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Abstract

Padhee, Swati. Ph.D.,Department of Computer Science and Engineering, Wright State
University, 2023. Data-driven Strategies For Pain Management in Patients with Sickle
Cell Disease.

This research explores data-driven AI techniques to extract insights from relevant

medical data for pain management in patients with Sickle Cell Disease (SCD). SCD is an

inherited red blood cell disorder that can cause a multitude of complications throughout

an individual’s life. Most patients with SCD experience repeated, unpredictable episodes

of severe pain. Arguably, the most challenging aspect of treating pain episodes in SCD

is assessing and interpreting the patient’s pain intensity level due to the subjective nature

of pain. In this study, we leverage multiple data-driven AI techniques to improve pain

management in patients with SCD. The proposed approaches have been evaluated on

physiological, medicinal and pain measurements collected from Electronic Health Records

(EHRs), demonstrating their ability to digitize the medical essence of patients, thereby

assisting in multiple aspects of clinical decision making in pain management. First, we

propose to explore the feasibility of estimating subjective pain from objective physiological

signals collected from EHRs irrespective of the nature of hospital visits in large patient

cohorts. Second, we propose to learn deep feature representations of the subjective pain

trajectories from objective physiological signals collected from EHRs. Third, we propose

to learn future pain from historical patient EHR data using time-series forecasting methods.

Our initial results indicate promise in pursuing each of these three efforts, and our study

can be a valuable addition to ongoing studies that utilize EHR data to help providers better

understand and design real-time pain management strategies.
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1 Introduction

Thesis Statement:

This research explores data-driven AI techniques to extract insights from relevant medical

data for pain management in patients with Sickle Cell Disease (SCD). This can be done in a

stepwise manner: (i) Predict subjective pain from objective physiological signals collected

from Electronic Health Records(EHRs) irrespective of the nature of hospital visits, (ii)

Predict subjective pain from objective physiological signals and medication data collected

from Electronic Health Records(EHRs) using self-supervised learning, (iii) Forecasting

future pain based on past data from Electronic Health Records(EHRs)?

1.1 Motivation

Sickle cell disease (SCD) is the most typical inherited blood disorder, affecting millions

of people worldwide. The production of an altered type of hemoglobin characterizes it.

The altered hemoglobin deoxygenates while passing through blood vessels, polymerizes,

and becomes fibrous, causing the red blood cells to become rigid and change their shape

to sickle-shaped. The altered red blood cells can occlude blood vessels, a phenomenon

known as vaso-occlusion, resulting in a lack of oxygen to tissues and thereby causing pain

[1]. Most patients with SCD experience repeated, unpredictable episodes of severe pain.

These pain episodes are the leading cause of emergency department visits and may last for

as long as several weeks. Arguably, the most challenging aspect of treating pain episodes

in SCD is assessing and interpreting the patient’s pain intensity level.

1



Figure 1.1: Figure (A) shows normal red blood cells flowing freely through a blood vessel.
The inset shows a cross-section of a normal red blood cell with normal haemoglobin.
Figure (B) shows abnormal, sickled red blood cells sticking at the branching point in a
blood vessel. The inset image shows a cross-section of a sickle cell with long polymerized
sickle haemoglobin (HbS) strands stretching and distorting the cell shape to look like a
crescent moon.

However, in current clinical practice, a patient self-report is the gold standard approach for

determining the absence, presence, and intensity of pain. Due to the subjective nature of

pain, it becomes challenging for clinicians to ascertain the severity of the patient’s pain

precisely. Besides, effective treatment is palliative, including intravenous opioid therapy.

While these self-described pain intensity levels provide important clinical reference indicators

and have been proven to help treat patients suffering from pain in most situations [2], it

might have challenges when applied to certain vulnerable populations.

Current clinical guidelines recommend frequent observations of vital signs during the assessment

and treatment of painful episodes as they are an objective measurement of the essential

physiological functions and are potential indicators for patients’ subjective pain levels. It

has been previously reported that Machine Learning (ML) techniques can be used to design

objective pain assessment models using vital signs from inpatient EHR data.

2



1.2 Electronic Health Records (EHR)

Electronic health records (EHR) were initially designed to record for billing purposes

rather than for research and quality improvement efforts. The utility of EHRs on quality

healthcare delivery research has focused on physician performance, and billing precision

[3] for quite some time. Studies using EHRs have focussed on process quality metrics,

analyzing physician-level variability, and guideline compliance, and recently moving on to

overall quality improvement or patient outcomes [4, 5, 6, 7, 8]. Analyzing EHR data has

the potential to significantly decrease medical errors by providing better access to relevant

information, improved communication and coordination of care among multiple providers

and hospitalizations, and more efficient documentation and monitoring [9]. It has been

proven that EHRs can be used to decrease prescribing errors by providing real-time clinical

decision support [10, 11, 12, 13]. Further recent studies have shown that EHRs can be

analyzed to improve the tracking and monitoring of adverse patient outcomes. For example,

[14, 15] showed that patient safety outcomes could be improved by providing critical

care in cases of urinary tract infections involving catheter usage, deep vein thrombosis,

or pulmonary embolism. Overall, improvements in patient condition management and

outcomes associated with EHR analysis still need to be well documented, although several

studies have looked at changes in quality attributed to electronic healthcare systems. In

particular, the effect of data extracted from a well-implemented EHR system on inpatient

adverse events, such as pain management, the role of medication dosage for specific chronic

medical conditions, and future patient condition prediction, has yet to be explored. We thus

explore the association of hospital-level EHR systems with patient management in SCD to

better understand the relationship between physiological signals, medicine dosages, and

pain.

Specific research questions addressed in this dissertation as shown in Figure 1.2 are detailed

as below:
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Figure 1.2: Overview of the proposed research

1. Can we estimate subjective pain from objective physiological signals collected

from Electronic Health Records (EHRs) irrespective of the nature of hospital

visits?

We leveraged multiple machine learning algorithms on six physiological measures of

patients with SCD to predict pain scores. We propose dealing with missing data and

conducting a series of experiments at intra-individual and inter-individual levels. In

this, our purpose is to examine whether, using objective physiological measurements,

technology can predict subjective pain in SCD patients and may be generalizable for

a larger cohort of patients.

2. Can we learn the relationship between pain, objective physiological signals, and

medication data collected from Electronic Health Records(EHRs)?

Deep learning has been successfully employed in an unsupervised manner on EHRs

to achieve both specific and general goals [16]: for instance, “Deep Patient” [17] and

“Doctor AI” [18] both used unsupervised deep learning before supervised learning.

We propose to investigate the feasibility of deep feature representation for predictive

modeling. In particular, we propose representing multiple data modalities in EHRs

in high-level abstraction by utilizing deep auto-encoder networks such as variational
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autoencoders (VAEs).

3. Can we forecast future patient trajectories based on past data from Electronic

Health Records(EHRs)?

Probabilistic models, which aim to provide the best assessment of future events,

help map a patient’s trajectory and forecast the likely course of disease [19]. A

large body of evidence suggests that interventions are more precise and practical

when individualized models are used to capture the status of a particular patient over

time [20, 21]. These models can be used to forecast the progression of a disease

and improve the effectiveness of interventions when applied in real-world practice.

Forecasting is a sub-discipline of prediction, and generating predictions based on

historical time-series data is forecasting. We propose to take our analysis one step

deeper by considering the temporal dimension and building a model for simulating

the clinical trajectories of patients experiencing episodes of pain over time. However,

patient trajectories for pain might be random due to unobservable factors, such as

the patient’s environment and medical history. As such, accurate forecasting of the

progression of clinical measures should be able to account for this random nature.

Hence, to address this randomness, we propose to utilize a variational autoencoder

(VAE) architecture for our disease progression model. VAE’s disentangled latent

space could allow for the development of models which incorporate not only prediction

but also forecasting using the latent space’s distilled information.
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2 Background and Related Work

The International Association for the Study of Pain Committee (IASP) pointed out that

“Pain is always subjective” [22]. The assessment and management of pain are always a

challenge in both clinical practice and academic research. The current definition of pain

implies that self-report is the gold standard for pain. However, in practice, clinicians usually

integrate patients’ self-report with their assessment of non-verbal behaviors, such as voice,

body activity, and facial activity, to enhance understanding. Current clinical guidelines

recommend considering vital signs during assessing and treating adverse events such as

painful episodes. These physiological measurements include: blood pressure, respiratory

rate, oxygen saturation, temperature, and pulse [23]. Due to the growing volume of clinical

data and the requirement for highly accurate predictive models, machine-learning techniques

have been increasingly utilized in pain studies in recent decades. Machine learning techniques

allow efficient knowledge mining from high-volume data.

2.1 Machine Learning in Healthcare

The origin of artificial intelligence (AI) dates back to when Alan Turing proposed an

experiment involving two players (either human or artificial) trying to convince a third

human player that they are also humans [24]. AI is successful when the third player fails to

identify the machine. Significant milestones in the development of machine learning (ML)

include the first creation of the computer learning program, which was a checker game [25],

and the first neural network called the perceptron [26]. Machine learning learns from data

aiming at optimization and improved performance of an algorithm instead of analyzing the
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probabilities of observations in the underlying data distribution.

While the applications of machine learning and artificial intelligence in medicine have

their roots in the earliest days of the field [27], it is only recently that there has been a push

towards recognizing the need to have healthcare solutions powered by these technologies.

This has led researchers to suggest that it is only a matter of time before machine learning

will be ubiquitous in healthcare [28]. Over the recent years, AI techniques have been

sending significant waves across healthcare, even fuelling an extremely active discussion

on whether AI doctors may eventually replace human physicians. While in the foreseeable

future, human physicians can not be replaced by machines; AI can assist physicians in

clinical decision-making and human judgment in specific functional areas of healthcare.

The rising accessibility of healthcare data with rapid developments in big data analytic

methods is empowering recent successful applications of AI in healthcare. These techniques

can unlock clinically relevant information hidden within the massive amount of data guided

by relevant questions, which can assist clinical decision-making [29, 30, 28]. Multiple

applications of AI have been extensively discussed in the medical literature [31, 29, 32]. AI

can use sophisticated algorithms to “learn" multiple features in a large volume of healthcare

data and then utilize the derived insights to assist with clinical practice.

Furthermore, it can also be equipped with learning and self-correcting capabilities to improve

its accuracy based on feedback. In the context of information extraction, an AI system can

also provide up-to-date medical information from journals, textbooks, and clinical practices

to physicians and assist them with informed proper patient care [33]. In addition, an AI

system can contribute to reducing diagnostic and therapeutic errors that are inevitable in

human clinical practice [29, 31, 34, 35, 36, 37]. Moreover, an AI system can extract

useful information from large patient populations to assist in making real-time inferences

for health risk alerts, and health outcome predictions [38, 39].

However, before AI systems can be deployed in healthcare applications, they need to be
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“trained" through the data which is generated from multiple clinical activities, including

screening, diagnosis, treatment, and so on, to learn similar groups of subjects, associations

between subject features, and the outcomes of interest. These multimodal clinical data

often exist in but are not limited to demographics, medical notes, electronic recordings

from medical devices, physical examinations, clinical laboratory examinations, and images.

For example, in the diagnosis stage, a substantial proportion of the AI literature analyses

data from diagnosis imaging, genetic testing, and electrodiagnosis. Furthermore, physical

examination notes and clinical laboratory results are the other two significant data sources

comprising many unstructured narrative texts, such as clinical notes, which can not be

directly analyzed in their original format. As a result, the corresponding AI applications

focus on first converting the unstructured text to machine-understandable electronic health

records (EHRs). Depending on the data, AI techniques mainly fall into two major categories.

One category includes natural language processing (NLP) methods to retrieve information

from unstructured data, such as clinical notes or external medical knowledge sources, to

enrich further and supplement the structured medical data. These NLP procedures are used

to convert texts to machine-readable structured data, which ML techniques can then analyze

for problems of interest [40]. Another category includes machine learning (ML) techniques

that analyze structured data such as imaging, genetic and electrophysical data. Both types

of techniques can be used to cluster patients’ traits or infer the probability of the disease

outcomes [41, 42].

Inputs to these ML algorithms include patient “traits" and sometimes the interested medical

outcomes. A patient’s traits primarily include baseline data, such as age, gender, disease

history, and so on, as well as disease-specific data, such as diagnostic imaging, gene

expressions, physical examination results, clinical symptoms, medications, etc. Besides

the traits, patients’ medical outcomes, such as disease indicators, patient’s response, and

quantitative disease levels, for example, tumor sizes, are also collected as data. Depending

on whether to include the desired outcomes or not, ML algorithms can be classified into
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unsupervised learning and supervised learning. Unsupervised learning is commonly known

for feature extraction, while supervised learning is known for predictive modeling by finding

some relationships between the patient traits (as input) and the outcome of interest (as

output). Unsupervised learning can also be used as part of the pre-processing steps, which

makes the follow-up supervised learning step efficient. Relevant techniques include Linear

Regression, Logistic Regression, Naïve Bayes, Decision Tree, Nearest Neighbour, Random

Forest, Support Vector Machine (SVM), and Neural Networks [43].

Despite the increasingly rich AI literature in healthcare, the research mainly concentra-

tes on a few disease types such as cancer, nervous system disease, and cardiovascular

disease [44, 45, 46, 47, 48, 49]. Besides these major diseases, AI has been applied in

other diseases as well such as asthma, congenital cataract disease and diabetes [50, 51, 52,

53, 54].

