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Abstract

Niveshitha, Niveshitha. M.S, Department of Computer Science and Engineering,
Wright State University, 2023. Efficient Cloud-based ML-approach for Safe Smart
Cities Environment

Smart cities have emerged to tackle many critical problems that can thwart the

overwhelming urbanization process, such as traffic jams, environmental pollution,

expensive health care, and increasing energy demand. This Master thesis proposes

efficient and high-quality cloud-based machine-learning solutions for efficient and

sustainable smart cities environment.

Different supervised machine-learning models for air quality predication (AQP)

in efficient and sustainable smart cities environment is developed. For that, ML-

based techniques are implemented using cloud-based solutions. For example,

regression and classification methods are implemented using distributed cloud

computing to forecast air execution time and accuracy of the implemented ML

solution. These models are utilized to forecast AQI (air quality index) with the help

of pollutants in the air such as particulate matter (PM10), ozone (O3), nitric oxide

(NO), particulate matter (PM2.5), nitric x-oxide (NOx), sulphur dioxide (SO2),

benzene, toluene, carbon monoxide (CO), xylene, ammonia (NH3), and nitrogen

dioxide (NO2).

Various formals like mean squared error, R2 score, mean absolute error, and

root mean squared error are utilized to validate or test the designed models. As
iii



classification models, we perform the support vector machine and random forest

algorithms, which are measured using the accuracy score and confusion matrix.

Execution times and accuracy of the developed models are computed and

contrasted with the times for the cloud-based versions of these models. The results

reveal that lasso regression outperforms linear regression among the regression

algorithms. Also, out of the classification models, the random forest algorithm

performs better than the support vector machine approach.

In conclusion, our findings demonstrate that run-time is minimized when models

are executed on a cloud platform compared to a desktop machine. Moreover, the

accuracy of our models is maintained with reduced execution time.
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1 INTRODUCTION

1.1 Overview

Smart cities have several definitions and cannot be wrapped into a single phrase.

In simpler terms, a ”smart city” represents a more efficient and environmentally

friendly urban area. The principal purpose of this approach is to enable sustainable

life for the masses through digital interconnections [1]. To provide individuals with a

good standard of living, it manages the resources and services of a city using data from

sensors and electrical gadgets. Smart cities use ICT (information and communication

technology) to reduce costs and resource consumption [2]. Artificial intelligence, IoT

(Internet of Things), big data analysis, and machine learning are some techniques

implemented in smart cities. Smart city applications rely on four critical features:

sustainability, comfort, quality of life, urbanization, and intelligence [3]. Cities must

overcome several obstacles during the design and development phases to incorporate

these features. These difficulties include excessive energy use, a lack of adequate

infrastructure, security, privacy concerns resulting from the volume of data used,

pollution, and a lack of funding. Many developments were made in an effort to

address these challenges listed in Figure 1.1 below.

In this study, we will focus on the issue of air pollution in smart cities. Air

pollution refers to the contamination of the air with gases, biological molecules,

and poisonous particles. Natural calamities like volcanic eruptions and man-made

activities, including automobile emissions and industrial by-products, are the
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Figure 1.1: Challenges in Smart City

fundamental causes of air pollution [4]. These causes provoke severe threats in human

bodies, including skin infections, lung cancer, bronchitis, and asthma, and they can

also impact animals, plants, and other species [5]. Air pollutants are gases, chemicals,

and other polluting elements in the atmosphere. These include nitric oxide, sulfur

dioxide, toluene, ozone, nitric x-oxide, particulate matter, ammonia, xylene, nitrogen

dioxide, benzene, and carbon monoxide. The increased demand for industries and

automobiles in urban locations due to the growing population raises the number of

atmospheric pollutants. As a result, one of the primary problems affecting smart

cities is addressing the issue of air pollution. The air quality index (target feature),

calculated based on atmospheric pollutants, can be used to determine air pollution.

Internet of Things (IoT) devices are strategically deployed throughout urban

areas to collect massive amounts of data [6]. Because analyzing and pre-processing

this data takes more time, computing plays a vital role. Cities are already adopting

high-performance computing (HPC) to help them achieve objectives such as resource

2



conservation, social safety, and an overall better quality of life. Distributed

computing, cloud computing, parallel processing, edge computing, and fog computing

are some types of high-performance computing (HPC) [7]. In this work, we employ

cloud machine learning. Machine learning relies heavily on data. Therefore, the more

data we have, our predictions will be more accurate. Also, the cloud provides more

data access. The amount of time it takes from the beginning of the project to get

results from it can be decreased by using the cloud. The data is stored in a data

center managed by the cloud provider. Firstly, the protection of the data center and

any information stored there is the cloud provider’s responsibility. Secondly, most

cloud providers provide enhanced security measures, such as encryption, to secure

the data better.

1.2 Problem Statement

People residing in urban environments face a variety of challenges as a

consequence of increased urbanization. Air pollution is one of those difficulties. Many

factors contribute to air pollution, including environmental disasters like volcanoes

and human behavior like automobile emissions and factory toxic gas releases [8].

Regardless of the cause, the impacts of air pollution are hazardous to all living

organisms. Based on World Health Organization (WHO) research, air contamination

has developed as a leading danger to human health, accounting for one fatality out

of every eight in a year [9]. As a result, one of the significant areas of study in

smart cities is how to handle the challenge of particulate pollution. Air quality

forecasting is a more practical approach to dealing with air pollution. Accordingly,

machine learning plays a crucial role in evaluating air quality predictions [10]. We

are employing classification and regression models in this work.

3



The smart city datasets consist of many rows representing regional data with

lots of columns, including most of the atmospheric contaminants and the air quality

index [11]. The analysis of large datasets and the implementation of pre-processing

strategies are challenging tasks. Identifying the best-performing model involves

applying a variety of algorithms to the collected information, which is a challenging

endeavor. We use a cloud platform to handle this issue because it is better suitable for

dealing with large volumes and high speeds. It provides for the experimentation and

testing of various models. Furthermore, it facilitates experimentation on multiple

data sets to determine what performs best, which is complex with a computer at

home. In this work, we are employing four machine learning models, which are lasso

and linear regression models and random forest and support vector machine models.

A cloud machine learning service termed Amazon SageMaker allows users to

develop, train, and use machine learning techniques. It comes with various machine

learning algorithms built in that programmers can use on their data. Amazon

SageMaker Studio extends the capabilities of JupyterLab with new tools that enhance

machine learning operations by leveraging AWS’s computational capacity. Amazon

SageMaker has high scalability, which means it can easily handle large datasets and

modeling strategies. As a result, it is feasible to analyze vast amounts of data more

efficiently, which can significantly minimize processing time. Amazon SageMaker

provides high-performance computing instances for tasks related to machine learning.

These instances are equipped with powerful CPUs and GPUs, which can considerably

speed the implementation of machine learning models.

4



1.3 Thesis Organisation

The thesis is organised as:

Chapter 2. Background: A summary of the machine leaning algorithms and

how cloud works is explained.

Chapter 3. Related Work: Discussion on the previous papers dealing with this

field of research analysing these papers to improve this work.

Chapter 4. Data and Experimental Setup: Data collection, pre-processing

the data, a detailed description of the experimental setup and applying the machine

learning techniques, and deploying it on AWS cloud platform.

Chapter 5. Evaluation Metrics: Evaluating the performance of the machine

learning algorithms used in this work with the help of some metrics.

Chapter 6. Results and Conclusion: Tables and graphs of the results are

presented and conclusion.
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2 BACKGROUND

2.1 Air Pollution in Smart Cities

Air pollution is a severe problem in various cities, especially smart cities. The

difficulty of regulating air pollution still exists in smart cities, despite the use of

technology to effectively manage infrastructure and resources. Smart cities can handle

air pollution in a variety of ways [12]. Using sensors’ data and processing to measure

air quality and detect pollution sources is one approach. By using this information,

appropriate policies and initiatives can be developed to decrease pollution levels.

Air pollution in smart urban centers must be controlled through a combination of

technical solutions, policy initiatives, and public outreach [13]. In this study, we

are focusing on technological solutions that can be utilized to estimate air quality in

smart cities. Because the data is time-based, the model should be constructed with

a shorter processing time. As a result, we are utilizing a cloud platform.

2.1.1 Air Quality Index Calculation

The air pollution index (API) is another name for the air quality index (AQI) in

several nations [14]. The number of pollutants varies according to the area or location

for which the air quality index is computed. Some common pollutants include nitric

oxide, nitric x-oxide, particulate matter, ammonia, ozone, benzene, nitrogen dioxide,

toluene, sulfur dioxide, xylene, and carbon monoxide found in the atmosphere [15].

With the concentration of the pollutants, the air quality index is computed with use

6



of the below formula 2.1 [16].

I =
Ihigh − Ilow
Chigh − Clow

(C − Ilow) + Ilow (2.1)

Where,

I = Air Quality Index

C = Concentration of Pollutant

Clow = the concentration break-point < C

Chigh = the concentration break-point > = C

Ilow = the index break-point corresponding to Clow

Ihigh = the index break-point corresponding to Chigh

The one with the highest AQI value among all pollutants is considered the final

AQI. This computed value becomes the target feature for our regression model. There

is no specific upper limit for the AQI; however, it may be categorized, and this

classification varies depending on the country. The AQI category for India is shown

in Table 2.1, which also includes an AQI range column [17]. The AQI range is the

target variable of the classification model, represented in our datasets by the AQI

bucket.
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Table 2.1: AQI Range in India.

AQI Range PM10 PM2.5 NO2 O3 CO SO2 NH3 Color

Good(0-50) 0-50 0-30 0-40 0-50 0-1.0 0-40 0-200 deep
green 

Satisfactory(51
100) 51-100 31-60 41-80 51-100 1.1-2.0 41-80 201-400 light

green
Moderate(101-

200) 101-250 61-90 81-180 101-168 2.1-10 81-380 401-800 yellow

Poor(201-300) 251-350 91-120 181-280 169-208 10-17 381-800 801-1200 orange

Severe(301-
400) 351-430 121-250 281-400 209-748 17-34 801-1600 1200-

1800 red

Hazardous(401
500) 430+ 250+ 400+ 748+ 34+ 1600+ 1800+ maroon

2.2 Machine Learning

In machine learning, strategies are utilized for training machines to discover

patterns and relationships in datasets. Machines produce predictions based on these

patterns [18]. We have both supervised and unsupervised machine learning models.

If there are no labels for the data, unsupervised machine learning is applied, which

can process raw data. For labeled data, supervised models are preferable [19]. We

have two significant subcategories of supervised machine learning: classification and

regression. Regression yields a continuous numerical value, whereas classification

produces an output with defined labels, a value belonging to a predefined group.

Figure 2.1 depicts a general machine learning model. The model explains how

general machine learning models work. We can see the steps required to make

predictions from the input data. Also, different algorithms are listed in the figure,

along with the evaluation metrics needed for testing these models. Additionally, the

8



Figure 2.1: Machine Learning model

optimal splitting of the dataframe into testing and training sets is given in the diagram

[20]. We use all these steps to make predictions in our work which are explained in

detail in the below chapters.

2.2.1 Regression

The procedure of identifying a relationship between a specific dependent

parameter and numerous independent parameters is referred to as ”regression.” In

plainer terms, it implies fitting a function from a specified group of tasks to the

collected input data under some error function [21]. Regression is a technique that is

generally utilized in the areas of finance and economics. Some of the best applications

9



of this technique include estimating housing costs, stock market prices, and an

employee’s salary. The most prevalent regression techniques include linear regression,

support vector regressor, decision trees regressor, lasso regression, and random forest.

Regression would be suitable for this work because the target variable (Air Quality

Index) is a continuous numeric value [22]. We are implementing lasso regression and

linear regression techniques.

Lasso Regression

LASSO is an acronym for Least Absolute Selection Shrinkage Operator. In

general, shrinkage is described as a limitation on features or variables. This algorithm

functions by identifying and implementing a constraint on the model parameters that

causes the regression coefficients for certain features to shrink until they are equal

to zero. The model does not include characteristics such as a regression coefficient

of zero. Due to this reason, lasso regression modeling is essentially a shrinkage and

feature-choosing approach, and it aids in identifying the essential predictors. While it

prevents over-fitting, it will only choose one attribute from a collection of correlated

features, and the selected attribute may be strongly biased.

Linear Regression

This regression algorithm belongs to supervised machine learning that predicts a

dependent variable using various independent variables [23]. It is less complicated

to implement than other regression methods. For the purpose of predicting air

quality, the air quality index (AQI) is the dependent attribute, and the independent

characteristics are the sub-indices of the pollutants nitric oxide, particulate matter,

ammonia, nitrogen dioxide, toluene, ozone, xylene, sulfur dioxide, nitric x-oxide,

10



benzene, and carbon monoxide. As illustrated in figure 2.2, this regression model

provides a relationship between the dependent parameter termed as y and various

independent parameters termed as series of x and this relationship is linear.

X

Y

Data Points

Regression
Line

D
ep

en
de

nt
  V

ar
ia

bl
e

Independent Variable

Figure 2.2: Linear Regression

2.2.2 Classification

The classification strategy is a supervised machine learning strategy employed

to recognize the class of new findings based on training data. When classifying data,

a software program first learns from the original datasets or observations before

categorizing new results into a range of clusters or categories, such as zero or one

and yes or no [24]. Categories are sometimes known as labels, targets, or groups. In

contrast to regression, the target parameter of classification is the name of a category

rather than a value. The classification algorithm uses labeled input data; this implies

that it includes input with appropriate output because it is a supervised learning

process. The best applications of classification algorithms are diabetes detection,

11



email spam detection, emotion prediction, and cat breed detection [25].

The classification algorithm’s primary objective is to identify the class of the

original data, and these techniques are primarily utilized to predict the outcome for

categorical variables. With the help of Figure 2.3 below, classification techniques

can be clearly explained. There are two groups in the diagram: Group A and

Group B. These groups have attributes related to one another but not other groups.

Classification can be further divided into two: binary and multi-class [26]. When it

comes to multi-class classification, the algorithm predicts more than one category as

opposed to binary classification, where it just predicts yes or no, 0 or 1. In this study,

we are utilizing a support vector machine and random forest algorithms.

Class A

Class B

X

Y

Figure 2.3: Classification Model
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Support vector machine

The fundamental objective of this technique is to discover a hyperplane with n

dimensions (where n denotes the total range of parameters) which distinctly labels the

data items. Numerous feasible planes could be utilized to segregate the two groups

of data items. The plane which has the highest margin that is, the longest distance

needed in both the classes to separate the points, is what we are aiming for. In order

to enhance the classification accuracy of upcoming data points, the margin distance

should be maximized. For classifying the data points, hyperplanes serve as decision

boundaries.

Data points on both ends of the plane can be assigned to distinct categories. In

addition, the size of the hyperplane is determined by the count of features. When the

count of input parameters is two, the hyperplane becomes just a line. When the count

of input parameters is increased to three, the hyperplane changes into a plane with

two dimensions. When there are more than three features, it is not easy to imagine

a hyperplane. Data points that are not far away from the hyperplane or which are

close to the plane are called support vectors. These support vectors impact both the

orientation and the position of the plane, and by using these support vectors, the

classifier’s margin is increased. When the support vectors are deleted, the plane will

change its orientation.

Random Forest

An ensemble of different smaller decision trees that work collaboratively to

complete tasks is referred to as a ”random forest.” This Algorithm can deal with

the input data comprising either continuous variables, with respect to regression,

or categorical variables, concerning classification; this is considered one of its
13



most significant features [27]. Classification problems produce valuable outcomes.

Understanding the ensemble technique is essential before attempting to learn how

the random forest algorithm functions. Ensemble refers to the combination of various

models. In Ensemble, we have bagging and boosting. As shown in Figure 2.4, random

forest works on the bagging principle. In this principle, different subsets are generated

from the original training set as the replacement, and the final output is decided by

voting [28]. As a result, rather than a single model, a set of models is employed to

generate predictions.

Figure 2.4: Bagging Principle

Every individual tree in the random forest provides a category prediction. The

category with the highest votes becomes the actual prediction of the model. The

crucial factor is the low correlation of the models. Uncorrelated models have the

ability to provide ensemble predictions that are more precise when compared to any

of the particular predictions, similar to the assets with weak correlations merging

to form a collection where this collection is greater than the sum of its parts. The

trees protect each other from their different individual errors, which results in this

impressive effect.
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2.3 Cloud Computing

The concept of offering widespread, accessible, on-demand system access to a

distributed pool of customizable computing services is known as ”cloud computing.”

It allows for rapid deployment and release of these resources with much less

organizational operations or service operator involvement [29]. A transition in the

computing framework occurs when the responsibility of computing is transferred from

personal desktop computers, single server applications, or personal data centers to a

cloud of computers. The fundamental mechanisms of how computing is performed in

the cloud are concealed, so clients are concerned only about the computing function

being requested. Cloud computing can be described in figure 2.5, which includes the

computing services delivered by the cloud.

CLOUD

Server

Database

Software Analytics

Storage

Figure 2.5: Cloud Computing Services

The majority of cloud-based computing services can be grouped into four major

classes: serverless, Iaas (infrastructure as a service), SaaS (software as a service), and

PaaS (platform as a service). They are frequently addressed as the ”cloud computing
15



stack” since they are stacked on each other. It is simpler to achieve the goals of the

business when one is aware of what these categories are and how they differ from each

other.

2.3.1 Infrastructure as a Service

Infrastructure as a Service (IAAS) offers a computing platform as a service upon

request. In an entirely outsourced, on-demand framework, the user buys software data

storage, network infrastructure, or servers and rents those resources. These resources

are supplied as a service, and flexible scalability is enabled. Multiple users are usually

handled on an individual hardware platform. Choosing resources efficiently and

in accordance with needs is entirely up to the consumer. It also facilitates billing

management.

2.3.2 Software as a Service

Software as a Service (SAAS) is a type of software delivered like a hosting service

and obtained across Output Rephrased or Re-written Text on the internet. It also

refers to a method of software delivery in which software and its relevant information

are hosted securely and retrieved by their user, generally a web browser, through

the internet. The development and implementation of present applications leverage

SAAS services. A reliable internet connection and a browser permit access to software

and its functionalities from any location. Users from diverse backgrounds can also

access an application through the internet because it is centrally hosted.

2.3.3 Platform as a Service

Platform as a Service (PAAS) is a cloud deployment platform for projects that

consist of resources controlled by a third party. It offers elastic scaling for the
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application, allowing programmers to develop programs and services through the

internet, with deployment methods including private, public, and hybrid. Simply

put, it refers to a platform where a third-party enterprise offers cloud computing

access to hardware and software tools. Developers use the software and hardware

tools that are offered. An alternative name for PAAS is ”application PAAS.” With

its support, we can manage and handle helpful applications and services. It is less

expensive than IAAS and includes a robust management platform.
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3 RELATED WORK

Some previous papers related to air pollution prediction in smart cities are

summarized in this section. Other papers that are related to distributed and parallel

computing using machine learning models are also outlined.

