual

57

multiplier, B, and the MSB bit of the magnitude of the multiplier, Bp[7] are equal to ‘1’.

If this extreme case occurs, then the final output is simply equals to the 2’s complement

of the multiplicand, Ac, left shifted by 7-bit positions. Again, there is no need for any

shifter since the shifted input is just hardwired to the one of the inputs of the multiplexer.

If not the extreme case, the output computed using stage 1 and stage 2 using adders with

sign conversion, if needed, is assigned to the final output, Z. Worst delay path consists of

three sub-blocks from the precomputation stage: B2C, 2 to 1 multiplexer, and SQCS-

CLA, two sub-blocks from stage 1: 8 to 1 multiplexer and the LSB side hardware for

addition of the 7-bit SQCS-CLA, and four sub-blocks from stage 2: 8-bit SQCS-CLA,

B2C, and two 2 to 1 multiplexers in series.

Layout of the proposed 8 x 8 signed multiplier with a simple and new radix-8

structure for partial product generation and new grouping strategy for the partial product

reduction, which is synthesized at 250 MHz clock frequency and performed PnR, is

shown in Figure 26. Total chip area of the layout shown in the following figure is

2531.274 (𝜇m)2 with the standard cell utilization factor of 60.92%. Hence, the total cell

area is nearly 1542 (𝜇m)2 with the total number of standard cells used as 497.

58

4.2 16 x 16 signed multiplication using the proposed design :

The complete working of the proposed radix-8 with the grouping of 3-bit

multiplier bits for the 16 x 16 signed multiplier is clearly illustrated using the example-1

and example-2 shown in Figure 27 and Figure 28 respectively. And, the working is like

the proposed 8 x 8 signed multiplier structure except few modifications such as increase

Figure 26 Layout of the proposed 8 x 8 multiplier

59

in number of partial products hence the number of stages, change in the length of adders,

and new addition plus BEC plus addition plus BEC block. As shown in the example-1 16

x 16 proposed signed multiplier operation, in the first few steps, magnitudes of both

multiplicand and multiplier, A and B respectively, are computed, as the 16-bit vectors Ap

(X) and Bp, followed by the computation of the three non-trivial values, 3X (NT1), 5X

(NT2), and 7X (NT3), in parallel. The maximum number of bits resulting from the non-

trivial computations, additions, are 17-, 18-, and 18-bits for NT1, NT2, and NT3

respectively. Later steps are divided into three stages. In stage 1, five partial products are

generated based on the five 3-bit groupings, radix-8 structures, shown by encircling the

magnitude bits, Bp, of the multiplier. The sixteenth bit at the MSB position can be

ignored since it represents the sign, except in the case of maximum magnitude of 32768

due to the actual multiplier input of -32768 where the actual multiplier value in binary

representation equals to the binary value of the magnitude of itself.

In example 1, the multiplicand and multiplier are chosen as 26563 (0110 0111

1100 0011) and -14241 (1100 1000 0101 1111) respectively. Since the actual value of the

multiplicand is positive, the magnitude is equal to the actual value. Whereas in case of

multiplier, the 2’s complement operation is performed to find the magnitude, 14241

(0011 0111 1010 0001), since the actual multiplier value is negative. Except the MSB bit

at the 16th bit position, all other 15-bits are grouped into five 3-bit groupings, 011-011-

110-100-001. Based on the 3-bit grouping and the radix-8 schema given in Table 4.2, the

five partial product values generated in terms of the magnitude of the actual multiplier, X,

are X, 4X, 6X, 3X, and 3X respectively. Here X and 4X are trivial values, 3X is first non-

60

trivial value (NT1), and 6X is formed by just left shifting the NT1 by 1-bit position.

These partial products are shifted by 0, 3, 6, 9, and 12 to form the PP array.

 The five partial products from the precomputation stage are subjected to

stage 1 reduction, summation. Each partial product is represented as six 3-bit groups

Figure 27 Example-1 calculation of the 16 x 16 signed multiplication using the proposed radix-8

architecture

61

since the partial products are shifted by 3-bit position due to the radix-8 scheme. The two

rectangular solid boxes enclosing two 15-bit parts of the partial products are added to

reduce. The two mirrored L-shape blocks perform addition plus BEC like operation plus

addition plus BEC like operation. In any stage, if the grouping results in more BEC like

operation, then it is an advantage for improving the speed while keeping the design area

and power consumption low. The encircled group of 3-bits does not need any further

processing and constitutes towards the final magnitude of the product. The three lone

rectangular blocks containing 3-bits each: LSB block of the 3rd partial product and the

two LSB blocks of the 5th partial product carried forward to the next stage unprocessed.

The two 15-bit adder blocks yield 16-bit output, and the two L-shaped blocks together

results in a 13-bit output. All the outputs and the blocks carried forward to the next stage,

stage 2, are further processed to reduce.

In stage 2, the bits enclosed under the two solid boxes are added separately and

the 3-bit groups enclosed by the small rectangular blocks are carried forward to the next

stage unprocessed. The encircled 3-bit group constitute towards the magnitude of the

final product.

In stage 3, the first two 3-bit groups of output resulted from the first adder of

stage 2 constitute towards the magnitude of the final product as 3rd and 4th groups from

the LSB side. The remaining output bits of first adder, all the output bits of the second

adder, and the unprocessed 3-bit groups from stage 2 are summed together in the final

stage of addition. The MSB side has more BEC like structure which is faster with less

design area and power requirements. In post computation stage, the magnitude of the

final product is 2’s complemented based on the logic that if the two actual inputs are

62

opposite in sign and the Bp is not equal to ‘1’. Bp is equal to ‘1’ in only one case where

the multiplier is at its maximum magnitude of 32768 (1000 0000 0000 0000). At

maximum magnitude case, the actual value of the signed integer and the 2’s

complemented value of itself are same. In the maximum magnitude case, the final

product is simply a 15-bit shifted, and 2’s complemented value of the multiplicand. In

this example, example 1, the magnitude of the product value needs to be 2’s

complemented to get the actual final product.

63

The computation procedure in example 2, shown in Figure 28, is exactly same as

example 1 described and illustrated above. In preprocessing stage, multiplier value is 2’s

complemented from (1000 1100 0101 1100) to (0111 0011 1010 0100) to compute the

magnitude, Bp, and the multiplier magnitude value, Ap (X), stays same since it is a

Figure 28 Example-2 calculation of the 16 x 16 signed multiplication using the proposed radix-8

architecture

64

positive number. The three non-trivial values, 3X, 5X, and 7X, are computed and used

based on the 3-bit grouping of the 15-bits correspond to the magnitude of the multiplier

to generate the five partial products. The five partial products are subjected to reduction,

summation, in stage 1 results in 3 partial products to be processed in stage 2. Stage 2

results in two partial products for stage 3 to be processed. Stage 3 addition results in the

final magnitude of the product. The actual sign of the final product is determined based

on the signs of the actual inputs. Magnitude value of the final product is 2’s

complemented if the signs are opposite otherwise actual final product value stays the

same as the magnitude. As mentioned above, in an exclusive case of multiplier being the

lowest, highest in magnitude, for the given number of input bits, the final product is

calculated simply by left shifting the multiplicand by 15-bit positions followed by the 2’s

complement.

The architecture of the proposed 16 x 16 design is implemented using Synopsys

RVT standard cells and is shown in the following Figure 29. In the precomputation stage,

the magnitudes of the two 16-bit signed inputs, multiplicand (A) and multiplier (B), to be

multiplied are computed as Ap (X) and Bp. After the magnitude conversion, the three non-

trivial computation blocks, each one is made of SQCS-CLA adder, compute 3X (NT1),

5X (NT2), and 7X (NT3). The results of the non-trivial blocks are represented as vectors

P, Q, and R of width 17-, 18-, and 18-bits respectively.

In stage 1, five 18-bit 8 to 1 multiplexers are used to select one of the eight

possible values, {0, T0, T1, P (NT1), T2, Q (NT2), P<<1, R (NT3)}, of the partial

product to form the five partial products. The 3-bit groups encircled, shown in the

examples for the proposed 16 x 16 multiplier, are used as selector inputs, Bp[2:0], Bp[5:3],

65

Bp[8:6], Bp[11:9], and Bp[14:12]. Partial product generation starts from using the 3-bit

grouping of the bits of Bp from the LSB side. All the partial products are generated in

parallel and are of 18-bits wide. The partial products from the multiplexers are

represented as vectors, k, l, m, n, and o, from right to left. The five generated partial

products are subjected to reduction using two 15-bit SQCS-CLAs, yields 16-bit outputs,

and a 12-bit addition plus BEC like operation block, yields 13-bit output, shown in the

stage 1 of the Figure 29. The first 3-bits, k[2:0] on the LSB side of the first partial

product on the right side, k, are assigned to the first 3-bits on the LSB side of the product

magnitude, z[2:0]. Rest of the 15-bits of k, k[17:3], are fed to the 15-bit adder along with

the LSB side 15-bits of the second partial product, l[14:0]. The 15-bits on the MSB side

of the third partial product, m[17:3], and the first 15-bits on the LSB side of the fourth

partial product, n[14:0], are fed to the 15-bit SQCS-CLA in the middle. Finally, the MSB

side 12-bits of the fifth partial product, o[17:6], and the two MSB side 3-bit groups

unprocessed of the second and fourth partial product, l[17:15] and n[17:15], are fed to the

ADD plus BEC plus ADD plus BEC structure. Carry outs from each 3-bit sub-block is

fed to the next 3-bit block towards the left side. The two 15-bit adders result in 16-bit

outputs and the ADD plus BEC structure results in a 13-bit output.

