Cyclic Operators, Commutators, and Absolutely Continuous Measures

Joanne Dombrowski
Wright State University - Main Campus, joanne.dombrowski@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/math
Part of the Applied Mathematics Commons, Applied Statistics Commons, and the Mathematics Commons

Repository Citation
http://corescholar.libraries.wright.edu/math/57

This Article is brought to you for free and open access by the Mathematics and Statistics department at CORE Scholar. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
CYCLIC OPERATORS, COMMUTATORS,
AND ABSOLUTELY CONTINUOUS MEASURES

J. DOMBROWSKI

Abstract. Commutator equations are used to study the relationship between the
tridiagonal matrix structure of an unbounded cyclic selfadjoint operator and its
spectrum. Sufficient conditions are given for absolute continuity. Results are related
to the study of systems of orthogonal polynomials for which the measure of ortho-
gonality is supported on an unbounded subset of the real line.

1. Introduction. Let C be a selfadjoint operator with unit cyclic vector Φ, defined
on a separable Hilbert space H. A basis $\{\Phi_n\}$ can be obtained for H by
ortonormalizing $\{\Phi, C\Phi, C^2\Phi, \ldots\}$. It follows that the matrix with (i, j) entry
defined by $\langle C\Phi_i, \Phi_j \rangle$ has tridiagonal form:

$$
\begin{bmatrix}
b_1 & a_1 & 0 & 0 & \cdots \\
a_1 & b_2 & a_2 & 0 & \cdots \\
0 & a_2 & b_3 & 0 & \cdots \\
& \vdots & \vdots & \vdots & \ddots
\end{bmatrix}, \quad a_n > 0, \ b_n \text{ real.}
$$

(1.1)

This matrix, in turn, can be used to define an operator on the subset Ω of l^2
consisting of sequences for which matrix multiplication yields a sequence in l^2. If the
given operator C is bounded, then $\Omega = l^2$ and the matrix operator is unitarily
equivalent to C. In fact, the set of bounded cyclic selfadjoint operators on H can be
identified with the set of tridiagonal matrix operators satisfying (1.1) with $\{a_n\}$ and
$\{b_n\}$ bounded. In this case the sequences $\{a_n\}$ and $\{b_n\}$ provide information about
the spectral measure. Applications can be given to the study of systems of orthogo-
nal polynomials for which the measure of orthogonality is supported on a bounded
set (see [1–4]).

It is the purpose of this paper to consider matrices of the form (1.1) which
represent unbounded cyclic selfadjoint operators defined on a dense subset of a
separable Hilbert space H. The tridiagonal structure of these matrices will be used
to obtain information about the spectral measure of the corresponding selfadjoint
operator. Applications will be given to the study of systems of orthogonal poly-
nomials for which the interval of orthogonality is infinite.
It will be shown below that (1.1) defines a selfadjoint operator \(C \) if \(\Sigma 1/a_n = \infty \).\n\nIn this case the spectral resolution \(C = \int \lambda \, dE_\lambda \) gives rise to a spectral measure \(\mu_\beta = ||E(\beta)\phi||^2 \), defined for the Borel subsets of the real line. The polynomials defined by
\[
\begin{align*}
P_1(\lambda) &= 1, \\
P_2(\lambda) &= \frac{\lambda - b_1}{a_1}, \\
P_n(\lambda) &= \frac{(\lambda - b_{n-1})P_{n-1}(\lambda) - a_{n-2}P_{n-2}(\lambda)}{a_{n-1}}
\end{align*}
\]
are orthonormal with respect to the usual inner product on \(L^2(\mu) \) (see [6, Chapter VII]). These polynomials will be used to show that if \(b_n = 0 \), \(d_n = a_n - a_{n-1} \geq 0 \), and \(\Sigma_{n=1}^{\infty}|d_{n+1} - d_n| < \infty \) for all \(n \), then \(C \) has no eigenvalues. Under additional restrictions on the sequence \(\{d_n - d_{n-1}\} \) it will be shown that \(C \) is absolutely continuous, or equivalently, that \(\mu \) is absolutely continuous.