3.1 Machine Learning based Smart City Applications

In the majority of earlier studies, machine learning was used to predict the

air pollution in smart cities. Regression and deep learning models are the most

commonly utilized machine learning techniques, while some studies also employ the

support vector machine approach because these models perform better than the other

machine learning methods [30]. The previous section contains a full overview of

regression models and the support vector machine technique. Algorithms for artificial

intelligence (AI) and machine learning (ML) have grown more significant in a variety

of industries [31].

A city’s operations can be improved with the utilization of artificial

intelligence and machine learning combined with IOT [32]. In order to improve living

standards, the main emphasis is on enhancing the urban infrastructure. It emphasizes

the significance of machine learning in fields such as supply chain management,

healthcare, smart grids, and cyber security in the context of smart cities, as illustrated

in Figure 3.1 [33]. This research highlights the relevance of machine learning (ML) in

various essential enabling technologies, such as logistics management, smart metering,

medical care, and intelligent transportation. In addition, this paper evaluates different
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data intrusions for smart cities and outlines the primary elements impacting the

development of smart city ideas.

Smart Grids Cyber Security

Health care Supply chain
Management

Figure 3.1: Machine learning based solutions for Smart City

A broader class of machine learning strategies based on representation learning

and artificial neural networks is called deep learning [34]. To gradually extract highly

complex features from the raw input data, deep learning integrates different layers.

In deep learning, every level gains the capability to convert its input data into a

composite form that is a little more abstract [35]. The process of learning can

determine its own way to ideally place the features at different levels. For many years,

DL has made essential advancements in the artificial intelligence field by utilizing

machine learning techniques to address major issues [36]. Artificial neural networks

(ANNs) are neural systems that are used in machine learning. ANNs are composed of

neurons that are triggered by connections that are weighted based on prior activation

[37]. In order to process data and signals more appropriately, DL makes use of the

Deep Neural Network (DNN) architecture. It determines weighted layers from the

input layer to the last layer by using hidden layers placed between both the input
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and output layers.

3.1.1 Regression models

One of the best known machine learning techniques for predicting air pollution

is regression. This is because the variable to be predicted is a continuous value. In

a study by Saba Ameer et al., they compare four distinct sophisticated regression

techniques (Gradient Boosting, Random Forest, Decision Tree, and Ann Multi-Layer

perceptron) to examine which technique is most accurate at estimating air quality

given the amount of information and the time required for processing the data

[38]. For anticipating pollution levels, a four-layer architecture comprising data

collection, transmission, data administration, and application has been proposed.

When variation is taken into account, the mean absolute error (MAE) obtained by

random forest regression for Beijing is considerably higher than that obtained by

decision tree regression or gradient boosting regression. The model’s conclusions

suggest that random forest regression is the most accurate approach for predicting

pollution levels for datasets that differ in size, location, and other properties.

The computation time was remarkably lower than that of both gradient boosting

techniques and multi-layer feedforward neural networks, according to the results.

However, this study is limited to regression techniques, although other machine

learning algorithms also perform better at predicting air quality. The research in

[39] addresses the before mentioned limitation by comparing multi-layer convolution

and random forest methods on a Malaysian air pollution dataset. The findings suggest

that Random Forest outperformed MLP in forecasting the PM2.5 air pollution index

in Malaysia’s smart city. Yet, the efficiency of MLP increases in tandem with the

amount of neurons in its units that are hidden, but the performance of Random

Forest diminishes as more decision trees are added.
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Another study presented in [40] demonstrates how support vector regression

(SVR) enables precise forecasts of hourly pollution concentrations in California using

a radial basis function (RBF) kernel. Researchers were able to predict pollution levels

such as O3, CO, and SO2, and also the hourly AQI values for California, with decent

accuracy. Though the results achieved are satisfactory, this paper lacks a concise

explanation of the methodology. The authors hope to advance their work in the

future by optimizing the SVR parameters. Since the choice of the penalty parameter

C and kernel function have a significant impact on the SVR model’s performance, it

would be intriguing to explore other approaches for parameter optimization, such as

particle swarm optimization or genetic algorithms.

3.1.2 Classification Model

There has been very little research done to predict air quality in smart cities

using classification methods. Support vector machines are a common technique used

in studies that use classification models. In their research [41], the authors forecast

the air quality index using neural networks and support vector machines. For different

decision functions, different kernel functions may be utilized, and by combining

multiple kernel functions, more complicated types of planes can be generated. Two

vectors can be applied using the kernel function, and a transformation can be used

to map each point into a high-dimensional space. Six different kernel functions

were used in the SVM algorithm in this research to achieve the highest accuracy.

Results demonstrated that in the case where the ”medium Gaussian SVM” function

is employed, the greatest accuracy of 97.3 percent is achieved. In the future, the

authors aim to increase the level of accuracy by using the data mining algorithms. In

our work, we are using more classification models as a result of the small contributions
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made in this sector.

3.2 Deep Learning Approaches

The authors of paper [42] propose an Internet of Things (IoT)-based air quality

prediction and evaluating system that measures pollution using a machine learning

method known as a recurrent neural network (RNN). Online monitoring is

continuously performed on the components necessary to predict pollution levels using

a recurrent neural network. All sensor readings are uploaded to a cloud server. A

DHT11 sensor is used in this investigation to collect continuous digital temperature

and humidity data. The system collects this information utilizing air detectors, which

is then transmitted to a microcontroller. The microcontroller uploads the data to a

web service after it has been gathered.

The Long Short-Term Memory (LSTM) method is unstable to make estimations.

It enables rapid convergence while reducing training times with high precision [43].

RNNs, however, commonly experience disappearing and shattering variations, that

causes the training model to steady down or terminate all at once. In processing the

time, standard LSTM and RNN frequently overlook the future information, whereas

Bi-LSTM has the ability to make the best of future information.

The authors created a heuristic method based on convolutional neural network

(CNN) and LSTM in [44] and used it to anticipate PM2.5 levels in Beijing’s urban

area. Consequently, they choose to employ the CNN, CNN-LSTM, GRU, LSTM, and

Bi-LSTM to predict the PM2.5 concentrations. The key conclusions of this research

are based on effectiveness and comparison of results: the model effectively identifies

the spatial and temporal features of the information by employing CNN and LSTM,

which have high precision and stability. A related study is documented in the paper

[45], however it is confined to one technique, whereas the article discussed above
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compares several techniques. When compared to other existing learning

methodologies, the LSTMmodel (APNet) offers the highest predicting efficiency. This

technology may help improve air pollution estimation in smart cities. The presence

of urban trees has the dual effect of reducing the amount of time contaminants in the

air must accumulate and completely removing them.

Air quality in Delhi is forecasted utilizing machine learning approaches which

is provided in the research conducted in [41]. The authors employ neural networks

and support vector machine approaches in this project. Depending on the training

database, the neural network in this study classifies samples as severe, very poor, poor,

satisfactory, or good levels of air pollution. There are six input features, six target

features that need to be predicted, and eight neurons in the hidden layer because

findings show that this number produces the minimum possible error. According to

the results, both SVMs and neural networks are effective at accurately predicting the

air quality index, with the former having an efficiency of 91.62 percent and the latter

of 97.3 percent.

In the paper [46], a deep learning model is provided to deal with problem of air

pollution in South Carolina. According to the results of the experiments, the authors

initially configured the system with the appropriate hyper parameters. Following that,

the proposed algorithm is trained and tested using the popular mean absolute error

and root mean square error metrics. Overall outputs suggest that regardless of the

basic network structure, an LSTM-based forecasting model can enhance prediction

performance by memorizing large amounts of historical data. Authors aim to work

on more complex models that employ a variety of deep learning techniques in order

to better analyze data from IoT devices in the long run.
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3.3 Cloud Enabled AI Approaches

The research [47] described a cloud-enabled technique of measuring emissions

related to vehicular flow, and the outputs were analysed by adding up the emissions

from each individual car. The fluctuations in the emission lines are identified by

analysing the recurring data obtained by the sensor units strategically placed

throughout the area, as well as the raw CCTV footage of the site. The pollution

problem in the city of Manipal, Karnataka, has been taken into account in this

proposed work. The data from the Transportation Department has been uploaded

to the cloud. The authors aim to reduce the noxiousness of the air in each area by

diverting traffic to less congested routes. The proposed effort might be utilized as

well to examine the contaminants in the air in residential areas, public spaces, and

commercial buildings.

The goal of the study published in [48] is to build an intelligent predictor of

airborne pollutant levels for the following two days using deep learning techniques such

as a recurrent neural network (RNN). A particle swarm optimization (PSO) technique

is then used to determine the ideal structure for its operation. The smart air quality

prediction model (SAQPM) is a new predictor based on intelligent computation

that relies on unsupervised learning, that is, long short-term memory (LSTM), and

optimization, that is, particle swarm optimization. In Shaun Connolly’s research,

he employed big data technology to analyse data obtained through transactions,

interactions, and observations in order to discover patterns and draw conclusions.
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4 DATA AND EXPERIMENTAL SETUP

The experiments are carried out on a personal laptop as well as on the Amazon

cloud platform. To conduct the experiments using the Amazon Cloud Platform, we

are utilizing the Amazon SageMaker service. We are building two models, one for

regression and another for classification. Figure 4.1 shows the flowchart for both

models. We follow similar steps as depicted in our work’s general machine learning

model in Figure 2.1.