66

Figure 29 Proposed 16 x 16 signed multiplier with radix-8 architecture

67

Stage 2 takes the three output vectors from stage 1 and further reduces to two

output vectors using a 12-bit adder plus a single bit half adder (HA) structure and a 7-bit

ADD plus 6-bit BEC structure. The first three bits, LSB bits, of the output vector from

the first output vector from the stage 1 on the right side are assigned to z[5:3]. The MSB

side 12-bits of the first output vector of stage 1 along with the concatenated 12-bits

formed using the LSB side 9-bits of the second output vector from stage 1 and the three

unprocessed three LSB bits of the third partial product, m[2:0], from stage 1 are fed to the

SQCS-CLA plus HA block. The 13-bit output vector from the ADD plus BEC block of

the second stage and the 7-bits on the MSB side of the second output vector, in the

middle, of stage 1 are fed to the 7-bit ADD plus the 6-bit BEC block on the left side of

the stage 2 enclosed in a solid rectangle. The fourteenth bit at index 13 can be ignored

since it does not contribute to the 31-bits of the product output. Since the 7-bit addition is

not in the time critical path, a simple ripple carry adder (RCA) is used instead of a fast

SQCS-CLA to cut the additional cost, in terms area and power, of computation. Both

addition blocks outputs 14-bit vectors.

In stage 3, the six LSB bits of the first output vector on the right side of stage 2

are assigned to z[11:6] and the rest of the MSB bits, 8-bits, are fed to the 8-bit SQCS-

CLA along with the eight LSB bits of the vector formed by the concatenation of the six

unprocessed bits of the fifth partial product generated in stage 1, o[5:0], and the thirteen

LSB bits of the output from the 7-bit ADD plus the 6-bit BEC structure on the left side of

stage 2, shown in the Figure 40. Rest of the eleven MSB bits of the concatenated vector

are fed to the 11-bit BEC structure with one more bit of input, carry input, from the carry

output of the 8-bit SQCS-CLA. The 19-bit addition carried out using the SQCS-CLA and

68

the light weight BEC results in a 20-bit output vector. The 20th bit at index 19 can be

ignored since it contributes to the 32nd bit of the product output, which is out of bounds of

the expected 31-bit result. The LSB 19-bits are assigned to the 19 MSB bits of the

magnitude of the product, z[30:12]. The post processing steps include deciding the sign

of the final product, performing the sign conversion, and performing the one special case

of multiplication where multiplier magnitude is at its maximum 32768. The sign of the

partial product determined by performing the XOR operation on the MSB bits of the

actual inputs, A[15] and B[15]. If the two signs of the inputs are opposite then the XOR

results in a logic ‘1’ which is fed to the 31-bit wide 2 to 1 MUX to choose the 2’s

complemented magnitude, z, value. The next and the final 31-bit wide 2 to 1 MUX chose

between the product magnitude value decided by the preceding MUX and product

obtained from the extreme case of multiplying multiplicand with the maximum

magnitude multiplier, B, value. The final MUX is necessary since the extreme case of

multiplying the multiplicand with the lowest 16-bit signed integer value is omitted in the

previous stages. If the multiplier has the maximum magnitude value of 32768 due to its

actual value of -32768, the final product will be simply the 15-bit left shifted

multiplicand magnitude, Ac, value.

Layout of the proposed 16 x 16 signed multiplier with a simple and new radix-8

structure for partial product generation and new grouping strategy for the partial product

reduction, which is synthesized at 250 MHz clock frequency and performed PnR, is

shown in Figure 30. Total chip area of the layout shown in the following figure is

7585.69 (𝜇m)2 with the standard cell utilization factor of 61.18%. Hence, the total cell

area is nearly 4641 (𝜇m)2 with the total number of standard cells used as 1516.

69

Figure 30 Layout of the proposed 16 x 16 multiplier

70

4.3 32 x 32 signed multiplication using the proposed design :

Like the proposed 8-bit and 16-bit signed multiplier architectures, 32-bit signed

multiplier architecture in the precomputation stage, shown in Figure 31, majorly involves

in magnitude computation for multiplicand (A) and multiplier (B) and the three non-

trivial computations, P, Q, and R, required to be performed once to be used in stage-1

multiple times equal to the number of 3-bit groupings. Non-trivial computations are

performed using the magnitude of the multiplicand, Ap or X. The 3-bit grouping required

to be performed from the LSB side to MSB side of the magnitude bits of the multiplier,

Bp, at the initial stages for the proposed radix-8 structure is left with 10 3-bit groupings

and one lone MSB bit, Bp[30]. The 10 3-bit groupings generate 10 partial products, k, l,

Figure 31 Stage-0 of the proposed 32 x 32 signed multiplier with radix-8 architecture

71

m, n, o, d, e, f, g, and h, of 34-bit wide and the lone bit, Bp[30], generates one more

partial product of value equals to 0 or X based on its binary value.

The partial products generated are reduced to find the final product magnitude in

4 stages, from stage-1 to stage-4. In stage-1, each 3-bit grouping is used as selection input

bits at each multiplexer, shown in Figure 32, to choose between one of eight possible

values which includes both trivial and non-trivial values. The first 10 partial products

chosen by the 10 multiplexers, with each multiplexer of 8-inputs of 34-bit wide, are

reduced to 6 partial products using 5 30-bit SQCS with carry look-ahead adder blocks

and a chain consisting of 5 pairs of 3-bit adder and 3-bit BEC like structure. As shown in

figure, all the six reduced partial products generated in stage-1 are of 31-bit wide,

including carry output. The reduced partial products in the current stage are named kl, mn,

Figure 32 Stage-1 of the proposed 32 x 32 signed multiplier with radix-8 architecture

72

od, ef, gh, and ss with the carry outputs, C1, C2, C3, C4, C5, and C10 respectively,

associated with. The first six LSB bits of the final product magnitude, z[5:3] and z[2:0],

are resulted in this stage.

The six partial products generated in stage-1 are further reduced in stages 2, 3,

and 4, shown in Figure 33, to generate the final product magnitude, z, and the final

product, Z. Stage-2 further reduced the partial products reduced in stage-1 with the help

of three 27-bit SQCS with CLA blocks and a 6-bit BEC like block. Stage-2 results in

further reduced partial products and the six bits of final product magnitude, z[11:6].

Stage-3 further reduces the partially reduced partial products from stage-w with the help

of one 22-bit SQCS with CLA and two block of 7-bit with SQCS with CLA plus the 6-bit

BEC like structure. Stage-3 results in further partially reduced partial products and 12 bits

of result final product magnitude, z[23:12]. Finally, stage-4 reduces the partially reduced

partial products from the previous stage using one 9-bit SQCS with CLA, one 12-bit

SQCS with CLA, two blocks consisting of half adder, full adder, and 11-bit BEC like

structure, one block with two full adders and 10-bit BEC like structure, and one block

with two full adders and 4-bit BEC like structure. After four stages of partial product

reduction and the final product magnitude generation, the B2C block and the two

multiplexers are used to decide the sign of the final product and to deal with the extreme

case of multiplying with the maximum multiplier magnitude value at B = -2147483648,

which is omitted in the initial stages of processing. The extreme case bypasses the

previous computation stages and simply generates the output by left shifting the two’s

complemented multiplicand value by 31-bit positions.

73

Layout of the proposed 32 x 32 signed multiplier with a simple and new radix-8

structure for partial product generation and new grouping strategy for the partial product

Figure 33 Stages 2, 3, and 4 of the proposed 32 x 32 signed multiplier with radix-8 architecture

74

reduction, which is synthesized at 200 MHz clock frequency and performed PnR, is

shown in Figure 34. Total chip area of the layout shown in the following figure is

29292.637 (𝜇m)2 with the standard cell utilization factor of 60.56%. Hence, the total cell

area is nearly 17741 (𝜇m)2 with the total number of standard cells used as 5856.

Figure 34 Layout of the proposed 32 x 32 multiplier

75

4.4 64 x 64 signed multiplication using the proposed design :

 The precomputation stage, stage-0, of the proposed 64 x 64 signed multiplier with

radix-8 structure is like 8-bit, 16-bit, and 32-bit proposed architectures discussed earlier,

especially like the stage-0 of the 16-bit multiplier since all the bits of the magnitude of

the multiplier are 3-bit grouped without leaving with any lone MSB bit. Computation of

magnitudes of the multiplicand and the multiplier, Ap and Bp respectively, and the non-

trivial computations, P, Q, and R, are computed in the current stage resulting in 65-bit,

66-bit, and 66-bit wide outputs respectively. The simple control logic blocks required to

deal with the maximum magnitude of the multiplier case and to decide the sign of the

Figure 35 Stage-0 of the proposed 64 x 64 signed multiplier with radix-8 architecture

76

final product, a and b respectively, are also implemented in the current stage of

precomputation.

Excluding the maximum magnitude multiplier case, which is dealt at the final

stage by bypassing major computation stages 1 to 5, the 63 bits of magnitude are grouped

into 21 groups to generate 21 partial products by using each group of 3-bits as selection

bits to choose between one of the 8 possible inputs discussed earlier in the case of the

proposed smaller width multiplier architectures. As shown in Figure 36, each multiplexer

in stage-1 results in a 66-bit output. The 21 partial products generated are labeled d, e, f,

g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, and x from LSB to MSB side. The 21 partial

products are reduced to 11 partially reduced partial products using the help of 10 63-bit

SQCS with CLA blocks and one block of chain of 10 pairs of simple computing blocks

Figure 36 Stage-1 of the proposed 64 x 64 signed multiplier with radix-8 architecture

77

each pair includes a 3-bit adder and a 3-bit BEC like structure. Partially reduced partial

products are labeled as de, fg, hi, jk, lm, no, pq, rs, tu, vw, and xx. The first 6-bits of the

magnitude of the final product, z[2:0] and z[5:3], are resulted in the current stage.

