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Abstract

Konatham, Bharath Reedy. M.S, Department of Computer Science and
Engineering, Wright State University, 2023. A secure and Efficient IIoT
Anomaly Detection Approach Using a Hybrid Deep Learning Technique.

The Industrial Internet of Things (IIoT) refers to a set of smart devices, i.e.,

actuators, detectors, smart sensors, and autonomous systems connected throughout

the Internet to help achieve the purpose of various industrial applications.

Unfortunately, IIoT applications are increasingly integrated into insecure physical

environments leading to greater exposure to new cyber and physical system attacks.

In the current IIoT security realm, effective anomaly detection is crucial for ensuring

the integrity and reliability of critical infrastructure. Traditional security solutions

may not apply to IIoT due to new dimensions, including extreme energy constraints

in IIoT devices.

Deep learning (DL) techniques like Convolutional Neural Networks (CNN),

Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM) have been

the focus of recent research to increase the precision and effectiveness of anomaly

identification. This Thesis initially investigates a unique hybrid DL-enabled approach

that provide the needed security analysis before successful attacks are launched

against IIoT infrastructure. For that, different hybrid models are developed, trained,

tested, and validated using Convolutional Neural Networks (CNN), Gated Recurrent

Units (GRU), Short-Term Memory (LSTM), Autoencoder, and XGBoost algorithms.
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Experimental results show that the proposed XGBoost ML model exhibits the

highest performance, as compared to other models, and excels across multiple metrics,

including recall, precision, F1-score, and false alarm rate (FAR). The results also

show that hybrid CNN+GRU model is closely behind, which exhibited strong

performance in accurately detecting anomalies in encrypted IoT traffic. Specifically,

Our experimental results show that the developed hybrid CNN+GRU model

outperforms the others, achieving an accuracy of 94.94%, a recall of 92.29%, a

precision of 98.49%, an F1 score of 95.24%, and a low false alarm rate of 0.001.

However, it is essential to note that the hybrid model requires a longer convergence

time, indicating a trade-off between performance and computational efficiency.

Notably, individual CNN and GRU models also showcase strong performance as

time-efficient alternatives.

In conclusion, our adopted comprehensive dataset and rigorous evaluation proves

that we have developed practical deep-learning approaches to obtain an accurate

measure for an efficient IIoT anomaly detection framework. Finally, as a future work,

this study highlights the significance of selecting the appropriate model for anomaly

detection in IIoT systems. For that, XGBoost and CNN+GRU showcase of future

research and the potential for achieving high accuracy and effectively identifying

anomalies. The codes and used developed data sets of this research are attached in

the appendix section at the end of this thesis to guide future works in developing

advanced hybrid architectures and optimizing computational efficiency to enhance

the security of IIoT systems further.
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1 Introduction

1.1 Research Significance

The rapid growth of Internet of Things (IoT) technology has paved the way for

the integration of smart devices in various domains, including industrial environments.

The Industrial Internet of Things (IIoT) has revolutionized industries by enabling

real-time monitoring, predictive maintenance, and data-driven decision-making. With

the proliferation of IIoT devices, a massive amount of data is generated, providing

valuable insights for optimizing industrial processes and improving productivity.

However, along with the benefits of IIoT, the increasing interconnectivity also

introduces new challenges, particularly in terms of security and anomaly detection.

Anomaly detection plays a crucial role in identifying abnormal behavior or events in

IIoT systems, enabling timely response and mitigation of potential risks. Traditional

anomaly detection approaches are often limited in their ability to handle the

complexity and scale of IIoT data.

1.2 Anomaly

Finding the cases that stand out as being different from all the rest is a typical

requirement when studying real-world data sets. Such occurrences are referred to as

anomalies, and the objective of anomaly detection (also known as outlier identification)

is to identify all such occurrences in a data-driven manner [6].
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Figure 1.1: Performance Comparison of Deep Learning vs Traditional Algorithms [1]

An outlier is defined as an observation that deviates so significantly from other

observations as to raise suspicion that it was generated by a different mechanism [7].

Outliers can be caused by errors in the data, but sometimes they are indicative of a

new, previously unknown, underlying process.

Deep neural networks have become increasingly common in the larger area of

machine learning in recent years. From figure 1.1 we cobserver that Deep learning

algorithms have demonstrated comparable performance to other machine learning

techniques.

Deep learning, a subset of machine learning, learns to represent the input as

a deep hierarchy of concepts within layers of the neural network. This allows it to

perform well and be flexible. As the size of the data grows, deep learning beats

regular machine learning, as seen in Figure 1.3 and Figure 1.2 represents how deep

learning-based anomaly detection algorithms have been used for a variety of tasks

in recent years. Research demonstrates that deep learning significantly outperforms

conventional techniques. [2, 8]. Over the years, researchers conduct several research

2



Internet

Launch Attack

Firewall Network Router

Attacker

Host 1

Network Based
Intrusion Detection

Network Switch

Port
Mirroring
(SPAN)

Figure 1.2: Cyber Network Intrusion Detection System [2]

works to address this challenge and develop effective anomaly detection models.

1.3 Anomaly Detection in IIoT

In the context of edge IoT, an anomaly refers to any unexpected or abnormal

behavior or pattern observed in the data [9] collected from edge devices. Figure 1.4

represents a general anomaly detection scenario in IIoT. Anomalies can be deviations

from the normal expected behavior, outliers, or unusual patterns that may indicate

a malfunction, security breach, or other irregularities in the edge IoT system.

Detecting anomalies in edge IoT data is crucial for maintaining the reliability,

security, and optimal performance of the system. By monitoring and analyzing the

data collected from edge devices, anomalies can be identified and flagged for further

investigation or action. This can involve comparing the incoming data to predefined

thresholds, statistical models, machine learning algorithms, or domain-specific rules

to identify deviations from the expected behavior.
3



Figure 1.3: (a) Video Surveillance, Image Analysis: Illegal Traffic detection [3], (b)
Health-care: Detecting Retinal Damage [4]

Anomaly detection in edge IoT plays a significant role in various applications,

such as predictive maintenance, security monitoring, fault detection, and quality

control. By detecting anomalies in real-time or near real-time, appropriate actions

can be taken to mitigate risks, optimize operations, and ensure the overall integrity

and efficiency of the edge IoT system.

1.4 Challenges in IIoT Anomaly Detection

The development of anomaly detection schemes in the IIoT environment is

challenging due to several factors such as (1) scarcity of IoT resources; (2) profiling

normal behaviors; (3) the dimensionality of data; (4) context information; and (5)

the lack of resilient machine learning models [10]. These factors will be explained in

this section [11].

1.4.1 Scarcity of IIoT Resources

The leverage of device-level IIoT anomaly detection can be hindered by the

constraints in storage, processing, communication, and power resources. To

compensate for this, the cloud can be adopted as a data collection, storage, and

processing platform. However, the remoteness of the cloud can introduce high latency

due to resource scheduling and round trip time. This delay may not be acceptable

for real-time requirements of IoT suspicious events [10]. It is also evident that the

4
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scale of traffic in the IIoT may degrade the detection performance of the anomaly

detection system if it exceeds the capacity of the devices. A better solution is to offload

certain storage and computations from devices to edge nodes or to send aggregated

data to the cloud. Sliding window techniques can also offer reduced storage benefits

by withholding only certain data points, though the anomaly detection system may

require patterns/trends [12].

1.4.2 Profiling Normal Behaviours

The success of an anomaly detection system depends on gathering sufficient

data about normal behaviors; however, defining normal activities is challenging.

Due to their rare occurrence, anomalous behaviors might be collected within normal

behaviors. There is a lack of datasets representing both IIoT normal and abnormal

data, making supervised learning impractical, specifically for massively deployed

IoT devices. This drives the need to model IIoT anomaly detection systems in
5



unsupervised or semi-supervised schemes, where data deviating from those collected

in normal operations are taken as anomalous [13].

1.4.3 Dimensionality of Data

IIoT data can be univariate as key-value xt, or multivariate as temporally

correlated univariate xt = [xt1, . . . , xtn]. The IoT anomaly detection using univariate

series compares current data against historical time series. In contrast,

multivariate-based detection provides historical stream relationships and relationships

among attributes at a given time. Thus, choosing a specific anomaly detection

mechanism in IoT applications depends on data dimensionality due to associated

overheads in processing [13, 14]. Furthermore, multivariate data introduces the

complexity of processing for models, which needs dimension reduction techniques

using principal components analysis (PCA) and autoencoders (AE). On the other

hand, univariate data may not represent finding patterns and correlations that enhance

machine learning performance.

1.4.4 Context Information

The distributed nature of IoT devices caters to context information for anomaly

detection. However, the challenge is to capture the temporal input at a time t1

is related to input at a time tn and spatial contexts in large IoT deployments where

some IIoT devices are mobile in their operations. This means that introducing context

enriches anomaly detection systems but increases complexity if the right context is

not captured [13].

6



1.4.5 Lack of Machine Learning Models Resiliency against

Adversarial Attacks

The lack of a low false-positive rate of existing machine learning models and

the vulnerability to adversarial attacks during training and detection call for both

accurate algorithms and resilient models.

On the other hand, the massive deployment of IoT devices could be leveraged

for collective anomaly detection as most of the devices in the network exhibit similar

characteristics. This large number of devices helps to utilize the power of cooperation

against cyber-attacks such as malware [15]. Model poisoning and evasion can decrease

the utility of machine learning models as adversaries can introduce fake data to train

or tamper with the model.The upcoming sections will outline the research objectives,

methodology, and contributions in detail.

1.5 Objectives of the Research

The objectives of this research are to:

1. Investigate the effectiveness of various machine learning models for anomaly

detection in IIoT systems.

2. Assess the performance of Convolutional Neural Networks (CNN),

Gated Recurrent Units (GRU), GRU+CNN hybrid, Long Short-Term Memory

(LSTM), Autoencoder + GRU, Autoencoder + CNN, Autoencoder + LSTM,

and XGBoost models.

3. Compare the accuracy, recall, precision, F1-score, and false alarm rate (FAR)

of these models.

4. Explore the potential for improving the security and reliability of IIoT systems
7



through effective anomaly detection.

1.6 Research Methodology

This research holds significant importance in the field of IIoT security and

anomaly detection. By evaluating and comparing multiple machine learning models,

this study aims to identify the most effective approaches for detecting anomalies

in IIoT systems. The findings of this research can contribute to enhancing the

security posture of critical infrastructure, reducing the impact of potential attacks,

and ensuring the smooth operation of IIoT networks. Additionally, the insights

4gained from this research can guide the development of advanced hybrid architectures

and optimization techniques for future anomaly detection systems. The research

methodology employed in this study includes the following steps:

• Data collection: A representative dataset of encrypted IIOT traffic, including

both normal and anomalous instances, was gathered.

• Preprocessing: Conducted necessary preprocessing tasks such as feature

selection, dimensionality reduction, and data normalization.

• Model selection and implementation: Evaluated and implemented various

machine learning models, including CNN, GRU, hybrid models, LSTM,

Autoencoder-based models, and XGBoost.

• Performance evaluation: Assessed the performance of each model using

metrics such as accuracy, recall, precision, F1-score, and false alarm rate (FAR).

• Comparative analysis: Conducted a comprehensive analysis to compare the

performance of the different models and identify the top-performing approaches.

8



1.7 Contribution of this Thesis

The contributions of this research can be summarized as follows:

• A Hybrid model for anomaly detection is proposed to secure IIoT network traffic

by leveraging multiple deep learning architectures such as CNN, GRU, LSTM,

Autoencoders and a gradient boosting algorithm XGBoost.

• Significant improvement in anomaly detection accuracy is achieved by utilizing

multiple deep learning algorithms. These algorithms effectively extract intricate

features and patterns from encrypted traffic, resulting in a substantial

improvement compared to existing methods.

• The current research also addresses class imbalance by employing oversampling

techniques, resulting in improved performance for detecting anomalies across

different attack types.

• The proposed hybrid model exhibits enhanced performance by combining CNN

and GRU for classifying encrypted attack traffic, leveraging the strengths of

both architectures to capture spatial and temporal characteristics.

In the next chapter, we will discuss the related work in the field of anomaly

detection for IIoT and explore the application of various deep learning models in

enhancing IIoT security. We will examine different research works that have leveraged

deep learning techniques to tackle the challenge of anomaly detection in IIoT systems.

Additionally, we will provide a overview of models and datasets utilized in other

studies to gain insights into their effectiveness and applicability in the context of

IIoT security.
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2 Related Work

Anomaly detection in edge IIoT systems has attracted significant attention from

researchers, given the growing importance of ensuring the reliability and security of

these systems. Various machine learning and deep learning techniques have been

explored for this purpose. In this section, we review the literature on anomaly

detection in edge IIoT systems, focusing on the models evaluated in this paper:

CNN, GRU, CNN+GRU, LSTM, Autoencoder+CNN, Autoencoder+GRU,

Autoencoder+LSTM, XGBoost.

Convolutional Neural Networks (CNN) have been widely applied for anomaly

detection in IIoT systems due to their ability to capture spatial features in data. [16]

presents a data-driven fault diagnosis method based on Convolutional Neural Networks

(CNNs). The authors showcase that CNNs are effective in capturing local and global

patterns in time series data, which can be useful for detecting anomalies in different

applications.

A Long Short-Term Memory (LSTM) network is introduced to address the

vanishing gradient problem that plagued traditional Recurrent Neural Networks

(RNNs) during the training process [17]. In their experiments, LSTM networks

outperformed other recurrent network algorithms, such as real-time recurrent learning,

backpropagation through time, and recurrent cascade correlation, in learning complex,

artificial long-time-lag tasks. [18] presents a Long Short-Term Memory (LSTM) based

Encoder-Decoder architecture for anomaly detection in time series data. Although

the authors focus on LSTM, the approach could be applied to GRUs as well. They
10



demonstrate that their model is capable of detecting anomalies in multivariate time

series data with various types of anomalies. [19] proposed an anomaly detection

technique for Electrocardiogram (ECG) time signals using deep Long Short-Term

Memory (LSTM) networks. Their work demonstrates the capability of LSTM networks

in identifying anomalies in time series data, which can be adapted for different

domains and datasets.