Data collection

Cleaning and pre-
processing data

SMOTE

Splitting data

Testing setTraining set

Predicting air qualityRegression techniques

Classification Techniques

Figure 4.1: General Model Flow Diagram
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4.1 Data Collection

The datasets we utilized for this research were obtained from Kaggle, which

contains air quality data from India. We are using three separate datasets from India,

each for a different period: 2015–2019, 2020, and 2021–2022. We are dividing the

datasets due to the fact that the year 2020 was locked down, and the pollutant levels

were deficient at that time, which are considered outliers and affect the predictions.

As a result, using three different datasets from 2015 to 2022 would yield better

predictions. The datasets consist of atmospheric pollutants data and the Air Quality

Index (AQI) at hourly and day-to-day levels for different positions across several

municipalities in India.

The data is made public by the Central Pollution Control Board, the official

website of the Government of India. The cities included in the datasets are

Hyderabad, Jorapokhar, Delhi, Amaravati, Bengaluru, Jaipur, Amritsar, Guwahati,

Ahmedabad, Chennai, Aizawl, Gurugram, Bhopal, Talcher, Thiruvananthapuram,

Brajrajnagar, Kolkata, Chandigarh, Shillong, Coimbatore, Mumbai, Ernakulam,

Kochi, Patna, Lucknow, and Visakhapatnam. Table 4.1 lists the key features

considered in the model, along with their descriptions.
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Table 4.1: Features of the datasets with description.

FEATURES DESCRIPTION

AQI Air quality index

AQI bucket Air quality index bucket

PM2.5 Particulate matter 2.5-micrometer in ug / m3

PM10 Particulate matter 10-micrometer in ug / m3

NO Nitric oxide in ug / m3

Benzene Benzene in ug / m3

CO Carbon monoxide in mg / m3

Toluene Toluene in ug / m3

NOx Nitric x-oxide in ppb

Xylene Xylene in ug / m3

SO2 Sulphur dioxide in ug / m3

O3 Ozone in ug / m3

NH3 Ammonia in ug / m3

NO2 Nitric dioxide in ug / m3

City Cities of India

4.2 Data Pre-processing

For cleaning the unprocessed data, several techniques are available known as

pre-processing approaches. We use exploratory data analysis (EDA) to clean the raw

data and prepare it for training. The datasets contain values of the integer, float, and

object types. The data has null or missing values, denoted as NaN, in the datasets.

This data cannot be processed because the system generates an error as invalid input.

These empty spaces are handled by filling these null spaces with the mean of the entire

feature. After managing the invalid data, box plots are used to find anomalies. An

outlier is a data point that differs from the entire set of other data points in a feature
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by a large margin. A few outliers in these datasets can be identified and treated using

the interquartile range.

• The 25th percentile is represented by Q1.

• The 50th percentile is represented by Q2.

• The 75th percentile is represented by Q3.

The datasets are divided into four equal portions by the three quartiles (Q1, Q2,

and Q3). The interquartile range (IQR) is the difference between Q3 and Q1. The

lower bound is 1.5 times the IQR subtracted from Q1, whereas the upper bound is

1.5 times the IQR added to Q3. Outliers are values that are outside of this threshold.

Instead of dropping these values, we replace them with the lower and higher bound

values in our work.

4.3 Feature Selection

This selection strategy is a critical procedure in which features from the dataset

strongly correlated to the target feature are selected. The correlation values generated

by the correlation matrix are used in this process. The closer the values are to ”1”,

the stronger the relationship between them. In Figure 4.2, a heat map depicts the

correlation values for the features selected in our research. We can observe that the

target variable has a positive value for all the components used in this work because

these attributes are air contaminants utilized to compute the air quality index (the

target variable).
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Figure 4.2: Correlation Matrix

4.4 Splitting Data

The train test split() is a function that divides the dataset into testing and

training data in a 80:20 proportion. This ratio is usually regarded as the best ratio for

partitioning the datasets, but it can be altered depending on the number of records

in the dataframe. The training set is operated to create the model, and the testing

set is employed to estimate the model’s accuarcy. After partitioning the datasets into

training and testing, we take the X and y sets, where y is the Air Quality Index (AQI)

in the regression case. In the case of classification, the AQI bucket is created based

on AQI values as shown in Table 2.1. This y is the target or the dependent variable,

and X consists of all the pollutants known as the independent variables.
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4.5 Balancing the Data

The values of the target variable (AQI Range) in the datasets are not uniform

or balanced. This unbalanced dataset decreases the performance of the model and

affects its accuracy. Using the bar plots, we have depicted the imbalanced nature as

shown in Figure 4.3.

Figure 4.3: Barplot for AQI Range

To balance the target variable, we are using SMOTE approach. Synthetic

Minority Over-sampling Method (SMOTE) is a commonly used data augmentation

strategy that is employed to balance class distributions in unbalanced records for a

classification algorithm. These unbalanced records have considerably more values in

one class than others, resulting in inaccurate model predictions favoring the majority

class. SMOTE creates new data examples among current minority class examples to
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generate synthetic instances of the minority category. SMOTE aims to normalize the

category labels in the dataset by creating synthetic illustrations, which decreases the

probability of a model preferring the majority class.

4.6 Machine Learning Techniques

Machine learning algorithms are applied upon the completion of the pre-

processing of the dataset. This study uses regression models (linear regression and

lasso regression) and classification models (random forest and support vector

machine). The features are further divided into X and y after the data has been

split into testing and training sets. In total, we now have four data frames: X test,

X train, y test, and y train.

4.6.1 Regression models

In regression, a collection of data with X and y variables is provided. These

variables are used to train a function such that, in the future, this trained function

can be utilized in predicting y from an unknown X. When we need to estimate the

value of y in regression, we need a function that indicates y, provided that X and y

are continuous. This function can be linear or polynomial, and the data points are fit

to a line of regression using this function as shown in Figure 4.4. In this figure, the

red points are the values of the data set, and the blue line is the line of regression. We

chose linear regression and lasso regression from the existing regression models. This

selection is sole because lasso regression prevents over-fitting and linear regression

is simple to implement. We compare these two regression models using evaluation

methodologies to see which performs better in forecasting air quality in Indian smart

cities.
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Figure 4.4: Linear and Polynomial Regression

In this method, the air pollutants present in the datasets make up X test

and X train, while the air quality index makes up y test and y train. We use the

training sets, y train and X train, to apply the linear regression and lasso regression

techniques. X test is utilized for estimating the AQI in Indian smart cities. The

estimated predictions are compared with the y test dataframe (actual values) for

determining the results’ correctness.

Linear Regression

Linear regression is used to estimate a dependent feature (y) based on a set of

independent features (X). Thus, the term ”linear regression” was proposed. The line

that fits the model the best is the regression line.

Hypothesis function:

y = θ1 + θ2X (4.1)
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Where,

θ1 = intercept.

θ2 = coefficient of X.

Cost Function:

J =
1

n

n∑
i=1

(
y(i) − h(x(i))

)2
(4.2)

Where,

n = complete number of training samples in the dataset.

h(x(i)) = hypothetical function for prediction.

y(i) = value of target variable.

By determining the best θ1 and θ2 values, the model obtains the best regression

fit line. The model is focused on predicting the y value with the best-fit regression

line so that the error dissimilarity between the forecasted and actual values is as low

as possible. So, it is necessary to update the θ1 and θ2 values in order to discover the

value that decreases the difference between the anticipated y value and the actual y

value. The model uses gradient descent to adjust θ1 and θ2 to lower the cost function

and get the line that fits the best. The concept is to iteratively modify the values

until they are close to the minimum cost, starting with random values for θ1 and θ2
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Lasso Regression

Lasso regression is another linear model obtained from linear regression that

employs the same hypothetical function for prediction. The linear regression model

treats all parameters as equally crucial for prediction. When the dataset contains

many features, even when some are irrelevant to the predictive model, this complicates

the model and results in an inaccurate prediction on the test set (or over-fitting). A

high-variance model of this kind cannot be generalized to the new data [49]. For

solving this problem, Lasso regression is used, which includes an L1 penalty in the

linear regression cost function.

J =
1

n

n∑
i=1

(
y(i) − h(x(i))

)2
+ λ

m∑
j=1

wj (4.3)

Where,

wj = weight of jth feature.

λ = regularisation strength.

m = number of features in dataset.

The additional l1 penalty during gradient descent optimization shrunk weights

to nearly zero or zero. The features in the hypothetical function are eliminated when

the weights are shrunk to zero. As a result, irrelevant features are excluded from the

prediction model. The penalization of weights simplifies the hypothesis, which favors

sparsity. The intercept remains unaffected when it is added. Bias increases with

increasing lambda, whereas variance increases with decreasing lambda. A feature

of the model is eliminated as lambda increases because more and more weights are

reduced to zero.
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4.6.2 Classification Models

Classification often describes any task in which a specified type of categorical

label is to be estimated from a given field of input data. We are using the AQI bucket

as the target variable for classification because it predicts categorical values rather

than continuous values, as does regression. Because the AQI bucket contains more

than two classes, we employ multi-class classification. These classification problems

do not have a predetermined number of labels and may include any number of labels.

The multi-class classification is depicted in Figure 4.5.

Class C

Class BClass A

Y

X

Figure 4.5: Multi-class Classification

In this method, the air pollutants that are present in the dataset make up X test

and X train, while the AQI bucket makes up y test and y train. We use the training

sets, X train and y train, to apply the support vector machine and random forest

approaches. X test is utilized to estimate the air quality index in Indian smart cities.