 The 11 partially reduced partial products resulted in the previous stage are further

reduced by using 5 51-bit SQCS with CLA blocks and a block with a chain of 5 pairs of

computation blocks with each pairing consisting of a 6-bit adder and a 6-bit BEC like

structure, shown in Figure 37. Stage-2 results in 6-bits of magnitude of final product,

z[11:6]. The further reduced partial products are labeled as defg, hijk, lmno, pqrs, tuvw,

and xxxx with the associated MSB bit and carry outputs pairs generated at each block as

{C12, C13}, {C14, C15}, {C16, C17}, {C18, C19}, {C20, C21}, and {C22, C23}

respectively.

Figure 37 Stage-2 of the proposed 64 x 64 signed multiplier with radix-8 architecture

78

Stages 3, 4, and 5, shown in Figure 38, involve further reduction of partially

reduced partial products from the previous stages. Further reduction of partial products is

in stage-3 is performed using one 56-bit wide, one 48-bit wide, and two 32-bit wide

SQCS with CLA blocks, one 11-bit BEC like structure and two 12-bit BEC like

structures. Stage-3 results in 12-bits of magnitude of the final product, z[23:12]. Stage-4

further reduces the previously reduced partial products using a 45-bit SQCS with CLA

block, a 37-bit SQCS with CLA, a 12-bit BEC like structure, and a 22-bit BEC like

structure. Stage-4 results in 24-bits of the magnitude of the final product, z[47:24]. Partial

product reduction in stage-5 uses one 34-bit SQCS with CLA and one 45-bit BEC like

structure. Stage-5 results in the MSB 79-bits of the magnitude of the final product,

z[126:82] and z[81:48]. Finally, B2C block converts the sign of the magnitude of the

final product, and the two multiplexers, with a and b as selection signals, decide the sign

of the final product and selects the final product in the case of maximum magnitude of

the multiplier case, which is omitted in the starting stages, respectively. Each multiplexer

takes 127-bit inputs and results in 127-bit output. In case of dealing with the extreme case

of computing the final product with the least multiplier value, highest possible magnitude

for the current multiplier size, the corresponding input is simply generated by left shifting

the two’s complemented multiplicand value, Ac, by 63-bit positions. The final product

output of 127-bit wide is labeled as Z[126:0].

79

Figure 38 Stages 3, 4, and 5 of the proposed 64 x 64 signed multiplier with radix-8 architecture

80

Layout of the proposed 32 x 32 signed multiplier with a simple and new radix-8

structure for partial product generation and new grouping strategy for the partial product

reduction, which is synthesized at 200 MHz clock frequency and performed PnR, is

shown in Figure 39. Total chip area of the layout shown in the above figure is

Figure 39 Layout of the proposed 64 x 64 multiplier

81

108593.952 (𝜇m)2 with the standard cell utilization factor of 61.46%. Hence, the total cell

area is nearly 66743 (𝜇m)2 with the total number of standard cells used as 22194.

4.5 Results & Performance Comparison

The proposed multiplier design and the optimized Booth algorithms presented in

[41] and [43] [42] are synthesized using Synopsys design compiler (DC). Regular voltage

threshold (RVT) cells, for which the voltage threshold is in between high voltage

threshold (HVT) cells and low voltage threshold (LVT) cells, at typical-typical corner are

used to design, synthesize, and perform the placement and routing (PnR). The total power

consumption and delay are measured with the supply voltage of 1.05 V. All the delay

values reported are either from Synopsys Design Compiler (DC) generated timing reports

or from IC Compiler (ICC) generated timing reports. But, the delay values tabled and

discussed in this work are not from the Prime-Time tool generated timing reports. Prime-

Time (PT) tool is a powerful and the industry gold-standard static timing analysis (STA)

tool that provides a single, golden, trusted signoff solution for timing, signal integrity,

power, and variation-aware analysis [47]. Synopsys DC tool generated results correlate

within 10% of physical implementation [48]. Path delay reported from PT is based on

both Cell delay and net delay. PT can be used pre-PnR stage to confirm the design

achieves the timing goal and post-PnR stage for the post-layout timing signoff. All the

synthesized binary two’s complement (B2C) designs include input and output registers,

but the area and power values, shown in the following Table 4.3, are only for the

combinational part of the design. Area includes the combinational design area,

buffer/inverter area, and the net interconnect area. But, the current B2C design used does

not include any inverters or buffers and hence the buffer/inverter area for B2C designs of

82

various sizes are 0. Total delay includes the delay from the input registers and the

combinational delay. The delay is the data arrival time (DAT) from the output of the

input registers to the input of the output registers. Addition of the input and the output

registers for the synthesis purpose results in an increase in the combinational circuit delay.

Since the 8-bit proposed multiplier structure requires deployment of 8-bit and 15-bit B2C

and the 16-bit multiplier uses 16-bit and 31-bit B2C, synthesis results for all four designs,

which are synthesized at 500MHz clock frequency, are included in Table 4.3.

Table 4.3 Synthesis (pre-layout) results for 8-bit and 16-bit B2C in [41]

B2C Design Frequency

(MHz)

Area

(𝜇m)2

Power

(𝜇𝑊)

Delay

(ns)

8-bit (Boppana et al. [41]) 500 50 5.4 0.47

15-bit (Boppana et al. [41]) 500 117 9.6 0.68

16-bit (Boppana et al. [41]) 500 127 10.3 0.73

31-bit (Boppana et al. [41]) 500 273 20.5 1.32

32-bit (Boppana et al. [41]) 500/250 275 20.6/18.0 1.32

63-bit (Boppana et al. [41]) 250 576 37.5 2.53

64-bit (Boppana et al. [41]) 250 586 38.1 2.59

127-bit (Boppana et al. [41]) 250 1300 96.8 3.97

Proposed multiplier of 32 x 32 size uses two B2C blocks of size 32-bit, here N =

32, at the precomputation stage and one 63-bit B2C, of width 2*N – 1, is used at the final

stage to perform the magnitude conversion of the magnitude of the product obtained by

performing the partial product reduction. Similarly, proposed multiplier of size 64 x 64,

here N = 64, uses two B2C blocks of size 64-bits at the precomputation stage and one

83

B2C block of size 123-bits at the final stage. B2C blocks used in designing of 32-bit and

64-bit multipliers are synthesized at 250MHz since the designs are wider with longer data

arrival time. A major observation pertaining to the delay of the proposed multiplier

designs can be made that the B2C blocks cause longer processing delays. This leads to

the room to perform more research towards finding faster B2C designs. Also, area, power,

and delay are lesser compared to the published values for the 8-bit B2C in [41], shown in

Figure 40, since the 9th output bit is not required for the proposed design in this article

due to the reason mentioned above.

 The critical path delay for the B2C used and shown in Figure 40 is

formulated as follows:

𝐶𝑃𝐷 = 𝑓𝑙𝑜𝑜𝑟 (
𝑁−2

3
) × 𝑁𝑂𝑅4′𝑠 + 𝑓𝑙𝑜𝑜𝑟 (

𝑁−3

3
) × 𝐼𝑁𝑉′𝑠 + 𝑁𝑂𝑅# [((𝑁 −

2) 𝑚𝑜𝑑 3) + 𝑖𝑛𝑡 (𝑏𝑜𝑜𝑙(~((𝑁 − 2) 𝑚𝑜𝑑 3) == 0))] + 𝑋𝑂𝑅2

(4.1)

The synthesis results for the rest of the sub-components used in the proposed

multipliers of various sizes, 8-bit, 16-bit, 32-bit, and 64-bit, with radix-8 structure are

Figure 40 Optimized 8-bit B2C in [41] used in the 8x8 multiplier proposed in this work

84

shown in the Table 4.4. All the inputs coming to each of the combinational logic blocks

comes through the registers and similarly, all the outputs of the combinational blocks are

connected to registers. Area and power are measured only for the combinational part of

the design like the measurements done for the B2C design. And, the delay measured and

included in the table is the data arrival time.

Figure 41 BEC like structure with widths (a) 3-bit, (b) 4-bit, (c) 6-bit, and (d) 10-bit

85

 BEC like structure used has the similar structure like B2C block. B2C involves bit

wise inversion and excesss-1 calculation. The actual BEC (Binary Excess-1 Converter)

simply adds 1 to the input data word of respective size used. Whereas, BEC like

structures used in all four different size multipliers compute the excess 1, i.e., addition of

1, if Cin = 1, otherwise results in exact input as output without any addition of 1. N-bit

wide structure yields a N+1 result, i.e., Co = 1, if and only if all N-bits are binary 1. For

instance, if the 3-bit BEC like structure is considered with inputs as ‘111’ and Cin=1,

then only the output is 4-bit, ‘1000’, i.e., Co = 1 and {e2e1e0} = {000}. BEC like structure

is very simple to design, occupies less area, consumes less power, and performs

computation quickly. Each bit of BEC like block requires an average design area of an

AND gate plus a 2-input XOR gate. Some of the BEC like structures of 3-bit, 4-bit, 6-bit,

and 10-bit wide are shown in Figure 41 (a), (b), (c), and (d) respectively. The usage of

BEC like structures has been increased with the increase in the width of the multiplier. 3-

bit wide BEC like structure is used in the proposed 8 x 8 multiplier, 3-bit, 6-bit, and 11-

bit wide BEC like structures is used in the proposed 16 x 16 multiplier, 4-bit, 6-bit, 10-bit,

and 11-bit wide structures used in the proposed 32 x 32 multiplier, and 6-bit, 11-bit, 12-

bit, 22-bit, and 45-bit wide BEC like structures used in the proposed 64 x 64 multiplier.

