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ABSTRACT 

 

 

 

Ryan, Tyler. M.S. Department of Psychology, Wright State University, 2023. Establishing Roots 

Before Branching Out: Parameter Recovery in Item Response Tree Models. 

 

 

 

Item Response Trees are a type of item response model that incorporates information about 

conditional responding to items using a rooted tree graph structure. Researchers have used item 

response trees for common measurement tasks and for testing novel hypotheses. Previous 

simulation studies investigating item response trees either lack generalizability to the broad 

domain of their use or lack thorough investigation and reporting of the results. I conducted a 

simulation study to explore how sample size, test length, item characteristics, and tree structure 

affect both item and person parameter recovery for 1PL and 2PL models. The results suggested 

that, as with any item response model, item response tree models are unbiased. However, large 

samples and long test lengths are needed to minimize estimate uncertainty. Issues of sample size 

and test length are compounded by the conditional structure incorporated in item response tree 

models. In particular, the depth of the tree and low item endorsement can pose severe estimation 

issues when sample sizes are not large and test lengths are not long. I used posterior predictive 

simulations to provide the reader with a practical understanding of the limitations of item 

response trees in the context of item and personnel selection and prediction of external variables.  
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Introduction 

Item Response Theory (IRT) provides a useful framework for investigating the 

relationships between latent variables and manifest variables. IRT is commonly used in survey 

research because it allows researchers and practitioners to examine and calibrate their tests and 

surveys, potentially making them more valid and reliable. Simulation studies allow researchers to 

investigate the ability of a statistical model to estimate underlying hypothesized parameters 

accurately and efficiently. The IRT literature contains a plethora of simulation studies validating 

the most common models (Harwell et al., 1996). De Boeck and Partchev (2012) introduced a 

subset of IRT models called Item Response Trees (IRTrees) to model response processes with 

tree-like conditional probability structures. IRTree models incorporate multiple latent states or 

traits involved in sequential decision-making processes that result in observed behaviors or 

responses to items and stimuli. Simulation studies on IRTrees are sparse in the IRT literature. 

Existing IRTree simulation studies focus either on a specific type of IRTree model not in 

common use or do not thoroughly present the results of more generalizable IRTree simulations. 

Although there may be reason to believe that the findings of the past simulation studies 

investigating other more common IRT models apply to IRTree models, researchers have applied 

IRTrees in new unique ways that are not covered by past research. Most importantly, IRTrees 

often require coding of observed responses in a way that introduces missingness and may present 

unique problems for parameter estimation. Thus, the purpose of this study was to investigate 

parameter recovery with IRTree models by conducting a simulation study. First, I will review 
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IRT and IRTree models and the pertinent literature. Then, I will explain the simulation study 

method and analysis. Finally, I will discuss the results. 

Item Response Theory 

IRT is both a theory of model-based measurement and a family of statistical 

measurement models that relate latent unobserved variables to their observed or manifest 

variables (Embretson & Reise, 2000). In the domain of psychological assessment, test and survey 

items are the manifest variables, which are said to measure or indicate some unobserved latent 

psychological ability, trait, or state. As measurement models, IRT models separate parameters 

representing person-based characteristics (e.g., psychological constructs or abilities) from item-

based characteristics (e.g., item difficulty). Characteristics of the person interact with the 

characteristics of the item to produce an observed response. IRT models may be distinguished 

from one another by the number of parameters involved and the functional form of the person-

item interaction. 

Recently, researchers have used IRTree models as a means of measuring different latent 

variables involved in the process of producing an observed response (De Boeck & Partchev, 

2012). Most researchers who have used IRTree models have used either the one-parameter or 

two-parameter logistic function for dichotomous responses. Some authors have incorporated 

polytomous response functions in IRTree models as well (e.g., Meiser et al., 2019). Many IRT 

models are unidimensional and only measure a single latent trait. Most IRTree models are 

multidimensional models, such that they measure multiple latent person abilities. Hypotheses 

about the presence of multiple latent attributes can be tested with IRTree models by comparing 

typical multidimensional models to constrained unidimensional models. I review some basic 

dichotomous and polytomous models briefly here for two reasons. First, I use both one-
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parameter and two-parameter models in the present simulation study. Second, it is useful to 

understand the underlying theoretical model for typical dichotomous and polytomous models in 

order to compare them to the underlying theoretical model posed by IRTrees when analyzing 

survey response data. 

One-Parameter Logistic Model 

The simplest IRT model is the one-parameter logistic model (1PL), also known as the 

Rasch model. 1PL models relate dichotomous items to one or more latent traits. The odds of 

endorsing a given item are equivalent to the ratio of the probability of successfully endorsing an 

item to the probability of failing to endorse the item, 
𝑝𝑖𝑗

1−𝑝𝑖𝑗
. Taking the log of the odds, we see 

that endorsement is a function of the discrepancy between the log of the probability of success 

and the log probability of failure. This discrepancy is equivalent to the difference between one’s 

latent ability and the difficulty of the item, expressed in logits, 𝑧𝑖𝑗. The univariate 1PL model has 

one item-parameter, 𝛽𝑗 , which is an estimate of item 𝑗’s difficulty, and one person-parameter, 𝜃𝑖, 

which is the ability or latent trait level 𝑖, such that, 

log
𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
= log(𝑝𝑖𝑗) − log(1 − 𝑝𝑖𝑗) = 𝜃𝑖 − 𝛽𝑗 = 𝑧𝑖𝑗 . 

The resultant probability of endorsement for the logistic model is given by the item 

response function (IRF), 

Pr(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝛽𝑗) = 𝛹(𝜃𝑖 − 𝛽𝑗) =
1

1 + 𝑒−1(𝜃𝑖−𝛽𝑗)
=

1

1 + 𝑒−𝑧𝑖𝑗
 

When a respondent’s ability is equivalent to the item difficulty, 𝜃𝑖 = 𝛽𝑗, the discrepancy 

is 𝜃𝑖 − 𝛽𝑗 = 0, and the resultant probability is, 

Pr(𝑌𝑖𝑗 = 1│𝜃𝑖 , 𝛽𝑗) =
1

1 + 𝑒0
=

1

2
= 0.50. 
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When a respondent’s ability is greater than the item difficulty, the discrepancy is positive, 

and the endorsement probability is greater than 0.50. Likewise, when the respondent’s ability is 

less than the item difficulty, the discrepancy is negative, and the endorsement probability is less 

than 0.50. In the case of a single latent ability parameter, the unidimensional case, ability is 

commonly assumed to be normally distributed 𝜃 ∼ 𝑁(0, 1). 

The 1PL functional form assumes that a respondent chooses a response based on whether 

the item difficulty or location is greater than or less than their ability. This is most obvious in 

ability testing where items considered difficult by a respondent are not answered correctly. The 

function assumes that the probability of correct endorsement increases monotonically as the 

ability of the respondent increases or the difficulty of the item decreases, sometimes called a 

dominance response process (Stark et al., 2006). In contrast, ideal point response processes 

suppose that the absolute difference between a respondent’s latent trait and the item 

characteristic is determinative of the endorsement probability. The ideal point process is often 

considered for non-cognitive test items such as personality items, where statements are endorsed 

based on their proximity to a respondent’s belief. Researchers have used dominance process 

models for IRTrees, but there is nothing in principle that suggests ideal point models could not 

be used as well. I focus on dominance process models for the present study. 

IRT models can be specified as either unidimensional or multidimensional. In the 

unidimensional case, the items are assumed to measure a single construct such that only one 

latent ability is involved in responding. A multidimensional model assumes that the items 

measure multiple constructs such that several latent abilities are involved in responding. In the 

multidimensional case, 𝜃𝑖 becomes a vector of length 𝐾 equal to the number of latent ability 

parameters involved in responding to item 𝑗, where 𝜃𝑖 = 𝜃𝑖1, … , 𝜃𝑖𝑘 , … , 𝜃𝑖𝐾 and 𝜃 ∼
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𝑀𝑉𝑁(0, 𝛴𝜃). The 𝐾 × 𝐾 covariance matrix, 𝛴𝜃, can be freely estimated or fixed to impose 

orthogonality/equality on the latent traits, depending on the goals of the researcher. 

Multidimensional models may be specified as either compensatory or non-compensatory. 

Compensatory multidimensional models suggest that the probability of a given response to an 

item involves the sum of each ability, such that sufficiency in one dimension can compensate for 

insufficiency in another dimension. The logit discrepancy function becomes, 𝑧𝑖𝑗 =

∑ 𝛼𝑗𝑘
𝐾
𝑘=1 (𝜃𝑖𝑘 − 𝛽𝑗), and the logistic function becomes, 

Pr(𝑌𝑖𝑗 = 1│𝜃𝑖 , 𝛼𝑗𝑘 , 𝛽𝑗) =
1

1 + 𝑒−∑ 𝛼𝑗𝑘
𝐾
𝑘=1 (𝜃𝑖𝑘−𝛽𝑗)

=
1

1 + 𝑒−∑ 𝑧𝑖𝑗𝑘
𝐾
𝑘=1

. 

The non-compensatory case requires some level of competency on each ability dimension 

in order to endorse a given response. The resultant logit function is, 𝑧𝑖𝑗𝑘 = 𝛼𝑗𝑘(𝜃𝑖𝑘 − 𝛽𝑗), and 

the logistic function becomes, 

Pr(𝑌𝑖𝑗 = 1│𝜃𝑖 , 𝛼𝑗𝑘 , 𝛽𝑗) = ∏
1

1 + 𝑒−𝛼𝑗𝑘(𝜃𝑖𝑘−𝛽𝑗)

𝐾

𝑘=1

= ∏
1

1 + 𝑒−𝑧𝑖𝑗𝑘

𝐾

𝑘=1

. 

Although IRTrees may be specified as unidimensional models, IRTrees typically involve 

multiple latent abilities and are often formulated as non-compensatory models. IRTree models 

typically imply that the respondent is required to use multiple traits during the response process. 

Because of the flexibility of the IRTree modeling framework, researchers can specify models 

with a variety of latent factor structures, person parameters, and item parameters. Similarly, 

researchers may also specify different functional forms for the person-item interaction. 

Two-Parameter Logistic Model 

The two-parameter logistic (2PL) response model is an extension of the 1PL model 

where an additional item parameter, 𝛼𝑗, is used to estimate an item’s ability to discriminate 

between levels of respondents’ abilities. The discrimination parameter may be interpreted as the 
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expected change in the log-odds of item endorsement given a one-unit change in respondent 

ability (or item difficulty). The discrepancy function becomes 𝑧𝑖𝑗 = 𝛼𝑗(𝜃𝑖 − 𝛽𝑗). The 1PL model 

can be viewed as a special case of the 2PL model in which the discrimination parameter is fixed 

to one (or some other constant), such that all items equally discriminate between different levels 

of ability and equally load onto the latent variable. The logistic function can then be written as, 

Pr(𝑌𝑖𝑗 = 1│𝜃𝑖 , 𝛼𝑗 , 𝛽𝑗) =
1

1 + 𝑒−𝛼𝑗(𝜃𝑖−𝛽𝑗)
. 

Polytomous Models 

Polytomous response models, involving three or more response options, 𝑚 >= 3, have 

largely been modeled with either difference measurement models, such as the graded response 

model (Samejima, 1969), or divide-by-total measurement models, such as the nominal response 

model (Bock, 1972). Tutz (1990) formulated the sequential response model, which is neither 

strictly a difference nor divide-by-total model for ordered polytomous outcomes. The sequential 

model is formulated as a series of binary response functions beginning at the lowest response 

option, progressively comparing each option with the next highest adjacent response option until 

failing to endorse. The response function can be written as, 

Pr(𝑌𝑖𝑗 = 𝑚 ∈ {1,… ,𝑀}|𝜃𝑖 , 𝛽𝑗𝑟) = ∏
𝑒(𝜃𝑖−𝛽𝑗𝑟)

𝑇[𝑚,𝑟]

1 + 𝑒𝜃𝑖−𝛽𝑗𝑟

𝑚−1

𝑟=1

 

where 𝑀 is the number of response options on the ordered polytomous scale, 𝑀 − 1 = 𝑅 

is the total number of category thresholds, 𝑟 indexes the 𝑚 − 1 category thresholds crossed to 

progress from the first response to response m, 𝑇 is an 𝑀 × 𝑅 binary matrix indexed by 𝑚 and 𝑟 

such that 𝑇[𝑚,𝑟] = 1 for successfully crossing threshold 𝑟 and 𝑇[𝑚,𝑟] = 0 for failing to cross 

threshold 𝑟. For example, say I have a respondent with average ability, 𝜃 = 0, responding to an 

item with a 5-point scale, 𝑀 = 5, 𝑀 − 1 = 𝑅 = 4 thresholds, and threshold difficulties equal to 
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a 𝑟-length vector 𝛽𝑗 = [−2,−1,1,2]. In order to respond with a 3, the respondent must first 

assess response options 1 versus 2, 

Pr(𝑌𝑖𝑗1
∗ = 1|𝜃𝑖 = 0,𝛽𝑗1 = −2) =

1

1 + 𝑒−(0−−2)
= 0.881, 

where 𝑌𝑖𝑗1
∗ = 1 indicates successful completion of response step 1. Given that they have 

successfully completed the first step, the respondent may then assess response options 2 versus 3, 

Pr(𝑌𝑖𝑗2
∗ = 1|𝜃𝑖 = 0, 𝛽𝑗2 = −1, 𝑌𝑖𝑗1

∗ = 1) =
1

1 + 𝑒−(0−−1)
= 0.731. 

Finally, after successfully completing response step 2, the respondent must weigh options 

3 versus 4, 

Pr(𝑌𝑖𝑗3
∗ = 1|𝜃𝑖 = 0,𝛽𝑗3 = −1,𝑌𝑖𝑗2

∗ = 1) =
1

1 + 𝑒−(0−1)
= 0.269. 

Assuming the respondent fails to successfully complete this third step, they finish their 

assessment and endorse response option 3. The resultant probability of endorsing a 3 is the 

product of the probabilities of each step attempted in the response process, 

Pr(𝑌𝑖𝑗 = 3|𝜃𝑖 , 𝛽𝑗) = Pr(𝑌𝑖𝑗1
∗ = 1)Pr(𝑌𝑖𝑗2

∗ = 1)[1 − Pr(𝑌𝑖𝑗3
∗ = 1)]. 

The probability of any response option is thus conditional on successful completion of 

previous steps. The response probabilities for a 5-points scale are, 

Pr(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝛽𝑗) = [1 − 𝛹(𝜃𝑖 − 𝛽𝑗1)]

Pr(𝑌𝑖𝑗 = 2|𝜃𝑖 , 𝛽𝑗) = 𝛹(𝜃𝑖 − 𝛽𝑗1)[1 − 𝛹(𝜃𝑖 − 𝛽𝑗2)]

Pr(𝑌𝑖𝑗 = 3|𝜃𝑖 , 𝛽𝑗) = 𝛹(𝜃𝑖 − 𝛽𝑗1)𝛹(𝜃𝑖 − 𝛽𝑗2)[1 − 𝛹(𝜃𝑖 − 𝛽𝑗3)]

Pr(𝑌𝑖𝑗 = 4|𝜃𝑖 , 𝛽𝑗) = 𝛹(𝜃𝑖 − 𝛽𝑗1)𝛹(𝜃𝑖 − 𝛽𝑗2)𝛹(𝜃𝑖 − 𝛽𝑗3)[1 − 𝛹(𝜃𝑖 − 𝛽𝑗4)]

Pr(𝑌𝑖𝑗 = 5|𝜃𝑖 , 𝛽𝑗) = 𝛹(𝜃𝑖 − 𝛽𝑗1)𝛹(𝜃𝑖 − 𝛽𝑗2)𝛹(𝜃𝑖 − 𝛽𝑗3)𝛹(𝜃𝑖 − 𝛽𝑗4).

 

The sequential choice model requires that response option endorsement is conditional on 

endorsement and non-endorsement of other response options. The model does not require that all 

responses be considered because the response process terminates once the respondent fails to 
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endorse the next highest option. They cannot proceed and assess higher response options unless 

they have successfully passed lower steps. These properties make sequential response models 

attractive when modeling a linear response process that has multiple steps. 

Tutz and Draxler (2019) suggest that the sequential response model is advantageous 

because it models a single latent trait involved in a linear set of response steps with progressive 

achievement indicating greater ability. However, the assumption that the entire response process 

is linear assumes that respondents assess and respond to the problem at hand in a linear fashion. 

The sequential response model makes intuitive sense for problems that are structured to have 

some progressive or linear response process, such as solving a math problem. A simple algebra 

problem on a math competency test (e.g., 20 = .5𝑥 + 10, solve for 𝑥) may require a respondent 

to show their work step-by-step to solve for an unknown variable. Each step is done in a specific 

order, and one cannot solve the entire problem without progressively completing each step. But 

much of the time, items in psychological testing and survey research do not have an obvious 

linear process for responding. On a personality survey measuring Conscientiousness, an item 

might read “I shirk my duties” and ask the respondent to rate their agreement to the statement on 

a 1 to 6 scale. Such an item does not readily suggest that a respondent must progressively assess 

the response options, beginning with the lowest option, as one would when solving a math 

problem. Likewise, Tutz’ (1990) formulation suggests that only one latent ability is involved 

when responding to an item, a restriction that may not hold in some contexts (e.g., word 

problems requiring both mathematical and verbal abilities). Item response trees offer a flexible 

extension to the sequential response model framework. 
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Item Response Trees 

De Boeck and Partchev (2012) proposed a general class of IRT models that take on a 

tree-like structure, which they called Item Response Trees (IRTrees). De Boeck and Partchev 

classified these models as either response tree models or latent-variable tree models. Response 

tree models consist of a sequence of (possibly unobserved) responses leading to a terminal 

observed response. Latent-variable tree models consist of a sequence of latent-variables leading 

to an observed end response. Given that response tree models have received far more attention in 

previous literature and are relevant to the development and assessment of survey instruments, the 

present research and further mention of IRTree models will refer strictly to response tree models. 

I will first explain the terminology that I adopt to discuss IRTrees in this study. I will then 

explain the general structure of IRTrees and provide an example of coding observations for an 

IRTree model. Finally, I will discuss the general item response function of IRTrees. 

IRTree terminology and implementation 

I will borrow language used in graph theory to describe IRTree models and consider 

IRTrees as directed and rooted tree graphs. For purposes of consistency and clarity, I will refer to 

items in an IRTree model as either nodes when discussing the models generally or as auxiliary 

items when in the context of survey and test data that require recoding observed responses. 

Figure 1 displays a model of a polytomous item and that polytomous item coded into a Midpoint 

Primary Process (MPP) IRTree item. Both items utilize 5-point response outcomes, 𝑦, person 

ability parameter(s), 𝜃, and item parameter(s), 𝜉, which are incorporated into response 

function(s), 𝑓. The MPP IRTree item contains several auxiliary items. The items are “auxiliary” 

in the sense that a single polytomous item is recoded into multiple, often dichotomous, items 

using external information such as a hypothesized structure or survey design. Auxiliary-items or 
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nodes represent behaviors or decisions made by a respondent, often in response to some stimulus 

such as a test item. Responses to some nodes lead to subsequent nodes that entail further 

responding. Some nodes may evoke some final or terminal response without a subsequent node, 

referred to as a “leaf.” For example, in Figure 1, the node 𝑓𝑀 has two possible responses, one of 

which leads to another node, the node 𝑓𝐴 and the other to a terminal response leaf “3.” Nodes that 

lead directly to subsequent nodes are referred to as parent-nodes with regard to their direct 

descendants and are referred to as ancestor-nodes with regard to their direct and indirect 

descendants. In Figure 1, node 𝑓𝑀 is a parent of node 𝑓𝐴, while node 𝑓𝐴 is a parent of node 𝑓𝐸. 𝑓𝑀 

is also an ancestor to nodes 𝑓𝐴 and 𝑓𝐸. Nodes that are resultant of decisions made at antecedent 

nodes are referred to as child-nodes with respect to their parent-node and descendant nodes with 

respect to their ancestors. A parent-node may have multiple child-nodes, a child-node may have 

multiple parent-nodes, and either may lead to multiple terminal response leaves. 
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Figure 1. Polytomous Item and Midpoint Primary Process IRTree Item 
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I will refer to the initial node in a tree as the “root” from which all other nodes and leaves 

stem from. The paths between nodes in the tree are directed and are referred to as branches. The 

hypothesized response process begins at the root-node and proceeds to each descendant node 

along a given branch to a terminal response leaf. Each node has a probability of endorsement, 

determined by a set of item and person parameters. The probability of observing some terminal 

response leaf is conditional on the endorsement or non-endorsement of all of its ancestor nodes. 

The theoretical or graphical structure of a given tree implies a directed path. However, it does not 

necessarily imply some temporal or causal ordering of the ancestor nodes. For illustrative 

purposes, I will discuss IRTrees and their application in psychological research with language 

that implies temporal or causal ordering. Finally, although Figure 1 depicts a model with nodes 

that have only dichotomous response options, IRTrees may also generalize to polytomous 

responses. For the present study, I will focus solely on IRTrees with dichotomous nodes.  

IRTree models involve sequences of responses, either observed or hypothesized. 

Researchers have used IRTrees to model response processes of respondents to survey 

instruments with polytomous rating scales. Instead of assuming that respondents weigh each 

response option against all other response options in a single decision (e.g., partial credit model, 

nominal response model), or assuming that respondents progressively weigh one option against 

the next highest option (e.g., sequential response model), IRTree models suggest that multiple 

(possibly unobserved) decisions are made which eventually lead to the observed response. In the 

context of a polytomous test item, an IRTree model could be constructed by observing responses 

to the item with a polytomous rating scale and hypothesizing a series of sub-questions the 

respondent poses to themselves to arrive at the observed response. A researcher could construct 
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many different IRTree models depending on how the polytomous items are recoded and the 

hypothesized ordering of the response process. 

For example, to model an item with a five-point scale, a midpoint primary process IRTree 

model (MPP, LaHuis et al., 2019) supposes that a respondent first decides whether to provide a 

neutral or directed response for the question posed. If a respondent chooses to endorse a neutral 

position, the midpoint (i.e., 3) of the scale is selected and the response process ends. If a 

respondent chooses not to endorse the midpoint, they proceed to the next decision process which 

involves deciding whether to agree or disagree to the question posed. Finally, the respondent 

proceeds to decide whether to provide an extreme response or not. Figure 1 depicts a polytomous 

rating scale item and an MPP IRTree item. White boxes indicate (possibly unobserved) response 

steps or nodes, grey boxes indicate observed response outcomes, and circles indicate latent 

person abilities used at each node. For the first decision, the MPP model hypothesizes that a 

respondent employs their propensity to endorse the midpoint of a scale, a construct from the 

response style literature (Van Vaerenbergh & Thomas, 2013). The first decision may also reflect 

the relevancy of the item to the respondent or the neutrality of the respondent towards the item. 

The last decision in the MPP model, the decision to provide an extreme response or not, is 

typically assumed to be the result of one’s extreme response style. The second decision, the 

agreement vs disagreement decision, is a measure of the substantive construct of interest 

measured without influence from the respondent’s midpoint and extreme response styles. The 

MPP model hypothesizes a specific ordering of the decisions in the response process and can be 

contrasted from alternative orderings such as the agreement primary process (LaHuis et al., 

2019). The agreement primary process IRTree model hypothesizes that the respondent first 

decides to agree or disagree with the item content, then decides whether to provide an extreme 
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response or not, and then finally decides whether to endorse a neutral position if an extreme 

response is not desired. 

Many researchers using IRTrees recode observed responses to polytomous test items into 

auxiliary-items, one for each hypothesized decision process. In the MPP model, each node is 

coded as either a zero or one, indicating non-endorsement and endorsement, respectively. Some 

IRTree models, such as the MPP model, suggest that the response process can terminate without 

activating child-nodes further down the tree. If I observed that the respondent endorsed a 3 on 

the five-point polytomous rating scale, I would code the midpoint auxiliary-item as 1 and the 

agreement and extreme auxiliary-items as missing data. In this case, the model hypothesizes that 

the respondent terminated their response process after the first decision without engaging 

subsequent decision processes. Table 1 displays the coding matrix that provides the recoding 

scheme for a midpoint primary process IRTree model with five response options and three 

decision processes. 
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Table 1. Midpoint Primary Process Coding Matrix. 

Rating  

Scale Response 
M A E 

1 0 0 1 

2 0 0 0 

3 1 - - 

4 0 1 0 

5 0 1 1 

 

Table 2. Midpoint Primary Process D-Matrix. 

𝐷 =

𝑀 𝐴 𝐸

[
 
 
 
 
0 0 1
0
1
0
0

0
0
1
1

0
0
0
1]
 
 
 
 
 

Table 3. Midpoint Primary Process T-Matrix. 

𝑇 =

𝑀 𝐴 𝐸

[
 
 
 
 
1 1 1
1
1
1
1

1
0
1
1

1
0
1
1]
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IRTree models involve both person-specific and item-specific parameters. IRTree models 

are measurement models of hypothesized latent factor structures that characterize the 

respondents and their standing on some latent construct. A model may be specified as measuring 

a single factor by all nodes, measuring multiple factors with each node measuring its own, or a 

combination of the two (e.g., bifactor structure). In Figure 1, three latent factors are hypothesized 

for the MPP model, one for each node. Each node has some set of fixed parameters such as the 

difficulty of endorsing a node or the strength of association between the latent construct and 

node endorsement. Node parameters may be freely estimated or constrained to test hypotheses 

about specific decision processes. For example, in the midpoint primary process model, a 

researcher could specify the auxiliary-item parameters of the two extreme nodes as equivalent, 

such that the decision to endorse an extreme response is identical regardless of whether one 

chooses to agree or disagree with the agreement node. Conversely, a researcher could specify an 

extreme-disagreement and extreme-agreement node with a simple modification to the coding 

matrix and estimate unique auxiliary-item parameters for each extreme node. The researcher may 

then test hypotheses about the equivalence between the nodes by comparing the fit of this model 

to one that fixes the parameters. The response function of the model specifies how the node or 

item parameters and the underlying factors being measured interact to produce the observed 

responses. 

IRTree Response Function. 

The basic 1PL IRTree model is an extension of the non-compensatory 1PL model. 

Equation 1 gives the probability of a given observed response 𝑚 to item 𝑗 for respondent 𝑖 with a 

set of abilities 𝜃𝑖. 
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Pr(𝑌𝑖𝑗 = 𝑚|𝜃𝑖 , 𝛽𝑗) = ∏[

𝑒(𝜃𝑖𝑟−𝛽𝑗𝑟)
𝑑𝑚𝑟

1 + 𝑒𝜃𝑖𝑟−𝛽𝑗𝑟
]

𝑡𝑚𝑟𝑅

𝑟=1

 (1) 

The difficulty parameter, 𝛽𝑗𝑟, becomes specific to a given node, 𝑟. The coding matrix can 

be represented with two separate matrices that represent endorsement/non-endorsement 

probability for a given node and contribution of a node to a given response on the original 

observed rating scale. The exponent inside the brackets, 𝑑𝑚𝑟, indexes the matrix D, depicted in 

Table 2, where 𝑚 indexes the rows of terminal response outcomes and 𝑟 indexes the columns of 

nodes. Indexing the D-matrix across nodes, when 𝑑𝑚𝑟 = 1, the equation inside the brackets 

equals the probability of endorsing node 𝑟. When 𝑑𝑚𝑟 = 0, the numerator equals one and the 

equation inside the brackets equals the inverse probability. The exponent outside the brackets, 

𝑡𝑚𝑟, indexes a matrix 𝑇, depicted in Table 3, that indicates whether a given node contributes to 

the (non-)endorsement of a given terminal response. When 𝑡𝑚𝑟 = 1, the inside equation 

contributes to the terminal response option. When the terminal response occurs before a child-

node is reached, 𝑡𝑚𝑟 = 0. Then, the value inside the brackets equals 1 and does not contribute to 

the terminal response option probability. Note that the choice of defining missing values in the 

D-matrix as either 0 or 1 is arbitrary because the 𝑇-matrix ensures that they will not contribute to 

the terminal response probability. Response probabilities to each node are multiplied to produce 

the probability of endorsing a given terminal response option on the original polytomous rating 

scale. 

To demonstrate the midpoint primary process model, suppose a respondent with a 

midpoint, agreement, and extreme latent ability of 0.5, 1.0, and -1.0, respectively, is given an 

item with node-difficulty thresholds 0.0, 0.5, and 1.0, respectively. Given the coding scheme for 

an MPP IRTree model, we could expect response option probabilities to be, 
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Pr(𝑌𝑗 = 1|𝛩) = Ψ(0.50 − 0.00)−1 × Ψ(1.00 − 0.50)−1 × Ψ(−1.00 − 1.00) = 0.017

Pr(𝑌𝑗 = 2|𝛩) = Ψ(0.50 − 0.00)−1 × Ψ(1.00 − 0.50)−1 × Ψ(−1.00 − 1.00)−1 = 0.126

Pr(𝑌𝑗 = 3|𝛩) = Ψ(0.50 − 0.00) = 0.622

Pr(𝑌𝑗 = 4|𝛩) = Ψ(0.50 − 0.00)−1 × Ψ(1.00 − 0.50) × Ψ(−1.00 − 1.00)−1 = 0.207

Pr(𝑌𝑗 = 5|𝛩) = Ψ(0.50 − 0.00)−1 × Ψ(1.00 − 0.50) × Ψ(−1.00 − 1.00) = 0.028

 

where Ψ indicates the logistic function. Note that the terminal response probabilities sum 

to one. 