The anticipated values are compared to the y test values (actual values) to determine

the results’ exactness.
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Support Vector Machine

The fundamental objective of this technique is to discover a hyperplane with n

dimensions (where n denotes the total range of parameters) which distinctly labels the

data items. Numerous feasible planes could be utilized to segregate the two groups

of data items. The optimal hyperplane is the one with the most significant distance

or margin between all the classes, which is shown in Figure 4.6.

L1
L2

L3

Figure 4.6: Support Vector Machine

Random Forest

The random forest strategy is a bagging method extension that employs both

bagging and attribute randomness to develop an uncorrelated forest of decision trees.

Steps involved in the random forest algorithm are shown in Figure 4.7. Random

forests select only a subset of the available feature splits, whereas decision trees involve

all. As the model grows the trees, a random forest adds more randomness. When
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splitting a node, instead of looking for the essential parameter, it seeks out the best

feature among the random selection of attributes. As a result, there is a greater

variety, which leads to a better model. The procedure for dividing a node in a

random forest only assumes a random subset of the parameters.

Step 1

Step 2 Step 3

Step 4

Choosing n random
records and m features

from k number of
records

For each sample,
individual decision trees

are generated 

An output is obtained
from each decision

tree.

One final output is
selected from all based
on Majority voting or

Averaging

Figure 4.7: Steps in Random Forest Algorithm

4.7 Cloud Computing

The on-demand, pay-as-you-go delivery of IT resources through the Internet

is known as cloud computing. Instead of purchasing, owning, and operating

conventional data centers and servers, we can use a cloud platform like Amazon Web

Services (AWS) to access technology services such as computing power, memory,

and databases on an on-demand basis. Companies of all sizes and industries utilize

the cloud for a wide range of use cases, including data backup, disaster recovery,

email, virtual desktops, software development and testing, big data analytics, and

customer-facing web apps.

4.7.1 AWS Cloud Platform

Amazon has a big market share among cloud computing service providers because

of its low-cost structure and flexible toolsets. It offers services ranging from
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infrastructure technologies like computation, storage, and databases to emerging

technologies like artificial intelligence, machine learning, and the Internet of Things.

It has been designed as a flexible and safe cloud computing environment. The

central infrastructure has been constructed to meet the security standards of the

military, significant banks, and other susceptible organizations. We use the Amazon

SageMaker Service to deploy our machine-learning models from all the provided

services. Individuals without much knowledge of machine learning can also use this

service to execute their models, which is a significant advantage.

4.7.2 Amazon SageMaker

Amazon SageMaker is a cloud machine-learning platform that allows developers

to build, train, and deploy machine-learning models in the cloud. SageMaker delivers

pre-trained machine learning algorithms that may be deployed as-is at the highest

degree of abstraction [50]. Furthermore, SageMaker includes a number of built-in

machine learning techniques that programmers can use on their data. Moreover,

SageMaker offers managed instances of Tensor Flow and Apache MXNet so that

programmers can build custom machine learning algorithms from scratch. We don’t

need to manage servers because it includes an integrated Jupyter Notebook instance

for quick access to the datasets for analysis and exploration. It also contains standard

machine learning methods that have been designed to perform efficiently on massive

datasets in a distributed context.

Amazon SageMaker Studio is a machine learning integrated development

environment (IDE) that allows you to construct, train, debug, deploy, and monitor

machine learning models [51]. SageMaker Studio has everything users need to

move their models from data pre-processing to experimenting to deployment

while increasing productivity. Amazon SageMaker Studio expands JupyterLab’s
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capabilities with custom resources that can enhance the machine learning operation

by leveraging AWS compute capacity. JupyterLab 1 and JupyterLab 3 are now

supported by Studio, where JupyterLab 3 is the default JupyterLab version in Studio.

4.7.3 Benefits of SageMaker

Fully Managed

Amazon SageMaker handles user needs, so users don’t have to deal with the

technical aspects of operating a machine learning platform [52]. Through its fully

managed services, users can rapidly and effectively incorporate models based on

machine learning into their applications. Everything is handled by Amazon

SageMaker, including the underlying infrastructure, machine learning, and user

interface.

Wide range of algorithms and frameworks

Amazon SageMaker methods and frameworks have the advantage of mapping

real-world use-case challenges to machine learning-based approaches. Each built-in

algorithm addresses a specific type of use case.

Integration with other AWS services

SageMaker can be readily connected with the other AWS services, giving a unified

interface and making it simple to create comprehensive machine learning workflows.
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Notebook instances

Fully managed Jupyter notebooks called Amazon SageMaker Notebook Instances

offer an interactive setting for building and evaluating models based on machine

learning. SageMaker can help organizations save up to 90 percent on machine training

costs. SageMaker Notebook instances are pre-installed with standard data analysis

and machine learning libraries.

Secure and Compliant

SageMaker includes security elements that users can utilize according to their

requirements. SageMaker delivers the security capabilities required to keep sensitive

data and models secure, whether dealing with confidential data or legal standards. To

keep your data and models private, SageMaker includes encryption, role-based access

control, Virtual Private Cloud (VPC) support, network isolation, and audit logging.

Highly Scalable

SageMaker efficiently scales facilities based on workload requirements. When

the workload rises, auto-scaling activates new instances. When the workload drops,

it removes unwanted instances, so users are not required to pay for provided instances

that aren’t being utilized. With 256 GPUs, it is possible to attain 90 percent scaling

efficiency.

4.7.4 SageMaker Architecture

The architecture of Amazon SageMaker includes data gathering and storage, data

pre-processing, training the model, and model deployment for air quality prediction
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using machine learning, as shown in Figure 4.8. This technology’s built-in features

and abilities make it a highly flexible and adaptable platform for creating and

implementing machine learning models.

Notebook
Train

Pre-processing
Machine
Learning

Techniques

Amazon SageMaker

DeployAmazon S3Data

Figure 4.8: SageMaker Architecture

The following aspects would be included in the architecture for predicting air

quality in smart cities using Amazon SageMaker:

• The datasets collected from kaggle which are air quality data from India

from 2015 to 2022 can be stored in Amazon S3 bucket.

• We use the SageMaker’s Jupyter Notebook to build the models.

• To make the collected data suitable for machine learning, pre-processing is

required. For this purpose, it is necessary to clean the data and prepare it

for applying the machine learning techniques.

• After pre-processing the data, we apply our four models on the training set.

• We evaluate these models using the testing set.
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5 EVALUATION METRICS

The concept of developing machine learning or artificial intelligence models is

based on the principle of constructive feedback. We develop a model, get insights

from metrics, improve, and repeat until we obtain the needed accuracy. Evaluation

standards explain the model’s performance. The capability of evaluation metrics to

distinguish between model outputs is an important segment. In this field, we evaluate

machine learning instances using a variety of measures. The evaluation metric chosen

is entirely dependent on the kind of model and the model’s implementation strategy.

When we speak of predictive models, we are referring to either a classification

approach (binary result) or a regression standard (continuous outcome). Each of

these measures uses a different set of evaluation metrics.

5.1 Regression

When estimating a numeric value, such as a length or a sales price, we are

not interested in knowing if the model anticipated the value precisely (this may

be impractical in practice); rather, we would like to determine how closely the

predictions matched the actual data values. Error handles this directly and highlights,

in general, how close forecasts were to their predicted values. There are four evaluation

measures that are commonly used for assessing and presenting the performance of a

regression algorithm as listed below. Though these are the four most frequently

utilized regression metrics, there are many others.
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• Mean Absolute Error

• Mean Squared Error

• Root Mean Squared Error

• R2 Score

5.1.1 Mean Absolute Error (MAE)

Mean absolute error is a simple and direct metric that computes the fundamental

difference between the actual and estimated measures. Now we must determine our

standard’s mean absolute error, a misconception caused by the method and regarded

as an error. Now, we will estimate the difference between the actual and estimated

measures; this would be an absolute mistake, though we must determine the mean

absolute of the whole testing set. Therefore, add each error and split those by the

complete number of instances. Since this is a loss, we must get the lowest mean

fundamental error possible.

MAE =
1

N

∑ ∣∣y − ŷ
∣∣ (5.1)

Where,

y = actual values.

ŷ = predicted values.

N = total data values.

from sklearn.metrics import mean absolute error

mae = mean absolute error(y test,y pred)
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The MAE value you received belongs to the identical type as the result parameter.

It is the most invulnerable to outliers, but the chart of mean absolute error cannot

be distinguishable, so we must utilize different techniques, such as gradient descent,

which is distinguishable.

5.1.2 Mean Square Error

MSE is a prominent error measure for regression challenges. Additionally, it is

a significant loss function for techniques that fit or optimize regression problems

that use the least squares framework. In this context, least squares reduce the

mean square error between estimated and actual values. The average or mean of

the squared differences between a dataset’s calculated and actual numerical values is

used to calculate the MSE. It is a regularly used and extremely simple statistic that

changes the mean absolute error. Calculating the squared difference between the

true and estimated weight is necessary according to the mean squared error. Hence,

we discovered the fundamental difference above and the squared difference here. It

denotes the squared difference between the real and expected measurements. To the

benefit of MSE, we square terms in order to prevent the cancellation of negative

words. The graph of mean square error is distinguishable; hence, it can be utilized

as a loss function.

MSE =
1

n

∑
(y − ŷ)2 (5.2)

Where,

y = actual values.

ŷ = predicted values.

n = total data values.
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from sklearn.metrics import mean squared error

mse = mean squared error(y test , y pred)

The result of calculating the mean square error is a squared measure of output.