To make the fair comparison between BEC structures of various size, all the designs are

synthesized at 500MHz. Simple and light weight BEC like designs and SQCS adder with

CLA blocks of similar width have the similar delays. The delays of the BEC like

structures and SQCS adders of sizes 12-bit, 22-bit, and 45-bit are {0.62, 0.72}ns, {1.04,

1.06}ns, and {1.96, 1.92}ns respectively. The delay of the BEC like block is nearly

proportional to the number of 3-bit chains times the added delay by the 4-input AND gate

86

plus the 2-input XOR gate. The formulation required to calculate or estimate the exact

critical path delay (CPD) of the BEC like structure is shown in the following equation

consisting of 𝑓𝑙𝑜𝑜𝑟 (
𝑁−1

3
) times the 4-input AND gate delays plus one [((𝑁 −

1) 𝑚𝑜𝑑 3) + 𝑖𝑛𝑡 (𝑏𝑜𝑜𝑙(~((𝑁 − 1) 𝑚𝑜𝑑 3) == 0))] -input AND gate delay, and one

two input XOR gate delay.

𝐶𝑃𝐷 = 𝑓𝑙𝑜𝑜𝑟 (
𝑁−1

3
) × 𝐴𝑁𝐷4′𝑠 + 𝐴𝑁𝐷# [((𝑁 − 1) 𝑚𝑜𝑑 3) + 𝑖𝑛𝑡 (𝑏𝑜𝑜𝑙(~((𝑁 −

1) 𝑚𝑜𝑑 3) == 0))] + 𝑋𝑂𝑅2

(4.2)

Table 4.4 Synthesis (pre-layout) results for the sub-components used in the 8 x 8, 16 x 16, 32 x 32,

and 64 x 64 signed multiplier designs proposed

Design Name Frequency

(MHz)

Area

(𝜇m)2

Power

(𝜇𝑊)

Delay

(ns)

3-bit BEC 500 22 2.3 0.30

4-bit BEC 500 27 2.8 0.32

6-bit BEC 500 44 4.1 0.42

10-bit BEC 500 83 5.9 0.52

11-bit BEC 500 95 6.5 0.57

12-bit BEC 500 104 7.0 0.62

22-bit BEC 500 193 12.6 1.04

45-bit BEC 500 406 24.7 1.96

87

7-bit SQCS-CLA (34) 500 230 28 0.57

8-bit SQCS-CLA (44) 500 262 32 0.63

9-bit SQCS-CLA (234) 500 299 36 0.61

12-bit SQCS-CLA (2334) 500 404 48 0.72

15-bit SQCS-CLA (22344) 500 504 60 0.83

22-bit SQCS-CLA (22344) 500 747 88.8 1.06

27-bit SQCS-CLA (222333444) 500 923 109 1.27

30-bit SQCS-CLA (2223333444) 500 1030 121 1.37

32-bit SQCS-CLA (22-bit & 10-

bit SQCS-CLA)

500/250 1095 129.1/95.3 1.47

34-bit SQCS-CLA (27-bit & 7-bit

SQCS-CLA)

500/250 1163 137.7/101.4 1.52

37-bit SQCS-CLA (30-bit & 7-bit

SQCS-CLA)

500/250 1270 150/110.4 1.62

45-bit SQCS-CLA (30-bit & 15-

bit SQCS-CLA)

500/250 1547 182/134.2 1.92

48-bit SQCS-CLA (30-bit, 10-bit,

& 8-bit SQCS-CLA)

250 1650 143.1 2.02

56-bit SQCS-CLA (27-bit, 22-bit,

& 7-bit SQCS-CLA)

250 1919 167.1 2.28

61-bit SQCS-CLA (30-bit, 22-bit,

& 9-bit SQCS-CLA)

250 2098 181.8 2.46

63-bit SQCS-CLA (30-bit, 27-bit, 250 2172 187.9 2.59

88

& 6-bit SQCS-CLA)

8-bit NT Block 500 309 36 0.71

16-bit NT Block 500 655 80 1.20

32-bit NT Block 250 1348 120.9 2.17

64-bit NT Block 250 2946 273.5 3.97

 Coming to the comparison of the design area required and power consumption of

12-bit, 22-bit, and 45-bit wide SQCS adder and BEC like structure, SQCS adder requires

approximately 3.7 times the area and utilizes approximately 7 times the power compared

with BEC like structure. Square root carry select (SQCS) adders with carry-look-ahead

(CLA) blocks of various sizes are used along with the BEC like blocks to reduce the

partial products. SQCS with CLA blocks are also used and the only computation used to

generate the P, Q, and R outputs of the non-trivial blocks. The SQCS with CLA blocks

used in NT blocks are not exactly of the square-root carry select structure. These blocks

follow the square root carry select structure for the initial few blocks at the LSB side and

the later follows the linear carry select structure. Hence, the adders used in the NT blocks

can be labeled as L/SQCS_CLA. This leads to more room for finding and deploying a

faster adder to reduce the delay.

 An important observation can be made based on the processing delays of the B2C

blocks, delays of the non-trivial blocks, and the delays of the complete 8-bit, 16-bit, 32-

bit, and 64-bit multiplier designs, included in Table 4.5, that the B2C and NT blocks

constitute towards the major portion of the total delay of the proposed multiplier designs.

The following table, Table 4.5, include the synthesis and PnR results of the 8-bit and 16-

89

bit multipliers at 250 MHz clock frequency. The delays of the 8-bit and 16-bit multipliers

are {2.17, 1.77} ns and {3.4, 2.74} ns respectively for the {synthesized, PnR} designs.

Similarly, the delays measured for the 32-bit and 64-bit multipliers synthesized, at clock

frequencies of 200 MHz and 100 MHz respectively, are {4.97, 4.44} and {9.98, 7.81}

respectively for the {synthesized, PnR} designs. In case of synthesized designs, the

delays are increasing at a rate of around 1.5x moving from 8-bit to 16-bit and 16-bit to

32-bit, whereas, rate is changed to nearly 2x moving from 32-bit to 64-bit. Similarly, the

rate at which the delays increase by for the placement and routed designs moving from 8-

bit to 16-bit to 32-bit is nearly 1.5x but this rate is changed to 1.75x moving from 32-bit

to 64-bit design. This increase in rate of change of delay is clearly due to the use of

mostly linear style carry select adders in NT blocks and in stages involving partial

products. The area column of the table includes the non-combinational area (NCA) by

the registers, combinational area (CA), and the total area (TA) which is the sum of NCA,

CA, buffer/inverter area, macro/black box area if any, and the net interconnect area for

the proposed design. Total cell area (TCA) includes CA and NCA. The power column in

the table consists of two groups of power: one includes the power consumption by the

registers and the second of the power consumption by the combinational circuit. The total

power consumption by the each of the power group objects consists of internal power

(IP), switching power (SP), leakage power (LP), and the total power (TP) which is the

sum of IP, SP, and LP. Total power section includes the power consumption by the

registers and the combinational part of the design. In general, if the multiplier size

doubles then the size of the array formed by the partial products doubles vertically and

horizontally. Hence, the area increases by four times and the delay increases by

90

approximately two times. But, whereas in the case of the proposed design, the delay and

the total area are increased by approximately 1.5 times and 3 times respectively when

moving from the 8-bit proposed multiplier to the 16-bit proposed multiplier. With the

proposed architecture, the critical path delay (CPD), total power consumption, and total

area are increased by 1.5 to 2 times, 3 to 4 times, and 3 to 4 times respectively while

comparing with the designed multiplier of twice the size.

Table 4.5 Synthesis and post-layout results for the proposed design

Radix-8 (3-bit grouping)

Multiplier

Size

Synthesis PnR

Area

(𝜇m)2

Delay

(DAT)

(ns)

Power

(𝜇W)

Area

(𝜇m)2

Delay

(DAT)

(ns)

Power

(𝜇W)

8

(1133)

(2 stages)

Reg:

205(NCA)

2.17 @4n clk

Reg:

50(IP)

0.5(SP)

35(LP)

85(TP)

Reg:

205(NCA)

1.77 @4n clk

Reg:

54(IP)

1.3(SP)

35(LP)

90(TP)

Total:

1327(CA)

1815(TA)

Total:

110(IP)

28(SP)

133(LP)

271

Total:

1337(CA)

1840(TA)

Total:

115(IP)

43(SP)

140(LP)

298

16

(133333)

(3 stages)

Reg:

417(NCA)

3.4 @4n clk

Reg:

101(IP)

1.5(SP)

71(LP)

174(TP)

Reg:

417(NCA)

2.74 @4n clk

Reg:

112(IP)

3.2(SP)

71(LP)

186(TP)

Total:

4150(CA)

5725(TA)

Total:

297(IP)

82(SP)

367(LP)

Total:

4224(CA)

5777(TA)

Total:

315(IP)

148(SP)

418(LP)

91

746(TP) 881(TP)

32

(11333333333

3)

(4 stages)

Reg:

840(NCA)

4.97 @5n clk

Reg:

161(IP)

1.9(SP)

142(LP)

305(TP)

Reg:

841(NCA)

4.44 @5n clk

Reg:

181(IP)

4.7(SP)

143(LP)

328(TP)

Total:

16881(CA)

22776(TA)

Total:

