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ABSTRACT 

MacLennan, James P. M.S.C.S, Department of Computer Science and Engineering, Wright State 
University, 2023. Path-Safe: Enabling Dynamic Mandatory Access Controls Using Security To-
kens. 

Deploying Mandatory Access Controls (MAC) is a popular way to provide host protec-

tion against malware. Unfortunately, current implementations lack the fexibility to adapt 

to emergent malware threats and are known for being diffcult to confgure. A core tenet 

of MAC security systems is that the policies they are deployed with are immutable from 

the host while they are active. This work looks at deploying a MAC system that leverages 

using encrypted security tokens to allow for redeploying policy confgurations in real-time 

without the need to stop a running process. This is instrumental in developing an adaptive 

framework for security systems with a Zero Trust based approach to process authentica-

tion. This work also develops Path-Safe , a MAC security system that focuses on protect-

ing flesystem access from unauthorized processes and malware. We show that our security 

system can mitigate real-world malware threats with low overhead and high accuracy. 
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Introduction 

The use of the Linux OS in areas such as embedded computing, Industrial Control Systems 

(ICS), and the banking industry has made it a frequent target for malware development. 

Potentially more concerning is that established malware strains that historically attacked 

Windows-based platforms are now adding Linux OS support. A prime example of this 

is the Industroyer2 variant of malware that was used against Ukraine in April of 2022 to 

damage the power grid by targeting ICS computers throughout the country [14, 15]. The 

new versions of Industroyer2 are highly tailorable to different victim environments and can 

now also be used to attack victims using the Linux OS, utilizing common Linux commands 

such as shred and dd [14]. 

Another example is the ransomware family RansomExx. In late 2020, RansomExx 

strains were discovered targeting Linux. This marked the frst known time that a major 

Windows ransomware variant expanded to Linux [19, 20, 18]. Such security challenges 

are exacerbated by the fact that older malware strains are being updated and put back into 

service. In the frst half of 2022, there was a 254% increase in activity from a Linux Trojan 

called XorDdos [16, 17], a malware that was frst discovered in 2014. 

In light of the recent advancements in Linux-focused malware, this thesis investigates 

pitfalls with common malware mitigation strategies. It proposes a nascent methodology to 

address the changing threat environment for Linux hosts. In this chapter, we will frst pro-

vide a brief overview of common strategies currently in place and some of the defciencies 

in their design. Next, we present our contributions to enhancing security system design 
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and what our objectives are during this research. Finally, we provide an organizational 

overview of the remainder of this thesis. 

1.1 Background 

One mitigation strategy is to deploy intrusion detection systems such as antivirus tools, 

which, however, fall short of keeping up with new malware variants enabled by newer pro-

gramming languages [20], sophisticated obfuscation techniques, etc. A more fundamental 

strategy is to enforce access control that can prevent malware from accessing sensitive in-

formation even if it infects the victim host. A salient example of this strategy is mandatory 

access control (MAC), which has been implemented by SELinux [12] and AppArmor [13]. 

These MAC systems group processes into domains and fles into types and then defne the 

specifc access between the domains and fle types [11], which is known as security poli-

cies. MAC allows defning fne-grained access control over kernel objects which can be 

used to prevent malware. 

Nevertheless, these MAC systems lack the fexibility to update their policies, making 

it hard to adapt to new vulnerabilities or confguration requirements on the host. Specif-

ically, security policies are managed by administrators rather than individual users. On 

the surface, this provides protection against malicious software or user misconfguration of 

the security system. Practically, this makes policy updates even more cumbersome: they 

require updating the security policies, stopping the current running protection, pushing the 

updated policies, and redeploying the protections. 

Other approaches, such as SECCOMP and eBFP [10], have been proposed to enforce 

access control by vetting system calls. Specifcally, they restrict a binary’s access to kernel 

objects by fltering the system calls exposed by the kernel. Therefore, these methods require 

benign binaries to be instrumented or run inside a container. Unfortunately, these methods 

fail to adapt to changes made in the underlying operating systems. Specifcally, when 
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the system call interface changes, binaries need to be re-instrumented. These approaches 

require a detailed knowledge of every system call interface and how they interact with the 

underlying kernel objects. 

1.2 Contributions 

In order to offer fexible mandatory access control in real-time environments to adapt to 

evolving threats, we have designed, implemented, and evaluated a novel system, namely 

Path-Safe with the following objectives: 

• Flexible: it eliminates the need to manually label kernel objects or to instrument 

binaries. 

• Real-Time: it seamlessly adapts to policy changes without interrupting running pro-

cesses and underlying operating systems. 

• Lightweight: it incurs very low-performance overhead. 

We have designed a new method of implementing MAC systems that utilizes secu-

rity tokens to enable dynamic process-level security mitigations, fusing both static security 

policies and external sensor input. Our work builds the foundational elements that enable 

MAC security systems to adapt to the current threat environment and focuses on simpli-

fying the defnition of how to protect fle and inode kernel objects. Our objectives are 

to provide a system that can modify access control in real-time and allow other decision-

makers to be layered into the adjudication of access to monitored kernel objects. This 

establishes the framework to defne adaptable layered protections not made solely on an 

immutable policy-based approach to kernel object access. To overcome defciencies in 

signature-based approaches, Path-Safe focuses not on what is run but on what protected 

directories it has access to. 
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We also are proposing a MAC solution that does not rely on function signatures 

and kernel APIs but builds off the Linux Security Module (LSM) framework providing 

a simple-to-understand Linux kernel module. Our approach doesn’t prevent creating a stat-

ically type enforcement system; it just allows the access to be changed dynamically and 

adapt to the current threat. Because we use access tokens, a per-process level analysis can 

be done, and a security manager could change access for two processes running the same 

binary. This enables other security systems, such as IPS/IDS systems or other dynamic 

monitoring algorithms to be used to feed the security manager’s decision making. 

To summarize, this paper has introduced the following contributions to moving for-

ward the state-of-the-art MAC systems for the Linux OS. We have designed a new method 

of implementing MAC systems that utilizes security tokens to enable dynamic process-

level security mitigations, fusing both static security policies and external sensor input. 

We have implemented our system and make it open source via https://github. 

com/jaypm007/Path-Safe. We have demonstrated the methodology of our Path-

Safe MAC security system against real-world malware samples and benign applications, 

where the evaluation results have shown our system can stop all malicious attempts at a 

low overhead of nominally between 2 and 4%. 

1.3 Organization 

This thesis is organized into eight chapters. Chapter 1, Introduction, provides an overview 

of the malware landscape targeting Linux as well as the objectives for our novel approach 

to security system design. Chapter 2, Related Work, examines existing methodologies 

for malware mitigation and identifes defciencies in their approaches. Chapter 3, Threat 

Model, defnes the threat model we use to develop our MAC system and provides the anal-

ysis to simplify the model, isolating the critical threats that need to be addressed by our 

work. Chapter 4, System Design and describes the design methodology used to develop 
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Path-Safe in order to address the results of our threat model analysis. Chapter 5, Imple-

mentation, illustrates some of the implementations for the core components of our system. 

Chapter 6, Evaluation, provides a detailed analysis of how our system was evaluated for 

accuracy and we measured performance overhead. This chapter also provides the results of 

our system when subjected to live malware samples. Chapter 7, Limitations and Potential 

Solutions, presents some limitations of the current system and some potential solutions. 

Chapter 8, summarizes our key contributions to MAC design. 
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Related Work 

This chapter provides a detailed look at some of the approaches used by related works to 

this thesis. Each section investigates a specifc methodology used to develop host-based se-

curity systems. We will highlight some of the limitations of each methodology and discuss 

related works for each. 