There is some caution required when interpreting IRTree models. The language used to 

describe IRTrees as sequential or process models may imply some casual ordering. Despite the 

conditional nature of response probabilities for child-nodes, the mathematical form of the IRTree 

response function does not itself imply temporal or causal ordering. Such an interpretation would 

require a study design that presents items or stimuli in a determined order. This is not to say that 

a theory of causal order cannot inform the construction of an IRTree model.  

Many applications of IRTree models involve recoding a single observed response per 

item into multiple hypothesized unobserved auxiliary-item responses. A further issue with 

recoding items into multiple hypothesized auxiliary-items may be the indeterminacy of their 

conditional ordering. Leventhal (2020) suggested that the actual ordering of the decision nodes is 

indeterminate because the probabilities are commutative, such that the same terminal response 

probabilities are achieved regardless of the order in which the decision probabilities are 

multiplied. This is the case for models that either have no responses coded as missing or have the 

same nodes coded as missing under the same conditions. Take the agreement primary process 

(APP) model for example, another possible formulation of an IRTree model like the MPP. In the 

APP model, the agreement decision is made first, followed by the extreme, and finally the 

midpoint. This would result in the same probabilities as an extreme primary process (EPP) 

model, in which the extreme decision is made first, followed by the agreement decision, and 
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finally the midpoint decision. In both APP and EPP models, the missing values encoded in the 

auxiliary-items are in the same places. In contrast, the same cannot be said for the MPP model as 

the missing values are not encoded the same way and given identical person and item 

parameters, result in different terminal response probabilities. The determining factor in 

distinguishing models that hypothesize the same nodes but in different orders is whether the 

coding schemes differ for the auxiliary-items and result in different instances of missingness. 

Multinomial Processing Trees 

A related class of models worth mentioning found in literature on cognitive models of 

decision making are Multinomial Processing Tree models (MPT, Batchelder, 1998). The main 

differences between IRTrees and MPT models are the research questions involved, the levels of 

analysis, and the functional forms of the models themselves. MPT models are often used to study 

cognitive processes, such as information encoding, recall, and response selection whereas IRTree 

models typically focus on higher order features and constructs such as personality or preference. 

Finally, although not in absolute terms, MPT models tend to model aggregate response category 

frequencies for the whole sample as a function of a small number of parameters involved in one 

or several nodes in a tree. This contrasts with IRTrees, which separate characteristics of the 

individual items from characteristics of the individual respondent, typically for each node. MPT 

models often estimate separate node parameters based on experimental manipulations that 

characterize groups of items and some extensions allow for person specific parameters (Matzke 

et al., 2015). Although nothing restricts MPT models to such configurations in principle, MPT 

models used in the literature do not appear to fully separate person and item characteristics like 

IRTree models do. As a result, MPT models typically have few parameters in comparison. The 
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results of the present study may be informative for the MPT modeling literature to the extent that 

MPT models functionally resemble IRTree models. 

Previous Research and Use. 

Often, researchers have used IRT models to construct and investigate items in 

psychological tests. Researchers have applied IRTree models to a wide variety of observed 

phenomena. Several have used respondents’ response times to survey items to differentiate 

between types of cognitive processes used when responding. Böckenholt (2012) used IRTree 

models to distinguish between System 1 and System 2 thinking when responding to items on a 

cognitive reflection test, demonstrating their ability to differentiate respondents’ tendency to use 

each system and identify items that evoke the use of one system more than the other. Blacksmith 

et al. (2019) conducted a similar study but found no evidence that System 1 and System 2 usage 

are distinguishable traits when responding to the cognitive reflection test. 

De Boeck and Partchev (2012) used 1PL IRTrees to model fast- and slow-intelligence 

measured by a cognitive abilities test. They found evidence that fast- and slow-intelligence are 

distinct cognitive abilities and that separate response processes are used when responding 

quickly versus responding slowly to the test items. However, the fast and slow abilities were 

highly correlated. DiTrapani et al. (2016) found no evidence of different intelligence resources 

when fitting 2PL IRTrees to the same test but did find higher discrimination parameters for the 

fast-intelligence response process. This suggests that the fast-intelligence process may contain 

more information about a respondent’s intelligence than the slow-intelligence response process. 

Many researchers have applied IRTrees to the study of processes and abilities involved in 

responding to rating scales on psychological tests. Some researchers have used IRTrees for 

separating response styles from the primary latent trait being measured. Plieninger and Meiser 
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(2014) found that an IRTree model fit response data to assessments of self-confidence better than 

a unidimensional model that did not account for response style. Zettler et al. (2016) used IRTrees 

to investigate the HEXACO model of personality assessed by self- and observer-reports. They 

found that the directional estimates of each facet correlated stronger between self- and observer-

reports after accounting for response style and that these correlations differed substantially 

between facets. 

A common assumption made by researchers who utilize IRTree models to evaluate 

extreme response styles is that extreme response styles operate as a single latent trait in both 

directions of a rating scale. Put another way, researchers have commonly assumed that a 

respondent’s extreme response style influences responding in a negative direction to the same 

extent as it influences responding in a positive direction. Jeon and De Boeck (2019) tested this 

assumption finding evidence that directional extreme response style invariance does hold, such 

that extreme response styles do not have different effects on responding depending on which 

direction a respondent chooses. This could be interpreted as evidence that extreme response style 

exists as a single latent trait rather than two separate (negative/positive) traits. Böckenholt and 

Meiser (2017) compared both mixed Rasch models and IRTree models, finding that both 

adequately separate substantive trait estimates from response styles. They do suggest that 

IRTrees offer more theoretical purchase on the processes behind response styles compared to 

mixed Rasch models. However, mixture models are able to separate individuals that use response 

styles from those that do not when responding, something IRTree models cannot do. 

A related issue with self-report survey data is the presence of incomplete and missing 

responses. Our inferences often rely on the assumption that data are at least missing at random, 

such that substantive criteria under study are not related to any patterns of missingness (Debeer 
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et al., 2017). Jeon and De Boeck (2016) investigated missing data in a survey of perceptions of 

trust in charity organizations. Using an IRTree model, they incorporated response omission as a 

primary latent trait that determined responses to the items. They found that omitting responses 

was moderately and positively correlated with strong negative attitudes towards charity 

organizations and modestly and negatively correlated with strong positive attitudes. Their model 

suggested that response omission can be considered a response style itself that is related to 

extreme response styles. This suggests that the assumption that the data were missing at random 

was not supported, thus requiring one to account for missing data patterns in their model. 

Conveniently, IRTrees already do this. Debeer et al. (2017) built on this, demonstrating that 

ignoring missing not at random data can cause biased estimates with moderate amounts of 

missing data. They demonstrated the adequacy of using IRTrees to incorporate response 

omission into the modeling framework and recover the underlying parameters. 

Past Simulation Research 

When a new measurement model in IRT is introduced, it can be studied using Monte 

Carlo simulation to investigate parameter recovery properties. Simulation studies involve 

generating some data using a statistical model with a set of parameters, adding some random 

variation, and running a proposed model on the generated data to inspect how well the procedure 

can recover the parameters that generated the data and the validity of inferences often made with 

such models (Harwell et al., 1996). Some researchers have investigated IRTree models with 

simulation studies. Jeon and De Boeck (2016) provide supplementary material for a simulation 

demonstrating parameter recovery for a two-node 2PL IRTree model with 24 items, 317 

respondents, and three response options across 100 replications. They provide a graph of 

estimated item parameter bias and standard errors across the 97 estimated parameters and note 



 23 

that bias (𝑀 = 0.03) and mean squared error (𝑀𝑆𝐸 = 0.04,√𝑀𝑆𝐸 = 0.20 ) were relatively 

small. Debeer et al. (2017) examined the utility of IRTree models for accounting for missing 

responses and testing for MNAR and MAR missingness. Parameter estimate bias was diminished 

when processes for not reaching and skipping items were included in the response process 

compared to simply omitting observations. 

Plieninger (2017) studied the impact of extreme and agreement response styles on 

validity and reliability of test data. Plieninger found that bias was substantial when the 

underlying latent trait was correlated with the response style. Tijmstra et al. (2018) used a 

Bayesian approach to simulate mixture models to distinguish respondents that respond with a 

graded partial credit response model from those that respond with an IRTree response model. 

They found that item difficulty/threshold parameters for the IRTree class were adequately 

recoverable except when sample sizes were small or IRTree class membership was only 25% of 

the sample (i.e., 𝑛 = 250). Person ability parameters were also severely biased when IRTree 

class membership was only 25%. Jin et al. (2019) performed a simulation study on detection of 

differential item functioning when data were generated from IRTree models. They simulated 

several conditions in which DIF occurred in one or multiple decision processes, the proportion of 

items exhibiting DIF, and the method of detection. Of note, true positive detections of DIF were 

severely diminished for processes further along the response tree because they contained missing 

data—and therefore less information—due to the recoding scheme. 

Jeon and De Boeck (2019) provide results to a limited simulation study as supplemental 

material to investigate whether modeling positive and negative extreme responding with separate 

latent traits induces confounding when estimating item and person parameters. Mean item-

parameter normalized bias for each node ranged between -0.04 and 0.17, while latent correlation 
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normalized bias between each pair of latent factors ranged between -1.92 and 0.88. They did not 

report parameter estimate variability such as RMSE. DiTrapani (2019) conducted a series of 

simulations demonstrating the validity of a new fit index (RORME) based on out-of-sample 

RMSE for comparing different IRTree models and non-IRTree models. DiTrapani found that the 

index performed adequately, but he did not thoroughly investigate parameter recovery. 

DiTrapani (2019) performed a second simulation study comparing IRTree models to graded 

response models, finding that IRTree models recover latent trait estimates adequately even when 

the data were generated with a graded response model. 

Leventhal (2019) found that IRTree models adequately recover parameters under 

different conditions, manipulating test length, number of respondents, and response options in a 

Bayesian IRT framework. Leventhal’s focus was comparing IRTree models to multidimensional 

nominal response models and modified partial credit models. The criterion was mean item mean 

squared error (IMSE), which is a measure of average discrepancy between observed and 

expected test scores. Parameter recovery was not explicitly investigated. Leventhal also used a 

two-decision IRTree model for the 6-point scale data, similar to Thissen-Roe and Thissen 

(2013), which assumes that the initial decision is to agree versus disagree, and the second 

decision is modeled as a graded response decision between three levels of a directed response. 

Huang (2020) conducted a simulation study demonstrating the validity of mixture IRTree models 

to differentiate between normal and aberrant respondents. They found that test length decreased 

person parameter bias and RMSE for the latent variance-covariance matrix. RMSE for all 

parameters decreased as sample size increased. Cho et al. (2020) demonstrated the validity of 

using dynamic IRTree models to investigate eye-tracking time-series data. Using a two-node 

model, they found that a correctly specified model displayed very little parameter bias and 
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RMSE for both fixed and random effects. They also noted that the model standard errors 

provided adequate coverage for the fixed effects. Of note, the RMSE values for both fixed and 

random effects were substantially (2 to 5 times) larger for the second node than the first node. 

In sum, the results from previous studies provide some evidence that IRTree models 

perform adequately when correctly specified. However, many of these studies investigated 

particular applications of IRTree models (e.g., response missingness, eye-tracking, mixture-

modeling) rather than simple parameter recovery for their typical usage. Secondly, those that did 

perform a simulation study with typical IRTree models did not thoroughly report the results for 

parameter bias, parameter estimate variability, or item characteristic curve recovery. Thus, one 

purpose of my study will be to conduct a more thorough investigation of parameter recovery for 

IRTree models. I am interested in the effects of sample size, test length, and number of item 

parameters on parameter recovery. 

RQ1: How do sample size, test length, and number of item parameters, and their 

interactions, affect parameter estimation in IRTree models? 

Another issue that has yet to be addressed in previous literature is the potential limitation 

of IRTrees due to the conditional nature of the responses that can result in missingness. IRTree 

models often require coding or recoding observed responses to items. This method is not found 

in other IRT models and should be given special attention. The coding procedure involved in 

creating auxiliary-items for IRTree models can introduce missing data due to terminal responses 

occurring prior to other nodes or divergent branches. For example, in the MPP model, the first 

decision is whether to provide a directed response or a neutral response. If respondent 𝑖 provides 

a neutral response (i.e., endorses a three) to item 𝑗, the decision process ends, and the auxiliary-

items for the agreement and extreme response processes are coded as missing data. Thus, the 
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proportion of missing data in the agreement and extreme auxiliary-items is determined by the 

proportion of midpoint endorsements. If an item with a rating scale discourages providing a 

directed response, possibly due to sensitive or socially obligating item content, we would expect 

to see an overabundance of neutral or indifferent responses and endorsements of the midpoint. 

This means there is little information about the construct of interest and about respondents’ 

tendencies to endorse extreme responses. This generalizes beyond recoding rating scales to 

survey designs that elicit sequential decisions. Nodes that are conditional on the responses to 

ancestor nodes will potentially exhibit greater amounts of missingness. The greater the number 

of ancestors that a node is conditioned on in a path, the greater the amount of missingness that 

node could result in. In other words, the greater the depth of a node in a branch of conditional 

responses, the greater the potential missingness. This would likely compound the effects of low 

sample size or item parameters that reduce the number of observations available to child nodes. 

Thus, the second purpose of my study will be to investigate the effect of this conditional 

dependency on item parameter recovery. 

RQ2: How does node depth affect item parameter recovery? 

Present Study 

Given the limitations of past simulation research involving IRTree models, there is a need 

for a thorough investigation of parameter recovery in IRTree models. The present study will help 

to quantify the validity and reliability of parameter estimates from IRTree models. Validity refers 

to bias or the discrepancy between the estimated parameter and the true parameter used to 

generate the simulated data. Invalid parameter estimates can affect recovery of the item 

characteristic curve which is used for multiple practical inferences such as ability estimation, 

investigation of item bias, test equating, and computer adaptive testing (Thissen & Wainer, 
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1982). By parameter estimate reliability, I refer to the variability of the parameter estimate, 

which provides a measure of uncertainty about the point estimate of a given parameter. High 

variability in the estimate induces greater uncertainty in the validity of the estimate for a given 

sample or measurement. Plainly, even if an estimation method is valid with regard to its expected 

value, low reliability can render the practical use of the method doubtful. 

Parameter bias and variability have been thoroughly investigated in past simulation 

studies with other IRT models (Harwell et al., 1996). The most common manipulations in these 

studies are test length, sample size, and number of item parameters. The common finding is that 

both sample size and test length have small positive effects on estimated validity and reliability, 

and their interaction can have moderate to strong effects on validity and reliability (e.g., 

Drasgow, 1989; Hulin et al., 1982). Models using small sample sizes with long tests are likely to 

lead to poor item parameter estimates. The number of item parameters to estimate for each item 

has a negative effect on estimate validity and reliability and interacts in a similar way with 

sample size and test length such that longer tests with more parameters require larger samples for 

valid inference (Hulin et al., 1982). For clarity, I do not have sufficient reason to predict whether 

the IRTree model will be upwardly or downwardly biased, so I refer to bias in an absolute sense. 

There is little reason to suspect that IRTrees will behave differently than other IRT models, as 

they are based on the same functional form as those models investigated in previous studies. 

However, it is likely that the conditional nature of nodes at greater depths in a tree will make 

them more vulnerable to estimate inaccuracy and unreliability with smaller sample sizes, shorter 

test lengths, and more item parameters to estimate. For the present study, this implies interaction 

effects between these three factors and the depth of a given node. The fact that nodes are 

conditioned on one another implies that the characteristics of the conditioning ancestor nodes 
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have some causal effect on their descendants. I will explain this effect further and how I plan to 

measure it. 

Hypothesized Causal Model, Node Depth, and Propagation 

Figure 2 displays the hypothesized causal model for item parameter estimation in plate 

notation, where N represents total sample size, J represents test length, D represents maximum 

node depth, n represents descendant node-specific sample size, 𝜉 represents true item parameters, 

and �̂� represents estimated item parameters. Squares indicate deterministic variables, circles 

represent stochastic variables, grey shapes represent observed variables, and white shapes 

represent unobserved or latent variables in a typical measurement setting. Sample size, test 

length, and the true data generating parameter values should have some direct effect on 

estimation of the root-node item parameters, �̂�[0]. After the root-node, node depth plays an 

integral role in the causal model. I will use node depth as a predictor in the analyses below, but 

node depth is not represented as its own variable in the causal model. Time is often used as a 

predictor in many regression models, but time itself does not exert causal effects and simply 

serves as a proxy for unmeasured causal interactions and change. Much like how time in other 

models is not a true causal variable, node depth is not a properly causal variable in the sense that 

it merely indexes position and sets a unit for distance and conditionality in the graph. Node depth 

is represented by the box (plate) outlining the descendant node sample size and item parameters 

and expressing the causal paths between these variables across node depths 1… 𝑑 …𝐷. The 

causal effect across nodes is due to the missingness incorporated into the data resulting in lower 

sample sizes at greater depths. Node sample size n is a fully mediating variable across nodes, 

assuming uncorrelated latent variables for simplicity. Incorporating sample size at each node as a 

predictor in the analyses below may be interesting and useful in some regard for researchers 
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prior to analyzing their data. If the study results can provide some suggestion about minimum 

sample sizes required for each node, a researcher could inspect their data prior to analysis and 

determine whether they should proceed with a particular model. This is less helpful in the 

planning stages of a study because researchers do not yet have data to inspect. Node depth is a 

characteristic of the specific IRTree model a researcher chooses. A description of how node 

depth affects parameter estimation is useful to researchers for making decisions about what 

IRTree model to use prior to data collection and analysis. 
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Figure 2. Hypothesized Causal Model for Item Parameter Bias.

Note. N = total sample size, J = test length, D = node depth, n = sample size of descendant node, 

𝜉 = true item parameters, �̂� = estimated item parameters. Squares indicate deterministic 

variables, circles indicate stochastic variables, white shapes indicate unobserved variables, and 

grey shapes indicate observed variables. The box (plate) is a condensed representation of node 

depth. 
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The conditional nature of IRTree items means that fewer observations are available for 

estimating parameters for items occurring deeper in a branch. I will refer to this process of 

ancestor nodes “passing on” observations to descendant nodes as propagation. Propagation 

describes not only how a parent-node affects or conditions a child-node, but also how properties 

of ancestor nodes can indirectly affect or condition descendant nodes at greater depths. Put 

another way, propagation entails cumulative effects across depths. This propagation mechanism 

is what makes IRTrees unique from other IRT models and requires special consideration 

regarding its effects on parameter estimation.  

Propagation is a function of the total sample size, node depth, and item parameters 

determining endorsement probability. The number of observations propagated 𝑛[𝑑] to a 

descendant node at depth 𝑑 is conditional on the total or root-node sample size 𝑁 and on 

endorsement or non-endorsement of 𝑑 − 1 ancestor items each with endorsement probability 

𝑝[𝑑]. Endorsement probability of ancestor items is conditional on the parameters of the items and 

respondents. For the 1PL model, the item 𝛽[𝑑] and person parameters 𝜃[𝑑] of an ancestor-node at 

depth d affects its endorsement probability, 𝑝[𝑑] = Ψ(𝜃[𝑑] − 𝛽[𝑑]). Marginalizing over the person 

ability parameter, this in turn affects the expected proportion of respondents, 𝐸[𝑝[𝑑]], that will 

endorse the item. Again, the discrepancy between the person ability and item difficulty 

parameters determines the endorsement probability, so the location of the item difficulty 

parameter determines the expected probability of endorsing the item. The inclusion of an item 

discrimination parameter for the 2PL model increases or decreases the influence the item 

difficulty has on the expected endorsement probability. The expected number of respondents that 

reach the second node in a branch is determined by the expected probability of endorsement for 

the first node times the number of respondents at the first node (i.e. the total sample size), or 
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𝐸[𝑛[𝑑=2]] =  𝑛[𝑑=1]𝐸[𝑝[𝑑=1]] = 𝑁 ∙ 𝐸[𝑝[𝑑=1]]. The expected number of respondents a child-node 

𝑑 is, 𝐸[𝑛[𝑑]] = 𝐸[𝑛[𝑑−1]]𝐸[𝑝[𝑑−1]]. The expected number of propagated observations from the 

total sample size to a given descendant node 𝐷 can be written as the root-node sample size 𝑁 

times the expected propagation rate, which is the product of expected probabilities for all 

ancestor nodes,  

𝐸[𝑛[𝐷]] = 𝑁 ∏ 𝐸[𝑝[𝑑]]
𝐷−1
𝑑=1 . 

In most studies, researchers do not have strong prior knowledge on either item parameters 

or item marginal probabilities. This makes choosing sample sizes for data collection more 

difficult. It would be useful for a researcher to know the average amount of estimate bias they 

can expect regardless of the item parameters. We can break down the expected propagation 

proportion into average propagation for a given node, 𝑝𝜇, times the deviation from this average, 

𝑝[𝐷]
∗  which is the expected propagation proportion divided by the average propagation. I will 

assume that the average proportion of observations propagated to node 𝐷 is the probability of an 

average person endorsing an average item raised to the power of 𝐷 − 1, or 𝑝𝜇
𝐷−1 =

Ψ(0 − 0)𝐷−1 = 0.5𝐷−1. For example, the average proportion of observations propagated to the 

first node is obviously 0.51−1 = 1, the second node is 0.52−1 = 0.5, the third is 0.53−1 = 0.25, 

and so on. The expected deviation from the average propagation rate is the ratio of expected 

propagation to average propagation, 𝑝[𝐷]
∗ =

∏ 𝐸[𝑝[𝑑]]
𝐷−1
𝑑=1

𝑝𝜇
𝐷−1 , which I will call the relative propagation 

rate. Relative propagation denotes whether and to what degree a given item is propagated greater 

or fewer observations from their ancestors compared to a set of average ancestor items. When an 

ancestor item is less likely to be endorsed, perhaps because of difficult item content, the relative 

propagation rates of their children decrease. When an ancestor item is more likely to be 
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endorsed, this rate increases. Rearranging and substituting the equations above,  ∏ 𝐸[𝑝[𝑑]]
𝐷−1
𝑑=1 =

𝑝𝜇
𝐷−1 ∏ 𝐸[𝑝[𝑑]]

𝐷−1
𝑑=1

𝑝𝜇
𝐷−1 = 𝑝𝜇

𝐷−1𝑝[𝐷]
∗ , we get, 𝐸[𝑛[𝐷]] = 𝑁 𝑝𝜇

𝐷−1𝑝[𝐷]
∗ , or the expected number of 

propagated observations to node 𝐷 is the product of the average and relative propagation rates of 

the immediate parent node and the total sample size.  

This is analogous to using a non-centered parameterization in hierarchical modeling 

where the latent means and variances are modeled as separate parameters. Separating total node 

propagation into average propagation and relative propagation allows me to quantify the effects 

of node depth and item endorsement probability separately. Node depth can now be used as a 

meaningful predictor whereby it serves as a proximal measure for the cumulative average 

propagation rate at a given node depth. Relative propagation then captures the cumulative effects 

imposed on descendant nodes by their ancestors due to their item parameters beyond the 

cumulative effects of node depth. 

In sum, node depth measures the average rate of propagation of observations across 

nodes. The deeper the node, the fewer the propagated observations which should lead to greater 

estimate variability. Relative propagation entails deviations from the average propagation rate 

due to item-specific characteristics. Items that have fewer endorsements will propagate fewer 

observations than average and result in greater estimate variability. 

Sample Size 

Adequate sample sizes are required in order to sufficiently estimate the parameters of 

interest in a model. Smaller sample sizes often entail less information available to estimate 

model parameters accurately and reliably. I manipulated sample size in the present study. As 

with previous research investigating the effects of sample size on item parameter recovery, I 

expected no significant effect of sample size on estimate bias and a negative effect on parameter 
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variability. Sample size should also negatively moderate the effects of node depth, relative 

propagation, and the interaction between them, such that their effects weaken with larger sample 

sizes. 

Test length 

Previous research suggests that shorter tests increase test bias and sampling variability 

(Lord, 1968; McCauley & Mendoza, 1985; Stone, 1992). This is likely because shorter tests 

contain less information about the latent trait of interest. Shorter tests also result in fewer 

possible response patterns and therefore fewer latent ability scores to differentiate respondents. 

Recommendations for adequate test lengths vary and often depend on the sample size and model 

complexity. For example, Harwell and Janosky (1991) suggest that 15 items and a sample of 250 

respondents for a unidimensional 2PL model provides satisfactory parameter estimates and 

standard errors. On the other hand, Drasgow (1989) suggests that 5 items with 200 respondents 

provides reasonable parameter estimates and standard errors for a 2PL model. The effects of test 

length on estimation are better understood relative to the size of the sample. Test length should 

have a small negative main effect on parameter bias and variability. At large sample sizes, 

differences in parameter estimate validity and reliability due to different test lengths will likely 

be negligible. Therefore, the effect of test length on estimate bias and variability should be 

negatively moderated by sample size. 

Model Type 

A one-parameter model implies that items are characterized by one item parameter, 

namely the item difficulty. Two-parameter models imply that the item is characterized by two 

parameters, a difficulty parameter and a discrimination parameter. The addition of another 

parameter to estimate often requires greater sample sizes (Hulin et al., 1982). The above 
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discussion should apply to both one- and two-parameter models. The main difference between 

the two are that parameter estimates in the two-parameter model should be more severely 

impacted by sample size and node-depth than the one-parameter model. In order to avoid making 

the analysis and interpretation of the results overly cumbersome, I will conduct separate 

simulations and analyses for the two types of models. Statistical tests of differences between the 

types of models, and differences in their interaction with the other factors, may be helpful for 

some looking for advice on which type of model to use. I argue that such information can be had 

without directly comparing the two with statistical tests. I also argue that decisions about which 

model to choose should involve theoretical considerations rather than simply sample size and 

model fit (Andrich, 2004). I will instead discuss descriptive comparisons between the two sets of 

analyses. 
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Method 

In order to investigate the validity of IRTree models, I conducted a Monte Carlo 

simulation study. Harwell et al. (1996) provide an overview of IRT simulation studies and 

provides recommendations for conducting them. I generated data with “true” underlying 

parameters and used IRTree models to estimate the underlying parameters. I used the 

discrepancies between the true and estimated underlying parameters as criteria for assessing the 

quality of the model. To understand the limitations and factors that can affect IRTree validity and 

reliability, I included multiple manipulations that affect the generated data. 

Design 

I manipulated sample size (500, 2,000), test length (10 items, 30 items), and the type of 

model (1PL versus 2PL), resulting in 2 × 2 × 2 = 8 conditions. Each condition was replicated a 

total of 100 times. Within each replication, I simulated multiple items and multiple respondent 

abilities. The criteria within a set of items were potentially correlated because they were 

simulated within the same replication. The analysis thus modeled the intercepts as randomly 

varying between replications nested within a given condition. 

Sample Size 

The simulation studies reviewed in Harwell et al. (1996) simulated samples of 

respondents that ranged from 100 or fewer to 1000 or greater. The median sample size simulated 

was between 300 and 500 respondents. For the present study, the two levels of the sample size 

factor were 500 and 2,000 representing small and large sample sizes, respectively. 
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Test Length 

Again, referring to the Harwell et al. (1996) review, the test lengths researchers used in 

previous studies ranged from 5 items to 60 items, the mode of which was 25 items. The test 

length factor consisted of two levels representing short (10 items) and long test lengths (30 

items). A thirty-item test was chosen for the long test length because estimation time becomes 

prohibitive for the present simulation study with an increasing number of items. 

Data Generation Procedure 

Previous simulation studies often relied on simulating a single large set of data and using 

subsets of this data set to study parameter recovery. A consequence of this method is that the 

different experimental conditions are not independent of each other, confounding measurement 

of the manipulations of interest and making analysis and inference more difficult. Another issue 

is that these researchers often used a fixed set of item parameters and only generated random 

person parameters and item responses. Validity can be established with this method, but the 

generalizability of their results to the often-random distributions of items parameters found in 

practice is questionable (Harwell, 1997). A design that allows the random generation of item 

parameters should increase the generalizability of the simulation study results. For the present 

study, I generated item and person parameters from specified distributions. I generated data in 

the R programming environment (R Core Team, 2019). Pseudo-code for the simulation 

procedure is provided below. 