892(IP)

309(SP)

1446(LP)

2647(TP)

Total:

16899(CA)

25106(TA)

Total:

939(IP)

552(SP)

1704(LP)

3194(TP)

64

(13333333333

33333333333)

(5 stages)

Reg:

1685(NCA)

9.98 @10n clk

Reg:

161(IP)

1.8(SP)

285(LP)

447(TP)

Reg:

1686(NCA)

7.81 @10n clk

Reg:

187(IP)

7.5(SP)

285(LP)

479(TP)

Total:

63548(CA)

85708(TA)

Total:

1628(IP)

625(SP)

5224(LP)

7478(TP)

Total:

66743(CA)

100764(TA)

Total:

1789(IP)

1364(SP)

7016(LP)

10169(TP)
NCA - Non-Combinational Area; CA – Combinational Area; TA – Total Area; TCA – Total Cell Area;

IP – Internal Power; SP – Switching Power; LP – Leakage Power; TP – Total Power; TDP – Total

Dynamic Power; CLP – Cell Leakage Power;

Similarly, synthesis and PnR are performed on the proposed designs of sizes, 8-,

16-, 32-, and 64-bit, synthesized at highest clock frequency and the respective pre- and

post-layout reports including the area, delay, and power are included in the following

table, Table 4.6. The highest clock frequencies at which the designs, of widths 8-, 16-,

32-, and 64-bit, synthesized are 476 MHz, 333 MHz, 207 MHz, and 104 MHz

respectively, resulting in post-layout delays of 1.69 ns, 2.49 ns, 4.22 ns, and 6.95 ns

respectively, with the total area and power consumption of {1875 (𝜇m)2, 0.46 mW},

92

{5973 (𝜇m)2, 1.09 mW}, {25107 (𝜇m)2, 3.26 mW}, and {100993 (𝜇m)2, 10.45 mW}

respectively for the post-layouts.

Table 4.6 Synthesis and post-layout results for the proposed designs synthesized at highest frequency

Radix-8 (3-bit grouping)

Multiplier Size Synthesis PnR

Area

(𝜇m)2

Delay

(DAT)

(ns)

Power

(𝜇W)

Area

(𝜇m)2

Delay

(DAT)

(ns)

Power

(𝜇W)

8

(1133)

(2 stages)

Reg:

205(NCA)

2.07 @2.1n clk

Reg:

96(IP)

1(SP)

35(LP)

131(TP)

Reg:

(NCA)

205

1.69 @2.1n clk

Reg:

104(IP)

2.5(SP)

35(LP)

141(TP)

Total:

1368(CA)

1573(TCA)

1860(TA)

Total:

215(IP)

55(SP)

142(LP)

413(TP)

Total:

1371(CA)

1576(TCA)

1875(TA)

Total:

224(IP)

84(SP)

147(LP)

455(TP)

16

(133333)

(3 stages)

Reg:

417(NCA)

2.98 @3n clk

Reg:

135(IP)

2(SP)

71(LP)

208(TP)

Reg:

417(NCA)

2.49 @3n clk

Reg:

151(IP)

5(SP)

71(LP)

226(TP)

Total:

4376(CA)

4793(TCA)

5976(TA)

Total:

410(IP)

116(SP)

401(LP)

928(TP)

Total:

4400(CA)

4818(TCA)

5973(TA)

Total:

435(IP)

214(SP)

440(LP)

1089(TP)

93

32

(113333333333)

(4 stages)

Reg:

840(NCA)

4.79 @4.82n

clk

Reg:

167(IP)

2(SP)

142(LP)

311(TP)

Reg:

841(NCA)

4.22 @4.82n

clk

Reg:

189(IP)

6(SP)

143(LP)

338(TP)

Total:

16988(CA)

17827(TCA)

22905(TA)

Total:

926(IP)

322(SP)

1457(LP)

2704(TP)

Total:

16954(CA)

17794(TCA)

25107(TA)

Total:

976(IP)

576(SP)

1708(LP)

3260(TP)

64

(13333333333

33333333333)

(5 stages)

Reg:

1686(NCA)

9.57 @9.6n clk

Reg:

168(IP)

2(SP)

285(LP)

454(TP)

Reg:

1688(NCA)

6.95 @9.6n clk

Reg:

195(IP)

8(SP)

286(LP)

488(TP)

Total:

63849(CA)

65535(TCA)

85771(TA)

Total:

1705(IP)

656(SP)

5264(LP)

7625(TP)

Total:

65356(CA)

67044(TCA)

100993(TA)

Total:

1877(IP)

1469(SP)

7100(LP)

10447(TP)

A fact that the cell leakage power nearly equals to the total dynamic power for the

advanced nodes can be observed based on the TDP and CLP values included in the

following Table 4.7 for various sizes of the proposed design. In case of 32-bit design, the

CLP is greater than the TDP while the CLP is more than twice the TDP value for the 64-

bit proposed design. This is because of the inevitable scenario of smaller size nodes prone

to more leakages.

94

Table 4.7 Comparison of Total Dynamic Power (TDP) and Cell Leakage Power (CLP) for the

proposed synthesized and post-layout designs of various sizes

Design

Synthesis PnR

TDP

(mW)

CLP

(mW)

TDP

(mW)

CLP

(mW)

8 @ 4ns 0.1380559 0.1330748 0.1581373 0.1399205

16 @ 4ns 0.3793445 0.3670299 0.4632997 0.4181780

32 @ 5ns 1.2016 1.4456 1.4909 1.7040

64 @ 10ns 2.2534 5.2243 3.1530 7.0163

Delay, area, and power consumption measured for the conventional Booth

multiplier synthesized at the respective highest frequency, included in the following

Table 4.8, for the multipliers are increasing in factors of nearly 2x, 4x, and 3x

respectively while doubling the operand sizes. There is an improvement, reduction in this

scenario, of delay, area, and power consumption by a factor of nearly 1.5x to 2x when

comparing the results obtained from the synthesized conventional Booth multiplier of

various sizes, included in the Table 4.8, with the results obtained from the synthesized

modified Booth multiplier presented or synthesized simple radix-8 design proposed of

various sizes presented in this work.

Comparison of the digital design performance characteristics for the 8-bit design

in [46] and the modified Booth multiplier design in [41], both synthesized at 500MHz,

results in an observation of reduction in delay, area, power, ADP, PDP, and EDP by

6.33%, -0.32%, 22.02%, 6.03%, 26.95%, and 31.58% respectively. The performance

characteristics compared in the same order for the synthesized 8-bit design in [46] with

the post-layout 8-bit design in [41], the performance improvements are more significant

with 24.68%, 5.46%, 21.56%, 28.8%, 40.92%, and 55.5% respectively. Also, the data

95

obtained from [22] for the signed radix-2m parallel multipliers of sizes, 8-, 16-, 32-, and

64-bit with four proposed architectures based on optimized Wallace and Dadda tree

partial product compression strategies are presented in the following table for comparison.

Optimized Booth multiplier implementation in [41] employs optimized partial

product generation and parallel addition of the partial products. Addition is performed in

the binary tree style. The number of partial products to be summed following the

architecture in [41] are same as in the case of conventional Booth multiplier and the

numbers are 4, 8, 16, and 32 respectively for the 8-, 16-, 32-, and 64-bit multipliers with

two times the change in the width of the partial products from increase in the multiplier

size by two times. Performance comparison between the optimized Booth multiplier

presented in this work [41], as a first contribution, and the low PDP Booth multiplier

presented in [42] [43], both designs synthesized at 500MHz, leads to an observation of

reduction in delay, area, power, ADP, PDP, and EDP by 25.63%, 15.03%, 26.57%,

36.79%, 45.39%, and 59.36% respectively. Comparing the design area required for the

optimized Booth multiplier structure in [41] and the signed multiplication included in this

work, the design space requirement quadruple using the structure in [41] since the

number of partial products and the width of each partial product doubles which doubles

the number of adders and the size of each adder when the multiplier input size doubles.

Whereas in case of the proposed work with radix-8 structure, the effective increase in the

design area is only three times because of the reduction in the number of partial products

and the separating out of some group of bits and performing simple additions along with

the simple BEC like structures. The approximate increase in the delay of the multiplier

structure in [41] is two times with the increase in multiplier size by two times because of

96

the increase in number of partial products by two times and the increase in the size of the

additions at each stage. Partial products generated using the architecture in [41] are {4, 8,

16, 32} and using the proposed architecture are {3, 5, 11, 21} for the 8-, 16-, 32-, and 64-

bit multipliers respectively. Designing wider multipliers using higher radix structures

further reduces the number of partial products and hence the delay and the cost of

computation. All the results including the delay, area, and power values for the 8-bit, 16-

bit, 32-bit, and 64-bit multipliers, synthesized and post-layout design completed, with the

proposed architecture and the modified Booth architecture, are included in the Table 4.8.

Projected performance and cost numbers for the proposed 32-bit and 64-bit multiplier

architectures shows significant improvement compared to the conventional Booth

multiplier design of 16-bit and 32-bit wide. 16 x 16 multiplier using the proposed radix-8

architecture outperformed the parallel 16 x 16 multiplier with radix-10 BCD multiplier

presented in [49] when the total power consumptions are compared, even with the non-

combinational power consumption due to the registers at the inputs and outputs included.

If the frequency is also considered for scaling down the power consumption for the

design in [49] to make more appropriate comparison to be performed at the respective

highest frequencies, the power consumption, PDP, and EDP values for the 16-bit

multiplier with the proposed radix-8 architecture are very small in comparison.

Table 4.8 Performance comparison of the multipliers

Multiplier Width

(N x N)

(N-bits)

Tech. Freq.

