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ABSTRACT 
 
 

Williams, Scott David. M.S. Department of Computer Science and Engineering, Wright State 
University, 2023. Comparative Adjudication of Noisy and Subjective Data Annotation  
Disagreements for Deep Learning 
 
 

Obtaining accurate inferences from deep neural networks is difficult when models are 

trained on instances with conflicting labels. Algorithmic recognition of online hate speech 

illustrates this. No human annotator is perfectly reliable, so multiple annotators evaluate and 

label online posts in a corpus. Labeling scheme limitations, differences in annotators' beliefs, and 

limits to annotators' honesty and carefulness cause some labels to disagree. Consequently, 

decisive and accurate inferences become less likely. Some practical applications such as social 

research can tolerate some indecisiveness. However, an online platform using an indecisive 

classifier for automated content moderation could create more problems than it solves. 

Disagreements can be addressed in training by using the label a majority of annotators assigned 

(majority vote), training only with unanimously annotated cases (clean filtering), and 

representing training labels as probabilities (soft labeling). This study shows clean filtering 

occasionally outperforming majority voting, and soft labeling outperforming both. 
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1. Introduction 

 

Machine learning models struggle to accurately classify texts when labels in the training 

datasets that the models have been provided have high levels of inter-rater disagreement. This 

challenge has been observed in research on recognizing parts of speech in tweet texts (Artstein & 

Poesio, 2008), recognizing anaphoric references in texts (Recasens, Hovy, & Martí, 2011), hate 

speech detection (Botelho, Vidgen, & Hale, 2021), etc. In the case of recognizing hate speech in 

social media posts, when annotations have been crowdsourced, disagreements should be 

expected. Crowdsourced annotations are prone to spamming as well as diverse subjective 

interpretation. The former is because the paid annotators try to maximize their compensation by 

selecting labels without regard to their accuracy (Hovy, Berg-Kirkpatrick, Vaswani, & Hovy, 

2013). The latter is because opinions of what content constitutes hate speech will differ from 

person to person based on their personal perspective and cultural background (Almanea & 

Poesio, 2022). Despite the difficulties that annotator disagreements present for accurate 

classification, hate speech recognition is important for helping to promote decency and civility 

online, and to help protect the community from physical harm associated with inter-group hate 

(Blaya, 2019).

The majority vote approach to addressing inter-annotator disagreements is the simplest 

approach, and it treats annotations that agree as correct and excludes annotations that disagree 

from training. So, we consider all training instances but associate them with their majority vote. 

The clean label filtering technique eliminates training cases for which the annotators disagreed. 
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So, the size of the training set can be reduced. The probabilistic soft labeling approach retains all 

training cases and all annotations by representing each training class label as a probability 

distribution over the classes. In other words, all training instances and all the votes are preserved. 

The purpose of this study is to compare majority voting, clean label filtering and 

probabilistic labeling on the task of classifying a hard dataset. The dataset, Multimodal Hate 

Speech 150K (MMHS150K), contains nearly 150,000 microblog posts from Twitter that were 

labeled by annotators sourced from the public at large (Gomez, Gibert, Gomez, & Karatzas, 

2020). For 25% of the posts in the corpus, a majority of the annotators labeled them as 

containing hate speech, and 75% were labeled as not hate by a majority of annotators. Gomez et 

al. reported achieving only around 68% classification accuracy, and others have reported similar 

results (Cheung & Lam, 2022; Prasad, Saha, & Bhattacharyya, 2021; Sai, Srivastava, & Sharma, 

2022). Among the potential causes of that low classification accuracy, this study primarily 

focuses on challenges presented by the diversity in annotations. An advantage of annotators 

sourced from the public at large is that their reactions to the tweets they evaluated should be 

similar to the reactions of the public at large, and we observed that their rate of agreement was 

low when annotating MMHS150K, which makes it an appropriate dataset for demonstrating 

differences among majority voting, clean label filtering, and probabilistic soft labeling. 

The relevance of this study is grounded in practical uses for a classifier such as to 

recognize online hate speech. Hate speech is an attack against a group such as a race, gender, 

sexual preference, religion or other category. Internet and social media platforms are expected by 

many to control harmful content such as hate speech. Algorithmic recognition is essential given 

the volume of user posts on such platforms. Additionally, sociological research and analyses 

involving hate speech can benefit from algorithmic hate speech recognition. Agencies that 
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promote public safety can leverage algorithmic classification of hate speech to be alerted to rises 

in potentially dangerous sentiments as well. In general, annotator disagreement is a bigger 

problem for some applications than for others. 

Our study is presented here as follows. Chapter 2 reviews prior research on classification 

with annotation disagreements, the occurrence of labeling disagreements in hate speech and 

similar corpora, and the use cases for classifiers that can recognize hate speech. In Chapter 3, this 

study’s research methodology is described. For our focal analyses, we trained models six ways: 

binary and multi-class approaches using three different training label types for each. The 

remaining chapters report the results, discuss the implications, and provide a brief conclusion. 

While the techniques demonstrated here prove to be efficacious in exploring comparative 

adjudication of diverse annotations, the discussion section in Chapter 5 addresses a few 

additional measures that may be useful in future attempts.  
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2. Related Work 

 

2.1 Annotation Disagreements in Machine Learning 

Typically, for a classifier to be useful in a practical application, we need the classifier to 

be decisive and to not equivocate. In conventional machine learning with deep neural networks, 

we configure the final layer to return the most likely class for each instance of input. The model's 

decision about the class of the input can be the impetus for some real-world action. In the use 

case of online hate speech detection by a social media platform, an example of an action 

triggered by classification would be a decision to either block or allow a post that a user is 

attempting to make. Although we typically want a classifier to be decisive, humans may be 

indecisive when presented with the same input. That is, the judgments of different individuals 

can disagree, and the judgments of one individual over time can be inconsistent (Shewart, Wilks, 

Fleiss, Levin, & Paik, 2003). For this reason, when human judgment is used to annotate training 

cases, the norm is to obtain them from multiple annotators and observe the level of their 

agreement. 

Among the first factors that can lead to annotator disagreements are researchers' choices 

about how class labels should be defined. Predefining target categories to be used by annotators 

is a difficult challenge and limitations of the categories provided to annotators, or their potential 

misinterpretation of the intended sense by the diverse hired annotators, can causes disagreements 

among them. Too few categories may make it less clear which class an instance belongs to (due 

to over abstraction), but too many classes can increase the likelihood of annotators making errors 

(due to over specialization) and can lead to seldom used classes that create class imbalances, 

which complicates model training. A related concern in defining classes is overlapping (Uma, 
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Almanea, & Poesio, 2022). Annotators are typically instructed to provide a single label for each 

instance without a way to indicate that multiple labels can fit. Disagreement can also result from 

annotators not being conscientious and meticulous while annotating. Spamming is the problem 

of annotators providing labels without regard to their accuracy (Hovy et al., 2013). Annotators 

sourced through services such as Amazon’s Mechanical Turk are paid for their efforts and may 

have no incentive to be accurate, only an incentive for finishing. Similarly, annotators who 

intend to provide accurate annotations, but who work too fast or make recording errors for other 

reasons, increase the rate of annotator disagreements (Lommel, Popovic, & Burchardt, 2014). 

For many annotation tasks, subjectivity can to contribute to disagreement among 

annotators. To demonstrate this, Almanea & Poesio (2022) intentionally developed a diverse set 

of annotators to label misogyny in Arabic tweets. Annotators included both men and women and 

individuals who identified themselves as liberal, moderate and conservative. While gender did 

not have an effect on annotations, the annotators' beliefs did. Classification results for the 

annotated tweets demonstrated the effects of disagreement. The researchers ran multiple trials 

with various loss functions, and with both majority vote and probabilistic soft label 

configurations. Results for F1 and accuracy metrics were all in the range of 0.73 and 0.78. The 

authors discussed the burgeoning movement away from the notion of gold standard labels in 

subjective research topics such as misogyny and toward the preservation of all annotations as 

potentially informative. They did not, however, emphasize practical applications for classifiers 

with lower sensitivity and specificity attributable to disagreements in annotations. 

When annotations disagree, decisions must be made about how the classes of the 

instances in a training dataset should be determined for training. The majority vote approach to 

addressing inter-annotator disagreements is the simplest approach, and it assumes the training 
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labels of each instance in the corpus are equally certain even though they are not. For instance, 

when there is disagreement among three annotations, two annotations are treated as if they are 

right and one is assumed to be wrong, which ignores the possibility that whatever could have 

caused one annotator to be wrong could have caused two annotators to be wrong. This differs 

from an ambiguity resolution approach in which annotators who provided different labels discuss 

their perspectives to see if they can reach an agreement on a consensus label, or the approach of 

referring the disagreement to a third party with greater expertise to make a ruling (e.g., Botelho 

et al., 2021). Majority voting can reduce the impact of errors or spamming by annotators. On the 

other hand, it has the effect of treating instances where annotators might have had equally valid 

but differing judgments as equivalent to instances where all annotators agreed, which disguises 

disagreements in the dataset. Majority voting trains classification models on both the instances 

we have high confidence in and the instances we have lower confidence in as if there were no 

differences between them.  

