
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2023

Path-Safe :Enabling Dynamic Mandatory Access Controls Using Path-Safe :Enabling Dynamic Mandatory Access Controls Using

Security Tokens Security Tokens

James P. MacLennan
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
MacLennan, James P., "Path-Safe :Enabling Dynamic Mandatory Access Controls Using Security Tokens"
(2023). Browse all Theses and Dissertations. 2815.
https://corescholar.libraries.wright.edu/etd_all/2815

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2815?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Path-Safe: Enabling Dynamic Mandatory Access
Controls Using Security Tokens

A Thesis submitted in partial fulfllment
of the requirements for the degree of
Master of Science in Cyber Security

by

JAMES P. MACLENNAN
B.S.C.E., Wright State University, 2000

2023
Wright State University

WRIGHT STATE UNIVERSITY

COLLEGE OF GRADUATE PROGRAMS AND HONORS STUDIES

July 24, 2023
I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVI-
SION BY James P. MacLennan ENTITLED Path-Safe: Enabling Dynamic Mandatory
Access Controls Using Security Tokens BE ACCEPTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Cyber Security.

Junjie Zhang, Ph.D.
Thesis Director

Thomas Wischgoll, Ph.D.
Interim Chair, Department of Computer Science and

Engineering

Committee on
Final Examination

Junjie Zhang, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Lingwei Chen, Ph.D.

Shu Schiller, Ph.D.
Interim Dean, College of
Graduate Programs & Honors Studies

ABSTRACT

MacLennan, James P. M.S.C.S, Department of Computer Science and Engineering, Wright State
University, 2023. Path-Safe: Enabling Dynamic Mandatory Access Controls Using Security To-
kens.

Deploying Mandatory Access Controls (MAC) is a popular way to provide host protec-

tion against malware. Unfortunately, current implementations lack the fexibility to adapt

to emergent malware threats and are known for being diffcult to confgure. A core tenet

of MAC security systems is that the policies they are deployed with are immutable from

the host while they are active. This work looks at deploying a MAC system that leverages

using encrypted security tokens to allow for redeploying policy confgurations in real-time

without the need to stop a running process. This is instrumental in developing an adaptive

framework for security systems with a Zero Trust based approach to process authentica-

tion. This work also develops Path-Safe , a MAC security system that focuses on protect-

ing flesystem access from unauthorized processes and malware. We show that our security

system can mitigate real-world malware threats with low overhead and high accuracy.

iii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Contributions . 3
1.3 Organization . 4

2 Related Work 6
2.1 Mandatory Access Controls . 6
2.2 System call fltering . 7
2.3 Signature-Based Detection . 8
2.4 Behavioral-Based Detection . 9
2.5 Moving Target Defenses . 10

3 Threat Model 12
3.1 Infecting the Victim’s Host . 12
3.2 Establishing a C2 Channel . 13
3.3 Executing the attack . 14
3.4 Threat Analysis . 15

4 System Design 18
4.1 Unauthorized Binary Execution . 19
4.2 Unauthorized File Open Access . 21
4.3 Unauthorized Renaming an Inode Hardlink 21
4.4 Unauthorized Unlinking of an Inode Hardlink 22
4.5 Unauthorized Linking of an Inode Hardlink 22
4.6 Unauthorized Use of Benign Applications 23

5 Implementation 24
5.1 creds for exec . 24
5.2 fle open hook . 26
5.3 inode rename hook . 27
5.4 inode link . 28
5.5 inode unlink . 29

iv

5.6 Validating a dentry Object . 30
5.7 Policy Lookup . 32
5.8 Validating security tokens . 34

6 Evaluation 37
6.1 Accuracy Analysis . 37
6.2 Overhead Analysis . 39
6.3 Performance against Real-world Malware 39

6.3.1 Awfulshred Wipper . 40
6.3.2 RansomExx . 41
6.3.3 XorDDoS . 42

7 Limitations and Potential Solutions 45

8 Conclusion 47
8.1 Future Work . 47
8.2 Summary . 48

Bibliography 51

v

List of Figures

4.1 This fgure shows the Path-Safe system architecture. 19

6.1 We did not observe any signifcant increase in performance overhead when
Path-Safe was operational. This is in part due to our threat reduction analysis. 38

vi

List of Tables

6.1 Accuracy . 37

vii

Acknowledgement
I would like to take this opportunity to extend my sincerest thanks to my advisor Dr. Junjie

Zhang. Without his guidance and insights, this work would not be possible. I would

also like to express my gratitude to my committee members for their thought-provoking

questions and for making my defense such a wonderful experience; thank you.

I would like to give special thanks to my wife and children. Your unwavering support

and patience during this process have meant the world to me. I truly appreciate how blessed

I am to have such a great support system at home.

viii

Introduction

The use of the Linux OS in areas such as embedded computing, Industrial Control Systems

(ICS), and the banking industry has made it a frequent target for malware development.

Potentially more concerning is that established malware strains that historically attacked

Windows-based platforms are now adding Linux OS support. A prime example of this

is the Industroyer2 variant of malware that was used against Ukraine in April of 2022 to

damage the power grid by targeting ICS computers throughout the country [14, 15]. The

new versions of Industroyer2 are highly tailorable to different victim environments and can

now also be used to attack victims using the Linux OS, utilizing common Linux commands

such as shred and dd [14].

Another example is the ransomware family RansomExx. In late 2020, RansomExx

strains were discovered targeting Linux. This marked the frst known time that a major

Windows ransomware variant expanded to Linux [19, 20, 18]. Such security challenges

are exacerbated by the fact that older malware strains are being updated and put back into

service. In the frst half of 2022, there was a 254% increase in activity from a Linux Trojan

called XorDdos [16, 17], a malware that was frst discovered in 2014.

In light of the recent advancements in Linux-focused malware, this thesis investigates

pitfalls with common malware mitigation strategies. It proposes a nascent methodology to

address the changing threat environment for Linux hosts. In this chapter, we will frst pro-

vide a brief overview of common strategies currently in place and some of the defciencies

in their design. Next, we present our contributions to enhancing security system design

1

and what our objectives are during this research. Finally, we provide an organizational

overview of the remainder of this thesis.

1.1 Background

One mitigation strategy is to deploy intrusion detection systems such as antivirus tools,

which, however, fall short of keeping up with new malware variants enabled by newer pro-

gramming languages [20], sophisticated obfuscation techniques, etc. A more fundamental

strategy is to enforce access control that can prevent malware from accessing sensitive in-

formation even if it infects the victim host. A salient example of this strategy is mandatory

access control (MAC), which has been implemented by SELinux [12] and AppArmor [13].

These MAC systems group processes into domains and fles into types and then defne the

specifc access between the domains and fle types [11], which is known as security poli-

cies. MAC allows defning fne-grained access control over kernel objects which can be

used to prevent malware.

Nevertheless, these MAC systems lack the fexibility to update their policies, making

it hard to adapt to new vulnerabilities or confguration requirements on the host. Specif-

ically, security policies are managed by administrators rather than individual users. On

the surface, this provides protection against malicious software or user misconfguration of

the security system. Practically, this makes policy updates even more cumbersome: they

require updating the security policies, stopping the current running protection, pushing the

updated policies, and redeploying the protections.

Other approaches, such as SECCOMP and eBFP [10], have been proposed to enforce

access control by vetting system calls. Specifcally, they restrict a binary’s access to kernel

objects by fltering the system calls exposed by the kernel. Therefore, these methods require

benign binaries to be instrumented or run inside a container. Unfortunately, these methods

fail to adapt to changes made in the underlying operating systems. Specifcally, when

2

the system call interface changes, binaries need to be re-instrumented. These approaches

require a detailed knowledge of every system call interface and how they interact with the

underlying kernel objects.

1.2 Contributions

In order to offer fexible mandatory access control in real-time environments to adapt to

evolving threats, we have designed, implemented, and evaluated a novel system, namely

Path-Safe with the following objectives:

• Flexible: it eliminates the need to manually label kernel objects or to instrument

binaries.

• Real-Time: it seamlessly adapts to policy changes without interrupting running pro-

cesses and underlying operating systems.

• Lightweight: it incurs very low-performance overhead.

We have designed a new method of implementing MAC systems that utilizes secu-

rity tokens to enable dynamic process-level security mitigations, fusing both static security

policies and external sensor input. Our work builds the foundational elements that enable

MAC security systems to adapt to the current threat environment and focuses on simpli-

fying the defnition of how to protect fle and inode kernel objects. Our objectives are

to provide a system that can modify access control in real-time and allow other decision-

makers to be layered into the adjudication of access to monitored kernel objects. This

establishes the framework to defne adaptable layered protections not made solely on an

immutable policy-based approach to kernel object access. To overcome defciencies in

signature-based approaches, Path-Safe focuses not on what is run but on what protected

directories it has access to.