From a theoretical point of view the techniques to be used are related to the work of C. R. Putnam on the use of commutator equations in the study of spectral measures (see [5], for example). The use of commutator equations is obviously complicated by the fact that the operators to be studied are unbounded and hence only densely defined.

2. Main results. The first lemma provides a sufficient condition for selfadjointness.

Lemma 1. The matrix operator defined by (1.1) on the subset \(\Omega \) of \(l^2 \) consisting of those sequence for which matrix multiplication yields a sequence in \(l^2 \), is selfadjoint if \(\Sigma 1/a_n = \infty \).

Proof. To show that the matrix operator \(C \) is symmetric it is necessary to show that \(\langle Cx, y \rangle = \langle x, Cy \rangle \) for any two sequences \(x, y \) in \(\Omega \). Toward this end let \(x = \{x_i\}_{i=1}^{\infty} \) and \(y = \{y_i\}_{i=1}^{\infty} \). It follows that
\[
\langle Cx, y \rangle = \lim_{N \to \infty} \left[(b_1x_1 + a_1x_2)\bar{y}_1 + \sum_{i=2}^{N} (a_{i-1}x_{i-1} + b_ix_i + a_ix_{i+1})\bar{y}_i \right]
\]
and
\[
\langle x, Cy \rangle = \lim_{N \to \infty} \left[(b_1\bar{y}_1 + a_1\bar{y}_2)x_1 + \sum_{i=2}^{N} (a_{i-1}\bar{y}_{i-1} + b_i\bar{y}_i + a_i\bar{y}_{i+1})x_i \right].
\]
If \(a_N \) denotes the \(N \)th partial sum of \(\langle Cx, y \rangle \) and \(\beta_N \) denotes the \(N \)th partial sum of \(\langle x, Cy \rangle \), then \(|a_N - \beta_N| = |a_Nx_N\bar{y}_N - a_Nx_N\bar{y}_{N+1}| \). Assume \(\lim_{N \to \infty}|a_N - \beta_N| = 2d \), with \(d > 0 \). Then for \(N \) sufficiently large
\[
d \leq |a_N - \beta_N| \leq |a_Nx_N\bar{y}_N| + |a_Nx_N\bar{y}_{N+1}|.
\]
It follows that \(|x_N\bar{y}_{N+1}| + |x_N\bar{y}_{N+1}| \geq d/a_N \) for \(N \) sufficiently large which contradicts the fact that \(\Sigma_{N=1}^{\infty}||x_{N+1}\bar{y}_N|| + ||x_N\bar{y}_{N+1}|| \) converges. Therefore \(d = 0 \) and \(C \) is symmetric. To show that \(C \) is selfadjoint, assume that \(y = \{y_i\}_{i=1}^{\infty} \) is in the domain of \(C^* \) and that \(C^* = \omega = (\omega_i) \). Then \(\langle C\Phi, y \rangle = \langle \Phi, C^*y \rangle \) implies that \(\omega_i = a_{i-1}\bar{y}_{i-1} + b_i\bar{y}_i + a_i\bar{y}_{i+1} \) and hence that \(C^*y = Cy \). Therefore \(C \) is selfadjoint. \(\square \)
The objective now is to analyze the spectral measure. Throughout the remainder of the paper the following will be assumed:

(i) C is the cyclic selfadjoint operator defined on a dense subset of l^2 by the matrix (1.1) with $\Sigma 1/a_n = \infty$.

(2.1) (ii) The diagonal entries in (1.1) vanish.

(iii) The subdiagonal sequence $\{a_n\}$ monotonically increases to infinity.

Also, the following notation will be used:

(i) $J = (T - T^*)/2i$ where $T\Phi_n = 2a_n\Phi_{n+1}$.

(ii) J_N is the bounded operator obtained from J by letting

\[
a_n = a_N \text{ for } n \geq N.
\]

(iii) $CJ_N - J_N C = -2iK_N$ on Ω_N for $N = 1, 2, 3, \ldots$.

(iv) $d_n = a_n - a_{n-1}$ ($a_0 = 0$).

Note that for each N, Ω_N is a dense linear subset of l^2 which contains the basis vectors $\{\Phi_n\}$. Also K_N, defined by (2.2)(iii), is bounded if $\{d_n\}$ is a bounded sequence.