2.1 Mandatory Access Controls 

Mandatory Access Control allows fne-grained access control over kernel objects which 

can be used to prevent Malware and come installed in many operating systems. Common 

Mandatory Access Control (MAC) implementations, such as SELinux and AppAmour, are 

designed so that security policies are not modifable by the user. Security policies are de-

ployed and managed by some form of security policy administrator and are immutable, 

while the MAC is managing access to system resources. When changes are required, this 

requires security policies to be updated and redeployed. These MAC systems utilize do-

main type enforcement(DTE) models, grouping processes into domains, fles into types, 

and defning the specifc access between the domains and fle types [11]. MAC allows 

defning fne-grained access control over kernel objects which can be used to prevent Mal-

ware; however, they are typically designed so that security policies are not modifable by 

the user. This is a core tenet of the most popular MAC systems available for Linux [12, 13]. 

Security policies are deployed and managed by some form of security policy administrator 
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and are immutable while the MAC is managing system resources [12, 13]. Unfortunately, 

when policy changes are required, this requires: updating the security policies, stopping 

the current running protection, pushing the updated policies, and redeploying the protec-

tions [12, 13]. This is problematic in a dynamic threat environment, where static policies 

cannot adapt to new vulnerabilities or confguration requirements on the host. 

To support the current evolution of MAC security systems, complex labeling schemes 

have been developed to provide a comprehensive access model for kernel objects. Whether 

the MAC utilized a monolithic whole system type approach to labeling objects and fles [12] 

or utilizes a per-process type labeling system [13], the complexity of defning DTE policies 

can lead to confguration errors, an unusable systems, or simply an abandoned security 

control. A fundamental problem with DTE-based protections is that they require a high-

resolution understanding of the system resource required to operate a priori to deploying 

a policy. This creates pressure on application developers to understand multiple complex 

labeling systems that need to be updated as the software or operating system changes. This 

provides a security system that does not adapt to the current threat environment. 

2.2 System call fltering 

Other approaches such as SECCOMP and eBPF enable software developers to restrict a 

binary’s access to kernel objects by fltering the system calls exposed by the kernel API. 

While these approaches do limit a processes’ access to specifc kernel objects, this puts 

a lot of responsibility on the software development team and requires a good understand-

ing of what each system call exposes. Unfortunately, any system call function signatures 

and kernel APIs changes made to the Linux kernel require a developer to re-profle an 

executable. 

Instead of relying on function signatures and kernel APIs, our approach is to use the 

LSM framework. System call function signatures and kernel APIs change and can make 
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it diffcult to keep up(e.g., SECCOMP and eBPF). This also requires the developer to un-

derstand of how and what functions should be allowed to execute. Instead, we utilize 

LSM hooks that look at kernel object actions, such as fle opening. This lives entirely 

in the kernel space and allows us to monitor the fle actions we want to control. In the 

case of Path-Safe , we want to focus on fle opening, renaming, and deleting fles. Process 

whitelisting approaches, such as the UShallNotPass project, uses whitelists and access con-

trol lists (ACL) to control access to Cryptographically Secure PRNG (CSPRNG) resources 

via system call monitoring, have been proposed to control access to specifc kernel APIs. 

This can prevent both malware and benign application from accessing encryption primi-

tives but does not prevent access to the fles on a host, preventing malware from destroying 

flesystem data. Pure white list implementations are also susceptible to process renaming 

techniques such as: using the prctl system call to modify /proc/status, or modifying the frst 

command line argument to modify /proc//cmdline [9]. The Path-Safe system is immune 

to these types of techniques because we evaluate a process’ access via security tokens that 

are pinned to the process before it is executed. Modifying a process’ metadata in userspace 

will not infuence access control to the underlying flesystem. 

2.3 Signature-Based Detection 

A commonly used malware mitigation technique is signature-based detection. To develop 

a signature-based detection, static analysis is performed on a large corpus of malware sam-

ples to develop a repository of malware signatures. A signature-based system then monitors 

the binaries fles on the host system and compares them against this collection of signa-

tures, looking for malware on the victim’s machine. The success of this type of approach 

relies heavily on the ability to develop a malware signature profle before it infects the host 

system. Unfortunately, signature-based malware mitigation techniques are susceptible to 

circumvention by intelligent malware. For example, Linux-based malware can leverage 
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runtime packing, a sophisticated obfuscation technique that can prevent static analysis and 

reverse engineering of a malware sample [9], or use newer programming languages [20] to 

add diffculty to signature development. The reliance on known malware samples creates 

an implicit delay for signature-based systems to adapt to new threats. This requires system 

maintainers to discover new malware variants, statically analyze and develop a signature, 

and then add the new signature database for each of the newly discovered variants. This 

process becomes cumbersome when you consider that upwards of 200,000 samples are 

discovered every month [9]. 

A signature-based approach also requires storage for signatures and can impose sig-

nifcant performance overhead if used for process monitoring [1]. Some solutions, such 

as RanDroid, propose offoading the static analysis to a remote server during software in-

stallation [7] in an attempt to lessen the burden of maintaining a local repository. This 

approach may remove the requirement of pushing new signatures to hosts, but it comes 

with many drawbacks. Remote processing requires an active network connection which 

is not always available. This is also susceptible to denial-of-service type attacks, where 

network resources are overwhelmed with traffc and cannot handle all network requests. 

This approach also lacks the ability to perform continuous system monitoring because it 

would be infeasible to continuously send a copy of all installed binaries to a remote server. 

Finally, using a remote server for validation cannot protect against a time-of-check time-

of-use(TOCTOU) race condition, where a binary is modifed after it has been approved and 

installed. 

2.4 Behavioral-Based Detection 

Another approach to malware mitigation is to develop behavior-based techniques which 

perform dynamic analysis of all running processes in order to monitor for malicious be-

havior on the host. A behavior-based approach requires training a behavioral model that 
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can discern the differences between benign and malicious activities on a host, such as: 

how fles are encrypted, deleted, and removed [8]. Unlike a signature-based approach, a 

behavior-based approach may detect new strains of malware and even potentially detect 

zero-day attacks. Unfortunately, with any model-based system, there exists the possibility 

that benign applications will generate a false-positive and be detected as malware as well. 

Other challenges to developing an accurate behavioral model exist. For example, 

when analyzing malware, running it at different privilege levels or network access may 

produce different behavior, making it diffcult to execute all its code paths [9]. Even the 

specifc API calls that are monitored may rely on specifc kernel variants [8] and not gener-

alize well to operating system API changes. Similarly, like its signature-based counterpart, 

the behavioral models need to be updated and redeployed to maintain a current and updated 

security posture. 

Performance is also another area of concern with behavioral-based systems. Dynamic 

analysis requires both real-time monitoring of the kernel APIs and the subsequent model 

inference to make an informed decision. This can introduce signifcant processing over-

head, resulting in malware that runs unobstructed until the system catches up and is not 

conducive to embedded systems that have fewer processing resources. Another concern is 

how similar benign and malicious actions can look, leading to both false positive and false 

negative defections. 

2.5 Moving Target Defenses 

Another area of research includes employing moving target defense (MTD) countermea-

sures. The goal of an MTD-based countermeasures are to provide controlled confguration 

changes to a system to increase an attacker’s uncertainty [5]. In the case of ransomware, 

one method introduced in [3] is shuffing the fle extension to prevent the discovery of target 

fles. Routinely shuffing the extensions would increase the diffculty for ransomware algo-
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rithms to adapt to the defense and discover the victim’s fles to encrypt [3]. Unfortunately, 

techniques like extension shuffing fail to prevent malware from accessing the underlying 

fles and only require them to do a more thorough inspection of the fles on the system (e.g., 

by looking at fle header magic.) 