3

We also are proposing a MAC solution that does not rely on function signatures

and kernel APIs but builds off the Linux Security Module (LSM) framework providing

a simple-to-understand Linux kernel module. Our approach doesn’t prevent creating a stat-

ically type enforcement system; it just allows the access to be changed dynamically and

adapt to the current threat. Because we use access tokens, a per-process level analysis can

be done, and a security manager could change access for two processes running the same

binary. This enables other security systems, such as IPS/IDS systems or other dynamic

monitoring algorithms to be used to feed the security manager’s decision making.

To summarize, this paper has introduced the following contributions to moving for-

ward the state-of-the-art MAC systems for the Linux OS. We have designed a new method

of implementing MAC systems that utilizes security tokens to enable dynamic process-

level security mitigations, fusing both static security policies and external sensor input.

We have implemented our system and make it open source via https://github.

com/jaypm007/Path-Safe. We have demonstrated the methodology of our Path-

Safe MAC security system against real-world malware samples and benign applications,

where the evaluation results have shown our system can stop all malicious attempts at a

low overhead of nominally between 2 and 4%.

1.3 Organization

This thesis is organized into eight chapters. Chapter 1, Introduction, provides an overview

of the malware landscape targeting Linux as well as the objectives for our novel approach

to security system design. Chapter 2, Related Work, examines existing methodologies

for malware mitigation and identifes defciencies in their approaches. Chapter 3, Threat

Model, defnes the threat model we use to develop our MAC system and provides the anal-

ysis to simplify the model, isolating the critical threats that need to be addressed by our

work. Chapter 4, System Design and describes the design methodology used to develop

4

https://github.com/jaypm007/Path-Safe
https://github.com/jaypm007/Path-Safe

Path-Safe in order to address the results of our threat model analysis. Chapter 5, Imple-

mentation, illustrates some of the implementations for the core components of our system.

Chapter 6, Evaluation, provides a detailed analysis of how our system was evaluated for

accuracy and we measured performance overhead. This chapter also provides the results of

our system when subjected to live malware samples. Chapter 7, Limitations and Potential

Solutions, presents some limitations of the current system and some potential solutions.

Chapter 8, summarizes our key contributions to MAC design.

5

Related Work

This chapter provides a detailed look at some of the approaches used by related works to

this thesis. Each section investigates a specifc methodology used to develop host-based se-

curity systems. We will highlight some of the limitations of each methodology and discuss

related works for each.

2.1 Mandatory Access Controls

Mandatory Access Control allows fne-grained access control over kernel objects which

can be used to prevent Malware and come installed in many operating systems. Common

Mandatory Access Control (MAC) implementations, such as SELinux and AppAmour, are

designed so that security policies are not modifable by the user. Security policies are de-

ployed and managed by some form of security policy administrator and are immutable,

while the MAC is managing access to system resources. When changes are required, this

requires security policies to be updated and redeployed. These MAC systems utilize do-

main type enforcement(DTE) models, grouping processes into domains, fles into types,

and defning the specifc access between the domains and fle types [11]. MAC allows

defning fne-grained access control over kernel objects which can be used to prevent Mal-

ware; however, they are typically designed so that security policies are not modifable by

the user. This is a core tenet of the most popular MAC systems available for Linux [12, 13].

Security policies are deployed and managed by some form of security policy administrator

6

and are immutable while the MAC is managing system resources [12, 13]. Unfortunately,

when policy changes are required, this requires: updating the security policies, stopping

the current running protection, pushing the updated policies, and redeploying the protec-

tions [12, 13]. This is problematic in a dynamic threat environment, where static policies

cannot adapt to new vulnerabilities or confguration requirements on the host.

To support the current evolution of MAC security systems, complex labeling schemes

have been developed to provide a comprehensive access model for kernel objects. Whether

the MAC utilized a monolithic whole system type approach to labeling objects and fles [12]

or utilizes a per-process type labeling system [13], the complexity of defning DTE policies

can lead to confguration errors, an unusable systems, or simply an abandoned security

control. A fundamental problem with DTE-based protections is that they require a high-

resolution understanding of the system resource required to operate a priori to deploying

a policy. This creates pressure on application developers to understand multiple complex

labeling systems that need to be updated as the software or operating system changes. This

provides a security system that does not adapt to the current threat environment.

2.2 System call fltering

Other approaches such as SECCOMP and eBPF enable software developers to restrict a

binary’s access to kernel objects by fltering the system calls exposed by the kernel API.

While these approaches do limit a processes’ access to specifc kernel objects, this puts

a lot of responsibility on the software development team and requires a good understand-

ing of what each system call exposes. Unfortunately, any system call function signatures

and kernel APIs changes made to the Linux kernel require a developer to re-profle an

executable.

Instead of relying on function signatures and kernel APIs, our approach is to use the

LSM framework. System call function signatures and kernel APIs change and can make

7

it diffcult to keep up(e.g., SECCOMP and eBPF). This also requires the developer to un-

derstand of how and what functions should be allowed to execute. Instead, we utilize

LSM hooks that look at kernel object actions, such as fle opening. This lives entirely

in the kernel space and allows us to monitor the fle actions we want to control. In the

case of Path-Safe , we want to focus on fle opening, renaming, and deleting fles. Process

whitelisting approaches, such as the UShallNotPass project, uses whitelists and access con-

trol lists (ACL) to control access to Cryptographically Secure PRNG (CSPRNG) resources

via system call monitoring, have been proposed to control access to specifc kernel APIs.

This can prevent both malware and benign application from accessing encryption primi-

tives but does not prevent access to the fles on a host, preventing malware from destroying

flesystem data. Pure white list implementations are also susceptible to process renaming

techniques such as: using the prctl system call to modify /proc/status, or modifying the frst

command line argument to modify /proc//cmdline [9]. The Path-Safe system is immune

to these types of techniques because we evaluate a process’ access via security tokens that

are pinned to the process before it is executed. Modifying a process’ metadata in userspace

will not infuence access control to the underlying flesystem.

2.3 Signature-Based Detection

A commonly used malware mitigation technique is signature-based detection. To develop

a signature-based detection, static analysis is performed on a large corpus of malware sam-

ples to develop a repository of malware signatures. A signature-based system then monitors

the binaries fles on the host system and compares them against this collection of signa-

tures, looking for malware on the victim’s machine. The success of this type of approach

relies heavily on the ability to develop a malware signature profle before it infects the host

system. Unfortunately, signature-based malware mitigation techniques are susceptible to

circumvention by intelligent malware. For example, Linux-based malware can leverage

8

runtime packing, a sophisticated obfuscation technique that can prevent static analysis and

reverse engineering of a malware sample [9], or use newer programming languages [20] to

add diffculty to signature development. The reliance on known malware samples creates

an implicit delay for signature-based systems to adapt to new threats. This requires system

maintainers to discover new malware variants, statically analyze and develop a signature,

and then add the new signature database for each of the newly discovered variants. This

process becomes cumbersome when you consider that upwards of 200,000 samples are

discovered every month [9].

A signature-based approach also requires storage for signatures and can impose sig-

nifcant performance overhead if used for process monitoring [1]. Some solutions, such

as RanDroid, propose offoading the static analysis to a remote server during software in-

stallation [7] in an attempt to lessen the burden of maintaining a local repository. This

approach may remove the requirement of pushing new signatures to hosts, but it comes

with many drawbacks. Remote processing requires an active network connection which

is not always available. This is also susceptible to denial-of-service type attacks, where

network resources are overwhelmed with traffc and cannot handle all network requests.

This approach also lacks the ability to perform continuous system monitoring because it

would be infeasible to continuously send a copy of all installed binaries to a remote server.

Finally, using a remote server for validation cannot protect against a time-of-check time-

of-use(TOCTOU) race condition, where a binary is modifed after it has been approved and

installed.

2.4 Behavioral-Based Detection

Another approach to malware mitigation is to develop behavior-based techniques which

perform dynamic analysis of all running processes in order to monitor for malicious be-

havior on the host. A behavior-based approach requires training a behavioral model that

9

can discern the differences between benign and malicious activities on a host, such as:

how fles are encrypted, deleted, and removed [8]. Unlike a signature-based approach, a

behavior-based approach may detect new strains of malware and even potentially detect

zero-day attacks. Unfortunately, with any model-based system, there exists the possibility

that benign applications will generate a false-positive and be detected as malware as well.

Other challenges to developing an accurate behavioral model exist. For example,

when analyzing malware, running it at different privilege levels or network access may

produce different behavior, making it diffcult to execute all its code paths [9]. Even the

specifc API calls that are monitored may rely on specifc kernel variants [8] and not gener-

alize well to operating system API changes. Similarly, like its signature-based counterpart,

the behavioral models need to be updated and redeployed to maintain a current and updated

security posture.

Performance is also another area of concern with behavioral-based systems. Dynamic

analysis requires both real-time monitoring of the kernel APIs and the subsequent model

inference to make an informed decision. This can introduce signifcant processing over-

head, resulting in malware that runs unobstructed until the system catches up and is not

conducive to embedded systems that have fewer processing resources. Another concern is

how similar benign and malicious actions can look, leading to both false positive and false

negative defections.