Clean label filtering is an alternative to majority voting for dealing with annotators’ 

disagreements. In the context of clean label filtering, the term “clean” can be viewed as a type of 

instance for which annotators clearly received the “signal” from the input (i.e., the message of 

the social media post) and were able to correctly label it (Maity, Sen, Saha, & Bhattacharyya, 

2022; Ravikiran, et al., 2020; Yao, Chen, Ye, Jin, & Ren, 2021). Instances where annotators 

provided conflicting annotations are viewed as “noisy” and able to corrupt training (Zhang, Wu, 

Chen, Zhao, & Lu, 2020). By filtering the training dataset such that only clean instances are 

provided for training, training results can be more accurate due to the removal of noise. 

Furthermore, this approach can be rationalized as expecting the machine algorithm to get an 

annotation right if all the annotators agree and ignoring cases with multiple annotated classes that 
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seem intrinsically difficult as observed. To maintain fidelity to real-world applications, clean 

label filtering is applied to only training data, and validation and testing datasets include all 

instances with class labels determined by majority vote. Cleaner, less noisy input can simplify 

machine learning. Clean filtering has limitations though. First, it reduces the number of input 

instances, which is particularly costly for minority classes and for difficult to recognize classes. 

Lower volume input hampers learning. Second, if there is disagreement in the real-world setting 

of the classifier’s practical application, training the classifier only on the obvious cases might not 

satisfactorily prepare the classifier to recognize features of the less obvious cases. While clean 

filtering exempts “difficult” cases from being in the training set, we do encourage separate 

analysis of such “outliers” for additional insights about the problematic cases with the hope of 

seeking remedial measures. 

Probabilistic labeling of training cases, which quantifies the disagreement among 

annotators and provides that as input for training, is an alternative to majority voting and clean 

label filtering. The input vector for training class labels is a probability distribution over the 

labels, and a Softmax function is used. Probabilistic labels provide richer input for model 

training than majority vote labeling and clean filtered labeling can provide. All the cases of a 

corpus that are randomly assigned to the training set can be used without treating them as cases 

for which there is equal certainty. In other words, probabilistic labels enable using all the 

available training data and can explore a larger classifier design space. 

 

2.2 An Application to Online Hate Speech 

Among the many domains in which inter-rater disagreement is a concern, online hate 

speech classification is prominent due to subjectivity influenced by cultural contexts. “Hate 
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speech is commonly defined as any communication that disparages a person or a group on the 

basis of some characteristics such as race, colour, ethnicity, gender, sexual orientation, 

nationality, religion,” (Tontodimamma, Nissi, Sarra, & Fontanella, 2021, p. 157). Schweppe and 

Perry (2022) placed hate speech on a continuum of hate. At the lower end, microaggressions are 

commonplace indignities or slights toward members of oppressed groups. Hate speech, in 

comparison, is a more intense manifestation of hate, and it is a spoken or written expression of 

hostility or prejudice toward members of an oppressed group. Hate crimes are even more severe, 

and they combine acts that would be criminal irrespective of the motivation behind them with an 

expression of hatred toward members of oppressed groups. Online hate speech, also called 

cyberhate, is hate speech on the Internet or on a social media platform (Castaño-Pulgarín, 

Suárez-Betancur, Vega, & López, 2021).  

Many subtleties make online hate speech difficult for humans and algorithms to detect. 

Social media microblogs tend to be brief and, if viewed in isolation, might not provide sufficient 

context for understanding the posts' true meanings. Accurate recognition of online harassment, 

which is akin to hate speech, requires information about contextual factors such as features of the 

party that posted the message in question, characteristics of the target of that message, and the 

relationship between the poster and the target (Shekarpour, Alshargi, Thirunarayan, Shalin,  

Sheth, & Rezvan, 2020). Similarly, curse words can be used in an online attack, but it can be 

difficult to accurately detect whether an online post using one or more curse words constitutes an 

attack without knowing whether there is a dialog between parties and, if so, their relationship to 

each other (Wang, Chen, Thirunarayan, & Sheth, 2014). Furthermore, offensive expressions such 

as slurs or expressions of disapproval may not be strong enough to meet hate speech's criteria of 

being an "attack on a group." There is unavoidable ambiguity and subjectivity regarding the 
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threshold at which a negative expression is severe enough to constitute an attack. Finally, even 

when an attack against an individual is clearly expressed, it can be unclear whether they were 

targeted as an individual person or as a member of a group. Given these complications, 

disagreements among annotations pertaining to online hate speech should be expected. 

Moreover, the concept of hate speech is socially constructed, which means that we 

develop our understanding of it through socialization processes (Laaksonen, Haapoja, Kinnunen, 

Nelimarkka, & Pöyhtäri, 2020), and the diversity of socialization experiences in the public at 

large add to the subjectivity of hate speech judgments. Although we offered commonly used 

descriptions of hate speech above, in reality there are multiple definitions of hate speech in use at 

any given time (Boromisza-Habashi, 2021). Definitions of hate speech continue to evolve 

(Schweppe & Perry, 2022). 

As explained in the previous section, labeling schemes for annotating hate speech in a 

corpus can contribute to disagreements among annotators. In the MMHS150K corpus used in 

this study, and explained in more detail in Chapter 3, the predefined hate speech categories 

provided to annotators were Not Hate, Racist, Sexist, Homophobic, Religion-based, and Other 

Hate. The Other Hate label was frequently used by annotators, which indicates that providing 

categories for hate directed at targets such as nationalities, ethnicities or political groups, which 

is not present now, could have been useful. Such a “kitchen sink” category might have included 

too many varied examples in them for machine learning to be effective at gleaning reliable 

features for classification. On the other hand, increasing the number of predefined labels could 

increase the difficulty of annotating and thereby increase the rate of annotators’ disagreements 

and errors. Furthermore, narrowly defined categories might not have included enough instances 

from the corpus to support deep learning. For instance, the Religion-based hate category in 
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MMHS150K includes only 163 of the nearly 150,000 cases. Classes that overlap and instances 

that overlap classes could be a complication in the corpus as well. The instructions given to 

MMHS150K annotators did not facilitate clear and accurate labeling of intersectional hate that is, 

for instance, both racist and sexist (Kim, Ortiz, Nam, Santiago, & Datta, 2020). We do not know 

whether an annotator perceiving such an instance in MMHS150K would be confounded and 

report it as Racist, Sexist or Other Hate. 

Although hate speech classification is difficult, the literature indicates there are several 

practical applications for online hate speech recognition, and content moderation by online 

platforms is prominent among them. Content moderation has been described as the practice of 

screening user-generated content submitted for posting on Internet sites or social media (Myers 

West, 2018). Content moderation is viewed by many as an ethical responsibility of online 

platforms (Cohen-Almagor, 2012). Given the tremendous volume of social media posts every 

hour of every day, it is impractical to monitor online hate speech without algorithms (Gillespie, 

2020; Llansó, 2020). For algorithmic content moderation to supplant other methods, a high 

accuracy rate is essential. False negative cases—situations where the content is incorrectly 

identified as not hate speech—would fail to regulate harmful content. False positive cases, on the 

other hand, would errantly apply regulation to cases that are benign. Regulation could take many 

forms; cautioning a user about a message they are trying to post, allowing the post but with a 

warning flag to those who would see it, entirely blocking the message from being posted, de-

platforming the user temporarily or permanently, or some combination of these measures. Any of 

these measures applied to a false positive case is likely to irritate a user.  

Algorithmic recognition of online hate speech also has implications for government 

agencies, nongovernmental organizations (NGOs), and scholars. In the U.S., for the sake of 
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public safety, the Federal Bureau of Investigations and local law enforcement agencies monitor 

hate speech as it can be an antecedent to hate crimes (Bilewicz & Soral, 2020; Blaya, 2019; Lupu 

et al., 2023; Paul, 2019; Tsesis, 2017). Accuracy for such an application is important, but 

perhaps less important than for automated content moderation of online platforms. In most 

jurisdictions, hate speech is not a crime in-and-of-itself (Paz, Montero-Díaz, & Moreno-Delgado, 

2020; Guiora & Park, 2017). But hate speech in context and situations that trigger hateful actions 

and crimes is pernicious. False positives might be tolerable, but a high rate of false negatives 

would defeat the purpose of monitoring online hate speech that could foretell an increase in hate 

crimes. The same principle applies to NGOs such as the Anti-Defamation League and the 

Southern Poverty Law Center that monitor hate speech and periodically provide reports but that 

have no formal authority to take action against any of its purveyors (Henry, 2009; Pereira-

Kohatsu, Quijano-Sánchez, Liberatore, & Camacho-Collados, 2019). Many academic 

researchers likely have the same priority for classification accuracy. When the goal is to show 

changes in the volume of online hate speech over time in association with various social 

phenomena (e.g., Williams, Burnap, Javed, Liu, & Ozalp, 2020), an elevated false positive rate 

would only undermine the analyses if the false positive rate systematically increased or 

decreased over time.  