2.2 Machine Learning for Sickle Cell Disease

Current literature shows increased attention on machine learning techniques to understand

various complexities associated with patient health in SCD. Lazakidou et. al. [55] developed

a personal electronic health record (pEHR) to evaluate the deployment of an advanced

web-based application platform that assessed healthcare professionals and patients to provide

a more efficient and effective solution compared to daily clinical routine. In their research,

the purpose of the web-based solutions is to enable patients to update and access their

medical information. The system was examined with three various patient groups consisting

of 150 patients who had Parkinson’s disease, diabetes, and congenital heart disease that

were engaged within three European clinics. The outcomes indicated that the pEHR could

provide better services in terms of user-friendly, data management, comprehensiveness,

and valuable content.

Du E et. al. [56] developed a microfluidic device that can examine the blood behavior
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of SCD patients. This device also has the ability to measure how long blood cells take

to become stiff and stuck in blood vessels. The authors claim that the future innovation

of this device can easily prevent and predict vaso-occlusive crises. It could assist many

researchers in testing the device’s efficacy, which happens in about three hundred thousand

new-borns per year, mainly in Africa. Twenty-five SCD patients were involved in their

study; the researchers, by using this device to evaluate blood samples, were able to decide

how deoxygenation affects red blood cells’ (RBCs) sickling rates, capillaries stuck rates,

how quickly the RBCs re-shape, especially, when oxygen levels are restored.

Knowlton et al.[57], present a sensitive, label-free, and specific testing platform to diagnose

SCD using blood samples based on the density of sickle RBCs under deoxygenated circumstances.

The Sickle Mobile Tester device was designed in an online application for computer-aided

design (Tinker CAD). The platform was implemented with a compact 3D-printer and lightweight

add-on installed on a commercial mobile phone. This attachment comprises an optical lens

to illuminate the sample of RBCs. The sample collected from patients is suspended in a

paramagnetic medium loaded in a microcapillary tube with sodium metabisulfite, which is

inserted around the magnets. Eventually, using this model, they could differentiate between

the levitation patterns of sickle versus control RBCs in association with their degree of

confinement.

Shah et. al. [58] from our research group explored the receptiveness of SCD patients

to use mobile applications (apps) that can mitigate the disease. There were two phases

in their experiment. Phase one involved 100 patients who finished the task inquiring about

their interest in communicating with healthcare providers and self-care management system

using the mobile app. Phase 2 surveyed another 17 patients who were asked to test a newly

developed SCD app, to report its utility and usability. In the outcomes of this survey,

participants stated that the mobile app tested was effective and useful with 94%, 88%

to track pain, and valuable for self-care management. In addition, all patients involved
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in this experiment reported that the app was an effective tool for communicating with

healthcare providers. Overall, this study recommended that patients with SCD, regardless

of education or age, are agreeable to using technology to cope with their related pain and

disease symptoms. Mobile apps could provide a suitable environment for SCD medical

management.

Milton et al. [59] developed an ensemble model exploring 14 algorithms to predict Hemoglobin

F (HbF) in patients associated with different configurations of Single Nucleotide Polymorphisms

(SNPs). The goal of the study was the prediction of Haemoglobin F in patients suffering

from SCD. A sample of 814 patients were involved in their experiments, for which a

variety of blood features were measured, such as platelets and hemoglobin. The ensemble

outcomes of classifiers labeled 23.4% of the variability in the discovery cohort, while the

association between predicted and observed HbF in the three independent cohorts ranged

between 0.28 and 0.44.

Allayous et al. [60] demonstrated the high risk of an acute splenic sequestration crisis, a

severe symptom of SCD. Solanki [61] implemented two models, including Decision Trees

(DT), to classify specific blood groups. In their research, the main aim was to learn how

to predict the level of severity depending on the training dataset. The dataset including

15 features was collected from “Centre Caribéen de ladrépanocytose” over a period of 10

years for 42 children. The authors used multiple machine learning algorithms to evaluate

the risk of acute splenic sequestration crisis in classifying patients between severe and mild

symptoms with the highest accuracy of 92% achieved using the Adaboost algorithm.

Solanki et. al. [61] proposed data mining methods utilizing WEKA tools for patients

with SCD. The research has used two classification methods comprising DT and RF, to

compare them for classifying specific blood groups. The study’s outcome declared that

the RF algorithm is better to use than DT, in terms of classifying specific blood groups for

individuals affected by SCD.
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Artificial Neural Networks (ANNs) have been proposed as a connectionist approach to the

classification and determination of medical results, including blood inflammations [62].

The model has been employed widely to automate the assessment of blood disorders such

as SCD using morphological attributes of erythrocytes in the cell. Dalvi and Vernekar

[63] developed an anemia detection model using statistical and ensemble learning methods

to yield high accuracy in Red Blood Cell (RBC) classification. Their outcomes showed

that stacking ensemble techniques achieved the highest accuracy. In their experiments,

ANN provided the best outcomes in comparison to the K-Nearest Neighbour (KNN), which

obtained poor results. They combined the KNN classifier and the Decision Tree classifier

using stacked ensembles to obtain satisfactory results. The combination of various models

is indicated as providing superior performance than that of individual models. The evaluation

measures used in the study included Accuracy, Specificity, Sensitivity, and Precision, with

10-fold cross-validation used in their experiment. The training set comprised 441 instances,

while the testing set comprised 49 cases. Sharma and Khullar [64] represented a comparative

analysis between the fuzzy expert system and ANN for better efficiency in diagnosing

sickle cell patients. The authors have summarised that the best model for diagnosing sickle

cell Anaemia is ANN.

Escandell-Montero et al. [65] proposed an approach based on Reinforcement Learning

(RL) for sickle cell anemia patients. Using a Markov Decision Processes (MDP) framework,

RL was able to learn to discover optimal solutions using clinical datasets automatically.

The RL technique applied in the proposed methodology is fitted Q iteration (FQI), which

stands out for its capability to effectively and efficiently use data. In order to achieve

high accuracy and performance in the medical data, FQI was combined with a function

approximator constructed using regression trees to handle a continuous state space and to

produce the learned policy applied to the cases not covered by the dataset. Thus, although

prospective validation is needed, empirical studies have demonstrated the potential benefits

of RL in SCD.
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Khalaf et. al. [66] presented a system to examine patient data and provide a suitable

amount of Hydroxycarbamide drugs/liquid for each patient. The datasets utilized in their

experiments for SCD patients were collected within four years from the Alder Hay Hospital

in the UK. Each sample involved 13 attributes deemed vital factors for predicting the SCD

trait, i.e., Haemoglobin(Hb), Aspartate Aminotransferase, Mean Corpuscular Volu-

me, Alanine aminotransferase, Neutrophils, Reticulocyte Count (A), Hb F, Platelets, Lacta-

te dehydrogenase, Weight, Bilirubin, Body Bio Blood, and Reticulocyte Count. They also

considered two additional attributes age and gender. They proposed a neural network (NN)

consisting of a stacked model, where NNs are assembled into levels, and the outputs from

one network are fed into the next along with desired outputs. Each level is comprised of two

NNs, each with a hidden layer of 20 neurons. The model of NN was formulated with 10

input units. Their MLP method had the lowest error rates in terms of MSE, RMSE, MAE,

and MAPE at 17887.55, 133.74, 90.20, and 0.1345, respectively. The authors extended the

work to further classify the dosage of medication required for treating patients with SCD

[67].

Prior studies have reported that fluctuations in vital signs can be used for assessing pain

[68] as acute pain leads to changes in vital signs [69]. These physiological measures

include blood pressure, respiratory rate, oxygen saturation, temperature, and pulse. From

our research group, Yang et.al. [70] showed the feasibility of ML techniques on a limited

dataset of 5363 records from 40 patients during inpatient hospital visits to predict subjective

pain scores from six objective vital signs. Alambo et. al. [71] employed 424 clinical notes

of the same cohort of 40 patients to assess the prevalence of pain in patients and whether

pain increases, decreases, or stays constant. In this study, we investigate the generalizability

of ML techniques for a broader group of people during inpatient, outpatient, and outpatient

evaluation visits. As validated by our clinical collaborators in Section 3.2.2, we provide

definitions of these visits. Specifically, we utilize five years of EHR data from 50 patients

suffering from SCD to build pain prediction models using objective physiological measures
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as features at both the intra-individual and inter-individual levels based on an 11-point

numeric rating scale (NRS) [72]. We further investigate whether the variation in the hospital

visit type affects our model performance.

2.3 Machine Learning in Pain Medicine

In the context of pain-related data, machine learning models are desired to learn a mapping

of complex features to a particular pain phenotype class. After the machine has learned

to predict a pain-related phenotype, the algorithm can then be used to predict the class

membership of a new subject. Pain and pain chronification is unresolved medical problems

that are not entirely understood and continue to have a high prevalence [73]. Pain has been

accepted as a complex phenomenon [74, 75, 76]. Contemporary computational science

methods utilize complex clinical and experimental data to understand pain’s complexity

better. Machine learning-based efforts include techniques to automatically detect hidden

patterns in data and then use those uncovered patterns to predict or classify new/future

data, to observe structures or subgroups within the data, or to extract relevant information

from the data suitable to derive new insights [77, 78].

The primary classifiers provided by supervised machine learning are symbolic [79], or

sub-symbolic [80]. For symbolic classifiers, the classification can be interpreted by a

domain expert as a combination of conditions on the features. For example, a decision

tree-based symbolic classifier was designed from approximately 30 acquired features, including

demographic (age, sex, and weight), biomedical (e.g., blood pressure, diabetes, and arterial

hypertension), surgery-related therapy and analgesic-related therapy parameters [81] to

predict patient-controlled analgesia consumption. Sipila et. al. designed another symbolic

classifier - a Bayesian diagnostic tool to predict the persistence of pain in breast cancer

surgery from demographic, pain, and surgery-related parameters [82]. They showed a

sensitivity and specificity of 33% and 95%, respectively. Their classification procedure can
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be directly interpreted via the Bayesian decision limits calculated for the single parameters.

However, in subsymbolic classifiers, the possibility of understanding the details is skipped,

and better performance of a machine-learned algorithm is sought. Hence, it is challenging

to provide biomedical explanations for the functioning of the algorithm. For instance,

random forests utilize hundreds or thousands of simple decision trees that escape this

interpretation, and the classification is obtained through the complete set of trees, the

“forest" [83]. Braundmeier et. al. designed a classifier based on various stool-based

markers to diagnose a bladder pain syndrome [84]. Similarly, clusters of patients with

neuropathic pain from controls and then various types of neuropathy, such as peripheral

neuropathy with or without pain and neuropathy associated with amyotrophic lateral sclerosis,

were obtained with a projection method for high-dimensional data; specifically, minimum

curvilinear embedding on complex proteomics data [85]. ML algorithms were further

applied to predict thermal pain sensitivity from bioresponses acquired through electromyography,

skin conductance level, and electrocardiography [86]. Subjects were instructed to determine

the pain threshold: “Please press the stop button immediately when you experience a

burning, stinging, piercing, or pulling sensation in addition to the feeling of heat." In order

to determine the tolerance threshold, the following instruction was given: “Please press

the stop button immediately when you can no longer tolerate the heat, taking into account

the burning, stinging, piercing, or pulling sensation." Specifically, using support vector

machines (SVMs), [87], individual pain threshold and tolerance to thermal stimulation

were predicted from the noninvasive measurements at accuracies of >91% and 79%, respectively

[88]. This aimed to draw insights about pain in subjects with verbal and cognitive impairments

for whom pain-related queries, such as the standard visual rating scales, cannot be applied.

This study is limited to finding classification results with high accuracy and an automated

selected feature pattern of biopotentials representing “pain" and “no-pain", respectively.

However, for better pain management strategies, it is essential to identify the severity of

pain in addition to just having pain or no pain, which we address in our studies.
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Kringel et. al. designed a subsymbolic classifier based on k-nearest neighbors calculations

to predict which patients needed high opioid doses for analgesia, based on a next-generation

sequencing–derived opioid receptor genotype[89]. Patients have different diseases underlying

the pain, and the high opioid doses may be accidental as most patients were sent from

University tertiary care centers where the physicians were more inclined to raise the opioid

doses, whereas, in the periphery, the same patients might have been labeled as opioid

resistant already at doses below 400 mg OME per day and therefore not included into this

analysis. This analysis showed that opioid receptor genotyping, consistent with biological

plausibility, has the potential to provide the desired predictively of particular (clinical)

phenotypes as demonstrated with high opioid dose demands in pain patients.

Furthermore, Nickerson et. al. predicted pain scores between 40 to 120 minutes after

administering 10 mg oxycodone from pain score values before drug administration using

elastic net regression models and SVMs [90]. They extracted 200 features for each patient

in the electronic medical records (EMR) data. Essential features included patient age,

gender, Chalson comorbidity index, body mass index (BMI), ethnicity, and the International

Classification of Diseases 9th edition (ICD9) code class. They applied LSTM to predict the

next measured pain score after administering an analgesic drug and compared the results

with more straightforward techniques. The Elastic Net model was found to be the top

performer with an MSE score of 4.96; however, their data set was limited to postoperative

pain scores, and thus, the model only had information on scores before and after drug

administration. The authors concluded that with a more descriptive record collection and

the inclusion of more temporal data (e.g., other vital signs), these results would likely

improve, which we explore in our study by utilizing both vital signs and medication data

to predict the severity of pain at varying levels.