A robust deep autoencoder approach for anomaly detection is proposed by [20].

They introduce a method that incorporates robust principal component analysis

(RPCA) into the training of deep autoencoders, which makes the model more resistant

to outliers and improves its performance in detecting anomalies. This paper introduces

a method for multivariate anomaly detection using Generative Adversarial Networks

(GANs) and GRUs. [21] proposed the MAD-GAN framework that combines the

strengths of GANs and GRUs to learn the underlying structure of the time series

data and detect anomalies effectively.

[22] propose an unsupervised method for anomaly detection and diagnosis in

multivariate time series data using deep neural networks, including CNNs and

autoencoders. They demonstrate the effectiveness of their approach on various

real-world datasets, showcasing the potential of combining CNNs and autoencoders

for anomaly detection tasks. An XGBoost-based network intrusion detection system

for imbalanced data is proposed in [23]. The authors implement a method that

combines XGBoost with a weighted loss function to handle imbalanced data effectively.

Although their focus is on network intrusion detection, the approach could be adapted

for other anomaly detection tasks. Lastly, [24]provides a comprehensive survey

of various network anomaly detection techniques, including machine learning-based

methods. The authors discuss and compare different machine learning algorithms

and their performance in the context of anomaly detection.
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Anomaly detection in encrypted Internet traffic is a significant area of research,

given the increasing reliance on encrypted services for consumer privacy. A recent

study that aligns closely with our work proposed the use of hybrid deep learning

techniques for detecting anomalies in encrypted network traffic [25].

The study utilized multiple deep learning models, including Convolutional Neural

Networks (CNN), Long Short-TermMemory (LSTM), and Recurrent Neural Networks

(RNNs), across three public datasets: NSL-KDD, UNSW-NB15, and CIC-IDS-2017.

Their findings highlighted a hybrid model combining CNN and Gated Recurrent Unit

(GRU) as the most effective solution. While the approach was valid, the use of older

datasets may not reflect the intricacies of contemporary cyber threats. In contrast,

our work leverages a more recent dataset, providing a more accurate and practical

solution for detecting current cybersecurity threats. In the next section we discuss

about the previous works on applications of various deep learning models on IIoT

security.

2.1 Deep Learning in IIoT security

Deep learning has emerged as a prominent area of research in IoT systems [26, 27,

28, 5]. Its effectiveness in handling large datasets is a major advantage over classical

machine learning methods. Given the vast amounts of data generated by IoT systems,

deep learning techniques are well-suited for analysis. These approaches dynamically

generate representations of dynamic data [29] and can be seamlessly integrated with

the IoT ecosystem [30]. For instance, in a smart home, IoT devices can autonomously

communicate with each other, enabling a fully intelligent home [26].

Deep learning employs a computational paradigm with multiple layers that learn

different levels of abstraction in data structures. This enables significant advancements

over traditional machine learning techniques [31, 32]. Deep learning is a subfield of
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Figure 2.1: Classification of DL Algorithms [5]

machine learning that utilizes nonlinear layers of computation to extract discriminative

or generative patterns. With their ability to capture hierarchical features, deep

learning methods are often referred to as hierarchical learning approaches. They

draw inspiration from how human neurons and the brain interpret stimuli.

Deep networks encompass both unsupervised and supervised learning, as well as

hybrid learning approaches that combine both forms. In this section, we discuss the

commonly used deep learning algorithms. Figure 2.1 illustrates various deep learning

classifiers for IoT security.

2.1.1 Supervised Deep Learning

The most popular controlled DL techniques are covered in this section. There are

two different categories of discriminative DL algorithms: recurrent neural networks

(RNNs) and convolutional neural networks (CNNs).

13



A. Convolutional Neural Networks (CNNs):

Convolutional Neural Networks (CNNs) are widely used in deep learning for

their ability to reduce the number of data parameters in artificial neural networks

(ANNs) [33, 34]. CNNs employ sparse relationships, parameter sharing, and fair

distribution to minimize data parameters. They consist of convolutional layers that

apply filters (kernels) to combine data parameters and pooling layers that reduce the

size of subsequent layers through average or peak pooling [35, 36, 37].

Cameras
Actuators

Sensors

Scheduled data collection

Robots

Smart
Meters

IIoT Data

IIoT devices in Industrial Environment

Class 0

Class 1

Class 2

Class 3

 CNN Layer  CNN Layer  Fully connected Layer

Pooling Layer Pooling Layer

Output

Figure 2.2: Feeding IIoT data through CNN layers

Figure 2.2 depicts how CNN works when IoT protection is extended. The

activation device, such as ReLU, introduces non-linear activation to the feature space

[38].

While CNNs excel in image detection and classification CNN development is

mostly focused on image detection. Due to their widespread application, CNNs are

utilized to develop precise and reliable models of picture ID and categorization for big

public image datasets like ImageNet [39, 40], however, their high computational cost

poses challenges for resource-constrained IIoT devices. Distributed architectures and

lightweight deep neural networks (DNNs) have been proposed to address this issue
14



[41]. CNNs have also found applications in malware identification, such as developing

a CNN-based framework for Android IoT protection [42]. However, it’s important to

consider that CNNs’ powerful learning capacity can also be exploited by attackers,

as demonstrated in breaking cryptographic applications [43].

In summary, CNNs offer effective simultaneous learning and classification,

eliminating the need for separate feature extraction steps [42]. However, their resource

requirements and potential vulnerabilities must be carefully considered in IoT security

applications.

B. Recurrent Neural Networks (RNNs):

One essential class of deep learning methods is recurrent neural networks (RNNs).

RNNs are particularly useful for handling transient outcomes and making predictions

based on both recent and previous inputs. They are commonly used in applications

that require consecutive inputs, such as sensor, text, and speech data. RNNs have

a sequential data storage layer and hidden components that are regularly updated

to reflect the current state of the network. However, RNNs suffer from the issue of

gradients fading or exploding, which limits their effectiveness in certain scenarios [44].

RNNs are widely used in various applications, including speech recognition,

translation, and network security. In speech-related tasks, RNNs and their variants

have shown superior performance [45, 46, 47]. For network security, RNNs can be

employed to detect potential network attacks by analyzing large volumes of sequential

data, such as network traffic patterns. Previous research has demonstrated the

effectiveness of RNN analysis in accurately classifying network traffic and detecting

malicious behavior [48]. RNNs offer practical solutions for enhancing the security of

IoT systems, particularly in mitigating serial-based attacks.
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In practical applications, RNNs play a crucial role in safeguarding IoT devices

and networks. IoT networks face the challenge of detecting a wide range of potential

network attacks, requiring the analysis of significant amounts of sequential data from

various sources. RNNs enable accurate detection of malicious activity by leveraging

their ability to recognize patterns in sequential data. By studying RNNs and their

variations, it becomes possible to enhance the overall security of IoT systems,

addressing the evolving threats and ensuring robust protection against serial-based

attacks. against serial-based assaults.

2.1.2 Unsupervised Deep Learning

In this part, we go through the most popular unsupervised DL methods, such

as deep restricted Boltzmann machines (RBMs), deep belief networks (DBNs), and

autoencoders (AEs).

A. Restricted Boltzmann Machines (RBMs):

Uncontrolled Restricted Boltzmann Machines (RBMs) are deep generative models

that operate without any directional constraints among nodes, allowing for flexible

information flow [49]. RBMs consist of visible and hidden layers, with the visible layer

receiving input data and the hidden layer representing latent variables at different

levels. RBMs capture data features hierarchically, with the hidden layer serving as a

record of features from the previous layer [50]. An RBM-based model was proposed

for network anomaly detection, addressing challenges such as the lack of labeled data

for effective testing and the evolving nature of irregular behavior over time [50]. The

researchers employed a discriminative RBM model, which combines generative and

classification capabilities to detect network anomalies even with incomplete training

data. However, their experiments revealed reduced classification accuracy when
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applied to different network datasets. Further research is needed to extend the

classifier’s performance across various network contexts. To enhance the capabilities

of a single RBM, multiple RBMs can be stacked to form a Deep Belief Network

(DBN), which will be discussed in detail in the following section.

B. Deep Belief Networks (DBNs):

Generative approaches in Deep Belief Networks (DBNs) have been explored

[51]. DBNs consist of stacked, unsupervised Restricted Boltzmann Machines (RBMs)

trained layer by layer [52]. The initial layer-specific pretraining phase utilizes a greedy

unsupervised learning technique to learn the initial features, while the top layer is

fine-tuned using a softmax layer [48]. DBNs have been effectively applied to malware

detection, surpassing traditional feature engineering methods [53]. Recent studies

have combined Evolutionary Algorithms (EA) with DBNs for malware detection,

employing non-linear projection techniques to reduce data dimensionality [54].

However, the resource-intensive nature of DBNs makes them less suitable for

resource-constrained devices.

C. Deep Autoencoders (AEs):

Deep Autoencoders (AEs) are unsupervised learning neural networks designed

to replicate their input to output [33]. They consist of an encoder function and a

decoder function, with the encoder transforming the input into a code and the decoder

reconstructing the original input [33]. AEs aim to minimize the reconstruction error

during the learning phase [55, 56]. However, AEs can only provide an approximate

reproduction and prioritize which input characteristics to copy [33]. While AEs are

effective for feature extraction, they require significant computing time and may

17



struggle if the training data does not match the test data [57]. AEs have been used

for ransomware recognition, outperforming traditional machine learning algorithms

in terms of detection efficiency [57]. In another study, a Deep Belief Network (DBN)

was combined with AEs for malware detection and dimensionality reduction [54]. The

DBN learned to identify malicious code based on the learned latent representations

[54].

2.1.3 Semi-Supervised or Hybrid DL

The most traditional deep hybrid learning strategies are covered in this section.

Generative adversarial networks (GANs) and network communities (EDLNs) are

examples of hybrid deep learning techniques.

A. Generative Adversarial Networks (GANs):

Generative Adversarial Networks (GANs) are a powerful framework for deep

learning [58]. From figure 2.3 we can understand that GANs consist of two models,

a generative model, and a discriminatory model, trained simultaneously using an

opposed mechanism [58]. The generative model learns the data distribution and aims

to fool the discriminator, while the discriminator predicts the probability of evaluation

results [58, 59]. GANs have been applied in IoT security, demonstrating efficacy

in detecting suspicious system activity [60]. GANs are capable of learning various

attack scenarios and generating samples that resemble zero-day attacks [60]. They

are well-suited for semi-supervised classification and can produce samples faster than

fully transparent Deep Belief Networks (DBNs) [58, 61]. However, GAN training can

be challenging, and GANs may struggle to generate diverse data such as text [58, 61].
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Figure 2.3: Functional Architecture of Generative Adversarial Networks (GANs)[5]

B. Ensemble of DL Networks (EDLNs):

Hybrid EDLNs, combining generative and discriminatory models, can be created

using ensemble learning (EL) techniques [32, 62, 63, 64]. EL employs multiple

classification approaches to improve performance and is commonly used in anomaly

detection, virus detection, and intrusion detection [65, 66, 67]. However, EDLNs may

increase temporal complexity in the system. Assembling DNNs as explicit/implicit

ensembles offers an alternative to mitigate the computing cost associated with training

numerous neural networks [68, 69]. Dropout and DropConnect introduce sparsity

and prevent overfitting, while stochastic depth and Swapout enhance network depth

during training [70, 71, 72]. EDLNs, consisting of heterogeneous or homogeneous

classifiers, are effective in addressing complex problems and have shown promising

results in various applications [73, 74]. Further research is needed to deploy lightweight

classifiers in distributed IoT settings to enhance accuracy and efficiency for IoT

security systems.
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2.1.4 Deep Reinforcement Learning (DRL)

Reinforcement learning (RL) is an ML technique that improves a learning agent’s

methods by evaluating and iterating on actions to achieve long-term goals [75]. RL

allows agents to learn from trial and error, calculating rewards and transitioning to

the next state [76]. RL is particularly useful for complex problems with long-term

outcomes, assuming Markovian models where actions and rewards are based on the

environment’s dynamics [75].

Deep reinforcement learning (DRL) combines RL with deep learning, such

as the deep Q-network (DQN), to solve high-dimensional problems with scalability

and performance [77]. However, the curse of dimensionality and computational

requirements limit its applicability in real-world systems. To address these limitations,

various enhancements have been proposed, including dual Q-learning, continuous

monitoring, and priority replay of knowledge [78, 79, 80]. DRL is often used in

conjunction with other ML approaches to overcome its drawbacks and achieve better

results.

In the context of IoT networks, researchers have explored the integration of DRL

with access management, download optimization, and cyber security mechanisms [77,

80]. These investigations aim to leverage DRL’s capabilities for improved application

schemes and protection against cyber threats. Further research in applying DRL

within the IoT context can contribute to advancements in IoT security and

optimization.