There are applications for both binary classification of hate speech and more granular 

classification by type of hate speech in social media posts. The binary classification is 

fundamental to applications such as content moderation. If a user submits content for a social 

media post, the service provider’s decision to apply content moderation interventions to the post 

is a binary decision. Yet algorithmic recognition of the type of hate speech in terms of the target 

of the hate can also be useful. Classification by type supports various analytics and may reveal 
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important trends. While it would be useful to be alerted by algorithmic monitoring when hate 

speech is trending up, it would be more useful to know which groups are being targeted when 

such upticks occur. 

 

2.3 Attempts to Classify MMHS150K 

Prior research indicates MMHS150K is a hard dataset to classify. Gomez et al. (2020) 

created it as a multimodal corpus containing both tweeted images and texts. However, they 

reported that multimodal models did not provide higher accuracy than textual models. None of 

their models exceeded accuracy of 68.5%, and text alone yielded 68.3%. Subsequent analyses of 

MMHS150K’s tweet texts have either reported low accuracy or altered the dataset.  

Sai et al. (2022) report only a maximum accuracy across trials of 67.7% on MMHS150K. 

They collapsed the five hate speech classes for binary classification and did not discuss how 

training labels were represented or how annotation disagreements were addressed. Sai and 

colleagues acknowledged the class imbalance and addressed it with synthetic minority 

oversampling (SMOTE). The researchers attempted multimodal classification of the corpus, 

fusing textual and visual input. For textual features, they used a pre-trained BERT model. For 

visual feature input, they used Inception-v3, Inception ResNet, and ResNext. Accuracy was the 

only performance metric reported. 

Prasad et al. (2021) demonstrated various classification approaches and achieved a 

highest accuracy of 75.2% with a 100-dimensional GloVe embedding (Pennington, Socher, & 

Manning, 2014) for binary classification. They collapsed the hate speech classes into one 

positive class and determined training class labels by majority voting. They used a combination 

of majority undersampling and minority oversampling in training to address the class imbalance. 
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As performance metrics, they reported mean accuracies (all between 0.68 to 0.75) and ROC 

AUC (between 0.69 and 0.77) for all models, including several multimodal models. There was 

no mention of precision, recall, or F1 for the hate speech class. 

Cheung and Lam (2022) achieved F1 and accuracies of around 71% in multimodal 

learning with MMHS150K for binary classification. No class-specific performance metrics were 

reported. The researchers also did not discuss how they addressed annotation disagreements or 

the class imbalance. 

Although Shome and Kar (2021) achieved 82.6% binary accuracy using a multimodal 

contrastive learning approach, they did not report class-specific classification performance 

metrics, so it is unclear whether the accuracy metric was inflated by overclassifying the majority 

class. In discussing their results, they mentioned a “large number of hard negatives” boosting 

model performance, which might allude to their model converging more effectively on the 

negative class that constitutes 75% of the corpus than on the five positive classes. They 

conducted multi-class analyses, but did not provide class-specific classification metrics or a 

confusion matrix. Instead, the authors provide t-distributed stochastic neighbor embedding (t-

SNE) charts. With t-SNE charts, the more effective classification has been, the more defined the 

clusters of points for each class in the charts will be. The authors report seeing defined clusters 

for all classes except Religion-based hate. However, that is a subjective assessment, and one 

could argue that only the Homophobic class had a clearly defined cluster. No information was 

provided about annotation disagreements or measures to address the class imbalance. 

Botelho et al. (2021) used MMHS150K tweets but created new labels with expert 

annotators that had higher inter-annotator reliability (Kappa of 0.40 rather than the original 0.15) 

and in doing so enabled classification to achieve higher accuracy. In other words, they predicted 
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a different target than other studies. Rather than sourcing annotators from the public at large, 

Botelho and colleagues used two annotators who had prior experience labeling hate speech and 

received four weeks of training. The researchers also gave the annotators a detailed codebook to 

guide their labeling decisions. The codebook included definitions of classes that differed from 

MMHS150K’s original classes, prototypical examples of the classes, and examples of edge 

cases. The authors noted the expert annotators agreed more frequently on Not Hate instances 

than on cases from the positive classes. They agreed on 68.8% of the Not Hate instances. The 

instances for which the two trained annotators disagreed were referred to an expert annotator 

who was a Ph.D. student with previous experience working on multiple hate speech research 

projects. This was also a study that did not report class-wise classification performance metrics 

or present a confusion matrix. 

The training and education of experts are the main reasons for the differences between 

their annotations and crowdsourced annotations. Training and education can create a common 

perspective, and annotators with a common perspective will agree at higher rates than the public 

at large will. However, every observer, including an expert, has a perspective (influenced by 

cultural context), and that perspective influences their judgments. Perspectives influencing 

judgments is a definition of bias (Blair, 2012). Again, training and education do not eliminate 

perspective or bias, but they can cause greater conformity of perspective. As training and 

education cause perspectives among members of a group to narrow and agreement among them 

to increase (Haski-Leventhal, Pournader, & Leigh, 2020), their agreement can feel validating and 

can convince members of the group of their rightness even in the presence of evidence that their 

shared judgment is wrong (Janis, 1972). It is important to ask whether the narrowed, shared 

perspective of such experts is more valid or more relevant than perspectives in the public at 
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large. Again, context matters in interpreting social media posts (Wang et al., 2014), and the 

extensive training and education of Botelho and colleagues’ (2021) annotators gives them a 

shared context, which is not a context shared by all members of the public at large. Returning to 

the use case of a hate speech classifier for blocking content that would offend or harm people, 

would the content only be problematic if it were to offend or harm the people who have been 

trained to have the same perspective as the annotators used by Botelho et al., or would reactions 

of the public at large also be relevant? If the answer is the latter, then crowdsourced labels 

remain relevant. 

Returning to the issue of class-specific results, papers on MMHS150K routinely omit 

classification report tables and confusion matrices that are needed to understand the true 

effectiveness of classification attempts. The accuracy metric can be misleading in situations of 

high class imbalances such as information retrieval, cancer screening and fraud detection (Han, 

Kamber, & Pei, 2011; Manning, Raghavan, & Schütze, 2008).
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3. Methods 

 

3.1 The MMHS150K Dataset 

Gomez and colleagues (2020) created MMHS150K to be a public domain corpus of 

social media content with hate speech annotations.1 Using the Twitter API, they obtained tweets 

containing at least one of 51 terms commonly appearing in hate speech (ElSherief, Nilizadeh, 

Nguyen, Vigna, & Belding, 2018). Annotations were provided by Amazon’s Mechanical Turk 

workers who were given a definition of hate speech and some examples before being asked to 

provide their annotations. Given the minimal instruction they were provided, the MMHS150K 

labels can be considered the ground truth from the public at large. The researchers noted that the 

annotators provided feedback that their task involved subjective judgments. As a check against 

one indicator of annotator error, the researchers rejected annotations that annotators submitted 

within three seconds of viewing a tweet. While all the tweets contain terms that commonly 

appear in hate speech, 36,978 tweets were labelled as containing actual hate speech while 

112,845 tweets were labeled as not containing hate speech. Gomez and colleagues report 

majority vote annotations for racist, sexist, homophobic, religion-based hate and other hate as 

yielding tweets totaling 11,925, 3,495, 3,870, 163, and 5,811, respectively. That sums to 149,823 

across classes and matches the number of instances available in the GitHub repository for 

MMHS150K.

 
1 https://gombru.github.io/2019/10/09/MMHS/ 
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While Gomez and colleagues report that each tweet had three annotations, we found 74 

instances that had a different number of annotations. Within that set of 74, the number of 

annotations per tweet ranged from 1 to 4. Without an explanation as to why the number of 

annotations differed from the reported number, their validity was unknown, and they were not 

included in the analyses reported here.2  

The MMHS150K dataset is available as a JSON file, which we parsed as a Python 

dictionary and then wrote to a Pandas dataframe. While parsing, instances without exactly three 

annotations were eliminated. Tweet texts were tokenized with Python’s Natural Language Tool 

Kit’s (NLTK’s) RegexpTokenizer, then converted to lower case and lemmatized with NLTK’s 

WordNetLemmatizer. Next, the tweets were vectorized with the GloVe 100-dimensional word 

vectors from a model pretrained on a corpus of 27 billion tweets with 2 billion tokens 

(Pennington et al., 2014). GloVe embeddings use the rates of co-occurrence of tokens in the 

tweets of the dataset that were used to train the GloVe model. Co-occurrence values 

quantitatively represent semantic meaning. Vectorizing with GloVe embeddings created a two-

dimensional float array of size 33 by 100 for each tweet. Preprocessing of the training set’s target 

classes involved creating binary targets (for the replication analysis only), and the primary 

analyses used one-hot encoding or probabilistic labeling.  