Machine learning methods are designed on data-driven research approaches in contrast to

classical statistical methods, where knowledge and presumptions about the distributions
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and functional dependencies of the data are required. Also, feature selection in machine

learning enables one to identify relevant modulators of pain-related outcomes in data-driven

and hypothesis-free experimental research methods. For example, Sipila et. al. designed a

Bayesian optimal prediction model (sensitivity 33%, specificity 95%), as discussed earlier,

to show that among many biomedical parameters, demographic, psychological, and pain-related

parameters are the most relevant to explain the persistence of pain among women who

underwent breast cancer surgery [82]. They considered moderate to severe pain (NRS>=4

out of 10) as a clinically significant cutoff, as women who had undergone breast cancer

surgery reported only some interference by pain in daily activities when pain intensity

was estimated to be 1–3 out of 10. However, for better pain management in chronic pain

episodes, we must include all the pain levels - which we explore in our work.

Besides, unsupervised machine learning methods can be used to assess whether the acquired

biomedical parameters demonstrate the efficacy of a treatment provided, that is, to detect

data structures congruent with a known pre-classification, such as the presence of a modulator

of the pain phenotype. For example, after treatment of 82 subjects with local UV-B irradiation

or capsaicin application and assessing the pain phenotype using 10 different QST parameters,

a 246 * 10-sized data matrix was obtained in a human experimental pain study [91].

Using unsupervised machine learning implemented as emergent self-organizing maps [92],

data structures were detected that coincided with applied known treatments indicating that

modulation of the complex pain phenotype had been obtained [91]. A machine learning

algorithm consisting of a classification and regression tree analysis was applied to 8034

independent observations of baseline thermal nociceptive sensitivity in mice [93]. The

analysis identified the mouse genotype as predictive of the pain phenotype; however, it

also revealed that the experimenter performing the test and additional laboratory factors,

including season/humidity, cage density, time of day, sex, and within-cage or order of

testing modulated the pain phenotypes [93].
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Finally, natural language progressing methods [94], which combine linguistics with computer

science to analyze human language in speech or written text, were used to extract signs

from clinical notes using features such as the occurrence of terms, for example, keywords

that hint at a clinically incident, in a document [95]. The authors created a tool that

extracts blood pressure, heart rate, temperature, respiratory rate, blood oxygen saturation,

and pain level from nursing and other clinical notes recorded during inpatient care to

supplement structured vital sign data. Prediction precision of this method validated using

1,000 manually annotated documents for extracting the patient’s pain level was reported to

be better than 99%. Our work differs from this study as we propose to predict self-reported

pain severity based on vital signs and medication data from EHRs for patients with SCD.

Due to data availability constraints, we do not include the clinical notes for the current

scope of work. When available, our work can be extended to utilize similar natural language

processing techniques to augment the information from EHRs.

2.4 Deep Learning in Healthcare

Deep learning is a subset of machine learning extending the classical neural networks with

three or more layers. The rapid development of modern computing enables deep learning

to build neural networks with many layers. This is infeasible for classical neural networks.

Hence, deep learning can analyze highly complex non-linear patterns in large datasets.

As the accessibility to large and complex data is increasing, deep learning techniques

are gaining popularity [96]. However, most deep learning techniques are used for image

processing tasks, which makes sense, provided that visual data can be naturally complex

and of high volume. In such cases, unlike deep learning models using more hidden layers

than the classical neural networks can handle the complex structures [43].

In medical applications, the commonly used deep learning algorithms include convolution

neural network (CNN), recurrent neural network, deep belief network, and deep neural
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network. Recently, CNN has been successfully implemented in the medical field to diagnose

disease. Long et. al. used it to diagnose congenital cataract disease through learning the

visual images [50] and showed over 90% accuracy on diagnosis and treatment suggestion.

Esteva et. al. utilized CNN to identify skin cancer from clinical images [46]. The proportions

of correctly predicted malignant lesions (i.e., sensitivity) and benign lesions (i.e., specificity)

are both over 90%, indicating CNN’s superior performance. Gulshan et. al. applied

CNN to detect referable diabetic retinopathy through retinal fundus photographs [53].

They reported over 90% sensitivity and specificity of the algorithm, demonstrating the

effectiveness of using the technique in diagnosing diabetes. Chen et al.[97] designed an

approach to detect hemolytic anemia. They employed concavity information to isolate

the overlapping cells and used different classifiers to classify different types of hemolytic

anemia. Acharya et al. [98] split up the erythrocytes from other blood components using

an image processing method and then classified them into 11 types using the K-Medoids

algorithm.

Elsalamony [99] detected two types of anemia using the shape signature technique and

then classified them using a neural network. Albayrak et al. [100] implemented a Circular

Hough Transform (CHT) to distinguish between healthy and sickle cells, where a distance

tool is utilized to determine the radius range of the cells. Chy et al. [101] extracted features

such as ratio, entropy, mean, standard deviation, and variance, which were used to train

SVM to classify normal and sickle cells. Chy et al. [102] have employed Extreme Learning

Machine (ELM), Support Vector Machine (SVM), and K Nearest Neighbor (KNN) classifiers

to classify normal verse sickle cells. Recently, Convolutional Neural Networks (CNNs)

have been used to classify RBC and diagnose sickle cell disease [103] with accuracies of

86.34% and 87.50%, respectively. These accuracies are still not the goal for the sickle

cell disease classification task since precise classification is the first step toward accurate

diagnosis. Alzubaidi, Laith, et al. [104] proposed three deep learning models to classify

erythrocytes in three classes, namely: circular (normal), elongated (sickle cells), and other
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blood content. Their model obtained state-of-the-art performance by achieving an accuracy

of 99.98% with a multiclass SVM classifier on the erythrocytesIDB dataset, which has

images of peripheral blood smears samples taken from patients with Sickle Cell Disease in

the Special Hematology Department of the General Hospital from Santiago de Cuba [105].

Although the emerging discipline of computational pain research provides contemporary

tools to understand pain, it uses computer-based processing of complex pain-related data

and relies on “intelligent” learning algorithms. The application of deep learning for pain

research–related non-imaging problems is limited by the availability and quality of data. In

this proposed study, we explore deep-learning methods to predict the severity of self-reported

subjective pain scores from objective vital signs and medication data for patients with SCD.

Our work can be utilized to acquaint pain domain experts with the methods and current

applications of machine learning in pain research, possibly facilitating the awareness of the

methods in current and future projects.

2.5 Forecasting in Healthcare : Sickle Cell Disease

Time series forecasting can be defined as predicting future events based on prior knowledge

acquired through a systematic process or intuition [106, 107]. The early works on utilizing

forecasting for healthcare problems date back to Hippocrates of Cos (460 BC–370 BC),

who studied the natural history of diseases and their primary environmental sources (including

food and water) [108], and believed that prognosis was an essential part of medical treatment

because by forecasting disease outcome, the physician established his expertise for treating

the patient [109]. He developed and forecasted the occurrence of many diseases and

conditions. One of the classical terms in medicine, ‘Hippocratic facies,’ describes the

procedure for impending forecasting death based on the observation of distinctive signs and

symptoms that he identified [110]. Forecasting has advanced over time and has increased

in sophistication in many specialized areas, including healthcare [111, 112, 113, 114, 115,
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116]. Data-driven approaches to personalized medicine have the potential to improve

patient outcomes while minimizing costs and reducing levels of risk to the patient. Probabilistic

models, which aim to provide the best assessment of future events, help map a patient’s

trajectory and forecast their likely course of disease [19]. A large body of evidence suggests

that interventions are more precise and practical when individualized mathematical models

are used to capture the status of a particular subject over time [117, 20]. These mathematical

models can forecast the progression of the disease and may improve the effectiveness of

interventions when applied in real-world practice.

Time series forecasting is a vast field of science, and it can be further categorized as

short-term and long-term forecasting. Short-term forecasting can be utilized for intensive

analysis and calculations of the underlying characteristics and variations of the time series

to provide a robust and precise prediction of the future up to hours ahead of time [118].

In contrast, long-term prediction generally analyses the trend of the available data and the

effect of the associated parameters to provide estimates for years in the future [119, 120].

As the technique requires tremendous analysis and calculations, short-term forecasting

techniques are not used for long-term prediction. Because of their differentiated abilities,

their potential can be applied in different clinical situations. Short-term forecasting, for

example, is extremely useful in assessing patients’ mortality in emergency care units where

immediate action is crucial, allowing doctors to respond immediately before a vital situation

can take place [121, 122]. Meanwhile, long-term forecasting thrives at assessing health

conditions for many years after hospital discharge taking into account the effects of different

types of treatment and the associated risks, thus allowing doctors to provide timely healthcare

services for these patients [119, 120].

A growing body of work is utilizing physiological data to design forecasting models for

healthcare problems. Ghassemi et al. [123] proposed a multi-task Gaussian process (GP)

model to forecast patients’ severity of illness using noisy, incomplete, sparse, heterogeneous,
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and unevenly sampled clinical data, including physiological signals as well as clinical notes

with a root mean squared error score of 0.69. ElMoaqet et al. [124] presented a framework

to forecast the near future patterns of continuously monitored physiological signals based

on auto-regressive (AR) models with a focus on predictions of critical levels of abnormality.

Lee and Hauskrecht [125] proposed a time-series model based on the long short-term

memory architecture (LSTM) to predict multiple future clinical events on electronic health

record (EHRs) data derived from the MIMIC-III dataset. Their LSTM model relied on two

sources of information to predict future events. One source was derived from the set of

recently observed clinical events (medication, lab, procedure, and physiological events).

The other one was based on the hidden state space defined by the LSTM to abstract past,

more distant patient information that is predictive of future events. Fox et al. [126] explored

various methods to predict blood glucose trajectories achieving a 5.31 absolute percentage

error (APE) in predicting future blood glucose levels using an autoregressive multi-output

forecaster model. Lim et al. [127] introduced a model based on recurrent neural networks

to forecast the expected response of a patient to a series of planned treatments using

simulations of a state-of-the-art pharmacokinetic-pharmacodynamic (PK-PD) model of

tumor growth.

2.5.1 Pain Forecasting

Recently, studies on pain forecasting are gaining attention. There have been attempts to

forecast pain, specifically postoperative pain, using data other than physiology and activity

measurements. Tighe et al. [128] explored various classification algorithms to forecast

whether a patient was at risk for moderate to severe postoperative pain for postoperative

day 1 and day 3 using 796 clinical variables from Electronic Medical Records (EMRs)

in a retrospective cohort of 8,071 surgical patients. In forecasting moderate to severe

postoperative pain for the postoperative day (POD) 1, the LASSO algorithm, using all 796

variables, had the highest accuracy with an area under the receiver-operating curve (ROC)
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of 0.704. Next, the gradient-boosted decision tree had a ROC of 0.665, and the k-nearest

neighbors (k-NN) algorithm had a ROC of 0.643. For POD 3, the LASSO algorithm, using

all variables, again had the highest accuracy, with a ROC of 0.727. Logistic regression had

a lower ROC of 0.5 for predicting pain outcomes on POD 1 and 3. The same group also

developed a model based on RNNs to forecast pain levels after administering specific pain

medication and trained it on pain score patterns [90].

Pain forecasting is a critical issue in pain management in SCD. It can provide an objective

criterion for the timing and dosage of the administration of opioids based on current physiological

data. However, there needs to be more research in pain forecasting for patients with SCD,

primarily due to a lack of large, structured datasets. Based on the recent advancements

in the field and previous works from our group [129], we believe designing data-driven

machine learning models from physiological data is a promising approach for pain forecasting.

Data-driven approaches can potentially improve patient outcomes in precision medicine

while minimizing costs and reducing patient risk levels. Probabilistic models help map a

patient’s trajectory and forecast their likely course of disease [19] as they aim to provide

the best assessment of future events. Prior works have shown that interventions are more

accurate and effective when individualized mathematical models are built to capture the

status of a particular subject over time [20, 21, 117]. These models can forecast disease

progression and improve the effectiveness of interventions if applied in real-world practice.

A simulation of the patient’s disease progression that behaves identically to the patient in

terms of disease status is a digital twin of the patient. These patient trajectories can be

used to model a patient’s future conditions if no external intervention changes their clinical

course. However, it is very challenging to precisely anticipate the efficacy of a drug in an

individual patient [117]. Therapies for an average patient profile may not be well adapted

to an individual. It is often difficult to confidently make individual-level forecasts using

predictive modeling due to the inherent heterogeneity across patients. Hence, predictive

modeling may benefit from approaches that allow for accurate characterization and forecasting
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of disease progression at an individual level. Particularly, data-driven representational

learning approaches in precision medicine may be useful in managing health conditions

that elicit complex patterns in disease progression and treatment response [130]. In this

research, we evaluate multiple models to forecast the trajectories of several clinical measurements

in patients suffering from SCD experiencing a pain episode.
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3 Pain Assessment from Physiological Signals in

Electronic Health Records

3.1 Overview

Can we estimate subjective pain from objective physiological signals collected from Electronic

Health Records (EHRs) irrespective of the nature of hospital visits?