2.5 Moving Target Defenses

Another area of research includes employing moving target defense (MTD) countermea-

sures. The goal of an MTD-based countermeasures are to provide controlled confguration

changes to a system to increase an attacker’s uncertainty [5]. In the case of ransomware,

one method introduced in [3] is shuffing the fle extension to prevent the discovery of target

fles. Routinely shuffing the extensions would increase the diffculty for ransomware algo-

10

rithms to adapt to the defense and discover the victim’s fles to encrypt [3]. Unfortunately,

techniques like extension shuffing fail to prevent malware from accessing the underlying

fles and only require them to do a more thorough inspection of the fles on the system (e.g.,

by looking at fle header magic.)

Another proposed MTD-based countermeasure set to set traps for malware to expose

themselves. Decoy resources are strategically placed in the flesystem and monitored to

discover when malware attacks the flesystem [8]. For example, when malware opens a

decoy fle, the system can take appropriate measures to stop the attack. Of course, the

effectiveness of such a technique relies on malware operating on the decoy fles. This

creates a potentially long delay in the system response, compromising many of the victim’s

fles before the malware hits a decoy fle [8].

11

Threat Model

In this chapter, we defne and analyze the threat model used to identify the critical actions

malware must execute to successfully attack a victim. We used this analysis to provide the

motivation for the design objectives of our security system. For this thesis, we consider the

following malware model with three typical malware activities including [6]:

1. Infecting the victim’s host

2. Establishing a command-and-control(C2) channel with the attacker

3. Executing the attack

The following three sections will discuss each activity respectively.

3.1 Infecting the Victim’s Host

For any malware to be effective, it must frst infect a target host. A common vector for

infecting a victim’s host is social engineering, where a victim will infect their host by

installing or downloading malware from malicious emails, SMS, and Instant Message

links [2]. From a security system perspective, social engineering creates some interest-

ing challenges. First, the user is presumed to have permissions to install or download the

malware to the host. Second, the applications the user uses to download the malware in a

social engineering attack can be considered benign. Essentially, in this scenario, the user

12

has accepted the risk of downloading or installing the malware. Any countermeasure must

allow the user to inherit the risk of downloading malware but also must protect other system

resources when the malware is executed.

Another vector for malware infection is Drive-by-Download, which refers to a mali-

cious link or advertisement that, when clicked, downloads and installs malware [2]. Legiti-

mate websites may host ads that malware authors have purchased through real-time bidding

or directly buying ad space [23]. Some malware, such as the Ryuk ransomware family, use

custom droppers installed from other malware to directly install their malware [2]. Others

act like worms and self-propagate by sending spam via email or malicious SMS messages

to addresses in the victim’s address book. These attack vectors all require that an exe-

cutable binary or malicious script be saved to disk before executing an attack on a host.

Unlike with social engineering, the installation of malware is done surreptitiously from the

user through executable.

3.2 Establishing a C2 Channel

Many malware variants attempt to establish communication between the infected host and

the attacker. For example, Cryptographic ransomware requires a clear C2 channel to pro-

vide victims with instructions, receive payment, and potentially key management. The

methods and techniques used to establish C2 range from simply hard-coded IP addresses

and domains of a C2 server to using dynamically generated domain generation algorithms

(DGAs) [2]. Malware can exploit zero-day exploits, which are software vulnerabilities

vendors have yet to discover, and establish this channel. Two examples of this are the

WannaCry and BadRabbit ransomware strains which utilized the ExternalBlue zero-day

vulnerability in the Window Server Message Block (SMB) service to gain C2 over its vic-

tims’ machines [3]. After establishing a C2 channel, malware may attempt to conceal their

C2 communications by leveraging network obfuscation through anonymizer services such

13

as Tor and Invisible Internet Project (I2P) or use bulletproof hosting sites [23]. Establishing

the C2 channel is an extension of the control fow path the malware takes and requires the

malware to have access to the underlying flesystem to perform many of the tasks that will

be requested over the C2 channel.

3.3 Executing the attack

Any successful malware attack requires that the malware software be executed on the host’s

system and requires the same resources a benign application needs. For example, malware

that is dynamically linked requires access to the shared libraries on a system. When the

binary is executed, the resulting process needs the ability to open and read the shared

libraries it needs in order to run. Some malware is statically linked, providing malware

authors some reverse engineering protection and gains in portability [9]. When a binary is

statically linked, it runs the risk of not being compatible with the infected machine’s kernel

application binary interface (ABI). Malware authors could mitigate the portability issues

of statically linked binaries by using the libc system call wrappers. These wrappers enable

the binary to maintain compatibility with the operating system’s ABI and not expose the

library calls used outside the libc library.

Once operational, a malware binary will execute its control fow path and begin its

attack on the victim’s host machine. File management is an essential aspect of all mal-

ware design, but perhaps none more pertinent than ransomware. To launch a successful

ransomware campaign, attackers must effectively manage cryptographic keys, encrypt fles

and keep the victim’s computer usable to allow for ransoms to be paid [6, 3]. Even after

paying a ransom, an attacker could request a second ransom to prevent exposing the vic-

tim’s data or even resell or release the data on a public site. Ironically, a good defense

against data exfltration is encrypting the data at rest(DAR) [2, 6].

A common operational goal of many malware attacks is destroying a victim’s data

14

during an attack. For example, ransomware attackers must decide on the actions to take

when a victim does not pay the ransom. Some ransomware variants delete a victim’s en-

crypted fles when they do not pay, showing that the ransomware is not an idle threat and

needs to be paid [8]. Malware variants such as Industroyer2 destroy victims’ fles using

utilizing common Linux commands such as shred and dd [14]. Malware may also at-

tempt to circumvent path-based rules by attempting to rename a fle using the mv command

or issuing an inode rename system call. For example, XorDDos attempts to rename sys-

tem binaries to circumvent rule-based protections [16]. In both examples, we see that the

adversary opens fles and has the ability to rename or move fles indiscriminately.

3.4 Threat Analysis

After considering the threat model described above, we see that malware is essentially

an authorization problem. We can extrapolate from our model six kernel object actions

malware needs to operate. They are as follows:

Unauthorized binary execution - Malware can be executed both directly by a victim and

by vulnerabilities in benign applications. When any binary is initially executed, even

before it is loaded into memory, the calling process must request for the kernel to

initiate the process into memory through the exec family of system calls. It is at this

point in the life cycle of the malware that the unauthorized access occurs and where a

security system needs to evaluate that calling process, deciding what kernel resources

it should have access to and permissions for.

Unauthorized fle open - The previous sections establish many reasons why malware would

need access to a host flesystem. For every fle operation where malware creates,

reads from, or writes to a fle, it must frst obtain a valid fle descriptor provided by

the kernel. This fle descriptor may be requested through the use of many different

15

system calls, but at its core, the request for fle resources to be opened needs to be

adjudicated.

Unauthorized renaming an inode hardlink - We also see that malware may move or re-

name fles for many reasons, including as a countermeasure to avoid current security

monitoring. It is important to identify that moving or renaming a fle is an inode

operation, where the name of a fle’s inode hardlink is modifed. Malware requests

to access and modify inode hardlinks must be denied.

Unauthorized unlinking of an inode hardlink - To remove a fle from the flesystem, an

attacker must unlink the fle’s inode entry from the flesystem using an unlink system

call. More thorough malware may frst attempt to open the fle and overwrite it

multiple times to ensure that it is diffcult to forensically recover the fle from disk [1,

14]. Regardless of the malware’s attack vector to destroy data, malware needs to have

the ability to unlink a fle to remove it from the flesystem. It should be noted that

when the last hardlink is removed from an inode, the flesystem is free to reclaim the

inode and reuse it. In such cases, the underlying data that it points to can also be

modifed, making recovery after a malware attack much more diffcult.

Unauthorized linking of an inode hardlink - Every fle must have one or more hardlinks,

which are used to associate a fle with a name. Unlike symlinks, every hardlink of a

fle points to the same inode and is not simply a reference to the original name. This

distinction is important because allowing a new hardlink to be created on a fle inside

a protected directory would bypass any path-based protection. To counter this, we

apply the same procedure to verify the creation of a hardlink that is performed during

an inode rename operation.

Unauthorized use of benign applications - Malware’s ability to utilize benign binaries in

living-off-the-land and fleless malware attacks poses an interesting dilemma when

designing a security system. When malware has unauthorized access to a system’s

16

benign binaries, it can masquerade its behavior as non-malicious in nature. Many

host many software applications and scripts utilize benign system utilities to perform

their task. Malware’s ability to leverage this access needs to be addressed by any host

security system.

Our threat model analysis reduces the malware threat to these six unauthorized actions.

This is advantageous moving forward with our MAC system design, as each action can be

isolated and validated independently. By identifying and limiting the scope of the problem,

we can also provide an intuitive policy design scheme, which enables users to quickly

identify the critical directory paths of their system and limit the applications that have

access to these critical data paths.