Lemma 2. Assume (2.1) and (2.2). If $\{d_n\}$ is bounded and $Cx = \lambda x$, then

\[
\langle K_N x, x \rangle = 0 \text{ for } N = 1, 2, \ldots.
\]

Proof. If $Cx = \lambda x$ with $x \neq 0$, then x is a nonzero multiple of $(P_1(\lambda), P_2(\lambda), P_3(\lambda), \ldots)$ with $\Sigma |P_n(\lambda)|^2 < \infty$. Let $x_j = (P_1(\lambda), \ldots, P_j(\lambda), 0, \ldots)$. If $C_\lambda = C - \lambda I$ then $\langle C_\lambda J_N x_j, x \rangle = -2i\langle K_N x_j, x \rangle$. Since $C_\lambda x = 0$,

\[
\langle J_N C_\lambda x_j, x \rangle = 2i\langle K_N x_j, x \rangle.
\]

Thus since K_N is a bounded operator, $\lim_{j \to \infty} |\langle C_\lambda x_j, J_N x \rangle| = 2|\langle K_N x, x \rangle|$ exists. Assume $\lim_{j \to \infty} |\langle C_\lambda x_j, J_N x \rangle| = 2p$, $p > 0$. If $J_N x = (t_1, t_2, \ldots)$ then

\[
|\langle C_\lambda x_j, J_N x \rangle| = |t_j a_{j-1} P_{j-1}(\lambda) - \lambda t_j P_j(\lambda) + a_j P_j(\lambda) t_{j+1}| = |t_j a_{j+1} P_{j+1}(\lambda) + a_j t_{j+1} P_j(\lambda)|.
\]

If $d_n = a_n - a_{n-1} \leq M$ then for j sufficiently large

\[
p < |\langle C_\lambda x_j, J_N x \rangle| \leq 2Mj \max \left\{ |t_j P_{j+1}(\lambda)|, |t_{j+1} P_j(\lambda)| \right\}.
\]

But this contradicts the fact that $\Sigma |t_j P_{j+1}(\lambda)| + |t_{j+1} P_j(\lambda)| < \infty$. It follows that $\lim_{j \to \infty} |\langle C_\lambda x_j, J_N x \rangle| = 2|\langle K_N x, x \rangle| = 0$. \[\square\]

Theorem 1. Assume (2.1). If $d_n = a_n - a_{n-1}$ and $\Sigma |d_{n+1} - d_n| < \infty$, then C has no eigenvalues.

Proof. Suppose λ is an eigenvalue with corresponding eigenvector $x = (P_1(\lambda), P_2(\lambda), P_3(\lambda), \ldots)$. Choose N_0 sufficiently large such that for $n \geq N_0$, $d_n < \frac{1}{2}(|a_n| - |\lambda|/2)$ and $\Sigma |d_n| \leq \frac{1}{2}(|a_n| - |\lambda|/2)$. Let N be defined by $P_N(\lambda) = \max_{n \geq N_0} P_n^2(\lambda)$. Then $CJ_N - J_N C = -2iK_N$ on a dense linear subset Ω_N of \mathscr{H}. Note that $K_N = [k_{ij}]$ where $k_{ii} = a_i^2 - a_{i-1}^2$ for $i = 1, \ldots, N$, $k_{ii} = a_N(a_i - a_{i-1})$.
for \(i > N \), and \(k_{i+2} = k_{i+2,i} = \frac{1}{2}a_N(a_{i+1} - a_i) \) for \(i \geq N \). All other matrix entries of \(K_N \) are zeros. It is shown in [2] that

\[
\sum_{n=1}^{N} \left(a_n^2 - a_{n-1}^2 \right) P_n^2(\lambda) = \left[a_{N-1} P_{N-1}(\lambda) - \frac{\lambda}{2} P_N(\lambda) \right]^2 + \left(a_N^2 - \frac{\lambda^2}{4} \right) P_N^2(\lambda).
\]