In this chapter, we describe the detailed approach for our data driven strategies for pain

management in patients with sickle cell disease. We describe a pain assessment model

that predicts subjective self-reported pain scores from objective physiological measures

from Electronic Health Records (EHRs). We provided a structured definition to extract

nature of hospital visits from EHR data. Next, investigated the relationship between each

physiological signal available and explored the feasibility of using these objective measures

to predict subjective pain scores at both intra-individual level and inter-individual level. We

presented an evaluation of the pain prediction models under varying Likert scales of pain

ratings.

3.2 Material and Methods

3.2.1 Data

In this study, we utilized 67927 records from EHR data collected from 50 participants at

Duke University Hospital over five consecutive years. Each record contained measures for

six vital signs as follows: (i) peripheral capillary oxygen saturation (SpO2), (ii) systolic
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Figure 3.1: Distribution of visits for 50 patients. (Study Patient identifiers 17, 37 and 50
are absent.)

blood pressure (SystolicBP), (iii) diastolic blood pressure (DiastolicBP), (iv) heart rate

(Pulse), (v) respiratory rate (Resp), and (vi) temperature (Temp). Along with the vital

signs, each record also included the patient’s self-reported pain score with an ordinal range

from 0 (no pain) to 10 (severe and unbearable pain).

The data were de-identified using study labels to label the patient without identification.

The timestamp for each data entry was also de-identified, preserving temporality. The

dataset had missing values for one or more of the vital signs and the pain score. Our

analysis is done on 59728 records containing at least one of the six vital signs or pain

score values from 47 patients as we observed that no data was extracted for three patients.

As the percentage of complete records in our dataset was only 7.6%, we employed an

imputation method to impute the missing data values. We utilized Multiple Imputations by

Chained Equations [131], sometimes called “fully conditional specification" or “sequential

regression multiple imputations," as it is widely used in clinical practice and recent healthcare

studies [132, 70].
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Figure 3.2: Pearson correlation of six vital signs and visit types in the original dataset.

3.2.2 Type of Hospital Visit:

Some patients with SCD have higher inpatient requirements than others due to the subjectivity

and frequency of pain crisis. Furthermore, because of SCD-related complicat-

ions, many people with SCD may visit hospitals more frequently. However, limited inform-

ation is available related to various hospital visits’ characteristics, including emergency

department visits among SCD patients. Information related to the type of hospital visit

by patients with SCD can help develop services and strategies for best meeting patients’

healthcare needs with SCD. To understand the variations in the nature of visits, we followed

the definitions below recommended by our co-author clinician to extract information about

the nature of visits for every record in our dataset.

• Visit: For each patient, we consider a record to be of a different visit if there is a gap

of at least two days between the records.

• Outpatient visit: We define a visit to be an outpatient visit if the patient has not
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Table 3.1: Intra-individual pain prediction results (accuracy)

SVM DT kNN MLR RF
Vitals 0.522 0.653 0.625 0.535 0.485
Vitals + Visit 0.506 0.653 0.625 0.535 0.486
Yang e.t al. [70] 0.582 — 0.522 0.578 0.523

stayed in the hospital for a day or longer and has two or less recordings taken.

• Inpatient visit: We define a visit to be an inpatient visit if the patient has stayed for

two or more consecutive days in the hospital.

• Outpatient evaluation visit: We define a visit to be an outpatient evaluation visit

if the patient has stayed in the hospital for one day or has more than two recordings

taken in a single day.

Figure 3.1 shows the distribution of the three types of visits in our data.

3.2.3 Pain Prediction

We examined the Pearson correlation between the six vital signs and the type of visit in our

dataset as we plan to use them as features influencing pain scores. As shown in Figure 3.2,

in addition to a moderate correlation of 0.57 between systolic and diastolic blood pressure,

we observe a correlation of 0.59 between pulse and respiratory rate in the original dataset.

The other variables are poorly correlated or uncorrelated with one another. Hence, we

utilize all six vital signs and visit information as predictors of our pain prediction models.

We implemented five supervised ML classification algorithms to predict patients’ pain

scores based on their vital signs: k-Nearest Neighbors (kNN), Support Vector Machine

(SVM), Multinomial Logistic Regression (MLR), Decision Tree (DT), and Random Forest

(RF). We investigated both the intra-individual level and inter-individual level (i.e., treating

all the patients as a single entity) analysis. For intra-level analysis, we used the six vital

signs, visit information, and pain scores as patient labels were unused since samples from
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Figure 3.3: Intra-individual pain prediction accuracy results on vital signs data.

Figure 3.4: Intra-individual pain prediction accuracy results on vital signs and visit
information.
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the same patient were employed to build the personal model in this analysis. However, for

the inter-individual level analysis, we employed the four different scenarios as reported by

Yang et al. [70] i.e., Case 1: imputation with patient labels and prediction with patient

labels; Case 2: imputation with patient labels and prediction without patient labels; Case

3: imputation without patient labels and prediction with patient labels; Case 4: imputation

without patient labels and prediction without patient labels. For each experiment, we report

the results with and without visit information. We used 10-fold cross-validation to evaluate

our prediction models. We reported the model prediction accuracy as it is the ratio of

correctly predicted pain scores over the total number of pain scores.

3.3 Results And Discussion

3.3.1 Intra-individual Pain Prediction

We present the intra-individual pain prediction results for 47 patients in terms of accuracy

in Table 3.1. Figure 3.3 shows the accuracy distribution of predictions for all five classifiers.

DT achieved the highest accuracy ranging from 0.503 to 0.953, and an average accuracy

of 0.653 when trained on the six vital signs described in Section 4.1. Thus, our models

trained on the vital signs of a patient could correctly predict the self-reported pain scores

of the same patient on an average of 65.3% of the records. Similar performance with

additional visit information (Table 3.1, row 2) indicates that for the same patient, our

models can learn the differences between vital signs and pain intensity experienced by

a patient during different types of visits. Our results show that a model trained on the

same patient’s historical data can predict the pain intensity levels for the same patient in

the future based on their vital signs during outpatient, inpatient, and outpatient evaluation

visits. Such a model can provide medical teams with additional information about the

severity of a patient’s pain, which does not rely on the patient’s subjective response.
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3.3.2 Inter-individual Pain Prediction

In real-time scenarios, when a new patient visits a hospital, intra-individual level models

can not be applied until sufficient data is collected. We report the inter-individual pain

prediction results for 47 patients in Table 3.2. The best performance was achieved in Case

4 by DT (accuracy 0.728) compared to 0.429 by MLR in Case 1 by Yang et. al. [70].

This indicates that our DT model trained on more vitals signs data collected over a more

extended period (five years) from a larger cohort of people could predict the severity of

pain for a new patient more accurately. Also, with more data, the models can generalize

better, as we did not consider the patient-level differences during both data imputation and

pain prediction (Case 4). Additional visit information seemed important in predicting pain

scores when considering patient information at data imputation and prediction (Case 1).

This indicates that we need to consider the type of visit to predict pain scores from vital

signs for a personalized prediction from a generalizable model.

In our original dataset, we have 11 unique self-described pain scores ranging from 0 to

10. It is challenging for one person to distinguish between such broad and granular pain

intensity levels and be consistent with every pain episode. Hence, we reported our model

performance at an inter-individual level by transforming our dataset on a 6-point rating

scale, a 4-point rating scale, and a binary rating scale [70] in Table 3.3. The higher accuracy

associated with the narrow scales is attributed to the narrow space to misclassify many

records by our models, thereby improving the chances of correctly predicting a pain score.

We believe the lower performance of RF compared with DT is attributed to the replacement

with duplicates based bootstrap approach to sub-sampling used in training a Random Forest

model that could lead to training records not representative of the test sample the model is

tested on. Furthermore, as a bagging approach to ensemble models, the misclassification

error from the first bootstrap sample in random forests is not used to improve a model
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trained on a different bootstrap sample. Finally, test accuracy is computed by taking the

average of the different bootstrap samples’ accuracy where bad bootstrap samples might

harm the aggregate test accuracy. With DT, however, it is possible that our model captured

the ideal training records for a given test set, thereby yielding better accuracy.

3.3.3 Pain Change Prediction

Additional information about the change in pain (increase/decrease/no change) would help

determine the effectiveness of therapy and the consideration for management, such as either

giving more pain medication, keeping a medication dosage stable or decreasing a pain

dosage. Predicting a change in pain may be more critical than having an estimate of the

pain score since the medical team can make treatment decisions based on this information

and ultimately improve a patient’s pain more quickly. Hence, we formulate a three-class

pain change classification problem, i.e., increase, decrease, and no change. In this case, a

baseline chance accuracy can be 0.33 (1/3). We report the results of our two best performing

DT and kNN based inter-individual level classifiers in Table 3.4. It is not surprising that

our DT model was able to predict a pain change correctly 52.2% times (0.7% more) when

provided with additional visit information. It indicates our model learned that the change

in pain severity might be different for each type of visit for different patients (i.e., Case

1). It is essential to consider whether a visit is an inpatient or outpatient visit to estimate a

change in pain intensity for each patient.
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Table 3.2: Inter-individual pain prediction results (accuracy)

Vitals Vitals + Visit Yang et. al.[70]
SVM DT kNN MLR RF SVM DT kNN MLR RF MLR SVM

Case 1 0.585 0.676 0.662 0.448 0.336 0.595 0.697 0.668 0.525 0.357 0.429 0.421
Case 2 0.422 0.647 0.644 0.345 0.335 0.593 0.643 0.530 0.427 0.335 0.215 0.236
Case 3 0.561 0.701 0.658 0.405 0.406 0.591 0.701 0.595 0.460 0.410 0.313 0.305
Case 4 0.590 0.728 0.708 0.401 0.404 0.659 0.704 0.595 0.472 0.401 0.257 0.246

Table 3.3: Inter-individual pain prediction results with varying pain scales on vitals data
(accuracy) arranged from higher resolution to lower resolution. (6 Pain Scores: None:0,
Very mild:1-2,Mild: 3–4, Moderate: 5–6, Severe: 7–8, Very severe:9-10; 4 Pain Scores:
None: 0,Mild: 1–3,Moderate: 4–6 ,Severe: 7–10; 2 Pain Scores:No/mild Pain: 0–5, Severe
Pain: 6–10)

11 Pain Score 6 Pain Score
SVM DT kNN MLR RF Yang et.al.[70] SVM DT kNN MLR RF Yang et.al.[70]

Case 1 0.585 0.676 0.662 0.448 0.336 0.429 0.767 0.779 0.761 0.606 0.481 0.546
Case 2 0.422 0.647 0.644 0.345 0.335 0.215 0.672 0.762 0.732 0.55 0.485 0.347
Case 3 0.561 0.701 0.658 0.405 0.406 0.313 0.766 0.771 0.773 0.599 0.586 0.449
Case 4 0.590 0.728 0.708 0.401 0.404 0.257 0.772 0.814 0.777 0.605 0.589 0.397

4 Pain Score 2 Pain Score
SVM DT kNN MLR RF Yang et.al.[70] SVM DT kNN MLR RF Yang et.al.[70]

Case 1 0.849 0.832 0.809 0.683 0.583 0.681 0.923 0.937 0.904 0.926 0.84 0.821
Case 2 0.788 0.821 0.788 0.659 0.589 0.521 0.915 0.919 0.893 0.903 0.835 0.680
Case 3 0.837 0.824 0.815 0.685 0.66 0.607 0.923 0.939 0.907 0.9267 0.874 0.730
Case 4 0.85 0.853 0.818 0.687 0.671 0.563 0.935 0.941 0.907 0.927 0.871 0.678

Table 3.4: Pain change prediction results (accuracy)

Vitals Vitals + Visit Yang. et. al [70]
DT kNN MLR DT kNN MLR MLR

Case1 0.515 0.490 0.514 0.522 0.504 0.517 0.403
Case2 0.508 0.494 0.508 0.518 0.494 0.503 0.363
Case3 0.518 0.466 0.517 0.520 0.492 0.518 0.390
Case4 0.520 0.492 0.520 0.517 0.466 0.516 0.404
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3.4 Summary

In this study, we leveraged multiple machine learning algorithms on six physiological

measures of patients with SCD to predict pain scores. We were able to deal with missing

data and conduct a series of experiments at both intra-individual and inter-individual levels.

In each of the experiments, we observed higher accuracy with an increase in data. All

the models were able to capture the variation in the type of visits at an inter-individual

level when considering the diversity between patients in data imputation and prediction.

Our results show Decision Tree as the most promising model, followed by k-Nearest

Neighbours and Support Vector Machines. The evaluation demonstrates that using objective

physiological measurements to predict subjective pain in SCD patients may be generalizable

for a larger cohort of patients. In the future, we look forward to extending our work to visit

level analysis and exploring the patients’ medication information.
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4 Pain Assessment from Physiological Signals and

Medication Data in Electronic Health Records

4.1 Overview

Can we learn the relationship between pain, objective physiological signals and medication

data collected from Electronic Health Records(EHRs)?

In this chapter, we present a self-supervised learning model utilizing physiological data

as well as medication data and self-reported pain scores collected by nurses to predict

a pain score. The ability to objectively and accurately predict pain severity and onset

could result in more prompt and effective treatment of pain crises, leading to improved

outcomes, as well as encouraging more diligent use of medications [133]. We evaluated

the role of medication data in pain estimation model by leveraging self-supervised learning.