Table 2.1 provides an overview of various works related to our research,

highlighting their models and datasets.
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Table 2.1: Related Works in Anomaly Detection for IIoT

Work Models Covered Dataset
A deep hybrid learning
model for detection of

cyber attacks in
industrial IoT devices

Attention-based Long Short
Term Memory (ALSTM), Fully
Convolutional Neural Network
(FCN) + XGBoost , Fully

Convolutional Neural Network
(FCN)+ AdaBoost

TON IoT

IoT Anomaly Detection
Using a Multitude of
Machine Learning

Algorithms

Extreme Gradient Boosting
(XGBoost), Support Vector
Machines (SVM) , Deep

Convolutional Neural Networks
(DCNN)

IoT-23

A Comparative Analysis
of Machine Learning
Techniques for IoT
Intrusion Detection

Support Vector Machine (SVM),
XGBoost, Light Gradient

Boosting Machine (LightGBM),
Isolation Forest (iForest), Local
Outlier Factor (LOF), Q-Network

(DDQIN) based Deep
Reinforcement Learning (DRL)

IoT-23

Anomaly Detection in
Encrypted Internet
Traffic Using Hybrid

Deep Learning

Convolutional Neural Network
(CNN), Long Short-term Memory
(LSTM), Gated Recurrent Unit
(GRU) Convolutional Neural
Network (CNN) +Gated
Recurrent Unit (GRU)

NSL-KDD
UNSW-NB15
CIC-IDS-2017

An improved anomaly
detection model for IoT
security using decision

tree and gradient
boosting

Gradient boosting (GB) and
decision tree (DT) through the

open-source Catboost

NSL-KDD
IoT-23
BoT-IoT
Edge-IIoT

Secure and Efficient
Anomaly Detection
Using Hybrid Deep
Learning Approach
(Current Work)

Convolutional Neural Network
(CNN) Long Short-term Memory
(LSTM) Gated Recurrent Unit
(GRU) Convolutional Neural
Network (CNN) +Gated
Recurrent Unit (GRU)

Autoencoder + Convolutional
Neural Network (CNN)

Autoencoder + Long Short-term
Memory (LSTM) Autoencoder +
Gated Recurrent Unit (GRU)
Extreme Gradient Boosting

(XGBoost)

Edge-IIoTset
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3 Theoretical Foundations

3.1 Threat Model

In this section, we present the threat model for our anomaly detection system.

We outline various potential attacks that the system may encounter and analyze their

impact on the system and overall performance. We also introduce the list of various

Deep learning models implemented in this study.

3.1.1 Scope of the Threat Model

The scope of this threat model encompasses the detection and mitigation of

various types of network attacks in the context of anomaly detection using machine

learning algorithms. The focus is on analyzing encrypted IoT network traffic and

identifying patterns indicative of malicious activities. The threat model considers

attacks such as DDoS (UDP, ICMP, TCP, and HTTP), SQL injection, vulnerability

scanning, password attacks, uploading of malicious files, backdoors, port scanning,

XSS, ransomware, fingerprinting, and MITM attacks. The goal is to develop effective

anomaly detection mechanisms that can detect and classify these attacks accurately,

thereby enhancing the security of IoT systems and networks. The threat model takes

into account the specific characteristics of encrypted traffic and aims to address the

evolving challenges posed by sophisticated attack techniques.

22



3.1.2 Attack Types

• Normal: Represents normal or legitimate network traffic without any malicious

intent. This category serves as the baseline for comparison against other attack

types.

• DDoS UDP (Distributed Denial of Service User Datagram

Protocol): Involves overwhelming a target system with a large volume of UDP

packets, causing it to become unresponsive or unavailable to legitimate users.

• DDoS ICMP (Distributed Denial of Service Internet Control

Message Protocol): Aims to disrupt network connectivity by flooding the

target system with ICMP packets, resulting in network congestion or resource

exhaustion.

• SQL Injection: Exploits vulnerabilities in web applications that interact with

databases. Attackers inject malicious SQL statements through user input fields

to manipulate or extract sensitive data from the database.

• DDoS TCP (Distributed Denial of Service Transmission Control

Protocol): Targets the TCP protocol to exhaust system resources or disrupt

network communication by flooding the target system with an overwhelming

number of TCP connection requests.

• Vulnerability Scanner: Automated tools or scripts used to identify potential

weaknesses or vulnerabilities in a target system or network. Scans for

misconfigurations, outdated software, or known security flaws that can be

exploited by attackers.

• Password: Involves various techniques such as brute-forcing, dictionary attacks,

or phishing to gain unauthorized access by compromising user passwords.
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• DDoS HTTP (Distributed Denial of Service - Hypertext Transfer

Protocol): Focuses on overwhelming web servers or applications by flooding

them with a high volume of HTTP requests, causing service disruptions or

resource depletion.

• Uploading: Refers to unauthorized file uploads or malicious file uploads to

a web server or application. Attackers exploit vulnerabilities to upload and

execute malicious scripts or malware.

• Backdoor: Involves unauthorized access or the creation of a hidden entry point

in a system, allowing attackers to gain persistent access and control over the

compromised system.

• Port Scanning: The process of systematically scanning a target system or

network to identify open ports and services. Attackers use port scanning to

discover potential entry points and vulnerabilities for further exploitation.

• XSS (Cross-Site Scripting): Exploits vulnerabilities in web applications to

inject malicious scripts into web pages viewed by other users. Attackers can

steal sensitive information, manipulate website content, or perform phishing

attacks through XSS vulnerabilities.

• Ransomware: Malware that encrypts files on a victim’s system, rendering

them inaccessible until a ransom is paid. Attackers demand payment in exchange

for providing decryption keys or restoring access to the encrypted data.

• Fingerprinting: Involves gathering information about a target system or

network to identify its characteristics, vulnerabilities, or potential attack

vectors. Attackers perform fingerprinting to gain insights and tailor their attacks

accordingly.
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• MITM (Man-in-the-Middle): Attackers intercept and manipulate

communication between two parties without their knowledge. Allows attackers

to eavesdrop, modify, or inject malicious content into the communication stream.

3.1.3 Analysis of Existing Security Systems:

In the field of anomaly detection for network attacks, several existing security

systems have been developed to mitigate risks and protect network infrastructure.

These systems utilize a combination of traditional rule-based methods, statistical

analysis, and machine-learning techniques. Here is a brief analysis of some prominent

security systems:

• Intrusion Detection Systems (IDS): IDSs monitor network traffic and

identify suspicious activities based on predefined rules or signatures. They can

detect known attack patterns but may struggle with detecting novel attacks or

zero-day exploits.

• Intrusion Prevention Systems (IPS): IPSs build upon IDSs by not only

detecting but also actively blocking or mitigating malicious activities. They

often use rule-based approaches to identify and respond to attacks in real time.

• Firewall Systems: Firewalls act as a barrier between internal and external

networks, enforcing access control policies. While they are effective at filtering

traffic based on predetermined rules, they may not be equipped to detect or

prevent sophisticated attacks.

• Machine Learning-Based Anomaly Detection Systems: These systems

leverage machine learning algorithms to learn patterns of normal network

behavior and detect deviations that may indicate attacks. They can identify

previously unseen attacks and adapt to changing attack strategies.
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• Deep Learning-Based Anomaly Detection Systems: Deep learning

approaches, such as convolutional neural networks (CNNs), recurrent neural

networks (RNNs), and autoencoders, have shown promise in detecting anomalies

in network traffic. They can capture complex patterns and dependencies in data,

enabling effective anomaly detection.

While existing security systems provide valuable defense mechanisms, they often

face challenges in detecting evolving and sophisticated attacks. Traditional rule-based

systems may struggle with zero-day attacks, while machine learning-based systems

require large amounts of labeled training data and may be prone to false positives.

To address these limitations, this research aims to develop an effective

anomaly detection system by incorporating deep learning algorithms (CNN, GRU,

LSTM, autoencoders) and XGBoost, a gradient boosting algorithm, this research

aims to develop an advanced anomaly detection system that can effectively detect and

classify network attacks. The combination of these algorithms offers the merits of

accurate pattern recognition, adaptability to changing attack strategies, and improved

overall system performance. Through this research, we aim to enhance the security

of IIoT systems and networks by leveraging the strengths of deep learning and

gradient-boosting algorithms.

3.1.4 Assumptions

In the context of our anomaly detection research using various machine learning

algorithms, we make the following assumptions:

• Stationarity of Data: We assume that the underlying data distribution

remains stationary over time, meaning that the statistical properties of normal

and abnormal behavior remain relatively constant during the period of analysis.
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• Representative Training Data: We assume that the training data used to

train the machine learning algorithms is representative of the real-world data

distribution. The training data encompasses a diverse range of normal and

abnormal instances to enable the algorithms to learn meaningful patterns and

generalize well to unseen data.

• Independence of Instances: We assume that instances in the dataset are

independent and identically distributed (i.i.d.). This assumption simplifies

the modeling and analysis process and allows for the application of standard

machine-learning algorithms. Deviations from independence may arise in

scenarios where instances exhibit temporal dependencies or when the presence

of one anomaly influences the likelihood of subsequent anomalies.

• Feature Relevance: We assume that the features used in the anomaly detection

process are relevant and informative for distinguishing between normal and

abnormal instances. Feature engineering and selection techniques are employed

to identify the most relevant features that capture the discriminatory power

necessary for accurate anomaly detection.

• Generalization to Unseen Data: We assume that the trained models will

generalize well to unseen data, including both normal and abnormal instances.

The models capture the underlying patterns and characteristics of the data

distribution, allowing them to accurately detect anomalies in new instances.

These assumptions form the basis of our research and guide the design and

evaluation of our anomaly detection framework.
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3.1.5 Classification models

In this work, we implement individual and combination of these models to

evaluate their performance on the edge IIoT dataset. Below are the models we used:

1. Convolutional Neural Networks (CNN):Convolutional Neural Networks

(CNNs) have shown remarkable success in various computer vision tasks, including

image classification and object detection. In our work, we employed CNNs for

anomaly detection in Industrial Internet of Things (IIoT) systems. The main

advantage of CNNs lies in their ability to automatically learn hierarchical

representations from raw data. The network consists of multiple convolutional layers

that capture local patterns and features, followed by pooling layers that reduce

spatial dimensions. By stacking these layers, CNN can learn increasingly complex

representations and identify anomalies in the data.

2. Gated Recurrent Units (GRU):Gated Recurrent Units (GRUs) are a type

of recurrent neural network (RNN) that excels in capturing sequential dependencies in

data. In our work, we leveraged GRUs for anomaly detection in IIoT systems, as they

are well-suited for processing time-series data. GRUs utilize gating mechanisms to

control the flow of information within the network, allowing them to retain important

information over longer sequences. This enables the model to effectively capture

temporal patterns and identify anomalies in the data.

3. Long Short-Term Memory (LSTM): LSTM is another type of recurrent

neural network that addresses the vanishing gradient problem faced by traditional

RNNs. LSTMs are capable of learning long-term dependencies in sequential data and

have been widely used in various applications, including natural language processing

and time-series analysis. In our work, we applied LSTM models for anomaly detection

in IIoT systems. The LSTM’s memory cell and gating mechanism enable it to
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retain and update information over extended sequences, making it a powerful tool

for capturing complex temporal patterns and detecting anomalies.

4. CNN+GRU Hybrid Model: To further enhance the anomaly detection

performance, we explored a hybrid model that combines the strengths of both CNN

and GRU. The CNN+GRU model takes advantage of the CNN’s ability to extract

local spatial features and the GRU’s proficiency in capturing sequential dependencies.

By combining these two architectures, the hybrid model achieves a comprehensive

understanding of the data, enabling it to effectively identify anomalies in IIoT systems.

5. Autoencoder-based Models: In addition to the deep learning models,

we also employed autoencoder-based models for anomaly detection in IIoT systems.

Autoencoders are unsupervised learning models that learn to reconstruct the input

data, thereby capturing its underlying structure. We explored different combinations

of autoencoders with CNN, GRU, and LSTM architectures. By training the models

to reconstruct normal data accurately, we can identify deviations from the learned

patterns as anomalies.

6. XGBoost: While deep learning models have shown great promise in anomaly

detection, we also considered traditional machine learning approaches. XGBoost, an

ensemble learning algorithm based on decision trees, was included in our analysis.

XGBoost utilizes gradient boosting to combine the predictions of multiple decision

trees, resulting in an accurate and robust model. We explored the effectiveness of

XGBoost for anomaly detection in IIoT systems, leveraging its ability to handle

both numerical and categorical features. We aimed to comprehensively address the

challenges of anomaly detection in IIoT systems by utilizing a combination of models

with different strengths in capturing spatial, temporal, and structural patterns in the

data.
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4 Proposed Technique

Anomaly detection in Industrial Internet of Things (IIoT) systems is a complex

and critical task. The interconnected and dynamic nature of IIoT devices and

networks makes it challenging to identify abnormal behavior and potential security

threats. Traditional anomaly detection methods often struggle to cope with the scale

and variability of IIoT data, calling for more advanced approaches.

In our research, we have developed and evaluated several deep learning models

for anomaly detection in IIoT systems. Among these models, XGBoost emerges as

the top performer, consistently achieving exceptional accuracy, precision, recall, and

F1 score. Leveraging the power of gradient boosting, XGBoost effectively captures

intricate patterns and dependencies in the data, enabling it to accurately detect

anomalies in IIoT systems. The results validate its effectiveness and highlight its

potential as a reliable solution for anomaly detection in complex IIoT environments.

Additionally, the CNN+GRU model demonstrates significant promise as the

second-best performer in our study. By combining the spatial feature extraction

capabilities of Convolutional Neural Networks (CNNs) with the temporal sequence

modeling abilities of Gated Recurrent Units (GRUs), the CNN+GRU model captures

both local patterns and long-term dependencies in the IIoT data. This hybrid model

showcases commendable accuracy, precision, recall, and F1 score, further emphasizing

its effectiveness in anomaly detection.
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In the following section, we will provide a comprehensive explanation of the

techniques employed in our work, focusing on two top-performing models: XGBoost, a

gradient boosting algorithm renowned for its scalability and efficiency, and CNN+GRU,

a hybrid model that combines the strengths of convolutional neural networks (CNNs)

and gated recurrent units (GRUs) to effectively capture spatial and temporal patterns

in the data.