Thus

\[
\langle K_N x, x \rangle = \sum_{n=1}^{N} \left(a_n^2 - a_{n-1}^2 \right) P_n^2(\lambda) + \sum_{N+1}^{\infty} a_n d_i P_i^2(\lambda) + \sum_{N+1}^{\infty} a_n d_i d_{i+1} P_{i+1}(\lambda) - a_N \sum_{N+1}^{\infty} \frac{1}{2} d_i \left[P_i^2(\lambda) + P_{i+1}^2(\lambda) \right]
\]

\[
\geq \left[a_{N-1} P_{N-1}(\lambda) - \frac{\lambda}{2} P_N(\lambda) \right]^2 + \left(a_N^2 - \frac{\lambda^2}{4} \right) P_N^2(\lambda) + \frac{1}{2} a_N d_{N+1}^2 P_{N+1}^2(\lambda)
\]

\[
- \frac{1}{2} a_N d_{N+1} P_{N}^2(\lambda) - a_N P_{N}^2(\lambda) \sum_{N+1}^{\infty} |d_i - d_{i-1}|
\]

\[
> \left[a_{N-1} P_{N-1}(\lambda) - \frac{\lambda}{2} P_N(\lambda) \right]^2 + \frac{1}{4} a_N \left(a_N - \frac{|\lambda|}{2} \right) P_N^2(\lambda).
\]

If \(P_N(\lambda) = P_{N-1}(\lambda) = 0 \), then \(P_{N-2}(\lambda) = \cdots = P_1(\lambda) = 0 \) which cannot happen since \(P_1 = 1 \). Therefore \(\langle K_N x, x \rangle \neq 0 \) and by the previous lemma, \(\lambda \) is not an eigenvalue. \(\square \)

Sufficient conditions will now be given for absolute continuity. Another lemma is needed. All notation remains as before.

Lemma 3. Assume (2.1) and (2.2). If the sequence \(\{d_n\} \) is bounded, then for any bounded interval \(\Delta \) and positive integer \(N \),

\[
|\langle K_N E(\Delta) \Phi_1, E(\Delta) \Phi_1 \rangle| \leq \frac{1}{2} \| J_N \| | \Delta \| \| E(\Delta) \Phi_1 \|^2.
\]

Proof. Let \(\lambda \) be the midpoint of the bounded interval \(\Delta \) and let \(C_\lambda = C - \lambda I \). If \(x_n = \sum_{i=1}^{n} a_i \Phi_i \), where \(a_i = \langle E(\Delta) \Phi_i, \Phi_i \rangle \), then \(C_\lambda J_N x_n - J_N C_\lambda x_n = -2i K_N x_n \) and \(\langle J_N x_n, C_\lambda E(\Delta) \Phi_1 \rangle - \langle C_\lambda x_n, J_N E(\Delta) \Phi_1 \rangle = -2i \langle K_N x_n, E(\Delta) \Phi_1 \rangle \). Since \(J_N \) and \(K_N \) are bounded, \(\lim_{n \to \infty} \langle C_\lambda x_n, J_N E(\Delta) \Phi_1 \rangle \) exists and it will be shown that this limit is \(\langle C_\lambda E(\Delta) \Phi_1, J_N E(\Delta) \Phi_1 \rangle \). If so then

\[
\langle J_N E(\Delta) \Phi_1, C_\lambda E(\Delta) \Phi_1 \rangle - \langle C_\lambda E(\Delta) \Phi_1, J_N E(\Delta) \Phi_1 \rangle
\]

\[
= -2i \langle K_N E(\Delta) \Phi_1, E(\Delta) \Phi_1 \rangle
\]

and since \(\| C_\lambda E(\Delta) \Phi_1 \| \leq \frac{1}{2} |\Delta| \| E(\Delta) \Phi_1 \| \), the lemma readily follows.