Additionally, we compared the performance of regression methods and classification methods

in pain prediction problem.

This study aims to learn deep feature representations of subjective pain trajectories from

objective physiological signals collected from electronic health records (EHRs). This study

aims to use the vital signs and medication information collected from EHR data of patients

with SCD to predict patient-reported pain scores using machine learning techniques. In this

paper, we propose to represent multiple data modalities in EHRs in highlevel abstraction,

vital signs, and medication information by utilizing deep auto-encoder networks such as

variational autoencoders (VAEs) to predict pain intensity at varying Likert scales. Our
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specific contributions are as below: (i) To the best of our knowledge, we analyzed the most

extensive electronic health records data of 126,519 records from 496 patients suffering

from Sickle Cell Disease collected over five consecutive years and demonstrated that a

larger patient cohort data improves the model performance in pain prediction. (ii) We

show that pain medication information with vital signs data can improve pain prediction

at varying pain rating scales (i.e., different granularities). (iii) We demonstrate that deep

representational learning cannot just improve pain prediction results but also provide a

better understanding of the role of medication and physiology on the patient’s pain response

with a patient profiles study.

4.2 Materials and Methods

4.2.1 Data

In this study, we analyzed 1,26,519 records from EHR data collected for 496 participants at

Duke University Hospital over five consecutive years. Each record contained measures for

six vital signs as shown in Table 4.1. Along with the vital signs, each record also included

the patient’s self-reported pain score with an ordinal range from 0 (no pain) to 10 (severe

and unbearable pain). Furthermore, we explore the medication information in the records.

We extracted three medicinal features upon consultation with our co-author physician as

shown in Table 1. The total medication dosage is the sum of all medication dosages given

to a patient at a given time. For the purpose of this study, we removed the data points with

status as Hold MAR; i.e., during those time stamps, the Medication Administration Record

(MAR) was on hold.

4.2.2 Variational Autoencoders

In this aim, we use variational autoencoders (VAEs) to impute missing values within the

data based on other samples. Autoencoders are a class of unsupervised deep learning
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Table 4.1: Data modalities and variables considered in this study.

Data Modality Variables

Vital Signs

(i) peripheral capillary oxygen saturation (SpO2)
(ii) systolic blood pressure (SystolicBP)
(iii) diastolic blood pressure (DiastolicBP)
(iv) heart rate (Pulse)
(v) respiratory rate (Resp)
(vi) temperature (Temp)

Medication

(i) Medication Type (5 classes):
HYDROMORPHONE
ACETAMINOPHEN
KETOROLAC
OXYCODONE
FENTANYL
(ii) Medication Status (2 classes)
Given/Applied
Missed/Removed/Due
(iii) Total Medication Dosage (in mg/ml)

Pain Self-reported pain score on a scale of 0-10 (0-no pain to 10-severe and unbearable pain)

techniques in which we leverage neural networks for the task of representation learning.

We design a neural network architecture to impose a bottleneck in the network, forcing

a compressed knowledge representation of the original input data modalities. If the input

features were such that each was independent of one another, this compression and subsequent

reconstruction would be an arduous task. However, if some association exists in the data

(for example, correlations between input data modalities), this structure can be learned and

consequently leveraged when forcing the input through the network’s bottleneck. VAEs

are probabilistic generative models and have the same architecture as vanilla autoencoders

but consider specific assumptions about the distribution of middle/latent layer variables.

They learn the true distribution of input features from latent variable distributions using a

Bayesian approach and present a theoretical framework for reconstruction and regularization

[134].

A VAE learns the distribution of data with an encoder network by fitting it to a gaussian

distribution and generates data with a decoder by sampling from the learned distribution.

We utilized autoencoders to reconstruct input data (x) in the output (x̂) layer by an encoding

and decoding process. As shown in Figure 4.1, the encoder network converts the input data
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Figure 4.1: An illustration of VAE architecture for one input data modality.

(x) into a latent representation (z). The hidden state comprised two additional layers: E(z)

and V(z), where the latent variable z follows a Gaussian distribution with mean E(z) and

variance V(z). We sampled z from the distribution parameterized by the encoder; the

decoder network then remodeled the input from the latent representations by using z to

generate x̂. The fundamental property of autoencoders is to minimise this reconstruction

error using a loss function that is composed of a reconstruction term as well as a regularization

term, as shown in Eq. (4.1). The loss function we minimize to train the VAE contains a

reconstruction term and a regularization term as shown below:

l(x, x̂) = lreconstruction + βlKL(z,N(0, Id)) (4.1)

The term l(x, x̂) is on the final layer and the regularization term enforces a specific Gaussian

structure on the latent layer through a penalty term lKL(z,N(0, Id)).

Variational means encoder network estimates µ and σ parameters (that we would call them

latent variable) of the Gaussian distribution. However, real-world applications, including

healthcare, almost always have missing values. In correspondence with missing values in

the raw temporal data, we substitute the corresponding categories with a unique integer to
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Figure 4.2: Deep representation learning for Pain Prediction

properly encode the status of the missing information. The encoder consists of a Long Short

Term Memory (LSTM) cell. It receives input sequences resulting from the concatenation

of the raw physiological data and the extracted categorical medicinal features. As in

every encoder in a VAE architecture, it produces an output used to approximate the latent

distribution’s mean and variance. The decoder samples from the latent distribution form

output sequences. This approach helps us to develop an unsupervised framework that can

fill the missing pieces appearing in the real-world EHR data volume streams in not only

patients with SCD but for other healthcare applications as well.

4.2.3 Proposed Framework

Fig. 4.2 provides an overview of our approach in three consecutive steps. In the first step

(A), we pre-processed the raw data to overcome the data challenges such as missing values.

Next, in the second step (B), we applied unsupervised deep representation learning to

generate higher-level abstraction of the input data modalities. Finally, in the third step

(C), we investigated supervised algorithms for predictive modeling and performed the

evaluation.

Step A: Data Analysis In this study, we utilized records from EHR data collected at

Duke University Hospital and de-identified them using study labels to label the patient

without identification. The timestamp for each data entry was de-identified, preserving the
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temporality. The dataset had missing values for one or more vital signs, medication, and

pain scores. The dataset contained 126,519 records from 496 patients collected over five

consecutive years. However, we included 33,000 records in this study due to more than four

features missing in the remaining records. Of the 33,000 records, 18,291 had at least one of

the five medication types (as in Table 4.1) administered. We did not have the demographic

information of the patients. Data for each patient varied as while 70 patients had a one-time

visit to the hospital, 240 patients visited over at least 100 days. The most patient records

were for a patient staying for 1705 days with a high mean pain score of 8 and received pain

medication 219 times (an average of 338 mg of total pain medication dosage). We did not

consider the effect of any other medical condition on the patients in this study.

Step B: Deep Representation Learning In the second step, we represent all the input

data modalities in high level abstraction by utilizing multiple deep auto-encoder networks

including variational autoencoders (VAEs). We evaluate the performance of each network

while considering the tuning of hyper-parameters such as learning rate, batch size, number

of epochs, and number of hidden layers and hidden units for precise training to avoid

overfitting.

Step C (Predictive Modeling): In this step, we apply supervised learning techniques

to the represented dataset using linear and nonlinear approaches such as Random Forests,

SVM and LASSO. Our experiments consists of three main phases: (1) training VAE, where

the training samples are used to train the VAE, and the reconstruction loss for each training

data sample is stored according to the target pain score; (2) generating new pain scores,

where the VAE decoder generates new pain score samples based on specified classes, and

each newly generated data sample is merged into the original training data set under the

condition that the class reconstruction loss is satisfied; (3) predicting pain scores, where

the VAE decoder is used to initialize the weight of the hidden layers, the merged training
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data set is used to train the classifier, and the trained classifier is used to predict pain scores

on the testing data set.

4.2.4 Experimental Study

In our experimental study, we implemented our methodology on the de-identified EHR

dataset. This study design helped us discover our method’s performance in predictive

modeling for patients with SCD. Across several attributes consisting of patient clinical

records and individual health status, nine attributes, including vital signs and medication

information, were considered for data analysis related to 496 patients. As mentioned

before, the goal is to predict pain scores based on high-dimensional features.

We implemented Variational autoencoder (VAE) by using PyTorch and Keras libraries with

tensorflow backend in Python. The VAE architecture has 5 hidden layers (two hidden

layers of encoders and decoders and one middle layer). We applied parameter tuning for

major parameters such as learning rate, activation functions and batch size to select the best

parameters. We employed a hidden dropout component with a rate of 0.2 and a sigmoid

activation function to the final layers. The models were trained for 100 epochs using an

Adam optimizer with a learning rate of 0.001 (with exponential decay rates of first- and

second-moment estimates β1 = 0.9 and β2 = 0.999) and a batch size of 64. Once the

latent features were extracted, they were fed into supervised learning step for pain score

prediction. For the supervised learning step we consider three well known supervised

classifiers: Random Forests (RF) [135] (with 50 trees and 1/2 of the features considered

at every split), Lasso Regression [136] and Support Vector Machine (SVM) [137] (with

RBF kernel C = 1.5 and gamma set to 1/N_f, where N_f denotes the number of features).

We used average accuracy as our evaluation measure for performance evaluation in testing

process. Finally, we visually inspected the learned representations of the whole data set

and compared them to the represented data. For this task we employed the t-distributed
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stochastic neighboring embedding (tSNE).

4.3 Results and Discussion

We performed our approach for VAE (represented data) and supervised classifiers as well

as original data (unrepresented data), and compared their performance based on the results

obtained from testing process with 5-folds cross validation (for each fold we considered

80% of the data for training, 10% for validation set and 10% for test set). This comparison

has been shown in Table 4.2. We would like to make a note here that missing values of pain

scores are not imputed.

According to these results, our approach with representation learning reduces the prediction

error and achieves a better accuracy rather than using the original features. Furthermore,

we also analyze the performance in pain score prediction with only vital signs as compared

to including the medication information. We show in Table 4.3 that our approach with

RF classifier achieves better accuracy with medication and vital signs information rather

than only vital signs information in predicting the respective pain scores. This indicates

that when provided with additional medication information, our approach can learn better

representations of patient profiles from vital signs to predict their pain levels.

Table 4.2: Pain prediction results with varying pain scales on vitals data (accuracy)
arranged from higher resolution to lower resolution.

Approach
11 pain scores 6 pain scores 4 pain scores 2 pain scores
RF SVM Lasso RF SVM Lasso RF SVM Lasso RF SVM Lasso

Original Data 0.301 0.242 0.216 0.363 0.352 0.337 0.432 0.426 0.392 0.535 0.513 0.486
VAE Data 0.343 0.321 0.307 0.391 0.371 0.348 0.472 0.452 0.439 0.603 0.561 0.549
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Table 4.3: Pain prediction results with varying pain scales on vitals data (accuracy)
as compared to additional medication data arranged from higher resolution to lower
resolution.

Approach
11 pain scores 6 pain scores 4 pain scores 2 pain scores
Vitals Vitals + Med Vitals Vitals + Med Vitals Vitals + Med Vitals Vitals + Med

Original Data 0.301 0.442 0.363 0.463 0.432 0.689 0.535 0.787
VAE Data 0.343 0.476 0.391 0.493 0.472 0.706 0.603 0.828

Figure 4.3: Confusion Matrix for best
performing model with original data
representations for 2 pain score levels
(Pain Scores:No/mild: 0–5, Severe:
6–10)

Figure 4.4: Confusion Matrix for
best performing model with VAE data
representations for 2 pain score levels
(Pain Scores:No/mild: 0–5, Severe:
6–10)
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Figure 4.5: Confusion Matrix for
best performing model with original
data representations for 4 pain score
levels (Pain Scores:None: 0,Mild:
1–3,Moderate: 4–6 ,Severe: 7–10)

Figure 4.6: Confusion Matrix for
best performing model with VAE
data representations for 4 pain score
levels (Pain Scores:None: 0,Mild:
1–3,Moderate: 4–6 ,Severe: 7–10)
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Deep Representation Learning

In this research, we propose a study for the evaluation of deep feature representation

in predicting pain scores of patients with SCD from their vitals signs and medication

information. The results emphasize that representation learning plays an effective role

in the performance of clinical prediction. As shown in Table 4.2, our models trained on

deep represented features are able to identify pain scores for not just 6.8 % more patients

at an abstract pain intensity level of no/mild pain or severe pain but display significant

improvement by detecting pain intensity for 4.2% more patients at a highly granular pain

score intensity (i.e., on 11 pain ratings) when compared with models trained on unrepresented

raw vitals data. We observe the similar performance of deep represented features as compared

with raw data features when medicinal data is included in the modeling. Our models trained

on VAE represented features generated on both vitals and medicinal data are able to identify

pain scores for 3.4%, 3%, 1.7%, and 4.1% more patients from higher to lower resolution of

pain intensity than models trained on raw data. In order to investigate further, we show in

the confusion matrices of the best performing models trained on vitals and medicinal data

in Figures 4.3 - 4.6. As shown in Figures 4.3 and 4.4, it is interesting to note that with deep

feature representations, our model is able to identify 4.9% more cases of no/mild pain and

3.6% more cases of severe pain accurately while reducing the misclassification. Similarly,

Figures 4.5 and 4.6 show that with more granular 4 point pain intensity levels (Pain Scores:

None: 0, Mild: 1–3, Moderate: 4–6, Severe: 7–10), our model trained on deep represented

features is able to identify more than 1% more cases accurately as compared to original

data representations while reducing the misclassification to other pain groups. Also, the

models are able to identify more instances with moderate pain as compared to none, mild

and severe pain. It is noteworthy that the misclassification for each category of pain reduces

with the stretch between the pain severity levels. For example, as shown in Figure 4.6, our

best model for 4 pain scores (Table 4.3 row 2, column 6) wrongly predicts 21 instances
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of severe pain data as no pain, 38 instances as mild pain, and 139 instances as moderate

pain. Similarly, it predicts 16 instances of low pain samples as severe pain, 39 instances

as moderate pain, and 141 instances as mild pain. The misclassification reduces with the

granularity of pain intensity reflecting the subjective nature of pain.