(MHz) /

Period

(ns)

Supply

Voltage

(V)

Data

Arrival

Time

(ns)

Area

(𝜇m)2

Total

Power

(mW)

ADP

(m2-s)

x 10-21

PDP

(E/op)

(W-s)

(
𝑝𝐽

𝑜𝑝
)

EDP

(J-s)

x 10-21

Boppana2

64

32nm

(Post-)

f=100

1.05

7.81 100764a 10.169b 786967 79.42 620.269

fhighest =

104.2

6.95 100993a 10.447b 701901 72.61 504.616

32nm f=100 9.98 85708a 7.478b 855366 74.63 744.818

97

(This

work)

2022

(Pre-) fhighest =

104.2

9.57 85771a 7.625b 820828 72.97 698.335

32

32nm

(Post-)

f=200 4.44 25106a 3.194b 111471 14.181 62.965

fhighest =

207.5

4.22 25107a 3.26b 105952 13.757 58.055

32nm

(Pre-)

f=200 4.97 22776a 2.647b 113197 13.156 66.050

fhighest =

207.5

4.79 22905a 2.704b 109715 12.952 62.041

16

32nm

(Post-)

f=250 2.74 5777a 0.881b 15829 2.388 6.614

fhighest =

333.3

2.49 5973a 1.089b 14880 2.712 6.752

32nm

(Pre-)

f=250 3.4 5725a 0.746b 19465 2.536 8.624

fhighest =

333.3

2.98 5976a 0.928b 17808 2.765 8.241

8

32nm

(Post-)

f=250 1.77 1840a 0.298b 3257 0.527 0.934

fhighest =

476.2

1.69 1875a 0.455b 3169 0.769 1.300

32nm

(Pre-)

f=250 2.17 1815a 0.271b 3939 0.588 1.276

fhighest =

476.2

2.07 1860a 0.413b 3850 0.854 1.767

Estimated

(Boppana

et al. [41])

64

32nm

(Post-)

fhighest =

~ 117.5

- ~ 8.48

(2x 32b)

~ 95040

(4x 32b)

- ~ 805939 - -

32nm

(Pre-)

fhighest =

~ 101.3

- ~ 9.84

(2x 32b)

~ 101504

(4x 32b)

- ~ 998799 - -

32

32nm

(Post-)

fhighest =

~ 234.2

- ~ 4.24

(2x 16b)

~ 23760

(4x 16b)

- ~ 100742 - -

32nm

(Pre-)

fhighest =

~ 202.0

- ~ 4.92

(2x 16b)

~ 25376

(4x 16b)

- ~ 124850 - -

16

32nm

(Post-)

fhighest =

~ 465.1

- ~ 2.12

(2x 8b)

~ 5940

(4x 8b)

- ~ 12593 - -

32nm

(Pre-)

fhighest =

~ 401.6

- ~ 2.46

(2x 8b)

~ 6344

(4x 8b)

- ~ 15606 - -

(Boppana

et al. [41])

(This

work)

2019

8

32nm

(Post-)

f=500

1.05

1.19 1177a 0.342b 1401 0.407 0.484

fhighest =

793.6

1.06 1485a 0.526b 1574 0.558 0.591

32nm

(Pre-)

f=500 1.48 1249a 0.340b 1849 0.503 0.745

fhighest =

793.6

1.23 1586a 0.509b 1951 0.625 0.769

[22]

NR

Wallace c

2020

64

65nm

(Pre-)

57.1

1.0

17.5 78194.5 3.3539 1368404 65.6 1148.00

32 109.9 9.1 23562.8 1.9386 214422 17.6 160.16

16 196.2 5.1 6716.3 1.0661 34253 5.4 27.54

8 344.9 2.9 2075.8 0.6458 6020 1.9 5.51

[22]

NR

Dadda c

2020

64

65nm

(Pre-)

57.8

1.0

17.3 75280.9 3.3762 1302360 58.4 1010.32

32 111.1 9 20803.6 1.8313 187232 16.5 148.50

16 208.3 4.8 6627.9 1.1083 31814 5.3 25.44

8 357.1 2.8 2033.7 0.6746 5694 1.9 5.32

[22]

NR-SO

Wallace c

2020

64

65nm

(Pre-)

57.8

1.0

17.3 69218.2 2.9294 1197475 50.7 877.11

32 109.9 9.1 21002.8 1.7806 191126 16.2 147.42

16 196.0 5.1 6113.1 0.9968 31177 5.1 26.01

8 344.8 2.9 1947.9 0.6384 5649 1.8 5.22

[22]

NR-SO

64

65nm

57.8

1.0

17.3 65187.2 2.8878 1127739 50.0 865.00

32 111.1 9 18092.4 1.6836 162832 15.2 136.80

98

Dadda c

2020

16 (Pre-) 208.3 4.8 5975.8 1.0821 28684 5.2 24.96

8 357.1 2.8 1878.2 0.6796 5259 1.9 5.32

[22]

Baseline c

(Radix-4)

64

65nm

(Pre-)

38.3

1.0

26.1 128500.8 8.8409 3353871 230.8 6023.88

32 76.9 13 32765.2 2.5130 425948 32.7 425.10

16 149.3 6.7 8006.4 0.9146 53643 6.1 40.87

8 302.8 3.3 2333.8 0.9277 7702 3.1 10.23

Gorgin et

al. [49]

2017
16

TSMC

130nm

(Pre-)

min.

power

1.5

2.462

(10)c

- 10.9

(90)c

- 26.836

66.07

min.

delay

1.083

(4.4)c

- 28.9

(240)c

- 31.299 33.896

Qian et al.

[46]

2016
8

45nm

(Pre-)
f=500 1.25 1.58 1245 0.436 1967 0.689 1.088

Modified

Booth d

[43] [42]

2017-18

8
32nm

(Pre-)
f=500 1.05 1.99 1470a 0.463b 2925 0.921 1.833

Conv.

Booth

Multiplier

32

32nm

(Pre-)

f=125

1.05

7.97 38895a 3.611b 309993 28.78 229.37

fhighest =

133.3

7.47 39768a 3.884b 297067 29.013 216.73

16

f=250 3.97 9757a 1.223b 38735 4.855 19.275

fhighest =

263.2

3.78 9851 a 1.289b 37237 4.872 18.418

8

400 2.28 2315a 0.380b 5278 0.866 1.975

fhighest =

476.2

2.07 2398a 0.453b 4964 0.938 1.941

a Area includes the area of the input and output registers
b Power includes the power consumption by the input and output registers
c Actual values published
d Performance data obtained from redesigning & synthesizing the design from the original work

NOTE: Area, delay, and power are normalized to 32nm @ 1.05V unless specified
NOTE: Pre- and Post- refers to Synthesis (Pre-layout) and PnR (Post-layout) results respectively

The results published in [46], [49] are normalized to 32nm CMOS technology

with 1.05V supply voltage, included in Table 4.8, using the following normalization

equations [50] to make fair comparisons on various performance aspects.

𝑇𝑑𝑛𝑜𝑟𝑚 = 𝑇𝑑 . (
32 𝑛𝑚

𝑡𝑒𝑐ℎ
) , 𝑃𝑛𝑜𝑟𝑚 = 𝑃 . (

32 𝑛𝑚

𝑡𝑒𝑐ℎ
) (
1.05

𝑉𝑡𝑒𝑐ℎ
)
2

, 𝐴𝑟𝑒𝑎𝑛𝑜𝑟𝑚 = 𝐴𝑟𝑒𝑎 . (
32 𝑛𝑚

𝑡𝑒𝑐ℎ
)
2

(4.3)

Going further down towards using smaller nodes, the common scaling factor, S,

for scaling the parameters such as width, channel length, oxide thickness, and supply

voltage does not work since different parameters scale down in different ratios. Hence,

99

more accurate scaling should be performed using the following proportions or scaling

factors [51], especially to scale the performance characteristics of digital designs towards

smaller nodes, which are being mostly used in the current digital designs, to perform the

fair comparison with the performance characteristics of the digital designs constructed

using larger CMOS technology nodes. The following scaling factors also needed to be

verified while scaling up/down the performance characteristics of the digital designs

designed using smaller and advanced node technologies.

𝐴𝑟𝑒𝑎 ∝ 𝑊 × 𝐿

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐶𝐿) ∝ 𝑊𝐿 × 𝐶𝑜𝑥 ∝ 𝑊𝐿 ×
𝜀𝑜𝑥
𝑡𝑜𝑥

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 (𝑡𝑝) ∝
𝐶𝐿𝑉𝐷𝐷

𝑘(𝑉𝐷𝐷 − 𝑉𝑇)
2
∝

𝐶𝑜𝑥𝑊𝐿 × 𝑉𝐷𝐷

𝜇𝐶𝑜𝑥
𝑊
𝐿
(𝑉𝐷𝐷 − 𝑉𝑇)

2
∝

𝐿2 × 𝑉𝐷𝐷
𝜇(𝑉𝐷𝐷 − 𝑉𝑇)

2

𝑃𝑜𝑤𝑒𝑟 (𝑃) = 𝐶𝐿𝑉𝐷𝐷
2𝑓 ∝

𝑊𝐿
𝜀𝑜𝑥
𝑡𝑜𝑥

𝑉𝐷𝐷
2

𝑡𝑝
∝
𝑊𝐿

𝜀𝑜𝑥
𝑡𝑜𝑥

𝑉𝐷𝐷
2

𝐿2 × 𝑉𝐷𝐷
𝜇(𝑉𝐷𝐷 − 𝑉𝑇)

2

∝
𝑊 × 𝑉𝐷𝐷 × (𝑉𝐷𝐷 − 𝑉𝑇)

2

𝐿 × 𝑡𝑜𝑥

(4.4)

Where, 𝑊 represents width of a MOS transistor, 𝐿 represents the length of the

MOS transistor, 𝑡𝑜𝑥 represents the oxide thickness, 𝑉𝐷𝐷 represents the supply voltage,

𝑉𝑇 represents the respective MOS threshold voltage, 𝜇 represents the mobility of the

respective carriers, and 𝜀𝑜𝑥 represents the permittivity of the gate oxide.