Another proposed MTD-based countermeasure set to set traps for malware to expose 

themselves. Decoy resources are strategically placed in the flesystem and monitored to 

discover when malware attacks the flesystem [8]. For example, when malware opens a 

decoy fle, the system can take appropriate measures to stop the attack. Of course, the 

effectiveness of such a technique relies on malware operating on the decoy fles. This 

creates a potentially long delay in the system response, compromising many of the victim’s 

fles before the malware hits a decoy fle [8]. 
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Threat Model 

In this chapter, we defne and analyze the threat model used to identify the critical actions 

malware must execute to successfully attack a victim. We used this analysis to provide the 

motivation for the design objectives of our security system. For this thesis, we consider the 

following malware model with three typical malware activities including [6]: 

1. Infecting the victim’s host 

2. Establishing a command-and-control(C2) channel with the attacker 

3. Executing the attack 

The following three sections will discuss each activity respectively. 

3.1 Infecting the Victim’s Host 

For any malware to be effective, it must frst infect a target host. A common vector for 

infecting a victim’s host is social engineering, where a victim will infect their host by 

installing or downloading malware from malicious emails, SMS, and Instant Message 

links [2]. From a security system perspective, social engineering creates some interest-

ing challenges. First, the user is presumed to have permissions to install or download the 

malware to the host. Second, the applications the user uses to download the malware in a 

social engineering attack can be considered benign. Essentially, in this scenario, the user 
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has accepted the risk of downloading or installing the malware. Any countermeasure must 

allow the user to inherit the risk of downloading malware but also must protect other system 

resources when the malware is executed. 

Another vector for malware infection is Drive-by-Download, which refers to a mali-

cious link or advertisement that, when clicked, downloads and installs malware [2]. Legiti-

mate websites may host ads that malware authors have purchased through real-time bidding 

or directly buying ad space [23]. Some malware, such as the Ryuk ransomware family, use 

custom droppers installed from other malware to directly install their malware [2]. Others 

act like worms and self-propagate by sending spam via email or malicious SMS messages 

to addresses in the victim’s address book. These attack vectors all require that an exe-

cutable binary or malicious script be saved to disk before executing an attack on a host. 

Unlike with social engineering, the installation of malware is done surreptitiously from the 

user through executable. 

3.2 Establishing a C2 Channel 

Many malware variants attempt to establish communication between the infected host and 

the attacker. For example, Cryptographic ransomware requires a clear C2 channel to pro-

vide victims with instructions, receive payment, and potentially key management. The 

methods and techniques used to establish C2 range from simply hard-coded IP addresses 

and domains of a C2 server to using dynamically generated domain generation algorithms 

(DGAs) [2]. Malware can exploit zero-day exploits, which are software vulnerabilities 

vendors have yet to discover, and establish this channel. Two examples of this are the 

WannaCry and BadRabbit ransomware strains which utilized the ExternalBlue zero-day 

vulnerability in the Window Server Message Block (SMB) service to gain C2 over its vic-

tims’ machines [3]. After establishing a C2 channel, malware may attempt to conceal their 

C2 communications by leveraging network obfuscation through anonymizer services such 
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as Tor and Invisible Internet Project (I2P) or use bulletproof hosting sites [23]. Establishing 

the C2 channel is an extension of the control fow path the malware takes and requires the 

malware to have access to the underlying flesystem to perform many of the tasks that will 

be requested over the C2 channel. 

3.3 Executing the attack 

Any successful malware attack requires that the malware software be executed on the host’s 

system and requires the same resources a benign application needs. For example, malware 

that is dynamically linked requires access to the shared libraries on a system. When the 

binary is executed, the resulting process needs the ability to open and read the shared 

libraries it needs in order to run. Some malware is statically linked, providing malware 

authors some reverse engineering protection and gains in portability [9]. When a binary is 

statically linked, it runs the risk of not being compatible with the infected machine’s kernel 

application binary interface (ABI). Malware authors could mitigate the portability issues 

of statically linked binaries by using the libc system call wrappers. These wrappers enable 

the binary to maintain compatibility with the operating system’s ABI and not expose the 

library calls used outside the libc library. 

Once operational, a malware binary will execute its control fow path and begin its 

attack on the victim’s host machine. File management is an essential aspect of all mal-

ware design, but perhaps none more pertinent than ransomware. To launch a successful 

ransomware campaign, attackers must effectively manage cryptographic keys, encrypt fles 

and keep the victim’s computer usable to allow for ransoms to be paid [6, 3]. Even after 

paying a ransom, an attacker could request a second ransom to prevent exposing the vic-

tim’s data or even resell or release the data on a public site. Ironically, a good defense 

against data exfltration is encrypting the data at rest(DAR) [2, 6]. 

A common operational goal of many malware attacks is destroying a victim’s data 
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during an attack. For example, ransomware attackers must decide on the actions to take 

when a victim does not pay the ransom. Some ransomware variants delete a victim’s en-

crypted fles when they do not pay, showing that the ransomware is not an idle threat and 

needs to be paid [8]. Malware variants such as Industroyer2 destroy victims’ fles using 

utilizing common Linux commands such as shred and dd [14]. Malware may also at-

tempt to circumvent path-based rules by attempting to rename a fle using the mv command 

or issuing an inode rename system call. For example, XorDDos attempts to rename sys-

tem binaries to circumvent rule-based protections [16]. In both examples, we see that the 

adversary opens fles and has the ability to rename or move fles indiscriminately. 

3.4 Threat Analysis 

After considering the threat model described above, we see that malware is essentially 

an authorization problem. We can extrapolate from our model six kernel object actions 

malware needs to operate. They are as follows: 

Unauthorized binary execution - Malware can be executed both directly by a victim and 

by vulnerabilities in benign applications. When any binary is initially executed, even 

before it is loaded into memory, the calling process must request for the kernel to 

initiate the process into memory through the exec family of system calls. It is at this 

point in the life cycle of the malware that the unauthorized access occurs and where a 

security system needs to evaluate that calling process, deciding what kernel resources 

it should have access to and permissions for. 

Unauthorized fle open - The previous sections establish many reasons why malware would 

need access to a host flesystem. For every fle operation where malware creates, 

reads from, or writes to a fle, it must frst obtain a valid fle descriptor provided by 

the kernel. This fle descriptor may be requested through the use of many different 
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system calls, but at its core, the request for fle resources to be opened needs to be 

adjudicated. 

Unauthorized renaming an inode hardlink - We also see that malware may move or re-

name fles for many reasons, including as a countermeasure to avoid current security 

monitoring. It is important to identify that moving or renaming a fle is an inode 

operation, where the name of a fle’s inode hardlink is modifed. Malware requests 

to access and modify inode hardlinks must be denied. 

Unauthorized unlinking of an inode hardlink - To remove a fle from the flesystem, an 

attacker must unlink the fle’s inode entry from the flesystem using an unlink system 

call. More thorough malware may frst attempt to open the fle and overwrite it 

multiple times to ensure that it is diffcult to forensically recover the fle from disk [1, 

14]. Regardless of the malware’s attack vector to destroy data, malware needs to have 

the ability to unlink a fle to remove it from the flesystem. It should be noted that 

when the last hardlink is removed from an inode, the flesystem is free to reclaim the 

inode and reuse it. In such cases, the underlying data that it points to can also be 

modifed, making recovery after a malware attack much more diffcult. 

Unauthorized linking of an inode hardlink - Every fle must have one or more hardlinks, 

which are used to associate a fle with a name. Unlike symlinks, every hardlink of a 

fle points to the same inode and is not simply a reference to the original name. This 

distinction is important because allowing a new hardlink to be created on a fle inside 

a protected directory would bypass any path-based protection. To counter this, we 

apply the same procedure to verify the creation of a hardlink that is performed during 

an inode rename operation. 

Unauthorized use of benign applications - Malware’s ability to utilize benign binaries in 

living-off-the-land and fleless malware attacks poses an interesting dilemma when 

designing a security system. When malware has unauthorized access to a system’s 
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benign binaries, it can masquerade its behavior as non-malicious in nature. Many 

host many software applications and scripts utilize benign system utilities to perform 

their task. Malware’s ability to leverage this access needs to be addressed by any host 

security system. 