Sequential IRTree Model 

The most common models in the IRTree literature are the two-node binary models with 

four response options and the three-node binary models with five response options. The present 

study, however, focused on the question of node depth and observation propagation as possible 
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concerns for parameter estimation. To systematically quantify these effects, a model that allows 

greater control over node depth, the number of nodes in total, the item parameters, and the latent 

factor variances and covariances was required. Figure 3 depicts the type of IRTree model that I 

used. The coding matrix specified was a four-decision response process. Failure on the first 

decision would result in an observed response of 1. Success on the first decision would lead to a 

second decision, wherein failure would result in an observed response of 2. The response process 

continues for the third and fourth nodes, resulting in a total of 5 possible observed outcomes. The 

general IRTree model adopted was similar in form to the sequential model (Tutz, 1990) and 

resilience model (DiTrapani, 2019). The sequential model involves a single latent factor used at 

each node in the response process, whereas the resilience model involved two latent factors 

measured by different nodes and allowed them to covary. The relationship between nodes at 

different stages in the response process through the latent factor parameters allows them to 

covary beyond their conditional dependency. Although I do not believe the threat to be severe, 

this is likely to confound estimates of parameter bias and variation due to the conditional 

dependency. To avoid this in the simulation, each node measured its own latent factor, and the 

latent factors were orthogonal to one another. Another question for the present study was 

whether there are substantial differences in parameter estimation between 1PL and 2PL models. 

Each condition was simulated with both 1PL and 2PL IRTree models.



 39 

Figure 3. Sequential IRTree Model with 4 Nodes 
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Item Discrimination Parameters 

Researchers have previously used log-normal distributions to simulate item 

discrimination parameters for IRTree models. Tijmstra et al. (2018) drew discrimination 

parameters from a log-normal distribution with log-means of -0.50 and log-standard deviations 

of 0.25. DiTrapani (2019) generated correlated discrimination parameters between positive and 

negative extreme response processes. First, DiTrapani generated parameters for the negative 

extreme response node from a uniform distribution with a range of 0.4 and 1. Then, parameters 

for the positive extreme response node were generated from a normal distribution with means 

equal to the generated negative extreme response node parameters and a standard deviation of 

0.20. In this study, I generated the item discrimination parameters, 𝑎𝑗, for each node from a log-

normal distribution with log-mean and log-standard deviation of 0 and 1, respectively. The 

resultant sampling distribution should have 95% density interval roughly bounded between 0.03 

and 5.18 with a median at 1, ensuring that extremely high or extremely low discrimination 

parameters will not likely be generated. I fixed the discrimination parameters for the 1PL models 

to one. 

Item Difficulty Parameters 

Researchers have used several methods for generating difficulty parameters for IRTree 

models. Debeer et al. (2017) simulated item difficulty parameters for 20 items by selecting 20 

values at evenly spaced intervals between -1.50 and 1.00. Jin et al. (2019) generated item 

difficulty parameters from a uniform distribution ranging between -1.50 and 1.50. Tijmstra et al. 

(2018) simulated parameters from a normal distribution with a mean of 2.00 and a standard 

deviation of 0.25. DiTrapani (2019) generated correlated difficulty parameters between the 

substantive trait and the positive and negative extreme response processes. DiTrapani first 
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generated parameters for the substantive trait in the first node from a normal distribution with a 

mean and standard deviation equal to 0.00 and 1.00. Then, parameters for the extreme response 

nodes were generated with means equal to the parameters generated in the first node and 

standard deviations of 1.00. For the present study, I generated difficulty parameters from a 

normal distribution with a mean of zero, and standard deviation of one. Ninety-five percent of 

the resulting distribution should range between roughly -1.96 and 1.96. 

Latent Factor Correlations, Variances, Means, and Scores 

The latent factors that are measured with multidimensional item response models are 

often correlated. Tijmstra et al. (2018) drew latent factor scores from independent univariate 

normal distributions. Debeer et al. (2017), Jin et al. (2019), DiTrapani (2019), and Huang (2020) 

simulated latent factor scores from multivariate normal distributions with zero means and pre-

specified covariance matrices. Setting the latent factors to be uncorrelated is an unreasonable 

assumption with regard to data one is likely to encounter outside of a simulation. However, the 

primary purpose of the study is to explore and quantify the effect of the conditional coding 

involved in IRTrees on item parameter estimate bias. Correlated latent factors will introduce 

“backdoor” relationships between nodes beyond the relationship implied by the conditional 

response process. This may confound the effect that one parent node has on a child node through 

their correlation between their respective latent factors. Therefore, I used an orthogonal set of 

latent factors to generate the ability parameters and ensure that the only relationship between 

items of different nodes was through their conditional response dependencies. I generated the 

latent factor scores themselves from a univariate normal distribution with means equal to zero 

and variances equal to one. 
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Response Generation 

Once the parameters were generated for a given replication in a particular cell, I used the 

formulas given by Equation (1) to generate response probabilities for each rating scale option 

utilizing the coding matrix in Table 1. I then randomly sampled response options from a 5-point 

rating scale using the response probabilities. Finally, I coded these rating scale responses 

according to the coding matrix for analysis. I then saved the data generating parameters for 

comparison to model estimates. In IRT, if an item does not contain more than one response, item 

parameters cannot be estimated for that item and the item is typically dropped from analysis. 

Prior to parameter estimation, I assessed each simulated data set to ensure each auxiliary-item 

had more than one response option endorsed. If a data set had one or more auxiliary items that 

had only one response option endorsed, another data set was generated in its place.  

Estimation of simulation models 

I used the mirt package (Chalmers, 2012) in R to estimate each IRTree model. For each 

simulated data set, I estimated an IRTree model according to the coding matrix and experimental 

condition (1PL or 2PL). I estimated models within a Bayesian framework. I specified priors for 

the difficulty parameters with a normal distribution with mean and standard deviation equal to 0 

and 1, respectively. I specified priors for the discrimination parameters with a log-normal 

distribution with a mean and standard deviation equal to 0 and 1, respectively. 

Preliminary analyses suggested that estimating the models with the Bock and Aitkin 

(1981) EM procedure led to consistent non-convergence with several models, an issue DiTrapani 

(2019) encountered when simulating IRTree models as well. For marginal maximum likelihood, 

in order to integrate the k-dimensional latent factors out of the likelihood equation, the EM 

algorithm uses quadrature that increases exponentially with more latent factors (Chalmers, 
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2012). With regard to Chalmer’s (2012) implementation in mirt, the number of quadrature points 

per factor is reduced to make estimation more efficient. This can make estimates of the latent 

factor variance-covariance matrix less accurate with high dimensional models. In the case of 

IRTree models with four latent factors, the latent factor variance-covariance matrix frequently 

becomes non-positive definite, particularly when sample sizes and test lengths are low. The 

degenerate latent factors then cannot be integrated out of the likelihood equation and the 

maximum likelihood solution becomes unreliable. It is possible to increase the number of 

quadrature points per latent factor; however, computation time can become unwieldy. 

Alternatively, the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2010) 

uses stochastic imputation to estimate the latent factor variance-covariance matrix, often 

resulting in faster and more accurate estimation for high-dimensional models. Preliminary 

analyses using this algorithm had fewer issues with convergence and was adopted instead. 

Models with many items tend to take a large number of MH-RM cycles to converge. In order to 

reduce simulation time, I specified a maximum of 10,000 MH-RM cycles for estimation. Models 

that reached this cycle maximum were discarded and another dataset was generated in its place. 

The expected a posteriori estimates of the latent factor scores were then calculated and the model 

parameters were extracted when each model completed. 

Replications 

Multiple replications are needed to adequately account for sampling variability from the 

data generation process for the overall simulation. The number of replications used in previous 

studies of Monte Carlo simulations of IRT models ranges between 5 and 1000 (Harwell et al., 

1996). For the present study, I replicated each condition 100 times. Although a greater number 

per condition would provide larger sample sizes for the proposed analyses, the time required for 
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simulation would be too great relative to the reduction in the credibility intervals of the 

regression model parameters. Preliminary analyses suggested that the most computationally 

intensive models required between 4 to 5 minutes of estimation time. This would roughly take 

6.5 to 8.5 hours to complete 100 replications for a single condition. The precision gained from 

more replications would likely be negligible relative to the increased simulation time. 
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Simulation Data Generating Pseudo-code. 

for 𝑟 in 1…𝑅 do: 

for 𝑗 in 1… 𝐽 do: 

for 𝑘 in 1…𝐾 do: 

𝛽[𝑗,𝑘] ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

if model = 1PL: 

𝛼[𝑗,𝑘] = 1 

else: 

𝛼[𝑗,𝑘] ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

end 

end 

for 𝑖 in 1…𝑁 do: 

for 𝑘 in 1…𝐾 do: 

𝜃[𝑖,𝑘] ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

for 𝑗 in 1… 𝐽 do: 

𝑧[𝑖,𝑗,𝑘] = 𝛼[𝑗,𝑘](𝜃[𝑖,𝑘] − 𝛽[𝑗,𝑘]) 

end 

end 

end 

for 𝑖 in 1…𝑁 do: 

for 𝑗 in 1… 𝐽 do: 

for 𝑚 in 1…𝑀 do: 

𝑝[𝑖,𝑗,𝑚] = ∏ (
𝑒𝑧[𝑖,𝑗,𝑘]×𝐷[𝑚,𝑘]

1 + 𝑒𝑧[𝑖,𝑗,𝑘]
)

𝑇[𝑚,𝑘]𝑘=𝐾

𝑘=1

 

end 

𝑦[𝑖,𝑗] ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝[𝑖,𝑗,… ]) 

end 

end 

{�̂�, �̂�, �̂�}
[𝑟]

= 𝑓𝑀𝐻−𝑅𝑀(𝒚) 

end 
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Parameter Estimate Standard Errors 

I collected item parameter standard errors for the difficulty parameters. The standard 

errors represent uncertainty in the model parameter estimates. The standard errors can be used to 

construct confidence intervals around the parameter estimates. These are informative particularly 

for item selection and item bias investigations. The 2PL models did not produce standard errors 

due to estimation issues. I will discuss this further in the results and discussion sections. 

Two criteria were explored regarding the standard errors. The first was whether the 

calculated standard errors provided adequate coverage for the true underlying parameter values 

such that traditional 95% confidence intervals encompassed the true parameter value. This was 

done by constructing 95% confidence intervals for each of the item parameter estimates and their 

associated standard errors. I created a dummy variable that indicated whether the true underlying 

parameter value was encompassed by the estimated 95% confidence intervals constructed around 

the parameter estimate. Low rates of coverage would suggest that the standard errors 

underestimate the true sampling variability of the item parameters or that the estimate procedure 

is highly biased. Differences in coverage rates between the manipulated conditions may indicate 

that some situations threaten the validity of the standard errors. The second criterion was the 

standard errors themselves and were be analyzed similarly to the item parameter estimate 

variability analyses. This may reveal conditions that lead to overly conservative or anti-

conservative estimates of the parameter estimate sampling variability. 

Analyses of Simulation Results 

Given the large sample size and the low complexity of the proposed regression models, 

descriptive statistics would likely provide adequate evidence to draw broad conclusions such as 

the direction of the manipulated factor effects. My goal with this study was to provide more 
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precise guidance for sample size, test length, and IRTree design by means of posterior predictive 

simulations. Posterior predictive simulations involve drawing samples from the posterior of a set 

of estimated model parameters conditioned on observed data to make predictions about 

unobserved data. 

Many simulation studies in the past aggregated across items within each iteration for each 

condition. There is little reason to expect a large amount of sampling variability between 

iterations. However, a random intercepts model would allow me to quantify how much 

variability in the criteria is attributable to randomness introduced by the data simulation process. 

A substantial amount of variation between simulations that is not attributable to the manipulated 

factors would likely indicate some issue with the data generating process and would require a 

more remedial inspection. Secondly, the ancestor-propagation and node-depth factors are both 

within-iteration factors. Aggregating the data to the iteration level, as is commonly done with 

simulation studies, would render those as useless predictors. Instead, I estimated both bias and 

variability directly with a distributional model that uses predictors for both the location (e.g., 

mean) and scale (e.g., variance) of the observed bias distributions. I used Stan (Stan 

Development Team, 2019) for estimation of the explanatory models of bias. 

Dependent Variables 

Regarding the outcomes being explained, estimate bias for the item difficulty and person 

ability parameters is straightforward to calculate as the difference between the estimated and true 

parameters. I simulated true difficulty and ability parameters from a normal distribution. I did not 

expect any systematic bias to affect the distributional assumptions after accounting for the effects 

of the predictors, so the estimated parameters should follow a normal distribution. The resultant 

bias, calculated as the difference between two normally distributed dependent random variables, 
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should also follow a normal distribution, with a mean 𝜇∗ = �̂� − 𝜇 and standard deviation 𝜎∗ =

√�̂�2 + 𝜎2 − 2𝜌�̂�𝜎. The task is then to estimate two sets of regression parameters from the set of 

predictors to explain both average bias and variability.  

The rank order of person ability parameter estimates is important if a researcher wants to 

use the estimates as a linear predictor of some criterion. Systematic bias of the estimates will not 

affect the rank order. Increased sampling variability or estimate uncertainty will affect the rank 

ordering, but this affect may not be apparent by simply observing changes in the variability of 

the estimate bias distribution. A more direct approach would be to analyze the correlation 

between the true and estimated person ability parameters. I included an analysis of the 

correlation between the true and estimated person ability parameters, which I detail below. 

I took a similar approach with the discrimination parameter estimate bias. I drew the true 

discrimination parameters from a log-normal distribution. Preliminary simulations suggested that 

the discrimination parameter estimates are also approximately log normal. I took the ratio of the 

estimated and true discrimination parameters. The ratio of two log-normal distributions is also 

log-normally distributed with a mean 𝜇α
∗ = �̂�𝛼 − 𝜇𝛼 and standard deviation 𝜎𝛼

∗ =

√�̂�𝛼
2 + 𝜎𝛼

2 − 2𝜌𝛼�̂�𝛼𝜎𝛼. 

Independent variables 

I used four predictors and their two-, three-, and four-way interactions. For each analysis, 

I standardized the sample size and test length predictors to facilitate estimation. I coded node 

depth so that nodes one through four were coded as zero through three. To help with 

interpretation, I calculated the relative propagation predictor as the log of the odds-ratio of 

expected propagation proportion to average propagation proportion for each node 𝐷, log 𝑝[𝐷]
∗ =

log
∏ 𝐸[𝑝[𝑑]]

𝐷−1
𝑑=1

𝑝𝜇
𝐷−1  , where 𝐸[𝑝[𝑑]] = ∑Ψ(θ[𝑞] − 𝑏[𝑑])𝑤[𝑞], evaluated using Gauss-Hermite 
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quadrature, and 𝑏[𝑑] is the true item difficulty for that simulated item. By taking the log of the 

relative propagation ratio, items with an expected propagation rate equal to the average 

propagation rate receive a score of one on the odds scale and a score of zero on the log-odds 

scale. Conveniently, the node-depth factor then becomes the contribution to the node-depth 

effect for an average auxiliary-item and the propagation predictor indicates greater or lesser 

observation propagation compared to an average auxiliary-item. 

Interpretation of Results 

A common difficulty with simulation studies is how to define adequate parameter 

recovery, especially without some criterion with an obvious standard driving the research 

question at hand. With regard to estimate variability for the difficulty parameters, I will consider 

a limit of 𝜎𝛽 = 0.25. Assuming that difficulty parameters are unbiased and are generated from a 

normal distribution, a standard deviation of 0.25 suggests that with 95% certainty the true item 

difficulty, 𝛽𝑗 , resides on the logit scale interval �̂�𝑗 − 1.96 × 0.25 < 𝛽𝑗 < �̂�𝑗 + 1.96 × 0.25. 

With this level of measurement certainty, a researcher could distinguish two items with a one-

logit difference between their true data generating difficulty parameters, assuming the standard 

errors are close approximations of the true estimate uncertainty. For example, given a set of easy, 

average, and difficult items with difficulties of 𝛽𝑒𝑎𝑠𝑦 = −1, 𝛽𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 0, 𝛽ℎ𝑎𝑟𝑑 = 1, I would 

expect respondents from a population with a standard normal ability distribution to produce 

endorsements at rates of 16%, 50%, and 84%, respectively. For an item selection task, adequate 

item parameter estimation should be able to distinguish an average item from one with a low or 

high rate of endorsement. With 95% confidence, 𝜎𝛽 = 0.25 is the maximum standard deviation 

that would allow the location and rank ordering of these items to be adequately estimated. In 

practice, the 𝜎𝛽 varies between items and many tasks such as item selection aim to distinguish 
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items with much less than a one-logit difference in difficulty and thus require greater 

measurement certainty. I used this same criterion for interpreting person ability estimate bias. I 

also interpreted person ability parameter recovery in terms of a predictive validity task, where 

the estimated latent ability is used to predict some external criterion. I primarily focus on 

whether the estimates allow a researcher to make valid directional hypothesis tests regarding the 

relationship between the latent ability and the external criterion. Regarding the item 

discrimination parameters, defining a criterion is more difficult. However, due to issues with the 

simulation, this issue was not addressed.  

These criteria provide some principled starting point. I will first report the model results 

and then provide an interpretation with these criteria in mind. Although I discuss the regression 

model parameters in the results section in terms of their size and direction, I will not interpret the 

regression model parameters using significance tests or in reference to null hypotheses. The 

emphasis of my analysis is to highlight conditions that may produce poor parameter estimates in 

concrete terms rather than vague notions of significant differences or standardized effect sizes 

which obfuscate the practical reasons for conducting a simulation study. 

I adopted a Bayesian framework for estimation and inference. Parameter bias is less 

relevant for Bayesian inference. From a Bayesian perspective, posterior point estimates are not 

likely equal their data generating values except with very large sample sizes. Furthermore, 

inferences based on point estimates are often less informative than the distribution of plausible 

values the data generating parameter could have taken on or may realize in the future. I place a 

greater emphasis on estimate variability or uncertainty, which quantifies the range or distribution 

of plausible data generating values. I investigate parameter bias for the item and person 

parameters for the interested reader, but my primary focus is on estimate variability. 



 51 

.



 52 

 

 

 

Results 

Regression Model Estimation 

The results of the simulations produced very large datasets. I required greater computing 

resources to create regression models for quantifying the effects of the manipulated factors. I 

used the supercomputing resources available through the Ohio Supercomputer Center (Ohio 

Supercomputer Center, 1987) to shorten computation time for the regression analyses. 

Researchers in the past have calculated summary statistics such as mean bias and root mean 

square error for each simulation iteration and then conducted separate regression analyses. This 

requires aggregation of data and separate sets of analyses. I used distributional regression models 

(Bürkner, 2018; Rigby & Stasinopoulos, 2005) which simultaneously estimate predictors for all 

dependent variable distribution parameters and allowed me to directly quantify IRTree estimate 

bias and variability together.  

For the item parameter regression models, I used all of the previously mentioned 

predictors and their interactions. For the node depth factor, I coded nodes 1, 2, 3, and 4 as 0, 1, 

2, and 3, respectively. I standardized the sample size and test length predictors to facilitate 

estimation. I took the log of the relative propagation predictor to center the average expected 

propagation at zero. By coding the predictors this way, the intercept represents the expected bias 

or variance for the root-node. The main effects for node depth predictor represent increases or 

decreases in the outcomes compared to the root-node. The main effects for sample size, test 

length, and log-relative observation propagation are effects on bias and variance for the root-
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node. Interactions between these predictors and node depth represent effects on the outcome for 

deeper nodes. The sample size and test length factors were centered and standardized to facilitate 

estimation. The predictors of the variance for the recovered parameter estimates are on the log 

scale. I used the same predictors for the person ability parameters except for the relative 

propagation factor. I present the regression model results for each analysis, but I will rely on 

posterior predictions of bias and variance for more intuitive interpretations. Additional tables and 

figures of the posterior distributions are in the appendix, including parameter density plots, 

MCMC chain trace plots, and parameter correlation plots. 

I used the same analytic strategy for 1PL and 2PL simulation item difficulty and person 

ability parameters. I encountered estimation issues with the 2PL models, which prevented 

estimation of the standard errors. The discrimination parameters were also poorly estimated, and 

I will detail this further in the section on discrimination parameter bias. Despite these issues, the 

results for two types of models were very similar for the item difficulty and person ability 

estimates. Below, I will present the results for both models grouped by parameter type. I will 

discuss the results in general terms that apply to both models for the sake of clarity and brevity 

instead of restating the same conclusions for each model separately. However, I will note when 

the results differ between the two models. 

Item Difficulty Parameter Bias 

Descriptive Analysis 

Adequate estimation of the item parameters requires a high degree of correlation between 

the true and estimated parameters. Strong positive correlations are indicative of estimated 

parameters with similar rank ordering to the true parameters. For both 1PL and 2PL simulation 

results, I inspected histograms (Figures 4 and 5) and scatter plots (Figures 6 and 7) of the item 



 54 

difficulty parameters. The true and estimated parameters were strongly and positively correlated 

for both the 1PL and 2PL models. Nodes 3 and 4 for the 10-item 500-respondent condition 

appear to have slightly weaker average correlations than the other conditions.  
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Figure 4. Histograms of 1PL Item Difficulty Observed and Model Predicted Bias 

 

Note. Observed estimate of bias is displayed as a solid black line. Model predicted estimate 

bias is displayed as the grey shaded region 
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Figure 5. Histograms of 2PL Item Difficulty Observed and Model Predicted Bias. 

 

Note. Observed estimate of bias is displayed as a solid black line. Model predicted estimate 

bias is displayed as the grey shaded region 
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Figure 6. Scatterplot of True and Estimated 1PL Item Difficulty Parameters. 
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Figure 7. Scatterplot of True and Estimated 2PL Item Difficulty Parameters. 
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Regression Model Results 

I conducted separate regression analyses for the 1PL and 2PL simulation data. I created 

each model with 3 MCMC chains, 1,000 warm-up iterations per chain, and 2,000 sampling 

iterations per chain. Inspection of the chains with trace plots suggested adequate mixing. All �̂� 

values were equal to 1.00 after rounding which suggests adequate sampling from the posterior. 

The shaded regions in Figures 4 and 5 displays posterior predictions of bias across each 

condition. Table 4 displays predicted and observed bias means and standard deviations across 

each condition for the 1PL and 2PL models. The model predictions for the 1PL simulation 

appear to adequately approximate the observed bias distributions for all conditions. The 2PL 

predictions appear to overestimate the variance, particularly for nodes 3 and 4 with a sample size 

of 500. The overestimation does not appear to be severe, but some caution is warranted. Table 5 

provides the model parameter means and 95% highest posterior density intervals (HPDI). 
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Table 4. 1PL Item Difficulty Model Predicted and Observed Means and Standard Deviations. 

   1PL Model  2PL Model 

 
Node 

Test 

Length 

Sample Size = 500  Sample Size = 2000  Sample Size = 500  Sample Size = 2000 

 Predicted Observed  Predicted Observed  Predicted Observed  Predicted Observed 

Mean of 

Bias 

1 

10 

0.00 0.00  0.00 0.00  -0.01 -0.02  0.00 0.01 

2 0.00 0.00  0.00 0.00  -0.01 -0.01  0.00 0.00 

3 0.00 -0.02  0.00 -0.01  -0.01 -0.01  0.00 -0.01 

4 0.01 0.03  0.00 0.00  -0.01 0.01  0.01 0.01 
  

  
 

  
      

1 

30 

0.00 0.00  0.00 0.00  0.00 -0.02  0.00 -0.01 

2 0.00 0.00  0.00 0.00  0.00 0.01  0.00 0.01 

3 0.00 0.00  0.00 -0.01  0.00 0.00  0.00 -0.01 

4 0.00 0.00  0.00 0.00  0.00 0.01  0.00 0.01 

              

              

Standard  

Deviation 

of Bias 

1 

10 

0.11 0.12  0.06 0.06  0.18 0.18  0.10 0.10 

2 0.18 0.18  0.09 0.09  0.27 0.26  0.15 0.14 

3 0.26 0.26  0.13 0.13  0.38 0.34  0.23 0.20 

4 0.37 0.36  0.20 0.20  0.53 0.43  0.35 0.32 
  

  
 

  
      

1 

30 

0.11 0.12  0.06 0.06  0.17 0.18  0.09 0.12 

2 0.17 0.18  0.09 0.09  0.25 0.23  0.14 0.13 

3 0.26 0.26  0.14 0.13  0.38 0.33  0.21 0.20 

4 0.38 0.37  0.21 0.20  0.56 0.45  0.31 0.28 
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Mean parameter bias was very low. Posterior means of the model linear predictor 

parameters were zero with very little uncertainty. None of the predictors provided substantial 

explanation of bias because mean bias was essentially zero under all conditions. The variance in 

the mean bias intercepts between simulated datasets was also small for both the 1PL simulation, 

�̅�𝜎[1𝑃𝐿]
= 0.02, 95%HPDI = [0.02,0.02], and 2PL simulation, �̅�𝜎[2𝑃𝐿]

= 0.00, 95%HPDI =

[0.00, 0.00]. This suggests that there is very little variability in mean bias between simulated 

datasets. 

The between-simulation differences in estimate variability were small for the 1PL, 

�̅�𝜎[1𝑃𝐿]
= 0.02, 95%HDPI [0.00, 0.04], and 2PL simulations, �̅�𝜎[2𝑃𝐿]

= 0.06, 95%HDPI [0.05, 0.08]. 

The variability in estimate bias is not meaningfully influenced by simulation iteration specific 

factors that are not already accounted for by the model predictors. The variability for the first 

node (i.e. the model intercept) was relatively small for the 1PL, �̅�𝜎[1𝑃𝐿]
= −2.54,

95%HDPI[−2.56,−2.53], and 2PL models, �̅�𝜎[2𝑃𝐿]
= −2.10, 95%HDPI[−2.11,−2.09]. The 2PL 

model had notably larger estimate variance than the 1PL model. Node depth had a reliable, 

small, and positive effect on estimate variability, �̅�𝜎[1𝑃𝐿]
= 0.34, 95%HPDI[0.34, 0.35], �̅�𝜎[2𝑃𝐿]

=

0.35,95%HDPI[0.34, 0.36], such that deeper nodes exhibited greater estimate uncertainty. Sample 

size had a small negative reliable effect on estimate variability, �̅�𝜎[1𝑃𝐿]
= −0.36,

95%HPDI[−0.37, −0.35], �̅�𝜎[2𝑃𝐿]
= −0.33, 95%HDPI[−0.34, −0.31], such that smaller sample 

sizes increase estimate uncertainty for the root-node. Relative propagation had a small negative 

reliable effect on estimate uncertainty, �̅�𝜎[1𝑃𝐿]
= −0.42, 95%HPDI [−0.46,−0.38], �̅�𝜎[2𝑃𝐿]

=

−0.42, 95%HPDI [−0.44,−0.39], such that lower than average propagation increases estimate 

variability. The two-way and three-way interactions between sample size, node depth, and 
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propagation were all reliably different from zero but were very small and did not provide much 

practical explanation of estimate variability. Test length did not have a reliable effect on 

difficulty parameter estimate uncertainty, nor did any of its interactions with the other predictors. 

Tables 6, 7, 8, and 9 display posterior predictions of difficulty parameter bias across different 

levels of sample size, propagation rates, and node depth for both models with 10- and 30-item 

tests. In sum, bias is negligible, the 2PL model exhibits greater estimate variability, and smaller 

sample sizes, lower relative propagation rates, and deeper nodes exhibit greater estimate 

variability. 
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Table 5. Item Difficulty Models Posterior Means and Credibility Intervals of Predictors of Estimate Bias and Variability. 