To evaluate the required limit, let \(y_n = \sum_{i=1}^{n} \langle C_\lambda E(\Delta) \Phi_i, \Phi_i \rangle \Phi_i \). Since \(E(\Delta) \Phi_1 \) is in the domain of \(C_\lambda \), the sequence \(\{y_n\} \) converges to \(C_\lambda E(\Delta) \Phi_1 \), and so \(\{J_N y_n\} \) also converges. Let \(\omega_n = C_\lambda x_n - y_{n-1} = (a_{n-1} a_{n-1} - \lambda a_n) \Phi_n + a_\lambda \Phi_{n+1} \). Then \(\lim_{n \to \infty} \langle J_N \omega_n, E(\Delta) \Phi_1 \rangle \) must exist. Since \(E(\Delta) \Phi_1 = \sum_{i=1}^{\infty} a_i \Phi_i \),

\[
|\langle \omega_n, J_N E(\Delta) \Phi_1 \rangle| = |(a_{n-1} a_{n-1} - \lambda a_n) q_n + a_\lambda q_{n+1}|
\]
where \(q_n = \langle J_N E(\Delta) \Phi_1, \Phi_n \rangle \). Assume \(\lim |\langle \omega_n, J_N E(\Delta) \Phi_1 \rangle| = 2p \) where \(p > 0 \). Since \(\{d_n\} \) is bounded there exists \(M \) such that \(a_n \leq nM \). It follows that for \(n \) sufficiently large
\[
p < |\langle \omega_n, J_N E(\Delta) \Phi_1 \rangle| < nM \left(|a_{n-1}q_n| + |a_nq_n| + |a_nq_{n+1}| \right).
\]
But this contradicts the fact that \(\sum |a_{n-1}q_n| + |a_nq_n| + |a_nq_{n+1}| < \infty \). Therefore \(\lim |\langle \omega_n, J_N E(\Delta) \Phi_1 \rangle| = 0 \). Hence
\[
\lim_{n \to \infty} \langle C_Nx_n, J_N E(\Delta) \Phi_1 \rangle = \langle C_N E(\Delta) \Phi_1, J_N E(\Delta) \Phi_1 \rangle
\]
as was to be shown. \(\square \)

Theorem 1 claims that if \(\sum |d_{n+1} - d_n| < \infty \) then \(C \) has no eigenvalues. The next theorem provides a sufficient condition for absolute continuity. Note that the conditions of the theorem are satisfied if \(\{d_n\} \) is monotone increasing, bounded above, and \(d_{n+1} - d_n \leq d_n - d_{n-1} \). In fact, all examples of this theorem are of this type.

Theorem 2. Assume (2.1). Let \(d_n = a_n - a_{n-1} \). If \(\{d_n\} \) is bounded and \(d_{n+1} + d_n - 1 \leq 2d_n \) for \(n \geq N \geq 2 \) then \(C \) is absolutely continuous.

Proof. The equation \(CJ_N - J_N C = -2iK_N \) holds on a dense subset \(\Omega_N \) where \(J_N \) is defined in (2.2) and \(K_N = [k_{ij}] \) with \(k_{ii} = a_i^2 - a_{i-1}^2 \) for \(i = 1, \ldots, N \), \(k_{ii} = a_N(a_i - a_{i-1}) \) for \(i > N \), and \(k_{i,i+2} = \frac{1}{2}a_N(a_{i+1} - a_i) \) for \(i \geq N \). All other matrix entries of \(K_N \) are zeros. Note also that for any interval \(\Delta \)
\[
E(\Delta) \Phi_1 = \sum_{i=1}^{\infty} \langle E(\Delta) \Phi_1, \Phi_i \rangle \Phi_i, \quad \text{where } \langle E(\Delta) \Phi_1, \Phi_i \rangle = \int_{\Delta} P_i d\mu.
\]
If \(x_n = \sum_{i=1}^{n} \langle E(\Delta) \Phi_1, \Phi_i \rangle \Phi_i \), then for \(n > N \)
\[
\langle K_N x_n, x_n \rangle = \sum_{i=1}^{N} \left(a_i^2 - a_{i-1}^2 \right) \int_{\Delta} P_i d\mu + \sum_{i=N+1}^{n} a_N(a_i - a_{i-1}) \int_{\Delta} P_i d\mu
\]
\[
+ \sum_{i=N+1}^{n-1} a_N(a_i - a_{i-1}) \int_{\Delta} P_{i+1} d\mu - \int_{\Delta} P_{i-1} d\mu
\]
\[
\geq \left(a_1^2 - a_{N-1}^2 \right) \int_{\Delta} P_1 d\mu + \sum_{i=N+1}^{n} a_N(a_i - a_{i-1}) \int_{\Delta} P_i d\mu
\]
\[
- \left(\frac{1}{2}a_N(a_1 - a_{N-1}) \right) \left[\int_{\Delta} P_{i+1} d\mu \right]^2 + \left[\int_{\Delta} P_{i-1} d\mu \right]^2
\]
\[
\geq a_1^2 \left| \int_{\Delta} P_1 d\mu \right|^2.
\]
This, together with the result of Lemma 3, implies that
\[
a_1^2 \left\| E(\Delta) \Phi_1 \right\|^4 \leq \frac{1}{2} \left\| J_N \right\| \left| \Delta \right| \left\| E(\Delta) \Phi_1 \right\|^2.
\]
Let β be a Borel subset of the real line of Lebesgue measure zero. Then for any $\varepsilon > 0$ there exists a pairwise disjoint sequence of intervals $\{\Delta_j\}$ such that $\beta \subseteq \bigcup \Delta_j$ and $\sum |\Delta_j| < \varepsilon$. Since