Our threat model analysis reduces the malware threat to these six unauthorized actions. 

This is advantageous moving forward with our MAC system design, as each action can be 

isolated and validated independently. By identifying and limiting the scope of the problem, 

we can also provide an intuitive policy design scheme, which enables users to quickly 

identify the critical directory paths of their system and limit the applications that have 

access to these critical data paths. 
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System Design 

This chapter describes the system design of Path-Safe , a MAC security system that lever-

ages encrypted security tokens to establish a sessions-based MAC enforcement model be-

tween the kernel and userspace processes. Our system monitors kernel resources by reg-

istering callback functions specifc kernel object hooks provided by the Linux Security 

Module (LSM) framework, as seen in Figure 4.1. Utilizing the LSM framework enables 

us to not be dependent on the current system call interface. A key advantage of using the 

LSM framework is that Path-Safe is immune to new attack vectors introduced by changes 

in the system call interface with respect to flesystem access. The LSM framework also 

allows Path-Safe to focus only on the fle actions that prevent unauthorized access to the 

flesystem enabling an effcient and thorough evaluation of all flesystem operations on the 

host. 

Confguration for our security system is managed by creating policies. Policies allow 

Path-Safe to identify what directory paths require authentication and which binaries should 

have access to the specifed directory paths. Utilizing a path-based policy construct al-

lows us to develop highly interpretable confguration primitive for our system. Each policy 

contains a belf dir info structure that defnes the directory path information of a protected 

directory and a linked list of ACLs containing approved binaries stored in a belf dir acl 

structure. The belf dir info structure consists of a character string representing the pro-

tected directory path, an integer hash value of that string, and a UUID. Using a hash value 
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Figure 4.1: This fgure shows the Path-Safe system architecture. 

comparison is more effcient than making string comparisons, especially when searching 

through policies with common directory bases. Our system uses this UUID as a freshness 

label on the policy, providing a means to know if a token it is looking at has the latest 

version of the policies. Each policy also has an ACL list of binaries that can access the 

directory. This structure is a linked list with a binary path name and an integer hash of the 

string. The remaining sections in this chapter look at the design decision made in order to 

address the unauthorized malware actions identifed in Section 3.4. 

4.1 Unauthorized Binary Execution 

We see from our threat analysis that malware can be executed both directly by a victim 

and by vulnerabilities in benign applications. Our threat model also exposed scenarios 

where processes may masquerade as different processes after being executed in order to 

evade detection from name-based mitigation strategies. To prevent malware, or any binary, 

from inheriting all access and permissions of its parent process, we need to ensure that our 

system can monitor binary before execution control is given over by the kernel. The LSM 
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framework provides a creds for exec hook which is called directly before the transition 

of the process to load the requested binary program. This is the last opportunity to set 

the security credentials for a newly executed binary and is a good choice for Path-Safe to 

evaluate the protected paths that the process has access to. 

We know that another attack vector is to use benign applications to perform malware 

and that external sensor input, for example, provided by an IDS, would inform the security 

system that a new threat has been discovered or a modifcation in the policy database oc-

curred. Path-Safe addresses these by the use of a process session id. A session provides the 

security system to address new threats at a per-process granularity. For example, an IDS 

might detect a process that is being used by malware in one instance but benign in another. 

The notion of a session provides the ability to address this by preventing access from the 

offending process. Our security system is not constrained to a policy-only model and needs 

to ensure it can adapt to per-process events. 

The ability to use manage sessions and modify permissions on the fy led us to use a 

token-based approach, where the underlying policy and security parameters could change 

independent of format when the process started. This fexibility allows the seamless in-

tegration of trusted security systems without the need to restart Path-Safe . We can even 

operate in an environment where the security manager is located remotely. To handle this, 

we use encryption to provide a layer of privacy, preventing other processes from learning 

what specifc accesses a process has access to. Path-Safe uses AES-128 encryption algo-

rithm in CBC mode by default. A boot session key is created during system initialization, 

and a random initialization vector (IV) is used to create the token that is installed as a se-

curity object in the process’ credentials pointer. We use the random IV as the session ID 

(SID) for the process. The session key and security tokens generated by Path-Safe are not 

exposed to userspace and are the foundation for enabling remote security managers to work 

at a process level granularity. Our encryption process also provides protection from replay 

attacks; should a process discover a way to infuence its security credential, it could not 
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simply use an old or otherwise discovered token. 

4.2 Unauthorized File Open Access 

Our threat model also establishes that malware needs to have the ability to open fle descrip-

tors to perform any fle management operations on a fle object. From the security systems 

perspective, we leverage encrypted security tokens to establish which processes are ac-

cessed to access which resources, and we do not make this decision based directly on the 

process name associated with the calling process. This prevents malicious processes from 

spoofng the process name in order to elevate its access level by modifying controllable 

process metadata elements from userspace. When any process makes a fle open request, 

Path-Safe must adjudicate the request and does so by monitoring the LSM hook fle open. 

In many systems, a large portion of the fle open requests will be made by benign applica-

tions operating in directory paths that are not protected by the security system. In order to 

optimize performance, the decryption of a process’ security token is only performed if the 

fle open requests are covered by one of the Path-Safe policies. In the case of fle access, 

our system utilizes the Linux virtual flesystem (VFS) dentry objects to allow us to translate 

LSM hook data structures such as struct fle into searchable objects in our database. 

4.3 Unauthorized Renaming an Inode Hardlink 

We have also established that malware may want to rename the inode hardlink associated 

with a fle. This may include renaming itself to an authorized binary as a countermeasure to 

avoid security monitoring systems. As we mentioned in the previous chapter, moving a fle 

is an inode rename hook provided by the LSM framework. Unlike the previous example, 

renaming a hardlink provides two struct inode pointers, one representing the original name 

and the other representing the new name to be modifed. To ensure that an unauthorized 
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binary does not attempt to rename a fle into or from a protected directory into an area 

the calling process can operate, we must look up both inode pointers. Similarly to the fle 

open monitoring in the previous section, we only decrypt the calling process’ security token 

when a policy match is hit. 

4.4 Unauthorized Unlinking of an Inode Hardlink 

Path-Safe prevents unauthorized binaries from having the capability to delete fles in a 

protected directory. This is possible because the security module monitors every inode 

unlink request made by a running process via the LSM framework hook inode unlink. 

Similarly to renaming a fle, deleting a fle is also an inode operation where the hardlink 

associated with the inode is removed. When the last hardlink associated with the inode is 

removed, the inode is released back to the flesystem and is available for reuse. When a 

calling process attempts to unlink an inode, the LSM hook provides a struct inode pointer. 

This pointer allows Path-Safe to look for a policy match before decrypting the process 

security token. 

4.5 Unauthorized Linking of an Inode Hardlink 

It is possible that advanced malware may attempt to circumvent path-based protections by 

creating a shadow hardlink to a fle. Every fle must have one or more hardlinks, which are 

used to associate a fle with a name. Unlike symlinks, every hardlink of a fle points to the 

same inode and is not simply a reference to the original name. This distinction is important 

because allowing a new hardlink to be created on a fle inside a protected directory would 

bypass any path-based protection. To counter this, we apply the same procedure to verify 

the creation of a hardlink that is performed during an inode unlink. 
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4.6 Unauthorized Use of Benign Applications 

The ability of malware to utilize benign processes provides an interesting challenge when 

developing a security system. There are use cases where benign binaries, such as rm or 

shred, may be appropriate to call from a binary. Namely, anytime the system has a legit-

imate reason to remove a fle. Even in protected directories, authorized binaries should 

be allowed to be removed fles only when appropriate. Our approach to this problem is 

to leverage the fexibility of our security token design and utilize external sensor input to 

enable either a policy bypass or make a policy more restrictive. The external sensor can be 

a physical sensor, such as a monitored server door relay or other tamper sensors. Another 

example would be a connected IDS system that detected a malware attack. In this situa-

tion, the IDS could inform a security system that it may need to adapt to the new threat and 

tighten up its security posture. 

For this thesis, we demonstrate this capability by utilizing the security fs pseudo-

flesystem. Path-Safe exports a character device to userspace via the security fs pseudo-

flesystem named tripwire. This interface allows the host the ability to set a global status 

for the protected system. When the tripwire is set to active, our system will override all 

access to protected directories and prevent any further access to the protected directories 

on the host. The tripwire interface allows both read and write capabilities from userspace 

and is used to demonstrate adaptive threat capabilities. If, for any reason, the tripwire is 

activated, then all security validations for protected directories will fail. 
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Implementation 

This chapter looks at some of the implementation details associated with the specifc LSM 

hooks described above when Path-Safe is operational. Each section will look at a code 

excerpt of the LSM hook callback routine registered by the Path-Safe security module. This 

is then followed by a discussion on the policy look-up and security validation algorithms 

of our system. 

5.1 creds for exec 

1 struct belf_token* belf_req_auth_token(struct linux_binprm *bprm){ 

2 struct belf_dir_policy *test_policy; 

3 char rbuf[NAME_MAX]; 

4 int ret = 0; 

5 struct belf_token_data* tdata = NULL; 

6 struct belf_token *token = NULL; 

7 

8 tdata = (struct belf_token_data*) kmalloc(sizeof(struct 

belf_token_data),GFP_KERNEL); 

9 if(!tdata){ 

10 pr_err("BELF:belf_req_auth_token: ENOMEM"); 

11 return NULL; 
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12 } 

13 tdata->tpid = current->pid; 

14 tdata->policy_count = 0; 

15 memset(tdata->dir_policies, 0, sizeof(tdata->dir_policies)); 

16 list_for_each_entry(test_policy, 

17 &dir_policies, policy_list){ 

18 ret = belf_search_policy_for_acl(test_policy, bprm->filename 

); 

19 if(!ret) { 

20 memcpy( &tdata->dir_policies[tdata->policy_count++], 

21 &test_policy->info, sizeof(struct belf_dir_info) 

); 

22 } 

23 } 

24 token = belf_gen_token(tdata, sizeof(struct belf_token_data)); 

25 kfree(tdata); 

26 return token; 

27 } 

Listing 5.1: The Path-Safe system compiles a list of policies that determine which protected 

directories a newly executed process will have access to. The size of each token is constant 

to prevent onlookers from guessing how many policies a process may access. 

Path-Safe evaluates every process when it is initialized using the creds for exec hook. 

When the creds for exec hook is executed, our system creates a 

belf token data data structure using the belf req auth token function, seen in Listing 5.1, 

which contains: the process id, the number of policies the process is authorized to access, 

and an array containing a copy of the specifc policies. The process id provides our system 
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the ability to verify that the token belongs to the current process and prevents a process 

from using another process’ token. The policy count and dir policy array act as a lookup 

table. During token creation, Path-Safe searches the policy database ACL lists, looking for 

a name that matches the fle name that the current process is trying to execute, and adds a 

copy of each matching policy to the token’s dir policies array. The array is set at a fxed 

size so that the encrypted token is also at a fxed size. The consistent size prevents side-

channel attacks where an adversary attempts to identify which system binaries have access 

to protected areas of the host. An adversary could use this information, for example, to 

rank the worthiness of a system binary to exploit. 

5.2 fle open hook 

1 

2 static int belf_file_open(struct file *file){ 

3 struct task_belf *bsp = belf_cred(current_cred()); 

4 struct belf_dir_info* dinfo = NULL; 

5 char rbuf[PATH_MAX]; 

6 char* req_path_name = dentry_path_raw(file->f_path.dentry, rbuf, 

PATH_MAX); 

7 dinfo = belf_search_policies_for_resource(req_path_name); 

8 if( dinfo ){ 

9 if(!bsp->bp_token){ 

10 return 1; 

11 } 

12 return belf_validate_token(bsp->bp_token, dinfo); 

13 } 

14 return 0; 
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15 } 

Listing 5.2: Path-Safe registers the belf fle open with the LSM framework to monitor 

every fle open request made on the host system. 

Path-Safe monitors every fle open operation by registering the function belf fle open, 

shown in Listing 5.2, with the LSM framework to prevent unauthenticated processes from 

opening fles inside protected directories. The LSM fle open hook is triggered every time 

a process requests a fle descriptor for opening a fle and provides Path-Safe with a struct 

fle pointer to the fle object being requested. This allows us to get the raw path name from 

the fle dentry and examine the permission fags the process is requesting for the fle. 

Our system searches through the policy database looking for a policy match where the 

requested fle object is protected by the policy and the requested permissions are allowed. 

If this criterion is met, the process authentication token will then be decrypted and evalu-

ated for access. By searching the policy database frst, benign requests will not incur the 

decryption and encryption overhead associated with token decryption operations. 

5.3 inode rename hook 

1 int belf_inode_rename(struct inode *old_dir, 

2 struct dentry *old_dentry, 

3 struct inode *new_dir, 

4 struct dentry *new_dentry){ 

5 int ret = 0; 

6 /* Get path for old_dentry and check if we are authorized to move it 

*/ 

7 if(belf_validate_dentry(old_dentry)){ 

8 return 1; 
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9 } 

10 /* Get path for new_dentry and check if we are authorized to move it 

*/ 

11 ret = belf_validate_dentry(new_dentry); 

12 return ret; 

13 } 

Listing 5.3: Path-Safe registers the belf inode rename function with the LSM framework 

to monitor every inode rename request made on the host system. An inode rename requires 

validating two dentry objects to ensure the new or old names are not covered by a policy. 

Moving or renaming a fle is an inode operation, where the name of an inode hardlink 

is modifed. Path-Safe monitors every inode rename attempt by registering the function 

belf inode rename, shown in Listing 5.3, with the LSM framework to prevent unauthenti-

cated renaming of fles inside protected directories. The LSM inode rename hook is trig-

gered every time a process attempts a renaming operation and provides Path-Safe with two 

struct dentry pointers. The inode rename hook operates on a set of inode and dentry ob-

jects representing the original name and new name being requested. The inode rename 

hook must check both dentry objects independently to verify if the source or destination 

names are inside a protected directory. The Security Manager validates the calling autho-

rization token for the calling process for each dentry that needs authorized access. 

5.4 inode link 

1 int belf_inode_link (struct dentry *old_dentry, 

2 struct inode *dir, 

3 struct dentry *new_dentry){ 

4 int ret = 0; 
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5 /* Get path for old_dentry and check if we are authorized to move it 

*/ 

6 if(belf_validate_dentry(old_dentry)){ 

7 return 1; 

8 } 

9 /* Get path for new_dentry and check if we are authorized to move it 

*/ 

10 ret = belf_validate_dentry(new_dentry); 

11 return ret; 

12 } 

Listing 5.4: Path-Safe registers the belf inode link function with the LSM framework to 

monitor inode link requests made on the host system. Adding a hardlink to an inode also 

requires validations. We need to check the original hardlink and new hardlink paths to 

verify if they need authorization from Path-Safe . 

Path-Safe monitors every inode link attempt by registering the function belf inode link, 

shown in Listing 5.4, with the LSM framework to prevent creating unauthorized hardlinks 

for fles inside protected directories. The LSM inode link hook provides Path-Safe with 

two struct dentry pointers. The inode rename hook operates on a set of inode and den-

try objects representing the original name and new name being added to the inode. The 

inode link hook must check both dentry objects independently to verify if the source or 

destination names are inside a protected directory. The security module validates the call-

ing authorization token for the calling process for each dentry that needs authorized access. 