In every classification analysis that we report, majority vote was used to determine class 

labels for validation and testing, but in some instances, there was no majority. No majority 

means two or three annotators provided a hate speech label, but no two of the labels matched. 

 
2 It is unclear how cases with one annotation should be treated in a study of annotator disagreements, and how cases 
with two disagreeing annotations should be treated in the majority voting paradigm. It is possible that all the 
anomalous cases were the result of transcription errors. Fortunately, the dropped cases only represent 0.05% of the 
corpus and could not have had any substantive effect on the results. 
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We refer to these cases as Mixed Hate. In the binary paradigm, the majority vote yields a 

consensus label of hate for all the Mixed Hate instances even though no two annotators agreed 

on the type of hate. In the multi-class paradigm, identifying an appropriate approach to 

producing a consensus label was a dilemma. Alternatives included discarding those cases, 

retaining the Mixed Hate class as a seventh class, using a new group of annotators to obtain new 

labels, and including Mixed Hate in the Other Hate class. Each approach would have had its 

advantages and disadvantages. If the cases had been discarded, the retained cases would be 

cleaner, but the corpus would sacrifice some fidelity to a real-world classification challenge. 

Keeping them as a seventh class would involve introducing a class to the analyses with an 

ambiguous interpretation that would likely be difficult for a classifier to recognize as distinct. 

Using a new group of annotators would be resource-intensive and might not generate much 

improvement. 

For this study, the cases that had no consensus label were added to the Other Hate class. 

If the annotators are viewed as the arbiters of ground truth, then the literal interpretation of cases 

with no consensus is intersectional hate. For instance, if a tweet expressed hate toward women 

wearing burkas (e.g., Fortuna & Nunes, 2018), given that the annotators had to select one of the 

predefined labels that did not account for intersectional hate, then conflicting annotations should 

be expected (e.g., Racist, Sexist, Religion-based, or Other Hate). The Other Hate class as 

originally provided by Gomez et al. was already a heterogenous class of tweets expressing hate. 

Adding the cases with no majority vote is unlikely to corrupt the Other Hate class. The class 

counts are as reported in Table 1. For completeness, Mixed Hate is shown, but we did not run 

analyses that treated it as a separate class. 
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3.2 Base Case 

Our initial analyses involved running several experimental trials to become familiar with 

the dataset, to replicate the results reported by Gomez and colleagues, to observe the effects of 

different model architectures and hyperparameters, and to establish an appropriate base case for 

comparisons. In an attempt to replicate the findings of Gomez and colleagues, we used the text-

only classification model features they described: a single 150-unit long short-term memory 

(LSTM) hidden state, a Binary Cross-Entropy loss function, sigmoid activation, and an Adam 

optimizer with a learning rate of 0.0001. 

Table 1. Annotations by Class and Agreement

Clean 2 of 3
Non Hate 57,890 54,897 112,787 57,890   112,787 
Racist 1,710   8,898   10,608   1,710     10,608   
Sexist 407      2,270   2,677     407        2,677     
Homophobic 887      2,190   3,077     887        3,077     
Religion-based 23        88        111        23          111        
Other Hate 1,065   3,797   4,862     5,547     20,489   
Mixed Hate1 4,482   11,145 15,627   

66,464 83,285 149,749 66,464   149,749 

Clean 2 of 3
Non Hate 57,890 54,897 112,787 
Hate 8,574   28,388 36,962   

66,464 83,285 149,749 

Majority 
Vote Clean

Majority 
Vote

Mixed as Other

1 Mixed Hate was added during preprocessing. Instances where all three annotations were a 
form of hate are shown here as Clean. Instances where one annotation was Not Hate and the 
other two were different classes of hate are shown as 2 of 3. 

Multi-class 
Labels

Binary Labels
Majority 

Vote
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With negative cases outnumbering positives 3-to-1 in the corpus, we used class weighting 

in training. As previously mentioned, initial trials showed models tended to converge on the 

larger and easier to classify negative class. We tested whether SMOTE or adaptive synthetic 

sampling (ADASYN) would be more effective than class weighting, but they were not. We also 

examined whether a Jensen-Shannon Divergence loss function (also known as Reverse 

Kullback-Liebler Divergence), which factors the distribution of predicted labels into loss 

calculations, would reduce the extent to which models would over-predict the large negative 

class, but it did not perform better than Cross-Entropy (results available upon request). 

 

3.3 Comparative Adjudication of Label Disagreements 

After attempting a pure replication, we adapted the model to create a base case that would 

permit closer comparisons when subsequently conducting trials with clean label filtering and soft 

labeling. The base case for binary classification has a 128-unit layer, which may make 

processing and memory use more efficient when compared to the 150 units Gomez et al. used. 

Additionally, the binary target was one-hot encoded to form two classes. As shown in Table 2, 

example tweet B received annotations of 3, 0, and 0. The annotations in Tables 2 and 3 are 

unordered lists as they appear in the JSON file for MMHS150K. The class codes for annotations 

are 0 for Not Hate, 1 for Racist, 2 for Sexist, 3 for Homophobic, 4 for Religion-based, and 5 for 

Other Hate.3 Representing example tweet B’s label for binary classification with majority voting 

involves creating a one-hot encoded vector with 1.0 in index position 0 and 0.0 in index position 

1, which is shown in the Majority column under Binary in Table 2. The other example tweets in 

 
3  By obtaining only one label per annotator per instance, Gomez and colleagues (2020) made each class annotation 

mutually exclusive. 
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Table 2. Representation of the Class Labels in Training 

  Binary   Multi-Class  
Examples  Annotations  Majority  Clean  Soft   Majority    Clean  Soft 
 tweet A  [2, 0, 2]  [0.0, 1.0]  out [0.33, 0.67] [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]   out [0.33, 0.0, 0.67, 0.0, 0.0, 0.0] 
 tweet B  [3, 0, 0]  [1.0, 0.0]  out [0.67, 0.33] [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]   out [0.67, 0.0, 0.0, 0.33, 0.0, 0.0] 
 tweet C  [3, 3, 0]  [0.0, 1.0]  out [0.33, 0.67] [0.0, 0.0, 0.0, 1.0, 0.0, 0.0]   out [0.33, 0.0, 0.0, 0.67, 0.0, 0.0] 
 tweet D  [3, 3, 3]  [0.0, 1.0] [0.0, 1.0]   [0.0, 1.0] [0.0, 0.0, 0.0, 1.0, 0.0, 0.0] [0.0, 0.0, 0.0, 1.0, 0.0, 0.0] [0.0, 0.0, 0.0, 1.0, 0.0, 0.0] 
 tweet E  [5, 5, 5]  [0.0, 1.0] [0.0, 1.0]   [0.0, 1.0] [0.0, 0.0, 0.0, 0.0, 0.0, 1.0] [0.0, 0.0, 0.0, 0.0, 0.0, 1.0] [0.0, 0.0, 0.0, 0.0, 0.0, 1.0] 
 tweet F  [0, 1, 4]  [0.0, 1.0]  out [0.33, 0.67] [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]   out [0.33, 0.33, 0.0, 0.0., 0.33, 0.0] 
Annotation codes = {0: Not Hate, 1: Racist, 2: Sexist, 3: Homophobic, 4: Religion-based, 5: Other Hate} 
 
 

 
Table 3. Representation of the Class Labels in Validation and Testing 

Examples Annotations  Binary  Multi-Class 
 tweet X [1, 1, 0] [0.0, 1.0] [0.0, 1.0, 0.0, 0.0, 0.0, 0.0] 
 tweet Y [0, 0, 0] [1.0, 0.0] [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] 
 tweet Z [0, 5, 0] [1.0, 0.0] [1.0, 0.0, 0.0, 0.0, 0.0, 0.0] 
Annotation codes = {0: Not Hate, 1: Racist, 2: Sexist, 3: Homophobic, 4: 
Religion-based, 5: Other Hate} 
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Table 2 have at least two annotations of a form of hate speech and are one-hot encoded with 1.0 

in index position 1 for binary analyses in order to represent the Hate class. Accordingly, the final 

layer of the neural network had two units with a Softmax activation rather than sigmoid 

activation. 

The difference between the one-hot encoded binary base case analysis and the clean label 

filtered analysis was simply filtering of the training dataset. As Table 2 shows, only instances in 

the training dataset for which all three annotators agreed on a label (e.g., example tweets D and 

E) were included. Unanimously labeled case were identical in the base case and the clean label 

training datasets. The model architecture features, the hyperparameters, and the validation and 

testing datasets (examples in Table 3) were the same for the base and clean labels cases.  