17

System Design

This chapter describes the system design of Path-Safe , a MAC security system that lever-

ages encrypted security tokens to establish a sessions-based MAC enforcement model be-

tween the kernel and userspace processes. Our system monitors kernel resources by reg-

istering callback functions specifc kernel object hooks provided by the Linux Security

Module (LSM) framework, as seen in Figure 4.1. Utilizing the LSM framework enables

us to not be dependent on the current system call interface. A key advantage of using the

LSM framework is that Path-Safe is immune to new attack vectors introduced by changes

in the system call interface with respect to flesystem access. The LSM framework also

allows Path-Safe to focus only on the fle actions that prevent unauthorized access to the

flesystem enabling an effcient and thorough evaluation of all flesystem operations on the

host.

Confguration for our security system is managed by creating policies. Policies allow

Path-Safe to identify what directory paths require authentication and which binaries should

have access to the specifed directory paths. Utilizing a path-based policy construct al-

lows us to develop highly interpretable confguration primitive for our system. Each policy

contains a belf dir info structure that defnes the directory path information of a protected

directory and a linked list of ACLs containing approved binaries stored in a belf dir acl

structure. The belf dir info structure consists of a character string representing the pro-

tected directory path, an integer hash value of that string, and a UUID. Using a hash value

18

Figure 4.1: This fgure shows the Path-Safe system architecture.

comparison is more effcient than making string comparisons, especially when searching

through policies with common directory bases. Our system uses this UUID as a freshness

label on the policy, providing a means to know if a token it is looking at has the latest

version of the policies. Each policy also has an ACL list of binaries that can access the

directory. This structure is a linked list with a binary path name and an integer hash of the

string. The remaining sections in this chapter look at the design decision made in order to

address the unauthorized malware actions identifed in Section 3.4.

4.1 Unauthorized Binary Execution

We see from our threat analysis that malware can be executed both directly by a victim

and by vulnerabilities in benign applications. Our threat model also exposed scenarios

where processes may masquerade as different processes after being executed in order to

evade detection from name-based mitigation strategies. To prevent malware, or any binary,

from inheriting all access and permissions of its parent process, we need to ensure that our

system can monitor binary before execution control is given over by the kernel. The LSM

19

framework provides a creds for exec hook which is called directly before the transition

of the process to load the requested binary program. This is the last opportunity to set

the security credentials for a newly executed binary and is a good choice for Path-Safe to

evaluate the protected paths that the process has access to.

We know that another attack vector is to use benign applications to perform malware

and that external sensor input, for example, provided by an IDS, would inform the security

system that a new threat has been discovered or a modifcation in the policy database oc-

curred. Path-Safe addresses these by the use of a process session id. A session provides the

security system to address new threats at a per-process granularity. For example, an IDS

might detect a process that is being used by malware in one instance but benign in another.

The notion of a session provides the ability to address this by preventing access from the

offending process. Our security system is not constrained to a policy-only model and needs

to ensure it can adapt to per-process events.

The ability to use manage sessions and modify permissions on the fy led us to use a

token-based approach, where the underlying policy and security parameters could change

independent of format when the process started. This fexibility allows the seamless in-

tegration of trusted security systems without the need to restart Path-Safe . We can even

operate in an environment where the security manager is located remotely. To handle this,

we use encryption to provide a layer of privacy, preventing other processes from learning

what specifc accesses a process has access to. Path-Safe uses AES-128 encryption algo-

rithm in CBC mode by default. A boot session key is created during system initialization,

and a random initialization vector (IV) is used to create the token that is installed as a se-

curity object in the process’ credentials pointer. We use the random IV as the session ID

(SID) for the process. The session key and security tokens generated by Path-Safe are not

exposed to userspace and are the foundation for enabling remote security managers to work

at a process level granularity. Our encryption process also provides protection from replay

attacks; should a process discover a way to infuence its security credential, it could not

20

simply use an old or otherwise discovered token.

4.2 Unauthorized File Open Access

Our threat model also establishes that malware needs to have the ability to open fle descrip-

tors to perform any fle management operations on a fle object. From the security systems

perspective, we leverage encrypted security tokens to establish which processes are ac-

cessed to access which resources, and we do not make this decision based directly on the

process name associated with the calling process. This prevents malicious processes from

spoofng the process name in order to elevate its access level by modifying controllable

process metadata elements from userspace. When any process makes a fle open request,

Path-Safe must adjudicate the request and does so by monitoring the LSM hook fle open.

In many systems, a large portion of the fle open requests will be made by benign applica-

tions operating in directory paths that are not protected by the security system. In order to

optimize performance, the decryption of a process’ security token is only performed if the

fle open requests are covered by one of the Path-Safe policies. In the case of fle access,

our system utilizes the Linux virtual flesystem (VFS) dentry objects to allow us to translate

LSM hook data structures such as struct fle into searchable objects in our database.

4.3 Unauthorized Renaming an Inode Hardlink

We have also established that malware may want to rename the inode hardlink associated

with a fle. This may include renaming itself to an authorized binary as a countermeasure to

avoid security monitoring systems. As we mentioned in the previous chapter, moving a fle

is an inode rename hook provided by the LSM framework. Unlike the previous example,

renaming a hardlink provides two struct inode pointers, one representing the original name

and the other representing the new name to be modifed. To ensure that an unauthorized

21

binary does not attempt to rename a fle into or from a protected directory into an area

the calling process can operate, we must look up both inode pointers. Similarly to the fle

open monitoring in the previous section, we only decrypt the calling process’ security token

when a policy match is hit.

4.4 Unauthorized Unlinking of an Inode Hardlink

Path-Safe prevents unauthorized binaries from having the capability to delete fles in a

protected directory. This is possible because the security module monitors every inode

unlink request made by a running process via the LSM framework hook inode unlink.

Similarly to renaming a fle, deleting a fle is also an inode operation where the hardlink

associated with the inode is removed. When the last hardlink associated with the inode is

removed, the inode is released back to the flesystem and is available for reuse. When a

calling process attempts to unlink an inode, the LSM hook provides a struct inode pointer.

This pointer allows Path-Safe to look for a policy match before decrypting the process

security token.

4.5 Unauthorized Linking of an Inode Hardlink

It is possible that advanced malware may attempt to circumvent path-based protections by

creating a shadow hardlink to a fle. Every fle must have one or more hardlinks, which are

used to associate a fle with a name. Unlike symlinks, every hardlink of a fle points to the

same inode and is not simply a reference to the original name. This distinction is important

because allowing a new hardlink to be created on a fle inside a protected directory would

bypass any path-based protection. To counter this, we apply the same procedure to verify

the creation of a hardlink that is performed during an inode unlink.

22

4.6 Unauthorized Use of Benign Applications

The ability of malware to utilize benign processes provides an interesting challenge when

developing a security system. There are use cases where benign binaries, such as rm or

shred, may be appropriate to call from a binary. Namely, anytime the system has a legit-

imate reason to remove a fle. Even in protected directories, authorized binaries should

be allowed to be removed fles only when appropriate. Our approach to this problem is

to leverage the fexibility of our security token design and utilize external sensor input to

enable either a policy bypass or make a policy more restrictive. The external sensor can be

a physical sensor, such as a monitored server door relay or other tamper sensors. Another

example would be a connected IDS system that detected a malware attack. In this situa-

tion, the IDS could inform a security system that it may need to adapt to the new threat and

tighten up its security posture.

For this thesis, we demonstrate this capability by utilizing the security fs pseudo-

flesystem. Path-Safe exports a character device to userspace via the security fs pseudo-

flesystem named tripwire. This interface allows the host the ability to set a global status

for the protected system. When the tripwire is set to active, our system will override all

access to protected directories and prevent any further access to the protected directories

on the host. The tripwire interface allows both read and write capabilities from userspace

and is used to demonstrate adaptive threat capabilities. If, for any reason, the tripwire is

activated, then all security validations for protected directories will fail.

23

Implementation

This chapter looks at some of the implementation details associated with the specifc LSM

hooks described above when Path-Safe is operational. Each section will look at a code

excerpt of the LSM hook callback routine registered by the Path-Safe security module. This

is then followed by a discussion on the policy look-up and security validation algorithms

of our system.

5.1 creds for exec

1 struct belf_token* belf_req_auth_token(struct linux_binprm *bprm){

2 struct belf_dir_policy *test_policy;

3 char rbuf[NAME_MAX];

4 int ret = 0;

5 struct belf_token_data* tdata = NULL;

6 struct belf_token *token = NULL;

7

8 tdata = (struct belf_token_data*) kmalloc(sizeof(struct

belf_token_data),GFP_KERNEL);

9 if(!tdata){

10 pr_err("BELF:belf_req_auth_token: ENOMEM");

11 return NULL;

24

12 }

13 tdata->tpid = current->pid;

14 tdata->policy_count = 0;

15 memset(tdata->dir_policies, 0, sizeof(tdata->dir_policies));

16 list_for_each_entry(test_policy,

17 &dir_policies, policy_list){

18 ret = belf_search_policy_for_acl(test_policy, bprm->filename

);

19 if(!ret) {

20 memcpy(&tdata->dir_policies[tdata->policy_count++],

21 &test_policy->info, sizeof(struct belf_dir_info)

);

22 }

23 }

24 token = belf_gen_token(tdata, sizeof(struct belf_token_data));

25 kfree(tdata);

26 return token;

27 }

Listing 5.1: The Path-Safe system compiles a list of policies that determine which protected

directories a newly executed process will have access to. The size of each token is constant

to prevent onlookers from guessing how many policies a process may access.