5.5 inode unlink 
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1 int belf_inode_unlink(struct inode *dir, struct dentry *dentry){ 

2 int ret = 0; 

3 ret = belf_validate_dentry(dentry); 

4 return ret; 

5 } 

Listing 5.5: Path-Safe registers the belf inode unlink function with the LSM framework to 

monitor every inode unlink request made on the host system. 

Path-Safe monitors every inode unlink attempt by registering the function 

belf inode unlink, shown in Listing 5.5, with the LSM framework to prevent unauthenti-

cated unlinking of fles inside protected directories. The LSM inode unlink hook is trig-

gered every time a process attempts an unlink operation and provides Path-Safe with a 

struct dentry pointer to the fle the calling process is requesting to be unlinked from the 

flesystem. The inode unlink hook searches the policy database for a matching entry and 

validates the process’ authorization to operate on the dentry object. 

5.6 Validating a dentry Object 

1 static int belf_validate_dentry(struct dentry *d){ 

2 

3 char name[NAME_MAX]; 

4 struct task_belf *bsp = belf_cred(current_cred()); 

5 struct belf_dir_info* dinfo = NULL; 

6 

7 /* Let’s use the helper to extract the path name from a dentry*/ 

8 char *p = dentry_path_raw(d, name, NAME_MAX); 

9 if (IS_ERR(p)) { 
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10 pr_err("belf_name: Dentry Name error\n"); 

11 return 1; 

12 } 

13 

14 dinfo = belf_search_policies_for_resource(p); 

15 if( dinfo ){ 

16 if(!bsp->bp_token){ 

17 pr_err("Belf validate dentry: No token available 

\n"); 

18 return 1; 

19 } /*Just checking that we can fail an open */ 

20 return belf_validate_token(bsp->bp_token, dinfo); 

21 } 

22 

23 return 0; 

24 } 

Listing 5.6: All monitored flesystem operations are approved based on the success of 

validating access to the underlying dentry structure. This is handled by the function 

belf validate dentry. 

The core implementation details of Path-Safe revolve around validating a process’ 

access to operate on the dentry structure the fle operations are to be performed on. Path-

Safe registers hooks that provide the means to isolate the dentry objects that reference 

the fle being operated on and is handled by the belf validate dentry function seen in List-

ing 5.6. This process can be further broken down into two distinct tasks, policy lookup and 

security token validation. The following two sections take a closer look at the implementa-

tion used for this work. 
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5.7 Policy Lookup 

1 struct belf_dir_info* belf_search_policies_for_resource(char* 

request_path){ 

2 struct belf_dir_policy *test_policy; 

3 int ret = 0; 

4 

5 list_for_each_entry(test_policy, &dir_policies, policy_list){ 

6 ret = belf_file_in_path(test_policy->info.dir_path, request_path 

); 

7 if(!ret){ 

8 return &test_policy->info; 

9 } 

10 } 

11 return NULL; 

12 } 

13 int belf_file_in_path(const char* policy_path, char* request_path){ 

14 int ret=0; 

15 char pbuf[PATH_MAX]; 

16 char rbuf[PATH_MAX]; 

17 struct path pp_path; 

18 char* req_path_name; 

19 char* real_policy_path; 

20 int policy_dir_len, rp_len; 

21 

22 /* Check if the path exists and/or is mounted */ 

23 /* We also want to avoid symlink tricks so we find the real path */ 
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24 /* If this changes outside we can’t help it but at lease we can 

protect 

25 what the link points to */ 

26 ret = kern_path(policy_path, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, & 

pp_path); 

27 if(ret){ 

28 //pr_err("BELF ERR: %s doesn’t exists of isn’t a directory", 

policy_path); 

29 return 1; 

30 } 

31 /* Let’s get the path strings */ 

32 real_policy_path = d_path(&pp_path, pbuf, PATH_MAX); 

33 req_path_name = request_path; 

34 

35 if(!req_path_name) return 1; 

36 /* We need to know if the policy path is a root directory of the 

requested path */ 

37 policy_dir_len = strlen(real_policy_path); 

38 rp_len = strlen(req_path_name); 

39 

40 /* There is no need to do a memcmp as we can’t be a root directory 

*/ 

41 if(rp_len < policy_dir_len) return 1; 

42 

43 /* Check that we have a ’/’ in the path */ 

44 if((rp_len > policy_dir_len) && (req_path_name[policy_dir_len] != ’/ 

’) ){ 
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45 return 1; 

46 } 

47 return memcmp(req_path_name, real_policy_path, strlen( 

real_policy_path)); 

48 } 

Listing 5.7: Path-Safe policy look up is handled by iterating through a list of policies, 

checking if the current dentry is covered the polices. 

The frst task for dentry validation is identifying the specifc policies that the dentry 

object is covered by (i.e., requiring a token validation.) Looking at the implementation seen 

in Listing 5.7, we see that belf search policies for resource takes a raw path string provided 

by the belf validate dentry function and iterates through the policy database. This raw path 

is extracted from the dentry object and compared to the policy-specifc path. The kern path 

kernel function is used to resolve any fles attempting to access a fle via a symlink, miti-

gating any process attempting to gain access to a protected directory via a symlink, given 

the focus on intuitive policy defnitions the number of policies managed by Path-Safe is 

generally much smaller than that of other MAC system. This allows us to use the Linux 

kernel’s implementation of a linked list for this work. Finally, for each policy in our list, 

we evaluate if the current dentry path is a child of the policy’s protected path. This deter-

mination is made using the following checks: i) is the current policy path mounted, ii) is 

the policy path the root flesystem, iii) and if the dentry path is a child of the policy path, 

as seen in the belf fle in path function listed in Listing 5.7. 

5.8 Validating security tokens 

1 int belf_validate_token(struct belf_token* token, void* data){ 

2 struct belf_token *local_token = NULL; 
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3 struct belf_token_data *tdata = NULL; 

4 struct belf_dir_info* dinfo = data; 

5 int i=0; 

6 int rc = 1; 

7 

8 /* Let’s decrypt our token for validation checks */ 

9 local_token = belf_decrypt_token(token); 

10 if(!local_token){ 

11 pr_err("Belf:belf_validate_token: ENOMEM"); 

12 return -ENOMEM; 

13 } 

14 

15 tdata = (struct belf_token_data*)local_token->data; 

16 /* Let’s check that we have the right token */ 

17 if(current->pid != tdata->tpid){ 

18 pr_debug("Token is not for this process\n"); 

19 goto out; 

20 } 

21 

22 /* Let’s check if the tripwire is hit */ 

23 if( get_tripwire_status()){ 

24 goto out; 

25 } 

26 

27 for( i; i < tdata->policy_count && i < MAXPOLICIES; i++){ 

28 if(dinfo->hash == tdata->dir_policies[i].hash){ 

29 rc = 0; 

35 



30 goto out; 

31 } 

32 } 

33 

34 out: 

35 kfree(local_token); 

36 return rc; 

37 } 

Listing 5.8: To validate a security token, Path-Safe decrypts the token in place and searches 

the authorized policy list for a match. It also checks the tripwire interface to ensure that 

policy-based access is still permitted. 

Path-Safe validates access to resources based for a process based on the process’ au-

thentication token. Token validation happens after the request manager has identifed the 

specifc policy for which the process needs to be authenticated. Looking at Listing 5.8, 

the frst step in token validation is to decrypt the current process security token and verify 

that the process id of the token matches the calling process. This check is to ensure that 

the process is not reusing an old token or that the token hasn’t been tampered with. The 

token contains a dir policy array structure that contains a list of policies that the process 

has been authorized to access. Rather than making a more costly string comparison, our 

algorithm compares the calculated hash value of the protected directories as the key to 

match. The hash is calculated at policy creation, reducing the overhead associated with the 

Path-Safe system. Finally, additional security inputs to the system are assessed. For this 

work, the tripwire interface acts as our external input. 
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Evaluation 

In this section, we frst demonstrate the accuracy of the Path-Safe against our threat model. 