If the collected data includes outliers, they are penalized more than the null values,

and the evaluated mean square error is high. To outline, the model is not potent to

outliers that were advantageous in mean absolute error.

5.1.3 Root Mean Squared Error

As the name suggests, it is simply the square root of the mean squared error. It

is simple to comprehend a failure since the outcome we receive falls into the identical

unit as the required outcome feature. In contrast to the mean absolute error, it is

less robust to outliers. Root mean squared error is commonly employed as a testing

measure.

RMSE =
√
MSE (5.3)

RMSE =

√
1

n

∑
(y − ŷ)2 (5.4)

rmse = np.sqrt(mean squared error(y test,y pred))

5.1.4 R2 Score

The R2 value is a measure that indicates the effectiveness of the prototype rather

than the complete loss. As seen above, MSE and MAE are dependent on context,
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while the R2 value is independent of context. Hence, by employing R2, we can

resemble baseline models, something that neither of the other measures enables. In

classification problems, we have what is known as a fixed threshold of 0.5. This

evaluation metric estimates how considerably better the line of regression stands than

a mean line. It is hence correspondingly referred to as the coefficient of determination

or, alternatively, as the goodness of fit.

R2 Score = 1 − SSr

SSm
(5.5)

Where,

SSr = Squared sum error of regression line.

SSm = Squared sum error of mean line.

The R2 score increases as the regression line approaches perfection and the

prototype’s implementation enhances. The common situation exists when the R2

score is between zero and one, like 0.8, implying that the instance can justify 80

percent of the variance in the information.

from sklearn.metrics import r2 score

r2 = r2 score(y test,y pred)

5.2 Classification

The primary measures used to examine a classification model are F1 score,

accuracy, recall, and precision. The percentage of accurate predictions for the testing

data is known as accuracy. It is simple to calculate by splitting the number of

correct forecasts by the entire number of forecasts. The accuracy measure contains

no information on false positives or false negatives. As a result, there is a significant
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loss of data, as some may help evaluate and improve our model.

5.2.1 Confusion Matrix

This matrix measures the effectiveness of a classification model and is just a N

x N matrix (here, N refers to the numeral of labels). For a confusion matrix, every

row signifies a real category, whereas every column signifies an anticipated category.

The confusion matrix() method from the SkLearn library can be used to create this

matrix instantly. A confusion matrix is depicted in Figure 5.1 below.
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Figure 5.1: Confusion Matrix

From the above confusion matrix:

• True positive (TP) denotes that the real and forecasted values are correct.

• False positive (FP) means that the true value must be false whereas the

predicted value is true, indicating an error.
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• True negative (TN) implies that both true and predicted values, are untrue.

• False negative (FN) signifies that the real value must be true, while the predicted

value is false.

5.2.2 Precision

Precision is described as the ratio of the technique’s true positive value and its

overall true positive value. Precision could be simply computed using the SkLearn

library’s precision score() function. Precision will not be enough because a model can

only make one true positive prediction while returning the others as negative. As a

result, the precision would be 1/(1 + 0) = 1. Precision, in combination with another

measure known as ”recall,” is required.

Precision (P ) =
TP

(TP + FP )
(5.6)

5.2.3 Recall

This metric is referred to as the proportion of the digit of true positives to the

complete number of actual positives. The terms ”true positive rate” and ”sensitivity”

are other names for recall. The recall score() procedure in the SkLearn library makes

it simple to compute recall.

Recall (R) =
TP

(TP + FN)
(5.7)
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5.2.4 F1 Score

Another classification measure that combines recall and accuracy is the recall-

precision metric which is known as the f1 score. It is the harmonic average of recall

and precision. The harmonic average is much more vulnerable to low values, so the f1

score will be great only after precision and recall are both high. The SkLearn library’s

f1 score() function makes it simple to compute the f1 score.

F1 Score (R) =
PR

P +R
(5.8)

Where,

P = Precision.

R = Recall.
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6 RESULTS AND CONCLUSION

6.1 Results

We use regression and classification models to forecast air quality in Indian smart

cities. The f1 score, recall, accuracy, and precision are used to assess the SVM and

random forest algorithms. The mean square error, R2 score, mean absolute error,

and root mean square error are used to assess linear regression and Lasso regression

models. We are also calculating the execution time for each model separately. The

process is repeated on the Amazon SageMaker service, and the results are compared

in order to determine which method predicts air quality in smart cities better.

6.1.1 Regression

The outcomes of air quality prediction employing a regression algorithm would be

determined by the model used and the data collected. The regression analysis results

could provide insight into the elements most strongly connected with fluctuations in

air quality. This research could inform decisions on public policy and other actions

that enhance air quality. In general, the outcomes of regression-based air quality

prediction can offer valuable data for monitoring and improving air quality, in addition

to guiding public health decision-making and policy. The results for all three datasets

are provided in the section below. We are presenting the outputs in the form of graphs

and tables.
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Figure 6.1: Actual vs Predicted graph for Air Quality in India(2015-2019) dataset
using linear regression

Figure 6.2: Actual vs Predicted graph for Air Quality in India(2015-2019) dataset
using lasso regression
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The actual vs. predicted graph for the Air Quality in India(2015-2019) dataset

using linear regression is depicted in Figure 6.1, and the same graph for lasso

regression is shown in Figure 6.2. In these scatter plots, the actual values in the

dataset are graphed against the model’s predicted values. These graphs are considered

one of the richest forms of data visualization. The diagonal blue line is the line of

regression, and the yellow and red dots are the data points. The line of regression is

determined from the regression function. This dataset has more data than the other

two datasets. Hence, we can see more points in these two graphs.

Comparing these two figures demonstrates that the data points in the lasso model

are closer to the regression line than the linear model. These illustrations mean the

lasso model has better performance in our work. The R2 value is higher for the lasso

method because the nearer the points are to the diagonal line, the greater is the R2

score.

The actual vs. predicted graph for the Air Quality in India(2020) dataset using

linear regression is depicted in Figure 6.3, and the same graph for lasso regression is

shown in Figure 6.4. We plot the true values that we have in the dataset against the

predictions made by our model. The blue line denotes the regression line, and the

orange and brown dots represent the data points. The regression function determines

the line of regression. The points in these two graphs are fewer when compared to the

above two graphs. The reason for this is the amount of data we have in the dataset.

With the lasso model, the points are located nearer the line of regression than

in the linear model, as seen when we analyze these two graphs. This analysis implies

that the lasso method operates better in our work. The R2 score for the lasso model

is higher since the points are nearer to the regression line.

For all three datasets, the depictions are similar, and the graphs 6.5 and 6.6 depict
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Figure 6.3: Actual vs Predicted graph for Air Quality in India(2020) dataset using
linear regression

Figure 6.4: Actual vs Predicted graph for Air Quality in India(2020) dataset using
lasso regression
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Figure 6.5: Actual vs Predicted graph for Air Quality in India(2021-2022) dataset
using linear regression

Figure 6.6: Actual vs Predicted graph for Air Quality in India(2021-2022) dataset
using lasso regression
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the actual vs predicted charts for Air quality in India(2021-2022) dataset using linear

and lasso regression respectively. Purple and green dots are the data points, and the

blue diagonal line represents the regression line. This dataset has very few values

displayed in the figures above. In the linear model, the points are almost in the form

of a horizontal line. These demonstrations can be because the model is under-fitting.

The results of this dataset are the same as the other two datasets. That is, lasso

regression outshines linear regression.

The evaluation measures used for all three datasets for testing regression models

are listed in three tables. Lasso regression performs better than linear regression

according to the evaluation metrics also. Among all the metrics, we consider the R2

score in most cases. For all our datasets, the R2 scores for lasso models are higher

than for linear models. All the other measure values should be low for a good model,

and in most situations, lasso regression does that; hence it is considered a better

approach for estimating air quality in smart cities.

Table 6.1: Evaluation of Regression models for India(2015-2019) dataset.

Evaluation Metrics MAE MSE RMSE R2 Score

Lasso Regression 0.2218 0.0866 0.2944 80.66

Linear Regression 0.2502 0.1110 0.3332 75.22

The first dataset’s evaluation results, the Indian Air Quality from 2015-2019

dataset, are given in Table 6.1. We are getting an R2 score of around 80 percent

for the lasso model, more significant than the value obtained for linear regression.

All the other measures are higher for the linear model than the lasso model. These

measurements indicate that for this dataset, lasso regression does well than linear

regression.
55



Table 6.2: Evaluation of Regression models for India(2020) dataset.

Evaluation Metrics MAE MSE RMSE R2 Score

Lasso Regression 0.1462 0.0343 0.1854 87.56

Linear Regression 0.1806 0.0522 0.2285 81.09

Above Table 6.2 lists the evaluation metrics for the Air Quality in India(2020)

dataset. In this table, the values have less difference for lasso and linear approaches.

These results are similar to the dataset above.

Table 6.3: Evaluation of Regression models for India(2021-2022) dataset.

Evaluation Metrics MAE MSE RMSE R2 Score

Lasso Regression 0.2730 0.1292 0.3595 74.25

Linear Regression 0.3458 0.1158 0.3403 71.42

The evaluation metrics for the Air quality in India(2021-2022) dataset are given

in Table 6.3. Here, the R2 score for the lasso algorithm is greater than the linear

algorithm, though the values have a minimal difference. But we can see that the

mean square error is more impressive for lasso regression along with the root mean

square error, which differs from the other two datasets. This difference is due to the

amount of data that we have in the dataset.