The differences between the one-hot encoded binary base case analysis and the 

probabilistic soft label analysis were features of the training set’s target class data. One-hot 

encoding represents a label as [0.0, 1.0] for a positive hate speech instance whether all three 

annotations were positive or only two of the three. In contrast, if only two of three annotators 

provided a hate speech label for an instance, its soft label would be [0.33, 0.67]. This is shown in 

the Soft column under Binary in Table 2 with examples A, C and F. The model architecture 

features, and the hyperparameters we used for the soft labels analyses matched those of the base 

case. 

After training models with binary targets (Not Hate and Hate classes) three ways 

(majority vote, clean filtered, and soft labeled), we trained models three ways with multi-class 

targets. The six classes were those defined by the annotation scheme Gomez and colleagues 

provided to annotators. In the examples provided in Table 2, tweet B received one annotation for 

Homophobic, and tweet C received two annotations for Homophobic. For multi-class majority 
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vote analyses, tweet B is one-hot encoded as Not Hate (1.0 in index position 0) and tweet C is 

one-hot encoded as Homophobic (1.0 in index position 3). The label for each class is represented 

by the index where 1.0 appears in the vector. As previously mentioned, for the majority vote 

multi-class analyses, we chose to put the hate speech-labeled instances that had no majority class 

in the Other Hate class. That is illustrated by tweet F in the Majority column under Multi-Class 

in Table 2. 

The representation of labels for multi-class clean filtering and multi-class soft labeling 

follows the pattern used for the binary representations. As Table 2 shows, since only example 

tweets D and E received unanimous annotations, they are the only examples that would have 

been used in multi-class clean filtered training. The label representations in the Soft column 

under Multi-Class in Table 2 show that labels are represented as the proportions of the three 

annotations they received for each of the six classes. In the label vector for a given tweet, each 

proportion represents the probability that the tweet belongs to the class associated with that index 

position given the annotations for that tweet.  

To address the issue of models tending to converge on Not Hate at the cost of poor 

recognition of hate speech instances, we used F1 for the hate speech classes as one metric for 

selecting a model. In training with multi-class targets, F1 was computed across all positive 

classes for this purpose. In Keras model training, callbacks were set to save the model with the 

best hate speech F1 and the best validation accuracy.  
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4. Results 

 

4.1 Replication of Gomez and colleagues (2020) 

As previously stated, considerable inaccuracy is inevitable given the nature of online hate 

speech and the MMHS150K corpus. However, superior approaches to classification can improve 

overall classifier performance and address particular problems in classification. Beginning with 

our replication of Gomez and colleagues’ (2020) analyses, the results show that the weighted 

average accuracy is low. More importantly, inaccuracy in predicting the hate speech cases is a 

major problem since that is the main use of the classifier. As Table 4 shows, the base case 

classifier only recognized hate speech about half of the times when it was present. A recall ratio 

of 0.514 for the Hate class means that, of the 2,495 test cases that were Hate, the model only 

recognized 51% of them. With Not Hate being a much bigger and easier to recognize class, the 

model minimized loss by achieving much higher recall for Not Hate than it did for the target of 

interest. “Accuracy” in Table 4 is micro accuracy, which is simply the ratio of the number of 

correct predictions to the number of cases, and it can overlook difficulties a model might have 

with predicting smaller classes. Weighted average precision, recall and F1-score values can also 

distract from such problems since they give greater weight to larger classes. Macro averages for 

each performance metric are an improvement because they give equal weight to each class when 

averaging metrics across classes. Table 5 presents the confusion matrix.
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Table 4. Classification Report for the Replication  
   
 Precision Recall F1-score Support  
Not Hate 0.831 0.797 0.814  7,505  
Hate 0.457 0.514 0.484  2,495  
       
Accuracy   0.726 10,000  
Macro Avg. 0.644 0.655 0.649 10,000  
Weighted Avg. 0.738 0.726 0.732 10,000  
 

     
   

Table 5. Confusion Matrix for the Replication 
    
 Predicted  
 
 Not Hate Hate  
 
  Not Hate 5,982  1,523  
 Actual 
 Hate  1,213  1,282  
 

 

Our results differ from those obtained from the original classification of MMHS150K by 

Gomez and colleagues who reported accuracy of 0.683, F1 of 0.703, and area under the curve 

(AUC) of 0.732. Our attempt at replicating their analyses produced micro accuracy of 0.726, 

weighted average F1 of 0.732, and AUC of 0.656. These differences could be due to random 

differences in the class distributions of the respective holdout datasets, random differences in the 

initialization weights, or the choice of a classification performance metric for selecting a model 

from those created during training. While replicating, we chose the model with the highest 

validation accuracy across training epochs.  
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Among the analyses reported in this study, we established a baseline for comparisons and 

kept the criteria for model selection consistent. In each model fitting, we allowed training to 

continue until validation loss was clearly trending up. Rather than using the last model produced 

during training, we used callbacks to save the best model for the specified metric. We kept both 

the model with the highest accuracy across classes and the model with the highest F1-score for 

the hate speech classes. We report results for both the maximum accuracy models and the 

maximum hate speech F1-score models. As we noted, the class imbalance makes the accuracy 

metric misleading, and precision and recall should be the focus. However, accuracy is the only 

metric consistently reported in prior MMHS150K studies, so including it here facilitates 

comparisons to prior work. 

 

4.2 Majority Vote, Binary 

Table 6 contains the baseline results for binary classification of MMHS150K. Means and 

95% confidence intervals are included to clarify which differences across analyses are unlikely 

to be due to randomness. The model that achieved the best accuracy across all epochs with the 

validation data also achieved better accuracy with the test data than the model that maximized F1 

across epochs did. However, the model that maximized hate speech F1 achieved higher recall for 

the hate speech class. Precision for the positive class was lower though with the maximum hate 

speech F1 model. The AUC values are equivalent. The weighted average F1 value for the model 

that maximized accuracy is greater than the same metric value for the model that maximized hate 

speech F1. 
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4.3 Clean Filtered, Binary 

Table 7 contains the results for binary classification with the training dataset filtered such 

that only clean labels—labels on which all three annotators agreed—were retained. As with the 

maximum validation accuracy model saved from the baseline training trial, the maximum 

validation accuracy model from the clean filtered training trial achieved better accuracy and hate 

speech precision with the testing data. The model that maximized hate speech F1 from the clean 

filtered trial led to higher recall. 

Comparing the metrics in Tables 6 and 7, clean label filtering led to equivalent hate 

speech recall and slightly lower hate speech precision when using the model from each trial that 

maximized accuracy. The weighted average F1-scores, AUC values and accuracies are nearly 

identical for the majority vote and clean filtered models. When comparing the models 

maximizing F1 across the two training data approaches, the clean filtered approach had higher 

recall, but had slightly lower hate speech precision, weighted average F1 and accuracy. As 

mentioned in Chapter 2, training the classifier only on the obvious cases might not satisfactorily 

prepare the classifier to recognize features of the less obvious cases. This might explain the 

slightly higher hate speech recognition with the majority vote approach. AUC was equal in the 

two conditions. 

Lower 
Bound Mean

Upper 
Bound

Lower 
Bound Mean

Upper 
Bound

Weighted Avg. F1 0.713 0.722 0.728 0.678 0.688 0.697
Area Under the Curve 0.642 0.651 0.663 0.653 0.663 0.673
Accuracy 0.714 0.715 0.716 0.668 0.669 0.669
Hate Speech Precision 0.438 0.440 0.441 0.398 0.399 0.400
Hate Speech Recall 0.510 0.526 0.542 0.632 0.651 0.671

Maximizing Hate Speech F1Maximizing Accuracy

Table 6.  Performance Metrics for Majority Vote Labels, Binary
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4.4 Soft Labels, Binary 

Table 8 contains the results for binary classification with probabilistic soft labels used 

during training. Comparing results of the model that maximized accuracy and the model that 

maximized hate speech F1shows a pattern that was present in the previously discussed models. 

Maximizing hate speech F1 led to much higher hate speech recall but lower accuracy and lower 

hate speech precision. 

 

 

 

The confusion matrices for soft label binary classification trials in Table 9 illustrate the 

tradeoffs. The model saved from the training trial with soft labeled targets that maximized hate 

speech F1 in validation made far more positive predictions in the testing set. In doing so, it 

Lower 
Bound Mean

Upper 
Bound

Lower 
Bound Mean

Upper 
Bound

Weighted Avg. F1 0.712 0.720 0.728 0.661 0.667 0.676
Area Under the Curve 0.640 0.650 0.660 0.652 0.662 0.672
Accuracy 0.711 0.712 0.713 0.642 0.643 0.644
Hate Speech Precision 0.435 0.436 0.438 0.380 0.382 0.383
Hate Speech Recall 0.513 0.529 0.546 0.674 0.696 0.714

Maximizing Accuracy Maximizing Hate Speech F1

Table 7.  Performance Metrics for Clean Filtered Training, Binary

Lower 
Bound Mean

Upper 
Bound

Lower 
Bound Mean

Upper 
Bound

Weighted Avg. F1 0.742 0.749 0.757 0.674 0.682 0.689
Area Under the Curve 0.636 0.646 0.657 0.653 0.664 0.674
Accuracy 0.750 0.756 0.765 0.652 0.661 0.668
Hate Speech Precision 0.491 0.513 0.533 0.380 0.393 0.407
Hate Speech Recall 0.408 0.427 0.445 0.654 0.672 0.686

Maximizing Accuracy Maximizing Hate Speech F1

Table 8.  Performance Metrics for Soft Labels, Binary
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produced 59% more true positive predictions and 61% fewer false negative predictions. 