Role of Medication Data

While prior works have shown the efficacy of data mining techniques to implement medical

decision making with treatment outcome prediction [138, 139], to the best of our knowledge,

this is the first work in analyzing the role of medication in pain level prediction for patients

with SCD. Our results show that for abstract pain levels, a representational learning-based

approach can predict whether or not a patient is having pain for 22.% more patients when

provided with their medication information (Table 4.3). This means that when our model

is provided with not just vitals information but also the medication type, total medication

dosage, and status, it is able to predict whether or not the patients are having pain for more

patients as compared to when provided with only vital signs. This finding is substantiated

by current medical literature on pain management [140] where clinical research focuses

on finding the optimal medication dosage for individual patients. By building a model

that incorporates medication information along with physiological data, we are one step

closer to future pain forecasting that can utilize current physiological information and pain

medication to predict the pain at a future time point as a means of assessing the next

medication dosage and time. Furthermore, for higher resolution of pain levels i.e., 11

levels, our deep representational learning-based approaches could predict subjective pain

scores for 13.3% more patients when provided with medication information. Also, our

model is able to predict such highly subjective pain scores for 38.5% more patients than

the random assignment of 9.09% (i.e. 1/11 pain scores) when provided with both vitals and

medication information of the patients.
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Empirically, our results demonstrate that: 1) Medical feature representation can improve

the performance of prediction, and 2) Medication information can lead to significant improvement

on pain level prediction.

4.3.1 Visualization

We visually inspected the learned representations of the whole data set obtained from

the VAE representations. Using t-SNE plots, shown in Figure 4.7, we compared the

level of disentanglement of the represented data and raw data. The t-SNE projections

clearly show that VAE is able to produce more sparse and disentangled representations

in comparison to raw data. While the t-SNE projections of the raw data also indicate data

separability, the deep representations are able to identify the variations in mean pain scores

(low, moderate, high). This may explain the competitive performance produced by the

benchmark classifiers in the previous section, as well as the advantage of integrating vital

signs and medicinal data. While some embeddings are clearly clustered closer to the same

pain range, we observe some overlap as well. Specifically, we observe better alignment

among the low pain and high pain profiles as compared to the moderate pain profiles. This

may be due to the variation and frequency of data recordings taken for the patients. These

preliminary visualization results indicate that our VAE method may require additional data

in order to generate representations to obtain a more granular separation between pain

scores of patients.

Patient Profiles:

In order to understand the alignment of the representations learnt by our best performing

VAE model, we illustrate six sample patient profiles clustered into the three pain range

categories (no/low: 0-3, moderate: 4-6, high: 7-10) by the t-SNE projections of the embeddings

(as shown in Figure 4.7). As shown in Table 4.4, we present two patient profiles from each

47



Figure 4.7: Qualitative comparison of the learned representations using t-SNE projections.

of the three categories of pain score with regards to the medication administered and vital

signs. It is to be noted that we have specifically chosen regions where the pain profiles

belong to one of the three pain levels. While we chose two patient profiles each from better

aligned Region 1 and Region 4, we compared two patient profiles from a more spread out

moderate pain intensity (Regions 2 and 3). The patient numbers are patient identifiers used

in this work.

We observe a positive correlation between the medications administered and pain scores

in all four patients with high and moderate pain levels. This reflects that the patients

reporting higher pain scores were administered increased medication dosage (as shown

in Figure 4.8 for Patients 1 and 3), and our model has learned that relationship. For both

patients (Patient 1 and 2) illustrated with high pain, we observed a positive correlation

between Hydromorphone dosage and pain score as well as a high correlation between total

medication dosage and vital signs which may be reflective of more pain medications being

given when a patient has high pain. This indicates that our model has learned the interplay

between the medications, vital signs, and pain intensity. It will be interesting to analyze

these correlations pre- and post-medication in the future.

For both the patients (Patient 3 and 4) with moderate pain, in addition to a positive correlation
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Figure 4.8: Distribution of medication dosage with pain score for sample patients with high
and moderate mean pain intensity.

of Hydromorphone with pain score, we observed a positive correlation of medication with

blood pressure. This indicates that our model has learned a possible association of administering

Hydromorphone for moderate pain intensity levels during which time they have elevated

blood pressure. However, Patient 4 has a higher positive correlation between medication

dosage and vital signs as compared to Patient 3. This may be a possible reason that they

were not closer in the embedding space and belong to distant regions, as shown in Figure

4.7.

Although we did not observe any significant correlation between medication and pain

scores for both patients (Patient 5 and 6) with no/low pain, we observed a positive correlation

between medication and vital signs. This may again be suggestive of the elevated vital signs

that occur with pain and lead to medication administration. While both patients might

have reported varying pain scores between 0-3, it is highly challenging to differentiate

between pain scores 1 and 2 or 2 and 3. Hence, there might be a case that with medication,

their vitals have improved (as indicated by the positive correlation), making them feel

better. This sample patient profile study indicates that deep feature representations can be
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Table 4.4: Sample of patient profiles from the learned VAE representations clustered
together using t-SNE projections as shown in Figure 7 (Region 1- High Pain, Region 2,3 -
Moderate Pain, Region 4- Low Pain)

Region Patient Number
Medication

Administered

Correlation Between
Medication Dosage

and Pain Score
Vital Signs

Correlation Between
Medication Dosage

and Vital Signs

1 1
Oxycodone 0.23

Temperature 0.65Hydromorphone 0.11
Acetaminophen 0.17

1 2
Ketorolac 0.55

Systolic Blood Pressure 0.47
Hydromorphone 0.24

2 3
Hydromorphone 0.35

Systolic Blood Pressure 0.099
Acetaminophen -0.20

Ketorolac 0.41 Pulse 0.04

3 4
Oxycodone 0.59

Systolic Blood Pressure 0.27
Hydromorphone 0.08

4 5 Fentanyl - Peripheral capillary oxygen saturation SpO2 level 0.13

4 6 Acetaminophen -
Temperature 0.47

Pulse 0.38
Peripheral capillary oxygen saturation SpO2 level 0.28

used to learn complex relationships between various factors influencing pain management.

With more data for each patient, this study can be extended to design personalized pain

management tools to assist clinicians.

4.4 Summary

In this study [141], we proposed a simple and effective pain prediction model based on

objective vital signs and pain medication usage. Our experiments demonstrate that the

information about pain medication (type, dosage, and status) can improve pain intensity

prediction at both abstract levels as well as granular levels. Our findings indicate the

importance of medication information (achieving an accuracy of 82.3%) as well as demonstrate

that a larger patient cohort data with deep representational learning improve the model

performance (by 17.5% as compared to Padhee et. al.[142] and by 24.6% as compared to

Yang et. al.[70]. Furthermore, from our unsupervised analysis, we were able to distinguish

unique patient profiles (see Table 4.4) that can help isolate different patient profiles for

further understanding of the role of physiology and medication on their pain response. In

the future, this study can be extended to further dig deeper into the effect of variation in

medication protocols, such as the changes in vital signs before and after medication, and

time elapsing between medication doses. This would be an essential part of a real-time pain
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forecasting system and can be extended as a trial that evaluates the timing of administration

of additional doses of opioids based on physiologic and objective data alone. Our initial

results indicate promise in pursuing each of these efforts, and our study is a valuable

addition to ongoing studies investigating how objective vital signs and medication data

can be used to help providers better understand and design pain management strategies.
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5 Pain Forecasting from Physiological Signals in

Electronic Health Records

5.1 Overview

In Chapter 3 and Chapter 4, we have shown promising results in pain assessment based

on physiological signals and medication data. The promising results in pain prediction

motivated us to move to the next step in our research:

Can we use objective physiological signals to forecast future pain?

In other words, can we utilize temporal, historical knowledge of patients for a better

understanding of the future pain trajectory of patients? Such forecasts would provide an

additional dimension of information in pain treatment plans. We treat pain forecasting

as a supervised learning problem. The input is a past sequence of physiological signals,

and the output label is the self-reported pain score at a future time. In clinical practice,

it is challenging to obtain a large amount of pain records since it is mostly recorded by

patients’ self-report. Therefore, it is expensive and painful (due to the need for patient

compliance) to solve pain forecasting problems in a purely supervised manner. In light of

this challenge, we proposed to solve the pain forecasting problem based on the temporal

clustering of patient profiles learned using self-supervised methods. Chronic diseases are

heterogeneous, with widely differing outcomes even in narrow patient subgroups. Disease

progression manifests through a broad spectrum of clinical factors, collected as a sequence

of measurements in electronic health records, which gives rise to complex progression

patterns among patients [143, 144]). For example, cystic fibrosis evolves slowly, allowing
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for the development of comorbidities and bacterial infections, and creating distinct responses

to therapeutic interventions, which in turn makes the survival and quality of life substantially

different [145, 146]. Identifying patient phenotypes with similar progression patterns can

be advantageous for understanding such heterogeneous diseases. Temporal predictive clustering

has been recently used as a data-driven framework to partition patients with time-series

observations into clusters of patients. Recent research has typically focused on either

finding fixed-length and low dimensional representations [147, 148] or modifying the similarity

measure [149, 150] both in an attempt to apply the existing clustering algorithms to time

series observations. However, clusters identified from these approaches are purely unsupervised

– they do not account for patients’ observed outcomes (e.g., adverse events, the onset of

comorbidities, etc.) – which leads to heterogeneous clusters if the clinical presentation of

the disease differs even for patients with the same outcomes. Thus, a typical prognosis

in each cluster remains unknown, which can mystify the understanding of the underlying

disease progression [151, 152]. To overcome this limitation, we focus on predictive clustering

[153] to combine predictions on future outcomes with clustering. More specifically, we

aim to find cluster assignments by learning discrete representations of time series that best

describe the future outcome distribution. By doing so, patients in the same cluster share

similar future outcomes to provide a prognostic value.

Figure 5.1 illustrates a pictorial depiction of our clustering procedure. X-axis represents

pain level over time t, and the y-axis represents the state of xn vital signs. A patient at

time t1, with the state of vital signs x1, x2, ..., xn, can be clustered as belonging to a patient

phenotype (purple color in Figure 5.1) with future pain score to be P1 at time t2. The

vital signs for the same patient changing from the state at t1 at time t2 might belong to a

phenotype of patients with similar state of vital signs (blue color in Figure 5.1).

In this chapter, we propose to leverage the self-supervised representation learning methods

that learn from extensive unlabeled physiological data to solve pain forecasting with limited
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Figure 5.1: An illustration of our (real-time) clustering procedure. Here, a new patient is
assigned over time to one of the three phenotypes (purple, blue, pink) based on the expected
future pain score – as new observations are collected.

pain labels. We analyzed the performance of self-supervised learning tasks under various

training settings and their impact on the pain forecasting downstream task. Then, we

demonstrated that the self-supervised-based model performs significantly better than the

pain forecasting models trained in a purely supervised fashion. Finally, we showed that

models trained with self-supervised approaches could be used to learn the evolution of a

patient’s pain levels over time.

5.2 Materials and Methods

Accessing healthcare data is a significant challenge due to privacy concerns of patients,

hospitals, insurance companies, and pharmaceutical companies. One way of overcoming

this challenge is to anonymize healthcare records and medication information so that relationships

to specific individuals or entities can not be identified. Using anonymization, prior research

has attempted time-series forecasting different healthcare costs [154, 155, 156, 157]. We

employ similar anonymization techniques in our dataset.
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Although prior research has performed time-series forecasting in healthcare data, another

challenge is selecting the appropriate predictive model to use for performing analyses (there

are very few suggestive forecasting algorithms for healthcare data due to the newness of

this domain and its datasets). A way of overcoming the model selection challenge is by

evaluating the predictions from existing forecasting methods with other recent methods in

literature [158]. For example, recurrent machine-learning methods (e.g., long short-term

models) have recently been proposed [159]. These recurrent methods have been used

for supervised learning of features for time-series forecasting [159, 17]. These recurrent

methods could provide improvements over existing statistical time-series techniques [e.g.,

autoregressive integrated moving average (ARIMA) [160]], which are often dependent on

hand-crafted features requiring expert knowledge in the field.

In this work, we address the above challenges by evaluating the performance of memory-less

neural network models [e.g., multilayer perceptron (MLP)] with memory-based neural

network models [e.g., long short-term memory (LSTM)] for performing time-series predictions

of longitudinal healthcare data. Due to the popularity of the ARIMA model [161, 162],

we evaluate the performance of this model against both memory-less and memory-based

approaches in our anonymized data from patients with SCD. Furthermore, motivated by

patient phenotyping, we evaluate the potential of a clustering model.