Second, we show the performance overhead analysis and the effectiveness of utilizing se-

curity tokens to manage fle system access. Finally, we show the step-by-step analysis of 

Path-Safe protecting a host against three real-world malware samples. 

6.1 Accuracy Analysis 

To evaluate the accuracy of Path-Safe at protecting directories from unauthorized access to 

our flesystem, we use benign applications to generate flesystem events that we can use to 

measure the following metrics for each of the Path-Safe LSM fle and inode hooks: 

True Positive (TP) Authorized Application is granted access to a protected directory 

False Positive (FP) Unauthorized Application is granted access to a Protected Directory 

Table 6.1: Accuracy 

Hook Attempts TP FP TN FN Accuracy 
fle open 600 300 0 300 0 1 

inode rename 300 150 0 150 0 1 
inode link 300 150 0 150 0 1 

inode unlink 300 150 0 150 0 1 
Active Tripwire 300 0 0 300 0 1 
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Figure 6.1: We did not observe any signifcant increase in performance overhead when 
Path-Safe was operational. This is in part due to our threat reduction analysis. 

True Negative (TN) Unauthorized Application is denied access to Protected Directory 

False Negative (FN) Authorized Application is denied access to Protected Directory 

We calculate the accuracy of each LSM hook using the as follows formula: 

TP + TN 
(6.1)

TP + TN + FP + FN 

We run a data generation script to stimulate all of the LSM hooks that Path-Safe mon-

itors, generating a total of 1800 access requests to our protected directories. Half of the 

access attempts were run on symlinks that referenced the protected directories, and 300 

attempts were executed with the tripwire interface active. To ensure we had full code cov-

erage, we ran benign applications against both protected and unprotected directories. We 

can see from Table 6.1 that we achieved 100% accuracy for each attempted access. 
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6.2 Overhead Analysis 

To evaluate the overhead associated with Path-Safe , we compare the running time of some 

benign applications with and without Path-Safe running. We also instrumented the Path-

Safe code to measure the time it takes to search the policy database for kernel object re-

quests and the time to validate a security token vended by our system. What we can see 

from Figure 6.1 is that applications such as dd or shred, which spend most of their process-

ing time reading or writing to fles, had a modest 2-4% increase in system clock time when 

operating on fle sizes of 409.6 Mb. The system time is the time a process spends in ker-

nel mode and is where our system would potentially introduce some processing overhead. 

Other applications, such as the fnd and ls, have different behavior. They spend a signif-

icant amount of their system time opening and closing fles, which happens to represent 

the worst-case scenario for Path-Safe . We tested the fnd command on the root flesystem 

of our virtual disk, which contains 6179 directories and 51288 fles, and it only experi-

enced a nominal system time increase of around 10-12%. For long-running applications 

that spend a proportionally small amount of time opening, moving, or deleting fles, the 

system overhead would be negligible and only realized at the applications initialization. 

6.3 Performance against Real-world Malware 

For this experiment we tested Path-Safe against the following three recent malware vari-

ants: Awfulshred Wipper, RansomExx, and XorDDos. Given the dangerous nature of the 

live malware samples, we utilize separate Qemu virtual environments for each malware 

sample, isolating the samples from our host operating system and network. This also en-

sures that each malware sample is tested in a pristine environment not damaged by previous 

malware testing. 
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6.3.1 Awfulshred Wipper 

1 # ./cfca38c408c95e45cdf797723dc5cdb0d6dadb1b8338a5fda6808ce9a04e6486 

2 [ 70.922364] cfca38c408c95e4[204]: segfault at 0 ip 0000000008074ee8 

sp 00000000ffc5357c error 4 in 

cfca38c408c95e45cdf797723dc5cdb0d6dadb1b8338a5fda6808ce9a04e6486 

[8048000+3a000] 

3 [ 70.930461] Code: 00 00 83 c4 10 89 d8 5b 5e 5f c3 89 1c 24 e8 bf 00 

00 00 83 c4 10 01 c3 89 d8 5b 5e 5f c3 90 90 90 90 8b 44 24 04 8b 54 

24 08 <0f> b6 08 3a 0a 74 16 eb 18 8d b4 26 00 01 

4 Segmentation fault 

5 # ls /root/protected-data/ps/cat1.out -l 

6 -rw------- 1 root root 41 Jun 8 23:49 /root/protected 

-data/ps/cat1.out 

7 # rm /root/protected-data/ps/cat1.out 

8 # ls /root/protected-data/ps/cat1.out -l 

9 -rw------- 1 root root 41 Jun 8 23:49 /root/protected 

-data/ps/cat1.out 

Listing 6.1: The awfulshred malware fails to connect to its remote server and cannot 

achieve creating its C2 channel when Path-Safe is operational. We have protected the 

protected-data directory to prevent access to commands other than ls to access it. 

The Awfulshred malware is a wiper Bash script used by Linux variants of Indus-

troyer2 to destroy the entire contents of the system it is attacking using the shred or dd 

command[15]. It also tries to disable the HTTP and SSH services of the host being attacked 

to expedite the speed at which the host is rendered inoperable[15]. We downloaded a live 

sample of the Awfulshred that was submitted to the site https://virusshare.com/ 

on 2022-05-05 22:48:46 UTC with the following Sha256 hash bcdf0bd8142a4828c6 
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1e775686c9892d89893ed0f5093bdc70bde3e48d04ab99. 

Running the Awfulshred malware is a straightforward malware sample to run. The 

obfuscated Bash script needed either the command shred or dd to be installed in the guest 

operating system used to test the Awfulshred. During the execution of the script, the Aw-

fulshred sample attempts to establish communication with a remote server and attempts to 

detect the environment it was running in. When the script fails to communicate with the re-

mote server, it attempts to delete itself to avoid detection from the system. Fortunately, after 

some analysis of the script, we were able to isolate the use of the shred or dd commands 

and run them as intended by the malware. 

The malware attempts to remove fles from the following directories: /boot, /home. 

/var/log before attempting to destroy the drives via their devfs special fles. To counter 

this attack, we installed policies that protected each directory and only allowed ls, fnd, 

and md5sum to make sure that we could evaluate our fles after executing the malware. 

Fortunately, as soon as the Awfulshed failed to access any of the directories inside these 

directories, it experienced a segmentation fault. We can see the results of this experiment 

in Listing 6.1. Our system successfully prevented Awfulshred or benign applications (e.g. 

shred and rm) from removing any of the fles in our protected directory. 

6.3.2 RansomExx 

1 # cat /root/protected-data/ps/cat1.out 

2 real 0m 0.04s 

3 user 0m 0.00s 

4 sys 0m 0.04s 

5 # ./196eb5bfd52d4a538d4d0a801808298faadec1fc9aeb07c231add0161b416807.elf 

/root/protected-data/ps 

6 # cat /root/protected-data/ps/cat1.out 
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7 real 0m 0.04s 

8 user 0m 0.00s 

9 sys 0m 0.04s 

10 # 

Listing 6.2: When our security system is running, we see that the RansomExx malware 

cannot operate in the protected directory. 

We downloaded a live sample of the RansomExx that was submitted to the site https: 

//bazaar.abuse.ch on 2021-03-21 01:45 UTC with the following Sha256 hash 19 

6eb5bfd52d4a538d4d0a801808298faadec1fc9aeb07c231add0161b4168 

07. The RansomExx Elf binaries we downloaded were the only malware binary that was 

not statically compiled. This required a slight modifcation and addition of some to satisfy 

the dynamic loader to get the malware to execute. Namely, it required libpthread support. 

The ransomware sample expects to receive a list of directory paths to encrypt as input, as 

seen in [20]. Upon execution, the ransomware iterates through the specifed directories, 

attempting to encrypt all fles in the directory that is great than 40 bytes[20]. When run 

against directories protected with Path-Safe , the binary did not encrypt anything and exited 

silently. When we ran the binary against an unprotected directory, we saw attempted fle 

opens, then a quick segfault. 