100

5 Conclusions and Future Work

5.1 Conclusion

Optimized 8 x 8 Booth multiplier architecture with optimized B2C, optimized

Booth encoding, and parallel addition is presented, and the performance is compared with

the state-of-the-art modified Booth multipliers. Significant improvement in speed

performance is observed with less design cost and power consumption. A simple and

novel way of sign number multiplication with radix-8 structure is presented by designing

an overhead block containing non-trivial computation block with reduced number of

partial products. The careful grouping of the partial products for the addition reduces the

design area while increasing the speed. The performance measures along with the cost

associated for the 32-bit and 64-bit multipliers for the state-of-the-art optimized Booth

multipliers are compared with the designs using the proposed radix-8 structure. It can be

concluded that the new multiplier architecture with radix-8 structure has a remarkable

advantage of speed while using the less hardware for the large width sign number

multiplications and designing the wide multipliers with higher radix such as radix-16, -32,

-64, etc., will be very promising to perform faster and efficient operations.

101

5.2 Major Contributions

• Designed an optimized B2C with low-power and low-area to perform the two’s

complement operation. The optimized design presented in this work has nearly

10.5% and 10.1% of improvement in area and power when compared to the

state-of-the-art B2C design designed and synthesized using the similar

technology and supply voltage.

• Designed an optimized Booth encoder with inherent multiplexer operation for

faster and low-cost partial product generation in the case of modified 8 x 8

Booth multiplier implementation.

• Developed a new grouping strategy for the reduction of the parallel products by

deploying the parallel adders to reduce the number of stages of additions from

three to two in the case of modified 8 x 8 Booth multiplier implementation

when compared to the state-of-the-art low PDP Booth multiplier design.

• Implemented SQCS-CLA for faster partial product reduction to get quicker

final product in the case of both the proposed works: 1. Modified 8 x 8 Booth

multiplier design, and 2. Proposed novel radix-8 architecture for the signed

number multiplication.

• Developed a simple and novel radix-8 structure, with 3-bit grouping, for the

signed number multiplication. Designed 8 x 8, 16 x 16, 32 x 32, and 64 x 64

multipliers using the proposed radix-8 architecture with the non-trivial blocks

and an optimized strategy of partial product reduction. Number of {partial

102

products, additions} are reduced from {16, 15} and {32, 31} to {11, 13} and

{21, 23} for the 32-bit and 64-bit multipliers using the proposed radix-8

structure when compared with the state-of-the-art low PDP Booth multiplier

design.

• Performed synthesis and placement & routing (PnR) on the proposed modified

8 x 8 Booth multiplier design and the proposed radix-8 structure based 8 x 8,

16 x 16, 32 x 32, and 64 x 64 signed multiplier designs. Comparing the

performance results of the 32-bit and 64-bit wide multipliers designed using the

simple novel radix-8 structure with the estimated performance measurements

for the state-of-the-art optimized Booth multiplier design presented in this work,

(synthesize and PnR)ed, reduction in delay by (2.64%, 0.47%) and (2.74%,

18.04%) respectively, and reduction in area-delay-product by (12.12%, -5.17%)

and (17.82%, 12.91%) respectively is achieved.

5.3 Future Work

• Designing more efficient grouping strategies for efficient partial product

reduction.

• Designing and deploying faster and efficient large width adders inside non-

trivial computation block and in the partial product reduction stages.

• Designing and deploying faster yet efficient binary 2’s complement blocks to

reduce the computational latency.

103

• Extending the use of the proposed idea by designing the sign number multiplier

with higher radix structures to further improve the speed and efficiency of the

computation.

• All the designs are designed using the RVT cells at low drive strength of ‘1’

unit. Hence, there is still more room for improving the speed reducing the

power by deploying the combination of high drive strength standard cells, low-

VT (LVT), and high-VT (HVT) cells.

• Using Synopsys Prime Time (PT) tool, static timing analysis (STA) should be

performed to verify if the timing goal set is achievable in pre-PnR stage and in

post-PnR stage for accurate and industry gold-standard timing signoff.

• Need to come up with more accurate way of scaling down/up the performance

characteristics, such as delay, area, and power, of the designs to make fair

comparisons between various designs designed using various technologies at

their respective supply voltages.

5.4 Publications

Peer-Reviewed International Archival Journal Articles

• Boppana, N.V.V.K., Kommareddy, J. & Ren, S. Low-Cost and High-

Performance 8 × 8 Booth Multiplier. Circuits, Systems, and Signal

104

Processing 38, 4357–4368 (2019). https://doi.org/10.1007/s00034-019-

01044-x

• H. Xue, R. Patel, N. V. V. K Boppana, S. Ren, “A low power-delay-

product radix-4 8*8 Booth multiplier in CMOS”, IET Electronics Letters,

Vol. 54, Issue 6, p. 344-346, March 2018.

https://doi.org/10.1049/el.2017.3996

• N. V. Vijaya Krishna Boppana, Saiyu Ren, “A Low-Power and Area-

Efficient 64-Bit Digital Comparator”, Journal of Circuits, Systems, &

Computers, Vol. 25, Issue 12, July 2016.

https://doi.org/10.1142/S0218126616501486

• N. V. Vijaya Krishna Boppana, Saiyu Ren, “A simple yet efficient

parallel signed multiplier design using a novel radix-8 structure” (Under

Review)

Conference Papers

• N V Vijaya Krishna Boppana, Saiyu Ren, Henry Chen, “Low-power and

high-speed CPL-CSA adder”, NAECON 2014 - IEEE National Aerospace

and Electronics Conference, pp. 346-350, June 24, 2014

https://doi.org/10.1007/s00034-019-01044-x
https://doi.org/10.1007/s00034-019-01044-x
https://doi.org/10.1049/el.2017.3996
https://doi.org/10.1142/S0218126616501486

105

6 List of Abbreviations

CCC Control-Compute-Communicate

ADC Analog-to-Digital Converter

CAD Computer Aided Design

DSP Digital Signal Processing

FIR Finite Impulse Response

IIR Infinite Impulse Response

LMS Least Mean Squares

RLS Recursive Least Mean Squares

FFT Fast Fourier Transform

CPU Central Processing Unit

GPU Graphics Processing Unit

CAGR Compound Annual Growth Rate

ANT All-N-Transistors

MODL Multiple Output Domino Logic

ASIC Application Specific Integrated Circuits

PPG Partial Product Generation

PPR Partial Product Reduction

PPA Partial Product Array

106

PDP Power-Delay Product

PDA Power-Delay-Area Product

EDP Energy-Delay Product

WTM Wallace Tree Multiplier

CBMW Counter-based Modular Wallace (tree multiplier)

RCW Reduced Complexity Wallace (tree multiplier)

R4B-RCW Radix-4 Booth-Reduced Complexity Wallace (tree multiplier)

CBW Counter-Based Wallace (tree multiplier)

MBE Modified Booth Encoding

TDM Three-Dimensional-reduction-Method

MLCSMA Multiple-Level Conditional-Sum Adder

CSMA Conditional-Sum Adder

CCA Conditional-Carry Adder

PPRT Partial Product Reduction Tree

B2C Binary 2’s Complement

BEC Binary Excess-1 Code

EAP Energy-Area Product

CPA Carry Propagation Adder

RCA Ripple Carry Adder

SQCS Square root Carry Select

CLA Carry Look-ahead Adder

CPA Carry Propagating Adder

RVT Regular Voltage Threshold

107

HVT High Voltage Threshold

LVT Low Voltage Threshold

DC Design Compiler (Synopsys RTL tool)

PnR Placement and Routing

ICC IC Compiler (Synopsys PnR tool)

PT Prime Time (Synopsys STA tool)

STA Static Timing Analysis

DAT Data Arrival Time

NR RCA-less optimization (Non-RCA)

NR-SO Optimized Sign extension without intermediary RCAs

108

7 References

[1] I. G. Research, "Global Portable Medical Devices Market - 2021," [Online].

Available: https://www.researchandmarkets.com/reports/5451206/global-portable-

medical-devices-market-2021#rela1-5317149. [Accessed 06 12 2021].

[2] G. Research, "Global Portable Medical Devices Market 2020-2030," [Online].

Available: https://www.researchandmarkets.com/reports/5397805/global-portable-

medical-devices-market-2020-2030#rela2-5317149. [Accessed 06 12 2021].

[3] "wearable-medical-devices-market," [Online]. Available:

https://www.grandviewresearch.com/industry-analysis/wearable-medical-devices-

market. [Accessed 06 12 2021].

[4] A. D. Booth, "A Signed Binary Multiplication Technique," The Quarterly Journal of

Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236-240, 1951.

[5] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, New York,

NY, USA: Oxford University Press, 2000.

[6] R. Panchangam, "Minimization of Power Dissipation in Digital Circuits Using

Pipelinng and A Study of Clock Gating Technique," 2004.

[7] C. S. Wallace, "A Suggestion for a Fast Multiplier," IEEE Transactions on

Electronic Computers, vol. 13, no. 1, pp. 14-17, 1964.