Path-Safe evaluates every process when it is initialized using the creds for exec hook.

When the creds for exec hook is executed, our system creates a

belf token data data structure using the belf req auth token function, seen in Listing 5.1,

which contains: the process id, the number of policies the process is authorized to access,

and an array containing a copy of the specifc policies. The process id provides our system

25

the ability to verify that the token belongs to the current process and prevents a process

from using another process’ token. The policy count and dir policy array act as a lookup

table. During token creation, Path-Safe searches the policy database ACL lists, looking for

a name that matches the fle name that the current process is trying to execute, and adds a

copy of each matching policy to the token’s dir policies array. The array is set at a fxed

size so that the encrypted token is also at a fxed size. The consistent size prevents side-

channel attacks where an adversary attempts to identify which system binaries have access

to protected areas of the host. An adversary could use this information, for example, to

rank the worthiness of a system binary to exploit.

5.2 fle open hook

1

2 static int belf_file_open(struct file *file){

3 struct task_belf *bsp = belf_cred(current_cred());

4 struct belf_dir_info* dinfo = NULL;

5 char rbuf[PATH_MAX];

6 char* req_path_name = dentry_path_raw(file->f_path.dentry, rbuf,

PATH_MAX);

7 dinfo = belf_search_policies_for_resource(req_path_name);

8 if(dinfo){

9 if(!bsp->bp_token){

10 return 1;

11 }

12 return belf_validate_token(bsp->bp_token, dinfo);

13 }

14 return 0;

26

15 }

Listing 5.2: Path-Safe registers the belf fle open with the LSM framework to monitor

every fle open request made on the host system.

Path-Safe monitors every fle open operation by registering the function belf fle open,

shown in Listing 5.2, with the LSM framework to prevent unauthenticated processes from

opening fles inside protected directories. The LSM fle open hook is triggered every time

a process requests a fle descriptor for opening a fle and provides Path-Safe with a struct

fle pointer to the fle object being requested. This allows us to get the raw path name from

the fle dentry and examine the permission fags the process is requesting for the fle.

Our system searches through the policy database looking for a policy match where the

requested fle object is protected by the policy and the requested permissions are allowed.

If this criterion is met, the process authentication token will then be decrypted and evalu-

ated for access. By searching the policy database frst, benign requests will not incur the

decryption and encryption overhead associated with token decryption operations.

5.3 inode rename hook

1 int belf_inode_rename(struct inode *old_dir,

2 struct dentry *old_dentry,

3 struct inode *new_dir,

4 struct dentry *new_dentry){

5 int ret = 0;

6 /* Get path for old_dentry and check if we are authorized to move it

*/

7 if(belf_validate_dentry(old_dentry)){

8 return 1;

27

9 }

10 /* Get path for new_dentry and check if we are authorized to move it

*/

11 ret = belf_validate_dentry(new_dentry);

12 return ret;

13 }

Listing 5.3: Path-Safe registers the belf inode rename function with the LSM framework

to monitor every inode rename request made on the host system. An inode rename requires

validating two dentry objects to ensure the new or old names are not covered by a policy.

Moving or renaming a fle is an inode operation, where the name of an inode hardlink

is modifed. Path-Safe monitors every inode rename attempt by registering the function

belf inode rename, shown in Listing 5.3, with the LSM framework to prevent unauthenti-

cated renaming of fles inside protected directories. The LSM inode rename hook is trig-

gered every time a process attempts a renaming operation and provides Path-Safe with two

struct dentry pointers. The inode rename hook operates on a set of inode and dentry ob-

jects representing the original name and new name being requested. The inode rename

hook must check both dentry objects independently to verify if the source or destination

names are inside a protected directory. The Security Manager validates the calling autho-

rization token for the calling process for each dentry that needs authorized access.

5.4 inode link

1 int belf_inode_link (struct dentry *old_dentry,

2 struct inode *dir,

3 struct dentry *new_dentry){

4 int ret = 0;

28

5 /* Get path for old_dentry and check if we are authorized to move it

*/

6 if(belf_validate_dentry(old_dentry)){

7 return 1;

8 }

9 /* Get path for new_dentry and check if we are authorized to move it

*/

10 ret = belf_validate_dentry(new_dentry);

11 return ret;

12 }

Listing 5.4: Path-Safe registers the belf inode link function with the LSM framework to

monitor inode link requests made on the host system. Adding a hardlink to an inode also

requires validations. We need to check the original hardlink and new hardlink paths to

verify if they need authorization from Path-Safe .

Path-Safe monitors every inode link attempt by registering the function belf inode link,

shown in Listing 5.4, with the LSM framework to prevent creating unauthorized hardlinks

for fles inside protected directories. The LSM inode link hook provides Path-Safe with

two struct dentry pointers. The inode rename hook operates on a set of inode and den-

try objects representing the original name and new name being added to the inode. The

inode link hook must check both dentry objects independently to verify if the source or

destination names are inside a protected directory. The security module validates the call-

ing authorization token for the calling process for each dentry that needs authorized access.

5.5 inode unlink

29

1 int belf_inode_unlink(struct inode *dir, struct dentry *dentry){

2 int ret = 0;

3 ret = belf_validate_dentry(dentry);

4 return ret;

5 }

Listing 5.5: Path-Safe registers the belf inode unlink function with the LSM framework to

monitor every inode unlink request made on the host system.

Path-Safe monitors every inode unlink attempt by registering the function

belf inode unlink, shown in Listing 5.5, with the LSM framework to prevent unauthenti-

cated unlinking of fles inside protected directories. The LSM inode unlink hook is trig-

gered every time a process attempts an unlink operation and provides Path-Safe with a

struct dentry pointer to the fle the calling process is requesting to be unlinked from the

flesystem. The inode unlink hook searches the policy database for a matching entry and

validates the process’ authorization to operate on the dentry object.

5.6 Validating a dentry Object

1 static int belf_validate_dentry(struct dentry *d){

2

3 char name[NAME_MAX];

4 struct task_belf *bsp = belf_cred(current_cred());

5 struct belf_dir_info* dinfo = NULL;

6

7 /* Let’s use the helper to extract the path name from a dentry*/

8 char *p = dentry_path_raw(d, name, NAME_MAX);

9 if (IS_ERR(p)) {

30

10 pr_err("belf_name: Dentry Name error\n");

11 return 1;

12 }

13

14 dinfo = belf_search_policies_for_resource(p);

15 if(dinfo){

16 if(!bsp->bp_token){

17 pr_err("Belf validate dentry: No token available

\n");

18 return 1;

19 } /*Just checking that we can fail an open */

20 return belf_validate_token(bsp->bp_token, dinfo);

21 }

22

23 return 0;

24 }

Listing 5.6: All monitored flesystem operations are approved based on the success of

validating access to the underlying dentry structure. This is handled by the function

belf validate dentry.

The core implementation details of Path-Safe revolve around validating a process’

access to operate on the dentry structure the fle operations are to be performed on. Path-

Safe registers hooks that provide the means to isolate the dentry objects that reference

the fle being operated on and is handled by the belf validate dentry function seen in List-

ing 5.6. This process can be further broken down into two distinct tasks, policy lookup and

security token validation. The following two sections take a closer look at the implementa-

tion used for this work.

31

5.7 Policy Lookup

1 struct belf_dir_info* belf_search_policies_for_resource(char*

request_path){

2 struct belf_dir_policy *test_policy;

3 int ret = 0;

4

5 list_for_each_entry(test_policy, &dir_policies, policy_list){

6 ret = belf_file_in_path(test_policy->info.dir_path, request_path

);

7 if(!ret){

8 return &test_policy->info;

9 }

10 }

11 return NULL;

12 }

13 int belf_file_in_path(const char* policy_path, char* request_path){

14 int ret=0;

15 char pbuf[PATH_MAX];

16 char rbuf[PATH_MAX];

17 struct path pp_path;

18 char* req_path_name;

19 char* real_policy_path;

20 int policy_dir_len, rp_len;

21

22 /* Check if the path exists and/or is mounted */

23 /* We also want to avoid symlink tricks so we find the real path */

32

24 /* If this changes outside we can’t help it but at lease we can

protect

25 what the link points to */

26 ret = kern_path(policy_path, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &

pp_path);

27 if(ret){

28 //pr_err("BELF ERR: %s doesn’t exists of isn’t a directory",

policy_path);

29 return 1;

30 }

31 /* Let’s get the path strings */

32 real_policy_path = d_path(&pp_path, pbuf, PATH_MAX);

33 req_path_name = request_path;

34

35 if(!req_path_name) return 1;

36 /* We need to know if the policy path is a root directory of the

requested path */

37 policy_dir_len = strlen(real_policy_path);

38 rp_len = strlen(req_path_name);

39

40 /* There is no need to do a memcmp as we can’t be a root directory

*/

41 if(rp_len < policy_dir_len) return 1;

42

43 /* Check that we have a ’/’ in the path */

44 if((rp_len > policy_dir_len) && (req_path_name[policy_dir_len] != ’/

’)){

33

45 return 1;

46 }

47 return memcmp(req_path_name, real_policy_path, strlen(

real_policy_path));

48 }

Listing 5.7: Path-Safe policy look up is handled by iterating through a list of policies,

checking if the current dentry is covered the polices.

