Characterisation of Core@Shell Nanoparticles using Advanced Electron Microscopy

Andrew Wheatley
Characterisation of core@shell nanoparticles using advanced electron microscopy

Dr. Andrew Wheatley
Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
Magnetic Core@Shell Nanoparticles

- Dual functionality
- Oxidative Stability
- Functionalisable
- Tuneable
- Recoverable
- Inexpensive

Catalytically active
Magnetic
Low Cost
Oxidatively stable

Applications in
- Magnetic separation
- Catalysis
- Drug delivery
- Magnetic hyperthermia
Synthesis of core@shell particles

- Sequential reduction/decomposition
 \[A \xrightarrow{\text{Heat}} \text{Core@shell} + B \xrightarrow{\text{Heat}} \text{Core@shell} \]

- Simultaneous reduction/decomposition
 \[A + B \xrightarrow{\text{Heat}} \text{Core@shell} \]

- Segregated mixture (alloyed)
 \[\text{Core@shell} \]
 \[\text{Heterodimer} \]
 \[\text{Segregated mixture} \]
 \[\text{Intermixed (alloyed)} \]
Characterisation of heterostructures

- **Powder XRD**
 - Can identify phases present
 - Sherrer equation gives particle size
 - Bulk technique
 - Peaks broadened by small crystallites
 - Size information only relevant to the smallest particles
 - Particles may be polycrystalline

- **Bright-field TEM**
 - Particle forms directly observed
 - Lattice fringes give information on phase
 - Core@shell structure may be visible
 - Increase in particle size could be caused by aggregation
 - Beam damage can occur
 - Core@shell structure may not be visible
 - Suffers from lens abberations

Characterisation of heterostructures

• High-angle annular dark-field (HAADF) STEM
 ▪ Z-contrast is high
 ▪ Poor signal-to-noise ratio
 ▪ Reduced image resolution

• Spatially resolved EDS and EELS
 ▪ Produces elemental line scans
 ▪ Maps individual particles
 ▪ EDX best for high Z, EELS best for low Z

• Energy Filtered (EF) TEM
 ▪ Electrons with a particular energy loss are selected
 ▪ Selection based on core losses for specific elements
 ▪ Composite images for element mapping
 ▪ Poor signal-to-noise ratio

• Electron diffraction and fast Fourier Transforms
 ▪ Requires less material than XRD
 ▪ Bulk technique
 ▪ Suffers from lens aberrations

http://www-hrem.msm.cam.ac.uk/research/EFTEM/EFTEM.html
Synthesis of core@shell particles

1. PPh$_3$, 2) OA, 1) ex. Fe(CO)$_5$, 120 ºC, 2) 180 ºC, 3) 250 ºC

OA = cis-Me(CH$_2$)$_7$CH=CH(CH$_2$)$_7$CO$_2$H

HRTEM analysis of the product

- Mean particle size = 13.6 ± 1.2 nm
- Core@shell structure clear
- Inner shell and outer shell?
- Background of small (<2 nm) particles
High Resolution TEM

- Metallic Co core
- Partial oxidation in the shell
- Polycrystalline shell
Comparing bulk and individual particle analysis

- SAED and FFT combine bulk and individual particle analysis
- Metallic Co core
- Partially oxidised shell
Reconstructing particle images

- Inverse-FFT regenerates the particle image from the diffraction pattern
Elemental characterisation by line scans
Confirming the oxidation states – EELS line scans

- EELS data obtained for the L\textsubscript{2,3} edge of Fe
- 95 particles scanned
- Calibrated with respect to the Co L\textsubscript{2} edge
- Comparison of data from shell, ‘core’ and reference materials confirms that shell is closest in nature to Fe\textsubscript{3}O\textsubscript{4}
Verifying the location of carbon – EELS point scans

- Fe-rich background (2 nm particles)
- Fe_3O_4 shell must act to retain both C and Co
Conclusions and further work

• Core@shell@shell structure and metal oxidation states established

• Monocrystalline Co core, polycrystalline Fe₃O₄ outer-shell – formed by agglomeration of background Fe₃O₄?

• Presence of C inner-shell confirmed
 • Possibility of lowering epitaxial constraints at the core-shell interface
 • C may help protect the Co core

• Vary core size/material, outer-shell thickness, and capping to tune stability and properties
Acknowledgements

Synthesis
- Benjamin Knappett
- Pavel Abdulkin

Analysis
- Dr. David Jefferson
- Dr. Emilie Ringe (Materials Science, Cambridge)
- Dr. Sergio Lozano-Perez (Materials Science, Oxford)
- Drs. Asunción Fernández and Christina Rojas (Ciencia de Materiales de Sevilla)
- Drs. Christian Kübel and Di Wang (KMNF, Germany)

Funding

[Logos ofEPSRC, CAPACITIES, European Union, Royal Society, Junta de Andalucía, and KMNF]
Characterisation of core@shell nanoparticles using advanced electron microscopy

Dr. Andrew Wheatley

Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK