3-22-2013

Applied Human Factors Research in Minimally Invasive Surgery

Caroline G. L. Cao
Wright State University - Main Campus, caroline.cao@wright.edu

Follow this and additional works at: http://corescholar.libraries.wright.edu/physics_seminars

Part of the Physics Commons

Repository Citation

This Presentation is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Seminars by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Applied Human Factors Research in Minimally Invasive Surgery

Caroline GL Cao
Biomedical, Industrial and Human Factors Engineering
Wright State University

March 22, 2013
Dept of Physics Seminar
"You should've seen the look on our faces when we realized that we'd been looking at the x-rays backward for the first hour of surgery."
Ergonomics in Remote Environments Laboratory (EREL)

Current Students and Researchers
Jinling Wang, PhD
Amine Chellali, PhD
Helena Mentis, PhD
Jeff Flinn, MS
Jacob Brewer, BS
Yiman Lou, BS
Natalie Pyatka, BS
Amie Miller, MD
David Wood

WSU Collaborators
John Flach, PhD
Kevin Bennett, PhD
Subhashini Ganapathy, PhD

MVH Collaborators
Randy Woods, MD
Minia Hellan, MD
Michael Galloway, MD
Katherine Lin, MD
Keith Watson, MD
James Ouellette, MD

Cambridge Health Alliance Collaborators
Steven D. Schweitzberg, MD

Beth Israel Deaconess Medical Centre Collaborators
Daniel B. Jones, MD
Stephanie Jones, MD

Vanderbilt University Medical Center Collaborators
Matt Weinger, MD
Jason Slagle, PhD
Anne Miller, PhD

Rensselaer Polytechnic Institute Collaborators
Suvranu De, ScD
Ganesh Sankaranarayanan, PhD
Brian Allen, PhD

IRCCyN (Nantes, France) Collaborators
Isabelle Milleville, PhD
Jean-Charles Cadiou, PhD
Maxime Gautier, PhD
Stephane Caro, PhD

CHU (Nantes, France) Collaborators
Jean-Marc Classe, MD

CSIRO (Brisbane, Australia) Collaborators
Cedric Dumas, PhD
Funding Support

- NIH NIBIB R01 awards (2R01EB005807, 1R01EB009362, 1R01EB10037, 1R01EB014305)
- ONR SBIR Phase I & II
- Broad Medical Research Grant
- SAGES Research Award
- NSF Career Award (IIS-0238284)
Minimally Invasive Surgery

Visuomotor coordination

Spatial orientation

Haptic perception

Communication

Applications
- navigational aids
- decision aids/information displays
- simulation training
- performance metrics
- sensory augmentation
- robotics/surgical device design
- team training
Current Research Projects

• Design and validation of VR surgical simulators
• Haptic feedback in laparoscopic surgery
• Modelling skill acquisition and decay in laparoscopic surgery
• Navigational guidance in colonoscopy
• Optimised port placement in robotic surgery
• Team communication in robotic surgery
Surgical Technology

Traditional open surgery

Minimally invasive surgery

Robot-assisted surgery
Endoscopic Surgery

- Advantages
 - Trauma and scarring
 - Complication rates
 - Hospital stay
 - Health care cost

- Disadvantages
 - Degrees of freedom
 - Depth perception
 - Hand-eye coordination
 - Haptic feedback
Natural Orifice Translumenal Endoscopic Surgery (NOTES)
Endoscopic Surgical Skill Training

• Skills different from open surgery
• Highly demanding in time and costs (patients, animals, simulators)
• Method for effective training lacking
Fundamentals of Laparoscopic Surgery (FLS)
Fundamentals of Laparoscopic Surgery (FLS)
FLS vs. VBLaST

Fundamentals of Laparoscopic Skills (FLS) Trainer
Physical box-trainer consisting of five basic surgical tasks
- Require large supply of consumables
- Time-consuming to administer
- Provide primarily subjective skill assessment

Virtual Basic Laparoscopic Surgical Trainer (VBLaST)
Virtual version of FLS
- Save on consumables
- Haptic feedback to aid learning
- Objective performance assessment
Surgical Simulator & Training

• Surgical simulator playing increasingly important role in surgical skill learning
 - Allow trainee to practice in safe environment
 - Avoid cost associated with animal model

• Virtual reality surgical training shown to transfer effective technical skills to operating room
 - Enable objective scoring criteria for skills assessment
 - Enable repeated trials of normal and adverse situations
 - Enable exposure to common scenarios and rare events
 - Implementation of force feedback
Haptics in Surgical Simulation
Haptics in Simulator Training

ProMIS simulator

MIST-VR simulator

Cognitive capacity for processing haptic information?
Haptics and Performance

- Peg transfer task with simultaneous mental multiplication task
- Better performance with haptics, p<0.001
- Subjects took advantage of haptics to improve speed and accuracy of performance

Cognitive Loading

- Cognitive loading using mental multiplication problem
- Cognitive loading extended performance time, \(p<0.001 \)
- Speed-accuracy tradeoff

Haptics & Cognitive Loading

- Less experienced surgeons can take advantage of haptics
- Haptics counters the effect of cognitive loading

Summary

• Haptic feedback improves the accuracy and speed of the performance, and counters the effect of cognitive loading