$$\mu(\beta) \leq \sum \mu(\Delta_j) \leq \frac{1}{2\alpha_1^2} \|J_N\| \sum |\Delta_j|$$

it readily follows that $\mu(\beta) = 0$. \qed

Another sufficient condition for absolute continuity is provided by the following theorem. It will be shown in the next section that many examples can be constructed with the sequence $\{d_n\}$ monotonically decreasing to a nonnegative limit.

THEOREM 3. Assume (2.1). Let $d_n = a_n - a_{n-1}$. If $\{d_n\}$ is bounded and $d_{n+1}^2 \leq d_{n+2}d_n$ for $n \geq N \geq 2$ then C is absolutely continuous.

PROOF. The proof is similar to that of Theorem 2. With J_N defined by (2.2) the operator K_N is obtained from the equation $CJ_N - J_NC = -2iK_N$ which holds on a dense subset of \mathcal{H}. For any interval Δ let $x_n = \sum_{i=1}^n (E(\Delta)\Phi_i, \Phi_i)\Phi_i$. Then for $n > N$,

$$\langle K_Nx_n, x_n \rangle = \sum_{i=1}^N (a_i^2 - a_i^{2-1}) \int_\Delta P_i d\mu + \sum_{i=1}^n a_N(a_i - a_{i-1}) \int_\Delta P_i d\mu$$

$$\sum_{i=1}^N (a_i^2 - a_i^{2-1}) \int_\Delta P_i d\mu + \sum_{i=1}^n a_N(a_i - a_{i-1}) \int_\Delta P_i d\mu$$

$$\geq \sum_{i=1}^n (a_i^2 - a_i^{2-1}) \int_\Delta P_i d\mu + \sum_{i=1}^n a_N(a_i - a_{i-1}) \int_\Delta P_i d\mu$$

$$\leq \sum_{i=1}^n a_Nd_i \int_\Delta P_{i+1} d\mu \int_\Delta P_{i-1} d\mu.$$

Since

$$\left| \sum_{i=N+1}^{n-1} a_Nd_i \int_\Delta P_{i+1} d\mu \int_\Delta P_{i-1} d\mu \right|$$

$$= a_N \sum_{i=N+1}^{n-1} \frac{d_i}{\sqrt{d_{i-1}}} \left| \int_\Delta P_{i+1} d\mu \right| \left| \int_\Delta P_{i-1} d\mu \right|$$

$$\leq \sum_{i=N+1}^{n-1} \frac{a_N}{2} \left[d_{i-1} \left| \int_\Delta P_{i-1} d\mu \right|^2 + \frac{d_i^2}{d_{i-1}} \left| \int_\Delta P_{i+1} d\mu \right|^2 \right]$$

it follows that $\langle K_Nx_n, x_n \rangle \geq a_1^2 \int_\Delta P_1 d\mu^2$. The proof ends with the same argument used in the proof of Theorem 2. \qed

3. Examples. The purpose of this final section is to illustrate the above results. Obviously all three theorems hold if the difference sequence $\{d_n\}$ is a constant sequence. As noted above, examples for Theorem 2 can be constructed by choosing
{d_n} to be monotone increasing, bounded above with \(d_{n+1} - d_n \leq d_n - d_{n-1} \). Choose, for example, \(d_n = \sum_{i=1}^{n} 1/2^i \). For this choice of \(d_n \) the hypotheses of Theorem 2 are satisfied but those of Theorem 3 are not.