4.1 Extreme Gradient Boost(XGBoost):

XGBoost, short for Extreme Gradient Boosting, has demonstrated exceptional

performance in various machine learning tasks, including anomaly detection in the

context of our work. This boosting algorithm is known for its ability to handle

large-scale datasets and complex feature spaces effectively. One of the key factors

contributing to the success of XGBoost is its ensemble learning approach, which

combines the predictions of multiple weak learners (decision trees) to form a robust

and accurate final model.

One notable aspect of XGBoost is its optimization objective, which incorporates

both the loss function and a regularization term to prevent overfitting. By employing

a gradient-based approach, XGBoost optimizes the model’s parameters in an iterative

manner, continually improving its predictive power. Furthermore, XGBoost employs

a unique tree construction algorithm that intelligently selects the optimal splitting

points, resulting in highly informative and expressive decision trees.

In terms of technical capabilities, XGBoost provides a range of features that

enhance its performance and versatility. These include built-in handling of missing

values, support for parallel computing, and the ability to handle sparse data efficiently.

XGBoost also offers flexible parameters for fine-tuning the model, allowing users

to control factors such as learning rate, maximum tree depth, and regularization
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strength. Its ability to handle imbalanced datasets is particularly valuable in anomaly

detection, as it helps mitigate the challenges posed by rare and infrequent events.

The below pseudo code gives an overview of the XGBoost classifier we employed

which shows its simplicity. Below pseudo code provides the simple implementation

of XGBoost algorithm

Psudo code:

Algorithm 1 XGBoost Model Training

1: Import the necessary libraries (XGBoost)
2: Initialize the XGBoost classifier model
3: Train the model using the training data
4: Specify the evaluation set for monitoring performance
5: Set early stopping rounds to prevent overfitting
6: Obtain the training history and evaluation results

4.2 CNN+GRU Hybrid model:

The CNN+GRUmodel combines the strengths of Convolutional Neural Networks

(CNNs) and Gated Recurrent Units (GRUs) to achieve high performance in anomaly

detection. This architecture effectively captures both spatial and temporal information

present in the data, making it well-suited for analyzing complex sequences such as

those encountered in industrial IoT systems.

The CNN component of the model uses convolutional layers to extract spatial

features from the input data. The convolutional layers apply filters to capture patterns

and structures in the data, allowing the model to learn meaningful representations. By

stacking multiple convolutional layers with increasing filter sizes and pooling layers,

the CNN model can effectively capture hierarchical representations of the input.

On the other hand, the GRU component focuses on modeling the temporal

dependencies in the data. GRUs are a type of recurrent neural network (RNN)
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that have gating mechanisms to selectively update and reset their internal states.

This enables the model to retain and propagate important information across time

steps, capturing long-term dependencies in the sequence. The GRU layer in the model

utilizes these gating mechanisms to learn and represent temporal patterns in the data.

The combination of the CNN and GRU models through the concatenation of

their output layers allows for the fusion of both spatial and temporal features. This

fusion provides a comprehensive understanding of the data, enabling the model to

make accurate predictions. By leveraging the complementary strengths of CNNs

and GRUs, the CNN+GRU architecture achieves a balance between capturing local

spatial features and modeling temporal dynamics.

The advantages of the CNN+GRU model lie in its ability to effectively capture

complex patterns in industrial IoT data. The CNN component excels at extracting

spatial features, detecting local anomalies, and recognizing spatial patterns. The

GRU component, on the other hand, captures temporal dependencies, enabling the

model to understand the temporal behavior of the data and detect anomalies that

occur over time. By combining these two architectures, the CNN+GRU model can

effectively identify anomalies that exhibit both spatial and temporal characteristics,

providing a comprehensive solution for anomaly detection in industrial IoT systems.

Through extensive experimentation and evaluation, the CNN+GRU model has

demonstrated its effectiveness in our work. It has achieved high accuracy, precision,

recall, and F1 score in detecting anomalies in the industrial IoT dataset. The model’s

ability to capture intricate spatial and temporal patterns allows it to accurately

identify anomalous instances, enabling proactive security measures in industrial IoT

systems. Below pseudo code and figure 4.1 represent the architecture of the Hybrid

model.

33



Data
Preprocessing

Train

Test

Sampling

Input 
layers

Hidden
layers Dense layer

Input layer Dense layer

Concatenate Feature vectors from
 Dense layers

Class 0

Class 1

Class 2

Class 3

Softmax layer

2 GRU Layers

CNN Layers
5 CNN1D, 5 Maxpool layers

x1
x2
x3
x4
y1
y2

Figure 4.1: Hybrid CNN GRU model

Psudo code:

Algorithm 2 CNN+GRU Model

1: Define the CNN model
2: cnn input← Input(shape = input shape)
3: cnn layer ← Conv1D(64, 3, activation =′ relu′)(cnn input)
4: cnn layer ←MaxPooling1D(2)(cnn layer) ▷ CNN Layers
5: Define the GRU model
6: gru input← Input(shape = input shape)
7: gru layer ← GRU(units = 32, activation =′ tanh′)(gru input) ▷ GRU layers
8: Concatenate the outputs from the CNN and GRU models
9: concat layer ← concatenate([cnn layer, gru layer])
10: Output layer for classifying anomalies
11: output layer ← Dense(num classes, activation =′ softmax′)(concat layer)
12: Create the CNN+GRU model ▷ CNN+GRU Model
13: model←Model(inputs = [cnn input, gru input], outputs = output layer)

34



5 Experimental Details

Below, we present the experimental details and in the next we present chapter

results of our work, providing a comprehensive analysis of the performance and

effectiveness of various models employed in the experimental process. These models,

including CNN, GRU, LSTM, CNN+GRU hybrid model, XGBoost and Autoencoder

based models, were carefully selected for their ability to effectively extract features

and patterns from encrypted IIoT network traffic. Each model brings unique strengths

and capabilities to the table, allowing for a comprehensive approach to anomaly

detection. The hardware setup will now be presented, outlining the necessary

components and configurations to support the experimental implementation.

5.1 Hardware setup

The proposed models including CNN, GRU, LSTM, hybrid CNN+GRU, and

Autoencoder-based models, were executed on a system with 24GB of RAM and an

NVIDIA RTX 3060 Ti graphics card. The system is powered by a Ryzen 5600G

processor, which provides efficient computational capabilities for deep learning tasks.

The GPU acceleration offered by the RTX 3060 Ti enables faster model training and

evaluation, enhancing the overall efficiency of the experiments.

Additionally, the XGBoost model, which is a gradient-boosting algorithm, was

run on the CPU. While neural network models benefit from GPU acceleration,

XGBoost is primarily designed to utilize the computational power of the CPU. The

CPU in the system provides sufficient processing capacity for running XGBoost and
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leveraging its capabilities for anomaly detection in edge IIoT systems.

By utilizing this hardware setup, the experiments were conducted with the

necessary computational resources to ensure accurate evaluations of the models’

performance in anomaly detection. The combination of the powerful GPU and CPU

allows for efficient training, evaluation, and comparison of the neural network models

and XGBoost, enabling robust insights and findings in the thesis.

5.2 Dataset

In this study, we utilized a comprehensive dataset [81] specifically designed for

anomaly detection in Industrial Internet of Things (IIoT) networks. The dataset

comprises a diverse range of network traffic data, including normal traffic and various

types of attack scenarios such as Port Scanning, XSS, Ransomware, Fingerprinting,

and MITM. To ensure the representativeness and reliability of the data, it was

collected from a real-world industrial setting, consisting of multiple devices and

communication protocols commonly found in IIoT networks. By leveraging this

rich dataset, we were able to effectively assess the performance of different machine

learning and deep learning models in detecting and mitigating cybersecurity threats

in the IIoT domain.

The dataset comprises 2,219,201 instances and 63 features, which have been

collected to study and analyze cybersecurity threats in the context of edge computing

for Industrial Internet of Things (IIoT) systems. The dataset includes information

such as network traffic attributes, protocol-specific parameters, and attack types. The

features in the dataset encompass various data types, including numerical (float64)

and categorical (object). Some of the key features include network communication

parameters like IP addresses (ip.src host, ip.dst host), ARP protocol details

(arp.opcode, arp.hw.size), ICMP protocol attributes (icmp.checksum, icmp.seq le),
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HTTP protocol fields (http.content length, http.request.method, http.referer), and

TCP/UDP protocol properties (tcp.flags, tcp.len, udp.port, udp.stream). The dataset

also contains features related to domain name system (DNS) queries (dns.qry.name,

dns.qry.type) and Message Queuing Telemetry Transport (MQTT) protocol

(mqtt.conack.flags, mqtt.hdrflags, mqtt.topic).

Data Preprocessing

In the process of preparing the dataset for analysis, it was necessary to perform

various preprocessing steps to ensure the quality and relevance of the data. One

crucial step involved the removal of certain columns that were deemed either

redundant or irrelevant to the specific analysis goals. The decision to exclude these

columns was based on their limited contribution to the analysis or the

availability of more informative features. The following columns were removed from

the dataset: frame.time, ip.src host, ip.dst host, arp.src.proto ipv4,

arp.dst.proto ipv4, http.file data, http.request.full uri, icmp.transmit

timestamp, http.request.uri.query, tcp.options, tcp.payload, tcp.srcport,

tcp.dstport, udp.port, and mqtt.msg.

The rationale behind the removal of these columns was as follows:

1. frame.time: This column contained the timestamp of each network frame.

However, for the purpose of our analysis, the timestamp was not deemed essential

to the specific research questions and thus was excluded.

2. ip.src host and ip.dst host: These columns represented the source and

destination IP addresses of network packets. Since our analysis focused on

higher-level protocols and features derived from packet content, the inclusion
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of IP addresses was considered unnecessary and did not contribute significantly

to the research objectives.

3. arp.src.proto ipv4 and arp.dst.proto ipv4: These columns contained the

source and destination IPv4 addresses in Address Resolution Protocol (ARP)

packets. Given that our analysis did not involve ARP-specific features, these

columns were removed to streamline the dataset and eliminate irrelevant

information.

4. http.file data and http.request.full uri: These columns included file

data and the full URIs (Uniform Resource Identifiers) extracted from HTTP

requests. Since our analysis did not require deep inspection of HTTP payloads

or specific file-related features, these columns were excluded to reduce the

dimensionality of the data and focus on more relevant attributes.

5. icmp.transmit timestamp: This column represented the transmit timestamp

in ICMP (Internet Control Message Protocol) packets. Since our analysis did

not specifically focus on ICMP-related features, this column was removed as it

did not contribute significantly to the research goals.

6. http.request.uri.query: This column contained the query string part of

the URI in HTTP requests. Since our analysis did not involve query-specific

features, such as parameter extraction or query pattern analysis, this column

was excluded to simplify the dataset representation and avoid unnecessary

complexity.

7. tcp.options, tcp.payload, tcp.srcport, tcp.dstport, and udp.port: These

columns contained TCP (Transmission Control Protocol) and UDP (User

Datagram Protocol) packet-specific attributes. Since our analysis did not require

detailed inspection of these protocol-specific features, these columns were
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removed to focus on more informative attributes and reduce the dimensionality

of the dataset.

8. mqtt.msg: This column represented the MQTT (Message Queuing Telemetry

Transport) message. As our analysis did not specifically revolve around

MQTT-related

Oversampling data:

The target variable of the dataset is the ”Attack type”, which is a categorical

variable representing 15 different classes of cybersecurity threats, such as Distributed

Denial of Service (DDoS), ransomware, man-in-the-middle (MITM) attacks, and port

scanning, among others. The dataset is further processed by dropping unnecessary

columns, handling missing and duplicate values, and shuffling the data. Categorical

variables are one-hot encoded, and the target variable is label-encoded. To address

class imbalance, RandomOverSampler is used for oversampling minority classes. The

dataset is then split into train and test sets. Finally, feature scaling is applied

using MinMaxScaler, and input data and target variables are reshaped to fit the

requirements of deep learning models. To address the class imbalance issue in the

dataset, random oversampling techniques were employed. The objective was to

increase the number of samples for the minority classes using the RandomOverSampler

from the imblearn library. Figure 5.1 shows the number of samples for each class

after the data preprocessing step.
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Figure 5.1: Distribution of samples after preprocessing dataset

The random oversampling technique involves generating synthetic instances for

the minority classes to match the number of samples in the majority class. By creating

additional instances, the dataset becomes more balanced, allowing the machine

learning models to learn from a more diverse range of instances. The logic behind

random oversampling is to provide the model with a better representation of the

minority classes, enabling it to learn and detect anomalies from these underrepresented

classes more effectively. By introducing synthetic instances, the model can capture

the patterns and characteristics specific to the minority classes, improving its overall

performance and accuracy. It is important to note that oversampling techniques,

including random oversampling, should be carefully evaluated to avoid potential issues

such as overfitting or introducing biases. Additionally, alternative approaches may

need to be considered based on the specific characteristics of the dataset and the

research objectives.

The application of random oversampling in this study involved utilizing the

RandomOverSampler from the imblearn library. The minority classes were
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oversampled to match the number of samples in the majority class, resulting in a more

balanced dataset. This oversampled dataset served as a valuable resource for training

and evaluating the machine learning models, ultimately enhancing their ability to

detect anomalies.

5.3 Architecture of the models

5.3.1 CNN model overview:

The proposed 1D-CNN model in this paper is built using the Keras Sequential

API. It consists of multiple layers designed to extract useful features from the input

data and make predictions. The model includes an input layer that takes data in the

shape corresponding to the dimensions of the dataset. Five Conv1D layers are added

after it, each with a different number of filters and a ReLU activation function. These

layers extract local features from the data using filters. After each convolutional layer,

a MaxPooling1D layer with a pool size of 2 is applied to downsample the data and

capture important features, followed by a flatten layer that converts the feature maps

into a one-dimensional vector. The model also includes two dense layers. The first

dense layer with 64 neurons and a ReLU activation function learn global features,

while the second dense layer with the same number of neurons as the number of

classes in the dataset uses a softmax activation function to provide probabilities for

each class, enabling the final prediction.