However, the model that maximized hate speech F1 also made 145% more false positive 

predictions. Accordingly, Table 6 shows the accuracy for the model that maximized hate speech 

F1 generated much lower accuracy with the testing data (0.661 versus 0.756). 

   
Table 9. Confusion Matrices for Soft Labels, Binary 
    
Maximizing Accuracy 
 Predicted  
 
 Not Hate Hate  
 
 Not Hate 6,536 969  
 Actual 
 Hate 1,508 987  
 
 
Maximizing F1   
 Predicted  
 
 Not Hate Hate  
 
  Not Hate 5,131  2,374  
 Actual 
 Hate 926 1,569 
 

 

When comparing the models trained with majority vote labels represented in Table 6 and 

the models trained with probabilistic soft labels in Table 8, the models that maximized accuracy 

in training with soft labels produced lower hate speech recall, but higher hate speech precision 

and overall model accuracy. On the other hand, the models that maximized hate speech F1 in 

those trials mainly differed in hate speech recall. The values for hate speech precision and overall 

model accuracy differed by less than a percent. The accuracy and hate speech precision versus 

hate speech recall tradeoff previously discussed also occurred when comparing the majority vote 
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training results to soft label training results. True positives were higher for the soft label trained 

model that maximized hate speech F1, but accuracy was slightly lower. 

The classification metrics for models trained with clean filtered labels reported in Table 7 

and for models trained with soft labels reported in Table 8 exhibit the accuracy and hate speech 

precision versus hate speech recall tradeoff in the accuracy maximizing condition. The model 

trained with clean labels that maximized accuracy achieved that performance at the cost of hate 

speech precision. At a precision level of 0.436, that model was usually wrong when predicting 

that an instance was hate speech. High accuracy was achieved via a higher true positive rate. On 

the other hand, the model that maximized validation accuracy during training with soft labels had 

the highest model accuracy across all of our binary model training at 0.756 via lower recall at 

0.427, which is undesirable when the goal is hate speech recognition. Comparing the maximizing 

hate speech F1 conditions between Table 7 and Table 8, we see it is the same pattern as 

previously discussed when comparing Tables 6 and 8. Hate speech precision can be increased at 

a cost. 

In summary, ranking performance of the various binary classification models, training 

with probabilistic soft labels and retaining the model that achieved the highest accuracy with the 

validation dataset led to the highest accuracy. However, the highest accuracy was achieved while 

failing to recognize most instances of hate speech (recall of 0.427). Across the training runs for 

majority vote, clean label filtering and soft labeling, the models that optimized hate speech F1 in 

each trial provided highly similar performance metrics. In each of the three training trials, hate 

speech recall was higher for the model that maximized hate speech F1, but lower values for 

precision also resulted. Across majority vote, clean filtering and soft labels trials, clean label 

filtering achieved the highest recall (0.696) and the lowest precision (0.382). 
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4.5 Majority Vote, Multi-Class 

Switching from binary to multi-class classification, Tables 10 through 13 contain results 

for multi-class classification of MMHS150K. Table 10 contains the baseline results for multi-

class classification in which the annotations were defined by majority vote and one-hot encoded. 

Even for the model saved during training for having the highest accuracy with the validation 

data, the accuracy of 0.534 is low. Recall for the Homophobic class is better at 0.776, and for the 

Other Hate class at 0.885, but precision across all hate speech classes is low. As expected, the 

model saved from training for having the highest hate speech F1 produced some slightly better 

hate speech recall values at the cost of lower overall accuracy. 

 

 

 

Lower 
Bound Mean

Upper 
Bound

Lower 
Bound Mean

Upper 
Bound

Weighted Avg. F1 0.602 0.611 0.621 0.557 0.566 0.576
Area Under the Curve 0.812 0.819 0.827 0.815 0.823 0.830
Accuracy 0.525 0.534 0.544 0.470 0.480 0.490

Precision - 'Racist' 0.400 0.410 0.419 0.357 0.367 0.376
Precision - 'Sexist' 0.191 0.199 0.207 0.198 0.206 0.214
Precision - 'Homophobic' 0.337 0.346 0.355 0.337 0.347 0.356
Precision - 'Religion-based' 0.026 0.029 0.032 0.021 0.024 0.027
Precision - 'Other  hate' 0.100 0.106 0.112 0.087 0.093 0.099

Recall - 'Racist' 0.173 0.181 0.189 0.187 0.195 0.202
Recall - 'Sexist' 0.233 0.241 0.250 0.248 0.257 0.265
Recall - 'Homophobic' 0.768 0.776 0.784 0.772 0.780 0.788
Recall - 'Religion-based' 0.390 0.400 0.410 0.590 0.600 0.610
Recall - 'Other  hate' 0.879 0.885 0.891 0.869 0.876 0.882

Maximizing Accuracy Maximizing Hate Speech F1

Table 10.  Performance Metrics for Majority Vote Labels, Multi-Class
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4.6 Clean Filtered, Multi-Class 

Table 11 contains the results for multi-class classification with the training dataset 

filtered to use only the unanimously annotated cases. The model from the training trial that 

maximized accuracy with the clean filtered training dataset achieved higher accuracy than the 

comparable model in Table 10. The maximum accuracy model in Table 11 also recognized a 

majority of Sexist, Homophobic, and Other Hate instances, but precision values were low. The 

model from clean filtered training that maximized hate speech F1 recognized a majority of the 

Sexist, Homophobic, and Religion-based hate cases. While precision was low across all classes, 

that model balanced recall and precision for Other Hate.  

 

 

 

Lower 
Bound Mean

Upper 
Bound

Lower 
Bound Mean

Upper 
Bound

Weighted Avg. F1 0.629 0.638 0.648 0.565 0.575 0.585
Area Under the Curve 0.798 0.806 0.814 0.786 0.794 0.802
Accuracy 0.567 0.576 0.586 0.485 0.495 0.505

Precision - 'Racist' 0.175 0.183 0.190 0.144 0.151 0.159
Precision - 'Sexist' 0.113 0.119 0.126 0.108 0.114 0.120
Precision - 'Homophobic' 0.333 0.342 0.352 0.259 0.267 0.277
Precision - 'Religion-based' 0.059 0.063 0.068 0.008 0.010 0.012
Precision - 'Other  hate' 0.313 0.322 0.331 0.384 0.394 0.403

Recall - 'Racist' 0.392 0.402 0.412 0.403 0.412 0.422
Recall - 'Sexist' 0.650 0.659 0.668 0.646 0.655 0.664
Recall - 'Homophobic' 0.757 0.765 0.773 0.778 0.787 0.795
Recall - 'Religion-based' 0.390 0.400 0.410 0.590 0.600 0.610
Recall - 'Other  hate' 0.598 0.608 0.618 0.421 0.431 0.439

Maximizing Accuracy Maximizing Hate Speech F1

Table 11.  Performance Metrics for Clean Filtered Training, Multi-Class
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4.7 Soft Labels, Multi-Class 

Table 12 reports the multi-class classification results for models trained with probabilistic 

soft labels. The model from the training trial that maximized accuracy did so with a high true 

negative rate. The accuracy metric looks favorable when compared to other classification 

accuracies presented here and in other studies, but it is misleading. That model did not, in fact, 

recognize hate speech. This is illustrated in the confusion matrix presented in Table 13. The 

model that maximized accuracy during the training trial was produced in the first epoch. It was 

an outlier compared to the models produced in subsequent epochs of that training trial. The 

outlier is included here to illustrate that MMHS150K has a large enough class imbalance that 

maximizing overall accuracy can lead to failure to recognize hate speech. This reinforces the 

need for MMHS150K studies to report class-wise classification performance metrics.