5.2.1 Data

In this study, we utilized 51718 records from 498 participants at Duke University Hospital

over a maximum of five consecutive years. Each record contained measures for six vital

signs as follows: (i) peripheral capillary oxygen saturation (SpO2), (ii) systolic blood

pressure (SystolicBP), (iii) diastolic blood pressure (DiastolicBP), (iv) heart rate (Pulse),

(v) respiratory rate (Resp), and (vi) temperature (Temp). Along with the vital signs, each

record also included the patient’s self-reported pain score with an ordinal range from 0 (no
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Table 5.1: Percentage of missing data before interpolation (raw data) and after
interpolation.

Variable Raw Data After Interpolation
BP 74.481765 37.137940
SpO2 65.178842 3.758846
Pulse 67.738294 0.425384
Resp 67.274355 1.674465
Temp 78.210408 2.225531
Pain Score 68.536177 12.732511

pain) to 10 (severe and unbearable pain). The data were de-identified using study labels

to label the patient without identification. The timestamp for each data entry was also

de-identified, preserving temporality. The dataset had missing values for one or more of

the vital signs and the pain score. Furthermore, we generated the visit information for our

dataset following the definitions by Padhee et. al. [142].

Our data had missing values in one or more variables. The percentage of missing data is

shown in Table 5.1. There are two main processing methods for missing data: deleting

data containing missing data and interpolating missing data [163]. The deletion method is

to delete the instance sample data that contains missing data in the data set to obtain the

remaining complete data set for subsequent analysis. This method is simple and feasible,

but its advantages and disadvantages are quite obvious. When the proportion of missing

data is small, especially when a data sample contains multiple missing data, the overall

impact of deleting data containing missing data is small. However, it may also lead to

sample imbalance and loss of important data information. With the increase of the proportion

of missing data, after the deletion of missing data, the remaining data will be difficult

to reflect the true information, especially in the case of nonrandom missing data [164].

Therefore, upon consultation with our clinical advisor, due to the challenges with missing

data points within small windows in time-series forecasting, we employed linear interpolation

within 2-hour time window for the records within each visit. As shown in Table 5.1, the

percentage of missing data significantly reduced after interpolation.
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5.2.2 Models

In this section, we explain the working of different models like ARIMA, MLP, LSTM, and

predictive clustering models.

Autoregressive Integrated Moving Average

In an ARIMA model (Newbold, 1983), the future value of a variable is assumed to be a

linear function of several previous observations and random errors. An ARIMA model is

defined as ARIMA (p, d, q):

p: order of the autoregressive part (AR);

d: degree of first differencing involved;

q: order of the moving average part (MA).

The Autoregressive (AR) process is a stochastic process where the output is linearly dependent

on the weighted sum of the previous values, and a white noise error [165]. One of the

critical tasks while designing an ARIMA model is finding the best value of p, q, and d [165].

The value of p represents the previous time steps of the time series to be used in predicting

the future value. The value of q represents the previous error terms used to predict the future

value [162]. The value of d indicates the number of times we need to differentiate the time

series to make it stationary. Autocorrelation and partial autocorrelation function plots are

used in the literature to find an approximate range of p and q parameters [165]. Next, the p

and q parameters range is used in a grid search approach [166] to find the optimal values.
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Figure 5.2: Initial Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF) plots showing significant lag at 5.

Figure 5.3: Final model Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) plots showing no significant lag.

Multilayer Perceptron

A multilayer perceptron (MLP) is a variant of the original perceptron model proposed

by Rosenblatt [167]. A neuron computes a weighted sum of the inputs, followed by a

non-linear activation φ of the calculated sum, as shown in Equation 5.1. The activation

function in a neural network helps to generate mappings from inputs to outputs, and the

neural networks learn complex data representations [168]. Classically, several activation

functions exist, such as sigmoid, tanh, and ReLU [168, 169]. According to Krizhevsky

et al. [169], the sigmoid and tanh activation functions suffer from the vanishing gradient

problem, and the ReLU activation function overcomes the vanishing gradient problem,

providing faster convergence and is computationally efficient. Hence, we used the ReLU

activation function in our MLP model. We defined output oi of a neuron in our MLP model

as per the following equation:
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oi = φ(
d∑

j=1

(xjwij + bj)) (5.1)

Long Short-Term Memory

Long short-term memory (LSTM) is a Recurrent Neural Network (RNN) type, i.e., a

multi-layer NN. Hochreiter and Schmidhuber [170] originally introduced the LSTM architecture

to overcome the vanishing or exploding gradient problem. n derivatives are multiplied in

a network of n hidden layers. The gradient will increase exponentially if the derivative is

big, and as we propagate down the model, it eventually explodes, known as the problem of

exploding gradient. Alternatively, the gradient will decrease exponentially if the derivatives

are small, and as we propagate through the model, it eventually vanishes, known as the

vanishing gradient problem. LSTM allows flow gates, i.e., the input gate, the forget gate,

the control gate, and the output gate, as shown in Figure 5.4. The input gate, the forget

gate, the control gate, and the output gate are denoted by it, ft, ct, and ot, respectively. The

input gate decides which information can be transferred from the earlier cell to the current

cell. The forget gate is used to store the information from the input of previous memory or

otherwise. The control gate controls the update of the cell. Finally, the output gate is used

to update the hidden layer ht−1 and update the output.

Contrastive Predictive Coding (CPC)

Traditional methods for handling missing data often involve filling in the missing values

and then applying predictive models on the imputed data [171]. Choosing a suitable

imputation scheme is complex, dataset-specific, and relies on domain expertise. Furthermore,

this results in a two-step process that prevents the prediction model from adequately exploring

the missingness patterns [171]. As shown in [171], such informative missingness may
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Figure 5.4: An illustration of an LSTM memory cell.

encode helpful information about the target labels. Regarding state-of-the-art time series

models, only a few incorporate these missingness patterns when learning from the data.

One example is the Bidirectional Recurrent Imputation for Time Series (BRITS) [172],

which simultaneously imputes the missing values and performs classification/regression

within a joint neural graph. Another similar method is the GRU with trainable Decays

(GRU-D) [171]. Both these methods take advantage of two representations of informative

missingness: masking and time interval [171]. Two models based on ordinary differential

equations, the ODE-RNN and the Latent-ODE, have also shown promising results on

irregularly-sampled data [173]. However, the computational complexity of these models is

high, which might lead to not finding the optimal hyperparameters [174]. Self-supervised

pre-training aims to learn a good initialization point for the supervised setting instead of

changing the supervised learning objective. Most models used for this purpose are based

on autoencoders [175], while some of the most recent and promising methods are based on

the idea of predictive coding, such as Contrastive Predictive Coding (CPC) [176]. It learns

from sequential data by trying to predict n ≥ 1 steps ahead of the current step. We explore
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Figure 5.5: The architecture of Contrastive Predictive Coding (CPC) network illustrating
using four time steps in the past sequence (xt−3, xt−2, xt−1, xt) to predict a sequence of
four time steps (xt+1, xt+2, xt+3, xt+4) in the future.

two self-supervised representation learning algorithms for pain forecasting: Contrastive

Predictive Coding (CPC) [176] and Variational Auto-encoders (VAE) [134].

We show the architecture of the CPC network n Figure 5.5. A past vital sign sequence is

partitioned into multiple non-overlapping sub-sequences x1, x2, ..., xt of the same length.

An encoder network genc maps each of the input sub-sequence of observations xt to a

latent representation zt = genc(xt). In other words, the encoder network is used to learn

a low-dimensional representation zt of high-dimensional sensor input xt. Similarly, a

future physiological signal sequence is divided into k sub-sequences xt+1, xt+2, ..., xt+k,

and latent representation zt+1, zt+2, ..., zt+k are extracted by the same encoder network

genc. Then, an autoregressive model gar summarizes all z1 to zt learned from past sequence

and produces a context latent representation ct = gar(z1, z2, ..., zt). The latent context

representation ct contains all information in the long past vital signs sequence. Therefore,

we can use the context latent representation ct to make the prediction ẑt+k for the latent

representation of every step k in the future sequence. Then, the ground truth representation

zt+k and the predicted representation ẑt+k are compared. The dot product zTt+k · ẑt+k is
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used to denote the similarity between the truth and the prediction. Then a density ratio

fk(xt+k, ct) = exp(zTt+k · ẑt+k) is introduced to measure the quality of the prediction ẑt+k

generated by xt+k and ct. Based on the idea of Noise-Contrastive Estimation (NCE) [177],

given a set X of N random samples containing one positive sample and N − 1 negative

samples, the cross-entropy loss for classifying the positive samples correctly can be defined

as:

LN = −Ex

[
log

fk(xt+k, ct)∑
xjϵX

fk(xj, ct)

]
(5.2)

Predictive Clustering

Clustering is an unsupervised learning process where an algorithm brings similar data

points closer without any “ground truth” labels. The similarity between data points is

measured with a distance metric, commonly Euclidean distance. In general, the Euclidean

distance metric (or other types of Minkowski metric) is used to find an average of all the

data within the clusters. However, its one-to-one mapping nature cannot capture the average

shape of the two time series, in which case Dynamic Time Warping (DTW) [178] is more

favorable.

Clustering different time series data is challenging as each data point acts as an ordered

sequence. Classically, the most common approach involves flattening the time series (sequence)

into a table, with a column for each time point (or an aggregation of the entire sequence),

and applying standard clustering algorithms like k-means. However, these clustering algorithms

use standard measures such as Euclidean distance, which is often not the best for time

series (ordered sequences). Hence, we replace the default distance measure with DTW to

compare the temporal sequences that can measure the similarity between two sequences

that do not align with each other rigidly in time, speed, or length.
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Unlike the Minkowski distance function, dynamic time warping breaks the one-to-one

alignment limitation and supports non-equal-length time series. It uses a dynamic programming

technique to find all possible paths and selects the one that yields a minimum distance

between the two sequences of time series using a distance matrix, where each element in

the matrix is a cumulative distance of the minimum of the three surrounding neighbors.

Suppose we have two time series, a sequence Q = q1, q2, . . . , qi, . . . , qn and a sequence

C = c1, c2, . . . , cj, . . . , cm. First, we create an n x m matrix, where every (i, j) element of

the matrix is the cumulative distance of the distance at (i, j) and the minimum of the three

elements neighboring the (i, j) element, where 0 < i ≤ n and 0 < j ≤ m. We can define

the (i, j) element as:

eij = dij +min
{
e(i−1)(j−1), ei(j−1), e(i−1)j

}
(5.3)

where dij = (ci + qj)
2 and eij is (i, j) element of the matrix which is the summation

between the squared distance of qi and cj , and the minimum cumulative distance of the

three elements surrounding the (i, j) element. Then, to find an optimal path, we have to

choose the path that gives minimum cumulative distance at (n,m). The distance is defined

as:

DDTW (Q,C) = min
∀w∈P


√√√√ K∑

k=1

dwk

 (5.4)

where P is a set of all possible warping paths, and wk is (i, j) at kth element of a warping

path and K is the length of the warping path.

63



5.3 Experiments

5.3.1 Autoregressive Integrated Moving Average model

As explained above, the ARIMA model possessed three parameters p, q, and d. Significant

lags at 5 in the autocorrelation and partial autocorrelation function plots (Figure 5.2) extend

beyond the dashed blue lines and indicate poor model fit. We decided the p and q parameters

range for the grid search as 0 and 5. Thus, we applied a grid to search by passing the integer

values in the range [0, 5] for both p and q and decided on the value of the p and q parameters

to be 1 with AIC value of the model as 584.9 and both ACF and PACF plots showed no

significant lags (Figure 5.3). Based on the ADF test [179], we found the time series of pain

score to be non-stationary and required one-time differencing (d = 1).

5.3.2 Multilayer Perceptron and Long Short-Term Memory models

MLP and LSTM models were trained on physiology and pain scores on the interpolated

time series dataset. We adjusted the hyper-parameters (layers, neurons, batch size, and

epochs) in MLP and LSTM models to have an idea of the range (minimum and maximum)

value of the parameters. The hyperparameters higher and lower than the values for which

we did not get any improvements in the model’s fit provided us with the minimum and the

maximum range. Next, we varied the hyper-parameters in the obtained range and evaluated

the model performance. We validated the model training on test dataset. Since we did not

want to provide the memory-based LSTM model an advantage over the memory-less MLP

model; we tested the same range of hyper-parameters for both the MLP and LSTM models.

After getting the best set of hyper-parameters, we evaluated the model performance on

these best hyper-parameters 40 times as there is a run-to-run variability in the model’s

output on training data. We finalized the model with the least objective function value

among the 40 model runs as the final prediction from the model. For training both models
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(MLP and LSTM), we used the ReLU activation function. These models were created in

Keras using the Tensorflow backend.