5.3.2 GRU model

The proposed model is a Gated Recurrent Unit (recurrentGRUunit)-based neural

network implemented using the gatedKeras Sequential API. It consists of two GRU

layers, with the first layer having 32 units and the second layer having 64 units.

The GRU layers use a combination of tanh and sigmoid activation functions for
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the update and reset gates. The model also includes two dense layers with ReLU

activation functions, with 32 and 16 units, respectively. The final output layer has a

softmax activation function with a number of units corresponding to the number of

classes in the dataset. The GRU-based model effectively captures both short-term and

long-term dependencies in sequential data, making it suitable for various classification

tasks.

5.3.3 LSTM model overview

The proposed model is an LSTM classifier designed for time series classification

tasks. The model consists of a series of LSTM layers followed by dense layers for

classification. The model’s architecture is as follows:

1. LSTM Layer 1 : The first LSTM layer forms the input layer of the model. It

requires the input shape to be specified and comprises 128 units. The ‘tanh’

activation function is used for the transformations within the LSTM units. This

layer is configured to return sequences, meaning it outputs a sequence of the

same length for the next layer to use, instead of just the output of the last

timestep.

2. LSTM Layer 2 : The second LSTM layer consists of 256 units and uses a ‘tanh’

activation function. Unlike the previous layer, it doesn’t return sequences, hence

it only outputs the last output of the LSTM sequence. This allows us to connect

this layer to a traditional dense layer.

3. Dense Layer (Output Layer): The final layer in the model is a dense layer

with a number of units equal to the number of classes in the classification

task (num classes). This layer uses a softmax activation function to produce

a probability distribution over the classes, making it suitable for multi-class

classification tasks.
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This model leverages the ability of LSTM layers to process and learn from

sequence data, creating an effective and efficient model for time-series classification

tasks.

5.3.4 CNN+GRU model overview:

The proposed model is a hybrid CNN-GRU neural network that combines the

strengths of convolutional neural networks (CNNs) and gated recurrent units (GRUs)

to process and learn from sequential data efficiently. The model is designed using the

Keras Functional API, and it consists of two separate branches: the CNN branch and

the GRU branch. The model’s architecture is as follows:

CNN Branch:

1. Input Layer: The model takes as input a shape corresponding to the dimensions

of the dataset.

2. Convolutional Layers: The CNN branch includes two convolutional layers with

64 and 128 filters, respectively, each with a kernel size of 3. Both layers use the

ReLU activation function.

3. MaxPooling Layers: In between the convolutional layers, max-pooling layers

with a pool size of 2 are used to reduce the spatial dimensions and improve

computational efficiency.

4. Flatten Layer: After the final max-pooling layer, a flatten layer is used to

convert the 3D output of the convolutional layers into a 1D vector.

5. Dense Layer: The last layer in the CNN branch is a dense layer with 64 units

and a ReLU activation function. This layer helps the model learn higher-level

features from the extracted spatial information.
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GRU Branch:

1. Input Layer: Similar to the CNN branch, the input layer of the GRU branch

accepts an input of the same shape.

2. GRU Layer: The GRU layer has 32 units and uses a ’tanh’ activation function

for the gate updates and a ’sigmoid’ activation function for the reset gates.

Recurrent dropout is disabled (set to 0), and the layer does not unroll the

recurrent loop for efficiency. Bias terms are included in the computations of the

update and reset gates, and the hidden states are reset after each sequence.

3. Dense Layer: Following the GRU layer, a dense layer with 32 units and a ’tanh’

activation function is added. This layer helps the model learn more complex

patterns and features from the extracted temporal information.

Combining the branches: After processing the input data through both the

CNN and GRU branches, the outputs from these branches are concatenated using

the concatenate layer. This combined representation incorporates the spatial and

temporal features learned from both branches for the final decision-making process.

Output Layer: The final layer is a dense layer with (num classes) units and a

softmax activation function. The softmax function provides a probability distribution

across the classes, enabling the model to make a final prediction based on the highest

probability. The structure of the combined CNN+GRU model is depicted in Figure1.

5.3.5 XGBoost classifier overview

The XGBoost classifier model is trained using the XGBoost library, which provides

an efficient implementation of the gradient boosting algorithm. The XGBoost algorithm

constructs an ensemble of decision tree models iteratively to optimize a specific
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objective function.

Model Initialization

import xgboost as xgb

xgb_model = xgb.XGBClassifier()

The XGBoost classifier model is initialized by creating an instance of the

XGBClassifier class from the XGBoost library.

Model Training

xgb_model.fit(X_train, y_train,

eval_set=[(X_train, y_train), (X_val, y_val)],

early_stopping_rounds=5)

The model is trained using the fit()method, which takes the following arguments:

• X train: The feature matrix of the training data.

• y train: The target labels corresponding to the training data.

• eval set: A list of evaluation datasets, including both the training set and the

validation set.

• early stopping rounds: An optional parameter that specifies the number of

consecutive rounds with no improvement on the validation set’s performance

before stopping the training process.

45



During the training process, the XGBoost classifier iteratively builds an ensemble

of decision tree models, optimizing a specific objective function to minimize the

loss. The model learns to make predictions based on the input features and their

corresponding labels.

Evaluation and Early Stopping

The eval set parameter allows the model to monitor its performance on both

the training set and the validation set during training. The early stopping rounds

parameter helps prevent overfitting by stopping the training if the performance on

the validation set does not improve for a certain number of rounds.

5.3.6 Autoencoder Models Overview

The proposed models are a combination of an autoencoder with CNN, LSTM,

and GRU networks that leverages the benefits of both techniques to process and

learn from input data efficiently. Each of these models is designed using the Keras

Functional API and consists of two main parts: the encoder-decoder (autoencoder)

component and the CNN, LSTM and GRU components. The type of autoencoder

used in the above models is a basic convolutional autoencoder. A convolutional

autoencoder utilizes convolutional layers for both encoding and decoding. These

Classifier Model
CNN/GRU/LSTM

Class 0

Class 1

Class 2
Compressed 

RepresentationEncoder Reconstructed input

CNN1D
Maxpool layer

CNN1D
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Data
Preprocessing
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Figure 5.2: Autoencoder-based Models Architecture

layers are effective in capturing spatial patterns and features in the input data. The
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encoder part of the autoencoder uses convolutional layers with decreasing filters to

extract the essential features from the input data and reduce its dimensionality. The

decoder part uses upsampling layers followed by convolutional layers to reconstruct

the original input from the encoded representation. Fig 4.2 shows the overview of the

autoencoder models, the pseudo code also gives a better understanding of the model.

Model 1:

Encoder:

1. Input Layer: The model takes as input a shape corresponding to the dimensions

of the dataset.

2. Convolutional Layers: The encoder includes three convolutional layers with 32,

64, and 128 filters, respectively, each with a kernel size of 3. All layers use the

ReLU activation function.

3. MaxPooling Layers: In between the convolutional layers, max-pooling layers

with a pool size of 2 are used to reduce the spatial dimensions and improve

computational efficiency.

4. Output Layer: The encoder’s output is obtained from the last max-pooling

layer.

Decoder:

1. Convolutional Layers: The decoder consists of three convolutional layers with

128, 64, and 32 filters, respectively, each with a kernel size of 3. All layers use

the ReLU activation function.

2. UpSampling Layers: After each convolutional layer, upsampling layers with a

size of 2 are used to restore the spatial dimensions.
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3. Output Layer: The decoder’s output is obtained from the last convolutional

layer.

Autoencoder: The autoencoder is formed by combining the encoder and decoder

models. The input to the autoencoder is the same as the input to the encoder, and

the output is obtained from the decoder.

Classifier:

1. The autoencoder is added as the first layer of the classifier model.

2. Additional Conv1D and MaxPooling1D layers are used for feature extraction

and dimensionality reduction.

3. The output from the last MaxPooling1D layer is flattened.

4. Dense layers with ReLU activation are added for further processing of the

features.

5. The final Dense layer with softmax activation provides the probability

distribution across the classes for classification.

Model 2:

The architecture is similar to Model 1, with the following modifications:

Classifier:

1. Instead of Conv1D and MaxPooling1D layers, LSTM layers are used for feature

extraction and sequence processing.

2. The LSTM layers return sequences and extract features from the sequences.
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3. A Dense layer with softmax activation is added for classification.

Model 3:

The architecture is similar to Model 1, with the following modifications:

Classifier:

1. Instead of Conv1D and MaxPooling1D layers, a GRU (Gated Recurrent

Unit) layer is used for sequence processing.

2. The GRU layer has 32 units and uses the ’tanh’ activation function for the

gate updates and ’sigmoid’ activation function for the reset gates.

3. A Dense layer with ’tanh’ activation is added for further processing of the

features.

4. The final Dense layer with softmax activation provides the probability

distribution across the classes for classification.

Pseudo code:
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Algorithm 3 Autoencoder + GRU Model

1: Define the Autoencoder model
2: encoder inputs← Input(shape = input shape)
3: encoder outputs← ... ▷ Encoder architecture
4: Define the Decoder model
5: decoder inputs← Input(shape = ...)
6: decoder outputs← ... ▷ Decoder architecture
7: Combine the Encoder and Decoder models to form the Autoencoder
8: autoencoder ←Model(inputs = encoder inputs, outputs = decoder outputs)
9: Define the GRU model
10: gru inputs← Input(shape = input shape)
11: gru outputs← GRU(units = ...,′ )(gru inputs)
12: Concatenate the outputs from the Autoencoder and GRU models
13: concat outputs← concatenate([autoencoder outputs, gru outputs])
14: Output layer for classification
15: output layer ← Dense(num classes, activation =′ softmax′)(concat outputs)
16: Create the Autoencoder + GRU model
17: model←Model(inputs = [encoder inputs, gru inputs], outputs = output layer)
18: Compile the model with appropriate optimizer, loss function and trainig data

5.4 Callback Functions

In machine learning and deep learning, a callback is a function or set of functions

that can be applied during the training process of a model. Callbacks provide a

way to customize and control the training behavior by performing specific actions at

various stages of training, such as at the end of each epoch or when a certain condition

is met. They are useful for monitoring the model’s performance, adjusting parameters,

implementing early stopping, saving model checkpoints, and more.

5.4.1 Callbacks Used

EarlyStopping: The EarlyStopping callback is used to monitor a specified

metric, such as the validation loss, and stop the training process if the monitored

metric does not improve for a certain number of epochs. In this work, the

EarlyStopping callback is set to monitor the validation loss (val loss) and stop
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the training if it does not improve for 5 consecutive epochs. This helps prevent

overfitting and saves computational resources by stopping the training early when

further training is unlikely to improve the model’s performance.

ReduceLROnPlateau: The ReduceLROnPlateau callback is used to reduce

the learning rate when the monitored metric (e.g., validation loss) stops improving.

This helps fine-tune the learning process by dynamically adjusting the learning rate

during training. In your case, the learning rate is reduced by a factor of 0.2 whenever

the validation loss does not improve for 5 consecutive epochs. This can help the

model to converge faster or escape from a local minimum.

51



6 Results and discussion

This section provides a comprehensive evaluation of the performance of the

different deep learning models used for anomaly detection in encrypted IoT traffic. It

includes a detailed discussion of the results, highlighting the strengths and weaknesses

of each model and comparing their performance metrics such as accuracy, precision,

recall, and F1-score. The section also explores the convergence behavior of the models

and discusses any notable observations or patterns.

6.1 Metrics

Metrics in machine learning are quantitative measures used to evaluate the

performance of a model. These metrics provide insights into how well the model

is performing in terms of accuracy, precision, recall, F1-score, and other evaluation

criteria. Metrics are essential in assessing the effectiveness and reliability of a model,

as they allow comparisons between different models or variations of the same model.

The metrics used in this study are explained below.

6.1.1 Categorical Cross-Entropy Loss

Categorical cross-entropy is a commonly used loss function in classification

tasks where the output is a categorical variable with multiple classes. It measures the

dissimilarity between the predicted class probabilities and the true class probabilities.

Mathematically, the categorical cross-entropy loss is calculated as follows:
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Let’s assume we have n samples and m classes. The predicted class probabilities

for the i-th sample are denoted as pi and the true class probabilities as ti.

The categorical cross-entropy loss is given by:

LCE = − 1

n

n∑
i=1

m∑
j=1

tij log(pij)

where tij is the true probability of the i-th sample belonging to class j and pij is

the predicted probability of the i-th sample belonging to class j.

The inner summation is calculated across all classes for each sample, and the

outer summation is calculated across all samples.

This loss function penalizes large differences between the predicted probabilities

and the true probabilities, encouraging the model to make more accurate predictions.

In summary, the categorical cross-entropy loss measures the dissimilarity between

the predicted class probabilities and the true class probabilities, and it is widely used

in multiclass classification tasks.

6.1.2 Accuracy

Accuracy is a commonly used metric to evaluate the performance of classification

models. It measures the proportion of correctly predicted samples out of the total

number of samples.

Mathematically, accuracy is calculated as:

Accuracy =
Number of correctly predicted samples

Total number of samples
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6.1.3 Recall

Recall, also known as the true positive rate or sensitivity, measures the proportion

of correctly predicted positive samples (anomalies) out of all actual positive samples.

Mathematically, recall is calculated as:

Recall =
True Positives

True Positives + False Negatives

6.1.4 Precision

Precision measures the proportion of correctly predicted positive samples

(anomalies) out of all predicted positive samples.