Lower 
Bound Mean

Upper 
Bound

Lower 
Bound Mean

Upper 
Bound

Weighted Avg. F1 0.742 0.751 0.753 0.736 0.744 0.753
Area Under the Curve 0.723 0.732 0.742 0.827 0.835 0.842
Accuracy 0.818 0.825 0.828 0.714 0.722 0.731

Precision - 'Racist' 0.000 0.000 0.000 0.365 0.375 0.384
Precision - 'Sexist' 0.354 0.364 0.373 0.170 0.177 0.185
Precision - 'Homophobic' 0.000 0.000 0.000 0.320 0.330 0.339
Precision - 'Religion-based' 0.000 0.000 0.000 0.018 0.020 0.023
Precision - 'Other  hate' 0.000 0.000 0.000 0.288 0.297 0.306

Recall - 'Racist' 0.000 0.000 0.000 0.190 0.198 0.206
Recall - 'Sexist' 0.015 0.018 0.021 0.318 0.327 0.337
Recall - 'Homophobic' 0.000 0.000 0.000 0.754 0.762 0.770
Recall - 'Religion-based' 0.000 0.000 0.000 0.770 0.778 0.786
Recall - 'Other  hate' 0.000 0.000 0.000 0.544 0.554 0.564

Table 12.  Performance Metrics for Soft Labels, Multi-Class

Maximizing Accuracy Maximizing Hate Speech F1
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Table 13. Confusion Matrix Soft Labels, Multi-Class, Maximizing Accuracy 
 
   Predicted 
 
 Not Hate Racist Sexist Homophobic Religion-based Other Hate  
 

 Not Hate 8247 0 7 37 0 1  
 
 Racist 822 0 0 0 0 0  
 
 Sexist 211 0 4 8 0 0  
Actual 
 Homophobic 273 0 0 0 0 0  
 
 Religion-based 9 0 0 0 0 0  
 
 Other Hate 379 0 0 2 0 0 

 

 

Returning to Table 12, the righthand side shows that the model from the trial that 

maximized hate speech F1 produced the best overall metrics for multi-class classification. 

Accuracy at 0.722 was higher than was obtained with majority vote and clean filtered training. 

More importantly, it achieved a better balance of hate speech recall and precision in many 

instances than was achieved by the models in Tables 10 and 11. Across all the multi-class hate 

speech F1 maximizing models (i.e., the righthand sides of the tables), recognition of the 

Homophobic class was the best. Apparently, models converge more easily on that hate speech 

class, which was also demonstrated by Shome and Kar (2021). Being a small class, learning to 

recognize homophobic tweets in the testing dataset does little to boost overall model accuracy.  

In summary, ranking the multi-class models, clean label filtered training performed 

somewhat better than majority vote training at hate speech recognition, and probabilistic soft 

labeling performed better than both. For the models saved for maximizing hate speech F1 in each 

of the majority vote and clean filtered training approaches, the most noticeable differences were 

that clean filtering training cases recognized the Sexist class better and balanced precision and 

recall for Other hate better. Training with soft labeled training cases, on the other hand, had 
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clearly different results. First, that trial produced the highest model accuracy at 0.825, but Table 

10 shows that it did not actually recognize hate speech. Second, the model from that same 

training trial that generated the highest hate speech F1 was actually the best multi-class hate 

speech classifier. It achieved accuracy of 0.722 and it balanced recall and precision for each hate 

speech class a little better than the majority vote and clean filtered trained models did.
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5. Discussion 

 

5.1 Labels and Performance Metrics 

The original goal of this study was to compare clean label filtering and probabilistic soft 

labeling of targets to improve hate speech classification performance. The results show that clean 

filtering of training datasets to train with only unanimous cases, or representing training labels as 

probabilities, can improve training accuracy. Surprisingly and somewhat counter-intuitively, 

models trained with probabilistic soft labels recognized hate speech more effectively than either 

the clean label filtered training models or the baseline majority vote models. However, the results 

did not reveal any simple solution to effectively classifying MMHS150K as error rates (as 

measured appropriately using F1-score, in preference to accuracy, due to imbalanced dataset as 

explained below) were consistently high. 

A problem encountered in both binary and multi-class trials is that models tended to 

converge on the easier to classify Not Hate class. Also, since 75% of the MMHS150K cases are 

Not Hate, accuracy around that level can be achieved by not recognizing hate speech (that is 

labelling everything as Not Hate). To address this pattern, we retained the model from each trial 

that maximized F1 for hate speech classes during validation and reported testing results for them. 

As expected, recall for hate speech classes was higher for such models at the expense of lower 

overall accuracy. Somewhat surprising was that hate speech precision also tended to be lower 

when testing models that maximized hate speech F1. To identify more hate speech in 
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MMHS150K, lower precision and lower accuracy would have to be accepted. We revisit 

tradeoffs such as this in Section 5.2. 

Future research with MMHS150K and other hate speech corpora should report class-wise 

performance metrics. This would give reviewers and readers key insights into hate speech 

classification effectiveness. For instance, in this study, multi-class classification accuracy in the 

testing data of 82.5% was generated by a multi-class classification model using soft labeling. 

That is a significantly higher accuracy than the 68.3% accuracy for binary classification reported 

by Gomez et al. (2020) in the original MMHS150K study. However, the confusion matrix in our 

Table 13 demonstrates how misleading that 82.5% accuracy metric is. The model predicted that 

99% of the testing cases were Not Hate. This reaffirms that accuracy can be the wrong metric for 

evaluating classification performance when there are class imbalances (Han et al., 2011; 

Manning et al., 2008). Confusion matrices for classifying MMHS150K, on the other hand, can 

be informative, but papers on MMHS150K omit them (e.g., Cheung & Lam, 2022; Prasad et al., 

2021; Sai et al., 2022; Shome & Kar, 2021). 

 

5.2 Implications for Practical Applications 

Interpreting the significance of the results relative to use cases, the models reported here 

would be more appropriate for research and analysis applications than for automated content 

moderation. The probabilistic soft label approach to training led to the best hate speech 

recognition in the binary paradigm and to potentially useful levels of recognition of sexist and 

homophobic content in the multi-class paradigm. Such models can be used in applications where 

inexact classification can be tolerated. 
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Looking back at the data collection approach used to create MMHS150K, it was 25% 

accurate. The researchers crawled Twitter collecting tweets that contained terms that are 

common in hate speech. By keywords alone, the tweets were predicted to be positive for hate 

speech. The Amazon Turk annotators identified only 25% of the tweets as actually containing 

hate speech, so the false positive rate for the keyword search was 75%. The models reported here 

are clearly more efficient at recognizing hate speech than a keyword search for hate speech 

terminology in social media posts would be. For research and analysis on online hate speech, 

data could be processed in three stages. As Gomez and colleagues did to create their corpus, an 

online platform could be crawled to obtain posts with hate speech terminology in the first stage. 

In the second stage, a classifier could be applied to improve recognition of the target. A third 

stage of manually evaluating cases that were classified as positive before conducting analyses 

would be able to further clean the corpus, based on the needs of the application. Although 

manually processing online posts is resource-intensive, preprocessing with a classifier such as 

one of models presented here would help lighten the workload. Additionally, the model’s 

threshold for assigning a hate speech label can be adjusted to make the model more or less 

conservative with respect to false positives. Finally, by applying a Softmax function to the logits 

of the final layer and outputting them, the values can serve as indicators of the model’s 

confidence in a given prediction, and the user can use that data to choose a cutoff point.  

None of the models from this study would be a good choice for an online platform to use 

as its sole content moderation tool. Twitter, for instance, would be unlikely to find any of the 

models reported here constructive for algorithmic hate speech blocking. Even the model with the 

highest accuracy achieved for binary classification has high rates of false negatives and false 

positives. Many users would be justifiably upset if that model were to be applied. In the case of 
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false negatives, approximately 18% of the tweets that annotators judged to have contained hate 

speech would not be recognized as such and thus be posted. Unless there were other mechanisms 

for controlling those posts, users who viewed them would be offended and potentially harmed. 

Furthermore, if a content moderation mechanism were known to be in use, and if a hate speech 

tweet was not blocked by it, the effect would be to signify that the content was socially 

acceptable. False positives would also create problems for users due to blocking of posts they 

attempted to make because they were mistaken for hate speech. This would lead to user 

disenfranchisement. Other efforts to develop algorithmic hate speech detection for content 

moderation are needed. 

A classifier such as those presented here could be used to complement other methods of 

content moderation. The classifier could also be used for screening posts to identify those that 

require further review. While manual processes for screening all social media contributions 

before posting are infeasible for high-volume platforms, posts that are algorithmically classified 

as containing hate speech can be referred for manual evaluation without waiting for users to 

report the content based on the application context. In this scenario, the message would not 

initially be blocked, but human content moderators can be alerted that there is potentially 

inappropriate content to be evaluated, or flag the account by placing it on a low-severity-

watchlist for more careful automatic monitoring for acquiring more reliable signals of hate 

speech. The more proactive and efficient content moderators are, the shorter the time a hate 

speech message remains online doing harm. 
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5.3 Future Research on Hate Speech Classification 

Fortunately, in addition to the approaches applied in this study, various other approaches 

have the potential to improve classification accuracy of MMHS150K and similar corpora. The 

approach of this study was somewhat narrow with the intent of providing depth. In terms of 

scope, our intent was to replicate the analyses by Gomez and colleagues, establish binary and 

multi-class baselines, and experiment with two approaches for improving classification 

performance by addressing limitations of the annotations. More importantly, our study focuses 

on the impact of different approaches to resolving annotation discrepancies in crowdsourced 

annotations and their comparative impact on classifier performance as discussed later. In post 

hoc analyses, we also used a criterion for model selection from training that increased hate 

speech recognition. Other techniques attempted post hoc but not reported here due to their 

limited value were SMOTE and ADASYN as alternatives to class weights, various model 

architectures, and numerous hyperparameters (results available upon request). Nevertheless, 

MMHS150K is a useful corpus, and future research is likely to find additional classification 

improvements. 

