Fall 2004

CEG 320/520: Computer Organization and Assembly Language Programming

Jennifer White Doom
Wright State University - Main Campus, jennifer.doom@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/9

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
CEG 320/520: Computer Organization and Assembly Language Programming
Fall, 2004

Instructor

Dr. Jennifer White-Doom
jennifer.white-doom@wright.edu
http://www.wright.edu/~jennifer.white-doom
Office Hours: Immediately after class. On-line office hours by appointment.

Room and Time

6:05 - 7:20 MW in 242 Millett Hall

Course Description

[4 credit hours] Terminology and understanding of functional organizations and sequential operation of a digital computer. Program structure, and machine and assembly language topics including addressing, stacks, argument passing, arithmetic operations, traps, and input/output. Macros, modularization, linkers, and debuggers are used.

Additional Needs

Students with disabilities or any additional needs are encouraged to set up an appointment at their convenience to discuss any classroom or examination accommodations that may be necessary.

Reference Material

Text Books

Course Web Page: http://www.wright.edu/~jennifer.white-doom/
Information regarding schedule changes, exam times, assigned course readings, homework, and syllabus updates will be available via the course web page. Students are responsible for reading this material frequently. I will generally update it after each class. Students that are unable to access the course web page should contact me.
Assignments

Homework: Homework assignments and solutions will be made available periodically to allow students to increase and evaluate their comprehension of the course material. Homework will not be graded. Quiz and final exam problems will be very similar to homework problems.

Lab Projects: There will be five programming projects assigned during the quarter. Projects must be submitted via the ceg320handin program on unixapps1.wright.edu by 11:59pm on the date due. Late projects will lose 10% per day late (i.e., submit it at 12:30am the next morning, your max grade is only 90%). Please be certain that your project files assemble and execute correctly on unixapps1 before submitting them. No projects will be accepted more than 3 days late (max 70%).

Examinations: Four 1/2-hour midterm examinations (quizzes) and one final examination will be administered as announced throughout the quarter. Midterm examinations are designed to encourage students to cover course material at a steady pace and to provide feedback throughout the quarter. Only the highest three of each student's four 1/2-hour midterm examinations will be used in the calculation of the final grade.

In order to be fair to all students and allow the timely return of examinations, make-ups of 1/2-hour examinations are not permitted under any circumstance. Absences, periodic poor performance, unexpected tardiness, and other difficulties are sometimes unavoidable; therefore each student's lowest quiz score is disregarded in the calculation of the overall grade. Students missing multiple midterm examinations should consider petitioning for withdrawal from the course.

Midterm examinations will occur at the normally scheduled class time and location unless announced otherwise in class. The final examination is cumulative and will take place during the university scheduled time period in the normally scheduled class location unless announced otherwise in class.

Grades

Grades will be assigned on a standard A/90%, B/80%, C/70%, D/60%, F/59%- scale. Clustering of grades may cause the thresholds to be lowered; they will not be raised. The instructor reserves the right to fail any student who does not attain both a passing grade (70%+) in the laboratory and at least a grade of 50% on the final. The overall course grade will be calculated as follows:

| Projects: 30% | Quizzes: 35% | Final exam: 35% |

Absences: Class attendance will not be a direct factor in your grade but will strongly affect the quality of your education. Students are expected to attend every class. Things may make less sense to students that do not attend class or arrive late. Students who miss class are responsible for the material presented and any announcements made. Any extenuating circumstances which impact on your participation in the course should be discussed with me as soon as those circumstances are known. Make-ups for the final exam may be arranged if a student's absence is caused by documented illness or personal emergency. Quizzes may not be made up. It is the student's responsibility to provide a written explanation (including supporting evidence) to the instructor in a timely manner. Students registering after the term begins are responsible for all missed assignments and cannot expect that due dates will be altered.
Academic Integrity

Student-teacher relationships are built on trust. For example, students must trust that teachers have made appropriate decisions about the structure and content of the courses that they teach, and teachers must trust that the assignments that students turn in are their own. Acts which undermine this trust undermine the educational process. It is the policy of Wright State University to uphold and support standards of personal honesty and integrity for all students consistent with the goals of a community of scholars and students seeking knowledge and truth. Furthermore, it is the policy of the university to enforce these standards. The following recommendations are made for students:

1. Be honest at all times.
2. Act fairly towards others. For example, do not seek an unfair advantage over others by cheating with or by looking at other individual's work during examinations or laboratory assignments.
3. Take group as well as individual responsibility for honorable behavior. Collectively, as well as individually, make every effort to prevent and avoid academic misconduct, and report acts of misconduct that you witness.
4. Know the policy -- ignorance is no defense. Read the policy contained in the student handbook. If you have any questions regarding academic misconduct, contact your instructor.

Students are encouraged to get together in small study groups to discuss the course topics and homework problems. Small group discussion and collaboration is a vital aid to mastering the concepts presented in this course. Being able to communicate and work in teams is a necessary skill for any computer scientist. However, students must work on all graded course assignments and examinations on an individual basis.

Conduct for Laboratory Assignments: Students may discuss "general concepts" of laboratories assignments with each other, but may not, under any circumstances, work with anyone on their actual implementation. If you work with other students on "general concepts" be certain to acknowledge the collaboration and its extent in the assignment. Unacknowledged collaboration will be considered dishonest. Sharing (or copying) code (including work from previous quarters) is strictly disallowed. If the same work is turned in by two or more students I will consider all students involved equally culpable. You are responsible for ensuring that other students do not have access to your work - do not give another student access to your account, do not leave printouts in the recycling bin, pick up your printouts promptly, do not leave your workstation unattended, etc. If you suspect that your work has been compromised, notify your instructor immediately.

Conduct for Examinations: The academic code demands that no student should have an unfair advantage over any other student during examinations. Thus, it is strictly forbidden for any student to refer to information from previous offerings of this course unless this information is provided by the instructor to all students fairly. Thus, the use of test banks of previous quizzes or asking questions about examinations or laboratory assignments to prior students is strictly forbidden.

Example: Portions of Dr. Travis Doom's CEG360 syllabus (most notably this excellent Academic Integrity section) were used with his permission. Although this is perfectly acceptable for a syllabus, it would NOT be acceptable for any course assignment.