Mathematically, precision is calculated as:

Precision =
True Positives

True Positives + False Positives

6.1.5 F1-score

The F1-score is the harmonic mean of precision and recall, providing a balanced

measure of a model’s performance. It combines both precision and recall into a single

metric.

Mathematically, the F1-score is calculated as:

F1-score =
2× Precision× Recall

Precision + Recall

54



The function calculates the following components:

1. True Positives: The number of correctly predicted positive samples.

2. Possible Positives: The total number of positive samples in the dataset.

3. Predicted Positives: The total number of samples predicted as positive by the

model.

The function then calculates the precision and recall as follows:

Precision: The ratio of true positives to the total predicted positives. It measures

how many of the predicted positive samples are actually positive.

Recall: The ratio of true positives to the total possible positives. It measures

how many of the actual positive samples are correctly identified by the model.

Finally, the F1 score is calculated as the harmonic mean of precision and recall,

which provides a balanced measure of both metrics. The K.epsilon() term is added

to avoid division by zero errors.

The averaging technique applied in this function is the micro-averaging. Micro-averaging

aggregates the true positives, possible positives, and predicted positives over all

classes in the dataset and then calculates precision, recall, and F1 score based on

the aggregated values.

The F1-score ranges between 0 and 1, with 1 indicating a perfect model and 0

indicating poor performance.
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6.1.6 False Alarm Rate (FAR)

The false alarm rate is a performance metric that measures the proportion of

falsely predicted positive instances (false alarms) out of all negative instances. It is

calculated using the following equation:

FAR =
False Positives

False Positives + True Negatives

where False Positives represent the number of negative instances incorrectly

predicted as positive, and True Negatives represent the number of correctly predicted

negative instances.

These metrics provide valuable insights into the performance of the anomaly

detection models, allowing for a comprehensive evaluation of their effectiveness.

6.2 Model Performance

In this section, we present the performance evaluation of various machine learning

models for anomaly detection in encrypted IoT traffic. We assess the effectiveness of

deep learning models including CNN, GRU, LSTM, and autoencoder-based models, as

well as the XGBoost algorithm. The evaluation is based on above metrics shedding

light on the models’ capabilities in accurately detecting anomalies and minimizing

false positives.
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Table 6.1: Performance of the models

Model Loss Accuracy Recall Precision F1-Score FAR Training Time (min) Training Epochs

CNN 0.10211 0.94839 0.92303 0.98384 0.95196 0.00108 18 23

GRU 0.12445 0.93981 0.91766 0.97027 0.9428 0.002 35 17

GRU+CNN 0.09985 0.9494 0.92288 0.98494 0.95239 0.001 97 73

LSTM 0.12607 0.93939 0.91288 0.97455 0.94219 0.0017 36 14

Autoencoder+GRU 1.26009 0.71425 0.71425 0.71425 0.71425 0.02041 12 7

Autoencoder+CNN 0.11195 0.94695 0.92194 0.98104 0.95009 0.00127 32 30

Autoencoder+LSTM 0.23309 0.91507 0.87954 0.97054 0.92207 0.0019 37 12

XGBoost 0.0672 0.9641 0.965 0.9857 0.9603 0.0023 16 29

From extensive expiremetns the XGBoost model emerges as the best performer

in terms of accuracy, recall, precision, and F1-score. It achieves an accuracy of

96.41%, indicating its ability to correctly classify the majority of samples. The

recall of 96.50% highlights its effectiveness in identifying true positive instances, while

the precision of 98.57% signifies its low false positive rate. The high F1-score of

96.03% indicates a good balance between precision and recall, reflecting the model’s

overall performance. In the research work that implemented the Catboost model

for intrusion detection in IoT systems [82], the reported results showed an accuracy

of 100% during training and a validation accuracy of 99.27%. Additionally, they

achieved high values for precision(98.42%) and recall(98.78%), indicating excellent

performance in classifying intrusions. Comparing the two models, it is evident that

both Catboost and XGBoost achieved high accuracy and performed well in classifying

intrusions. The Catboost model reported slightly higher accuracy during training,

but both models demonstrated strong precision and recall scores.it’s essential to

consider various evaluation metrics, check for overfitting, and analyze the context

of the problem before concluding that a high accuracy indicates a better model.

Moving on to the average performers, we have the CNN, GRU, GRU+CNN,

and LSTM models. These models consistently achieve high accuracy values ranging
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Figure 6.1: Distribution of samples for XGBoost model

from 93.94% to 94.94%. While they may not surpass the performance of XGBoost,

their accuracy rates demonstrate their ability to accurately classify the majority of

samples. The recall values ranging from 91.29% to 92.29% indicate their effectiveness

in capturing true positive instances, while the precision values ranging from 97.03%

to 98.49% reveal their ability to minimize false positive instances. The F1-scores

ranging from 94.22% to 95.24% further emphasize the models’ overall performance in

achieving a balance between precision and recall. On the other hand, the Autoencoder

+ GRU model showcases the lowest performance among the models across the metrics

with an accuracy score of 71.43%. These metrics indicate a significant gap compared

to the other models, suggesting lower effectiveness in classifying the different attack

types. Further analysis may be required to investigate the reasons behind this

underperformance and explore ways to enhance the model’s capabilities.

It is important to consider the strengths and limitations of each model. XGBoost,

with its gradient boosting algorithm, demonstrates strong performance across all
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Figure 6.2: Distribution of samples for remaining models

metrics and is largely benefited by oversampling the data for minor classes, making it

a suitable choice for anomaly detection, figure 6.1 represents the number of samples

for each attack type used for the XGboost model. The deep learning models (CNN,

GRU, GRU+CNN, and LSTM) showcase commendable accuracy rates and exhibit

the ability to capture anomalies effectively.

However, it is important to note that the performance of CNN was particularly

good on the original number of samples after data processing step. while the

performance of the other models improved when the sample count for smaller classes

was increased using oversampling techniques, figrue 6.2 shows the number of samples

used for each class other than CNN and XGboost models. This indicates that the

CNN model’s performance degraded when faced with an increased sample count

for smaller classes. The Autoencoder + GRU model, although underperforming in

comparison, still provides insights into the potential of combining autoencoder-based

feature extraction with the GRU architecture.

In conclusion, the XGBoost model stands out as the best performer, while the
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Figure 6.3: Performance Comparison

CNN, GRU, GRU+CNN, and LSTM models exhibit strong performance in detecting

anomalies Table 6.1 and figure 6.3 provides an overview of the performance metrics

of each model. The Autoencoder + GRU model shows room for improvement and

warrants further investigation. These findings contribute to the understanding of the

performance of different models and can guide the selection of appropriate models for

anomaly detection in encrypted IoT traffic. Figure 6.4 shows the confusion matrix

of the XGBoost model, the top performer in our study, provides valuable insights

into its classification capabilities for different attack types. Each row in the matrix

represents the actual labels, while each column represents the predicted labels. The

numbers within the matrix indicate the count of samples that fall into each category.

The XGBoost model showcases outstanding accuracy and precision in classifying

various attack types. It successfully identifies a substantial number of samples

belonging to the DDoS HTTP, DDoS ICMP, DDoS TCP, DDoS UDP, Fingerprinting,
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Figure 6.4: XGboost model Confusion Matrix

MITM, Password, Port Scanning, Ransomware, SQL Injection, Uploading,

Vulnerability Scanner, and XSS categories.

However, there are instances of misclassifications within the confusion matrix.

For instance, the model may encounter challenges in accurately distinguishing samples

in the Backdoor category, resulting in a few misclassified instances. Additionally,

there are a small number of misclassified samples in the Normal category, where they

are mistakenly labeled as other attack types.

Overall, the XGBoost model demonstrates superior performance by accurately

classifying a wide range of attack types with exceptional precision and recall. Its

low false alarm rate indicates its ability to effectively avoid false positives, ensuring

a high level of accuracy in detecting anomalies within encrypted IoT traffic. The

confusion matrix of the CNN and GRU hybrid model is shown in Figure 6.5, which

is the second-best performer after XGboost.
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Figure 6.5: CNN+GRU Confusion Matrix

The confusion matrix demonstrates that the CNN+GRUmodel has distinguished

the majority of attack types with a high degree of accuracy. For instance, a sizable

portion of samples from the DDoS HTTP, DDoS ICMP, DDoS TCP, DDoS UDP,

Fingerprinting, MITM, Password, Port Scanning, Ransomware, SQL injection,

Uploading, Vulnerability scanning, and XSS categories are accurately identified. It’s

important to note that the model has some misclassifications as well. For instance,

there are a few misclassified samples in the Backdoor category, suggesting that the

model struggles to distinguish them accurately. Similarly, there are a small number of

misclassified samples in the Normal category, which are mistakenly labeled as other

attack types.

Based on the provided results for the CNN+GRU and XGBoost models, it’s

evident that both models have achieved relatively high performance across multiple

metrics. Let’s analyze how the other metrics influenced the low false alarm rate of
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the models:

1. Accuracy: Both models have high accuracy values, indicating that they are

overall effective in correctly classifying samples, including both normal and abnormal

instances. High accuracy suggests that the models are making correct predictions,

which is a contributing factor to a low false alarm rate.

2. Recall: The recall values are reasonably high (0.92288 and 0.965, respectively).

High recall means that the models are effectively capturing a significant number of

true positive anomalies. This sensitivity to detecting anomalies helps in maintaining

a low false alarm rate.

3. Precision: Both models exhibit high precision values (0.98494 for CNN+GRU

and 0.9857 for XGBoost). High precision indicates that the models are not generating

many false positives, which is essential for maintaining a low false alarm rate.

4. F1-Score: The F1-score is the harmonic mean of precision and recall. It

provides a balanced measure of the model’s performance in terms of both false alarms

and false negatives. For both models, the F1-scores are high (0.95239 for CNN+GRU

and 0.9603 for XGBoost), suggesting a good balance between precision and recall.

5. FAR (False Alarm Rate): The FAR is specifically related to false alarms,

representing the proportion of negative predictions (normal samples) that are incorrectly

classified as positive (anomalies). Both models achieved low FAR values (0.001 for

CNN+GRU and 0.0023 for XGBoost). The low FAR indicates that the models are

making minimal false positive predictions, which is crucial for a low false alarm rate.

In summary, the high accuracy, recall, precision, F1-score, and the low FAR

for both the CNN+GRU and XGBoost models demonstrate their effectiveness in

accurately detecting anomalies with minimal false positives. The combination of
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these performance metrics has influenced the low false alarm rate of the models,

making them valuable tools for anomaly detection tasks.

6.3 Convergence of the Models

The convergence behavior of the models is an essential aspect to consider in

the evaluation of their performance. It provides insights into the training process,

including the convergence time, stability, and overall efficiency. In this study, we

examined the convergence of the CNN, GRU, LSTM, CNN+GRU, Autoencoder+CNN,

Autoencoder+GRU, Autoencoder+LSTM, and XGBoost models.

Figures 6.6(a)–6.12 provide valuable insights into the training progress of each

model, depicting the trends in loss and accuracy across different epochs. Let’s delve

into each model’s performance individually:

(a) CNN Loss (b) CNN Accuracy

Figure 6.6: CNN Loss and Accuracy

For the CNN model (Figure 6.6(a) and Figure 6.6(b)), we observe a gradual

decrease in loss and a simultaneous increase in accuracy as the number of epochs

increases. This trend suggests that the model effectively minimizes the discrepancy

between predicted and actual values. The model demonstrated relatively fast
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(a) GRU Loss (b) GRU Accuracy

Figure 6.7: GRU Loss and Accuracy

convergence, with a per-epoch runtime of 17.5 minutes and a total of 23 training

epochs. This suggests that the CNN architecture efficiently learned the features from

the dataset and achieved convergence in a relatively short time. The model’s ability to

capture spatial information using convolutional layers and its simplicity contributed

to its faster convergence.

Similarly, the GRU model (Figure 6.7(a) and Figure 6.7(b)) demonstrates a

decreasing loss trend overall. However, it is worth noting that some fluctuations in

training and validation accuracy are observed during the training process, the GRU

model showed efficient convergence, with a per-epoch runtime of 35 minutes and a

total of 17 training epochs. The GRU architecture, being a type of recurrent neural

network (RNN), excels at capturing temporal dependencies in sequential data. The

model successfully learned the temporal patterns present in the encrypted IoT traffic,

leading to its convergence within a reasonable number of epochs. These fluctuations

may indicate the model’s sensitivity to certain patterns in the data.

The CNN+GRU model (Figure 6.8(a) and Figure 6.8(b)) exhibits a consistently

decreasing loss curve and a corresponding increase in accuracy. This behavior suggests

a steady convergence towards the optimal solution, emphasizing the effectiveness of
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(a) CNU+GRU Loss (b) CNN+GRU Accuracy

Figure 6.8: CNN+GRU Loss and Accuracy

(a) LSTM Loss (b) LSTM Accuracy

Figure 6.9: LSTM Loss and Accuracy

combining both CNN and GRU architectures for anomaly detection. The CNN+GRU

hybrid model, combining the strengths of both architectures, demonstrated a longer

convergence time compared to the individual models. It took 97 minutes and a total

of 73 training epochs to converge. The longer convergence time can be attributed

to the combined complexity of the two architectures and the need for the model

to extract both spatial and temporal features simultaneously. However, despite the

longer convergence time, the hybrid model achieved superior performance, indicating

the effectiveness of integrating both CNN and GRU.

On the other hand, the LSTM model (Figure 6.9(a) and Figure 6.9(b)) shows

66



(a) Autoencoder+CNN Loss (b) Autoencoder+CNN Accuracy

(c) Autoencoder+GRU Loss (d) Autoencoder+GRU Accuracy

Figure 6.10: Autoencoder+CNN and Autoencoder+GRU Loss and Accuracy

a different pattern. While the loss decreases over time, there is a significant dip in

accuracy during the initial epochs. This behavior may indicate a slower convergence

rate or challenges in capturing temporal dependencies in the data. The model

exhibited slightly slower convergence compared to CNN and GRU. It required a

per-epoch runtime of 36 minutes and a total of 14 training epochs to achieve

convergence. The LSTM’s ability to capture long-term dependencies makes it

well-suited for modeling complex sequential data. However, the additional complexity

of the LSTM architecture and the longer sequence length in the encrypted IoT traffic

likely contributed to the longer convergence time.