 1PL Model  2PL Model 

 Estimate Bias  Estimate Variability†  Estimate Bias  Estimate Variability† 

 𝑏𝜇
̅̅ ̅  95%𝐻𝑃𝐷𝐼   𝑏𝜎

̅̅ ̅  95%𝐻𝑃𝐷𝐼   𝑏𝜇
̅̅ ̅  95%𝐻𝑃𝐷𝐼   𝑏𝜎

̅̅ ̅  95%𝐻𝑃𝐷𝐼  

Intercept 0.00 [ 0.00, 0.00]  -2.54 [-2.56,-2.53]   0.00 [ 0.00, 0.00]  -2.10 [-2.11,-2.09] 

D 0.00 [ 0.00, 0.00]  0.34 [ 0.34, 0.35]   0.00 [ 0.00, 0.00]   0.35 [ 0.34, 0.36] 

S 0.00 [ 0.00, 0.00]  -0.36 [-0.37,-0.34]   0.00 [ 0.00, 0.00]  -0.33 [-0.34,-0.31] 

T 0.00 [ 0.00, 0.00]  0.00 [-0.02, 0.01]   0.00 [ 0.00, 0.00]  -0.03 [-0.04,-0.02] 

P 0.00 [-0.01, 0.01]  -0.42 [-0.46,-0.38]   0.01 [ 0.00, 0.01]  -0.42 [-0.44,-0.39] 

D x S 0.00 [ 0.00, 0.00]  0.01 [ 0.00, 0.02]   0.00 [ 0.00, 0.00]   0.01 [ 0.01, 0.02] 

D x T 0.00 [ 0.00, 0.00]  0.00 [ 0.00, 0.01]   0.00 [ 0.00, 0.00]   0.00 [-0.01, 0.00] 

S x T 0.00 [ 0.00, 0.00]  0.00 [-0.02, 0.01]   0.00 [ 0.00, 0.00]  -0.01 [-0.02, 0.00] 

D x P 0.00 [ 0.00, 0.01]  0.02 [ 0.00, 0.03]   0.00 [-0.01, 0.00]   0.04 [ 0.02, 0.06] 

S x P 0.00 [-0.01, 0.01]  0.04 [ 0.00, 0.08]  -0.01 [-0.01, 0.00]  -0.03 [-0.06, 0.00] 

T x P 0.00 [-0.01, 0.01]  -0.01 [-0.05, 0.04]   0.00 [-0.01, 0.01]   0.00 [-0.03, 0.02] 

D x S x T 0.00 [ 0.00, 0.00]  0.00 [-0.01, 0.01]   0.00 [ 0.00, 0.00]  -0.01 [-0.02, 0.00] 

D x S x P 0.00 [-0.01, 0.00]  -0.02 [-0.04, 0.00]   0.00 [ 0.00, 0.01]   0.01 [-0.01, 0.02] 

D x T x P 0.00 [ 0.00, 0.00]  0.00 [-0.02, 0.02]   0.00 [-0.01, 0.01]  -0.01 [-0.02, 0.01] 

S x T x P 0.00 [-0.01, 0.01]  -0.02 [-0.06, 0.02]   0.00 [-0.01, 0.00]  -0.02 [-0.05, 0.00] 

D x S x T x P 0.00 [ 0.00, 0.00]  0.01 [-0.01, 0.03]   0.00 [ 0.00, 0.01]   0.01 [-0.01, 0.03] 

𝜏 0.02 [ 0.02, 0.02]  0.02 [ 0.00, 0.04]   0.00 [ 0.00, 0.00]   0.06 [ 0.05, 0.08] 

Note. N = 32,000. D = node depth, S = sample size (standardized, M = 1,250, SD = 750.01), T = test length (standardized, M = 

25.00, SD = 8.66), P = log-relative propagation, 𝜏 = between-simulation iteration intercept variance, HPDI = highest posterior 

density interval. † Model parameters are on the log scale. 
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Table 6. Posterior Prediction Means and Credibility Intervals of 1PL Item Difficulty Parameter Estimate Bias for 10-

item test. 

Node 
Propagation 

Ratio† 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI 

1 –– 0.00 [-0.24,0.26]  0.00 [-0.22,0.23]  0.00 [-0.18,0.17]  0.00 [-0.12,0.12] 

             

2 

0.05 0.03 [-1.29,1.36]  0.02 [-1.20,1.11]  0.02 [-0.82,0.88]  0.00 [-0.45,0.45] 

0.5 0.01 [-0.47,0.47]  0.01 [-0.43,0.42]  0.00 [-0.32,0.32]  0.00 [-0.20,0.20] 

1 0.01 [-0.35,0.35]  0.00 [-0.31,0.31]  0.00 [-0.26,0.23]  0.00 [-0.17,0.15] 

2 0.00 [-0.28,0.25]  -0.01 [-0.24,0.23]  0.00 [-0.19,0.19]  0.00 [-0.13,0.12] 

             

3 

0.05 0.03 [-1.42,1.58]  0.01 [-1.25,1.38]  0.01 [-1.01,1.09]  0.01 [-0.68,0.67] 

0.5 0.01 [-0.60,0.63]  0.00 [-0.54,0.56]  0.01 [-0.44,0.44]  0.00 [-0.29,0.28] 

1 0.00 [-0.47,0.48]  0.00 [-0.42,0.44]  0.00 [-0.35,0.33]  -0.01 [-0.23,0.21] 

2 0.00 [-0.36,0.38]  0.00 [-0.33,0.33]  0.00 [-0.26,0.28]  0.00 [-0.19,0.16] 

             

4 

0.05 0.02 [-1.79,1.63]  0.00 [-1.62,1.60]  0.01 [-1.41,1.36]  0.00 [-1.03,1.00] 

0.5 0.01 [-0.79,0.85]  0.00 [-0.74,0.76]  0.00 [-0.59,0.65]  0.00 [-0.41,0.40] 

1 0.00 [-0.64,0.70]  0.00 [-0.62,0.59]  0.00 [-0.45,0.50]  0.00 [-0.32,0.30] 

2 0.00 [-0.57,0.51]  0.01 [-0.44,0.53]  0.00 [-0.37,0.40]  -0.01 [-0.24,0.24] 

Note. 𝛽∗̅̅ ̅ = mean posterior predicted difficulty estimate bias, HPDI = highest posterior density interval. †Formula for 

approximate number of observed responses: 𝑛 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 × 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 × 0.5𝑁𝑜𝑑𝑒−1. 
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Table 7. Posterior Prediction Means and Credibility Intervals of 1PL Item Difficulty Parameter Estimate Bias for 30-

item test. 

Node 
Propagation 

Ratio† 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI 

1 –– 0.00 [-0.26,0.25]  0.00 [-0.23,0.22]  0.00 [-0.18,0.17]  0.00 [-0.11,0.12] 

             

2 

0.05 0.01 [-1.25,1.24]  0.01 [-1.02,1.14]  0.01 [-0.83,0.83]  0.00 [-0.50,0.48] 

0.5 0.00 [-0.48,0.46]  0.00 [-0.42,0.40]  0.00 [-0.33,0.32]  0.00 [-0.20,0.20] 

1 -0.01 [-0.35,0.34]  0.00 [-0.29,0.32]  0.00 [-0.23,0.25]  0.00 [-0.15,0.16] 

2 0.00 [-0.26,0.26]  0.00 [-0.22,0.24]  0.00 [-0.19,0.18]  0.00 [-0.13,0.11] 

             

3 

0.05 0.00 [-1.56,1.56]  -0.01 [-1.40,1.37]  0.00 [-1.12,1.07]  0.01 [-0.68,0.71] 

0.5 0.00 [-0.61,0.63]  0.00 [-0.56,0.56]  0.00 [-0.44,0.45]  0.00 [-0.30,0.27] 

1 0.00 [-0.50,0.47]  0.00 [-0.45,0.42]  0.00 [-0.34,0.36]  0.00 [-0.22,0.22] 

2 0.00 [-0.37,0.37]  0.00 [-0.32,0.37]  0.00 [-0.27,0.26]  0.00 [-0.17,0.17] 

             

4 

0.05 0.01 [-1.90,1.89]  0.00 [-1.70,1.76]  0.00 [-1.38,1.44]  -0.01 [-0.95,0.99] 

0.5 0.00 [-0.90,0.80]  -0.01 [-0.76,0.75]  0.00 [-0.63,0.61]  -0.01 [-0.45,0.37] 

1 -0.01 [-0.67,0.69]  0.00 [-0.60,0.61]  0.00 [-0.49,0.47]  0.00 [-0.32,0.31] 

2 0.01 [-0.52,0.53]  0.00 [-0.46,0.47]  0.00 [-0.37,0.38]  0.00 [-0.24,0.24] 

Note. 𝛽∗̅̅ ̅ = mean posterior predicted difficulty estimate bias, HPDI = highest posterior density interval. †Formula for 

approximate number of observed responses: 𝑛 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 × 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 × 0.5𝑁𝑜𝑑𝑒−1. 
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Table 8. Posterior Prediction Means and Credibility Intervals of 2PL Item Difficulty Parameter Estimate Bias for 10-

item Tests. 

Node 
Propagation 

Ratio† 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI 

1 –– -0.01 [-0.39,0.38]  -0.01 [-0.35,0.34]  -0.01 [-0.30,0.27]  0.00 [-0.19,0.19] 

             

2 

0.05 -0.05 [-1.65,1.46]  -0.05 [-1.46,1.43]  -0.03 [-1.18,1.22]  -0.01 [-0.81,0.80] 

0.5 -0.02 [-0.71,0.66]  -0.02 [-0.66,0.61]  -0.01 [-0.51,0.50]  0.00 [-0.35,0.35] 

1 0.00 [-0.55,0.51]  -0.01 [-0.50,0.46]  0.00 [-0.40,0.39]  0.00 [-0.26,0.28] 

2 0.00 [-0.41,0.43]  0.00 [-0.37,0.38]  0.00 [-0.31,0.32]  0.00 [-0.22,0.21] 

             

3 

0.05 -0.06 [-1.71,1.80]  -0.06 [-1.62,1.59]  -0.04 [-1.40,1.36]  0.03 [-1.04,1.04] 

0.5 -0.01 [-0.86,0.89]  -0.02 [-0.81,0.81]  0.00 [-0.71,0.67]  0.01 [-0.52,0.50] 

1 -0.01 [-0.73,0.71]  0.00 [-0.69,0.65]  0.00 [-0.55,0.56]  0.00 [-0.39,0.40] 

2 0.00 [-0.59,0.61]  0.00 [-0.55,0.54]  0.00 [-0.45,0.46]  0.00 [-0.33,0.32] 

             

4 

0.05 -0.05 [-2.03,2.04]  -0.07 [-2.09,1.73]  -0.02 [-1.65,1.69]  0.04 [-1.28,1.32] 

0.5 -0.02 [-1.22,1.12]  -0.03 [-1.12,1.05]  -0.01 [-0.92,0.98]  0.01 [-0.68,0.73] 

1 -0.01 [-1.04,0.95]  -0.01 [-0.91,0.96]  -0.01 [-0.73,0.85]  0.01 [-0.60,0.58] 

2 0.01 [-0.85,0.84]  0.02 [-0.77,0.81]  0.00 [-0.71,0.66]  -0.01 [-0.51,0.49] 

Note. 𝛽∗̅̅ ̅ = mean posterior predicted difficulty estimate bias, HPDI = highest posterior density interval. †Formula for 

approximate number of observed responses: 𝑛 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 × 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 × 0.5𝑁𝑜𝑑𝑒−1. 
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Table 9. Posterior Prediction Means and Credibility Intervals of 2PL Item Difficulty Parameter Estimate Bias for 30-

item Tests. 

Node 
Propagation 

Ratio† 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI  𝛽∗̅̅ ̅ 95% HPDI 

1 ––  0.00 [-0.37, 0.37]   0.00 [-0.34, 0.33]   0.00 [-0.26, 0.27]   0.00 [-0.16, 0.17] 

             

2 

0.05 -0.04 [-1.43, 1.45]  -0.03 [-1.36, 1.28]  -0.02 [-1.20, 1.10]   0.00 [-0.89, 0.80] 

0.5 -0.01 [-0.67, 0.66]  -0.01 [-0.62, 0.56]  -0.01 [-0.52, 0.44]   0.00 [-0.33, 0.31] 

1 -0.01 [-0.50, 0.54]   0.00 [-0.47, 0.46]   0.01 [-0.36, 0.38]   0.01 [-0.22, 0.26] 

2  0.01 [-0.39, 0.41]   0.01 [-0.35, 0.36]   0.01 [-0.27, 0.30]   0.00 [-0.19, 0.17] 

             

3 

0.05 -0.01 [-1.93, 1.89]  -0.03 [-1.84, 1.67]   0.00 [-1.55, 1.40]   0.01 [-1.02, 1.08] 

0.5  0.00 [-0.89, 0.89]  -0.01 [-0.79, 0.83]   0.00 [-0.66, 0.66]   0.00 [-0.43, 0.45] 

1  0.00 [-0.72, 0.72]   0.01 [-0.65, 0.65]   0.01 [-0.53, 0.53]   0.00 [-0.34, 0.35] 

2  0.00 [-0.60, 0.55]   0.01 [-0.51, 0.55]   0.01 [-0.40, 0.44]   0.00 [-0.27, 0.26] 

             

4 

0.05  0.02 [-2.47, 2.43]   0.01 [-2.27, 2.21]   0.00 [-1.82, 1.86]  -0.01 [-1.28, 1.33] 

0.5  0.00 [-1.27, 1.21]  -0.01 [-1.05, 1.16]   0.01 [-0.90, 0.94]   0.00 [-0.65, 0.60] 

1 -0.01 [-1.05, 1.00]   0.00 [-0.94, 0.91]   0.00 [-0.71, 0.77]   0.01 [-0.47, 0.53] 

2  0.01 [-0.80, 0.86]   0.00 [-0.72, 0.74]   0.01 [-0.57, 0.61]   0.01 [-0.38, 0.40] 

Note. 𝛽∗̅̅ ̅ = mean posterior predicted difficulty estimate bias, HPDI = highest posterior density interval. †Formula for 

approximate number of observed responses: 𝑛 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 × 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 × 0.5𝑁𝑜𝑑𝑒−1. 
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Adequate Recovery Criterion 

I conducted posterior predictive simulations to get a better practical understanding for 

when variability exceeds the 𝜎�̂� = 0.25 limit mentioned above. Propagation proportion for the 

1PL is determined by the combination of auxiliary-item difficulty parameters in a tree, which in 

turn determines estimate uncertainty. These limits suggest some constraint on the possible 

combination of auxiliary-item difficulties in an item set. Using all 6,000 posterior draws from 

each regression model, I simulated data for a 4-node tree with sample sizes of 500 and 2,000, test 

lengths of 10 items and 30 items, and relative propagation rates ranging from 0.10 to 3 in 

increments of 0.10. For each combination of sample size, test length, and node depth, I then 

identified the minimum propagation rate required to maintain the 𝜎�̂� = 0.25 limit. I then 

simulated 1,000,000 draws from a standard normal distribution for 3 nodes (depths 1 through 3), 

converted them to probabilities with the logistic function, and calculated their cumulative 

product. For each condition and each node, I then calculated the proportion of these simulated 

products that propagated at least the minimum proportion of observations identified above that 

propagate enough observations. Table 10 presents these propagation minimums, approximate 

minimum node sample sizes, and the estimated proportion of all possible combinations of 

normally distributed difficulty parameters that would produce at least the minimum propagation 

rate. These proportions represent how likely a randomly drawn set of auxiliary-items would 

propagate enough observations to estimate the underlying item difficulties within the 𝜎�̂� = 0.25 

uncertainty interval.  

For the 1PL model, across all conditions the minimum sample size for a given node was 

roughly 100 observations. With large sample sizes and short maximum tree lengths (e.g., depth 

of 1 or 2), it is likely for items to exhibit difficulty that allows for sufficiently narrow uncertainty 
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intervals. Approximately 98% of all possible node 1 item difficulties result in adequate 

propagation to node 2 (depth of 1). This drops to 86% for node 3 (depth of 2). For nodes at a 

depth of 3 (node 4) and large sample sizes, the percentage of difficulty parameter combinations 

drops to around 60-70% depending on the test length. In more concrete terms, a researcher could 

expect 3-4 items on a 10-item test to have large uncertainty intervals at a depth of 3. The results 

are more concerning for small sample sizes. 84% of all possible root-node items will propagate 

enough observations to nodes at depths of 1. The possible combinations drop to random chance 

levels for depths of 2. Finally, it is unlikely that ancestor items will propagate enough 

observations to nodes at depths of 3 or greater. In concrete terms, a 10-item test would likely 

have 8-9 items with impractically large uncertainty intervals for nodes at depths of 3. These 

results suggest that small sample sizes and long tree designs cannot produce data which provide 

sufficient certainty for the deepest node item parameters estimates. 

I used the same procedure for the 2PL regression model to estimate the minimum 

propagation rates. When calculating the proportion of parameter combinations, I included a 

discrimination parameter using 1,000,000 draws from a standard log-normal distribution. The 

results for the 2PL models are more restrictive. Unlike the 1PL model, the minimum node-

specific sample size required increases with depth and decreases slightly with longer tests and 

larger total samples sizes. Large sample sizes make adequate uncertainty estimation likely for 

nodes at a depth of 1. This drops to around 60-66% for depth 2 with large sample sizes. 

Adequate estimation becomes unlikely for both 10- and 30-item tests for nodes at a depth of 3. 

The proportion of root-node item difficulty parameters that would propagate enough 

observations to the second node (depth of 1) with small sample sizes is near chance levels. This 

proportion becomes highly unlikely for small sample sizes with depths of 2. Finally, the 
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simulation did not produce any parameter combinations that would propagate enough 

observations to nodes at a depth of 3 when using small sample sizes.  

Both the 1PL and 2PL minimum propagation predictions are anti-conservative. The 

regression models do not include predictors for differences in item difficulty or discrimination. 

The regression model predictors make predictions for the bias distribution of an average item. 

Items that have difficulty parameters further from the average, or discrimination parameters 

closer to zero, exhibit greater estimate variability (Thissen & Wainer, 1982).  
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Table 10. Item Difficulty Minimum Propagation. 

   1PL Model  2PL Model 

Test 

Length 

Total 

Sample 

Size 

Node† 

Minimum 

Propagation 

Rate 

Node 

Sample Size 

Parameter 

Combinations†† 

 Minimum 

Propagation 

Rate 

Node 

Sample Size 

Parameter 

Combinations†† 

10 

Items 

500 

2 0.20 100 0.84  0.50 250 0.50 

3 0.18 87.50 0.55  0.63 312.50 0.06 

4 0.24 118.75 0.16  – – – 

         

2000 

2 0.05 100 0.98  0.10 200 0.94 

3 0.05 100 0.86  0.15 300 0.60 

4 0.05 100 0.63  0.24 475 0.16 

          

30 

Items 

500 

2 0.20 100 0.84  0.45 225 0.56 

3 0.20 100 0.50  0.60 300 0.07 

4 0.21 106.25 0.20  – – – 

         

2000 

2 0.05 100 0.98  0.10 200 0.94 

3 0.05 100 0.86  0.13 250 0.66 

4 0.04 75 0.71  0.14 275 0.33 

Note. † Node 1 (i.e., depth of 0 or root-node) is excluded as it is not affected by propagation. †† Proportion of possible item 

difficulty parameter combinations for ancestor nodes that would propagate enough observations on average to achieve a two-

standard deviation uncertainty interval ranging between -0.5 and 0.5 for item difficulty estimates. Minimum Propagation is 

the proportion of observations from the total sample size that must be propagated. Node Sample Size is the Total Sample Size 

multiplied by the Minimum Propagation. There are missing values for the 2PL model with for node 4 and a sample size of 

500 because these conditions did not produce sufficiently narrow uncertainty intervals across the range of simulated relative 

propagation values. 
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Difficulty Estimate Standard Errors 

The mirt estimation procedure did not produce standard errors for the 2PL models, so I 

only analyzed the standard errors for the 1PL models. I calculated coverage rates of the standard 

errors as the average number of true item difficulty estimates that resided within 95% normal 

theory confidence intervals using the standard errors produced by the mirt estimation procedure. 

The rates for all conditions were high (M = 94%, SD = 1%), with the lowest (88%) occurring for 

500 respondent sample sizes with a 30-item test for the root-node. Regarding coverage, the 

standard errors are large enough to produce confidence intervals that encompass the true 

difficulty parameter estimates. 

Using posterior predictive simulations, I estimated the regression model predicted 

estimate standard deviation and compared this to the standard errors produced by the mirt 

package estimation procedure for each item in the simulated data sets. I consider a standard error 

of an item that is smaller than its model predicted estimate standard deviation to be anti-

conservative relative to the regression model predictions. This assumes that the regression model 

predicted standard deviations are valid. I calculated rates of anti-conservative standard errors in 

each condition. Table 11 display these rates. The lowest rate, 0.55, occurred in 30-item tests with 

500 participants at the root-node, and the highest rate, 0.80, occurred for 30-item tests with 2,000 

participants with a higher-than-average propagation rate at node 4. This suggests that the 

standard errors are not large enough to provide an adequate estimate of the uncertainty around 

the parameter estimates, a conclusion inconsistent with the coverage estimates. This could be an 

indication that the regression model overestimates the variance in estimate bias. These results 

suggest that the standard errors produced estimation procedure are adequate for producing 

confidence intervals that encompass the true parameter. However, assuming the regression 
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model predictions are valid, the standard errors of the difficulty estimates may not be 

conservative enough for tasks such as item selection.
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Table 11. Rates of Anti-Conservative Standard Error Estimates and Coverage for 1PL Item 

Difficulty Parameter Estimates. 

   Anti-Conservative SE  SE Coverage 

Node Sample Size 
Test 

Length 

Relative Propagation  Relative Propagation 

High Low  High Low 

1 

500 
10 0.56 ––  0.95 –– 

30 0.55 ––  0.93 –– 

2,000 
10 0.75 ––  0.94 –– 

30 0.66 ––  0.95 –– 

        

2 

500 
10 0.57 0.72  0.95 0.94 

30 0.61 0.71  0.94 0.95 

2,000 
10 0.76 0.57  0.96 0.95 

30 0.64 0.64  0.95 0.94 

        

3 

500 
10 0.69 0.65  0.94 0.94 

30 0.70 0.68  0.95 0.94 

2,000 
10 0.75 0.63  0.96 0.96 

30 0.77 0.68  0.94 0.94 

        

4 

500 
10 0.79 0.62  0.94 0.96 

30 0.79 0.71  0.94 0.93 

2,000 
10 0.77 0.66  0.94 0.94 

30 0.80 0.69  0.95 0.94 

Note. SE = IRTree model standard error. Relative Propagation indicates whether the relative 

observation propagation rate was higher/equal to or lower than the average (i.e., 1). 
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Person Ability Parameter Bias 

Descriptive Analysis 

Figures 8 and 9 displays histograms of the person ability bias distributions, which appear 

normally distributed and increase in variance with deeper nodes. I inspected a scatter plot of the 

true and estimated person ability parameters (Figures 10 and 11). Two observations were 

immediately obvious. The strength and reliability of the positive linear relationships between the 

true and estimated parameters diminishes as node depth increases. There is also a flat horizontal 

line of estimated parameters at �̂� = 0 for nodes 3 and 4 for all conditions. The line is much more 

prominent for node 4 and for the 10-item test lengths. This line is also barely visible for the 10-

item tests at node 2. Node 1 does not appear to exhibit this trend. The line suggests that a large 

portion of the estimated parameters are shrunk to zero regardless of true ability. I then inspected 

density plots of the estimated ability parameters for each simulation iteration, separated by 

condition and node depth (Figure 12 and 13). These plots further indicate that large portions of 

the estimates in each iteration are shrunk to near zero.  
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Figure 8. Observed and Model Predicted 1PL Person Ability Parameter Bias. 

 

Note. True ability parameter distribution is displayed with a black line. Estimated ability 

parameter distribution is displayed with the grey shaded region. 
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Figure 9. Observed and Model Predicted 2PL Person Ability Estimate Bias. 

 

Note. True ability parameter distribution is displayed with a black line. Estimated ability 

parameter distribution is displayed with the grey shaded region. 
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Figure 10. Scatterplot of 1PL True and Estimated Person Ability Parameters 
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Figure 11. Scatterplot of 2PL True and Estimated Person Ability Parameters. 
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Figure 12. Histograms of 1PL Person Ability Parameter Estimates. 

 

 



 81 

Figure 13. Histograms of 2PL Person Ability Estimates. 
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The ability parameters were estimated with the expected a posteriori (EAP) procedure in 

the mirt package, which estimates the mean of the posterior of 𝜃. This requires calculating the 

likelihood of the data given the item parameters over some distribution of 𝜃 (typically a standard 

normal distribution). If there is no data to calculate the likelihood and assuming 𝜃 is normally 

distributed with a mean of zero, the EAP estimate should be zero. Participants that never reach 

some nodes in an IRTree for any item would have completely missing data for those latent traits. 

There is no information available to estimate these participants’ latent ability parameters. This 

results in zero or near zero estimates and is likely what produced these horizontal lines in the 

scatter plots.  

I simulated 100 datasets with 2,000 respondents for 10-item and 30-items tests and 

calculated the proportion of respondents with zero responses for each node. For a 10-item test, 

the resultant proportions of not answering any items at depths 1, 2, and 3, are 0.02 

95%HDPI[0.00, 0.05],0.13 95%HDPI[0.04, 0.24], and 0.36 95%HDPI[0.21, 0.49]. For a 30-item 

test, the resultant proportions of not answering any items at depths 1, 2, and 3, are 0.00 

95%HDPI[0.00, 0.00],0.02 95%HDPI[0.00, 0.05], and 0.10 95%HDPI[0.05, 0.19]. These are 

estimates of the expected proportion of the total sample size for which the latent ability 

parameters cannot be estimated from the data for a given node. 

This mixture of estimable and non-estimable parameters is not revealed in density plots 

of estimate bias, which all look uni-modal and normally distributed. EAP estimates shrunk to 

zero are canceled out when estimate bias is calculated, so this spike at zero is not apparent unless 

the actual estimates are inspected. Although the shrunken estimates are not affecting estimate 

bias or variability, they likely affect the rank order of the estimates. I inspected the distributions 

of within-simulation iteration correlations between the estimated and true ability parameters for 
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each condition and each node (Figure 14). The distributions suggest that the correlations are all 

positive but decrease sharply at greater depths in all conditions. The shrunken estimates are 

likely attenuating the correlations between the true and estimated parameters. I suspect that 

removal of respondents that have completely missing data on a given latent trait from the EAP 

estimate distribution will improve these correlations to some degree. I did not save information 

about each respondent’s response pattern, so I do not have information about which respondents 

have completely missing data. Another study is required to investigate this further.
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Figure 14. Histograms of Correlations Between True and Estimated 1PL Person Ability 

Parameters.

 

Note. Observed correlation distributions are shown by the solid black line. Posterior predictions 

of the correlations are shown by the grey shaded regions. 
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Figure 15. Histograms of Correlations Between True and Estimated 2PL Person Ability 

Parameters.

Note. Observed correlation distributions are shown by the solid black line. Posterior predictions 

of the correlations are shown by the grey shaded regions. 
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Regression Model Results 

Assuming that the shrunken EAP estimates are approximately zero or approximate a 

normal distribution with a mean of zero and very small standard deviation, the mean and 

variance of the bias distribution should not be affected. It may still be informative to quantify the 

relationships between the manipulated factors and ability estimate bias and variability. 

Due to the number of observations in the sample (𝑁 = 2,000,000), using the entire 

dataset for the regression model was neither practical nor necessary. Instead, I took a random 

sample of 10,000 observations to use for the regression analysis. I took the same analytic 

approach as I did for the item parameters except that I did not include the item-level relative 

response propagation factor. I used a standard normal prior distribution for the mean and 

standard deviation regression parameters. I estimated the model parameters with 3 chains, 1,000 

warm-up iterations, and 2,000 sampling iterations. Again, �̂� values were all approximately equal 

to 1.00 and the trace plots of the posterior distribution of the parameters suggested adequate 

chain mixing. Table 12 displays model predicted and observed means and standard deviations of 

the person ability estimate bias distributions. Figures 8 and 9 depict observed and model 

predicted distributions of the person ability estimate bias. The model slightly overestimates the 

variance of the bias distributions for nodes 1 and 4 and underestimates the variance for nodes 2 

and 3 for most conditions. I suspect this is due to the overrepresentation of near zero values 

creating a leptokurtic observed bias distribution for which the model, attempting to fit a normal 

distribution, compensates for with slight biases in the variance. The over- and under-estimation 

is not severe, and the model appears to provide an adequate description of the observed bias 

distributions. 
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Table 12. True and Estimated Person Ability Model Predicted and Observed Bias Means and Standard Deviations. 

   1PL Model  2PL Model 

 Test 

Length 
Node 

Sample Size = 500  Sample Size = 2000  Sample Size = 500  Sample Size = 2000 

 Predicted Observed  Predicted Observed  Predicted Observed  Predicted Observed 

Mean 

Bias 

10 

1 0.04 0.00  0.02 0.00  -0.02 0.04  -0.01 0.01 

2 0.05 0.01  0.03 -0.05  -0.02 0.08  0.00 -0.01 

3 0.04 0.04  0.03 -0.01  -0.04 -0.10  -0.01 0.01 

4 0.06 0.10  0.03 0.05  -0.03 0.02  -0.02 0.04 
  

  
 

  
      

30 

1 -0.02 -0.01  -0.03 -0.01  0.01 -0.04  -0.02 -0.01 

2 0.01 -0.03  -0.02 0.02  0.03 0.03  -0.02 0.00 

3 0.02 -0.09  0.00 -0.04  0.02 -0.05  -0.01 0.00 

4 0.05 0.02  0.03 0.02  0.03 0.04  0.02 -0.01 

   
  

 
  

      

              

Standard 

Deviation 

of 

Bias 

10 

1 0.64 0.59  0.63 0.58  0.54 0.47  0.53 0.52 

2 0.74 0.74  0.72 0.75  0.66 0.72  0.65 0.66 

3 0.86 0.88  0.82 0.87  0.80 0.84  0.79 0.85 

4 0.96 0.94  0.94 0.93  0.95 0.93  0.96 0.92 
  

  
 

  
      

30 

1 0.41 0.38  0.41 0.41  0.37 0.35  0.35 0.35 

2 0.52 0.54  0.52 0.57  0.48 0.49  0.46 0.47 

3 0.65 0.72  0.66 0.69  0.64 0.67  0.61 0.63 

4 0.84 0.82  0.84 0.81  0.86 0.81  0.81 0.76 
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Similar to the item difficulty parameters, none of the mean bias predictors, including the 

intercept, were different from zero in any practical sense. However, posterior predictions suggest 

that node 1 ability estimates from small to medium samples sizes (𝑁 ≤ 1,000) with long tests 

(𝐽 ≥ 100) are downwardly biased by roughly one-fifth of a standard deviation on average. The 

regression model did not “learn” from observations that were generated from very long tests. 

These conditions may be out of the range of valid predictions this model can make. It may also 

be indicative of the need for an adequate number of respondents in the sample to estimate the 

large number of item parameters for longer tests.  

With regard to estimate variability, the intercept suggests that the average estimate 

variability for the first node, �̅�𝜎[1𝑃𝐿] = −0.67, 95%HDPI[−0.70,−0.65], �̅�𝜎[2𝑃𝐿] =

−.84, 95%HDPI[−0.86,−0.81], is approximately 0.51 standard deviations for the 1PL model and 

0.43 for the 2PL model. Node depth had a small positive effect on estimate variability, �̅�𝜎[1𝑃𝐿] =

0.19,95%HDPI[0.17, 0.20], �̅�𝜎[2𝑃𝐿] = 0.24, 95%HDPI[0.22, 0.25], such that deeper nodes exhibit 

greater estimate variability. Test length had a small negative effect on estimate variability, 

�̅�𝜎[1𝑃𝐿] = −0.21, 95%HDPI[−0.23,−0.19], �̅�𝜎[2𝑃𝐿] = −0.20, 95%HDPI[−0.23,−0.18], such that 

longer tests provide more reliable estimates of the person ability parameters for the first node. 

The interaction between node depth and test length had a reliably positive but negligible effect 

on estimate variability, �̅�𝜎[1𝑃𝐿] = 0.05, 95%HDPI[0.04, 0.06], �̅�𝜎[2𝑃𝐿] =

0.04,95%HDPI[0.03, 0.05], such that deeper nodes weaken the uncertainty reducing benefits of 

longer test lengths. Sample size did not have an effect reliably different from zero. The two-way 

interactions between node depth and sample size, sample size and test length, and the three-way 

interaction between node depth, sample size, and test length, were not reliably different from 
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zero. Table 13 provides the results for the regression model. Table 14 provides posterior 

predictions for the average estimate bias. Figure 9 displays posterior predictions of the estimate 

bias for each node and condition. 
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Table 13. Person Ability Parameter Bias Model Posterior Means and Credibility Intervals of Predictors of Estimate Mean and 

Variance. 

 1PL Model  2PL Model 

 Estimate Bias  Estimate Variability†  Estimate Bias  Estimate Variability† 

 𝑏𝜇
̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜎

̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜇
̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜎

̅̅ ̅ 95%𝐻𝑃𝐷𝐼 

Intercept 0.00 [-0.02, 0.02]  -0.67 [-0.70, -0.65]  -0.01 [-0.02, 0.01]  -0.84 [-0.86, -0.81] 

D 0.01 [ 0.00, 0.02]  0.19 [ 0.17, 0.20]  0.00 [-0.01, 0.01]  0.24 [ 0.22, 0.25] 

S -0.01 [-0.02, 0.01]  -0.01 [-0.03, 0.02]  0.00 [-0.02, 0.01]  -0.01 [-0.04, 0.01] 

T -0.02 [-0.04, 0.00]  -0.21 [-0.23, -0.19]  0.00 [-0.02, 0.02]  -0.20 [-0.23, -0.18] 

D x S 0.00 [-0.01, 0.01]  0.00 [-0.01, 0.01]  0.00 [-0.01, 0.01]  0.00 [-0.01, 0.01] 

D x T 0.00 [-0.01, 0.02]  0.05 [ 0.04, 0.06]  0.00 [-0.01, 0.02]  0.04 [ 0.03, 0.05] 

S x T 0.00 [-0.01, 0.02]  0.01 [-0.01, 0.03]  -0.01 [-0.03, 0.01]  0.00 [-0.03, 0.02] 

D x S x T 0.00 [-0.02, 0.01]  0.00 [-0.01, 0.01]  0.00 [-0.01, 0.01]  0.00 [-0.02, 0.01] 

Note. 𝑁 = 10,000 randomly drawn from total simulated cases of 4 × 106 for each model. D = node depth, S = sample size 

(standardized, 𝑀1𝑃𝐿 = 1,687.25, 𝑆𝐷1𝑃𝐿 = 609.38; 𝑀2𝑃𝐿 = 1,706.75, 𝑆𝐷2𝑃𝐿 = 594.91), T = test length (standardized, 𝑀1𝑃𝐿 = 19.86, 

𝑆𝐷1𝑃𝐿 = 9.99; 𝑀2𝑃𝐿 = 20.07, 𝑆𝐷2𝑃𝐿 = 10.00), HPDI = highest posterior density interval. † Model parameters are on the log scale. 
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Table 14. Posterior Prediction Means and Credibility Intervals of 1PL Person Ability Parameter Estimate Bias. 

Node 
Test  

Length 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝜃∗̅̅ ̅ 95% HPDI  𝜃∗̅̅ ̅ 95% HPDI  𝜃∗̅̅ ̅ 95% HPDI  𝜃∗̅̅ ̅ 95% HPDI 

1 

5  0.06 [-1.35, 1.50]   0.04 [-1.32, 1.53]   0.06 [-1.29, 1.54]   0.02 [-1.26, 1.38] 

10  0.05 [-1.20, 1.36]   0.04 [-1.24, 1.25]   0.04 [-1.27, 1.20]   0.02 [-1.17, 1.27] 

30  0.00 [-0.81, 0.82]  -0.02 [-0.79, 0.81]  -0.02 [-0.85, 0.76]  -0.03 [-0.87, 0.75] 

50 -0.07 [-0.58, 0.45]  -0.07 [-0.57, 0.46]  -0.07 [-0.59, 0.46]  -0.06 [-0.63, 0.45] 

100 -0.23 [-0.63, 0.18]  -0.22 [-0.59, 0.13]  -0.20 [-0.47, 0.08]  -0.14 [-0.40, 0.10] 

  
 

          

2 

5  0.08 [-1.50, 1.66]   0.06 [-1.55, 1.70]   0.05 [-1.54, 1.61]   0.03 [-1.55, 1.51] 

10  0.05 [-1.45, 1.57]   0.05 [-1.40, 1.49]   0.03 [-1.41, 1.47]   0.03 [-1.27, 1.57] 

30  0.01 [-1.07, 0.99]   0.01 [-0.97, 1.03]   0.01 [-1.01, 1.01]  -0.02 [-1.02, 1.02] 

50 -0.04 [-0.77, 0.65]  -0.03 [-0.73, 0.73]  -0.04 [-0.76, 0.69]  -0.03 [-0.81, 0.73] 

100 -0.14 [-0.53, 0.26]  -0.14 [-0.53, 0.22]  -0.13 [-0.49, 0.21]  -0.11 [-0.48, 0.25] 

  
 

          

3 

5  0.09 [-1.61, 1.93]   0.04 [-1.70, 1.83]   0.05 [-1.71, 1.79]   0.03 [-1.56, 1.77] 

10  0.05 [-1.49, 1.80]   0.04 [-1.63, 1.71]   0.05 [-1.66, 1.61]   0.03 [-1.58, 1.61] 

30  0.04 [-1.26, 1.33]   0.02 [-1.23, 1.29]   0.03 [-1.22, 1.34]   0.00 [-1.31, 1.28] 

50  0.01 [-1.00, 1.01]   0.00 [-1.05, 1.01]  -0.02 [-1.01, 1.06]  -0.02 [-1.08, 1.04] 

100 -0.05 [-0.69, 0.62]  -0.06 [-0.66, 0.59]  -0.07 [-0.65, 0.57]  -0.09 [-0.75, 0.55] 

  
 

          

4 

5  0.07 [-1.86, 2.12]   0.06 [-1.82, 2.14]   0.05 [-1.92, 1.96]   0.03 [-1.83, 1.88] 

10  0.07 [-1.81, 2.04]   0.06 [-1.76, 1.95]   0.05 [-1.87, 1.88]   0.03 [-1.91, 1.77] 

30  0.05 [-1.58, 1.65]   0.05 [-1.58, 1.66]   0.04 [-1.63, 1.67]   0.03 [-1.72, 1.57] 

50  0.05 [-1.32, 1.49]   0.03 [-1.46, 1.47]   0.01 [-1.44, 1.46]  -0.01 [-1.40, 1.51] 

100  0.05 [-1.17, 1.21]   0.03 [-1.07, 1.21]   0.01 [-1.11, 1.08]  -0.05 [-1.19, 1.09] 

Note. 𝜃∗̅̅ ̅ = mean posterior predicted difficulty estimate bias, HPDI = highest posterior density interval. 
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Table 15. Posterior Prediction Means and Credibility Intervals of 2PL Person Ability Parameter Estimate Bias. 

Node 
Test  

Length 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝜃∗̅̅ ̅ 95% HPDI  𝜃∗̅̅ ̅ 95% HPDI  𝜃∗̅̅ ̅ 95% HPDI  𝜃∗̅̅ ̅ 95% HPDI 

1 

5 -0.04 [-1.23, 1.13] 
 

-0.04 [-1.22, 1.19] 
 

-0.01 [-1.22, 1.16] 
 

0.00 [-1.12, 1.13] 

10 -0.01 [-1.13, 1.02] 
 

-0.02 [-1.11, 0.98] 
 

-0.01 [-1.12, 0.98] 
 

-0.01 [-1.07, 1.01] 

30 0.03 [-0.66, 0.81] 
 

0.01 [-0.69, 0.74] 
 

0.00 [-0.70, 0.72] 
 

-0.02 [-0.72, 0.66] 

50 0.07 [-0.43, 0.59] 
 

0.06 [-0.47, 0.52] 
 

0.02 [-0.44, 0.51] 
 

-0.03 [-0.50, 0.41] 

100 0.18 [-0.19, 0.58] 
 

0.15 [-0.19, 0.50] 
 

0.08 [-0.19, 0.33] 
 

-0.05 [-0.26, 0.17] 

  

           

2 

5 -0.03 [-1.51, 1.27] 
 

-0.04 [-1.47, 1.39] 
 

-0.03 [-1.37, 1.43] 
 

0.00 [-1.41, 1.35] 

10 -0.03 [-1.36, 1.31] 
 

-0.02 [-1.29, 1.26] 
 

-0.02 [-1.29, 1.26] 
 

0.00 [-1.29, 1.25] 

30 0.03 [-0.93, 1.02] 
 

0.03 [-0.90, 0.97] 
 

0.02 [-0.92, 0.94] 
 

-0.02 [-0.87, 0.93] 

50 0.08 [-0.61, 0.81] 
 

0.07 [-0.63, 0.79] 
 

0.04 [-0.63, 0.73] 
 

-0.01 [-0.68, 0.64] 

100 0.23 [-0.23, 0.64] 
 

0.19 [-0.21, 0.60] 
 

0.12 [-0.24, 0.45] 
 

-0.02 [-0.32, 0.29] 

  

           

3 

5 -0.02 [-1.61, 1.68] 
 

-0.06 [-1.72, 1.57] 
 

-0.03 [-1.63, 1.65] 
 

-0.01 [-1.65, 1.58] 

10 -0.04 [-1.50, 1.57] 
 

-0.04 [-1.64, 1.48] 
 

-0.02 [-1.63, 1.45] 
 

-0.01 [-1.55, 1.51] 

30 0.04 [-1.22, 1.32] 
 

0.02 [-1.22, 1.24] 
 

0.02 [-1.17, 1.27] 
 

-0.01 [-1.21, 1.18] 

50 0.10 [-0.98, 1.13] 
 

0.08 [-0.93, 1.16] 
 

0.04 [-0.98, 1.02] 
 

0.01 [-0.93, 0.95] 

100 0.27 [-0.49, 0.99] 
 

0.23 [-0.51, 0.89] 
 

0.16 [-0.42, 0.78] 
 

0.02 [-0.50, 0.55] 

  

           

4 

5 -0.05 [-1.97, 1.91] 
 

-0.05 [-1.99, 1.90] 
 

-0.04 [-2.04, 1.82] 
 

-0.03 [-1.89, 1.95] 

10 -0.03 [-1.90, 1.92] 
 

-0.03 [-1.87, 1.81] 
 

-0.02 [-1.92, 1.82] 
 

-0.02 [-1.92, 1.83] 

30 0.03 [-1.66, 1.67] 
 

0.03 [-1.64, 1.64] 
 

0.03 [-1.62, 1.66] 
 

0.02 [-1.57, 1.57] 

50 0.12 [-1.44, 1.59] 
 

0.09 [-1.47, 1.63] 
 

0.06 [-1.40, 1.49] 
 

0.01 [-1.27, 1.34] 

100 0.32 [-1.11, 1.72] 
 

0.28 [-1.04, 1.52] 
 

0.21 [-0.92, 1.28] 
 

0.07 [-0.86, 0.95] 

Note. 𝜃∗̅̅ ̅ = mean posterior predicted difficulty estimate bias, HPDI = highest posterior density interval. 
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These results suggest that even very long tests cannot produce estimates at deep nodes 

with low enough estimate uncertainty to distinguish respondents one standard deviation apart on 

the latent ability continuum. Tasks such as personnel selection become impractical because the 

estimate uncertainty for the latent abilities at deep nodes is too great. Another task a researcher 

might conduct involves using the estimated latent ability score to predict some external criterion 

via correlations or linear regression. To investigate the viability of such a task with IRTree 

estimated latent ability predictors, I conducted a beta regression to measure the effects of the 

manipulated and observed factors on the correlation between the true and estimated ability 

parameters. 

Person Ability True and Estimated Parameter Correlation 

Regression Model Results 

To quantify the effects the manipulated factors had on the correlations between the true 

and estimated person ability parameters, I conducted a regression analysis with a beta 

distribution likelihood. The likelihood was parameterized in “location-scale” form, such that 

𝑟�̂�𝜃 ∼ Beta(𝜇𝜙, (1 − 𝜇)𝜙), where the model predictors determine the location, 𝜇 =
1

1+𝑒
−𝑋𝑏[𝜇]

, 

and scale, 𝜙 = 𝑒𝑋𝑏[𝜙]. The expected distribution mean is E[𝑟�̂�𝜃] =
𝜇𝜙

𝜇𝜙+(1−𝜇)𝜙
=

𝜇

𝜇+(1−𝜇)

𝜙

𝜙
= 𝜇, 

and the variance is V[𝑟�̂�𝜃] =
𝜇−𝜇2

1+𝜙
 such that the uncertainty around the estimated mean is 

inversely proportional to 𝜙. The regression model predictor parameters for 𝜇 and 𝜙 are on the 

log-odds and log scales, respectively, so I will again rely on posterior predictions of the 

correlations for interpretation. 

I calculated the correlations between the true and estimated person ability parameters by 

condition, node, and iteration, producing a sample size of 1,600. All of the correlations for the 
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1PL model estimates were positive. Two correlations were below zero for the 2PL model 

estimates. One was 𝑟𝜃�̂� = −.03 and the other was 𝑟𝜃�̂� = −.004. Both were simulated with 10-

item tests, 500 respondents, and were from the fourth node. The domain of the beta distribution 

is defined between zero and one. In order to incorporate these two observations, I would need to 

create a mixture of beta distributions and account for the probability of a correlation being 

negative. Because there are only two negative correlations, and both are from the same 

simulation conditions, there doesn’t seem to be much to learn by using a more complex model. I 

chose instead to remove these observations from the analysis and use a standard beta 

distribution. 

I used sample size, test length, node depth, and their two-way and three-way interactions 

as predictors. As before, I centered and standardized the sample size (𝑀 = 1,250, 𝑆𝐷 = 750.23) 

and test length (𝑀 = 20.00,𝑆𝐷 = 10.00) factors to facilitate estimation. I attempted to fit 

several models with partially pooled intercept terms grouped by simulation iteration for the 

location and scale parameters. All models produced a high proportion of divergent transitions 

during estimation and resulted in poorly mixed chains. I instead used a model with completely 

pooled intercepts for the location and scale parameters with three chains and 2,000 sampling 

iterations each. Neither model displayed issues with estimation, the chains appear to have mixed 

appropriately and all �̂� values rounded to 1.00, all of which suggest adequate sampling from the 

posterior. Table 16 displays model predicted and observed correlation means and standard 

deviations and Figures 14 and 15 display the observed and model predicted correlation 

distributions. The model predicts the marginal statistics quite well and appears to approximate 

the observed correlation distributions adequately. 
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Table 16. True and Estimated Person Ability Model Predicted and Observed Correlation Means and Standard Deviations. 

   1PL Model  2PL Model 

 Test 

Length 
Node 

Sample Size = 500  Sample Size = 2000  Sample Size = 500  Sample Size = 2000 

 Predicted Observed  Predicted Observed  Predicted Observed  Predicted Observed 

Mean 

Correlation 

10 

1 .80 .80  .80 .80  .85 .85  .85 .86 

2 .68 .66  .68 .67  .72 .72  .74 .74 

3 .53 .53  .53 .53  .55 .54  .58 .57 

4 .37 .39  .38 .40  .36 .37  .41 .42 
  

  
 

  
      

30 

1 .92 .92  .91 .92  .94 .94  .94 .94 

2 .84 .84  .84 .83  .88 .88  .88 .88 

3 .73 .72  .72 .72  .77 .77  .78 .77 

4 .57 .59  .56 .58  .61 .61  .63 .63 

   
  

 
  

      

              

Standard 

Deviation 

of 

Correlation 

10 

1 .02 .02  .02 .01  .05 .06  .04 .04 

2 .03 .04  .02 .03  .08 .08  .06 .06 

3 .05 .05  .04 .04  .11 .11  .08 .09 

4 .06 .06  .05 .04  .14 .13  .10 .09 
  

  
 

  
      

30 

1 .01 .01  .01 .00  .01 .01  .01 .01 

2 .01 .01  .01 .01  .02 .02  .02 .02 

3 .03 .03  .02 .02  .04 .04  .04 .04 

4 .05 .04  .04 .03  .07 .06  .06 .05 
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The location intercept was reliably positive, �̅�𝜇[1𝑃𝐿] = 1.87, 95%HDPI[1.87, 1.87], 

�̅�𝜇[2𝑃𝐿] = 2.24, 95%HDPI[2.22, 2.26], as was the scale intercept, �̅�𝜙[1𝑃𝐿] = 6.93, 95%HDPI[6.93,

6.93], �̅�𝜙[2𝑃𝐿] = 5.45,95%HDPI[5.32, 5.57]. The node depth factor had a strong, negative, and 

reliable relationship with the location, �̅�𝜇[1𝑃𝐿] = −0.67, 95%HDPI[−0.67, −0.67], �̅�𝜇[2𝑃𝐿] =

−0.75, 95%HDPI[−0.76, −0.73], and scale parameters, �̅�𝜙[1𝑃𝐿] = −0.79, 95%HDPI[−0.79,

−0.79], �̅�𝜙[2𝑃𝐿] = −0.69, 95%HDPI[−0.76, −0.62], such that the correlation declines rapidly 

and increases in uncertainty at greater depths. Test length had a strong, positive, and reliable 

effect on both the location, �̅�𝜇[1𝑃𝐿] = 0.50, 95%HDPI[0.50, 0.51], �̅�𝜇[2𝑃𝐿] = 0.51, 95%HDPI[0.48,

0.53], and scale parameters, �̅�𝜙[1𝑃𝐿] = 0.68, 95%HDPI[0.67, 0.68], �̅�𝜙[2𝑃𝐿] =

1.23,95%HDPI[1.10, 1.35],  such that longer test lengths provide stronger and more consistent 

correlations between the true and estimated ability parameters. Sample size reliably and 

positively affected the precision of the correlation, �̅�𝜙[1𝑃𝐿] = 0.29, 95%HDPI[0.29, 0.29], 

�̅�𝜙[2𝑃𝐿] = 0.20, 95%HDPI[0.08, 0.34], but the effect was small and did not produce practically 

different predictions across different sample sizes. The test length effects on the location of the 

correlations for the 1PL model, �̅�𝜇[1𝑃𝐿] = −0.04,95%HDPI[−0.04, −0.04], and the scale of the 

correlations for both 1PL, �̅�𝜙[1𝑃𝐿] = −0.13, 95%HDPI[−0.13, −0.13], and 2PL models, 

�̅�𝜙[2𝑃𝐿] = −0.23, 95%HDPI[−0.29, −0.16], were reliably moderated by node depth, but the 

moderating effects were negligible. 

Table 18 displays posterior predictions of correlations for both the 1PL and 2PL 

regression models. The posterior predictions suggest that medium to long tests are required to 

achieve correlations of 𝑟𝜃�̂� ≥ .90 for the first two nodes, and long to very long tests are required 
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for nodes three or four. Sample size does not appear to affect the magnitude or the precision of 

the correlation to a meaningful degree. 
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Table 17. Person Ability Correlations – Posterior Means and Credibility Intervals of Predictors of Estimate Location and Scale. 

 1PL Model  2PL Model 

 Estimate Bias  Estimate Variability†  Estimate Bias  Estimate Variability† 

 𝑏𝜇
̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜎

̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜇
̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜎

̅̅ ̅ 95%𝐻𝑃𝐷𝐼 

Intercept 1.87 [ 1.87, 1.87]  6.93 [ 6.93, 6.93]  2.24 [ 2.22, 2.26]  5.45 [ 5.32, 5.57] 

S 0.00 [ 0.00, 0.00]  0.29 [ 0.29, 0.29]  0.02 [-0.01, 0.04]  0.20 [ 0.08, 0.34] 

T 0.50 [ 0.50, 0.51]  0.68 [ 0.67, 0.68]  0.51 [ 0.48, 0.53]  1.23 [ 1.10, 1.35] 

D -0.67 [-0.67, -0.67]  -0.79 [-0.79, -0.79]  -0.75 [-0.76, -0.73]  -0.69 [-0.76, -0.62] 

S x T 0.00 [ 0.00, 0.00]  -0.02 [-0.03, -0.02]  -0.02 [-0.04, 0.01]  -0.07 [-0.19, 0.06] 

S x D 0.00 [ 0.00, 0.00]  -0.03 [-0.04, -0.03]  0.02 [ 0.00, 0.03]  0.01 [-0.06, 0.08] 

T x D -0.04 [-0.04, -0.04]  -0.13 [-0.13, -0.13]  -0.01 [-0.03, 0.00]  -0.23 [-0.29, -0.16] 

S x T x D 0.00 [ 0.00, 0.00]  -0.01 [-0.01, -0.01]  0.00 [-0.02, 0.01]  -0.03 [-0.09, 0.04] 

Note. 𝑁 = 10,000 randomly drawn from total simulated cases of 4 × 106 for each model. D = node depth, S = sample size 

(standardized, 𝑀[1𝑃𝐿] = 1,687.25, 𝑆𝐷[1𝑃𝐿] = 609.38; 𝑀[2𝑃𝐿] = 1,706.75, 𝑆𝐷[2𝑃𝐿] = 594.91), T = test length (standardized, 𝑀[1𝑃𝐿] = 

19.86, 𝑆𝐷[1𝑃𝐿] = 9.99; 𝑀[2𝑃𝐿] = 20.07, 𝑆𝐷[2𝑃𝐿] = 10.00), HPDI = highest posterior density interval. † Model parameters are on the log 

scale. 
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Table 18. Posterior Prediction of Correlations between Person Ability Parameter Estimates and True Values. 

  1PL Model  2PL Model 

Node 
Test 

Length 

Sample Size = 500  Sample Size = 2,000  Sample Size = 500  Sample Size = 2,000 

𝑟�̂�𝜃̅̅ ̅̅̅ 95% HPDI  𝑟�̂�𝜃̅̅ ̅̅̅ 95% HPDI  𝑟�̂�𝜃̅̅ ̅̅̅ 95% HPDI  𝑟�̂�𝜃̅̅ ̅̅̅ 95% HPDI 

1 

5 .75 [.70, .80]  .75 [.72, .79]  
.81 [.67, .95] 

 
.82 [.71, .91] 

10 .80 [.76, .84]  .80 [.77, .83]  
.85 [.75, .94] 

 
.85 [.78, .92] 

30 .92 [.90, .93]  .91 [.90, .93]  
.94 [.92, .96] 

 
.94 [.92, .96] 

50 .97 [.96, .97]  .97 [.96, .97]  
.98 [.97, .98] 

 
.98 [.97, .98] 

100 1.00 [1.00, 1.00]  1.00 [1.00, 1.00]  
1.00 [1.00, 1.00] 

 
1.00 [1.00, 1.00] 

        
  

 
  

2 

5 .62 [.55, .70]  .63 [.57, .69]  
.67 [.46, .87] 

 
.69 [.55, .83] 

10 .68 [.61, .74]  .68 [.63, .73]  
.72 [.56, .86] 

 
.74 [.62, .85] 

30 .84 [.81, .87]  .84 [.82, .86]  
.88 [.84, .92] 

 
.88 [.85, .91] 

50 .93 [.92, .94]  .93 [.92, .94]  
.95 [.94, .96] 

 
.95 [.94, .96] 

100 .99 [.99, .99]  .99 [.99, .99]  
.00 [1.00, 1.00] 

 
1.00 [.99, 1.00] 

        
  

 
  

3 

5 .47 [.37, .58]  .48 [.40, .56]  
.49 [.23, .75] 

 
.53 [.35, .70] 

10 .53 [.43, .62]  .53 [.46, .61]  
.55 [.33, .76] 

 
.58 [.44, .73] 

30 .72 [.67, .78]  .72 [.68, .77]  
.77 [.69, .84] 

 
.78 [.71, .85] 

50 .86 [.84, .89]  .86 [.83, .88]  
.90 [.88, .92] 

 
.90 [.87, .92] 

100 .98 [.98, .99]  .98 [.98, .98]  
.99 [.99, .99] 

 
.99 [.99, .99] 

        
  

 
  

4 

5 .33 [.20, .45]  .34 [.24, .45]  
.31 [.04, .60] 

 
.36 [.16, .56] 

10 .37 [.25, .50]  .38 [.28, .48]  
.36 [.11, .62] 

 
.41 [.22, .59] 

30 .57 [.48, .66]  .56 [.48, .65]  
.61 [.46, .75] 

 
.63 [.49, .75] 

50 .74 [.68, .80]  .73 [.68, .79]  
.81 [.75, .87] 

 
.80 [.73, .87] 

100 .95 [.94, .97]  .95 [.93, .96]  
.98 [.97, .99] 

 
.97 [.96, .99] 

Note. 𝑟�̂�𝜃̅̅ ̅̅̅   = mean posterior predicted correlation, HPDI = highest posterior density interval. 
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To provide some perspective, the extent to which an estimated parameter correlates with 

its true data generating parameter provides an upper bound for valid correlations the estimate 

could have with external criteria. To demonstrate this issue in practical terms, consider a 

common task where a set of ability parameters estimated from an IRT model are used to 

correlate with and predict some external criteria, say job performance 𝐽𝑃𝜃. I want to use an 

IRTree model to measure some latent ability, 𝐴𝜃 that I believe predicts 𝐽𝑃𝜃. After collecting data 

in a validation study from a sample of respondents, I run the IRTree model and produce 

estimates of their latent ability �̂�𝜃. For simplicity, I assume (unrealistically) that 𝐽𝑃𝜃 is known or 

measured without error and both variables are multivariate normally distributed. The data 

generating correlation between 𝐽𝑃𝜃 and 𝐴𝜃 is 𝜌𝐽𝑃𝜃𝐴𝜃
 and is estimated by correlating 𝐽𝑃𝜃 and �̂�𝜃, 

producing a measure of the linear relationship of interest, 𝑟𝐽𝑃𝜃𝐴𝜃
. Although not known in 

practice, the difference (bias) between 𝜌𝐽𝑃𝜃𝐴𝜃
 and 𝑟𝐽𝑃𝜃𝐴𝜃

, or 𝑟𝐽𝑃𝜃𝐴𝜃

∗ , has practical implications for 

whether the ability estimates can be used for prediction. Moderate bias may prevent inferences 

about the strength of the relationship. Larger bias may prevent inferences about the direction of 

the relationship. The data generating correlation between 𝐴𝜃 and �̂�𝜃 is 𝜌𝐴𝜃𝐴𝜃
.  