Lasso regression is a linear regression variant that integrates regularization to

avoid over-fitting and enhance the model’s predictive performance. Employing lasso

regression is particularly beneficial when there are several variables, and a few of them

might not be significant. While predicting air quality, numerous possible variables,
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including all air pollutants, can influence the results. In this case, lasso regression is

preferable to simple linear regression. The reasons for this are:

• The most significant variables can be found using lasso regression, whereas

irrelevant or minor factors can be disregarded. This can result in a more

compact and interpretable model.

• Regularization is used in Lasso regression to reduce over-fitting and enhance

model generalization ability by shrinking the coefficients of less significant

variables towards zero.

• The accuracy of the model can be increased by adding polynomial or interaction

variables in lasso regression to identify non-linear interactions between variables

and outcomes.

Figure 6.7: Comparison of R2 Scores for all Datasets

In Figure 6.7, we use a bar graph to compare the R2 scores obtained by linear

regression and lasso regression techniques for all three datasets. The green bars
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indicate linear model values, and the pink bars indicate lasso model scores. The

graph shows that for all the datasets, the lasso model surpasses the linear approach.

6.1.2 Classification

Classification is a different way to predict air quality than regression analysis.

Classification is the process of categorizing or classifying data based on its

characteristics, whereas regression includes estimating a set of continuous numeric

values. The classification model’s accuracy would be measured using evaluation

measures such as f1 score, recall, accuracy, and precision. Here, the model’s accuracy

is computed as the amount of correct forecasts divided by the complete amount

of estimations. In contrast, other metrics are computed using the values from the

confusion matrix. These measurements indicate how effectively the model can

correctly classify air quality into various categories. However, it is crucial to note that

the classification algorithm’s accuracy relies on the data quality utilized to construct

the model, the features used for classification, and the classification algorithm utilized.

Generally, from all the measures we have, the F1 score is preferable. The results are

listed in the form of a table for each dataset separately. Additionally, a bar graph is

generated, which compares the F1 scores of all datasets.

A confusion matrix gives a prediction summary for a model. It shows the amount

of incorrect and correct predictions for every class separately. The precision, F1 scores,

and recall are measured using the values obtained from the confusion matrix. Figure

6.8 depicts the confusion matrix of the random forest approach. Here, we have six

columns and six rows because the classes we have in our work are six. As we can see

in this diagram, the y label illustrates the true or actual values in the dataset. In

contrast, the x label represents the values the random forest model predicted.

58



Figure 6.8: Confusion Matrix of Random forest model

Figure 6.9: Confusion Matrix of Support vector machine model
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Figure 6.9 shows the confusion matrix of the support vector machine model. In

this, we have six columns and six rows because the classes we have in our work are

six. As depicted in this diagram, the y label represents the true or actual values in

the dataset, whereas the x label represents the values predicted by the random forest

model.

The evaluation results for the first dataset, the Indian Air Quality from 2015-2019

dataset, are given in Table 6.4. The random forest algorithm outperforms the SVM

algorithm, as seen in the table. All four measures used for testing the model give

higher values for the random forest method than for the support vector machine

method. We have more relevant results for this dataset than the other two datasets

because the amount of data here is more, which helps the models understand the

trends in the dataset more and, in turn, helps them generate accurate predictions.

Table 6.4: Evaluation of Classification models for India(2015-2019) dataset.

Evaluation Metrics Accuracy Precision Recall F1 Score

Random Forest 99.8595 99.8604 99.8672 99.8638

Support Vector Machine 95.4262 91.5197 97.2247 93.6382

Table 6.5 lists the results for the Air Quality in India(2020) dataset where

classification models are evaluated using some metrics. The results are similar to the

above dataset, which means the random forest approach has better values than the

support vector machine approach. The difference in the values for both techniques

is noticeable in this dataset. The accuracy and precision values are very high for

the random forest algorithm compared to the recall and F1 scores, but this is not

considered problematic as the difference is inadequate.
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Table 6.5: Evaluation of Classification models for India(2020) dataset.

Evaluation Metrics Accuracy Precision Recall F1 Score

Random Forest 98.8580 99.0174 90.7186 93.4667

Support Vector Machine 91.3539 88.1005 87.5075 85.1661

Evaluation results of the classification models for the Air quality in India

(2021-2022) dataset are given in Table 6.6. The outcomes are similar to the other

two datasets, but the values are lower here because of the data we have. This dataset

has fewer records than the other two datasets; therefore, the models get to learn less.

The accuracy is not calculated using the values obtained from the confusion matrix.

Hence, it is much higher than the support vector model’s recall, precision, and F1

score values.

Table 6.6: Evaluation of Classification models for India(2021-2022) dataset.

Evaluation Metrics Accuracy Precision Recall F1 Score

Random Forest 93.5483 91.4814 94.4421 92.4836

Support Vector Machine 93.5483 72.2214 70.8334 71.5079

The ability of random forests to handle high-dimensional records, like datasets

with numerous attributes, is advantageous for predicting air quality. In contrast,

SVMs may encounter difficulties with high-dimensional data. For predicting air

quality, there can be complicated relationships between the attributes and the target

variables, which a random forest algorithm can handle better than an SVM model.

Compared to SVMs, random forests are less vulnerable to outliers in the dataset,
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which can be helpful when there are sometimes extreme values for specific pollutant

concentrations that might affect the data.

In Figure 6.10, we compare the F1 scores obtained by the random forest and the

SVM algorithms for the three datasets using a bar graph. The green bars indicate

random forest model scores, and the brown bars indicate the values of the SVM

model. Observations reveal that random forest outshines the support vector machine

technique for all the datasets.

Figure 6.10: Comparison of F1 Scores for all Datasets

6.1.3 Cloud Platform

The above-mentioned four regression and classification models are deployed on

the cloud platform. We are using Amazon SageMaker service to deploy the models

on the cloud. The Amazon SageMaker provides a Jupyter Notebook where we can

execute the same Python code. The results reveal that the cloud platform helps reduce

the execution time for all four models, and the time required for data pre-processing

can also be reduced. The execution times using personal computer Jupyter Notebook
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and SageMaker’s Jupyter Notebook are given in Table 6.7.

Table 6.7: Execution Times.

Execution time in secs
Personal
Computer

Amazon
SageMaker

Linear Regression 0.0877 0.0301

Lasso Regression 0.0649 0.0228

Regression with EDA 15.9758 5.6914

Random Forest 2.0584 1.7560

Support Vector Machine 22.3402 17.8313

Classification with EDA 33.6759 21.3631

Amazon SageMaker offers high scalability, which means it can efficiently address

large datasets and modeling techniques. As a result, it is possible to process vast

amounts of data more efficiently, which can drastically decrease the processing time.

For projects related to machine learning, Amazon SageMaker offers high-performance

computing instances. These instances are equipped with powerful CPUs and GPUs,

which can considerably speed the implementation of machine learning models,

resulting in rapid predictions.

Prediction time can be significantly decreased by running inference on large

datasets parallelly using Amazon SageMaker batch transform. This method is

especially beneficial when estimating air quality in smart cities, where a massive

amounts of information must be analysed. Overall, Amazon SageMaker delivers

a number of capabilities and features that can help reduce the execution time for

estimating air quality in smart cities. By utilizing these capabilities, we can produce
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precise air quality predictions quickly and economically.

Figure 6.11: Execution Time in seconds

A graph is plotted for the execution times in seconds of all the models as shown

in Figure 6.11. The x-axis represents the machine learning models, and the y-axis

represents the time in seconds. The blue line portrays the execution on the personal

computer, and the pink defines execution in Amazon SageMaker. We can see that

the execution times are reduced while using a cloud platform which is the key finding

of this work. Air quality data is a time series, meaning the values change hourly.

A reduced runtime will be beneficial for this type of data. It is also challenging to

manage the time series data collected from smart cities because smart cities generate

numerous data that require processing time. Cloud computing plays a significant role

in situations like this, as it shortens the runtime and aids in storing the vast amounts

of data acquired.
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6.2 Discussion

This thesis focuses on implementing machine learning algorithms in the cloud to

reduce the processing time of the process. We are working on predicting air quality

in smart cities to prove the above work. Four models are designed in order to forecast

air quality using Indian smart cities datasets for three different periods: 2015–2019,

2020, and 2021–2022. The predictions are tested using evaluation measures, and the

results are shown in the form of tables and figures. We are comparing the models

according to these evaluation metrics. The core idea behind this work is to implement

these models on a cloud platform. For this, we are using Amazon SageMaker services

to execute all four models and track their runtime. Results reveal that the execution

times for all four models and the pre-processing techniques (EDA) are comparatively

low when using the cloud platform. Air quality data is time series data, which means

that the values change on an hourly basis. Reducing the runtime will be helpful for

this type of data. Smart cities generate a massive amount of data, which requires

time for processing. Therefore, using the cloud can be beneficial for handling the

large amounts of time series data acquired from these smart cities.

6.3 Conclusion

Smart cities aim to improve our lifestyles and solve many problems for different

applications. For example, smart cities have emerged to tackle many critical issues

that can thwart the overwhelming urbanization process, such as traffic jams,

environmental pollution, expensive health care, and increasing energy demand.

The primary goal of this thesis is to design a model that can forecast air quality

in smart cities utilizing cloud computing and machine learning. To determine air

quality, regression, and classification techniques are employed. As regression models,

both linear regression and lasso regression are used. We apply the support vector
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machine and random forest techniques as classification models.