The frst task for dentry validation is identifying the specifc policies that the dentry

object is covered by (i.e., requiring a token validation.) Looking at the implementation seen

in Listing 5.7, we see that belf search policies for resource takes a raw path string provided

by the belf validate dentry function and iterates through the policy database. This raw path

is extracted from the dentry object and compared to the policy-specifc path. The kern path

kernel function is used to resolve any fles attempting to access a fle via a symlink, miti-

gating any process attempting to gain access to a protected directory via a symlink, given

the focus on intuitive policy defnitions the number of policies managed by Path-Safe is

generally much smaller than that of other MAC system. This allows us to use the Linux

kernel’s implementation of a linked list for this work. Finally, for each policy in our list,

we evaluate if the current dentry path is a child of the policy’s protected path. This deter-

mination is made using the following checks: i) is the current policy path mounted, ii) is

the policy path the root flesystem, iii) and if the dentry path is a child of the policy path,

as seen in the belf fle in path function listed in Listing 5.7.

5.8 Validating security tokens

1 int belf_validate_token(struct belf_token* token, void* data){

2 struct belf_token *local_token = NULL;

34

3 struct belf_token_data *tdata = NULL;

4 struct belf_dir_info* dinfo = data;

5 int i=0;

6 int rc = 1;

7

8 /* Let’s decrypt our token for validation checks */

9 local_token = belf_decrypt_token(token);

10 if(!local_token){

11 pr_err("Belf:belf_validate_token: ENOMEM");

12 return -ENOMEM;

13 }

14

15 tdata = (struct belf_token_data*)local_token->data;

16 /* Let’s check that we have the right token */

17 if(current->pid != tdata->tpid){

18 pr_debug("Token is not for this process\n");

19 goto out;

20 }

21

22 /* Let’s check if the tripwire is hit */

23 if(get_tripwire_status()){

24 goto out;

25 }

26

27 for(i; i < tdata->policy_count && i < MAXPOLICIES; i++){

28 if(dinfo->hash == tdata->dir_policies[i].hash){

29 rc = 0;

35

30 goto out;

31 }

32 }

33

34 out:

35 kfree(local_token);

36 return rc;

37 }

Listing 5.8: To validate a security token, Path-Safe decrypts the token in place and searches

the authorized policy list for a match. It also checks the tripwire interface to ensure that

policy-based access is still permitted.

Path-Safe validates access to resources based for a process based on the process’ au-

thentication token. Token validation happens after the request manager has identifed the

specifc policy for which the process needs to be authenticated. Looking at Listing 5.8,

the frst step in token validation is to decrypt the current process security token and verify

that the process id of the token matches the calling process. This check is to ensure that

the process is not reusing an old token or that the token hasn’t been tampered with. The

token contains a dir policy array structure that contains a list of policies that the process

has been authorized to access. Rather than making a more costly string comparison, our

algorithm compares the calculated hash value of the protected directories as the key to

match. The hash is calculated at policy creation, reducing the overhead associated with the

Path-Safe system. Finally, additional security inputs to the system are assessed. For this

work, the tripwire interface acts as our external input.

36

Evaluation

In this section, we frst demonstrate the accuracy of the Path-Safe against our threat model.

Second, we show the performance overhead analysis and the effectiveness of utilizing se-

curity tokens to manage fle system access. Finally, we show the step-by-step analysis of

Path-Safe protecting a host against three real-world malware samples.

6.1 Accuracy Analysis

To evaluate the accuracy of Path-Safe at protecting directories from unauthorized access to

our flesystem, we use benign applications to generate flesystem events that we can use to

measure the following metrics for each of the Path-Safe LSM fle and inode hooks:

True Positive (TP) Authorized Application is granted access to a protected directory

False Positive (FP) Unauthorized Application is granted access to a Protected Directory

Table 6.1: Accuracy

Hook Attempts TP FP TN FN Accuracy
fle open 600 300 0 300 0 1

inode rename 300 150 0 150 0 1
inode link 300 150 0 150 0 1

inode unlink 300 150 0 150 0 1
Active Tripwire 300 0 0 300 0 1

37

cat dd find mv shred

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Path-Safe's Performance Overhead

Inactive

Active

m
s

cat dd find mv shred

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

m
s

Figure 6.1: We did not observe any signifcant increase in performance overhead when
Path-Safe was operational. This is in part due to our threat reduction analysis.

True Negative (TN) Unauthorized Application is denied access to Protected Directory

False Negative (FN) Authorized Application is denied access to Protected Directory

We calculate the accuracy of each LSM hook using the as follows formula:

TP + TN
(6.1)

TP + TN + FP + FN

We run a data generation script to stimulate all of the LSM hooks that Path-Safe mon-

itors, generating a total of 1800 access requests to our protected directories. Half of the

access attempts were run on symlinks that referenced the protected directories, and 300

attempts were executed with the tripwire interface active. To ensure we had full code cov-

erage, we ran benign applications against both protected and unprotected directories. We

can see from Table 6.1 that we achieved 100% accuracy for each attempted access.

38

6.2 Overhead Analysis

To evaluate the overhead associated with Path-Safe , we compare the running time of some

benign applications with and without Path-Safe running. We also instrumented the Path-

Safe code to measure the time it takes to search the policy database for kernel object re-

quests and the time to validate a security token vended by our system. What we can see

from Figure 6.1 is that applications such as dd or shred, which spend most of their process-

ing time reading or writing to fles, had a modest 2-4% increase in system clock time when

operating on fle sizes of 409.6 Mb. The system time is the time a process spends in ker-

nel mode and is where our system would potentially introduce some processing overhead.

Other applications, such as the fnd and ls, have different behavior. They spend a signif-

icant amount of their system time opening and closing fles, which happens to represent

the worst-case scenario for Path-Safe . We tested the fnd command on the root flesystem

of our virtual disk, which contains 6179 directories and 51288 fles, and it only experi-

enced a nominal system time increase of around 10-12%. For long-running applications

that spend a proportionally small amount of time opening, moving, or deleting fles, the

system overhead would be negligible and only realized at the applications initialization.

6.3 Performance against Real-world Malware

For this experiment we tested Path-Safe against the following three recent malware vari-

ants: Awfulshred Wipper, RansomExx, and XorDDos. Given the dangerous nature of the

live malware samples, we utilize separate Qemu virtual environments for each malware

sample, isolating the samples from our host operating system and network. This also en-

sures that each malware sample is tested in a pristine environment not damaged by previous

malware testing.

39

6.3.1 Awfulshred Wipper

1 # ./cfca38c408c95e45cdf797723dc5cdb0d6dadb1b8338a5fda6808ce9a04e6486

2 [70.922364] cfca38c408c95e4[204]: segfault at 0 ip 0000000008074ee8

sp 00000000ffc5357c error 4 in

cfca38c408c95e45cdf797723dc5cdb0d6dadb1b8338a5fda6808ce9a04e6486

[8048000+3a000]

3 [70.930461] Code: 00 00 83 c4 10 89 d8 5b 5e 5f c3 89 1c 24 e8 bf 00

00 00 83 c4 10 01 c3 89 d8 5b 5e 5f c3 90 90 90 90 8b 44 24 04 8b 54

24 08 <0f> b6 08 3a 0a 74 16 eb 18 8d b4 26 00 01

4 Segmentation fault

5 # ls /root/protected-data/ps/cat1.out -l

6 -rw------- 1 root root 41 Jun 8 23:49 /root/protected

-data/ps/cat1.out

7 # rm /root/protected-data/ps/cat1.out

8 # ls /root/protected-data/ps/cat1.out -l

9 -rw------- 1 root root 41 Jun 8 23:49 /root/protected

-data/ps/cat1.out

Listing 6.1: The awfulshred malware fails to connect to its remote server and cannot

achieve creating its C2 channel when Path-Safe is operational. We have protected the

protected-data directory to prevent access to commands other than ls to access it.

The Awfulshred malware is a wiper Bash script used by Linux variants of Indus-

troyer2 to destroy the entire contents of the system it is attacking using the shred or dd

command[15]. It also tries to disable the HTTP and SSH services of the host being attacked

to expedite the speed at which the host is rendered inoperable[15]. We downloaded a live

sample of the Awfulshred that was submitted to the site https://virusshare.com/

on 2022-05-05 22:48:46 UTC with the following Sha256 hash bcdf0bd8142a4828c6

40

https://virusshare.com/

1e775686c9892d89893ed0f5093bdc70bde3e48d04ab99.