For 6,000 iterations, I simulated values for 𝜌𝐽𝑃𝜃𝐴𝜃 from a beta distribution with 𝛼 = 1 

and 𝛽 = 1, ensuring a positive relationship uniformly distributed between zero and one to cover 

a wide range of possible criterion-related correlations. I simulated person ability parameters for 

𝐽𝑃𝜃 and 𝐴𝜃 from each true correlation 𝜌𝐽𝑃𝜃𝐴𝜃  with multivariate standard normal distributions. I 

drew the true and estimated ability correlation, 𝑟𝐴𝜃𝐴𝜃
, from a beta distribution with mean and 

precision, 𝜇 and 𝜙, using posterior draws of the regression model weights 𝑏𝜇 and 𝑏𝜙, 

respectively, across a range of sample sizes, test lengths, and node depths. I then simulated �̂�𝜃 
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using model predictions for 𝑟𝐴𝜃𝐴𝜃 from a normal distribution with a mean of 𝐴𝜃 ∙ 𝑟𝐴𝜃𝐴𝜃  and 

standard deviation of √1 − 𝑟𝐴𝜃𝐴𝜃 
2  so that the resulting distribution had a standard deviation of 

approximately 1. Finally, I calculated the correlations between true job performance and the 

ability estimate,  𝑟𝐽𝑃𝜃𝐴𝜃
, as well as the bias (difference), 𝑟𝐽𝑃𝜃𝐴𝜃

∗ , between the true and estimated 

correlation for each iteration. The simulation equations can be represented as, 

𝜌𝐽𝑃𝜃𝐴𝜃
∼ 𝐵𝑒𝑡𝑎(1, 1) 

Σ𝐽𝑃𝜃𝐴𝜃
= [

1 𝜌𝐽𝑃𝜃𝐴𝜃

𝜌𝐽𝑃𝜃𝐴𝜃
1

] 

[
𝐽𝑃𝜃

𝐴𝜃
] ∼ 𝑀𝑉𝑁(0, Σ𝐽𝑃𝜃𝐴𝜃

) 

𝜇 =
1

1 + 𝑒𝑏𝜇𝑋  

𝜙 = 𝑒𝑏𝜙𝑋 

𝑟𝐴𝜃𝐴𝜃
∼ 𝐵𝑒𝑡𝑎(𝜇𝜙, (1 − 𝜇)𝜙) 

�̂�𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝐴𝜃 ∙ 𝑟𝐴𝜃𝐴𝜃
, √1 − 𝑟𝐴𝜃𝐴𝜃

2 ) 

𝑟𝐽𝑃𝜃𝐴𝜃

∗ = 𝑟𝐽𝑃𝜃𝐴𝜃
− 𝜌𝐽𝑃𝜃𝐴𝜃

. 

Tables 19 and 20 display the medians and 95% HPDI credibility intervals for 𝑟𝐽𝑃𝜃𝐴𝜃

∗  

across various conditions for both 1PL and 2PL models. Table 21 displays correlation 95% 

confidence interval coverage rates using Fisher’s z transformation. Figures 16 and 17 display the 

resultant distributions of 𝑟𝐽𝑃𝜃𝐴𝜃

∗  across various conditions. The dashed vertical lines at zero 

represent perfect estimation of the data generating correlation 𝜌𝐽𝑃𝜃𝐴𝜃
, whereas lower values 

indicate estimated correlations below the true data generating correlation.
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Table 19. Posterior Prediction Medians and Credibility Intervals of Marginal Bias Between True and Estimated 

Correlations of 1PL Person Ability Parameter Estimates and Criterion Variable. 

Node 
Test  

Length 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝑟
�̂�𝜃
∗̅̅ ̅̅  95% HPDI  𝑟

�̂�𝜃
∗̅̅ ̅̅  95% HPDI  𝑟

�̂�𝜃
∗̅̅ ̅̅  95% HPDI  𝑟

�̂�𝜃
∗̅̅ ̅̅  95% HPDI 

1 

5 -.12 [-.28, .05] 
 

-.12 [-.27, .03] 
 

-.12 [-.26, .01] 
 

-.12 [-.25, .00] 

10 -.10 [-.24, .06] 
 

-.10 [-.22, .03] 
 

-.10 [-.21, .02] 
 

-.10 [-.21, .00] 

30 -.04 [-.14, .07] 
 

-.04 [-.11, .05] 
 

-.04 [-.10, .03] 
 

-.04 [-.09, .01] 

50 -.02 [-.11, .08] 
 

-.02 [-.08, .06] 
 

-.02 [-.06, .04] 
 

-.02 [-.05, .02] 

100  .00 [-.10, .10] 
 

 .00 [-.07, .07] 
 

 .00 [-.05, .05] 
 

 .00 [-.04, .03] 

  

           

2 

5 -.19 [-.42, .04] 
 

-.19 [-.41, .01] 
 

-.19 [-.39, .01] 
 

-.19 [-.37, .01] 

10 -.16 [-.36, .05] 
 

-.16 [-.34, .03] 
 

-.16 [-.34, .01] 
 

-.16 [-.33, .00] 

30 -.08 [-.20, .06] 
 

-.08 [-.18, .03] 
 

-.08 [-.17, .02] 
 

-.08 [-.16, .01] 

50 -.03 [-.13, .08] 
 

-.04 [-.10, .05] 
 

-.03 [-.09, .03] 
 

-.04 [-.08, .02] 

100  .00 [-.10, .10] 
 

 .00 [-.07, .07] 
 

 .00 [-.05, .04] 
 

 .00 [-.04, .03] 

  

           

3 

5 -.27 [-.56, .03] 
 

-.27 [-.54, .03] 
 

-.26 [-.53, .02] 
 

-.26 [-.51, .00] 

10 -.24 [-.52, .03] 
 

-.24 [-.50, .02] 
 

-.23 [-.48, .01] 
 

-.24 [-.46, .00] 

30 -.14 [-.31, .05] 
 

-.14 [-.29, .03] 
 

-.14 [-.29, .02] 
 

-.14 [-.28, .01] 

50 -.07 [-.18, .06] 
 

-.07 [-.16, .04] 
 

-.07 [-.15, .02] 
 

-.07 [-.15, .01] 

100 -.01 [-.10, .09] 
 

-.01 [-.07, .07] 
 

-.01 [-.06, .04] 
 

-.01 [-.04, .03] 

  

           

4 

5 -.34 [-.71, .03] 
 

-.34 [-.69, .01] 
 

-.33 [-.67, .00] 
 

-.33 [-.66, .00] 

10 -.32 [-.67, .02] 
 

-.31 [-.64, .02] 
 

-.31 [-.63, .00] 
 

-.31 [-.62, .00] 

30 -.22 [-.47, .04] 
 

-.22 [-.45, .03] 
 

-.22 [-.44, .01] 
 

-.22 [-.44, .00] 

50 -.13 [-.30, .04] 
 

-.13 [-.28, .02] 
 

-.13 [-.28, .01] 
 

-.14 [-.27, .01] 

100 -.02 [-.12, .09] 
 

-.02 [-.09, .06] 
 

-.02 [-.07, .03] 
 

-.03 [-.07, .02] 

Note. 𝑟
�̂�𝜃
∗̅̅ ̅̅    = median posterior predicted bias of correlation, HPDI = highest posterior density interval.  



 103 

Table 20. Posterior Prediction Medians and Credibility Intervals of Marginal Bias Between True and Estimated 

Correlations of 2PL Person Ability Parameter Estimates and Criterion Variable. 

Node 
Test  

Length 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝑟
�̂�𝜃
∗̅̅ ̅̅  95% HPDI  𝑟

�̂�𝜃
∗̅̅ ̅̅  95% HPDI  𝑟

�̂�𝜃
∗̅̅ ̅̅  95% HPDI  𝑟

�̂�𝜃
∗̅̅ ̅̅  95% HPDI 

1 

5 -.09 [-.28, .07] 
 

-.09 [-.25, .05] 
 

-.09 [-.23, .03] 
 

-.09 [-.22, .01] 

10 -.08 [-.22, .08] 
 

-.08 [-.20, .05] 
 

-.07 [-.19, .03] 
 

-.07 [-.17, .02] 

30 -.04 [-.12, .08] 
 

-.04 [-.10, .05] 
 

-.03 [-.08, .03] 
 

-.03 [-.07, .02] 

50 -.01 [-.11, .09] 
 

-.01 [-.08, .06] 
 

-.01 [-.06, .04] 
 

-.01 [-.04, .03] 

100  .00 [.10, .09] 
 

  .00 [-.07, .07] 
 

 .00 [-.05, .05] 
 

 .00 [-.03, .04] 

  

           

2 

5 -.16 [-.43, .06] 
 

-.15 [-.40, .06] 
 

-.15 [-.38, .02] 
 

-.14 [-.34, .01] 

10 -.14 [-.36, .06] 
 

-.14 [-.34, .04] 
 

-.13 [-.31, .03] 
 

-.12 [-.28, .02] 

30 -.07 [-.18, .06] 
 

-.07 [-.15, .04] 
 

-.06 [-.14, .02] 
 

-.06 [-.13, .01] 

50 -.03 [-.12, .08] 
 

-.03 [-.09, .05] 
 

-.03 [-.07, .04] 
 

-.03 [-.06, .02] 

100  .00 [-.10, .10] 
 

  .00 [-.07, .06] 
 

 .00 [-.05, .05] 
 

 .00 [-.04, .03] 

  

           

3 

5 -.24 [-.62, .05] 
 

-.24 [-.59, .03] 
 

-.24 [-.56, .02] 
 

-.23 [-.50, .02] 

10 -.22 [-.54, .05] 
 

-.21 [-.51, .03] 
 

-.22 [-.47, .02] 
 

-.20 [-.44, .02] 

30 -.12 [-.28, .04] 
 

-.12 [-.26, .03] 
 

-.11 [-.25, .02] 
 

-.11 [-.24, .01] 

50 -.06 [-.15,.07] 
 

-.06 [-.13, .04] 
 

-.05 [-.12, .03] 
 

-.05 [-.11, .02] 

100 -.01 [-.11, .09] 
 

-.01 [-.08, .06] 
 

-.01 [-.05, .05] 
 

-.01 [-.04, .03] 

  

           

4 

5 -.33 [-.78, .03] 
 

-.33 [-.77, .02] 
 

-.32 [-.72, .01] 
 

-.31 [-.67, .00] 

10 -.31 [-.73, .03] 
 

-.31 [-.72, .01] 
 

-.29 [-.67, .02] 
 

-.29 [-.61, .01] 

30 -.20 [-.45, .06] 
 

-.20 [-.43, .03] 
 

-.19 [-.42, .01] 
 

-.18 [-.40, .01] 

50 -.10 [-.24, .06] 
 

-.10 [-.22, .04] 
 

-.10 [-.22, .02] 
 

-.10 [-.22, .01] 

100 -.01 [-.11, .09] 
 

-.01 [-.07, .07] 
 

-.01 [-.06, .04] 
 

-.02 [-.05, .03] 

Note. 𝑟
�̂�𝜃
∗̅̅ ̅̅    = median posterior predicted bias of correlation, HPDI = highest posterior density interval.  
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Figure 16. Posterior Predictions of Marginal Bias Between True and Estimated Correlations of 

1PL Person Ability Parameter Estimates and Criterion Variable. 
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Figure 17. Posterior Prediction Density Plots of Marginal Bias Between True and Estimated 

Correlations of 2PL Person Ability Parameter Estimates and Criterion Variable.
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Table 21. Person Ability Predictive Validity Correlation Estimate Confidence 

Interval Coverage Rates. 
  1PL Model  2PL Model 

Node 
Test 

Length 

Coverage by Sample Size  Coverage by Sample Size 

250 500 1,000 2,000  250 500 1,000 2,000 

1 

5 .48 .40 .32 .24  .40 .32 .23 .17 

10 .53 .46 .36 .28  .46 .36 .27 .20 

30 .74 .66 .59 .49  .67 .58 .51 .39 

50 .86 .82 .78 .71  .82 .77 .72 .65 

100 .94 .94 .93 .92  .93 .93 .92 .92 
           

2 

5 .35 .26 .19 .14  .31 .22 .16 .11 

10 .39 .30 .24 .17  .34 .24 .19 .14 

30 .60 .50 .40 .32  .51 .43 .33 .25 

50 .78 .71 .64 .54  .72 .64 .55 .44 

100 .94 .92 .91 .89  .92 .91 .89 .85 
           

3 

5 .24 .19 .14 .10  .22 .17 .12 .08 

10 .28 .20 .15 .11  .25 .18 .13 .10 

30 .42 .33 .25 .18  .39 .29 .21 .16 

50 .63 .54 .47 .35  .58 .47 .37 .27 

100 .91 .89 .88 .81  .88 .84 .80 .74 
           

4 

5 .19 .14 .09 .07  .18 .14 .10 .07 

10 .20 .14 .10 .07  .20 .14 .10 .07 

30 .30 .21 .16 .12  .26 .20 .15 .10 

50 .48 .37 .28 .21  .39 .30 .22 .16 

100 .87 .84 .78 .68  .79 .72 .62 .52 

Note. Coverage indicates the rate that the true latent correlation between 𝐽𝑃𝜃 and 𝐴𝜃 

lies between the lower and upper correlation estimate 95% confidence interval 

bounds. The correlation estimate confidence intervals were calculated using Fisher’s 

z transformation. 
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The predictions suggest that the 2PL model produces slightly less biased and slightly 

more variable ability estimates for prediction, but both the 1PL and 2PL lead to qualitatively 

similar conclusions. Because 𝑟𝐽𝑃𝜃𝐴𝜃

∗  is attenuated, the positive predictive validity coefficients are 

downwardly biased in most cases. Short test lengths are severely downwardly biased for depths 1 

and deeper, and short to medium test lengths are severely downwardly biased for depths 2 and 

deeper. Also note that the absolute value of the lower bound of the prediction credibility intervals 

serve as minimum values for the true relationship 𝜌𝐽𝑃𝜃𝐴𝜃 in order to establish directionality of the 

relationship with 95% confidence (assuming no estimation uncertainty for 𝑟𝐽𝑃𝜃𝐴𝜃
). Short test 

lengths prohibit using anything beyond the second node in an IRTree model for tests of 

directionality, let alone inference about the magnitude of the relationship. Directional tests for 

deeper nodes appear feasible for average test lengths if the underlying relationship is believed to 

be strong, but inferences involving the magnitudes is still questionable. Very long test lengths 

appear to provide adequate estimates for practical inference under all models and sample sizes. 

These are optimistic predictions as they do not incorporate measurement error for 𝐽𝑃𝜃 and 

𝑟𝐽𝑃𝜃𝐴𝜃
. If I incorporate estimate uncertainty for 𝑟𝐽𝑃𝜃𝐴𝜃

 (Table 21), coverage rates for 95% 

confidence intervals are abysmal for most practical testing conditions. Deeper nodes lead to 

lower coverage rates and longer tests lead to higher coverage rates. Counter-intuitively, larger 

sample sizes lead to lower coverage rates. This is because the correlation estimates confidence 

intervals narrow with larger sample sizes, but the correlation estimates are still systemically 

downwardly biased. The 1PL coverages rates are also slightly higher than the 2PL coverage 

rates. 

To achieve adequate estimation for predictive validity, long test lengths are required for 

the second node in IRTree models, and very long test lengths are required (100+ items) for 
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deeper nodes. The number of items needed is compounded if the study design requires explicit 

responses to each node rather than simply recoding rating-scale items to IRTree auxiliary-items. 

A three-node response survey design would require 60 items per node across 3 nodes for a total 

of 180 items. This poses a serious challenge to test administration and the practical use of IRTree 

models. I used orthogonal latent factors in the current study and estimated them as such. 

Correlations between IRTree person abilities and some external criterion may be better estimated 

if the criterion responses are incorporated into the model and the latent correlations estimated 

from the model rather than correlating posterior predictions of the latent ability scores separately. 

This is useful if a researcher’s goal is to test hypotheses about the relationship between latent 

traits. This is not very useful for prediction which requires estimation of individual scores on the 

latent traits. Additionally, because the simulation assumed uncorrelated latent person abilities, 

the probability of a respondent having an inestimable latent ability score at a given node is 

uncorrelated with their latent abilities used for responding to ancestor nodes. This is not the case 

for correlated latent abilities. If the latent abilities are all positively correlated, persons with low 

standing on the latent abilities are more likely to exhibit inestimable latent ability scores for 

deeper nodes. This means that the true and estimated ability parameter correlations, and 

subsequent criterion-related correlations, will be further biased than what is presented here due to 

additional selection bias. 

The results suggest that, although estimates of item difficulty and person ability 

parameters are unbiased, the parameter variability increases under conditions that reduce the 

number of observations to estimate these parameters. In many cases where tree lengths are long, 

sample sizes are small, and test lengths are short, the resulting estimates prohibit many tasks 

such as item selection or estimation of latent abilities for personnel selection or prediction. 
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Item Discrimination Parameters 

Descriptive analysis 

Modeling the bias of the discrimination parameters posed several problems. First, the true 

discrimination parameters are log-normally distributed. The mean and variance parameters of a 

log-normal distribution are on the log scale. Researchers and practitioners using the 2PL model 

would likely be more interested in the marginal bias, or the bias of the observed distribution, 

rather than the bias of the underlying parameters. Taking the difference between the true and 

estimated parameters to get the marginal bias would result in a distribution without an obvious 

functional form, exhibiting high variance and kurtosis. Fitting a normal distribution to the 

marginal bias would be inappropriate. Instead, I calculated bias as the ratio of estimated and true 

discrimination parameters. The ratio of two log-normally distributed variables is itself log-

normally distributed. I chose to use a distributional model with a log-normal likelihood to model 

the bias. After that, I used posterior predictions to estimate the bias of the marginal distribution 

for a practical assessment. The second issue was that the discrimination estimates produced a 

mixture of what appears to be relatively unbiased log-normally distributed estimates and another 

set of estimates shrunk to near zero without a clear functional form. Calculating the bias results 

in a similar mixture (Figure 18). Seven estimates (0.02%) were too small for the precision of the 

computer I used and registered as zeros. Modeling this as if it were a regular log-normally 

distributed variable would likely severely bias inferences from the distributional regression 

model. The mean would be downwardly biased and the variance upwardly biased. Instead, I 

initially removed these seven estimates and tried to model this as a mixture of two lognormal 

distributions with the predictors predicting the mean, variance, and mixture probabilities. I was 
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unable to produce an adequately estimated model after several attempts to reparametrize and 

simplify it. 
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Figure 18. Histograms of Observed 2PL Item Discrimination Estimate Bias.
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I decided to remove estimates that were shrunk to zero. I inspected a histogram of the log 

of the bias estimates (Figure 19) and determined that there was a distinct break in the values 

around 𝑒−5. I chose to remove observations where the estimate fell below this threshold. This is 

an arbitrary cutoff but should afford less biased measurement of the estimates that were not 

shrunk to near zero. Table 22 displays the proportions of observations that fall below this 

criterion. A few things should be noted about these shrunken values. These shrunken values 

occurred under all conditions. Deeper nodes, lower observation propagation, smaller sample 

sizes, and shorter test lengths all exhibited greater rates of shrunken values. It seems likely that 

the mechanism that is causing these estimates to shrink is the same as that causing poor 

parameter estimation in other analyses, namely fewer observations available for a given 

parameter. Finally, 𝑒−5 is extremely small. This cutoff does not exclude other discrimination 

values that are too small for practical use (e.g., 𝑒−4.61 = 0.01). 
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Table 22. Proportion of Discrimination Parameter Estimates Below 𝑒−5.  

Test 

Length 
Node  

Sample Size = 500  Sample Size = 2,000 

Below Average 

Propagation 

Average or Above 

Propagation 

 Below Average 

Propagation 

Average or Above 

Propagation 

10 

Items 

1 52 (5.20%) —  13 (1.30%) — 

2 67 (13.24%) 42 (8.50%)  24 (4.71%) 11 (2.24%) 

3 165 (30.22%) 57 (12.56%)  62 (10.53%) 11 (2.68%) 

4 364 (60.47%) 103 (25.88%)  147 (23.71%) 20 (5.26%) 
       

30 

Items 

1 100 (3.33%) —   23 (0.77%) — 

2 162 (10.95%) 105 (6.90%)  61 (4.07%) 26 (1.73%) 

3 396 (23.93%) 149 (11.08%)  127 (7.41%) 55 (4.28%) 

4 810 (44.46%) 246 (20.88%)  348 (18.83%) 69 (5.99%) 
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Figure 19. Scatterplot of True and Estimated 2PL Discrimination Parameters. 

 

Note. The x-axis is on the natural log scale and y-axis is on the log10 scale. 
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The remaining observations (Figure 20) appeared to also be composed of at least two 

distributions, one of them normal and centered around zero on the log scale (group 1), and the 

other appearing normal with a mean below zero (group 2). There was no obvious break between 

the two distributions. The group 2 distribution centered below zero was composed of relatively 

few observations. In order to diminish the influence of these observations on the measurement of 

the mean and variance of the group 1 distribution, I used a student’s t-distribution which is more 

robust against outliers. The need for such a complicated analysis implies that recovery of the 

discrimination parameters is poor in general. The rationale for attempting to measure recovery 

for group 1 and not the other observations is that, in practice, most tasks would suggest that 

extremely small estimates would result in the removal of such items from further analysis. 

Estimating the bias and variability of extremely small discrimination parameter estimates is not 

practically meaningful.



 116 

Figure 20. Scatterplot of True and Estimated 2PL Item Discrimination Parameters with 

Estimated Parameter Observations Falling Below 𝑒−5 Removed. 

 

Note. The x- and y-axes are on the natural log scale. 
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Regression Model Results 

I used the location-scale parameterization of the t-distribution, with location �̂�, scale �̂�, 

and degrees-of-freedom 𝜈. The �̂� is not a direct estimate of the variance of the distribution which 

relies on 𝜈 and is calculated as 𝜎2 = �̂�2 𝜈

𝜈−2
 when the distribution has a definite variance (i.e., 

𝜈 > 2). For a more direct interpretation of the predictor relationships with the variance, I 

sampled regression weights for the predictors predicting 𝜎 instead of �̂� and then calculated the 

scale parameter as �̂� = √𝜎2  
𝜈−2

𝜈
. I also constrained 𝜈 to have a lower bound of 2, ensuring finite 

variance. After multiple attempts to fit this model, I was required to exclude all predictors of the 

mean in order to get the model to sample within a reasonable timeframe.  

The resulting model displayed adequately mixing chains and �̂� values of 1.00 after 

rounding. The model parameters are presented in Table 23. Figure 21 displays both the observed 

and model posterior predicted distribution of marginal bias. Table 24 displays model predicted 

and observed log-means and log-standard deviations of discrimination estimate bias. The figure 

and table suggest that the model underestimates the locations of the distributions, and it severely 

under- and overestimates the variances of the distributions. The location parameter is uniform 

under all conditions and isn’t very informative. The model parameters may be valid in direction 

but not in magnitude. I present the results and predictions of the model below for the sake of 

consistency, but I discourage the reader from using the results for making strong inferences of 

their own. 

The estimates exhibited very little bias on average, 𝑏𝜇
̅̅ ̅ = −0.04, 95%HDPI[−0.04,

−0.03]. There was also very little iteration-specific variance associated with the mean 𝜏𝜇 ̅̅̅̅ =

0.03,95%HDPI[0.02,0.03]. For estimates that weren’t shrunk to near zero, there appears to be 
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little bias on average. The degrees-of-freedom of the t-distribution was 𝜈 = 2.09,

95%HDPI[2.03, 2.15]. The intercept of the estimate variance was small, 𝑏𝜎
̅̅ ̅ = −0.79,

95%HDPI[−1.08,−0.37]. Sample size, 𝑏𝜎
̅̅ ̅ = −0.31, 95%HDPI[−0.33,−0.29], and relative 

propagation, 𝑏𝜎
̅̅ ̅ = −0.25, 95%HDPI[−0.32,−0.18], had modest negative effects on estimate 

variability. Test length, 𝑏𝜎
̅̅ ̅ = −0.10, 95%HDPI[−0.12,−0.08], had a small negative effect on 

estimate variability, and node depth, 𝑏𝜎
̅̅ ̅ = 0.48, 95%HDPI[0.47,0.49], had a moderate positive 

effect on variability. Again, iteration-specific intercept variance was small, 𝜏𝜎 ̅̅ ̅̅ = 0.04,

95%HDPI[0.00, 0.07]. All interaction effects were small and unreliably different from zero. 
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Table 23. 2PL Item Discrimination Model Posterior Means and 

Credibility Intervals of Predictors of Estimate Bias and Variability. 

 Estimate Bias  Estimate Variability† 

 𝑏𝜇
̅̅ ̅ 95%𝐻𝑃𝐷𝐼  𝑏𝜎

̅̅ ̅ 95%𝐻𝑃𝐷𝐼 

Intercept -0.04 [-0.04, -0.03]  -0.79 [-1.08, -0.37] 

S     -0.31 [-0.33, -0.29] 

T    -0.10 [-0.12, -0.08] 

D    0.48 [ 0.47, 0.49] 

P    -0.25 [-0.32, -0.18] 

S x T    0.00 [-0.02, 0.02] 

S x D    0.00 [-0.01, 0.01] 

T x D    -0.03 [-0.05, -0.02] 

S x P    -0.02 [-0.09, 0.05] 

T x P    -0.06 [-0.13, 0.01] 

D x P    -0.03 [-0.06, 0.00] 

S x T x D    0.01 [-0.01, 0.02] 

S x T x P    -0.01 [-0.08, 0.06] 

S x D x P    0.02 [-0.01, 0.05] 

T x D x P    0.02 [-0.01, 0.05] 

S x T x D x P    -0.01 [-0.04, 0.03] 

𝜏 0.03 [ 0.02, 0.03]  0.04 [ 0.00, 0.07] 

Note. N = 32,000, degrees-of-freedom 𝜈 = 2.09 [2.03, 2.15]. D = node 

depth, S = sample size (standardized, M = 1,250, SD = 750.01), T = test 

length (standardized, M = 25, SD = 8.66), P = log-relative propagation, 

𝜏 = between-simulation iteration intercept variance, HPDI = highest 

posterior density interval. † Model parameters are on the log scale. 
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Figure 21. Observed and Posterior Predicted Marginal Bias for 2PL Discrimination Parameters.

 

Note. Observed marginal bias distribution is indicated by the solid black line and the posterior 

predictions of the marginal bias distribution is depicted with the grey shaded regions. 
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Table 24. True and Estimated Item Discrimination Model Predicted and Observed Bias Means and Standard 

Deviations. 

  Log Mean  Log Standard Deviation 

Test 

Length 
Node 

Sample Size = 500  Sample Size = 2000  Sample Size = 500  Sample Size = 2000 

Predicted Observed  Predicted Observed  Predicted Observed  Predicted Observed 

10 

1 -0.04 -0.05  -0.04 0.00  0.07 0.37  0.03 0.15 

2 -0.04 -0.11  -0.03 -0.02  0.31 0.55  0.09 0.27 

3 -0.03 -0.28  -0.03 -0.08  1.21 0.94  0.24 0.58 

4 -0.03 -0.41  -0.03 -0.17  4.94 1.05  0.85 0.69 
  

           

30 

1 -0.03 -0.06  -0.04 -0.02  0.05 0.30  0.03 0.20 

2 -0.04 -0.07  -0.04 -0.03  0.22 0.41  0.07 0.27 

3 -0.04 -0.18  -0.04 -0.04  0.74 0.65  0.16 0.32 

4 -0.03 -0.33  -0.04 -0.15  1.70 0.94  0.45 0.64 
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Tables 25 and 26 display posterior predictions of differences between the marginal 

distributions of estimated and true discrimination parameters for 10- and 30-item tests, 

respectively. Under all conditions, the marginal estimate bias is very small, and the variance is 

large. Only under ideal conditions of large samples sizes and long test lengths with highly 

propagating and highly discriminating items does the estimate variability permit reliable 

inferences. For example, for the first node with a sample size of 2,000 and test length of 30 

items, an estimate of 𝛼 = 1 has an uncertainty interval between . 75 < 𝛼 < 1.06, or a range of 

0.31 which is nearly a third the size of the estimate. In contrast, if 𝛼 = 3, the uncertainty interval 

is 2.75 < 𝛼 < 3.06. The range is only a tenth of the size of the estimate. Several conditions, 

such as those with low propagation rates or deep nodes, exhibit extremely large uncertainty 

intervals. This poses very restrictive conditions and severely limits many practical inferences 

involving the item discrimination parameters such as item selection tasks.  

There is still a large amount of uncertainty around the model estimates not expressed in 

the results. The bias and uncertainty of the estimates needs to be understood in the context of the 

poorly estimated distributional regression model and the data that were removed prior to 

estimating the model. Table 22 suggests that rates of extremely low discrimination parameter 

estimates increased for deeper nodes, smaller sample sizes, shorter test lengths, and lower 

observation propagation rates. The conditions that produce poor estimate recovery in the 

distributional model of estimate bias are the same conditions that produce high rates of extremely 

small discrimination estimates. In addition, the model does not account for a large portion of the 

data that were removed and indicates large uncertainty in the item parameter estimates.  
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Table 25. Posterior Prediction Medians and Credibility Intervals of Differences Between True and Estimated 2PL Item 

Discrimination Parameters for Tests with 10 Items. 