5.3.3 Contrastive Predictive Coding (CPC) and Variational Autoencoder

(VAE)

In self-supervised learning, the network is trained to predict future physiological data from

extensive unlabeled past physiological data. During the training process, our self-supervised

learning network learned latent representations that were used to infer future pain states

using a regression model. We used a similar architecture by Yang et.al. [129] to learn

representations from physiological signals using a CPC network and a VAE architecture

by our previous work discussed in Chapter 4 [141]. Specifically, we used a three-layer

Convolutional Neural Network (CNN) [180] as the encoder in CPC model. We then

used a gated recurrent unit (GRU) based Recurrent Neural Network (RNN) [180] for the

autoregressive part of the model with 64 dimensional of hidden states. The output of the

GRU based RNN model ct is then used as the feature for pain forecasting task. The pretext

task network was trained using the Adam optimizer with a batch size of 128 and a learning

rate of 10−3. The network structure and hyperparameters were tuned based on experiments

to maximize the accuracy of the pretext task.

Next, we trained a regression model to predict future pain values using the representations

learned (the output of the CPC and VAE network) as input features. To summarize, we used

a past physiological signal sequence in the trained self-supervised network to generate the

latent representation, which is used as the input feature of a regression model to predict the

pain score reported at a future time step. In the downstream task, we trained a regression

model to predict future pain values using the latent context representation ct (the output of

the autoregressive network) as input features. Specifically, a past vital signs sequence was

fed into the trained CPC network to generate the context latent representation ct. Then ct
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was used as the input feature of a regression model to predict raw (not interpolated) pain

scores reported at a future time step. Due to the lack of pain score labels (as we used raw

pain scores instead of the interpolated pain scores for prediction), we utilized random forest

[83] as the supervised regression model for pain forecasting. We chose this model because

ensemble methods are more robust and have advantages in dealing with small sample sizes

[181].

5.3.4 Predictive Clustering

We compute the cluster centroids with respect to DTW by minimizing the sum of squared

DTW distance between the cluster centroid and the series in the cluster. We employed

k-means clustering for each year of patient data and generated cluster labels for all patients

for each year. Next, we used the cluster labels as an additional feature to our pain forecasting

models to predict the future cluster label (ground truth) for next year.

5.4 Results

Tables 5.2 and 5.3 show the MAE and R2 for forecasting pain scores for mixed patients

and individual patient models respectively.

We present the results using the best predictions from 40 runs from each model. For mixed

patient forecasting, we combined all the patient data. The training data consisted of a past

sequence from a patient, and we generated the forecast on a future sequence from a random

patient, including the patient in the training set. In the individualized patient experiment,

we included past and future sequences from the same patient.

Next, for each year, we used K means clustering using DTW distance on all patients’

physiology and pain scores data to obtain an optimal number of seven clusters [with a

Normalized Mutual Information (NMI) score of 0.35, purity score of 0.67, Silhouette Index

of 0.12]. We treat the cluster labels generated as ground truth labels for each patient for
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Table 5.2: Pain forecasting results for individualised patient model

1 hour 2 hour 4 hour
MAE R2 MAE R2 MAE R2

VAE + RF Regression Model 1.16 0.91 1.295 0.91 1.484 0.90
CPC + RF Regression Model 1.184 0.89 1.369 0.89 1.57 0.88
LSTM 1.261 0.84 1.482 0.84 1.663 0.84
Dense Regression (MLP) 1.294 0.79 1.342 0.79 1.47 0.78
ARIMA 1.63 0.74 1.64 0.73 1.70 0.73
RF Regression Model 1.85 0.62 1.86 0.63 1.90 0.61

Table 5.3: Pain forecasting results for mixed patient model

1 hour 2 hour 4 hour
MAE R2 MAE R2 MAE R2

VAE + RF Regression Model [141] 0.58 (+/- 0.39) 0.91 0.63 (+/- 0.42) 0.89 0.78(+/- 0.42) 0.82
CPC + RF Regression Model [129] 0.76 (+/-0.54) 0.90 0.79 (+/- 0.54) 0.88 0.96 (+/- 0.58) 0.88
LSTM 0.78 (+/-0.66) 0.88 0.73 (+/- 0.62) 0.87 0.98 (+/- 0.65) 0.87
Dense Regression (MLP) 1.01 (+/- 0.75) 0.76 1.142 (+/- 0.78) 0.76 1.27 (+/- 0.84) 0.76
ARIMA 1.24 (+/-0.87) 0.65 1.28 (+/-0.91) 0.61 1.45 (+/-0.93) 0.63
RF Regression Model 1.37 (+/-0.89) 0.62 1.42 (+/-0.91) 0.61 1.53 (+/-0.94) 0.62

each year. Our goal is to understand if we can predict future cluster alignment of patients.

Hence, we train the same models discussed above on a past sequence of physiology data,

pain scores, and cluster labels to forecast the cluster label for the following year. We report

the AUROC of our models with raw pain scores as test data for years 2,3,4 and 5 in Table

5.4. The training for each is the data for all previous years, i.e., for the forecast of year 5,

we trained models on interpolated data from years 1,2,3, and 4 and tested on original data

available for year 5.

The best MAE (= 0.58) on test data was obtained for our LSTM based VAE model which

contained 2 hidden layers, 4 neurons in each hidden layer, 20 batch size, and for 30 epochs.

In general, all the models resulted in lower MAE and higher R2 scores in individualised

models. As seen in the tables, both the MLP and LSTM models outperformed the RF

Regression model (baseline) as well as the ARIMA model. Also, the self-supervised LSTM

based VAE model performed the best among all the models.

We report the area under the receiver operating characteristic (AUROC) score for evaluating

our long-term cluster forecasting models. Also, we compare the performance of our best
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Table 5.4: Predictive Clustering for Long-term pain forecasting (AUROC)

Year 2 Year 3 Year 4 Year 5
MLP 0.633 0.691 0.729 0.775
CPC + RF 0.721 0.793 0.852 0.886
VAE + RF 0.743 0.832 0.893 0.921

performing models from short-term forecasting as shown in Table 5.4. First, as expected,

our LSTM based self supervised VAE netowrk performed best in long-term pain forecasting.

Second, each model performed best in forecasting the cluster assignment for year 5 as it

had more data to learn from (year 1-4).

5.5 Discussion

The primary objective of this research was short-term pain forecasting and evaluating the

performance of existing statistical (ARIMA), supervised neural (MLP and LSTM), and

self-supervised (CPC, VAE) models for individual and mixed patient scenarios. Another

objective of this paper was to systematically evaluate a predictive clustering based approach

for long-term pain forecasting. Overall, we expected the self-supervised models to perform

better than the statistical and supervised neural models. First, as per our expectation, the

best performance in terms of error was found from the VAE trained network, followed by

CPC trained network, LSTM, MLP, ARIMA and RF regression models. A likely reason

for these results is that ARIMA models are perhaps not able to capture the non-linearities

present in the time-series data. Thus, overall, these models tended to perform not as

well compared to other models. Also, overall, the neural network models (MLP and

LSTM) performed similarly and better than the persistence and ARIMA models. That

is likely because our dataset is were non-linear and neural network models, by their design,

could account for the non-linear trends in datasets. However, another reason for this

result could be simply because the self-supervised network models possess several weights

(parameters), whereas the ARIMA model possesses only three parameters.
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5.5.1 Changing Patient Phenotype over time : Long-term forecasting

In this subsection, we demonstrate run-time examples of how our predictive clustering

approach was able to flexibly update the cluster assignments over time with respect to

the future pain in the next year. We present a case study of six representative patients as

discussed below and shown in Figure 5.6. We show the average pain range for each of

these patients in Table 5.5.

• Patient A had mild pain score (pain score 1-3) in the first year at the beginning of the study.

In the second year, he/she had moderate average pain (pain score 4-7). Our clustering

model was able to predict the temporal phenotype assigned to this patient as similar to

that of patient F who had moderate average pain (pain score 4-7). As shown in Figure

5.7, we see that the systolic blood pressure for both these patients follow a similar trend

(decreasing). Furthermore, our clustering algorithm phenotyped patient A and patient E

together in the third year to a cluster predominantly having low/mild pain scores. Both

of them had mild pain in the first year. So, our approach could change the phenotype of

patient A from low/mid pain to moderate pain and again back to low/mild pain. We can see

from Figure 5.7 that patients A and E followed a decreasing trend in systolic blood pressure

from first year till third year. Furthermore our model predicted accurately patient D to be in

the same cluster with patient A and F having moderate pain and decreasing blood pressure

in the second year. Patient D had mild pain in first year, and moderate pain in the second

year.

• Patient B had an average moderate pain score in the first year and maintained a moderate

pain score in second year, no pain in third and fourth year, and an average moderate pain

in the fifth year. Our clustering model predicted that patient B and patient C belonged to

the same cluster in second year (both had moderate pain). In the third year also, they were

clustered together although patient B had no pain and patient C had moderate pain. We
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Figure 5.6: An illustration of run-time examples of our clustering based long term pain
forecasting on six representative patients.

Table 5.5: Average pain scores of six representative patients for case study

Year Patient A Patient B Patient C Patient D Patient E Patient F
1 3.3 6.5 6.6 1.6 2.2 7.5
2 5.7 4.5 7 6.1 0 7.1
3 0 0 7.2 0 7.3
4 0 6.4 5.5 8
5 5.9

analyzed from the Figure 5.7 that although belonging to different pain range, they followed

a similar trend in systolic blood pressure. Interestingly, our algorithm then allocated them

to separate clusters in the fourth year. While patient B was allocated to a cluster with mixed

pain scores, patient C was clustered with patients with moderate pain score.

Based on our observations, we would like to point out a limitation in predictive clustering,

the trade-off between the clustering performance (for better interpretability) – which quantifies

how the data samples are homogeneous within each cluster and heterogeneous across

clusters with respect to the future outcomes of interest – and the prediction performance

is a common issue. The most critical parameter that governs this trade-off is the number

of clusters. More specifically, increasing the number of clusters will give the predictive

70



Figure 5.7: Change in systolic blood pressure (mean) across years for the six representative
patients.

clusters higher diversity to represent the output distribution and, thus, increase the prediction

performance while decreasing the clustering performance. One extreme example is that

there are as many clusters as data samples which will make the identified clusters fully

individualized; consequently, each cluster will lose interpretability as it no longer groups

similar data samples.

5.6 Summary

In this chapter, we evaluated the performance of memory-less neural network models

[e.g., multilayer perceptron (MLP)] with memory-based neural network models [e.g., long

short-term memory (LSTM) based self-supervised models] and statistical time-series techniques

for performing short-term (hourly) and long-term (yearly) time-series predictions of longitudinal

healthcare data. Our data-driven self-supervised approaches outperformed the purely supervised

learning methods, as well as statistical methods obtaining a MAE is of 0.58 with a standard

deviation of 0.39 and a R2 of 0.91 when the forecast horizon is 1 hour. We observed

that the forecast results for a mixed patient scenario is significantly better than that for

an individualized model. We observed similar trend in performance with our predictive
71



clustering approach with a random forest model trained on our LSTM based VAE network

achieving an AUROC of 0.921 in long-term patient phenotype forecasting. Finally, we

demonstrated that self-supervised predictive clustering approach can be utilized to interpret

the changes in patient phenotyping and better understand future pain trajectories.
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6 Conclusion and Future Work

In this chapter, we provide a brief overview of this dissertation. Then, we discuss potential

future research related to improving pain management in SCD.

6.0.1 Conclusion

The objective of the study in this dissertation is to leverage data-driven strategies to improve

pain management in patients with in SCD. We tackled this problem in an incremental

step-by-step manner.

Firstly, we presented a pain assessment model based on physiological signals data from

EHRs. We evaluated our pain prediction model at intra-individual level and inter-individual

level at varying pain rating scales. We showed that intra-indivial pain prediction models

had better performances than inter-individual models when trained with sufficient data

irrespective of the nature of hospital visit (outpatient, evaluation, or inpatient). We also

found that pain prediction based on the 4-point rating scale was appropriate for clinical

practices with a high prediction accuracy and pain assessment sensitivity.

Secondly, we showed that medication information in addition to the physiological signals

data improves the performance of our pain estimation models. Furthermore, we observed

that self-supervised models perform better than traditional machine learning models when

provided with sufficient data.

Finally, we solved the pain forecasting problem with restricted pain labels using a self-supervised

learning method for both short-term and long-term forecasting. Our self-supervised learning
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model was consistently better than the model trained in a purely supervised manner at

varying forecast horizons. We also demonstrated that our self-supervised patient phenotyping

approach can be used to understand the evolution of future patient pain profiles.

6.0.2 Future Work

The work presented in this dissertation can be further extended by implementing a real-time

pain management system such as a mobile application to be used by the clinicians as

another dimension to their treatment strategy. We showed that for pain estimation as well

for future pain forecasting (to understand future patient response), our models perform

better at an individualised level. It highlighted the importance of implementing individualized

pain management models. Another dimension to consider in the modeling can be the effect

of weather in the modeling process. Also, the role of demographics can be explored

in pain assessment and patient response management. This research has a number of

implications for healthcare data analytics. First, an implication from our results is that

data driven self-supervised network models could be used in forecasting pain from EHR

data. Although we considered pain forecasting in short-term and long-term in this work, our

results are likely to hold for other medical diagnosis scenarios. Second, another implication

of our results is that it may be expensive to train neural network models; however, once

these models are trained, they are easy and computationally and temporarily inexpensive to

apply on new patient data. Therefore, we believe that the self-supervised approaches would

be useful to clinicians, caregivers and patients. For example, the proposed models could be

bundled into a mobile or desktop application that helps patients better manage their health

by forecasting their future pain, or it can help the clinicians to forecast a patient’s future

pain and design appropriate treatment strategy.
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