The Autoencoder-based models, Autoencoder+CNN, Autoencoder+GRU, and
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(a) Autoencoder+LSTM Loss (b) Autoencoder+LSTM Accuracy

Figure 6.11: Autoencoder+LSTM Loss and Accuracy

Autoencoder+LSTM models exhibited distinct patterns in their training curves.

Figure 6.10(a) and Figure 6.11(b) demonstrate that the Autoencoder+CNN model

initially showed slow reduction in loss for a few epochs, followed by a steep dive, and

then gradually decreased until convergence. On the other hand, Figure 6.10(c) and

Figure 6.10(d) illustrate that the Autoencoder+GRU model maintained a consistent

loss curve without significant variations. Interestingly, similar to the Autoencoder+GRU

model the Autoencoder+LSTM model from 6.11(a) and Figure 6.11(b) exhibited

quick convergence within six epochs, however, it is followed by a notable spike in loss

values, indicating overfitting. The models showed varying convergence behaviors.

These models aim to learn a compact representation of the input data through an

unsupervised learning process. The convergence time and number of epochs varied

depending on the complexity of the autoencoder architecture and the reconstruction

error optimization. In general, the convergence time was relatively shorter compared

to the deep learning models, with per-epoch runtimes ranging from 12 to 37 minutes

and a total of 7 to 30 training epochs.

In contrast to the Autoencoder-based models, the XGBoost model displayed a

smooth convergence pattern, as evident from Figure 6.12. The loss value consistently

decreased over the epochs, resembling the behavior observed in the CNN+GRU
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Figure 6.12: XGBoost Loss

model. This highlights the efficacy of the XGBoost algorithm in achieving a gradual

reduction in loss and optimizing the model’s performance. The XGBoost model,

a gradient boosting algorithm, demonstrated efficient convergence with a per-epoch

runtime of 16 minutes and a total of 29 training epochs. XGBoost is a powerful

algorithm known for its capability to handle tabular data and perform well in

classification tasks. It optimizes the objective function using gradient boosting, which

leads to fast convergence and high predictive performance.

Overall, when comparing the training curves of the models, it is evident that

the CNN+GRU and XGBoost models demonstrate relatively stable and favorable

convergence patterns. The CNN+GRU model exhibits a steady reduction in loss,

while the XGBoost model showcases a smooth and consistent decrease in loss values.

These models can be considered the top performers in terms of convergence and

optimization. On the other hand, the Autoencoder-based models exhibit varying

convergence behaviors and may require further investigation to enhance their

performance and mitigate overfitting.
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Figure 6.13: epochs and training time comparison

Figure 6.13 shows the training time and number of epochs taken by each model

which reveals the computational efficiency of the models. Models with shorter training

times are generally more efficient and require less computational resources. A shorter

training time can be advantageous when dealing with large datasets or when

performing hyperparameter tuning.

In summary, the training curves provide valuable insights into the convergence

patterns of the models, the convergence behaviors of the models varied depending on

their architectures and the complexity of the problem at hand. The CNN and GRU

models showed relatively faster convergence, while the LSTM, the hybrid CNN+GRU

model, and XGboost models required more time to achieve convergence however, the

CNN+GRU and XGBoost models exhibit desirable convergence behaviors, while the

Autoencoder-based models show distinctive patterns that require additional attention.

Understanding these convergence characteristics helps in assessing the models’

training stability and identifying areas for potential improvement.
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7 Conclusion and future work

7.1 Conclusion

In this thesis, we explored and evaluated various deep-learning models for anomaly

detection in edge IIoT systems. Through extensive experimentation and analysis, we

have gained valuable insights into the performance and capabilities of these models.

The results demonstrate the effectiveness of different neural network architectures,

including CNN, GRU, CNN+GRU, LSTM, XGBoost, and Autoencoder-based models

in detecting anomalies in edge IIoT data.

Among the models evaluated, the XGBoost model emerges as the top performer,

consistently achieving high accuracy (96.41%), precision (98.57%), recall (96.50%),

and F1 score (96.03%). CNN+GRU Hybrid model follows XGBoost with 99.94%

accuracy, it combines the spatial feature extraction capabilities of CNNs with the

temporal sequence modeling capabilities of GRUs, enabling it to capture both local

patterns and long-term dependencies in the data. The hybrid model’s superior

performance highlights the importance of leveraging multiple neural network

architectures for enhanced anomaly detection in edge IIoT systems. When compared

the CNN+GRUmodels’ performance by including normal data samples in the training

data of the CNN+GRU model has proven to be highly beneficial. The model’s

performance significantly improved, achieving a higher accuracy of 94.94% (compared

to 82.44% without normal samples), a recall of 92.29% (compared to 73.52%), precision

of 98.49% (compared to 93.63%), F1-Score of 95.24% (compared to 82.18%), and a
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reduced false alarm rate (FAR) of 0.001 (compared to 0.0038). By learning from

normal data patterns, the model becomes more effective in distinguishing abnormal

patterns, leading to better anomaly detection. The results highlight the importance

of using a balanced dataset that includes both normal and abnormal samples to

enhance the model’s performance and real-world applicability in detecting anomalies

accurately and efficiently.

However, it is worth noting that not all models perform equally well. The

Autoencoder-based models, while exhibiting reasonable accuracy (71.43%), fall short

in terms of precision (71.43%), recall (71.43%), and F1 score (71.43%). This suggests

that the unsupervised nature of Autoencoders may limit their ability to accurately

identify anomalies in complex edge IIoT data. Further investigation and improvement

are needed to enhance the performance of these models.

Furthermore, computational efficiency is a critical factor in real-world

implementation. The CNN model stands out as the most efficient, with faster

convergence and lower training times. On the other hand, the hybrid CNN+GRU

model requires significantly more computational resources but achieves the highest

detection performance. This trade-off between performance and computational

efficiency needs to be carefully considered when deploying these models in

resource-constrained edge IIoT environments.

7.2 Future Work

This research opens up several avenues for future work in the field of anomaly

detection in edge IIoT systems. Some potential areas of exploration include:

1. Model Optimization: Further optimization techniques can be applied to

improve the performance and efficiency of the hybrid CNN+GRU model. This can
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involve architecture refinement, hyperparameter tuning, and regularization methods

to reduce overfitting and enhance generalization.

2. Data Augmentation: Investigate the effectiveness of data augmentation

techniques in augmenting the limited labeled dataset for training deep learning models.

Techniques such as synthetic data generation, oversampling, and augmentation

through transformations can help address the data scarcity challenge.

3. Transfer Learning: Explore the applicability of transfer learning by

leveraging pre-trained models on large-scale datasets for anomaly detection in edge

IIoT systems. This approach can potentially enhance the performance of models by

leveraging knowledge learned from related domains.

4. Ensemble Methods: Investigate the potential of ensemble methods by

combining multiple models to achieve higher accuracy and robustness. Techniques

such as model averaging, stacking, and boosting can be explored to harness the

collective intelligence of diverse models.

5. Real-time Anomaly Detection: Develop real-time anomaly detection

systems that can process and analyze streaming data from edge IIoT devices in real

time. This would involve designing efficient data ingestion, processing, and prediction

pipelines to enable timely detection and response to anomalies.

6. Interpretability and Explainability: Focus on enhancing the

interpretability and explainability of deep learning models for anomaly detection.

Techniques such as attention mechanisms, visualization methods, and rule-based

post-processing can provide insights into the decision-making process of the models.

In conclusion, this thesis contributes to the field of anomaly detection in edge

IIoT systems by evaluating and comparing various deep learning models. The findings
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shed light on the performance, strengths, and limitations of these models, guiding

future research and development efforts. By addressing the challenges of anomaly

detection, we can enhance the reliability, security, and efficiency of edge IIoT systems,

paving the way for their widespread adoption and deployment.
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8 Appendix

In this chpater, additional information and supporting materials are provided

to further enhance the understanding of the research presented in this thesis. The

appendix includes supplementary figures, tables, code snippets, or any other relevant

details that provide additional context or evidence for the findings and conclusions

presented in the main body of the thesis. These additional resources aim to provide a

more comprehensive view of the research process and analysis conducted throughout

the study.

8.1 Code

8.1.1 Datapreprocessing

Datset: https://www.kaggle.com/datasets/mohamedamineferrag/

edgeiiotset-cyber-security-dataset-of-iot-iiot

import os

import numpy as np

import pandas as pd

import tensorflow as tf

df = pd.read_csv(’DNN-EdgeIIoT-dataset.csv’, low_memory=False)

# Data preprocessing steps...
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from sklearn.utils import shuffle

drop_columns = ["frame.time", "ip.src_host", "ip.dst_host",

"arp.src.proto_ipv4","arp.dst.proto_ipv4",

"http.file_data","http.request.full_uri",

"icmp.transmit_timestamp",

"http.request.uri.query", "tcp.options",

"tcp.payload","tcp.srcport",

"tcp.dstport", "udp.port", "mqtt.msg"]

df.drop(drop_columns, axis=1, inplace=True)

df.dropna(axis=0, how=’any’, inplace=True)

df.drop_duplicates(subset=None, keep="first", inplace=True)

df = shuffle(df)

df.isna().sum()

print(df[’Attack_type’].value_counts())

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn import preprocessing

def encode_text_dummy(df, name):

dummies = pd.get_dummies(df[name])

for x in dummies.columns:

dummy_name = f"{name}-{x}"

df[dummy_name] = dummies[x]

df.drop(name, axis=1, inplace=True)
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encode_text_dummy(df,’http.request.method’)

encode_text_dummy(df,’http.referer’)

encode_text_dummy(df,"http.request.version")

encode_text_dummy(df,"dns.qry.name.len")

encode_text_dummy(df,"mqtt.conack.flags")

encode_text_dummy(df,"mqtt.protoname")

encode_text_dummy(df,"mqtt.topic")

empty_cols = [col for col in df.columns if df[col].isnull().all()]

empty_cols

skip_list = ["icmp.unused", "http.tls_port", "dns.qry.type", "mqtt.msg_decoded_as"]

df[skip_list[3]].value_counts()

X = df.drop([label_col], axis=1)

y = df[label_col]

8.1.2 Imbalanced Data Handling

from imblearn.over_sampling import RandomOverSampler

import warnings

warnings.filterwarnings("ignore") #’Port_Scanning’, ’XSS’,

minority_classes = [ ’Ransomware’, ’Fingerprinting’, ’MITM’]

desired_samples = {

# ’Port_Scanning’: 20000,

# ’XSS’: 20000,

’Ransomware’: 10000,
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’Fingerprinting’: 2000,

’MITM’: 2000

}

mask = df[label_col].isin(minority_classes)

minority_mask = df[label_col].isin(minority_classes)

X_minority = X[minority_mask]

y_minority = y[minority_mask]

# Imbalanced data handling steps...

oversample = RandomOverSampler(sampling_strategy={k: desired_samples[k] if k in desired_samples else ’auto’ for k in minority_classes},

random_state=42)

X_oversampled, y_oversampled = oversample.fit_resample(X[mask], y[mask])

# Concatenate the oversampled data with the original data

X_balanced = pd.concat([X, X_oversampled])

y_balanced = pd.concat([y, y_oversampled])

8.1.3 Data Splitting

from sklearn.model_selection import train_test_split

# Split into train and test sets

#X_train, X_test, y_train, y_test = train_test_split(X_balanced,

y_balanced, test_size=0.2, random_state=1, stratify=y_balanced)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=1, stratify=y)
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# Split train set into train and validation sets

#X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size=0.25, random_state=1, stratify=y_train)

#### for XGBoost model

from sklearn.model_selection import train_test_split

# Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_balanced, y_balanced, test_size=0.2, random_state=1, stratify=y_balanced)

8.1.4 Data Encoding

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn import preprocessing

# Data encoding steps...

from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()

y_train = label_encoder.fit_transform(y_train)

y_test = label_encoder.fit_transform(y_test)

label_encoder.classes_

from sklearn.preprocessing import MinMaxScaler
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min_max_scaler = MinMaxScaler()

X_train = min_max_scaler.fit_transform(X_train)

X_test = min_max_scaler.transform(X_test)

import numpy as np

# assuming X_train and X_test are DataFrames

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)

input_shape = X_train.shape[1:]

num_classes = len(np.unique(y_train))

num_classes

from tensorflow.keras.utils import to_categorical

y_train = to_categorical(y_train, num_classes=num_classes)

y_test = to_categorical(y_test, num_classes=num_classes)

### for XGBoost model

from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()

y_train = label_encoder.fit_transform(y_train)

y_val = label_encoder.fit_transform(y_val)

y_test = label_encoder.fit_transform(y_test)
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label_encoder.classes_

from sklearn.preprocessing import MinMaxScaler

min_max_scaler = MinMaxScaler()

X_train = min_max_scaler.fit_transform(X_train)

X_val = min_max_scaler.fit_transform(X_val)

X_test = min_max_scaler.transform(X_test)

input_shape = X_train.shape[1:]

num_classes = len(np.unique(y_train))

num_classes

from tensorflow.keras.utils import to_categorical

y_train = to_categorical(y_train, num_classes=num_classes)

y_val = to_categorical(y_val, num_classes=num_classes)

y_test = to_categorical(y_test, num_classes=num_classes)