Node 
Propagation 

Ratio† 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝛼𝑀𝑒𝑑
∗  95% HPDI  𝛼𝑀𝑒𝑑

∗  95% HPDI  𝛼𝑀𝑒𝑑
∗  95% HPDI  𝛼𝑀𝑒𝑑

∗  95% HPDI 

1 –– -0.03 [-0.37, 0.17]  -0.03 [-0.34, 0.16]  -0.03 [-0.30, 0.09]  -0.03 [-0.26, 0.06] 

             

2 

0.05 -0.02 [-2.93, 3.69]  -0.02 [-2.42, 2.62]  -0.02 [-1.36, 1.43]  -0.02 [-0.62, 0.44] 

0.5 -0.02 [-0.97, 0.86]  -0.02 [-0.81, 0.63]  -0.02 [-0.59, 0.40]  -0.03 [-0.39, 0.14] 

1 -0.02 [-0.78, 0.56]  -0.02 [-0.71, 0.49]  -0.02 [-0.52, 0.25]  -0.03 [-0.32, 0.13] 

2 -0.02 [-0.64, 0.41]  -0.02 [-0.53, 0.33]  -0.03 [-0.43, 0.22]  -0.03 [-0.31, 0.09] 

             

3 

0.05 0.00 [-26.90, 163.00]  -0.02 [-7.38, 38.32]  -0.03 [-6.15, 11.07]  -0.02 [-1.33, 1.85] 

0.5 -0.02 [-2.76, 4.26]  -0.02 [-2.43, 2.75]  -0.02 [-1.55, 1.48]  -0.02 [-0.69, 0.46] 

1 -0.02 [-1.88, 2.11]  -0.02 [-1.50, 1.84]  -0.02 [-1.20, 0.98]  -0.02 [-0.58, 0.37] 

2 -0.02 [-1.32, 1.23]  -0.02 [-1.03, 1.05]  -0.02 [-0.84, 0.60]  -0.03 [-0.46, 0.27] 

             

4 

0.05 0.03 [-29.75,2.98e+11]  -0.01 [-58.30,9.90e+7]  -0.01 [-57.68, 50.20e+2]  -0.02 [-5.91,13.13] 

0.5 -0.03 [-13.21, 57.77]  -0.03 [-8.07, 24.39]  -0.02 [-4.28, 8.38]  -0.02 [-1.46, 2.09] 

1 -0.02 [-6.77, 13.20]  -0.02 [-4.45, 7.54]  -0.02 [-2.74, 3.86]  -0.02 [-1.13, 1.20] 

2 -0.02 [-3.29, 4.69]  -0.02 [-2.48, 3.56]  -0.02 [-1.94, 2.13]  -0.02 [-1.03, 0.70] 

Note. 𝛼𝑀𝑒𝑑
∗  = median of the posterior predicted discrimination estimate marginal bias, HPDI = highest posterior density interval. 

†Formula for approximate number of observed responses: 𝑛 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 × 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 × 0.5𝑁𝑜𝑑𝑒−1. Bias is difference 

between the marginal distributions of estimated discrimination parameters and true discrimination parameters. 
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Table 26. Posterior Prediction Medians and Credibility Intervals of Differences Between True and Estimated 2PL Item 

Discrimination Parameters for Tests with 30 Items. 

Node 
Propagation 

Ratio† 

Sample Size = 250  Sample Size = 500  Sample Size = 1,000  Sample Size = 2,000 

𝛼𝑀𝑒𝑑
∗  95% HPDI  𝛼𝑀𝑒𝑑

∗  95% HPDI  𝛼𝑀𝑒𝑑
∗  95% HPDI  𝛼𝑀𝑒𝑑

∗  95% HPDI 

1 –– -0.03 [-0.29, 0.13]  -0.03 [-0.33, 0.08]  -0.03 [-0.27, 0.07]  -0.03 [-0.25, 0.06] 

             

2 

0.05 -0.02 [-2.08, 2.20]  -0.02 [-1.78, 1.86]  -0.02 [-1.17, 1.18]  -0.02 [-0.65, 0.54] 

0.5 -0.02 [-0.64, 0.47]  -0.02 [-0.62, 0.35]  -0.03 [-0.40, 0.21]  -0.03 [-0.33, 0.08] 

1 -0.03 [-0.44, 0.31]  -0.03 [-0.44, 0.21]  -0.03 [-0.37, 0.17]  -0.03 [-0.26, 0.07] 

2 -0.03 [-0.42, 0.16]  -0.03 [-0.36, 0.15]  -0.03 [-0.33, 0.12]  -0.03 [-0.25, 0.07] 

             

3 

0.05 -0.02 [-4.55,13.05]  -0.02 [-3.97, 10.08]  -0.02 [-3.30, 4.47]  -0.02 [-1.38, 1.62] 

0.5 -0.02 [-1.31, 1.47]  -0.02 [-1.11, 1.11]  -0.02 [-0.82, 0.78]  -0.02 [-0.48, 0.26] 

1 -0.02 [-1.01, 0.77]  -0.03 [-0.76, 0.60]  -0.02 [-0.65, 0.38]  -0.03 [-0.36, 0.14] 

2 -0.02 [-0.69, 0.47]  -0.02 [-0.59, 0.34]  -0.03 [-0.47, 0.24]  -0.03 [-0.30, 0.13] 

             

4 

0.05 0.01 [-18.08,1148.53]  -0.02 [-11.71, 289.20]  -0.03 [-9.77, 35.09]  -0.02 [-4.15, 5.03] 

0.5 -0.02 [ -3.44, 4.34]  -0.02 [ -2.49, 4.09]  -0.02 [-1.75, 2.21]  -0.02 [-0.88, 0.79] 

1 -0.02 [ -1.85, 2.49]  -0.02 [ -1.56, 1.91]  -0.02 [-1.19, 1.14]  -0.02 [-0.60, 0.48] 

2 -0.02 [ -1.47, 1.19]  -0.02 [ -1.20, 1.04]  -0.02 [-0.84, 0.69]  -0.03 [-0.43, 0.30] 

Note. 𝛼𝑀𝑒𝑑
∗  = median of the posterior predicted discrimination estimate marginal bias, HPDI = highest posterior density interval. 

†Formula for approximate number of observed responses: 𝑛 = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 × 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 × 0.5𝑁𝑜𝑑𝑒−1. Bias is difference 

between the marginal distributions of estimated discrimination parameters and true discrimination parameters. 
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Post Hoc Analyses for 2PL Model 

After conducting the initial analyses, I performed some post hoc analyses to try and 

further diagnose the estimation issues I experienced with the 2PL models. I simulated 50 datasets 

with 500 respondents and 10-items per node for the 4-node resilience tree. I estimated the 2PL 

model parameters with the MH-RM, expectation maximization, and quasi-Monte Carlo 

expectation maximization routines offered by the mirt package (Chalmers, 2012). I also 

estimated the parameters using a similar model in Stan (Stan Development Team, 2019) that uses 

a Hamiltonian Monte Carlo No-U-Turn Sampler (NUTS; Hoffman & Gelman, 2014). None of 

the other estimators in the mirt package produced standard errors. Stan produces posterior draws 

that can be summarized with standard deviations for each parameter, which is an estimate of 

uncertainty similar to normal theory standard errors. Figures 22, 23, and 24 and Table 27 display 

the means and standard deviations of estimate bias for the point estimates of the mirt estimation 

routines and the posterior medians from Stan for item discrimination, item difficulty, and person 

ability parameters. The results for the difficulty parameters suggest that all estimators displayed 

very little bias with moderate and similarly sized estimate uncertainty. The NUTS routine in Stan 

produced larger estimate uncertainty compared to the other methods, particularly for node 1. 

This difference diminished with deeper nodes. The results for the discrimination parameters 

suggest that the mirt estimation methods are systemically downwardly biased, increasingly so 

with deeper nodes, whereas the NUTS estimates are unbiased. The MH-RM estimates were 

severely downwardly biased because large portions of the discrimination parameter estimates 

were shrunk towards zero like I found in the previous 2PL simulation. None of the other 

estimation methods produced severely shrunken discrimination parameter estimates. Finally, all 
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estimation methods produced adequate person ability estimates that were not appreciably 

different in mean bias or variance.  

Although this is just a small sample of a single combination of conditions, it does suggest 

that the poor recovery of the discrimination parameters was largely the result of the MH-RM 

estimation routine. The discrimination parameter regression results presented for the initial 2PL 

simulation should not be trusted. The results from the 2PL models measuring recovery of the 

difficulty and person ability parameters are not likely to be substantially different from the other 

estimation methods and may still afford valid inferences.  
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Figure 22. Sample Means and Standard Deviations of Item Difficulty Parameters by Estimation 

Method. 

 

Note. EM = Expectation Maximization, MHRM = Metropolis-Hastings Robbins-Monro, NUTS 

= Hamiltonian Monte-Carlo No-U-Turn Sampler, and QMCEM = Quasi-Monte Carlo 

Expectation Maximization.



 128 

Figure 23. Sample Means and Standard Deviations of Item Discrimination Parameters by 

Estimation Method. 

 

Note. EM = Expectation Maximization, NUTS = Hamiltonian Monte-Carlo No-U-Turn Sampler, 

and QMCEM = Quasi-Monte Carlo Expectation Maximization. The MH-RM estimation method 

is not included because the mean bias and standard deviations were too large in magnitude 

compared to the other methods to appropriately display on the same scale. Refer to Table 27 for 

MH-RM results. Estimate bias is the log of the ratio between the estimated and true 

discrimination parameters. 
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Figure 24. Sample Means and Standard Deviations of Person Ability Parameters by Estimation 

Method. 

 

Note. EM = Expectation Maximization, MHRM = Metropolis-Hastings Robbins-Monro, NUTS 

= Hamiltonian Monte-Carlo No-U-Turn Sampler, and QMCEM = Quasi-Monte Carlo 

Expectation Maximization.
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Table 27. Post Hoc Sample Statistics for Item and Person Parameters. 

Node Method 
�̂�  �̂�  �̂� 

M SD  M SD  M SD 

1 

EM -0.13 0.30  -0.06 0.27  0.02 0.52 

MH-RM -1.94 8.74  -0.06 0.20  0.02 0.51 

NUTS 0.01 0.26  -0.09 0.35  0.00 0.51 

QMCEM -0.03 0.26  -0.03 0.18  0.01 0.51 

          

2 

EM -0.13 0.38  -0.01 0.24  0.01 0.68 

MH-RM -4.69 12.79  -0.01 0.23  0.00 0.68 

NUTS -0.01 0.34  0.03 0.36  0.01 0.68 

QMCEM -0.09 0.34  0.00 0.23  0.00 0.68 

          

3 

EM -0.21 0.57  -0.03 0.35  0.00 0.82 

MH-RM -8.56 16.21  -0.03 0.36  0.00 0.83 

NUTS 0.00 0.55  -0.04 0.41  0.00 0.82 

QMCEM -0.18 0.55  -0.03 0.35  0.00 0.82 

          

4 

EM -0.43 0.79  -0.03 0.45  0.01 0.89 

MH-RM -20.39 20.33  -0.03 0.46  0.01 0.91 

NUTS 0.03 0.75  -0.03 0.47  0.01 0.89 

QMCEM -0.39 0.78  -0.03 0.45  0.01 0.89 

Note. n per cell = 500 for item parameters and 25,000 for person parameters. EM = Expectation Maximization, 

MH-RM = Metropolis-Hastings Robbins-Monro, NUTS = Hamiltonian Monte-Carlo No-U-Turn Sampler, and 

QMCEM = Quasi-Monte Carlo Expectation Maximization. �̂�= item discrimination parameter, �̂� = item difficulty 

parameter, �̂�= person ability parameter. 
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Discussion 

As with any IRT model, IRTrees are useful insofar as they adequately measure or 

summarize the underlying data generating item and person properties. Simulation studies are a 

standard method for investigating the validity of a model. Recovery of the data generating 

parameters is often of interest. Large estimate bias threatens valid inferences with a model. Large 

estimate variability threatens reliable inferences. In the present study, I simulated data generated 

from 1PL and 2PL IRTree models with varying sample sizes and test lengths, estimated the 

model parameters, and then investigated parameter recovery for item and person ability 

parameters. A benefit of the IRTree framework is that it provides a large amount of flexibility 

and potential to test novel research hypotheses. However, the results of this project indicate the 

need for limitations on their practical use. The IRTree framework is novel in how it may be 

applied but is essentially the same as any other IRT model at its core. IRTree models require 

enough observations for each item to estimate item parameters. They also require enough 

observations for each person to estimate person parameters, as any other IRT model does. This 

means there must be enough respondents in the sample and enough items per node in the test. 

The issues presented in this study are not novel themselves. Rather, they are the same issues 

studied by other researchers for decades, but these issues have presented in IRTrees in a unique 

way. 

Item Difficulty Parameters 

The results from the 1PL and 2PL simulations were very similar and suggest that the item 

difficulty parameters are unbiased under most conditions. From a frequentist perspective, under 

the assumption of infinite repeated sampling or sample size, the item difficulty estimates are 

consistent and should converge to their true data generating values at the limit where 𝑛 → ∞. 
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Usage of IRTrees, or any other IRT model, involves finite samples, often with sample sizes that 

are not adequate approximations of this limit. Estimate variability is important to quantify the 

range or distribution of plausible values. In the present study, the sampling variability or 

measurement uncertainty is large under many practical testing and modeling conditions. 

Although large sample sizes provide smaller uncertainty intervals, the propagation of 

observations to the deepest node is more influential. If a set of auxiliary-items each have low 

endorsement rates, they will not propagate many observations to descendent nodes. Large sample 

sizes (𝑁 ≥ 2,000) can diminish the chance of obtaining too few observations for a given node 

due to a set of sampled auxiliary-items with low propagation. Researchers should be mindful of 

the number of endorsements of each category for each rating-scale item or set of auxiliary-items 

and the IRTree structure they plan to use for analysis. If a category for a rating-scale item is 

indicative of an implicit response that occurs several nodes deep into a set of responses and that 

category has a low endorsement rate, the researcher should lower their expectations for how 

precise the difficulty estimates for that item can be.  

For the 1PL model, the results suggest that a minimum of around 100 observations are 

required to adequately estimate a given item at a given node if a researcher wants to be able to 

distinguish items that are one standard deviation apart on the ability scale. This means, on 

average, researchers need a minimum of 𝑁 = 100 × 2𝑑𝑒𝑝𝑡ℎ total respondents for adequate 

measurement at a given node depth. This requires average to easy items at each ancestor node, a 

requirement that becomes less likely with each depth level. This is paradoxical because a well 

calibrated test typically requires items that target a wide range of the latent trait levels. Requiring 

only or mostly average to easy items suggests that the test items must target a specific area of the 

latent trait in the population of interest. In order to achieve sufficiently small uncertainty 
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intervals for the difficulty parameter estimates, a researcher may need to sacrifice adequate 

estimation of the targeted trait in the population of interest. The 2PL regression model suggests 

that the difficulty parameters for 2PL IRTrees comes with greater estimate variability. The 

posterior predictions indicated that node-specific sample sizes increase with greater depths. The 

root-node must propagate at least 200 observations on average for nodes at a depth of 1. This 

required sample size increases up to around 300 to 400 respondents depending on the total 

sample size and test length. Under the assumption of normally distributed item difficulty 

parameters, the predictive simulation suggests that deep nodes for either model under any set of 

conditions are unlikely to be propagated enough observations for adequate estimate reliability. 

For the same reason, the 2PL model is unlikely to produce estimate reliability for nodes deeper 

than 1. As I said before, the criterion of differentiating items 1 standard deviation apart is 

arbitrary, but it provides a starting point for understanding the practical implications of the study 

results. Some researchers will need a more stringent criterion whereas others may need a less 

stringent criterion. 

The standard errors for the 1PL model provided adequate coverage over the data 

generating values. These are useful for informing the researcher about the limits of inference, but 

do not resolve the issue of high variability. The 2PL models did not produce standard errors due 

to estimation issues. The post-hoc simulation suggests that several estimation routines offered by 

the mirt package are not able to produce standard errors for the item parameters. 

Person Ability Parameters 

The person ability parameters for the 1PL and 2PL models were, on average, unbiased. 

However, the estimate variance was large. Deeper nodes and shorter tests produced greater 

estimate variability. Deeper nodes produce greater missingness for a given person, providing less 
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information about that person’s ability parameter. Shorter tests produce fewer opportunities for a 

given respondent to respond to an auxiliary-item at a given descendent node resulting in greater 

missingness per node. Both contribute to respondents with completely missing responses on 

descendent nodes. Both models produced ability estimates that are shrunk to zero, increasing in 

number with greater depth and shorter tests. I believe the cause is the lack of observed item 

responses for a given person at a given node. EAP estimation is the expected value of the 

posterior distribution of a person’s ability parameter. If there are no items to provide information 

on where a person is located on the ability continuum, the most likely location is the population 

mean (zero when the population is assumed to come from a standard normal distribution). The 

shrunken estimates are symmetrical around the mean of the ability distribution, so the aggregated 

estimate bias and variance are largely unaffected. The shrunken estimates attenuate the 

correlation between the true and estimated ability parameters. A consequence is that all 

relationships with external criteria are also attenuated. Unless the true relationship between the 

IRTree ability and the external criterion is very strong, there are few practical conditions where 

mere directional tests of the relationship are reliable.  

A researcher could possibly remove respondents with sparse response patterns for a given 

node to try and limit attenuation of the correlation. However, the ability of a researcher or 

practitioner to utilize an IRTree model for assessment or selection purposes is then conditional 

on a person’s measured attribute for latent factors utilized at the beginning of a branch. 

Respondents essentially select themselves out as a result. A very large number of items, or items 

tailored specifically to the target range of abilities, would be required in order to minimize this 

selecting out process. These results make tasks such as using IRTrees to produce latent ability 

scores parted from response styles doubtful. 
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Item Discrimination Parameters 

Recovery of the item discrimination parameters in the 2PL model was not accurately 

assessed in this study. The simulated dataset contained a substantial number of estimates shrunk 

to near zero, diverging substantially from the log-normal distribution that generated the true 

values. This made analysis of estimate bias and variability challenging. The model that I 

constructed required removal of most of these shrunken estimates and still could not provide 

adequate posterior predictions of the observed data. The discrimination parameter regression 

model results are not trustworthy. The post hoc analyses are more informative. The MH-RM 

estimation routine is the likely culprit of the shrunken discrimination parameter estimates. The 

expectation maximization routine and quasi-Monte-Carlo expectation maximization routine both 

produced downwardly biased estimates, but they did not produce estimates shrunk to zero. The 

NUTS routine in Stan adequately estimated the discrimination parameters. 

The results for the person ability parameters did not seem to suffer from the poor 

estimation of the discrimination parameters. One explanation is that when discrimination 

parameters were severely biased, they tended to be downwardly biased or shrunk all the way to 

zero. Estimates that small provide little information across the latent ability dimension. The 

likelihood of an ability score 𝜃[𝑘] given an observed response pattern 𝑋[𝑖] is the product of the 

observed response probabilities to each item given item parameters 𝜉[𝑗],  

ℒ(𝜃[𝑘]|𝑋[𝑖]) = ∏ Pr(1|𝜃[𝑘], 𝜉[𝑗])
𝑥[𝑖,𝑗]

× Pr(0|𝜃[𝑘], 𝜉[𝑗])
1−𝑥[𝑖,𝑗]𝐽

𝑗=1 . 

If one of the items had a near zero discrimination parameter, the probability function would be 

nearly flat across the latent ability dimension. Likewise, there would be little difference in the 

likelihood across ability levels for a given response pattern. The EAP score would be estimated 
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as if the item weren’t included in the first place. This is more desirable than an upwardly biased 

discrimination parameter wherein the item has much greater influence over the EAP scores. 

Limitations 

Estimation Method and 2PL IRTree Models 

A potential threat to validity is the estimation method I used. I used the MH-RM method 

for estimation (Cai, 2010) implemented in the mirt package (Chalmers, 2012). Chalmers and 

Flora (2014) found that the MH-RM method produces high parameter estimate variances for 2PL 

non-compensatory models, especially with short tests and strong correlations between the latent 

factors. The IRTrees that I used are a form of non-compensatory IRT model because some rating 

scale responses are conditional on successfully responding to multiple items on multiple 

dimensions. All auxiliary-items except the root-node auxiliary-item are non-compensatory in 

nature. This may partly explain why the parameters were so poorly recovered for deeper nodes. 

Wang and Nydick (2015) found similar results to Chalmers and Flora (2014), and also found that 

MCMC methods provide better recovery of non-compensatory IRT model parameters. The 

results from the NUTS method used in the post hoc analyses for the 2PL models agree with these 

findings. Many researchers in the past have used the lme4 package (Bates et al., 2015) for 

estimation of IRTree models (e.g., De Boeck & Partchev, 2012), which uses Laplace 

approximation or adaptive Gauss-Hermite quadrature and non-linear optimizers. These 

estimation methods may produce estimates with greater or lesser bias and variance. The purpose 

of the post hoc analyses was largely to explore whether other estimation methods would produce 

shrunken discrimination parameter estimates, so I did not explore other estimation methods such 

as those used in the lme4 package. Future research should investigate differences in IRTree 

parameter recovery between parameter estimation methods. 
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This study does not provide much insight into the estimation of the discrimination 

parameter for 2PL models. I believe the estimation issues that produced item discrimination 

estimates near-zero were the result of the MH-RM estimation routine. The post-hoc analyses 

suggest that several other routines, although they do not produce near-zero estimates, do produce 

downwardly biased estimates. Future research should more rigorously investigate which 

estimation routines provide adequate recovery of the discrimination parameter. Despite this 

limitation, recovery of the difficulty and person ability parameters are not substantially different 

from the 1PL model. The 2PL results may be used for inferences about those parameters, 

although I recommend further research be conducted. 

Previous Research and Higher Order Tests 

The study results are neither consistent with nor contradictory to previous simulation 

studies performed by other researchers. I argue that the design of this study is more thorough and 

systematic in its approach to understanding parameter recovery than previous IRTree simulation 

studies. Some researchers have conducted limited simulation studies with IRTrees before and 

found that the models adequately estimate the quantities of interest. This study suggests the need 

for caution for those wishing to use IRTree models or use previous literature on IRTree models. 

Researchers conducting IRTree simulation studies have not thoroughly presented their findings, 

have previously used aggregated estimates of bias and variance, have used a single sample size 

and test size, or have investigated criteria that are a level too far removed from the item and 

person parameter estimates to make a direct comparison with this study.  

This simulation study focused on parameter recovery, particularly in the context of tasks 

requiring precise measurement such as item or personnel selection or for predicting criteria using 
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the measured person abilities. These are common tasks for other IRT models, but many tasks in 

the IRTree literature focus on hypothesis testing by means of (primarily likelihood-based) model 

comparisons (e.g., Jeon & De Boeck, 2019; Partchev & De Boeck, 2012) or measuring latent 

correlations between the person abilities (e.g., Cho et al., 2020; Debeer et al., 2017). Other 

simulation studies using IRTrees have shown that inferences using model comparisons are valid 

under many practical testing and measurement conditions (Debeer et al., 2017; DiTrapani, 2019; 

Jin et al., 2019; Tijmstra et al., 2018). This may speak to the fungibility of parameter estimates 

for higher levels of analysis in which precise measurement of person or item characteristics is 

secondary to identifying a model to best characterize the data. A wide range of estimates to 

quantify relationships in the data may produce near identical inferences when comparing models 

using criteria at a higher level of analysis that are less sensitive to measurement error. 

Researchers should investigate the limits of these inferences using methods similar to those 

found in the SEM literature such as fungible parameter contours (Pek & Wu, 2018) which can 

characterize how sensitive model inferences are to small changes in the parameter estimates. 

For IRTrees, because of the coding scheme, deeper nodes have fewer data points. As a 

result, the overall model likelihood accounts for fewer observations for deep nodes versus 

shallow nodes. This means that the model likelihood may be less affected by model differences 

that occur at deeper nodes than at shallower nodes. It may be the case that many likelihood-based 

inferences, such as using AIC, BIC, or likelihood ratio tests for model comparisons, are largely 

dependent on model differences occurring at the first or second node. Model differences 

occurring at descendent nodes become less influential on the likelihood and the overall 

likelihood-based comparison may be increasingly influenced by the differences in model 

degrees-of-freedom (or number of parameters) rather than fit to the data, especially when sample 
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sizes are small and test lengths are short. Further research is needed to understand how variable 

parameter estimates can be and still allow researchers to conduct higher order tests and 

inferences. 

Generalizability  

There are several threats to the generalizability of this study. The most obvious is that this 

is a highly controlled simulation study. “Real world” data includes measurement error due to a 

variety of sources that further threaten valid inferences using IRTrees. This study represents a 

best-case scenario. Researchers should plan for greater estimate bias and uncertainty than what is 

presented here.  

I only used two levels for the sample size and test length conditions. The distributional 

regression models considered in this study use simple linear approximations for the effects of 

these factors. The factors likely have some logarithmically diminishing effect as either sample 

size or test length grow in number, each have a logical lower bound at one, and each probably 

have a practical lower bound where estimation issues become prohibitive. Predictions beyond the 

limits of the chosen experimental levels should be considered with some caution.  

I used an orthogonal latent factor structure, but in practice the latent factors would likely 

be correlated some degree. Imposing uncorrelated latent factors afforded me greater control over 

what caused bias and variability, particularly regarding the propagation effect. Correlated latent 

factors may provide additional information for estimation of the latent factors in the face of high 

missingness. A related limitation is that this study does not investigate the adequacy of IRTrees 

in recovering the latent covariance structure, which may be of interest to some researchers. The 

adequacy of estimating the covariance between latent factors may not be the same as estimation 
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of the item and person ability parameters. Future studies should investigate recovery of the latent 

covariance structure. 

I did not include the true value of a parameter as a predictor of estimate bias or variance. 

The common finding in past simulation studies is that person and item parameters located further 

away from the average tend to exhibit greater bias and variance (Thissen & Wainer, 1982). The 

presented models should be understood as explaining the average item or average person. Items 

and persons further away from the average will likely produce estimates with greater uncertainty 

than those predicted here. 

Readers that want to use the results of these studies to inform a frequentist analysis of 

IRTree models should proceed with some caution. I used a Bayesian approach for estimating the 

IRTree models. When I estimated each IRTree model using the mirt package, I specified weakly 

informative priors on the item parameters. This contrasts with non-informative (e.g., uniform) 

priors or frequentist estimation techniques that do not explicitly use priors. Given many 

observations, the influence of these priors on the posterior would be overwhelmed by the data 

and point estimates would not likely differ much from frequentist estimation (Gelman et al., 

2014). However, when observations are sparse, such as when samples sizes are small, test 

lengths are short, and deep auxiliary-items contain large amounts of missingness, the weakly 

informative priors would serve a regularizing function on the estimated parameters. For example, 

for the difficulty parameters, I used a normal distribution with a mean of zero and standard 

deviation of one. When information from the data was sparse, estimates of the difficulty 

parameters should have been regularized towards zero and should have made extreme negative 

or positive estimates less likely, providing a more conservative point estimate in the posterior. 

The lack of such a regularizing prior may result in substantially different difficulty estimates 
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when there are few observations for a given item. If this is the case for the present study, the 

results for the item parameter estimates may be overly optimistic if a researcher wanted to use 

frequentist analysis methods. This is also suggestive that, if a researcher still wanted to use a 

frequentist interpretation, using at least weakly informative priors has a practical advantage as 

regularizing functions.  

Other Recommendations and Thoughts for Future Research  

IRTree Designs and Depth 

The node depth and relative observation propagation factors in this study have 

implications for the types of IRTree models researchers use. The structural diagrams used to 

represent the IRTree of interest are not always representative of the depth of each node involved. 

For example, to model a 4-point agreement rating scale, I could specify a two-node IRTree. The 

first decision is whether to provide an agreeable response or disagreeable response (agreement 

node), and the second decision is whether to provide an extreme response (extreme node). The 

response process terminates only after responding to both nodes, and there is a single set of item 

parameters for the extreme node so that extreme agreement and extreme disagreement 

parameters are the same. Recoding rating scale responses into auxiliary-items would not require 

the introduction of missingness, and the resulting child node probabilities would not be 

conditional on parent nodes. It is perhaps debatable whether this qualifies as an IRTree at all. 