[8] W. J. Townsend, E. E. Swartzlander and J. A. Abraham, "A comparison of Dadda

and Wallace multiplier delays," in Proc. SPIE 5205, Advanced Signal Processing

Algorithms, Architectures, and Implementations XIII, San Diego, CA, United States,

2003.

[9] K. C. Bickerstaff, E. E. Swartzlander and M. Schulte, "Analysis of Column

Compression Multipliers," in Proceedings 15th IEEE Symposium on Computer

Arithmetic. ARITH-15 2001, Vail, CO, USA, 2001.

[10] K. A. C. Bickerstaff, M. Schulte and E. E. Swartzlander Jr., "Reduced are

multipliers," in Intl. Conf. on Application-Specific Array Processors, Venice, Italy,

1993.

[11] V. Solanki, A. D. Darji and H. Singapuri, "Design of Low-Power Wallace Tree

Multiplier Architecture Using Modular Approach," Circuits, Systems, and Signal

109

Processing, vol. 40, pp. 4407-4427, 2021.

[12] K. B. Jaiswal, N. K. V, P. Seshadri and L. G, "Low power wallace tree multiplier

using modified full adder," in 3rd International Conference on Signal Processing,

Communication and Networking (ICSCN), Chennai, India, 2015.

[13] M. Mehta, V. Parmar and E. Swartzlander, "High-speed multiplier design using

multi-input counter and compressor circuits," in Proceedings 10th IEEE Symposium

on Computer Arithmetic, Grenoble, France, 1991.

[14] S. Veeramachaneni, A. Lingamneni , K. K. Madhava and B. S. Mandalika, "Novel

architectures for efficient (m, n) parallel counters," in Proceedings of the 17th ACM

Great Lakes symposium on VLSI, Stresa-Lago Maggiore Italy, 2007.

[15] C. Fritz and A. T. Fam, "Fast Binary Counters Based on Symmetric Stacking," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp.

2971-2975, 2017.

[16] A. Saha, R. Pal, A. G. Naik and D. Pal, "Novel cmos multi-bit counter for speed-

power optimization in multiplier design," AEU - International Journal of Electronics

and Communications, vol. 95, pp. 189-198, 2018.

[17] R. S. Waters and E. E. Swartzlander, "A Reduced Complexity Wallace Multiplier

Reduction," IEEE Transactions on Computers, vol. 59, no. 8, pp. 1134-1137, 2010.

[18] S. Asif and Y. Kong, "Analysis of different architectures of counter based Wallace

multipliers," in Tenth International Conference on Computer Engineering & Systems

(ICCES), Cairo, Egypt, 2015.

[19] S. Asif and Y. Kong, "Performance analysis of Wallace and radix-4 Booth-Wallace

multipliers," in Electronic System Level Synthesis Conference (ESLsyn), San

Francisco, CA, USA, 2015.

[20] L. Dadda, "Some Schemes for Parallel Multipliers," Alta Frequenza, vol. 34, no. 5,

pp. 349-356, 1965.

[21] E. E. Swartzlander, "Merged Arithmetic," IEEE Transactions on Computers, Vols.

C-29, no. 10, pp. 946-950, 1980.

[22] L. M. G. Rocha, M. Macedo, G. Paim, E. Costa and S. Bampi, "Improving the Partial

Product Tree Compression on Signed Radix-2m Parallel Multipliers," in 18th IEEE

International New Circuits and Systems Conference (NEWCAS), Montreal, QC,

110

Canada, 2020.

[23] P. Patali and S. T. Kassim, "An Efficient Architecture for Signed Carry Save

Multiplication," IEEE Letters of the Computer Society, vol. 3, no. 1, pp. 9-12, 2020.

[24] W.-C. Yeh and C.-W. Jen, "High-speed Booth encoded parallel multiplier design,"

IEEE Transactions on Computers, vol. 49, no. 7, pp. 692-701, 2000.

[25] O. L. Macsorley, "High-Speed Arithmetic in Binary Computers," Proceedings of the

IRE, vol. 49, no. 1, pp. 67-91, 1961.

[26] V. Oklobdzija, D. Villeger and S. Liu, "A method for speed optimized partial product

reduction and generation of fast parallel multipliers using an algorithmic approach,"

IEEE Transactions on Computers, vol. 45, no. 3, pp. 294-306, 1996.

[27] P. Stelling, C. Martel, V. Oklobdzija and R. Ravi, "Optimal circuits for parallel

multipliers," IEEE Transactions on Computers, vol. 47, no. 3, pp. 273 - 285, 1998.

[28] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design, John Wiley

& Sons, 1976.

[29] K.-H. Cheng, S.-M. Chiang and S.-W. Cheng, "The improvement of conditional sum

adder for low power applications," in Proceedings Eleventh Annual IEEE

International ASIC Conference, Rochester, NY, USA, 1998.

[30] W. Gallagher and E. Swartzlander, "High radix booth multipliers using reduced area

adder trees," in Proceedings of 1994 28th Asilomar Conference on Signals, Systems

and Computers, Pacific Grove, CA, USA, 1994.

[31] A. Goldovsky, B. Patel, M. Schulte, R. Kolagotla, H. Srinivas and G. Burns, "Design

and implementation of a 16 by 16 low-power two's complement multiplier," in IEEE

International Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland,

2000.

[32] C. R. Baugh and B. A. Wooley, "A Two's Complement Parallel Array Multiplication

Algorithm," IEEE Transactions on Computers, Vols. C-22, no. 12, pp. 1045-1047,

1973.

[33] D. Kroft, "Comments on "A Two's Complement Parallel Array Multiplication

Algorithm"," IEEE Transactions on Computers, Vols. C-23, no. 12, pp. 1327-1328,

Dec. 1974.

111

[34] A. Khatibzadeh, K. Raahemifar and M. Ahmadi, "A 1.8 V 1.1 GHz novel digital

multiplier," in Canadian Conference on Electrical and Computer Engineering,

Saskatoon, SK, Canada, 2005.

[35] G. K. G and S. K. Sahoo, "Implementation of a high speed multiplier for high-

performance and low power applications," in 19th International Symposium on VLSI

Design and Test, Ahmedabad, India, 2015.

[36] D. Jaina, K. Sethi and R. Panda, "Vedic Mathematics Based Multiply Accumulate

Unit," in International Conference on Computational Intelligence and

Communication Networks, Gwalior, India, 2011.

[37] T. G. Noll, "Carry-save architectures for high-speed digital signal processing,"

Journal of VLSI signal processing systems for signal, image and video technology,

vol. 3, pp. 121-140, 1991.

[38] S. R. Huddar, S. R. Rupanagudi, M. Kalpana and S. Mohan, "Novel high speed vedic

mathematics multiplier using compressors," in International Mutli-Conference on

Automation, Computing, Communication, Control and Compressed Sensing

(iMac4s), Kottayam, India, 2013.

[39] J. F.-A. "M*N Booth encoded multiplier generator using optimized Wallace trees,"

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 1, no. 2, pp.

120-125, 1993.

[40] R. Katreepalli and T. Haniotakis, "Power-delay-area efficient design of vedic

multiplier using adaptable manchester carry chain adder," in International

Conference on Communication and Signal Processing (ICCSP), Chennai, India,

2017.

[41] N. Boppana, J. Kommareddy and S. Ren, "Low-Cost and High-Performance 8 × 8

Booth Multiplier," Circuits, Systems, and Signal Processing, vol. 38, pp. 4357-4368,

2019.

[42] H. Xue, R. Patel, N. Boppana and S. Ren, "Low-power-delay-product radix-4 8*8

Booth multiplier in CMOS," Electronics Letters, vol. 54, no. 6, pp. 344-346, 2018.

[43] R. N. Patel, "Implementation of High Speed and Low Power Radix-4 8*8 Booth

Multiplier in CMOS 32nm Technology," Wright State University, Master's thesis.

OhioLINK Electronic Theses and Dissertations Center, 2017.

112

[44] Z. Zhang and Y. He, "A Low-Error Energy-Efficient Fixed-Width Booth Multiplier

With Sign-Digit-Based Conditional Probability Estimation," IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 65, no. 2, pp. 236-240, Feb. 2018.

[45] B. K. Mohanty and V. Tiwari, "Modified PEB Formulation for Hardware-Efficient

Fixed-Width Booth Multiplier," Circuits, Systems, and Signal Processing, vol. 33,

no. 12, pp. 3981-3994, 2014.

[46] L. Qian, C. Wang, W. Liu, F. Lombardi and J. Han, "Design and evaluation of an

approximate Wallace-Booth multiplier," in IEEE International Symposium on

Circuits and Systems (ISCAS), Montreal, QC, Canada, 2016.

[47] "Prime Time Static Timing Analysis," Synopsys, [Online]. Available:

https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html.

[48] "Design Compiler," Synopsys, [Online]. Available:

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-

ultra.html.

[49] S. Gorgin and G. Jaberipur, "Sign-Magnitude Encoding for Efficient VLSI

Realization of Decimal Multiplication," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 1, pp. 75-86, 2017.

[50] P. I.-J. Chuang, M. Sachdev and V. C. Gaudet, "A 167-ps 2.34-mW Single-Cycle 64-

Bit Binary Tree Comparator With Constant-Delay Logic in 65-nm CMOS," IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, pp. 160-171,

2013.

[51] J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits, 2nd

edition, Pearson, 2002.

	Low-Power, Low-Cost, & High-Performance Digital Designs : Multi-bit Signed Multiplier design using 32nm CMOS Technology
	Repository Citation

	tmp.1688143683.pdf.9EieM