Running the Awfulshred malware is a straightforward malware sample to run. The

obfuscated Bash script needed either the command shred or dd to be installed in the guest

operating system used to test the Awfulshred. During the execution of the script, the Aw-

fulshred sample attempts to establish communication with a remote server and attempts to

detect the environment it was running in. When the script fails to communicate with the re-

mote server, it attempts to delete itself to avoid detection from the system. Fortunately, after

some analysis of the script, we were able to isolate the use of the shred or dd commands

and run them as intended by the malware.

The malware attempts to remove fles from the following directories: /boot, /home.

/var/log before attempting to destroy the drives via their devfs special fles. To counter

this attack, we installed policies that protected each directory and only allowed ls, fnd,

and md5sum to make sure that we could evaluate our fles after executing the malware.

Fortunately, as soon as the Awfulshed failed to access any of the directories inside these

directories, it experienced a segmentation fault. We can see the results of this experiment

in Listing 6.1. Our system successfully prevented Awfulshred or benign applications (e.g.

shred and rm) from removing any of the fles in our protected directory.

6.3.2 RansomExx

1 # cat /root/protected-data/ps/cat1.out

2 real 0m 0.04s

3 user 0m 0.00s

4 sys 0m 0.04s

5 # ./196eb5bfd52d4a538d4d0a801808298faadec1fc9aeb07c231add0161b416807.elf

/root/protected-data/ps

6 # cat /root/protected-data/ps/cat1.out

41

7 real 0m 0.04s

8 user 0m 0.00s

9 sys 0m 0.04s

10 #

Listing 6.2: When our security system is running, we see that the RansomExx malware

cannot operate in the protected directory.

We downloaded a live sample of the RansomExx that was submitted to the site https:

//bazaar.abuse.ch on 2021-03-21 01:45 UTC with the following Sha256 hash 19

6eb5bfd52d4a538d4d0a801808298faadec1fc9aeb07c231add0161b4168

07. The RansomExx Elf binaries we downloaded were the only malware binary that was

not statically compiled. This required a slight modifcation and addition of some to satisfy

the dynamic loader to get the malware to execute. Namely, it required libpthread support.

The ransomware sample expects to receive a list of directory paths to encrypt as input, as

seen in [20]. Upon execution, the ransomware iterates through the specifed directories,

attempting to encrypt all fles in the directory that is great than 40 bytes[20]. When run

against directories protected with Path-Safe , the binary did not encrypt anything and exited

silently. When we ran the binary against an unprotected directory, we saw attempted fle

opens, then a quick segfault.

6.3.3 XorDDoS

1 # pwd

2 /root/malware-samples

3 # ls -ltra

4 total 3308

5

42

https://bazaar.abuse.ch
https://bazaar.abuse.ch

6 -rw------- 1 root root 264040 Jun 8 23:48 311

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.zip

7 -rwx--x--x 1 root root 562263 Jun 9 00:41 311

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.elf

8

9 drwx------ 2 root root 4096 Jul 14 02:24 .

10 # ./311c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.elf

11 # ls -ltra

12 total 3308

13

14 -rw------- 1 root root 264040 Jun 8 23:48 311

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.zip

15

16 -rwxr-xr-x 1 root root 256 Jul 14 02:24 fle.151590

ce87cccad05440d060bf8a27b362ed8ba0d4766c9beee4dfe57539c113.sh

17 -rwxr-xr-x 1 root root 562263 Jul 14 02:24 fle.151590

ce87cccad05440d060bf8a27b362ed8ba0d4766c9beee4dfe57539c113

18 drwx------ 2 root root 4096 Jul 14 02:24 .

19 # cd /root/protected-data/

20 # ls

21 nops ps

22 # /root/malware-samples/311

c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec095151.elf

23 # ls

24 nops ps

25 #

Listing 6.3: The malware XorDDoS extracts a helper script and an executable during

43

https://ce87cccad05440d060bf8a27b362ed8ba0d4766c9beee4dfe57539c113.sh

execution. When done in a protected directory, the malware doesn’t execute.

We downloaded a live sample of XorDDos that was submitted to the site https://

bazaar.abuse.ch on 2023-05-14 18:43:39 UTC with the following Sha256 hash 3

11c93575efd4eeeb9c6674d0ab8de263b72a8fb060d04450daccc78ec09

5151. According to [16], the XorDDos trojan will attempt to fnd a writeable directory

in the following list of directories: /bin, /home, /root, /tmp, /usr, and /etc. It then tries

to use the curl command to download an ELF fle payload from a specifed target as the

fle ygljglkjgfg0. Next, XorDDos attempts to rename the system’s wget binary to the fle

named good[16].

After executing our malware sample, we noticed the sample trying to manipulate the

iptables rules on our host, followed by a series of tests to fnd a writable fle in the following

directories. When it reaches the /root directory, we see the Path-Safe denies access to the

binary. The binary continues by attempting to create a fle in the /tmp directory using the

curl command. Our testing environment does not have network connectivity, and causes the

malware to attempt to remove itself. When run in an unprotected directory /root/malware-

samples, we see that when the binary fails to establish a C2 connection, it extracts its

own packed binary and helper script, as seen in Listing 6.3. To test Path-Safe against this

malware, we ran the malware in both protected and unprotected directories. We can see

that our system prevented XorDDos from extracting its payload when run in a protected

directory.

44

https://bazaar.abuse.ch
https://bazaar.abuse.ch

Limitations and Potential Solutions

In this chapter, we discuss some of the limitations of the current system and some of the

potential solutions to overcome them. Our main assumption in this thesis is that the attacker

has not already gained access and control over the kernel. Path-Safe can be enhanced to

support key management technologies such as SGX, TPM, SEG, and hardware key man-

agers (HKM) to provide some protections against in-kernel threats attacks and out-of-band

modifcation of Path-Safe policy database, for example, during an evil maid attack.

The current implementation of Path-Safe monitors the inode link hook to prevent the

unauthorized creation of hard links for protected directories. We assume preexisting hard

links associated with a fle inode do not create backdoor access to a protected directory.

This is easily overcome by having Path-Safe iterate through every inode hardlink during

a resource request. This may provide some extra overhead when searching the policy

database for policies that cover each hardlink, but in practice, multiple hardlinks are not

common. Still, this might be addressed in future work.

We currently are not using the session tracking to revoke previously open fle descrip-

tors on policy changes. Our work focuses on preventing unauthorized access, as laid out in

Section 3. We can easily expand our system and keep an active list of open fle descriptors

covered by a Path-Safe policy. This would require developing a fle descriptor tracking ca-

pability for each session. To minimize memory resources, Path-Safe will only track the fle

descriptors associated with a process’s session ID and fle descriptors covered by a security

policy. This adaption would enable Path-Safe to close any open fle descriptors affected by

45

a modifcation in the policy database or threat environment.

For this work, fle integrity management is assumed to be provided by other security

safeguards, such as Linux’s Integrity management architecture(IMA). One of the strengths

of leveraging the LSM architecture is that it facilitates a layered security approach where

Path-Safe can be one of many security systems present in the system. Integrity management

is currently outside the scope of this work; however, support for program argument lists

would enable an extra layer of protection, especially during a living-of-the-land attack.

46

Conclusion

This chapter concludes this thesis. In the frst section, we discuss some of the future work

where we can expand the Path-Safe MAC system. We then summarize our work developing

a token-based MAC.

8.1 Future Work

There are a few areas we a looking to expand the Path-Safe systems capabilities beyond

adding more advanced key management support. Path-Safe is already effective in embed-

ded and industrial control systems, where special fles in devfs and sysfs can expose access

to hardware devices and protocol busses (e.g., i2c, smb, and RS-232.) The next step is to

incorporate hardware-based triggers to augment the tripwire functionality. This would en-

able physical access control integration to hosts protected by Path-Safe . We can utilize the

encrypted security token to development of remote distributed Security managers that can

be incorporated into a larger enterprise security model is being developed. Path-Safe can

be enhanced to support more advanced hardware features such as SGX, TPM, and SEG.

They would facilitate building a more robust capability to prevent in-kernel attacks and the

out-of-band modifcation of Path-Safe policies.

One unique feature of utilizing a session-based approach to managing processes is that

it can reevaluate access in real time when a policy changes while a process continues to run.

One area of expansion would be to develop fle descriptor tracking to enable Path-Safe the

47

ability to revoke fle descriptor affected by a policy change by its session id. Developing a

session ID cache for each policy would allow us to close any already open fle descriptors

that are out of date. A session ID cache would also allow us to cache access credentials to

limit the number of token decryptions required, reducing some of the overhead associated

with our system. This would be particularly advantageous for applications such as fnd,

which open and close a lot of fles.

The current policy schema is designed to be highly interpretive by a user. There is

more work to be done to expand the policy description capabilities. One advancement

would be the ability to group binaries into groups. This abstraction would simplify policy

creation for applications that need to access many applications. The motivation for this

advancement is to begin the development of a highly secure package management and

software deployment system.