• Haptics is beneficial to less experienced surgeons, but more experienced surgeons are able to better take advantage of haptics

• It may be worthwhile to include haptic feedback capabilities in surgical training simulators
Human Sensory Modes

Multiple Sensory Theory

- Amount of information a human can process increases with multiple input sensory modes (Miller, 1956)
- Human task performance improves with multiple input sensory modes (Wickens, 2002)
Compliance Differentiation in Needle Insertion

Maximum Force

Time to Detection

Vibrotactile Stimulation – Frequency and Spatial Modulation

Compliance Differentiation in Needle Insertion

- Subject who preferred frequency feedback

- Subject who preferred combination feedback

Vibrotactile Stimulation –
Amplitude, Frequency and Duty Cycle Modulation

Error in Tumor Detection

Summary

• Vibrotactile stimulation is a useful sensory augmentation for haptic information in laparoscopic surgery
• Double-modulated vibration signal contains more information than single modulated signal
• Triple-modulated signal provides redundancy, but not more information transmitted
• Advantage of information redundancy needs to be balanced with complexity of signal and device design
Colonoscopy
Colonoscopy

Advantages

• Colon cancer
 – Third leading cause of cancer-related death in the US (Cokkinides et al. 2009)

• Colonoscopy: gold standard for colon cancer screening and diagnosis

Disadvantages

• Near blind navigation procedure

• Disorientation
 – Missed tumor detection
 – Incorrect localization

• Looping
 – Distort natural colon shape
 – Pain for the patient (Cao & Milgram, 2000)
Flexible Endoscope

- Flexible, plastic tube
- Light source and lens
- 4 dof bimanual control:
 - In/out using hand
 - Twist using hand
 - Left/right using dial
 - Up/down using dial
- 5-10 cm of tip controlled
Need for Navigational Aid

Display containing shape, location, and direction information reduces localization errors (Cao, 2001)

Goal: Endoscopic Shape Tracker

- Provide real-time, 3D map of scope shape & location
- Integrated with colonoscopy video
- Reduce disorientation
- Reduce looping
Navigational Aid Design Concept
Fibre Optic Shape Tracker

Figure 7. Fiber sensor inserted into the biopsy channel of colonoscope.
Tracking Technology

Optical fibers
- Transmit light through core
- Lose light when bent → Bend loss
- Cladding
- Core
- Leaked light

![Optical fibers](http://edmundoptics.com)

Quantum dots
- Semiconductor nanocrystals
- Narrow fluorescence emission band
- Advantages over organic fluorescent dyes

![Quantum dots](http://edmundoptics.com)

CMOS sensor
- Complementary metal-oxide semiconductor
- Photosensitive chip for imaging
- Used in digital cameras

![CMOS sensor](http://edmundoptics.com)
\[\alpha_B = \alpha_l \cdot \alpha_c \]

where \(\alpha_l = I \exp\left(-R/R_c\right) \)

\(\alpha_c = C \exp\left(-R/R_c\right) \)
Testing: Bending fiber

Fluorescence as a function of bending

0° fiber rotation

Fluorescence Intensity Change

0% 50% 100% 150% 200% 250%

Wavelength (nm)
0.02 mm\(^{-1}\) Cylinder Curvature
0.04 mm\(^{-1}\) Cylinder Curvature, 0° Rotation
QD Fluorescence of One Sensorised Region

![Fluorescence Intensity Change](image_url)
Quantum Dots for Spatial Imaging
3-Fiber Bundle

Bundle Composition

- 3 Sensorized optical fibers
 - Each fiber: a uniquely-located sensorized region
 - Each sensorized region:
 - Three QD zones embedded in the cladding
 - Spaced 120° apart circumferentially

• Bend Location
• Fluorescing fibers in bundle identified
• Bend occurs at sensorized regions → locations are known
Figure 10. Bundling 3 fibers using heat-shrink tubing.
3-Fiber Bundle

Bend Direction
- Fluorescence color indicates direction

Bending Curvature
- Fluorescence intensity increases with curvature

• Low curvature
• High curvature
Image Processing

Raw Data Capture
- LabVIEW program
 - Displays CMOS image in real-time
 - Averages per-pixel intensity value across a fiber face (region of interest)
 - 3 average values obtained per fiber: one per filter
- 20° increments
Integrated System
Confidence-Non-Rigid colon
Localisation Error and Confidence
Error-Non-Rigid colon
Error-Rigid colon
Confidence-Rigid colon

\[r = -0.82 \]

![Localisation Error and Confidence Graph]

- Rearview + Compass
- Rearview
- Radar + Compass
- Compass
- Radar
- No aid

Confidence Rating/Error (mm x 100)
Evaluation Studies

- Navigational aid display concept (shape + location + direction information) is useful for spatial orientation in colonoscopy
 - reduced localisation error
 - reduced uncertainty in localisation
 - reduce perceived workload
- Training tool for novice endoscopists
- “Valued proposition” compared to currently available technology

Computer-Assisted Port Placement in Robotic Surgery
Patient Model
Current Research Projects

- Haptic feedback in laparoscopic surgery
- Modelling skill acquisition and decay in laparoscopic surgery
- Navigational guidance in colonoscopy
- Optimised port placement in robotic surgery
- Team communication in robotic surgery
Take-Home Message

“If technology doesn’t work for people, then it just doesn’t work.”