Future research with variations of the classification approach presented here might be 

able to produce superior results. For instance, the Bidirectional Encoder Representations from 

Transformers pretrained on tweets (BERTweet; Nguyen, Vu, & Nguyen, 2020) could be used in 

place of GloVe embeddings or in fusion with GloVe embeddings (Eke, Norman, & Shuib, 2021). 

Additionally, Bidirectional LSTM (BiLSTM) can be used as an alternative to LSTM in order to 

represent backward dependencies in the input sequences as well as the forward dependencies of 

standard LSTM (Khan et al., 2022). As a third suggestion, rather than using a single holdout for 

testing, future research with different testing datasets might lead to different results. For the sake 
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of consistency, we used the same holdout for testing all six of the class labeling approaches we 

compared. The holdout was created with the Random method of the Pandas package. With this 

approach, the expected distribution of classes in the holdout is the distribution of the classes in 

the corpus. However, the actual distribution can vary. This situation can be addressed in future 

research either with stratified random sampling to maintain the class proportions of the corpus 

(Ramezan, Maxwell, & Warner, 2019), or with k-fold cross-validation that iterates training and 

testing on subsets of the corpus until all cases have been used in a testing holdout (Roy, Tripathy, 

Das, & Gao, 2020). The computational expense of k-fold cross-validation on MMHS150K could 

be very high though. Our focus here was on adjudication of label disagreements, and we 

followed the approach of Gomez and colleagues (2020)—who used GloVe, LSTM and a single 

holdout for testing—so that our results could be comparable. Future research may benefit by 

deviating from that approach while using probabilistic soft labeling, which our study found to 

perform the best. 

Perhaps the greatest opportunity to improve algorithmic hate speech recognition relative 

to the approaches that this study reports is to improve the crowdsourcing of annotations. Earlier 

in the paper, we provided a rationale for using the judgments of annotators sourced from the 

public at large. Motivating annotators such as Mechanical Turk workers to provide high-quality 

labels will be essential when obtaining labels. To retain the opportunity to participate and 

contribute annotations, annotators could be asked to demonstrate they are providing high-quality 

labels. One way to do this is to have them provide annotations for a batch of instances, asking 

them first to try to provide labels that they think will match the labels "most people" have 

provided and then to provide labels based on their own interpretation of each message. After 

completing a batch of about 20, the annotations they provided could be compared to pre-
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established classes for at least a portion of the cases, and feedback could be provided on how 

accurately they predicted those classes. Accuracy could be a criterion for continuing with the 

task. To retain valid annotator disagreements in the corpus, an annotator would not need to have 

a high degree of accuracy in predicting the instances with pre-existing labels, but the accuracy 

rate should not decline. A declining rate of accuracy could indicate fatigue or spamming.  

It should be noted, however, that if annotators get too much training, they will then start 

to be more like experts and less like the public at large, which might not be valid for all use 

cases. When the concern is to faithfully mirror the reactions of the public at large, retaining and 

representing all the labels provided (rather than seeking them from the experts) may be the right 

course of action. Given the diversity of the public at large, hate speech classification should 

tolerate lower levels of agreement. Classifying for hate speech is different than classifying for 

other targets such as images of cats. Images of cats have a ground truth that is anchored in the 

“hard science” of zoology. No such anchor exists for the phenomenon of hate speech. Prior work 

demonstrates that knowing a tweet’s context is essential to accurately classifying it (Wang et al., 

2014). It seems unrealistic to expect algorithmic detection of hate speech to achieve high 

accuracy levels without a deeper modelling of language, context, and current events in practice. 

When delving into the sociology, political science and history of hate speech, its subjective and 

evolving nature quickly becomes clear. Readers interested in the social construction of hate 

speech can see, for instance, Laaksonen et al. (2020). For our purposes, since hate speech is 

produced and consumed by the public at large, annotations such as those reported by Gomez et 

al. have relevance, and some disagreements in them are due to disagreements that are actually 

present in the ground truth. 
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Annotator-specific data should be collected and reported as it can be used to detect 

spamming and error rates for use with probabilistic labeling (Hovy et al., 2013). Uma et al. 

(2021) noted there are many ways to compute class probabilities for soft labeling. However, 

most of those approaches require data about which annotator provided which label and 

measuring each annotator’s labeling patterns across instances. Without a means of tracing 

annotations to specific annotators in the MMHS150K corpus, the probabilities we used for the 

training data input vectors are simply the probability of the instance belonging to the class given 

the labels that annotators assigned for the instance. Future research that sources new labels for 

MMHS150K might find that class probability computations that are able to incorporate 

additional prior information about specific annotators will lead to better classifier performance. 

Another potentially useful source of hate speech labels is a large language model (LLM) 

such as OpenAI’s GPT-3.5. In post hoc analyses, we used the API for GPT-3.5 (text-davinci-

003) to generate labels for 10,000 MMHS150K instances. Since GPT-3.5 is by default oriented 

to generating varying and less repetitious responses, the model had to be tuned to concisely 

return one label per instance in a consistent format. After experimenting with several smaller 

batches to modify the prompt and tune the model, on the first pass through the 10,000 cases, the 

model returned 9,952 usable labels. We reran the 48 that did not get a class code with 152 others 

that did get a code to see how consistent GPT-3.5 is with label generation. Once again it 

produced labels for 99.5% of the input (199 out of 200). Not providing labels for 0.5% of the 

input was without explanation. There were no errors or warnings reported. Additionally, the 152 

labels generated in both runs were not consistent. Cohen’s Kappa for the first and second runs 

was 0.73 with the same prompt and tuning. Furthermore, the GPT-3.5 labels did not appear to be 

better than the crowdsourced labels. Fleiss’s Kappa for the 9,952 labels originally generated by 
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GPT-3.5 and the three crowdsourced labels (all in all four labels) was a little lower than Kappa 

for the three crowdsourced labels alone (0.13 and 0.15, respectively). Although the humans 

originally hired for annotations by Gomez and colleagues did not agree with each other at a high 

rate, they agreed more with each other than they agreed with GPT-3.5. We also checked to see 

whether the Keras model trained on the crowdsourced labels could predict the GPT-3.5 labels. 

The results were better than they would have been for random data as labels, but a little worse 

than the results for testing with a holdout of crowdsourced labels. These analyses, while not 

highly rigorous, do not point to GPT-3.5 as an obvious solution to generating training data and 

classifying MMHS150K. Nevertheless, future research might find value in using GPT-3.5, GPT-

4 or another LLM with a novel prompting strategy to improve its success. 

Beyond decisions about labels in the context of annotator disagreements, other 

approaches to classifying MMHS150K’s tweet texts could potentially improve classification 

accuracy. First, there are many configurations of model architectures and hyperparameter 

settings that might produce better results than those reported here. While we have experimented 

with several, further experimentation could boost classification performance. We have also not 

explored knowledge-based approaches or the use of customized vocabularies to skew the results 

because such approaches have been explored in the past (e.g., Gupta & Joshi, 2017) for other 

datasets with mixed results. Furthermore, like Gomez and colleagues, we used GloVe 

embeddings for this study, but other natural language processing approaches such as term 

frequency – inverse document frequency might be more effective. Additionally, although Gomez 

and colleagues did not find a multimodal approach using both text and images produced 

meaningfully higher accuracy than text alone, future research is likely to generate greater 

classification accuracy using a multimodal approach with the MMHS150K corpus.
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6. Conclusion 

 

This study demonstrated two approaches that can be effective at coping with noisy and 

subjective annotations in deep learning. Filtering a training dataset such that only cases with 

clean labels are used during training was shown to improve classification performance in the 

multi-class paradigm using the MMHS150K hate speech dataset when compared to classification 

with labels based on majority vote. In addition, using soft labels in training that represent 

annotations as probabilities proved to be the best approach in both binary and multi-class 

paradigms. It achieved improvements beyond both the baseline approach and the clean filtering 

approach. 

Despite annotation disagreements, classifiers trained on MMHS150K could have 

practical utility for some use cases. None of the models reported here would be a good choice for 

standalone algorithmic hate speech blocking by an online platform. An online platform would 

want to use such a model only as a complement to other means of addressing hate speech. On the 

other hand, the models were effective enough that they could be useful in research and analysis 

applications. When compared to using hate speech terminology in a keyword search to collect 

hate speech instances for analysis, the classifiers reported here are far more efficient. 
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