We also compute the execution timings for each of the four models and compare

them to the times for their cloud-deployed versions. The results demonstrate that

lasso regression outshines linear regression among regression techniques, and the

random forest algorithm outperforms the support vector machine approach among

classification models.

Furthermore, these findings show that when models are executed on the Amazon

SageMaker rather than a desktop computer, run-time is reduced. Additionally,

accuracy is maintained while execution time is reduced. Amazon SageMaker offers

a distributed computing architecture that includes many compute instances that

collaborate in a distributed manner, which enables faster processing of large datasets

than personal computers. For example, to improve performance and shorten execution

times, use a cloud-based solution, Amazon SageMaker, that can dynamically scale the

computing resources utilized according to the size of the dataset.

In conclusion, ML could provide an efficient and flexible solution to easily modify

the machine learning framework and match their specific requirements despite having

pre-defined algorithms and built-in tools. Also, instance type selection and the

development of custom training algorithms are easily attainable. We can minimize

execution time and improve quality by adapting distributed cloud-based

infrastructure for a safe and sustainable smart cities environment.
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A Appendix

Python Code for Data Pre-processing

Dataset:

https://www.kaggle.com/datasets/rohanrao/air-quality-data-in-india

https://www.kaggle.com/datasets/cpluzshrijayan/air-quality-

prediction-harbor

import time

start = time.perf_counter()

#import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.impute import SimpleImputer

from sklearn.model_selection import train_test_split

from imblearn.over_sampling import SMOTE

#importing dataset

df = pd.read_csv("India_2015_2020.csv")

print(df)

76



#dividing the dataset

df['Date'] = pd.to_datetime(df['Date'], errors='coerce')

df['Year'] = df['Date'].dt.year

#print(df['Year'])

year = df[ (df['Year']>= 2020) ].index

df.drop(year , inplace=True)

#print(df)

#dropping the unnecessary columns

df = df.drop(columns=['City','Date','Year'])

#null values

df.isna().sum()/df.shape[0]

df = df[df['AQI'].isna()==False]

null_rows = [i for i in df.columns if df[i].isna().sum()/

df.shape[0]<=0.1 and df[i].isna().sum()>0]

impute_columns = [i for i in df.columns if i not in null_rows

and df[i].isna().sum()>0]

def remove_rows(data, column):

return data[data[column].isna()==False]

for i in null_rows:

df = remove_rows(df, i)

imputer = SimpleImputer()

df[impute_columns] = imputer.fit_transform(df[impute_columns])

df.isna().sum()/df.shape[0]
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#correlation matrix

dataset_corr_matrix=df[[i for i in df.columns if i!="AQI_Bucket"]]

plt.figure(figsize=(12,10))

corr_matrix = dataset_corr_matrix.corr()

sns.heatmap(corr_matrix, annot=True, cmap=plt.cm.Reds)

plt.show()

#bar plot for AQI Range

plt.figure(figsize=(10,8))

dataset["AQI_Bucket"].value_counts().plot(kind='bar',color='salmon')

plt.xticks(rotation=30)

plt.savefig("AQI_bucket bar plot")

plt.show()

#splitting the dataset for regression

X_train, X_test, y_train, y_test = train_test_split(

df[[i for i in df.columns if i not in ["AQI","AQI_Bucket"]]],

df["AQI"],

test_size=0.2,

random_state=100

)

#splitting the dataset for classification

y = dataset["AQI_Bucket"]

X = dataset[['PM2.5', 'PM10', 'NO', 'NO2', 'NOx', 'NH3', 'CO', 'SO2',

'O3', 'Benzene', 'Toluene', 'Xylene', 'AQI']]
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X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size = 0.2, random_state = 0

)

#SMOTE technique

samples = SMOTE()

X_train,y_train = samples.fit_resample(X_train,y_train)

print('After SMOTE:',Counter(y_train))
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B Appendix

Python Code for Regression

Linear Regression

#execution time for linear regression

lr_start = time.perf_counter()

from sklearn.linear_model import LinearRegression

model_lr = LinearRegression()

model_lr.fit(X_train, y_train)

from sklearn.metrics import mean_squared_error,

mean_absolute_error, r2_score

#predictions using linear regression

lr_pred = model_lr.predict(X_test)

#evaluation metrics

print('mae: {}'.format( mean_absolute_error((y_test), (lr_pred))))

print('mse: {}'.format(mean_squared_error((y_test), (lr_pred))))

print('rmse: {}'.format(mean_squared_error((y_test), (lr_pred),
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squared=False)))

print('r2: {}'.format(r2_score((y_test), (lr_pred))))

lr_end = time.perf_counter()

print("\nExecution time : {:.4f}".format(lr_end - lr_start), "seconds")

#actual vs predicted values graph

plt.figure(figsize=(8,8))

plt.scatter(y_test, lr_pred, c='yellow')

p1 = max(max(lr_pred), max(y_test))

p2 = min(min(lr_pred), min(y_test))

plt.plot([p1, p2], [p1, p2])

plt.xlabel('Actual Values', fontsize = 20)

plt.ylabel('Predicted Values', fontsize = 20)

plt.axis('equal')

plt.savefig("act vs pred lr")

plt.show()

Lasso Regression

#execution time for lasso regression

lasso_start = time.perf_counter()

from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
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model.fit(X_train, y_train)

from sklearn.metrics import mean_squared_error,

mean_absolute_error, r2_score

#predictions using lasso regression

lasso_pred = model.predict(X_test)

#evaluation metrics

print('mae: {}'.format( mean_absolute_error((y_test), (lasso_pred))))

print('mse: {}'.format(mean_squared_error((y_test), (lasso_pred))))

print('rmse: {}'.format(mean_squared_error((y_test), (lasso_pred),

squared=False)))

print('r2: {}'.format(r2_score((y_test), (lasso_pred))))

lasso_end = time.perf_counter()

print("\nExecution time : {:.4f}".format(lasso_end - lasso_start),

"seconds")

#actual vs predicted values graph

plt.figure(figsize=(8,8))

plt.scatter(y_test, lasso_pred, c='red')

p1 = max(max(lasso_pred), max(y_test))

p2 = min(min(lasso_pred), min(y_test))

plt.plot([p1, p2], [p1, p2])

plt.xlabel('Actual Values', fontsize = 20)
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plt.ylabel('Predicted Values', fontsize = 20)

plt.axis('equal')

plt.savefig("act vs pred lasso")

plt.show()

end = time.perf_counter()

print("\nExecution time : {:.4f}".format(end - start), "seconds")
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C Appendix

Python Code for Classification

Support Vector Machine

#execution time for support vector machine model

svm_start = time.perf_counter()

from sklearn.svm import SVC

svm=SVC()

svm.fit(X_train,y_train)

svmpred=svm.predict(X_test)

#evaluation metrics

from sklearn.metrics import precision_score, recall_score,f1_score

from sklearn.metrics import confusion_matrix, accuracy_score,

ConfusionMatrixDisplay

#confusion matrix

confusion_matrix_svm = confusion_matrix(y_test,svmpred,

labels=svm.classes_)

#print("Confusion Matrix\n {}".format(confusion_matrix_svm))
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accuracy=accuracy_score(y_test,svmpred)

print("\nAccuracy",accuracy*100)

prec = precision_score(y_test,svmpred,average='macro')

rec = recall_score(y_test,svmpred,average='macro')

f1 = f1_score(y_test,svmpred, average='macro')

print("Precision",prec*100)

print("Recall",rec*100)

print("F1 score",f1*100)

svm_end = time.perf_counter()

print("\nExecution time : {:.4f}".format(svm_end - svm_start),

"seconds")

cmd = ConfusionMatrixDisplay(confusion_matrix_svm,

display_labels=svm.classes_)

cmd.plot(xticks_rotation=32)

fig = cmd.ax_.get_figure()

fig.set_figwidth(9)

fig.set_figheight(7)

plt.xlabel("Predicted", fontsize=15)

plt.ylabel("True", fontsize=15)

plt.savefig("confusion matrix svm")

plt.show()
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Random Forest

#execution time for random forest

rf_start = time.perf_counter()

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=20, random_state=23)

rf.fit(X_train, y_train)

rfpredict=rf.predict(X_test)

#evaluation metrics

from sklearn.metrics import precision_score, recall_score,f1_score

from sklearn.metrics import confusion_matrix, accuracy_score,

ConfusionMatrixDisplay

#confusion matrix

confusion_matrix_rf = confusion_matrix(y_test, rfpredict,

labels=rf.classes_)

#print("Confusion Matrix\n {}".format(confusion_matrix_rf))

accuracy=accuracy_score(y_test,rfpredict)

print("\nAccuracy",accuracy*100)

86



prec = precision_score(y_test, rfpredict,average='macro')

rec = recall_score(y_test, rfpredict,average='macro')

f1 = f1_score(y_test, rfpredict, average='macro')

print("Precision",prec*100)

print("Recall",rec*100)

print("F1 score",f1*100)

rf_end = time.perf_counter()

print("\nExecution time : {:.4f}".format(rf_end - rf_start),

"seconds")

cmd1 = ConfusionMatrixDisplay(confusion_matrix_rf,

display_labels=rf.classes_)

cmd1.plot(xticks_rotation=32)

fig = cmd1.ax_.get_figure()

fig.set_figwidth(9)

fig.set_figheight(7)

plt.xlabel("Predicted",fontsize=15)

plt.ylabel("True",fontsize=15)

plt.savefig("confusion matrix rf")

plt.show()

end = time.perf_counter()

print("\nExecution time : {:.4f}".format(end - start), "seconds")
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