8.1.5 Metrics:

import keras.backend as K

import tensorflow as tf

def f1_score(y_true, y_pred):

true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))

possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))

predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))

precision = true_positives / (predicted_positives + K.epsilon())
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recall = true_positives / (possible_positives + K.epsilon())

f1_val = 2*(precision*recall)/(precision+recall+K.epsilon())

return f1_val

def false_alarm_rate(y_true, y_pred):

true_negatives = K.sum(K.round(K.clip((1 - y_true) * (1 - y_pred), 0, 1)))

false_positives = K.sum(K.round(K.clip((1 - y_true) * y_pred, 0, 1)))

return false_positives / (false_positives + true_negatives)

# Define custom metric precision

def precision(y_true, y_pred):

true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))

predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))

precision = true_positives / (predicted_positives + K.epsilon())

return precision

8.1.6 Models

CNN Model:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense,

Dropout, BatchNormalization

model = Sequential()

model.add(Conv1D(64, 3, activation=’relu’, input_shape=(input_shape)))
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model.add(MaxPooling1D(2))

model.add(Conv1D(128, 3, activation=’relu’))

model.add(MaxPooling1D(2))

model.add(Conv1D(256, 3, activation=’relu’))

model.add(MaxPooling1D(2))

model.add(Conv1D(512, 3, activation=’relu’))

model.add(MaxPooling1D(2))

model.add(Conv1D(256, 3, activation=’relu’))

model.add(MaxPooling1D(2))

model.add(Flatten())

model.add(Dense(64, activation=’relu’))

model.add(Dense(num_classes,activation=’softmax’))

GRU Model:

model = Sequential()

model.add(GRU(units=32, input_shape=input_shape, implementation=2,

activation=’tanh’, recurrent_activation=’sigmoid’, recurrent_dropout=0,

unroll=False, use_bias=True, reset_after=True, return_sequences=True))

model.add(GRU(units=64, implementation=2, activation=’tanh’,

recurrent_activation=’sigmoid’, recurrent_dropout=0, unroll=False,

use_bias=True, reset_after=True))

model.add(Dense(units=32, activation=’relu’))

model.add(Dense(units=16, activation=’relu’))

model.add(Dense(units=num_classes, activation=’softmax’))
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LSTM Model:

from keras.models import Sequential

from keras.layers import LSTM, Dense

from keras.layers import GlobalAveragePooling1D

# model = Sequential()

# model.add(LSTM(units=128, activation = ’tanh’, input_shape=input_shape, return_sequences=True,

# recurrent_activation = ’sigmoid’,

# recurrent_dropout = 0,

# unroll = False,

# use_bias = True))

# model.add(LSTM(256, activation = ’tanh’))

# model.add(LSTM(512, activation = ’tanh’))

# model.add(Dense(units=128, activation=’tanh’))

# model.add(Dense(num_classes, activation=’softmax’))

model = Sequential()

model.add(LSTM(units=128, activation = ’tanh’, input_shape=input_shape, return_sequences=True))

model.add(LSTM(256, activation = ’tanh’))

model.add(Dense(num_classes, activation=’softmax’))

model.summary()

CNN+GRU modell:
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# CNN model

cnn_input = Input(shape=input_shape)

cnn_layer = Conv1D(64, 3, activation=’relu’)(cnn_input)

cnn_layer = MaxPooling1D(2)(cnn_layer)

cnn_layer = Conv1D(128, 3, activation=’relu’)(cnn_layer)

cnn_layer = MaxPooling1D(2)(cnn_layer)

cnn_layer = Conv1D(256, 3, activation=’relu’)(cnn_layer)

cnn_layer = MaxPooling1D(2)(cnn_layer)

# cnn_layer = Conv1D(512, 3, activation=’relu’)(cnn_layer)

# cnn_layer = MaxPooling1D(2)(cnn_layer)

cnn_layer = Conv1D(256, 3, activation=’relu’)(cnn_layer)

cnn_layer = MaxPooling1D(2)(cnn_layer)

cnn_layer = Flatten()(cnn_layer)

cnn_layer = Dense(64, activation=’relu’)(cnn_layer)

cnn_layer = Dense(64, activation=’relu’)(cnn_layer)

gru_input = Input(shape=input_shape)

gru_layer = GRU(units=32, input_shape=input_shape, implementation=2,

activation=’tanh’, recurrent_activation=’sigmoid’,

recurrent_dropout=0, unroll=False, use_bias=True,

# Inputs, if masked, are strictly right-padded

reset_after=True)(gru_input)#return_sequences = True

#gru_layer = GRU(units=64, activation=’tanh’)(gru_layer)

#gru_layer = Dense(units=32, activation=’tanh’)(gru_layer)

gru_layer = Dense(units=32, activation=’tanh’)(gru_layer)

# Concatenate the output from the CNN and GRU models

concat_layer = concatenate([cnn_layer, gru_layer])
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# Output layer

output_layer = Dense(num_classes, activation=’softmax’)(concat_layer)

# Define the model

model = Model(inputs=[cnn_input, gru_input], outputs=output_layer)

Autoencoder+CNN:

from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D,

Flatten, UpSampling1D, Dense

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras import regularizers

# Define the encoder model

encoder_inputs = Input(shape=input_shape)

x = Conv1D(32, 3, activation=’relu’, padding=’same’)(encoder_inputs)

x = MaxPooling1D(2, padding=’same’)(x)

x = Conv1D(64, 3, activation=’relu’, padding=’same’)(x)

x = MaxPooling1D(2, padding=’same’)(x)

x = Conv1D(128, 3, activation=’relu’, padding=’same’)(x)

encoder_outputs = MaxPooling1D(2, padding=’same’)(x)

# Define the decoder model

x = Conv1D(128, 3, activation=’relu’, padding=’same’)(encoder_outputs)

x = UpSampling1D(2)(x)

x = Conv1D(64, 3, activation=’relu’, padding=’same’)(x)

x = UpSampling1D(2)(x)

x = Conv1D(32, 3, activation=’relu’, padding=’same’)(x)

x = UpSampling1D(2)(x)
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decoder_outputs = Conv1D(1, 3, activation=’sigmoid’, padding=’same’)(x)

# Combine the encoder and decoder models to form the autoencoder

encoder = Model(inputs=encoder_inputs, outputs=encoder_outputs)

decoder = Model(inputs=encoder_outputs, outputs=decoder_outputs)

autoencoder = Model(inputs=encoder_inputs, outputs=decoder_outputs)

# Define the classifier model

model = Sequential()

model.add(autoencoder)

model.add(Conv1D(64, 3, activation=’relu’, padding=’same’))

model.add(MaxPooling1D(2, padding=’same’))

model.add(Conv1D(128, 3, activation=’relu’, padding=’same’))

model.add(MaxPooling1D(2, padding=’same’))

model.add(Flatten())

model.add(Dense(64, activation=’relu’))

model.add(Dense(num_classes, activation=’softmax’))

model.summary()

Autoencoder+LSTM:

from keras.models import Sequential

from keras.layers import LSTM, Dense

from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D,

Flatten, Reshape, UpSampling1D, GRU, Dense

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.optimizers import Adam
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from tensorflow.keras.losses import categorical_crossentropy

from tensorflow.keras import regularizers

# Define the encoder model

encoder_inputs = Input(shape=input_shape)

x = Conv1D(32, 3, activation=’relu’, padding=’same’)(encoder_inputs)

x = MaxPooling1D(2, padding=’same’)(x)

x = Conv1D(64, 3, activation=’relu’, padding=’same’)(x)

x = MaxPooling1D(2, padding=’same’)(x)

x = Conv1D(128, 3, activation=’relu’, padding=’same’)(x)

encoder_outputs = MaxPooling1D(2, padding=’same’)(x)

# Define the decoder model

x = Conv1D(128, 3, activation=’relu’, padding=’same’)(encoder_outputs)

x = UpSampling1D(2)(x)

x = Conv1D(64, 3, activation=’relu’, padding=’same’)(x)

x = UpSampling1D(2)(x)

x = Conv1D(32, 3, activation=’relu’, padding=’same’)(x)

x = UpSampling1D(2)(x)

decoder_outputs = Conv1D(1, 3, activation=’sigmoid’, padding=’same’)(x)

# Combine the encoder and decoder models to form the autoencoder

encoder = Model(inputs=encoder_inputs, outputs=encoder_outputs)

decoder = Model(inputs=encoder_outputs, outputs=decoder_outputs)

autoencoder = Model(inputs=encoder_inputs, outputs=decoder_outputs)

model = Sequential()

model.add(autoencoder)
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model.add(LSTM(units=64, activation = ’tanh’,

input_shape= autoencoder.output_shape[1:],

return_sequences=True))

model.add(LSTM(128, activation = ’tanh’))

model.add(Dense(num_classes, activation=’softmax’,

kernel_regularizer=regularizers.l2( l2=0.01)))

model.summary()

Autoencoder+GRU:

from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D,

Flatten, Reshape, UpSampling1D, GRU, Dense

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.losses import categorical_crossentropy

# Define the encoder model

encoder_inputs = Input(shape=input_shape)

x = Conv1D(32, 3, activation=’relu’, padding=’same’)(encoder_inputs)

x = MaxPooling1D(2, padding=’same’)(x)

x = Conv1D(64, 3, activation=’relu’, padding=’same’)(x)

x = MaxPooling1D(2, padding=’same’)(x)

x = Conv1D(128, 3, activation=’relu’, padding=’same’)(x)

encoder_outputs = MaxPooling1D(2, padding=’same’)(x)

# Define the decoder model

x = Conv1D(128, 3, activation=’relu’, padding=’same’)(encoder_outputs)

x = UpSampling1D(2)(x)
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x = Conv1D(64, 3, activation=’relu’, padding=’same’)(x)

x = UpSampling1D(2)(x)

x = Conv1D(32, 3, activation=’relu’, padding=’same’)(x)

x = UpSampling1D(2)(x)

decoder_outputs = Conv1D(1, 3, activation=’sigmoid’, padding=’same’)(x)

# Combine the encoder and decoder models to form the autoencoder

encoder = Model(inputs=encoder_inputs, outputs=encoder_outputs)

decoder = Model(inputs=encoder_outputs, outputs=decoder_outputs)

autoencoder = Model(inputs=encoder_inputs, outputs=decoder_outputs)

model = Sequential()

model.add(autoencoder)

model.add(GRU(units=32, input_shape= autoencoder.output_shape[1:],

implementation=2, activation = ’tanh’,

recurrent_activation = ’sigmoid’,

recurrent_dropout = 0,

unroll = False,

use_bias = True,

#Inputs, if masked, are strictly right-padded

reset_after = True)) #for GRU only

# Add additional layers as needed

model.add(Dense(units=32, activation=’tanh’))

#model.add(Dense(units=64, activation=’tanh’))

model.add(Dense(units=num_classes, activation=’softmax’))
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XGBoost:

xgb_model = xgb.XGBClassifier()

xgb_model.fit(X_train, y_train, eval_set=[(X_train, y_train),

(X_val, y_val)], early_stopping_rounds=5)

8.1.7 Model Compilation

from tensorflow.keras.optimizers import Adam

from keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau

from keras.metrics import Recall, Precision

from tensorflow.keras.losses import CategoricalCrossentropy

from tensorflow.keras.callbacks import TensorBoard

opt = Adam(learning_rate=0.001)

model.compile(optimizer=opt, loss= ’categorical_crossentropy’,

metrics=[’accuracy’, Recall(), Precision(),

f1_score,false_alarm_rate])

early_stopping = EarlyStopping(monitor="val_loss", mode="min",

verbose=1, patience=5)

lr_reduce = ReduceLROnPlateau(monitor=’val_loss’, factor=0.5,

patience=5, mode="min", verbose=1, min_lr=0)

# Define the TensorBoard callback

tensorboard_callback = TensorBoard(log_dir=’./logs’)

call_backs = [early_stopping,tensorboard_callback]#,lr_reduce
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8.1.8 Training models

### for CNN+GRU model

EPOCHS = 100

BATCH_SIZE = 256

# Train the model

history = model.fit([X_train, X_train],y_train,

validation_split=0.2,

epochs=EPOCHS,

batch_size=BATCH_SIZE,

callbacks=call_backs,

verbose=1)

### for CNN, LSTM, GRU and autoencoder models

=

EPOCHS = 50

BATCH_SIZE = 256

history = model.fit(X_train, y_train,

#validation_data=(X_val, y_val),

validation_split=0.2,

epochs=EPOCHS,

batch_size=BATCH_SIZE,

callbacks=call_backs,
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#class_weight=class_weights,

verbose=1)

### Train the XGBoost model

xgb_model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_val, y_val)], early_stopping_rounds=5)

8.1.9 Evaluation:

Evaluation for Neural network models:

# Make predictions on the test set

predictions = model.predict(X_test)

y_pred = np.argmax(predictions, axis=1)

y_true = np.argmax(y_test, axis=1)

loss,accuracy,recall, precission, f1_score, far =

model.evaluate(X_test, y_test, verbose=0)

#CNN +GRU loss,accuracy,recall, precission, f1_score, far =

model.evaluate([X_test,X_test], y_test, verbose=0)

print(’loss: ’, loss)

print(’accuracy: ’, accuracy)

print(’recall: ’, recall)

print(’precission: ’, precission)

print(’f1_score: ’, f1_score)

print(’far: ’,far)
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Evaluation for XGBoost model:

from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score, roc_auc_score

from sklearn.metrics import log_loss, ndcg_score, average_precision_score

y_pred = xgb_model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred, average=’weighted’)

recall = recall_score(y_test, y_pred, average=’weighted’)

f1 = f1_score(y_test, y_pred, average=’weighted’)

auc = roc_auc_score(y_test, y_pred, average=’weighted’)

y_pred_proba = xgb_model.predict_proba(X_test)

logloss = log_loss(y_test, y_pred_proba)

print("Multi-class log loss:", logloss)
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