6.3.3 XorDDoS 

1 # pwd 

2 /root/malware-samples 

3 # ls -ltra 

4 total 3308 

5 .... 
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6 -rw------- 1 root root 264040 Jun 8 23:48 311 

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.zip 

7 -rwx--x--x 1 root root 562263 Jun 9 00:41 311 

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.elf 

8 ..... 

9 drwx------ 2 root root 4096 Jul 14 02:24 . 

10 # ./311c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.elf 

11 # ls -ltra 

12 total 3308 

13 .... 

14 -rw------- 1 root root 264040 Jun 8 23:48 311 

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.zip 

15 ..... 

16 -rwxr-xr-x 1 root root 256 Jul 14 02:24 fle.151590 

ce87cccad05440d060bf8a27b362ed8ba0d4766c9beee4dfe57539c113.sh 

17 -rwxr-xr-x 1 root root 562263 Jul 14 02:24 fle.151590 

ce87cccad05440d060bf8a27b362ed8ba0d4766c9beee4dfe57539c113 

18 drwx------ 2 root root 4096 Jul 14 02:24 . 

19 # cd /root/protected-data/ 

20 # ls 

21 nops ps 

22 # /root/malware-samples/311 

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.elf 

23 # ls 

24 nops ps 

25 # 

Listing 6.3: The malware XorDDoS extracts a helper script and an executable during 
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execution. When done in a protected directory, the malware doesn’t execute. 

We downloaded a live sample of XorDDos that was submitted to the site https:// 

bazaar.abuse.ch on 2023-05-14 18:43:39 UTC with the following Sha256 hash 3 

11c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec09 

5151. According to [16], the XorDDos trojan will attempt to fnd a writeable directory 

in the following list of directories: /bin, /home, /root, /tmp, /usr, and /etc. It then tries 

to use the curl command to download an ELF fle payload from a specifed target as the 

fle ygljglkjgfg0. Next, XorDDos attempts to rename the system’s wget binary to the fle 

named good[16]. 

After executing our malware sample, we noticed the sample trying to manipulate the 

iptables rules on our host, followed by a series of tests to fnd a writable fle in the following 

directories. When it reaches the /root directory, we see the Path-Safe denies access to the 

binary. The binary continues by attempting to create a fle in the /tmp directory using the 

curl command. Our testing environment does not have network connectivity, and causes the 

malware to attempt to remove itself. When run in an unprotected directory /root/malware-

samples, we see that when the binary fails to establish a C2 connection, it extracts its 

own packed binary and helper script, as seen in Listing 6.3. To test Path-Safe against this 

malware, we ran the malware in both protected and unprotected directories. We can see 

that our system prevented XorDDos from extracting its payload when run in a protected 

directory. 
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Limitations and Potential Solutions 

In this chapter, we discuss some of the limitations of the current system and some of the 

potential solutions to overcome them. Our main assumption in this thesis is that the attacker 

has not already gained access and control over the kernel. Path-Safe can be enhanced to 

support key management technologies such as SGX, TPM, SEG, and hardware key man-

agers (HKM) to provide some protections against in-kernel threats attacks and out-of-band 

modifcation of Path-Safe policy database, for example, during an evil maid attack. 

The current implementation of Path-Safe monitors the inode link hook to prevent the 

unauthorized creation of hard links for protected directories. We assume preexisting hard 

links associated with a fle inode do not create backdoor access to a protected directory. 

This is easily overcome by having Path-Safe iterate through every inode hardlink during 

a resource request. This may provide some extra overhead when searching the policy 

database for policies that cover each hardlink, but in practice, multiple hardlinks are not 

common. Still, this might be addressed in future work. 

We currently are not using the session tracking to revoke previously open fle descrip-

tors on policy changes. Our work focuses on preventing unauthorized access, as laid out in 

Section 3. We can easily expand our system and keep an active list of open fle descriptors 

covered by a Path-Safe policy. This would require developing a fle descriptor tracking ca-

pability for each session. To minimize memory resources, Path-Safe will only track the fle 

descriptors associated with a process’s session ID and fle descriptors covered by a security 

policy. This adaption would enable Path-Safe to close any open fle descriptors affected by 
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a modifcation in the policy database or threat environment. 

For this work, fle integrity management is assumed to be provided by other security 

safeguards, such as Linux’s Integrity management architecture(IMA). One of the strengths 

of leveraging the LSM architecture is that it facilitates a layered security approach where 

Path-Safe can be one of many security systems present in the system. Integrity management 

is currently outside the scope of this work; however, support for program argument lists 

would enable an extra layer of protection, especially during a living-of-the-land attack. 
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Conclusion 

This chapter concludes this thesis. In the frst section, we discuss some of the future work 

where we can expand the Path-Safe MAC system. We then summarize our work developing 

a token-based MAC. 

8.1 Future Work 

There are a few areas we a looking to expand the Path-Safe systems capabilities beyond 

adding more advanced key management support. Path-Safe is already effective in embed-

ded and industrial control systems, where special fles in devfs and sysfs can expose access 

to hardware devices and protocol busses (e.g., i2c, smb, and RS-232.) The next step is to 

incorporate hardware-based triggers to augment the tripwire functionality. This would en-

able physical access control integration to hosts protected by Path-Safe . We can utilize the 

encrypted security token to development of remote distributed Security managers that can 

be incorporated into a larger enterprise security model is being developed. Path-Safe can 

be enhanced to support more advanced hardware features such as SGX, TPM, and SEG. 

They would facilitate building a more robust capability to prevent in-kernel attacks and the 

out-of-band modifcation of Path-Safe policies. 

One unique feature of utilizing a session-based approach to managing processes is that 

it can reevaluate access in real time when a policy changes while a process continues to run. 

One area of expansion would be to develop fle descriptor tracking to enable Path-Safe the 
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ability to revoke fle descriptor affected by a policy change by its session id. Developing a 

session ID cache for each policy would allow us to close any already open fle descriptors 

that are out of date. A session ID cache would also allow us to cache access credentials to 

limit the number of token decryptions required, reducing some of the overhead associated 

with our system. This would be particularly advantageous for applications such as fnd, 

which open and close a lot of fles. 

The current policy schema is designed to be highly interpretive by a user. There is 

more work to be done to expand the policy description capabilities. One advancement 

would be the ability to group binaries into groups. This abstraction would simplify policy 

creation for applications that need to access many applications. The motivation for this 

advancement is to begin the development of a highly secure package management and 

software deployment system. 

8.2 Summary 

To summarize, in this thesis, we have demonstrated that the use of encrypted tokens pro-

vides the fexibility to develop next-generation MAC security systems that can adapt to the 

current threat environment in real time and with a per-process granularity. The ability to 

modify access on a process basis allows us to develop security systems that are immune to 

living-off-the-land attacks and potentially bridge physical security sensors with the security 

system to mitigate some insider threat attacks. This would be particularly advantageous in 

industrial control settings, where long-running processes can perform critical operations 

and continuous monitoring without interruption. By modeling and analyzing the malware 

threat, we reduced the threat space to a handful of kernel object actions. This enabled us 

to focus monitoring of kernel object access to a handful of actions, avoiding the overhead 

associated with other MAC security systems, which require every kernel object and ac-

tion to be labeled. Using kernel object actions exposed by the LSM framework facilities 
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seamless support for OS upgrades and system call interface changes. This work has shown 

that session-based MAC systems enable stateful tracking of kernel object access from a 

process, allowing new techniques for protecting kernel objects and moving us beyond an 

immutable yes or no access model. Tokenized management of security policies is exten-

sible and can be extended beyond only protecting flesystem access-based threats. Our 

methodology for designing MAC has the potential to develop exceptional state-of-the-art 

security protections and resource management systems. 
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