8.2 Summary

To summarize, in this thesis, we have demonstrated that the use of encrypted tokens pro-

vides the fexibility to develop next-generation MAC security systems that can adapt to the

current threat environment in real time and with a per-process granularity. The ability to

modify access on a process basis allows us to develop security systems that are immune to

living-off-the-land attacks and potentially bridge physical security sensors with the security

system to mitigate some insider threat attacks. This would be particularly advantageous in

industrial control settings, where long-running processes can perform critical operations

and continuous monitoring without interruption. By modeling and analyzing the malware

threat, we reduced the threat space to a handful of kernel object actions. This enabled us

to focus monitoring of kernel object access to a handful of actions, avoiding the overhead

associated with other MAC security systems, which require every kernel object and ac-

tion to be labeled. Using kernel object actions exposed by the LSM framework facilities

48

seamless support for OS upgrades and system call interface changes. This work has shown

that session-based MAC systems enable stateful tracking of kernel object access from a

process, allowing new techniques for protecting kernel objects and moving us beyond an

immutable yes or no access model. Tokenized management of security policies is exten-

sible and can be extended beyond only protecting flesystem access-based threats. Our

methodology for designing MAC has the potential to develop exceptional state-of-the-art

security protections and resource management systems.

49

50

Bibliography

[1] Jinwoo Ahn, Donggyu Park, Chang-Gyu Lee, Donghyun Min, Junghee Lee, Sungy-

ong Park, Qian Chen, and Youngjae Kim. KEY-SSD: Access-control drive to protect

fles from ransomware attacks. Technical report, Sogang University, Seoul, Repub-

lic of Korea, University of Texas at San Antonio, TX USA, Korea University, Seoul,

Republic of Korea, 2019

[2] Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. A survey on ransomware:

Evolution, taxonomy, and defense solutions. ACM Comput. Surv. 1, 2021.

[3] Suhyeon Lee, Huy Kang Kim, and Kyounggon Kim. Ransomware protection using

the moving target defense perspective. Computers & Electrical Engineering, 78:288–

299, 2019.

[4] Ziya Alper Genc, Gabriele Lenzini, and Peter Y. A. Ryan. No random, no ransom:

A key to stop cryptographic ransomware. In Cristiano Giuffrida, Sebastien Bardin,

and Gregory Blanc, editors, Detection of Intrusions and Malware, and Vulnerability

Assessment, volume 10885, pages 234–255. Springer International Publishing, 2018.

Series Title: Lecture Notes in Computer Science

[5] Sailik Sengupta, Ankur Chowdhary, Abdulhakim Sabur, Adel Alshamrani, Dijiang

Huang, and Subbarao Kambhampati. A survey of moving target defenses for network

security. Number: arXiv:1905.00964

51

[6] Dorka Palotay. Ransomware as a service. Technical report, Sophos, 2017

[7] Abdulrahman Alzahrani, Ali Alshehri, Hani Alshahrani, Raed Alharthi, Huirong Fu,

Anyi Liu, and Ye Zhu. RanDroid: Structural similarity approach for detecting ran-

somware applications in android platform. In 2018 IEEE International Conference on

Electro/Information Technology (EIT), pages 0892–0897. IEEE, 2018

[8] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda.

Cutting the gordian knot: A look under the hood of ransomware attacks. In Magnus

Almgren, Vincenzo Gulisano, and Federico Maggi, editors, Detection of Intrusions

and Malware, and Vulnerability Assessment, volume 9148, pages 3–24. Springer In-

ternational Publishing, 2015. Series Title: Lecture Notes in Computer Science.

[9] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. Un-

derstanding linux malware. In 2018 IEEE Symposium on Security and Privacy (SP),

pages 161–175, 2018. ISSN: 2375-1207.

[10] Jinghao Jia, YiFei Zhu, Dan Williams, Andrea Arcangeli, Claudio Canella, Huber-

tus Franke, Tobin Feldman-Fitzthum, Dimitrios Skarlatos, Daniel Gruss, Tianyin Xu.

Programmable System Call Security with eBPF. arXiv/2302.10366. 2023.

[11] Serge Hallyn, Phil Kearns. Domain and Type Enforcement for Linux. In 2000 4th

Annual Linux Showcase & Conference (ALS 2000), USENIX Association, 2000.

[12] ”What is SELinux?,” www.redhat.com. https://www.redhat.com/en/topics/linux/what-

is-selinux (accessed May. 24, 2023).

[13] John Johansen,Steve Beattie. ”About” apparmor.net.

https://gitlab.com/apparmor/apparmor/-/wikis/About (accessed May. 24, 2023).

[14] Daniel Kapellmann Zafra, Raymond Leong, Chris Sistrunk, Ken

Proska, Corey Hildebrandt, Keith Lunden, Nathan Brubaker. ”INDUS-

52

https://gitlab.com/apparmor/apparmor/-/wikis/About
https://apparmor.net
https://www.redhat.com/en/topics/linux/what
www.redhat.com

are-

TROYER.V2: Old Malware Learns New Tricks” www.mandiant.com.

https://www.mandiant.com/resources/blog/industroyer-v2-old-malware-new-tricks

(accessed June 10, 2023).

[15] ”Industroyer2: Industroyer reloaded”, www.welivesecurity.com.

https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded

(accessed June 10, 2023).

[16] ”Rise in XorDdos: A deeper look at the stealthy DDoS malware target-

ing Linux devices”, www.microsoft.com. https://www.microsoft.com/en-

us/security/blog/2022/05/19/rise-in-xorddos-a-deeper-look-at-the-stealthy-ddos-

malware-targeting-linux-devices/ (accessed June 10, 2023).

[17] Naveen. ”How to Detect Raising New XORDDOS Linux Trojan”,

https://www.socinvestigation.com. https://www.socinvestigation.com/how-to-

detect-raising-new-xorddos-linux-trojan/ (accessed June 10, 2023).

[18] Claudia Glover. ”Ukraine DDoS attacks could mask more sophisticated cyber war-

fare” techmonitor.ai. https://techmonitor.ai/technology/cybersecurity/ukraine-ddos-

attacks (accessed June 10,2023).

[19] ”RansomEXX”, www.trendmicro.com. https://www.trendmicro.com/vinfo/us/security/news/ransomw

spotlight/ransomware-spotlight-ransomexx (accessed June 10, 2023).

[20] ”RansomExx Upgrades to Rust”, securityintelligence.com.

https://securityintelligence.com/posts/ransomexx-upgrades-rust/ (accessed June

10, 2023).

[21] ”Linux.Encoder.1”, vms.drweb.com. https://vms.drweb.com/virus/?i=7704004 (ac-

cessed June 10, 2023).

53

https://vms.drweb.com/virus/?i=7704004
https://vms.drweb.com
https://securityintelligence.com/posts/ransomexx-upgrades-rust
https://securityintelligence.com
https://www.trendmicro.com/vinfo/us/security/news/ransomw
www.trendmicro.com
https://techmonitor.ai/technology/cybersecurity/ukraine-ddos
https://techmonitor.ai
https://www.socinvestigation.com/how-to
https://www.socinvestigation.com
https://www.microsoft.com/en
www.microsoft.com
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded
www.welivesecurity.com
https://www.mandiant.com/resources/blog/industroyer-v2-old-malware-new-tricks
www.mandiant.com
https://TROYER.V2

[22] Aljanabi Mohammad,Ismail Mohd Arfan, Ali Ahmed. (2021). Intrusion Detection

Systems, Issues, Challenges, and Needs. International Journal of Computational In-

telligence Systems. 14. 10.2991/ijcis.d.210105.001.

[23] Kevin Savage, Peter Coogan, and Hon Lau. The evolution of ransomware. Technical

report, Symantec, August 2015.

54

	Path-Safe :Enabling Dynamic Mandatory Access Controls Using Security Tokens
	Repository Citation

	Abstract
	Introduction
	Background
	Contributions
	Organization

	Related Work
	Mandatory Access Controls
	System call filtering
	Signature-Based Detection
	Behavioral-Based Detection
	Moving Target Defenses

	Threat Model
	Infecting the Victim's Host
	Establishing a C2 Channel
	Executing the attack
	Threat Analysis

	System Design
	Unauthorized Binary Execution
	Unauthorized File Open Access
	Unauthorized Renaming an Inode Hardlink
	Unauthorized Unlinking of an Inode Hardlink
	Unauthorized Linking of an Inode Hardlink
	Unauthorized Use of Benign Applications

	Implementation
	creds_for_exec
	file_open hook
	inode_rename hook
	inode_link
	inode_unlink
	Validating a dentry Object
	Policy Lookup
	Validating security tokens

	Evaluation
	Accuracy Analysis
	Overhead Analysis
	Performance against Real-world Malware
	Awfulshred Wipper
	RansomExx
	XorDDoS

	Limitations and Potential Solutions
	Conclusion
	Future Work
	Summary

	Bibliography