Theorem 3 requires that the sequence \(\{d_n\} \) satisfy the condition \(d_{n+1}^2 \leq d_n d_{n+2} \) for \(n \geq N \). This condition implies that if \(d_n \leq d_{n+1} \) then \(d_{n+1} \leq d_{n+2} \). It follows that \(\{d_n\}_{n=N}^{\infty} \) is either monotone decreasing or eventually monotone increasing. If \(\{d_n\} \) is monotone increasing for \(n \geq M \) then \(d_{M+k} < d_{M+1}(d_{M+1}/d_M)^{k-1} \) for \(k = 1, 2, \ldots \), and so \(\{d_n\} \) either diverges or becomes eventually constant. Since Theorem 3 also requires that \(\{d_n\} \) be bounded it must be true that \(\{d_n\}_{n=N}^{\infty} \) is monotone decreasing.

Examples for Theorem 3 can be constructed by the following scheme. Choose \(\frac{1}{2} < d_2 < d_1 \). If \(\tau_2 = d_2(d_2/d_1) \) then \(\tau_2 < d_2 \) and it is possible to choose \(d_3 \) with \(\max(\tau_2, \frac{1}{2}) < d_3 < d_2 \). If \(d_1, \ldots, d_n \) have been chosen, let \(\tau_n = d_n^2/d_{n-1} \) and choose \(\max(\tau_n, \frac{1}{(n+1)(n+1)}) \leq d_{n+1} < d_n \). The end result is a monotone decreasing sequence \(\{d_n\} \) with \(d_{n+1} < d_n d_{n+2} \) and \(\sum d_n = \infty \). One specific example is \(d_n = 1/n \).

Another, perhaps more significant, example comes from the normalized Hermite polynomials which are orthonormal on \((-\infty, \infty)\) with respect to \(\mu = w(x)dx \) where \(w(x) = e^{-x^2} \). These polynomials satisfy a recursion formula of the form (1.2) with \(b_n = 0 \) and \(a_n = \sqrt{n}/2 \). If \(C \) is defined by (1.1) and \(J \) by (2.2) then \(CJ - JC = -iI \) where \(I \) denotes the identity operator (see [5, pp. 63–64] for an interesting interpretation of the operators \(C \) and \(J \)). In this case \(d_n = (1/\sqrt{2})(\sqrt{n} - \sqrt{n - 1}) \) and it can be shown that \(d_{n+1}^2 \leq d_n d_{n+2} \) so that the conditions of Theorem 3 are satisfied. Since \(\sqrt{n} - \sqrt{n - 1} = 1/(\sqrt{n} + \sqrt{n - 1}) \) the required inequality is equivalent to \((\sqrt{n} + 1/\sqrt{n})^2 \geq (\sqrt{n} + \sqrt{n - 1})(\sqrt{n + 2} + \sqrt{n + 1}) \) which is easily verified.

In a related example, suppose \(a_n^2 - a_{n-1}^2 = M \) for all \(n \), so that \(CJ - JC = -2iK \) where \(K \) is a multiple of the identity. If \(d_n = a_n - a_{n-1} \) then \(d_{n+1}^2 \leq d_n d_{n+2} \) is equivalent to \((a_{n+1} + a_n^2) \geq (a_n + a_{n-1})(a_{n-1} + a_{n+1}) \) which follows from the observations that \(a_n a_{n+1} = (a_n - d_n)(a_{n-1} + d_{n+1}) \leq c_n - d_{n+1}^2 \leq a_n^2 - d_{n+1}^2 \leq a_n^2 \) and that \(a_n - d_n \leq a_n a_{n+1} + d_{n+1} \leq a_n a_{n+1} + d_{n+1} \).

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, WRIGHT STATE UNIVERSITY, DAYTON, OHIO 45435