Similar caveats may be found in IRTrees such as the MPP model with a single extreme node 

where the agreement and extreme nodes are conditional on the midpoint node but are not 

conditional on one another. The commutativity of the order of the agreement and extreme nodes 

makes the MPP model have a maximum depth of 1. This is not the case when the MPP model is 

specified as having independent parameters for extreme agreement and extreme disagreement 
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nodes, which would then have a maximum depth of 2. In sum, researchers should be cognizant 

of the number of observations available for estimating item parameters, which is directly related 

to the configuration of the IRTree model and its maximum depth. 

A broader discussion about the usage of IRTrees is also warranted. Many researchers 

have used IRTrees to measure respondent response biases such as midpoint or extreme response 

styles (Böckenholt, 2017; Jeon & De Boeck, 2019; LaHuis et al., 2019). Using an IRTree model 

implies the need to account for some response conditional on another response. In the case of an 

MPP model, there is some hypothesized response process where a respondent poses a series of 

questions, each conditional on the preceding question. For the MPP model, the questions may be 

about the relevance (midpoint), valance (agreement), and intensity (extreme) of the respondent’s 

opinion towards the item content. The hypothesized structure is integral to the research question 

at hand and an IRTree model provides one potential solution. However, in some cases 

researchers purely interested in measuring and separating response styles from a substantive 

latent factor do not need to incorporate the conditional response structure. Incorporating a 

conditional response structure will, in the case of IRTrees, unnecessarily introduce missingness. 

Without a theory of conditional responding, it would be equally valid to recode a rating scale 

item into zeros and ones without introducing missingness and then estimate a regular 

multidimensional IRT model, a technique already common in the response style literature. 

Researchers should investigate differences between these two methods of measuring response 

styles and consider whether a conditional response structure is necessary or valid prior to using 

an IRTree model. 
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Reporting of Item Parameters 

It is not yet custom to report the item parameters in published articles. For long tests, this 

seems somewhat reasonable due to space concerns in a journal (though a growingly 

unconvincing reason with the convenience of online journals and repositories for making 

research materials publicly available). Some IRTree studies are focused primarily on criteria that 

are of consequence to item estimation. The validity (and credibility) of the results of some study 

utilizing IRTrees may be conditional on adequate item parameter recovery. This cannot be 

ascertained by a reader if item parameters and standard errors are not reported. Response counts 

for each response option should also be tabulated and reported for each item. Depending on the 

design of the study and the goals of the researcher, some IRTree models may be precluded from 

analysis if a sufficient number of responses aren’t observed for each response option.  

Researchers have not reported issues with estimating standard errors for 2PL IRTree 

models in previous studies. The post hoc analyses for the 2PL models that I performed suggest 

that this is an issue for several estimation routines. One possibility is that there was some issue 

with the code I wrote for generating the simulated data. This is unlikely as there were no other 

signs of this possible issue in the 1PL model results or in the recovery of the 2PL difficulty and 

ability parameters. Another possibility is that item parameter estimates are not commonly 

reported, let alone their standard errors. Regarding previous simulation studies, many uses of 

IRTree models involve tasks that may not require precise estimation of the item parameters. The 

item parameter estimates may be highly fungible in the sense that they can take on a wide range 

of values that deviate from their data generating values and still produce valid inferences. Null 

hypothesis testing using a sensitive test, such as the likelihood-ratio test for model fit, may 

produce similar results with a wide range of item parameter estimate bias.  
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Bayesian Methods for Estimation 

A fully Bayesian approach may aid estimation of the item parameters. In many contexts, 

the item difficulty parameters are likely correlated across nodes. De Boeck and Partchev (2012) 

provide an example IRTree where the first node indicates whether a respondent chose to omit a 

response to an item, and the second node indicates agreement to the item conditional on 

providing a response. The difficulty parameters of the two auxiliary-items are likely correlated, 

such that items with difficult item content are also more likely to be omitted by a respondent. A 

hierarchical multivariate normal prior on the difficulty parameters could account for this latent 

correlation if the correlation is strong. Auxiliary-items in the second node that have few 

observations could “borrow information” via partial pooling from other second node auxiliary-

items that have many observations and the latent correlation for more reliable estimation. 

Another strategy that might prove useful for lowering estimate variability is setting stronger 

priors on the item parameters. Incorporating beliefs about the difficulty or relevance of the item 

content into the prior distributions could be especially informative for nodes that reside deep 

within a tree or that have ancestor nodes with low endorsement probabilities and likely suffer 

from having few observations. 

Adaptive Testing as a Solution 

Adaptive testing may provide a solution to some of these concerns. Adaptive testing often 

involves estimation of item parameters beforehand and then selectively administering items to 

optimize some criterion such as minimizing person ability estimate standard errors. In this case, 

instead of using pre-estimated item parameters, marginal sums of item endorsements/non-

endorsements could be used to determine whether to administer additional items to a person. For 

example, if a person answered 20 items and their observed responses would not produce any 
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response to recoded auxiliary-items at the deepest node, additional items could be administered. 

This could prevent instances of respondents with zero observations for a given node and 

therefore an inestimable latent ability for that node. 

Conclusion 

IRTrees provide a flexible framework for testing unique hypotheses and measuring latent 

abilities with complex survey structures. Many IRTree applications involve the introduction of 

missingness due to the recoding procedure. Prior to this study, simulation studies involving 

IRTree models were either lacking thorough investigation or focused on specific applications. 

None have given attention to the unique conditions that result in greater amounts of missing data. 

My aim in this study was to measure the adequacy of parameter recovery across several 

conditions and provide some perspective with selected estimation criteria. In particular, I wanted 

to highlight the conditional structure of the model can produce insufficient estimates under many 

common testing conditions. Like all item response models, conditions that result in fewer 

observations per item result in greater item parameter estimate uncertainty, such as smaller 

sample sizes, lower propagation rates due to lower item endorsement, and deeper node depths. 

Conditions that result in fewer observations per person for a given node result in greater estimate 

uncertainty, such as shorter test lengths and deeper node depths. Researchers should be cognizant 

of the number of observations available to a given auxiliary-item and person to ensure adequate 

estimation. For tasks such as item selection or prediction of external criteria with the person 

ability parameters, IRTrees may require large sample sizes, long test lengths, and short tree 

depths. 
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Appendix 

1PL IRTrees 

Item Difficulty Regression Model Results 

Table 28. 1PL Item Difficulty Distributional Regression Model Predictor Parameters of the Estimate Bias Mean. 

Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

Intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 3611.17 4568.28 

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.001 6229.07 4592.93 

S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 3636.62 4252.22 

T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 4704.59 5465.16 

P 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.00 0.01 1.000 9508.78 4760.59 

D x S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.001 5971.04 4019.62 

D x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.002 6010.29 4669.91 

S x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 5024.52 5101.49 

D x P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.001 10079.25 5023.35 

S x P 0.00 0.01 -0.01 0.00 0.00 0.01 0.01 0.01 1.000 10477.38 4444.23 

T x P 0.00 0.01 -0.01 0.00 0.00 0.01 0.01 0.01 1.000 10246.41 4852.82 

D x S x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.001 6273.96 4835.46 

D x S x P 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 1.000 10088.07 4478.37 

D x T x P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 9791.61 5083.19 

S x T x P 0.00 0.01 -0.01 -0.01 0.00 0.00 0.00 0.01 1.000 10094.16 4490.09 

D x S x T x P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 10090.12 4976.06 

τ 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.02 1.000 2138.83 3760.54 

Note. D = node depth, S = sample size, T = test length, P = log-relative propagation, τ = between-simulation iteration 

intercept variance, ESS = Effective Sample Size. 
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Table 29. 1PL Item Difficulty Distributional Regression Model Predictor Parameters of the Estimate Bias Variability. 

Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

Intercept -2.54 0.01 -2.56 -2.55 -2.55 -2.54 -2.53 -2.53 1.002 10800.21 4938.87 

D 0.34 0.00 0.34 0.34 0.34 0.35 0.35 0.35 1.003 10791.49 5060.76 

S -0.36 0.01 -0.37 -0.37 -0.36 -0.35 -0.35 -0.34 1.000 11885.23 4740.79 

T 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.00 0.01 1.000 11887.12 4291.98 

P -0.42 0.02 -0.46 -0.44 -0.43 -0.40 -0.39 -0.38 1.000 10690.90 4219.32 

D x S 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.02 1.000 10535.88 4600.26 

D x T 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 1.000 10476.93 4340.42 

S x T 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.00 0.01 1.002 11986.14 4400.92 

D x P 0.02 0.01 0.00 0.01 0.01 0.02 0.03 0.03 1.000 10795.45 4425.64 

S x P 0.04 0.02 0.00 0.02 0.03 0.05 0.06 0.08 1.001 9718.84 4370.00 

T x P -0.01 0.02 -0.05 -0.03 -0.02 0.01 0.02 0.04 1.000 10450.08 4334.58 

D x S x T 0.00 0.00 -0.01 0.00 0.00 0.00 0.01 0.01 1.001 9956.08 4659.77 

D x S x P -0.02 0.01 -0.04 -0.03 -0.02 -0.01 -0.01 0.00 1.000 9820.51 4245.21 

D x T x P 0.00 0.01 -0.02 -0.01 0.00 0.01 0.01 0.02 1.000 10101.15 4442.13 

S x T x P -0.02 0.02 -0.06 -0.04 -0.04 -0.01 0.00 0.02 1.000 9593.08 4351.82 

D x S x T x P 0.01 0.01 -0.01 0.00 0.00 0.02 0.02 0.03 1.001 9190.03 4182.62 

τ 0.02 0.01 0.00 0.01 0.02 0.03 0.03 0.04 1.002 1268.63 1937.88 

Note. D = node depth, S = sample size, T = test length, P = log-relative propagation, τ = between-simulation iteration 

intercept variance, ESS = Effective Sample Size. Estimates are on the log scale. 
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Figure 25. 1PL Item Difficulty Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Mean Bias. 

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 
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Figure 26. 1PL Item Difficulty Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Variability. 

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. The intercept is not included because it was 

too distant from the other parameter to display properly. 
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Figure 27. 1PL Item Difficulty Estimate Bias, Model Parameter Trace Plot for Estimate Mean 

Bias. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 28. 1PL Item Difficulty Estimate Bias, Model Parameter Trace Plot for Estimate 

Variance. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 29. 1PL Item Difficulty Estimate Bias, Model Parameter Scatter Plot for Estimate 

Mean Bias. 
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Figure 30. 1PL Item Difficulty Estimate Bias, Model Parameter Scatter Plot for Estimate 

Variability. 
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Person Ability Regression Model Results – Bias 

Table 30. 1PL Person Ability Distributional Regression Model Predictor Parameters of the Estimate Bias Standard Deviation. 

Parameter Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

μ 

Intercept 0.00 0.01 -0.02 -0.01 0.00 0.01 0.01 0.02 1.000 6441.01 4486.33 

D 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.02 1.000 6544.17 4741.71 

S -0.01 0.01 -0.02 -0.02 -0.01 0.00 0.00 0.01 1.000 6819.87 5009.85 

T -0.02 0.01 -0.04 -0.03 -0.03 -0.01 -0.01 0.00 1.000 6632.29 4808.03 

D x S 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.01 0.01 1.000 7574.19 5168.98 

D x T 0.00 0.01 -0.01 0.00 0.00 0.01 0.01 0.02 1.000 6566.62 4030.88 

S x T 0.00 0.01 -0.01 -0.01 0.00 0.01 0.02 0.02 1.000 6968.38 4850.27 

D x S x T 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.01 0.01 1.001 6859.05 4067.15 

             

σ 

Intercept -0.67 0.01 -0.70 -0.69 -0.68 -0.66 -0.66 -0.65 1.000 8542.05 4296.49 

D 0.19 0.01 0.17 0.18 0.18 0.19 0.19 0.20 1.000 8071.87 4900.24 

S -0.01 0.01 -0.03 -0.02 -0.01 0.00 0.01 0.02 1.000 8169.55 4670.44 

T -0.21 0.01 -0.23 -0.22 -0.22 -0.20 -0.20 -0.19 1.000 8254.62 3984.04 

D x S 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.01 0.01 1.000 8146.85 4383.94 

D x T 0.05 0.01 0.04 0.04 0.05 0.05 0.06 0.06 1.000 8224.66 4548.96 

S x T 0.01 0.01 -0.01 0.00 0.00 0.02 0.02 0.03 1.000 7898.63 4495.05 

D x S x T 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.01 0.01 1.001 8225.72 3677.96 

Note. D = node depth, S = sample size, T = test length, ESS = Effective Sample Size. σ predictor estimates are on the log scale. 
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Figure 31. 1PL Person Ability Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Mean Bias.  

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 
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Figure 32. 1PL Person Ability Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Variability.  

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 



 157 

Figure 33. 1PL Person Ability Estimate Bias, Model Parameter Trace Plot for Mean.  

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 34. 1PL Person Ability Estimate Bias, Model Parameter Trace Plot for Variance. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 35. 1PL Person Ability Estimate Bias, Model Parameter Scatter Plot for Estimate 

Mean Bias. 
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Figure 36. Person Ability Estimate Bias, Model Parameter Scatter Plot for Variance. 

 

 

 



 161 

Person Ability Regression Model Results – True and Estimated Parameter Correlation 

Table 31. 1PL Person Ability Distributional Beta Regression Model Predictor Parameters of the True and Estimated Parameter 

Correlations. 

Parameter Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

μ 

Intercept 1.87 0.00 1.87 1.87 1.87 1.87 1.87 1.87 1.000 5672.74 4945.07 

S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 5352.62 5029.42 

T 0.50 0.00 0.50 0.50 0.50 0.50 0.50 0.51 1.000 6003.49 5480.81 

D -0.67 0.00 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 1.000 5888.16 5311.47 

S x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 5909.04 5174.76 

S x D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 5412.41 4915.21 

T x D -0.04 0.00 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 1.000 5901.73 5470.90 

S x T x D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 5698.79 5403.82 

             

ϕ 

Intercept 6.93 0.00 6.93 6.93 6.93 6.93 6.93 6.93 1.000 3750.93 3108.99 

S 0.29 0.00 0.29 0.29 0.29 0.29 0.29 0.29 1.000 3243.49 3654.19 

T 0.67 0.00 0.67 0.67 0.67 0.68 0.68 0.68 1.000 3407.59 3025.25 

D -0.79 0.00 -0.80 -0.80 -0.79 -0.79 -0.79 -0.79 1.000 3981.42 3765.37 

S x T -0.02 0.00 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 1.000 3713.94 4074.13 

S x D -0.04 0.00 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 1.000 3252.63 4052.21 

T x D -0.13 0.00 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 1.000 3777.78 3602.84 

S x T x D -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 1.000 3904.52 4521.92 

Note. D = node depth, S = sample size, T = test length, ESS = Effective Sample Size. μ predictor estimates are on the logit scale, and ϕ 

predictor estimates are on the log scale. 
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Figure 37. 1PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Posterior Distributions for Predictors of Correlation Location. 
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Figure 38. 1PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Posterior Distributions for Predictors of Correlation Scale. 
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Figure 39. 1PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Trace Plot for Location. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 40. 1PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Trace Plot for Scale. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 41. 1PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Scatter Plot for Location. 
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Figure 42. 1PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Scatter Plot for Scale. 
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2PL IRTrees 

Item Difficulty Regression Model Results 

Table 32. 2PL Item Difficulty Distributional Regression Model Predictor Parameters of the Estimate Bias. 

Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

Intercept 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6604.99 5072.26 

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 5995.59 5222.66 

S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6374.65 5075.96 

T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6587.43 5482.53 

P 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 1.000 10831.35 4988.38 

D x S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6356.90 5607.97 

D x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6224.39 4845.27 

S x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6074.45 4886.75 

D x P 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 1.001 9850.38 5073.56 

S x P -0.01 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 1.000 10865.64 5123.97 

T x P 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 1.000 10517.02 4690.75 

D x S x T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 6293.31 4925.87 

D x S x P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.002 9631.66 5099.55 

D x T x P 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 1.000 10302.68 4666.86 

S x T x P 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 1.000 11065.92 4878.89 

D x S x T x P 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 1.000 10197.66 5247.92 

τ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.001 2231.61 2725.68 

Note. D = node depth, S = sample size, T = test length, P = log-relative propagation, τ = between-simulation iteration 

intercept variance, ESS = Effective Sample Size. 
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Table 33. 2PL Item Difficulty Distributional Regression Model Predictor Parameters of the Estimate Variance. 

Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

Intercept -2.10 0.01 -2.11 -2.10 -2.10 -2.09 -2.09 -2.09 1.000 7073.59 4886.97 

D 0.35 0.00 0.34 0.34 0.35 0.35 0.35 0.36 1.001 10733.97 4508.22 

S -0.33 0.01 -0.34 -0.33 -0.33 -0.32 -0.32 -0.31 1.001 7004.38 4941.10 

T -0.03 0.01 -0.04 -0.04 -0.04 -0.03 -0.03 -0.02 1.000 8780.94 5217.56 

P -0.42 0.01 -0.44 -0.43 -0.42 -0.41 -0.40 -0.39 1.000 10171.98 4394.39 

D x S 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.02 1.000 11118.98 4597.97 

D x T 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 1.000 10115.33 4792.00 

S x T -0.01 0.01 -0.02 -0.02 -0.01 -0.01 0.00 0.00 1.000 7709.26 5475.35 

D x P 0.04 0.01 0.02 0.03 0.03 0.04 0.05 0.06 1.000 9708.34 4448.12 

S x P -0.03 0.01 -0.06 -0.05 -0.04 -0.02 -0.02 0.00 1.001 11018.92 4783.91 

T x P 0.00 0.01 -0.03 -0.02 -0.01 0.01 0.01 0.02 1.000 11463.21 4558.29 

D x S x T -0.01 0.00 -0.02 -0.01 -0.01 -0.01 0.00 0.00 1.000 9991.51 4749.80 

D x S x P 0.01 0.01 -0.01 0.00 0.00 0.01 0.02 0.02 1.001 10119.24 4814.44 

D x T x P -0.01 0.01 -0.02 -0.02 -0.01 0.00 0.00 0.01 1.000 11363.50 4386.81 

S x T x P -0.02 0.01 -0.05 -0.04 -0.03 -0.01 -0.01 0.00 1.000 10652.12 4150.54 

D x S x T x P 0.01 0.01 -0.01 0.00 0.00 0.01 0.02 0.03 1.000 10436.58 3894.67 

τ 0.06 0.01 0.05 0.06 0.06 0.07 0.07 0.08 1.000 2039.47 3542.99 

Note. D = node depth, S = sample size, T = test length, P = log-relative propagation, τ = between-simulation iteration 

intercept variance, ESS = Effective Sample Size. Estimates are on the log scale. 

 



 170 

Figure 43. 2PL Item Difficulty Estimate Bias, Model Parameter Posterior Distributions for 

Mean Bias. 

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 
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Figure 44. 2PL Item Difficulty Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Variance. 

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 
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Figure 45. 2PL Item Difficulty Estimate Bias, Model Parameter Trace Plot for Estimate Mean 

Bias. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 46. 2PL Item Difficulty Estimate Bias, Model Parameter Trace Plot for Estimate 

Variance. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 

 



 174 

Figure 47. 2PL Item Difficulty Estimate Bias, Model Parameter Scatter Plot for Estimate 

Mean Bias. 
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Figure 48. 2PL Item Difficulty Estimate Bias, Model Parameter Scatter Plot for Estimate 

Variance. 
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Item Discrimination Regression Model Results 

Table 34. 2PL Item Discrimination Distributional Regression Model Predictor Parameters. 

Parameter Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

μ 
Intercept -0.04 0.00 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03 1.001 3123.64 3941.72 

τ 0.03 0.00 0.02 0.03 0.03 0.03 0.03 0.03 1.001 1914.80 3422.06 

             

σ 

Intercept -0.79 0.20 -1.08 -1.02 -0.97 -0.76 -0.65 -0.37 1.000 3415.29 1778.30 

S -0.31 0.01 -0.33 -0.33 -0.32 -0.31 -0.30 -0.29 1.000 6955.52 4849.59 

T -0.10 0.01 -0.12 -0.11 -0.11 -0.09 -0.09 -0.08 1.000 6636.15 4370.84 

D 0.48 0.01 0.47 0.47 0.48 0.48 0.49 0.49 1.000 12764.97 4099.65 

P -0.25 0.03 -0.32 -0.29 -0.27 -0.23 -0.21 -0.18 1.000 6079.79 4324.62 

S x T 0.00 0.01 -0.02 -0.01 -0.01 0.01 0.01 0.02 1.001 6743.19 4951.16 

S x D 0.00 0.01 -0.01 -0.01 0.00 0.01 0.01 0.01 1.000 7348.84 4614.89 

T x D -0.03 0.01 -0.05 -0.04 -0.04 -0.03 -0.03 -0.02 1.000 6843.70 5090.66 

S x P -0.02 0.03 -0.09 -0.06 -0.05 0.00 0.01 0.05 1.000 6259.65 4050.02 

T x P -0.06 0.04 -0.13 -0.10 -0.08 -0.04 -0.02 0.01 1.000 6122.30 4208.51 

D x P -0.03 0.01 -0.06 -0.05 -0.04 -0.02 -0.01 0.00 1.000 6137.54 4442.77 

S x T x D 0.01 0.01 -0.01 0.00 0.00 0.01 0.01 0.02 1.001 7691.86 4811.33 

S x T x P -0.01 0.04 -0.08 -0.05 -0.03 0.02 0.03 0.06 1.000 5594.71 4346.47 

S x D x P 0.02 0.01 -0.01 0.00 0.01 0.03 0.03 0.05 1.001 5904.11 4205.33 

T x D x P 0.02 0.02 -0.01 0.00 0.01 0.03 0.04 0.05 1.000 5965.89 4046.62 

S x T x D x P -0.01 0.02 -0.04 -0.02 -0.02 0.00 0.01 0.03 1.000 5284.48 4309.68 

τ 0.04 0.02 0.00 0.02 0.03 0.05 0.06 0.07 1.000 708.53 1287.99 

             

ν  2.09 0.03 2.03 2.05 2.07 2.11 2.13 2.15 1.001 3418.99 1735.00 

Note. D = node depth, S = sample size, T = test length, P = log-relative propagation, τ = between-simulation iteration intercept 

variance, ESS = Effective Sample Size. Estimates are on the log scale. 
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Figure 49. 2PL Item Discrimination Estimate Bias, Model Parameter Posterior Distributions 

for Predictors of Estimate Mean Bias. 

 

 



 178 

Figure 50. 2PL Item Discrimination Estimate Bias, Model Parameter Posterior Distributions 

for Predictors of Estimate Variability. 
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Figure 51. 2PL Item Discrimination Estimate Bias, Model Parameter Posterior Distribution of 

t-distribution Degrees-of-Freedom. 
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Figure 52. 2PL Item Discrimination Estimate Bias, Model Parameter Scatter Plot for Estiamte 

Mean Bias. 
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Figure 53. 2PL Item Discrimination Estimate Bias, Model Parameter Scatter Plot for 

Variability. 
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Person Ability Regression Model Results – Bias 

Table 35. 2PL Person Ability Distributional Regression Model Predictor Parameters of the Estimate Mean Bias. 

Parameter Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

μ 

Intercept -0.01 0.01 -0.02 -0.02 -0.01 0.00 0.00 0.01 1.000 6648.01 4845.28 

D 0.00 0.01 -0.01 0.00 0.00 0.01 0.01 0.01 1.000 6488.97 5169.86 

S 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.00 0.01 1.001 7073.42 4881.37 

T 0.00 0.01 -0.02 -0.01 -0.01 0.01 0.01 0.02 1.000 6668.27 4519.90 

D x S 0.00 0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 1.001 7629.42 5227.36 

D x T 0.00 0.01 -0.01 0.00 0.00 0.01 0.01 0.02 1.000 7099.74 4389.68 

S x T -0.01 0.01 -0.03 -0.02 -0.02 0.00 0.00 0.01 1.000 7439.80 4879.22 

D x S x T 0.00 0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 1.001 8035.84 5080.82 

             

σ 

Intercept -0.84 0.01 -0.86 -0.85 -0.84 -0.83 -0.82 -0.81 1.000 5370.13 3777.54 

D 0.24 0.01 0.22 0.23 0.23 0.24 0.24 0.25 1.000 6353.98 4212.60 

S -0.01 0.01 -0.04 -0.03 -0.02 -0.01 0.00 0.01 1.000 6812.04 4724.06 

T -0.20 0.01 -0.23 -0.22 -0.21 -0.19 -0.19 -0.18 1.000 5941.80 3927.52 

D x S 0.00 0.01 -0.01 -0.01 0.00 0.01 0.01 0.01 1.000 7243.57 4881.31 

D x T 0.04 0.01 0.03 0.03 0.04 0.05 0.05 0.05 1.000 6618.94 4436.13 

S x T 0.00 0.01 -0.03 -0.02 -0.01 0.01 0.01 0.02 1.001 5846.17 4067.86 

D x S x T 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.00 0.01 1.001 6315.90 4046.52 

Note. D = node depth, S = sample size, T = test length, ESS = Effective Sample Size. σ predictor estimates are on the log scale. 
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Figure 54. 2PL Person Ability Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Mean Bias. 

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 
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Figure 55. 2PL Person Ability Estimate Bias, Model Parameter Posterior Distributions for 

Estimate Variability.  

 

Note. 95%, 75%, and 50% highest posterior density intervals are represented with light, 

medium, and dark shades of grey, respectively. 
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Figure 56. 2PL Person Ability Estimate Bias, Model Parameter Trace Plot for Estimate Mean 

Bias.  

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 57. 2PL Person Ability Estimate Bias, Model Parameter Trace Plot for Estimate 

Variability. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 58. 2PL Person Ability Estimate Bias, Model Parameter Scatter Plot for Estimate 

Mean Bias. 
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Figure 59. 2PL Person Ability Estimate Bias, Model Parameter Scatter Plot for Estimate 

Variability. 
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Person Ability Regression Model Results – True and Estimated Parameter Correlation 

Table 36. 2PL Person Ability Distributional Beta Regression Model Predictor Parameters of the True and Estimated Parameter 

Correlation. 

Parameter Predictor 𝑀 SD 
Highest Posterior Density Intervals 

�̂� Bulk ESS Tail ESS 
2.5% 12.5% 25% 75% 87.5% 97.5% 

μ 

Intercept 2.24 0.01 2.22 2.23 2.23 2.25 2.25 2.26 1.001 5042.73 4402.45 

S 0.02 0.01 -0.01 0.00 0.01 0.02 0.03 0.04 1.000 4019.28 4411.39 

T 0.51 0.01 0.48 0.49 0.50 0.51 0.52 0.53 1.001 4650.67 4374.21 

D -0.75 0.01 -0.76 -0.75 -0.75 -0.74 -0.74 -0.73 1.000 4954.44 4409.81 

S x T -0.02 0.01 -0.04 -0.03 -0.02 -0.01 0.00 0.01 1.001 3873.86 4034.09 

S x D 0.02 0.01 0.00 0.01 0.01 0.02 0.03 0.03 1.000 4371.41 4091.02 

T x D -0.01 0.01 -0.03 -0.02 -0.02 -0.01 0.00 0.00 1.000 4602.63 4410.79 

S x T x D 0.00 0.01 -0.02 -0.01 -0.01 0.00 0.00 0.01 1.001 4149.67 3842.89 

             

ϕ 

Intercept 5.45 0.07 5.32 5.38 5.41 5.49 5.53 5.57 1.000 4571.23 3700.65 

S 0.20 0.07 0.08 0.13 0.16 0.25 0.28 0.34 1.000 4694.04 3697.10 

T 1.23 0.06 1.10 1.16 1.18 1.26 1.31 1.35 1.001 5907.16 4222.52 

D -0.69 0.04 -0.76 -0.73 -0.71 -0.67 -0.65 -0.62 1.000 4546.78 3754.87 

S x T -0.07 0.06 -0.19 -0.14 -0.11 -0.03 0.01 0.06 1.001 5607.98 4527.26 

S x D 0.01 0.04 -0.06 -0.03 -0.01 0.03 0.05 0.08 1.000 4818.34 3949.72 

T x D -0.23 0.03 -0.29 -0.27 -0.25 -0.20 -0.19 -0.16 1.000 5804.48 4409.57 

S x T x D -0.03 0.03 -0.09 -0.07 -0.05 0.00 0.01 0.04 1.001 5690.73 4467.44 

Note. D = node depth, S = sample size, T = test length, ESS = Effective Sample Size. μ predictor estimates are on the logit scale, and ϕ 

predictor estimates are on the log scale. 
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Figure 60. 2PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Posterior Distributions for Predictors of Correlation Location. 
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Figure 61. 2PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Posterior Distributions for Predictors of Correlation Scale. 
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Figure 62. 2PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Trace Plot for Location. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 63. 2PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Trace Plot for Scale. 

 

Note. Each chain was thinned by using every 10th draw to facilitate visualization. 
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Figure 64. 2PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Scatter Plot for Location 
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Figure 65. 2PL Person Ability True and Estimated Parameter Correlations, Model Parameter 

Scatter Plot for Scale 
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